-
Notifications
You must be signed in to change notification settings - Fork 2
/
adsh.py
259 lines (226 loc) · 10.5 KB
/
adsh.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import sys
import torch
import torch.optim as optim
import os
import time
import utils.evaluate as evaluate
import models.resnet as resnet
from torch import nn
from tqdm import tqdm
from loguru import logger
from models.adsh_loss import ADSH_Loss
from data.data_loader import sample_dataloader
from utils import AverageMeter
def train(
query_dataloader,
train_loader,################ wp
retrieval_dataloader,
query_loader_zs,
database_loader_zs,
code_length,
args,
# args.device,
# lr,
# args.max_iter,
# args.max_epoch,
# args.num_samples,
# args.batch_size,
# args.root,
# dataset,
# args.gamma,
# topk,
):
"""
Training model.
Args
query_dataloader, retrieval_dataloader(torch.utils.data.dataloader.DataLoader): Data loader.
code_length(int): Hashing code length.
args.device(torch.args.device): GPU or CPU.
lr(float): Learning rate.
args.max_iter(int): Number of iterations.
args.max_epoch(int): Number of epochs.
num_train(int): Number of sampling training data points.
args.batch_size(int): Batch size.
args.root(str): Path of dataset.
dataset(str): Dataset name.
args.gamma(float): Hyper-parameters.
topk(int): Topk k map.
Returns
mAP(float): Mean Average Precision.
"""
# Initialization
# model = alexnet.load_model(code_length).to(args.device)
print("adsh for zero-shot learning")
if args.net == "resnet50":
print('in_resnet50')
model = resnet.resnet50(pretrained=args.pretrain, num_classes=code_length)
# if args.gpu:
# model = nn.DataParallel(model)
model.to(args.device)
if args.optim == 'SGD':
optimizer = optim.SGD(model.parameters(), lr=args.lr, weight_decay=args.wd, momentum=args.momen, nesterov=args.nesterov)
elif args.optim == 'Adam':
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.wd)
elif args.optim == 'AdamW':
optimizer = optim.AdamW(model.parameters(), lr=args.lr, weight_decay=args.wd)
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, args.lr_step)
criterion = ADSH_Loss(code_length, args.gamma)
num_retrieval = len(retrieval_dataloader.dataset)
U = torch.zeros(args.num_samples, code_length).to(args.device)
B = torch.randn(num_retrieval, code_length).to(args.device)
retrieval_targets = retrieval_dataloader.dataset.get_onehot_targets()[:,:args.num_classes].to(args.device)
cnn_losses, hash_losses, quan_losses = AverageMeter(), AverageMeter(), AverageMeter()
start = time.time()
best_mAP = 0
corresponding_mAP_all = 0
corresponding_zs_mAP = 0
corresponding_zs_mAP_all = 0
for it in range(args.max_iter):
iter_start = time.time()
# Sample training data for cnn learning
train_dataloader, sample_index = sample_dataloader(train_loader, args.num_samples, args.batch_size, args.root, args.dataset)
# Create Similarity matrix
train_targets = train_dataloader.dataset.get_onehot_targets().to(args.device)
S = (train_targets @ retrieval_targets.t() > 0).float()
S = torch.where(S == 1, torch.full_like(S, 1), torch.full_like(S, -1))
####S的处理细节 如果要进行soft处理,就需要维持大小为sample_train_data*all_traindata 的S矩阵
# Soft similarity matrix, benefit to converge
r = S.sum() / (1 - S).sum()#r = (N+ - N-)/(2*N-) N+是相似对的数量,N-是不相似对的数量
S = S * (1 + r) - r
# Training CNN model
for epoch in range(args.max_epoch):
cnn_losses.reset()
hash_losses.reset()
quan_losses.reset()
pbar = tqdm(enumerate(train_dataloader),total=len(train_dataloader),ncols = 50)
# print((len(train_dataloader)))
for batch, (data, targets, index) in pbar:
# for batch, (data, targets, index) in enumerate(train_dataloader):## cifat-10==2000
data, targets, index = data.to(args.device), targets.to(args.device), index.to(args.device)
optimizer.zero_grad()
F = model(data)
U[index, :] = F.data
cnn_loss, hash_loss, quan_loss = criterion(F, B, S[index, :], sample_index[index])
cnn_losses.update(cnn_loss.item())
hash_losses.update(hash_loss.item())
quan_losses.update(quan_loss.item())
cnn_loss.backward()
optimizer.step()
logger.info('[epoch:{}/{}][cnn_loss:{:.6f}][hash_loss:{:.6f}][quan_loss:{:.6f}]'.format(epoch+1, args.max_epoch,
cnn_losses.avg, hash_losses.avg, quan_losses.avg))
scheduler.step()
# Update B
expand_U = torch.zeros(B.shape).to(args.device)
expand_U[sample_index, :] = U
B = solve_dcc(B, U, expand_U, S, code_length, args.gamma)
# Total loss
iter_loss = calc_loss(U, B, S, code_length, sample_index, args.gamma)
