-
Notifications
You must be signed in to change notification settings - Fork 38
/
dataset.py
executable file
·533 lines (454 loc) · 23.5 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
# -*- coding: utf-8 -*-
# File: coco.py
import numpy as np
import random
import os
import tqdm
import json
import glob
from tensorpack.utils import logger
from tensorpack.utils.timer import timed_operation
from config import config as cfg
__all__ = ['COCODetection', 'DetectionDataset']
class COCODetection(object):
# handle the weird (but standard) split of train and val
_INSTANCE_TO_BASEDIR = {
'valminusminival2014': 'val2014',
'minival2014': 'val2014',
}
COCO_id_to_category_id = {1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7, 8: 8, 9: 9, 10: 10, 11: 11, 13: 12, 14: 13, 15: 14, 16: 15, 17: 16, 18: 17, 19: 18, 20: 19, 21: 20, 22: 21, 23: 22, 24: 23, 25: 24, 27: 25, 28: 26, 31: 27, 32: 28, 33: 29, 34: 30, 35: 31, 36: 32, 37: 33, 38: 34, 39: 35, 40: 36, 41: 37, 42: 38, 43: 39, 44: 40, 46: 41, 47: 42, 48: 43, 49: 44, 50: 45, 51: 46, 52: 47, 53: 48, 54: 49, 55: 50, 56: 51, 57: 52, 58: 53, 59: 54, 60: 55, 61: 56, 62: 57, 63: 58, 64: 59, 65: 60, 67: 61, 70: 62, 72: 63, 73: 64, 74: 65, 75: 66, 76: 67, 77: 68, 78: 69, 79: 70, 80: 71, 81: 72, 82: 73, 84: 74, 85: 75, 86: 76, 87: 77, 88: 78, 89: 79, 90: 80} # noqa
"""
Mapping from the incontinuous COCO category id to an id in [1, #category]
For your own dataset, this should usually be an identity mapping.
"""
# 80 names for COCO
class_names = [
"person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light", "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush"] # noqa
def __init__(self, basedir, name):
self.name = name
self._imgdir = os.path.realpath(os.path.join(
basedir, self._INSTANCE_TO_BASEDIR.get(name, name)))
assert os.path.isdir(self._imgdir), self._imgdir
annotation_file = os.path.join(
basedir, 'annotations/instances_{}.json'.format(name))
assert os.path.isfile(annotation_file), annotation_file
from pycocotools.coco import COCO
self.coco = COCO(annotation_file)
logger.info("Instances loaded from {}.".format(annotation_file))
# https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
def print_coco_metrics(self, json_file):
"""
Args:
json_file (str): path to the results json file in coco format
Returns:
dict: the evaluation metrics
"""
from pycocotools.cocoeval import COCOeval
ret = {}
cocoDt = self.coco.loadRes(json_file)
cocoEval = COCOeval(self.coco, cocoDt, 'bbox')
cocoEval.evaluate()
cocoEval.accumulate()
cocoEval.summarize()
fields = ['IoU=0.5:0.95', 'IoU=0.5', 'IoU=0.75', 'small', 'medium', 'large']
for k in range(6):
ret['mAP(bbox)/' + fields[k]] = cocoEval.stats[k]
json_obj = json.load(open(json_file))
if len(json_obj) > 0 and 'segmentation' in json_obj[0]:
cocoEval = COCOeval(self.coco, cocoDt, 'segm')
cocoEval.evaluate()
cocoEval.accumulate()
cocoEval.summarize()
for k in range(6):
ret['mAP(segm)/' + fields[k]] = cocoEval.stats[k]
return ret
def load(self, add_gt=True, add_mask=False):
"""
Args:
add_gt: whether to add ground truth bounding box annotations to the dicts
add_mask: whether to also add ground truth mask
Returns:
a list of dict, each has keys including:
'height', 'width', 'id', 'file_name',
and (if add_gt is True) 'boxes', 'class', 'is_crowd', and optionally
'segmentation'.
"""
if add_mask:
assert add_gt
with timed_operation('Load Groundtruth Boxes for {}'.format(self.name)):
img_ids = self.coco.getImgIds()
img_ids.sort()
# list of dict, each has keys: height,width,id,file_name
imgs = self.coco.loadImgs(img_ids)
for img in tqdm.tqdm(imgs):
self._use_absolute_file_name(img)
if add_gt:
self._add_detection_gt(img, add_mask)
return imgs
def _use_absolute_file_name(self, img):
"""
Change relative filename to abosolute file name.
