You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
#!/bin/bash
# model path and name
MODEL="/root/Llama-2-7b-hf"
MODEL_NAME="llama-2-7b-hf"
# hyper params
BS=16
SEED=0
TRAIN=1000
DEV=100
EVAL=1000
STEPS=20000
EVAL_STEPS=500
NEPOCHS=5
# mode and task
MODE="ft"
TASK="WinoGrande"
# tag
TAG=mezo-$MODE-$STEPS-$BS-$SEED
# hyper params for zo
LEARNING_RATES=(1e-7)
ZO_EPS=(1e-4)
WEIGHT_DECAYS=(0)
for LR in "${LEARNING_RATES[@]}"; do
for EPS in "${ZO_EPS[@]}"; do
for WD in "${WEIGHT_DECAYS[@]}"; do
echo "Running with learning_rate=$LR, zo_eps=$EPS and weight_decay=$WD"
CUDA_VISIBLE_DEVICES=3 python run.py \
--model_name $MODEL \
--task_name $TASK \
--output_dir result/$TASK-${MODEL_NAME}-$TAG --tag $TAG --train_set_seed $SEED --num_train $TRAIN --num_dev $DEV --num_eval $EVAL --logging_steps 10 \
--max_steps $STEPS \
--num_train_epochs $NEPOCHS --no_reparam \
--trainer zo_sgd --load_float16 \
--learning_rate $LR --zo_eps $EPS --weight_decay $WD --per_device_train_batch_size $BS --lr_scheduler_type "constant" \
--load_best_model_at_end --evaluation_strategy steps --save_strategy steps --save_total_limit 1 \
--eval_steps $EVAL_STEPS --save_steps $EVAL_STEPS \
--train_as_classification=False --perturbation_mode=two_side
done
done
done
The output is
2024-12-09 21:22:51,772 - INFO - Sample train set 1100/2558
2024-12-09 21:22:51,772 - INFO - ... including dev set 100 samples
2024-12-09 21:22:51,772 - INFO - Loading model with FP16...
39
Loading checkpoint shards: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:12<00:00, 6.04s/it]
2024-12-09 21:23:04,614 - INFO - Done with 12.84s
2024-12-09 21:23:04,683 - INFO - Dev samples: 100
2024-12-09 21:23:04,684 - INFO - Train samples: 1000
2024-12-09 21:23:04,684 - INFO - Eval sample length is 1000
2024-12-09 21:23:04,684 - INFO - Tokenizing training samples...
2024-12-09 21:23:05,719 - INFO - Done with 1.03s
/root/miniconda3/envs/mezo/lib/python3.10/site-packages/transformers/optimization.py:391: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning
warnings.warn(
2024-12-09 21:23:05,771 - INFO - ***** Running training *****
2024-12-09 21:23:05,771 - INFO - Num examples = 1000
2024-12-09 21:23:05,771 - INFO - Num Epochs = 318
2024-12-09 21:23:05,771 - INFO - Instantaneous batch size per device = 16
2024-12-09 21:23:05,772 - INFO - Total train batch size (w. parallel, distributed & accumulation) = 16
2024-12-09 21:23:05,772 - INFO - Gradient Accumulation steps = 1
2024-12-09 21:23:05,772 - INFO - Total optimization steps = 20000
2024-12-09 21:23:05,773 - INFO - Number of trainable parameters = 6738415616
0%| | 0/20000 [00:00<?, ?it/s]### layer-wise gradient sparsity = None
-------------------------- Training Epoch 0 --------------------------
You're using a LlamaTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.
{'loss': 2.5133, 'learning_rate': 1e-07, 'epoch': 0.16}
{'loss': 2.6514, 'learning_rate': 1e-07, 'epoch': 0.32}
{'loss': 2.5057, 'learning_rate': 1e-07, 'epoch': 0.48}
{'loss': 2.583, 'learning_rate': 1e-07, 'epoch': 0.63}
{'loss': 2.4912, 'learning_rate': 1e-07, 'epoch': 0.79}
{'loss': 0.0, 'learning_rate': 1e-07, 'epoch': 0.95}
0%|▍ | 63/20000 [00:33<2:49:30, 1.96it/s]-------------------------- Training Epoch 1 --------------------------
{'loss': 0.0, 'learning_rate': 1e-07, 'epoch': 1.11}
I know that lr & zo_eps are significant for the optimization process. Are there usable hyper-params? Or is there something else I set wrong?
Would anyone be able to help? Many thanks for considering my request.
The text was updated successfully, but these errors were encountered:
The script I run is shown below
The output is
I know that lr & zo_eps are significant for the optimization process. Are there usable hyper-params? Or is there something else I set wrong?
Would anyone be able to help? Many thanks for considering my request.
The text was updated successfully, but these errors were encountered: