-
-
Notifications
You must be signed in to change notification settings - Fork 56
/
Showdown_Minimax_vs_RL.py
211 lines (181 loc) · 7.8 KB
/
Showdown_Minimax_vs_RL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import numpy as np
from math import inf as infinity
import itertools
import random
game_state = [[' ',' ',' '],
[' ',' ',' '],
[' ',' ',' ']]
players = ['X','O']
def play_move(state, player, block_num):
if state[int((block_num-1)/3)][(block_num-1)%3] is ' ':
state[int((block_num-1)/3)][(block_num-1)%3] = player
else:
block_num = int(input("Block is not empty, ya blockhead! Choose again: "))
play_move(state, player, block_num)
def copy_game_state(state):
new_state = [[' ',' ',' '],[' ',' ',' '],[' ',' ',' ']]
for i in range(3):
for j in range(3):
new_state[i][j] = state[i][j]
return new_state
def check_current_state(game_state):
# Check horizontals
if (game_state[0][0] == game_state[0][1] and game_state[0][1] == game_state[0][2] and game_state[0][0] is not ' '):
return game_state[0][0], "Done"
if (game_state[1][0] == game_state[1][1] and game_state[1][1] == game_state[1][2] and game_state[1][0] is not ' '):
return game_state[1][0], "Done"
if (game_state[2][0] == game_state[2][1] and game_state[2][1] == game_state[2][2] and game_state[2][0] is not ' '):
return game_state[2][0], "Done"
# Check verticals
if (game_state[0][0] == game_state[1][0] and game_state[1][0] == game_state[2][0] and game_state[0][0] is not ' '):
return game_state[0][0], "Done"
if (game_state[0][1] == game_state[1][1] and game_state[1][1] == game_state[2][1] and game_state[0][1] is not ' '):
return game_state[0][1], "Done"
if (game_state[0][2] == game_state[1][2] and game_state[1][2] == game_state[2][2] and game_state[0][2] is not ' '):
return game_state[0][2], "Done"
# Check diagonals
if (game_state[0][0] == game_state[1][1] and game_state[1][1] == game_state[2][2] and game_state[0][0] is not ' '):
return game_state[1][1], "Done"
if (game_state[2][0] == game_state[1][1] and game_state[1][1] == game_state[0][2] and game_state[2][0] is not ' '):
return game_state[1][1], "Done"
# Check if draw
draw_flag = 0
for i in range(3):
for j in range(3):
if game_state[i][j] is ' ':
draw_flag = 1
if draw_flag is 0:
return None, "Draw"
return None, "Not Done"
def print_board(game_state):
print('----------------')
print('| ' + str(game_state[0][0]) + ' || ' + str(game_state[0][1]) + ' || ' + str(game_state[0][2]) + ' |')
print('----------------')
print('| ' + str(game_state[1][0]) + ' || ' + str(game_state[1][1]) + ' || ' + str(game_state[1][2]) + ' |')
print('----------------')
print('| ' + str(game_state[2][0]) + ' || ' + str(game_state[2][1]) + ' || ' + str(game_state[2][2]) + ' |')
print('----------------')
# Initialize state values
player = ['X','O',' ']
states_dict = {}
all_possible_states = [[list(i[0:3]),list(i[3:6]),list(i[6:10])] for i in itertools.product(player, repeat = 9)]
n_states = len(all_possible_states) # 2 players, 9 spaces
n_actions = 9 # 9 spaces
state_values_for_AI = np.full((n_states),0.0)
print("n_states = %i \nn_actions = %i"%(n_states, n_actions))
for i in range(n_states):
states_dict[i] = all_possible_states[i]
winner, _ = check_current_state(states_dict[i])
if winner == 'O': # AI won
state_values_for_AI[i] = 1
elif winner == 'X': # AI lost
state_values_for_AI[i] = -1
def update_state_value(curr_state_idx, next_state_idx, learning_rate):