"""
img['file_name'] = os.path.join(
self._imgdir, img['file_name'])
assert os.path.isfile(img['file_name']), img['file_name']
def _add_detection_gt(self, img, add_mask):
"""
Add 'boxes', 'class', 'is_crowd' of this image to the dict, used by detection.
If add_mask is True, also add 'segmentation' in coco poly format.
"""
# ann_ids = self.coco.getAnnIds(imgIds=img['id'])
# objs = self.coco.loadAnns(ann_ids)
objs = self.coco.imgToAnns[img['id']] # equivalent but faster than the above two lines
# clean-up boxes
valid_objs = []
width = img['width']
height = img['height']
for objid, obj in enumerate(objs):
if obj.get('ignore', 0) == 1:
continue
x1, y1, w, h = obj['bbox']
# bbox is originally in float
# x1/y1 means upper-left corner and w/h means true w/h. This can be verified by segmentation pixels.
# But we do make an assumption here that (0.0, 0.0) is upper-left corner of the first pixel
x1 = np.clip(float(x1), 0, width)
y1 = np.clip(float(y1), 0, height)
w = np.clip(float(x1 + w), 0, width) - x1
h = np.clip(float(y1 + h), 0, height) - y1
# Require non-zero seg area and more than 1x1 box size
if obj['area'] > 1 and w > 0 and h > 0 and w * h >= 4:
obj['bbox'] = [x1, y1, x1 + w, y1 + h]
valid_objs.append(obj)
if add_mask:
segs = obj['segmentation']
if not isinstance(segs, list):
assert obj['iscrowd'] == 1
obj['segmentation'] = None
else:
valid_segs = [np.asarray(p).reshape(-1, 2).astype('float32') for p in segs if len(p) >= 6]
if len(valid_segs) == 0:
logger.error("Object {} in image {} has no valid polygons!".format(objid, img['file_name']))
elif len(valid_segs) < len(segs):
logger.warn("Object {} in image {} has invalid polygons!".format(objid, img['file_name']))
obj['segmentation'] = valid_segs
# all geometrically-valid boxes are returned
boxes = np.asarray([obj['bbox'] for obj in valid_objs], dtype='float32') # (n, 4)
cls = np.asarray([
self.COCO_id_to_category_id[obj['category_id']]
for obj in valid_objs], dtype='int32') # (n,)
is_crowd = np.asarray([obj['iscrowd'] for obj in valid_objs], dtype='int8')
# add the keys
img['boxes'] = boxes # nx4
img['class'] = cls # n, always >0
img['is_crowd'] = is_crowd # n,
if add_mask:
# also required to be float32
img['segmentation'] = [
obj['segmentation'] for obj in valid_objs]
@staticmethod
def load_many(basedir, names, add_gt=True, add_mask=False):
"""
Load and merges several instance files together.
Returns the same format as :meth:`COCODetection.load`.
"""
if not isinstance(names, (list, tuple)):
names = [names]
ret = []
for n in names:
coco = COCODetection(basedir, n)
ret.extend(coco.load(add_gt, add_mask=add_mask))
return ret
if cfg.DATA.IMAGENET_VID or cfg.DATA.DAVIS2017 or cfg.DATA.GOT10K or cfg.DATA.TRACKINGNET or cfg.DATA.COCO \
or cfg.DATA.YOUTUBE_BB or cfg.DATA.DAVIS_LUCID or cfg.DATA.LASOT:
def calculate_ious(bboxes1, bboxes2):
# assume layout (x0, y0, x1, y1)
min_ = np.minimum(bboxes1[:, np.newaxis, :], bboxes2[np.newaxis, :, :])
max_ = np.maximum(bboxes1[:, np.newaxis, :], bboxes2[np.newaxis, :, :])
I = np.maximum(min_[..., 2] - max_[..., 0], 0) * np.maximum(min_[..., 3] - max_[..., 1], 0)
area1 = (bboxes1[..., 2] - bboxes1[..., 0]) * (bboxes1[..., 3] - bboxes1[..., 1])
area2 = (bboxes2[..., 2] - bboxes2[..., 0]) * (bboxes2[..., 3] - bboxes2[..., 1])
U = area1[:, np.newaxis] + area2[np.newaxis, :] - I
assert (U > 0).all()
IOUs = I / U
assert (IOUs >= 0).all()
assert (IOUs <= 1).all()
return IOUs
class DetectionDataset(object):
occluders = None
coco = None
coco_anns = None
def __init__(self):
"""
This function is responsible for setting the dataset-specific
attributes in both cfg and self.
