-
Notifications
You must be signed in to change notification settings - Fork 2
/
DPAH.py
293 lines (246 loc) · 11 KB
/
DPAH.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import torch
from torch import nn
import torch.optim as optim
import os
import time
import utils.evaluate as evaluate
import models.dpah as dpah
from loguru import logger
from data.data_loader import sample_dataloader
from utils import AverageMeter
from utils.tools import compute_result, CalcTopMap
from tqdm import tqdm
import numpy as np
class SupLoss1(nn.Module):
def __init__(self, gamma, alpha, beta):
super(SupLoss1, self).__init__()
self.gamma = gamma
self.alpha = alpha
self.beta = beta
self.softmax = nn.CrossEntropyLoss()
def forward(self, yh, yc, label):
# pdb.set_trace()
batch_size = yh.size(0) * yh.size(1)
#print ('*****************',type(label),'*********************')
loss1 = self.softmax(yc, label)
loss2 = (yh.mean(dim=1) - 0.5)**2
loss3 = -(yh - 0.5)**2
# loss = self.alpha * loss1 + self.gamma * loss2.sum() / (2 * yh.size(0)) + \
# self.beta * loss3.sum() / (2 * batch_size)
return self.alpha * loss1, self.gamma * loss2.sum() / (2 * yh.size(0)), self.beta * loss3.sum() / (2 * batch_size)
class SVRLoss(nn.Module):
def __init__(self, center, eta):
super(SVRLoss, self).__init__()
self.eta = eta
self.center = center
self.softmax = nn.CrossEntropyLoss()
def forward(self, yh, yc, label):
loss1 = self.softmax(yc, label)
# ind1 = (yh > 1)
# ind2 = (yh < -1)
# ind3 = (yh > -1) & (yh < 1)
ind1 = (yh > 0)
ind2 = (yh < 0)
# ipdb.set_trace()
loss2 = (yh.mean(dim=0) - 0.0)**2
loss3 = ((yh[ind1] - 1) ** 2).sum() + ((yh[ind2] + 1) ** 2).sum()
#loss3 = ((yh[ind1] - 1) ** 2).sum() + ((yh[ind2] + 1) ** 2).sum() + (-(yh[ind3]).abs() + 1).sum()
return loss1, self.center * loss2.sum() / (2 * yh.size(1)), self.eta * loss3 / (yh.size(0) * 2 * 2)
class KTLoss(nn.Module):
def __init__(self, a):
super(KTLoss, self).__init__()
self.range_a = a
def forward(self, yh):
ind1 = (yh > self.range_a)
ind2 = (yh < -self.range_a)
return (((yh[ind1] - 2)**2).sum() + ((yh[ind2] + 2)**2).sum()) / (2 * 2 * yh.size(0))
class multilabel_sw_Loss(nn.Module):
""" SW + CCC """
def __init__(self, gamma, alpha, beta):
super(multilabel_sw_Loss, self).__init__()
self.gamma = gamma
self.alpha = alpha
self.beta = beta
def forward(self, yh, yc, label):
# pdb.set_trace()
N = yh.size(0)
D = yh.size(1)
batch_size = N * D
log_p = nn.functional.log_softmax(yc, dim=1)
# ipdb.set_trace()
#print ('*****************',type(label),'*********************')
loss1 = -log_p[:, -1].mean()
loss2 = (yh.mean(dim=1) - 0.5)**2
loss3 = -(yh - 0.5)**2
return self.alpha * loss1, self.gamma * loss2.sum() / (2 * yh.size(0)), self.beta * loss3.sum() / (2 * batch_size)
def train(
test_loader,
train_loader,
database_loader,
query_loader_zs,
database_loader_zs,
code_length,
args,
):
"""
Training model.
Args
test_loader, database_loader(torch.utils.data.dataloader.DataLoader): Data loader.
code_length(int): Hashing code length.
args.device(torch.args.device): GPU or CPU.
lr(float): Learning rate.
Returns
mAP(float): Mean Average Precision.
