-
Notifications
You must be signed in to change notification settings - Fork 73
/
evaluate.py
358 lines (294 loc) · 15 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
#!/usr/bin/env python3
import argparse, os, re, json, csv, random
import torch
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
from peft import PeftConfig, PeftModel
from tqdm import tqdm
torch.set_default_device("cuda")
CTX_SIZE = 2048
TRUST_REMOTE_CODE = False
"""
python3 evaluate.py stablehome-1_6b-rev3 --batch-size 8 --all-checkpoints
python3 evaluate.py tinyhome-rev1 --batch-size 12 --all-checkpoints
python3 evaluate.py stablehome-3b-rev6 --batch-size 4 --lora --overwrite
"""
service_call_regex = re.compile(r"```homeassistant\n([\S \t\n]*?)```")
json_regex = re.compile(r"({[\S \t]*?})")
service_names_regex = re.compile(r"\b\w+\.\w+\([^)]*\)")
entity_ids_regex = re.compile(r"\b\w+\.\w+(?=\s'|\s=)")
try:
with open("custom_components/llama_conversation/in_context_examples.csv", encoding="utf-8-sig") as f:
in_context_examples = list(csv.DictReader(f))
except:
in_context_examples = []
def icl_example_generator(num_examples, entity_names, service_names):
entity_domains = set([x.split(".")[0] for x in entity_names])
entity_names = entity_names[:]
# filter out examples for disabled services
selected_in_context_examples = []
for x in in_context_examples:
if x["service"] in service_names and x["service"].split(".")[0] in entity_domains:
selected_in_context_examples.append(x)
# if we filtered everything then just sample randomly
if len(selected_in_context_examples) == 0:
selected_in_context_examples = in_context_examples[:]
random.shuffle(selected_in_context_examples)
random.shuffle(entity_names)
num_examples_to_generate = min(num_examples, len(selected_in_context_examples))
if num_examples_to_generate < num_examples:
print(f"Attempted to generate {num_examples} ICL examples for conversation, but only {len(selected_in_context_examples)} are available!")
results = []
while len(results) < num_examples_to_generate:
if len(selected_in_context_examples) == 0:
break
chosen_example = selected_in_context_examples.pop()
chosen_service = chosen_example["service"]
potential_devices = [ x for x in entity_names if x.split(".")[0] == chosen_service.split(".")[0] ]
if len(potential_devices) == 0:
continue
else:
example = {
"to_say": chosen_example["response"],
"service": chosen_service,
"target_device": potential_devices[0],
}
results.insert(0, json.dumps(example))
return "\n".join(results)
def tokenize(tokenizer, prompt):
return tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=CTX_SIZE)
def generate(model, tokenizer, prompts):
inputs = tokenize(tokenizer, prompts)
with torch.no_grad():
outputs = model.generate(**inputs)
text = tokenizer.batch_decode(outputs)
return text
def evaluate(output_folder, trained_model, trained_tokenizer, dataset, batch_size, use_icl):
split = trained_tokenizer.apply_chat_template(conversation=[{"role": "assistant", "content": r"%%%%%%%%%%%%%%%%"}], tokenize=False).split( r"%%%%%%%%%%%%%%%%")[0].replace(trained_tokenizer.bos_token, "")
print("Evaluating...")
