-
Notifications
You must be signed in to change notification settings - Fork 9
/
cifar10_example.py
155 lines (135 loc) · 4.7 KB
/
cifar10_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
'''Train CIFAR10 with AutoLRS in PyTorch.'''
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from torch.optim.lr_scheduler import MultiStepLR
import torchvision
import torchvision.transforms as transforms
import os
import argparse
import copy
import socket
import logging
import time
import pickle
from models import *
from autolrs_callback import AutoLRS
import numpy as np
logging.basicConfig(level=logging.DEBUG)
parser = argparse.ArgumentParser(description='PyTorch training with AutoLRS')
parser.add_argument('--port', required=True)
args = parser.parse_args()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
best_acc = 0 # best test accuracy
VAL_LEN = 10 # evaluate the validation loss on a small subset of the validation set which contains 10 mini-batches
# Data
print('==> Preparing data..')
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
trainset = torchvision.datasets.CIFAR10(
root='./data', train=True, download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(
trainset, batch_size=128, shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(
root='./data', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(
testset, batch_size=100, shuffle=False, num_workers=2)
valset = torch.utils.data.Subset(testset, range(VAL_LEN))
valloader = torch.utils.data.DataLoader(
valset, batch_size=128, shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat', 'deer',
'dog', 'frog', 'horse', 'ship', 'truck')
# Model
print('==> Building model..')
net = VGG('VGG16')
# net = ResNet18()
# net = PreActResNet18()
# net = GoogLeNet()
# net = DenseNet121()
# net = ResNeXt29_2x64d()
# net = MobileNet()
#net = MobileNetV2()
# net = DPN92()
# net = ShuffleNetG2()
# net = SENet18()
# net = ShuffleNetV2(1)
# net = EfficientNetB0()
# net = RegNetX_200MF()
if device == 'cuda':
net = torch.nn.DataParallel(net)
cudnn.benchmark = True
net = net.to(device)
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.1,
momentum=0.9, weight_decay=5e-4)
# scheduler = MultiStepLR(optimizer, milestones=[150,250], gamma=0.1) # baseline LR schedule
global_step = 0
# Training
def train(autolrs_callback):
for epoch in range(350 * 2): # multiply 2 to your original training epochs because the search steps of AutoLRS is the same as the actual training steps
print('\nEpoch: %d' % (epoch+1))
net.train()
for batch_idx, (inputs, targets) in enumerate(trainloader):
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
autolrs_callback.on_train_batch_end(loss.item())
test()
# Test
def test():
global best_acc
net.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
print("Test acc: ", correct/total)
if correct/total > best_acc:
best_acc = correct/total
print('Saving..')
state = {
'net': net.state_dict(),
'acc': best_acc
}
if not os.path.isdir('checkpoint'):
os.mkdir('checkpoint')
torch.save(state, './checkpoint/best_ckpt.pth')
print("Best acc: ", best_acc)
net.train()
def val_fn():
net.eval()
val_loss = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(valloader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
loss = criterion(outputs, targets)
val_loss += loss.item()
net.train()
return val_loss
autolrs_callback = AutoLRS(net, optimizer, val_fn)
train(autolrs_callback)
print("Model saved to checkpoint/best_ckpt.pth")