"""
# Initialization
# model = alexnet.load_model(code_length).to(args.device)
if args.max_iter == 50:
text_step=45
elif args.max_iter == 40:
text_step =35
device = args.device
args.num_train = len(train_loader.dataset)
# args.step_continuation = 20
print("DPAH for zero shot")
model = dpah.dpah(code_length=code_length,pretrained=args.pretrain,num_classes=args.num_classes)
print('backbone is resnet50')
model.to(device)
if args.optim == 'SGD':
optimizer = optim.SGD(model.parameters(), lr=args.lr, weight_decay=args.wd, momentum=args.momen, nesterov=args.nesterov)
elif args.optim == 'Adam':
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.wd)
elif args.optim == 'AdamW':
optimizer = optim.AdamW(model.parameters(), lr=args.lr, weight_decay=args.wd)
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, args.lr_step)
# criterion = CSQLoss(args, code_length)
if args.dataset == 'cocozs' or args.dataset == 'nus-widezs' or args.dataset == 'flickr25kzs':
svr_loss = multilabel_sw_Loss(1.0, 1.0, 1.0).cuda()
else:
svr_loss = SupLoss1(1.0, 1.0, 1.0).to(device)
KT_loss = KTLoss(10.0)
losses = AverageMeter()
start = time.time()
best_mAP = 0
corresponding_mAP_all = 0
corresponding_zs_mAP = 0
corresponding_zs_mAP_all = 0
print("start training")#*******************************************wp
for it in range(args.max_iter):
iter_start = time.time()
# Sample training data for cnn learning
train_dataloader, sample_index = sample_dataloader(train_loader, args.num_samples, args.batch_size, args.root, args.dataset)
for epoch in range(args.max_epoch):
# epoch_start = time.time()
# criterion.scale = (epoch // args.step_continuation + 1) ** 0.5
model.train()
losses.reset()
pbar = tqdm(enumerate(train_dataloader),total=len(train_dataloader),ncols = 50)
# print((len(train_dataloader)))
for batch, (data, targets, index) in pbar:
# for batch, (data, targets, index) in enumerate(train_dataloader):
# print(targets.shape)
data, targets, index = data.to(device), targets.to(device), index.to(device)
train_label=torch.argmax(targets, dim=1)
optimizer.zero_grad()
u = model(data)
ktloss = KT_loss(u)
yh = torch.sigmoid(u)
yc, loss_maxlikehood = model.imgs_semantic(yh, train_label)
cls_loss, hashloss1, hashloss2 = svr_loss(yh, yc, train_label)
loss = loss_maxlikehood + cls_loss + hashloss1 + hashloss2 + 0.01 * ktloss
losses.update(loss.item())
loss.backward()
optimizer.step()
logger.info('[epoch:{}/{}][loss:{:.6f}]'.format(epoch+1, args.max_epoch, losses.avg))
scheduler.step()
logger.info('[iter:{}/{}][iter_time:{:.2f}]'.format(it+1, args.max_iter,
time.time()-iter_start))
if (it < text_step and (it + 1) % args.val_freq == 0) or (it >= text_step and (it + 1) % 1 == 0):
# if (it + 1) % 1 == 0 :
query_code = generate_code(model, test_loader, code_length, args.device)
query_targets = test_loader.dataset.get_onehot_targets()
B = generate_code(model, database_loader, code_length, args.device)
db_label= database_loader.dataset.get_onehot_targets()
# if args.num_zs != 0:
zs_test_binary = generate_code(model, query_loader_zs, code_length, args.device)
zs_test_label = query_loader_zs.dataset.get_onehot_targets()
zs_db_binary = generate_code(model, database_loader_zs, code_length, args.device)
zs_db_label = database_loader_zs.dataset.get_onehot_targets()
db_all_binary = torch.cat((B, zs_db_binary), 0)
db_all_label = torch.cat((db_label, zs_db_label), 0)
mAP = evaluate.mean_average_precision(
query_code.to(args.device),
B,
query_targets[:,:args.num_classes].to(args.device),
db_label[:,:args.num_classes].to(args.device),
args.device,
args.topk,
)
# if args.num_zs != 0:
mAP_all = evaluate.mean_average_precision(
query_code.to(args.device),
db_all_binary.to(args.device),
query_targets.to(args.device),
db_all_label.to(args.device),
args.device,
args.topk,
)
zs_mAP_all = evaluate.mean_average_precision(
zs_test_binary.to(args.device),
db_all_binary.to(args.device),
zs_test_label.to(args.device),
db_all_label.to(args.device),
args.device,
args.topk,
)
zs_mAP = evaluate.mean_average_precision(
zs_test_binary.to(args.device),
zs_db_binary.to(args.device),
zs_test_label.to(args.device),
zs_db_label.to(args.device),
args.device,
args.topk,
)
if mAP > best_mAP:
best_mAP = mAP
corresponding_mAP_all = mAP_all
corresponding_zs_mAP = zs_mAP
corresponding_zs_mAP_all = zs_mAP_all
ret_path = os.path.join('checkpoints', args.info, 'best_mAP',str(code_length))
if not os.path.exists(ret_path):
os.makedirs(ret_path)
torch.save(query_code.cpu(), os.path.join(ret_path, 'query_code.t'))
torch.save(B.cpu(), os.path.join(ret_path, 'database_code.t'))
torch.save(query_targets.cpu(), os.path.join(ret_path, 'query_targets.t'))
torch.save(db_label.cpu(), os.path.join(ret_path, 'database_targets.t'))
torch.save(zs_test_binary.cpu(), os.path.join(ret_path, 'zs_test_binary.t'))
torch.save(zs_db_binary.cpu(), os.path.join(ret_path, 'zs_db_binary.t'))
torch.save(zs_test_label.cpu(), os.path.join(ret_path, 'zs_test_label.t'))
torch.save(zs_db_label.cpu(), os.path.join(ret_path, 'zs_db_label.t'))
torch.save(model.state_dict(), os.path.join(ret_path, 'model.pkl'))
model = model.to(args.device)
logger.info('[iter:{}/{}][code_length:{}][mAP:{:.5f}][mAP_all:{:.5f}][best_mAP:{:.5f}]'.format(it+1, args.max_iter, code_length, mAP,mAP_all ,best_mAP))
logger.info('[iter:{}/{}][code_length:{}][zs_mAP:{:.5f}][zs_mAP_all:{:.5f}]'.format(it+1, args.max_iter, code_length, zs_mAP, zs_mAP_all))
logger.info('[Training time:{:.2f}]'.format(time.time()-start))
return best_mAP, corresponding_mAP_all, corresponding_zs_mAP, corresponding_zs_mAP_all
def generate_code(model, dataloader, code_length, device):
# query_dataloader wp
"""
Generate hash code
Args
dataloader(torch.utils.data.DataLoader): Data loader.
code_length(int): Hash code length.
device(torch.device): Using gpu or cpu.
Returns
code(torch.Tensor): Hash code.
"""
model.eval()
with torch.no_grad():
N = len(dataloader.dataset)
code = torch.zeros([N, code_length]).to(device)
for data, _, index in dataloader:
data = data.to(device)
hash_code = model(data)
code[index, :] = torch.sign(torch.sigmoid(hash_code) - 0.5)
model.train()
return code