forked from Idein/chainer-pose-proposal-net
-
Notifications
You must be signed in to change notification settings - Fork 1
/
model.py
336 lines (289 loc) · 12.5 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import math
import numpy as np
import chainer
from chainer.backends.cuda import get_array_module
from chainer import reporter
import chainer.functions as F
import chainer.links as L
from chainer import initializers
major, _, _ = chainer.__version__.split(".")
MAJOR = int(major)
if MAJOR >= 5:
from chainer import static_graph
else:
def static_graph(func):
"""
dummy decorator to keep compatibility between Chainer v5 and v4
"""
def wrap(self, *args, **kwargs):
return func(self, *args, **kwargs)
return wrap
EPSILON = 1e-6
def area(bbox):
_, _, w, h = bbox
return w * h
def intersection(bbox0, bbox1):
x0, y0, w0, h0 = bbox0
x1, y1, w1, h1 = bbox1
w = F.relu(F.minimum(x0 + w0 / 2, x1 + w1 / 2) - F.maximum(x0 - w0 / 2, x1 - w1 / 2))
h = F.relu(F.minimum(y0 + h0 / 2, y1 + h1 / 2) - F.maximum(y0 - h0 / 2, y1 - h1 / 2))
return w * h
def iou(bbox0, bbox1):
area0 = area(bbox0)
area1 = area(bbox1)
intersect = intersection(bbox0, bbox1)
return intersect / (area0 + area1 - intersect + EPSILON)
def get_network(model, **kwargs):
if model == 'mv2':
from network_mobilenetv2 import MobilenetV2
return MobilenetV2(**kwargs)
elif model == 'resnet50':
from network_resnet import ResNet50
return ResNet50(**kwargs)
elif model == 'resnet18':
from network_resnet import ResNet
return ResNet(n_layers=18)
elif model == 'resnet34':
from network_resnet import ResNet
return ResNet(n_layers=34)
else:
raise Exception('Invalid model name')
class PoseProposalNet(chainer.link.Chain):
def __init__(self,
model_name,
insize,
keypoint_names,
edges,
local_grid_size,
parts_scale,
instance_scale,
width_multiplier=1.0,
lambda_resp=0.25,
lambda_iou=1.0,
lambda_coor=5.0,
lambda_size=5.0,
lambda_limb=0.5,
dtype=np.float32):
super(PoseProposalNet, self).__init__()
self.model_name = model_name
self.insize = insize
self.keypoint_names = keypoint_names
self.edges = edges
self.local_grid_size = local_grid_size
self.dtype = dtype
self.lambda_resp = lambda_resp
self.lambda_iou = lambda_iou
self.lambda_coor = lambda_coor
self.lambda_size = lambda_size
self.lambda_limb = lambda_limb
self.parts_scale = np.array(parts_scale)
self.instance_scale = np.array(instance_scale)
with self.init_scope():
self.feature_layer = get_network(model_name, dtype=dtype, width_multiplier=width_multiplier)
ksize = self.feature_layer.last_ksize
self.lastconv = L.Convolution2D(None,
6 * len(self.keypoint_names) +
self.local_grid_size[0] * self.local_grid_size[1] * len(self.edges),
ksize=ksize, stride=1, pad=ksize // 2,
initialW=initializers.HeNormal(1 / np.sqrt(2), dtype))
self.outsize = self.get_outsize()
inW, inH = self.insize
outW, outH = self.outsize
self.gridsize = (int(inW / outW), int(inH / outH))
def get_outsize(self):
inp = np.zeros((2, 3, self.insize[1], self.insize[0]), dtype=np.float32)
out = self.forward(inp)
_, _, h, w = out.shape
return w, h
def restore_xy(self, x, y):
xp = get_array_module(x)
gridW, gridH = self.gridsize
outW, outH = self.outsize
X, Y = xp.meshgrid(xp.arange(outW, dtype=xp.float32), xp.arange(outH, dtype=xp.float32))
return (x + X) * gridW, (y + Y) * gridH
def restore_size(self, w, h):
inW, inH = self.insize
return inW * w, inH * h
def encode(self, in_data):
image = in_data['image']
keypoints = in_data['keypoints']
bbox = in_data['bbox']
is_labeled = in_data['is_labeled']
dataset_type = in_data['dataset_type']
inW, inH = self.insize
outW, outH = self.outsize
gridW, gridH = self.gridsize
K = len(self.keypoint_names)
delta = np.zeros((K, outH, outW), dtype=np.float32)
tx = np.zeros((K, outH, outW), dtype=np.float32)
ty = np.zeros((K, outH, outW), dtype=np.float32)
tw = np.zeros((K, outH, outW), dtype=np.float32)
th = np.zeros((K, outH, outW), dtype=np.float32)
te = np.zeros((
len(self.edges),
self.local_grid_size[1], self.local_grid_size[0],
outH, outW), dtype=np.float32)
# Set delta^i_k
for (x, y, w, h), points, labeled in zip(bbox, keypoints, is_labeled):
if dataset_type == 'mpii':
partsW, partsH = self.parts_scale * math.sqrt(w * w + h * h)
instanceW, instanceH = self.instance_scale * math.sqrt(w * w + h * h)
elif dataset_type == 'coco':
partsW, partsH = self.parts_scale * math.sqrt(w * w + h * h)
instanceW, instanceH = w, h
else:
raise ValueError("must be 'mpii' or 'coco' but actual {}".format(dataset_type))
cy = y + h / 2
cx = x + w / 2
points = [[cy, cx]] + list(points)
labeled = [True] + list(labeled)
for k, (yx, l) in enumerate(zip(points, labeled)):
if not l:
continue
cy = yx[0] / gridH
cx = yx[1] / gridW
ix, iy = int(cx), int(cy)
sizeW = instanceW if k == 0 else partsW
sizeH = instanceH if k == 0 else partsH
if 0 <= iy < outH and 0 <= ix < outW:
delta[k, iy, ix] = 1
tx[k, iy, ix] = cx - ix
ty[k, iy, ix] = cy - iy
tw[k, iy, ix] = sizeW / inW
th[k, iy, ix] = sizeH / inH
for ei, (s, t) in enumerate(self.edges):
if not labeled[s]:
continue
if not labeled[t]:
continue
src_yx = points[s]
tar_yx = points[t]
iyx = (int(src_yx[0] / gridH), int(src_yx[1] / gridW))
jyx = (int(tar_yx[0] / gridH) - iyx[0] + self.local_grid_size[1] // 2,
int(tar_yx[1] / gridW) - iyx[1] + self.local_grid_size[0] // 2)
if iyx[0] < 0 or iyx[1] < 0 or iyx[0] >= outH or iyx[1] >= outW:
continue
if jyx[0] < 0 or jyx[1] < 0 or jyx[0] >= self.local_grid_size[1] or jyx[1] >= self.local_grid_size[0]:
continue
te[ei, jyx[0], jyx[1], iyx[0], iyx[1]] = 1
# define max(delta^i_k1, delta^j_k2) which is used for loss_limb
max_delta_ij = np.ones((len(self.edges),
outH, outW,
self.local_grid_size[1], self.local_grid_size[0]), dtype=np.float32)
or_delta = np.zeros((len(self.edges), outH, outW), dtype=np.float32)
for ei, (s, t) in enumerate(self.edges):
or_delta[ei] = np.minimum(delta[s] + delta[t], 1)
mask = F.max_pooling_2d(np.expand_dims(or_delta, axis=0),
ksize=(self.local_grid_size[1], self.local_grid_size[0]),
stride=1,
pad=(self.local_grid_size[1] // 2, self.local_grid_size[0] // 2))
mask = np.squeeze(mask.array, axis=0)
for index, _ in np.ndenumerate(mask):
max_delta_ij[index] *= mask[index]
max_delta_ij = max_delta_ij.transpose(0, 3, 4, 1, 2)
# preprocess image
image = self.feature_layer.prepare(image)
return image, delta, max_delta_ij, tx, ty, tw, th, te
def _forward(self, x):
h = F.cast(x, self.dtype)
h = self.feature_layer(h)
h = self.feature_layer.last_activation(self.lastconv(h))
return h
@static_graph
def static_forward(self, x):
return self._forward(x)
def forward(self, x):
"""
This provides an interface of forwarding.
ChainerV5 has a feature Static Subgraph Optimizations to increase training speed.
But for some reason, our model does not decrease loss value at all.
We do not trust it for now on training. On the other hand, by decorating `static_graph`
at forward function, it increases speed of inference very well.