correct_answers = 0
total_answers = 0
color_mismatches = 0
# pre-allocate cuda buffers
inputs = trained_tokenizer([""] * batch_size, return_tensors="pt", max_length=CTX_SIZE, padding="max_length", truncation=True)
inputs = {k: v.to(trained_model.device) for k, v in inputs.items()}
with torch.no_grad():
outputs = trained_model(**inputs)
failed_examples = []
with tqdm(total=len(dataset), desc="Accuracy") as pbar:
for batch_start in range(0, len(dataset), batch_size):
batch = dataset[batch_start:batch_start + batch_size]
if "text" in batch:
prompts = [ example.split(split)[0] + split for example in batch["text"] ]
expected_responses = [ example.split(split)[1] for example in batch["text"] ]
else:
prompts = []
expected_responses = []
for example in batch["conversations"]:
conversation = [ { "role": x["from"], "content": x["value"] } for x in example if x["from"] != "assistant"]
if use_icl:
new_conversation = []
for turn in conversation:
if turn["role"] == "system":
entity_names = entity_ids_regex.findall(turn["content"])
service_names = [ x.split("(")[0] for x in service_names_regex.findall(turn["content"]) ]
icl_examples = icl_example_generator(5, entity_names, service_names)
turn["content"] = turn["content"] + "Respond to the following user instruction by responding in the same format as the following examples:\n" + icl_examples
new_conversation.append(turn)
conversation = new_conversation
prompts.append(trained_tokenizer.apply_chat_template(
conversation=conversation,
max_length=CTX_SIZE,
truncation=True,
tokenize=False,
add_generation_prompt=True,
))
if use_icl:
response = [x["value"] for x in example if x["from"] == "assistant"][0]
expected_calls = service_call_regex.findall(response)
to_say = service_call_regex.sub("", response)
expected_responses.append(expected_calls[0])
else:
expected_responses.append([x["value"] for x in example if x["from"] == "assistant"][0])
output = generate(trained_model, trained_tokenizer, prompts)
for model_output, expected_response in zip(output, expected_responses):
response = model_output.replace(trained_tokenizer.pad_token, "").replace(trained_tokenizer.eos_token, "").split(split)[1]
expected_service_calls = []
if use_icl:
regex_to_use = json_regex
else:
regex_to_use = service_call_regex
for block in regex_to_use.findall(expected_response.strip()):
for line in block.split("\n"):
if len(line) == 0:
continue
expected_service_calls.append(json.loads(line))
total_answers = total_answers + 1
found_responses = regex_to_use.findall(response.strip())
if len(expected_service_calls) == 0:
total_answers = total_answers + 1
if len(found_responses) == 0:
correct_answers = correct_answers + 1
continue
else:
failed_examples.append({ "expected": expected_response, "actual": response, "extra_response": True })
continue
if len(found_responses) == 0:
failed_examples.append({ "expected": expected_response, "actual": response, "no_response_found": True })
continue
for block in found_responses:
for line in block.split("\n"):
if len(line) == 0:
continue
try:
json_output = json.loads(line)
except:
failed_examples.append({ "expected": expected_response, "actual": response, "invalid_json": True })
continue
if use_icl:
json_output.pop("to_say")
if json_output in expected_service_calls:
expected_service_calls.pop(expected_service_calls.index(json_output))
correct_answers = correct_answers + 1
elif "rgb_color" in json_output:
for sc in expected_service_calls:
sc = { **sc }
json_output_copy = { **json_output }
if not "rgb_color" in sc:
continue
del sc["rgb_color"]
del json_output_copy["rgb_color"]
if sc == json_output_copy:
correct_answers = correct_answers + 1
color_mismatches = color_mismatches + 1
else:
failed_examples.append({ "expected": expected_response, "actual": response })
else:
failed_examples.append({ "expected": expected_response, "actual": response })
pbar.update(batch_size)
pbar.set_description(f"Accuracy: {correct_answers/total_answers*100:.2f}% ({correct_answers}/{total_answers})")
accuracy = correct_answers/total_answers
print(f"Final Accuracy Rating: {accuracy*100:.2f}%")
print(f"Color Mismatches: {color_mismatches}")
with open(os.path.join(output_folder, "eval_results.json"), "w") as f:
json.dump({
"possible_answers": total_answers,
"correct_answers": correct_answers,
"accuracy": accuracy,
"color_mismatches": color_mismatches,
"failed_examples": failed_examples,
}, f, indent=4)
def load_model(model_name, is_lora, is_hf, load_in_8bit, checkpoint_name):
lora_folder = f"./loras/{model_name}/"
model_folder = f"./models/{model_name}/"
# tokenizer isn't saved into checkpoint folders
tokenizer_folder = model_folder
if checkpoint_name:
lora_folder = lora_folder + f"{checkpoint_name}/"
model_folder = model_folder + f"{checkpoint_name}/"
if is_hf:
print(f"Loading model {model_name}...")
