# vggnet16_bn default training
total - top1 acc: 81.060 top5 acc: 95.770
# vggnet16_bn slim 1e-4 pruning training
total - top1 acc: 81.120 top5 acc: 95.750
arch |
flops/G |
model size/MB |
slim |
predict pruning ratio |
true pruning ratio |
Flops after pruning |
Model size after pruning |
top1 |
top5 |
vggnet16_bn |
15.51 |
134.68 |
1e-4 |
20% |
18.75% |
8.36 |
130.31 |
80.670 |
95.160 |
vggnet16_bn |
15.51 |
134.68 |
1e-4 |
40% |
39.39% |
4.52 |
125.72 |
79.960 |
95.030 |
vggnet16_bn |
15.51 |
134.68 |
1e-4 |
60% |
58.71% |
2.45 |
120.73 |
77.620 |
93.970 |
# resnet50 default training
total - top1 acc: 83.850 top5 acc: 96.400
# resnet50 slim 1e-5 pruning training
total - top1 acc: 83.940 top5 acc: 96.340
arch |
flops/G |
model size/MB |
slim |
predict pruning ratio |
true pruning ratio |
Flops after pruning |
Model size after pruning |
top1 |
top5 |
resnet50 |
4.11 |
23.72 |
1e-5 |
20% |
00.09% |
4.08 |
23.67 |
83.680 |
96.260 |
resnet50 |
4.11 |
23.72 |
1e-5 |
40% |
05.99% |
2.84 |
19.44 |
83.010 |
95.780 |
resnet50 |
4.11 |
23.72 |
1e-5 |
60% |
20.09% |
1.12 |
7.42 |
74.580 |
92.720 |
# mobilenet_v2 default training
total - top1 acc: 80.030 top5 acc: 95.380
# mobilenet_v2 slim 1e-5 pruning training
total - top1 acc: 80.320 top5 acc: 95.050
arch |
flops/G |
model size/MB |
slim |
predict pruning ratio |
true pruning ratio |
Flops after pruning |
Model size after pruning |
top1 |
top5 |
mobilenet_v2 |
0.313 |
2.352 |
1e-5 |
5% |
/ |
/ |
/ |
75.260 |
92.830 |
mobilenet_v2 |
0.313 |
2.352 |
1e-5 |
20% |
29.08% |
0.224 |
1.780 |
83.680 |
96.260 |
mobilenet_v2 |
0.313 |
2.352 |
1e-5 |
40% |
54.60% |
0.153 |
1.206 |
83.010 |
95.780 |
mobilenet_v2 |
0.313 |
2.352 |
1e-5 |
60% |
73.03% |
0.096 |
0.728 |
74.580 |
92.720 |