Also note that if we use ideep option, the output result between
`static_forward` and `_forward` will be different.
"""
if chainer.config.train:
return self._forward(x)
else:
if MAJOR >= 5 and chainer.backends.cuda.available:
return self.static_forward(x)
else:
return self._forward(x)
def __call__(self, image, delta, max_delta_ij, tx, ty, tw, th, te):
K = len(self.keypoint_names)
B, _, _, _ = image.shape
outW, outH = self.outsize
feature_map = self.forward(image)
resp = feature_map[:, 0 * K:1 * K, :, :]
conf = feature_map[:, 1 * K:2 * K, :, :]
x = feature_map[:, 2 * K:3 * K, :, :]
y = feature_map[:, 3 * K:4 * K, :, :]
w = feature_map[:, 4 * K:5 * K, :, :]
h = feature_map[:, 5 * K:6 * K, :, :]
e = feature_map[:, 6 * K:, :, :].reshape((
B,
len(self.edges),
self.local_grid_size[1], self.local_grid_size[0],
outH, outW
))
(rx, ry), (rw, rh) = self.restore_xy(x, y), self.restore_size(w, h)
(rtx, rty), (rtw, rth) = self.restore_xy(tx, ty), self.restore_size(tw, th)
ious = iou((rx, ry, rw, rh), (rtx, rty, rtw, rth))
# add weight where can't find keypoint
xp = get_array_module(max_delta_ij)
zero_place = xp.zeros(max_delta_ij.shape).astype(self.dtype)
zero_place[max_delta_ij < 0.5] = 0.0005
weight_ij = xp.minimum(max_delta_ij + zero_place, 1.0)
xp = get_array_module(delta)
# add weight where can't find keypoint
zero_place = xp.zeros(delta.shape).astype(self.dtype)
zero_place[delta < 0.5] = 0.0005
weight = xp.minimum(delta + zero_place, 1.0)
half = xp.zeros(delta.shape).astype(self.dtype)
half[delta < 0.5] = 0.5
loss_resp = F.sum(F.square(resp - delta), axis=tuple(range(1, resp.ndim)))
loss_iou = F.sum(delta * F.square(conf - ious), axis=tuple(range(1, conf.ndim)))
loss_coor = F.sum(weight * (F.square(x - tx - half) + F.square(y - ty - half)), axis=tuple(range(1, x.ndim)))
loss_size = F.sum(weight * (F.square(F.sqrt(w + EPSILON) - F.sqrt(tw + EPSILON)) +
F.square(F.sqrt(h + EPSILON) - F.sqrt(th + EPSILON))),
axis=tuple(range(1, w.ndim)))
loss_limb = F.sum(weight_ij * F.square(e - te), axis=tuple(range(1, e.ndim)))
loss_resp = F.mean(loss_resp)
loss_iou = F.mean(loss_iou)
loss_coor = F.mean(loss_coor)
loss_size = F.mean(loss_size)
loss_limb = F.mean(loss_limb)
loss = self.lambda_resp * loss_resp + \
self.lambda_iou * loss_iou + \
self.lambda_coor * loss_coor + \
self.lambda_size * loss_size + \
self.lambda_limb * loss_limb
reporter.report({
'loss': loss,
'loss_resp': loss_resp,
'loss_iou': loss_iou,
'loss_coor': loss_coor,
'loss_size': loss_size,
'loss_limb': loss_limb
}, self)
return loss
def predict(self, image):
K = len(self.keypoint_names)
B, _, _, _ = image.shape
outW, outH = self.outsize
with chainer.using_config('train', False),\
chainer.function.no_backprop_mode():
feature_map = self.forward(image)
resp = feature_map[:, 0 * K:1 * K, :, :]
conf = feature_map[:, 1 * K:2 * K, :, :]
x = feature_map[:, 2 * K:3 * K, :, :]
y = feature_map[:, 3 * K:4 * K, :, :]
w = feature_map[:, 4 * K:5 * K, :, :]
h = feature_map[:, 5 * K:6 * K, :, :]
e = feature_map[:, 6 * K:, :, :].reshape((
B,
len(self.edges),
self.local_grid_size[1], self.local_grid_size[0],
outH, outW
))
return resp, conf, x, y, w, h, e