trained_model = AutoModelForCausalLM.from_pretrained(
model_name,
trust_remote_code=TRUST_REMOTE_CODE,
torch_dtype=torch.bfloat16,
load_in_8bit=load_in_8bit,
)
trained_tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=TRUST_REMOTE_CODE,
padding_side='left',
)
elif is_lora:
adapter_config = PeftConfig.from_pretrained(lora_folder)
base_model_name = adapter_config.base_model_name_or_path
print(f"Loading lora from {lora_folder} ({base_model_name})...")
base_model = AutoModelForCausalLM.from_pretrained(
base_model_name,
trust_remote_code=TRUST_REMOTE_CODE,
torch_dtype=torch.bfloat16,
)
trained_model = PeftModel.from_pretrained(
base_model,
lora_folder,
trust_remote_code=TRUST_REMOTE_CODE,
torch_dtype=torch.bfloat16,
)
trained_tokenizer = AutoTokenizer.from_pretrained(
base_model_name,
trust_remote_code=TRUST_REMOTE_CODE,
padding_side='left',
)
else:
print(f"Loading model from {model_folder}...")
trained_model = AutoModelForCausalLM.from_pretrained(
model_folder,
trust_remote_code=TRUST_REMOTE_CODE,
torch_dtype=torch.bfloat16,
load_in_8bit=load_in_8bit,
)
trained_tokenizer = AutoTokenizer.from_pretrained(
tokenizer_folder,
trust_remote_code=TRUST_REMOTE_CODE,
padding_side='left',
)
if not trained_tokenizer.pad_token:
trained_tokenizer.pad_token = trained_tokenizer.eos_token
trained_model.generation_config = GenerationConfig(
max_new_tokens=128,
use_cache=True,
do_sample=True,
temperature=0.1,
top_k=40,
top_p=1.0,
repetition_penalty=1.15,
# eos_token_id=trained_model.config.eos_token_id,
eos_token_id=128009,
pad_token_id=trained_model.config.pad_token_id if trained_model.config.pad_token_id else trained_model.config.eos_token_id,
)
return trained_model, trained_tokenizer
def main():
global in_context_examples
parser = argparse.ArgumentParser(description="Evaluate the function calling for a model")
parser.add_argument("model")
parser.add_argument("--dataset-file", default="./data/home_assistant_test.jsonl")
parser.add_argument("--batch-size", default=8)
parser.add_argument("--lora", default=False, action='store_const', const=True)
parser.add_argument("--all-checkpoints", default=False, action='store_const', const=True)
parser.add_argument("--overwrite", default=False, action='store_const', const=True)
parser.add_argument("--hf", default=False, action='store_const', const=True)
parser.add_argument("--load-in-8bit", default=False, action='store_const', const=True)
args = parser.parse_args()
batch_size = int(args.batch_size)
dataset = load_dataset("json", data_files={ "train": args.dataset_file })["train"]
print(f"Got {len(dataset)} examples to test")
if args.hf:
output_folder = "./"
trained_model, trained_tokenizer = load_model(args.model, args.lora, True, args.load_in_8bit, None)
evaluate(output_folder, trained_model, trained_tokenizer, dataset, batch_size, True)
else:
model_folder = f"./loras/{args.model}/" if args.lora else f"./models/{args.model}/"
if not os.path.isdir(model_folder):
print(f"Model Not Found: {args.model}")
return
if not args.all_checkpoints:
checkpoints = [None]
else:
checkpoints = [x for x in os.listdir(model_folder) if os.path.isdir(os.path.join(model_folder, x)) and "checkpoint" in x]
checkpoints = sorted(checkpoints, key=lambda x: int(x.split('-')[-1]))
checkpoints.append(None)
print(f"Found {len(checkpoints) - 1} checkpoints to test (plus the final model)")
for ckpt in checkpoints:
if ckpt:
output_folder = os.path.join(model_folder, ckpt)
else:
output_folder = model_folder
output_filename = os.path.join(output_folder, "eval_results.json")
if os.path.exists(output_filename):
if not args.overwrite:
print(f"Evaluation already exists for {output_folder}. Skipping...")
continue
trained_model, trained_tokenizer = load_model(args.model, args.lora, ckpt, False)
evaluate(output_folder, trained_model, trained_tokenizer, dataset, batch_size, False)
if __name__ == "__main__":
main()