new_value = state_values_for_AI[curr_state_idx] + learning_rate*(state_values_for_AI[next_state_idx] - state_values_for_AI[curr_state_idx])
state_values_for_AI[curr_state_idx] = new_value
def getBestMove_RL(state, player):
'''
Reinforcement Learning Algorithm
'''
moves = []
curr_state_values = []
empty_cells = []
for i in range(3):
for j in range(3):
if state[i][j] is ' ':
empty_cells.append(i*3 + (j+1))
for empty_cell in empty_cells:
moves.append(empty_cell)
new_state = copy_game_state(state)
play_move(new_state, player, empty_cell)
next_state_idx = list(states_dict.keys())[list(states_dict.values()).index(new_state)]
curr_state_values.append(state_values_for_AI[next_state_idx])
print('Possible moves = ' + str(moves))
print('Move values = ' + str(curr_state_values))
best_move_idx = np.argmax(curr_state_values)
best_move = moves[best_move_idx]
return best_move
def getBestMove_Minimax(state, player):
'''
Minimax Algorithm
'''
winner_loser , done = check_current_state(state)
if done == "Done" and winner_loser == 'O': # If AI won
return (1,0)
elif done == "Done" and winner_loser == 'X': # If Human won
return (-1,0)
elif done == "Draw": # Draw condition
return (0,0)
moves = []
empty_cells = []
for i in range(3):
for j in range(3):
if state[i][j] == ' ':
empty_cells.append(i*3 + (j+1))
for empty_cell in empty_cells:
move = {}
move['index'] = empty_cell
new_state = copy_game_state(state)
play_move(new_state, player, empty_cell)
if player == 'O': # If AI
result,_ = getBestMove_Minimax(new_state, 'X') # make more depth tree for human
move['score'] = result
else:
result,_ = getBestMove_Minimax(new_state, 'O') # make more depth tree for AI
move['score'] = result
moves.append(move)
# Find best move
best_move = None
if player == 'O': # If AI player
best = -infinity
for move in moves:
if move['score'] > best:
best = move['score']
best_move = move['index']
else:
best = infinity
for move in moves:
if move['score'] < best:
best = move['score']
best_move = move['index']
return (best, best_move)
# PLaying
#LOAD TRAINED STATE VALUES
state_values_for_AI = np.loadtxt('trained_state_values_X.txt', dtype=np.float64)
minimax_wins = 0
rl_wins = 0
num_iterations = 10
for iteration in range(num_iterations):
game_state = [[' ',' ',' '],
[' ',' ',' '],
[' ',' ',' ']]
current_state = "Not Done"
print("\nNew Game! (X = RL Agent, O = Minimax Agent)")
print_board(game_state)
current_player_idx = random.choice([0,1])
while current_state == "Not Done":
curr_state_idx = list(states_dict.keys())[list(states_dict.values()).index(game_state)]
if current_player_idx == 0: # RL Agent's turn
block_choice = getBestMove_RL(game_state, players[current_player_idx])
play_move(game_state ,players[current_player_idx], block_choice)
print("RL Agent plays move: " + str(block_choice))
else: # Minimax Agent's turn
_,block_choice = getBestMove_Minimax(game_state, players[current_player_idx])
play_move(game_state ,players[current_player_idx], block_choice)
print("Minimax Agent plays move: " + str(block_choice))
print_board(game_state)
winner, current_state = check_current_state(game_state)
if winner is not None:
if winner == 'X':
print("RL Agent Won!")
rl_wins += 1
else:
print("Minimax Agent Won!")
minimax_wins += 1
else:
current_player_idx = (current_player_idx + 1)%2
if current_state is "Draw":
print("Draw!")
print('\nResults(' + str(num_iterations) + ' games):')
print('Minimax Wins = ' + str(minimax_wins))
print('RL Agent Wins = ' + str(rl_wins) + '\n')