# logger.debug('[iter:{}/{}][loss:{:.2f}][iter_time:{:.2f}]'.format(it+1, args.max_iter, iter_loss, time.time()-iter_start))
logger.info('[iter:{}/{}][loss:{:.6f}][iter_time:{:.2f}]'.format(it+1, args.max_iter, iter_loss, time.time()-iter_start))
if (it < 35 and (it + 1) % args.val_freq == 0) or (it >= 35 and (it + 1) % 1 == 0):
# if (it + 1) % 1 == 0 :
query_code = generate_code(model, query_dataloader, code_length, args.device)
query_targets = query_dataloader.dataset.get_onehot_targets()
# B = generate_code(model, retrieval_dataloader, code_length, args.device)
db_label= retrieval_dataloader.dataset.get_onehot_targets()
zs_test_binary = generate_code(model, query_loader_zs, code_length, args.device)
zs_test_label = query_loader_zs.dataset.get_onehot_targets()
zs_db_binary = generate_code(model, database_loader_zs, code_length, args.device)
zs_db_label = database_loader_zs.dataset.get_onehot_targets()
db_all_binary = torch.cat((B, zs_db_binary), 0)
db_all_label = torch.cat((db_label, zs_db_label), 0)
mAP = evaluate.mean_average_precision(
query_code.to(args.device),
B,
query_targets[:,:args.num_classes].to(args.device),
db_label[:,:args.num_classes].to(args.device),
args.device,
args.topk,
)
mAP_all = evaluate.mean_average_precision(
query_code.to(args.device),
db_all_binary.to(args.device),
query_targets.to(args.device),
db_all_label.to(args.device),
args.device,
args.topk,
)
zs_mAP_all = evaluate.mean_average_precision(
zs_test_binary.to(args.device),
db_all_binary.to(args.device),
zs_test_label.to(args.device),
db_all_label.to(args.device),
args.device,
args.topk,
)
zs_mAP = evaluate.mean_average_precision(
zs_test_binary.to(args.device),
zs_db_binary.to(args.device),
zs_test_label.to(args.device),
zs_db_label.to(args.device),
args.device,
args.topk,
)
if mAP > best_mAP:
best_mAP = mAP
corresponding_mAP_all = mAP_all
corresponding_zs_mAP = zs_mAP
corresponding_zs_mAP_all = zs_mAP_all
ret_path = os.path.join('checkpoints', args.info, 'best_mAP',str(code_length))
if not os.path.exists(ret_path):
os.makedirs(ret_path)
torch.save(query_code.cpu(), os.path.join(ret_path, 'query_code.t'))
torch.save(B.cpu(), os.path.join(ret_path, 'database_code.t'))
torch.save(query_targets.cpu(), os.path.join(ret_path, 'query_targets.t'))
torch.save(db_label.cpu(), os.path.join(ret_path, 'database_targets.t'))
torch.save(zs_test_binary.cpu(), os.path.join(ret_path, 'zs_test_binary.t'))
torch.save(zs_db_binary.cpu(), os.path.join(ret_path, 'zs_db_binary.t'))
torch.save(zs_test_label.cpu(), os.path.join(ret_path, 'zs_test_label.t'))
torch.save(zs_db_label.cpu(), os.path.join(ret_path, 'zs_db_label.t'))
torch.save(model.state_dict(), os.path.join(ret_path, 'model.pkl'))
model = model.to(args.device)
logger.info('[iter:{}/{}][code_length:{}][mAP:{:.5f}][mAP_all:{:.5f}][best_mAP:{:.5f}]'.format(it+1, args.max_iter, code_length, mAP,mAP_all ,best_mAP))
logger.info('[iter:{}/{}][code_length:{}][zs_mAP:{:.5f}][zs_mAP_all:{:.5f}]'.format(it+1, args.max_iter, code_length, zs_mAP, zs_mAP_all))
logger.info('[Training time:{:.2f}]'.format(time.time()-start))
return best_mAP, corresponding_mAP_all, corresponding_zs_mAP, corresponding_zs_mAP_all
def solve_dcc(B, U, expand_U, S, code_length, gamma):
"""
Solve DCC problem.
"""
Q = (code_length * S).t() @ U + gamma * expand_U
for bit in range(code_length):
q = Q[:, bit]
u = U[:, bit]
B_prime = torch.cat((B[:, :bit], B[:, bit+1:]), dim=1)
U_prime = torch.cat((U[:, :bit], U[:, bit+1:]), dim=1)
B[:, bit] = (q.t() - B_prime @ U_prime.t() @ u.t()).sign()
return B
def calc_loss(U, B, S, code_length, omega, gamma):
"""
Calculate loss.
"""
hash_loss = ((code_length * S - U @ B.t()) ** 2).sum()
quantization_loss = ((U - B[omega, :]) ** 2).sum()
loss = (hash_loss + gamma * quantization_loss) / (U.shape[0] * B.shape[0])
return loss.item()
def generate_code(model, dataloader, code_length, device):
# query_dataloader wp
"""
Generate hash code
Args
dataloader(torch.utils.data.DataLoader): Data loader.
code_length(int): Hash code length.
device(torch.device): Using gpu or cpu.
Returns
code(torch.Tensor): Hash code.
"""
model.eval()
with torch.no_grad():
N = len(dataloader.dataset)
code = torch.zeros([N, code_length]).to(device)
for data, _, index in dataloader:
data = data.to(device)
hash_code = model(data)
code[index, :] = hash_code.sign()
model.train()
return code