"""
# we do it category agnostic, so only foreground and background
#self.num_category = cfg.DATA.NUM_CATEGORY = 1
self.num_category = cfg.DATA.NUM_CATEGORY
cfg.DATA.TRAIN = ["train"]
cfg.DATA.VAL = ["val"]
self.num_classes = self.num_category + 1
self.class_names = cfg.DATA.CLASS_NAMES = ["BG", "FG"]
def _load_roidb_imagenet_vid(self, subset):
imageset_postfix = "ImageSets/VID/" + subset + ".txt"
imagesets_file = os.path.join(cfg.DATA.IMAGENET_VID_ROOT, imageset_postfix)
vid_names = set()
with open(imagesets_file) as f:
for l in f:
sp = l.split("/")
vid_name = sp[0] + "/" + sp[1]
vid_names.add(vid_name)
vid_names = list(vid_names)
return vid_names
def _load_roidb_davis(self, subset):
imagesets_file = os.path.join(cfg.DATA.DAVIS2017_ROOT, "ImageSets", "2017", subset + ".txt")
vid_names = []
with open(imagesets_file) as f:
for l in f:
vid_name = l.strip()
vid_names.append(vid_name)
return vid_names
def _load_roidb_davis_lucid(self, subset):
vid_names = sorted(glob.glob(cfg.DATA.DAVIS_LUCID_ROOT + "*/*/"))
vid_names = ['/'.join(v.split("/")[-3:]) for v in vid_names]
if cfg.TRACK_VIDEO_ID is not None:
vid_names = sorted(glob.glob(cfg.DATA.DAVIS_LUCID_ROOT + "test-challenge/*/"))
vid_names = ['/'.join(v.split("/")[-3:]) for v in vid_names]
vid_names = [vid_names[cfg.TRACK_VIDEO_ID]]
print("!!!!!!!!!!!!!!!ONLY DOING: ", vid_names[0], "!!!!!!!!!!!!!!!!!!!!!!!!!")
# vid_names = ['test-challenge/speed-skating/']
return vid_names
def _load_roidb_youtubevos(self, subset):
meta_file = os.path.join(cfg.DATA.YOUTUBE_VOS_ROOT, subset, "meta.json")
with open(meta_file) as f:
metadata = json.load(f)
vid_names = list(metadata["videos"].keys())
return vid_names
def _load_roidb_got10k(self, subset):
vid_names = []
with open(os.path.join(cfg.DATA.GOT10K_ROOT, 'train/list.txt')) as f:
for l in f:
vid_names.append(l.strip())
assert len(vid_names) > 0
return vid_names
def _load_roidb_lasot(self, subset):
vid_names = []
with open(os.path.join(cfg.DATA.LASOT_ROOT, 'training_set.txt')) as f:
for l in f:
vid_names.append(l.strip())
assert len(vid_names) > 0
return vid_names
def _load_roidb_youtube_bb(self, subset):
clips_fn = os.path.join(cfg.DATA.YOUTUBE_BB_ROOT, "sets", "clips.txt")
roidbs = []
with open(clips_fn) as f:
for l in f:
roidbs.append(l.strip())
return roidbs
def _load_roidb_trackingnet(self, subset):
gt_files = glob.glob(os.path.join(cfg.DATA.TRACKINGNET_ROOT, "TRAIN*", "anno", "*.txt"))
vid_names = [x.split("/")[-3] + "____" + x.split("/")[-1].replace(".txt", "") for x in gt_files]
return vid_names
def _load_roidb(self, subset):
vid_names = []
if cfg.DATA.IMAGENET_VID:
logger.info("using imagenet vid")
vid_names_imgnet = self._load_roidb_imagenet_vid(subset)
vid_names_imgnet = ["VID/" + x for x in vid_names_imgnet]
vid_names += vid_names_imgnet
if cfg.DATA.DAVIS2017:
logger.info("using davis2017")
vid_names_davis = self._load_roidb_davis(subset)
vid_names_davis = ["DAVIS/" + x for x in vid_names_davis]
vid_names += vid_names_davis
if cfg.DATA.YOUTUBE_VOS:
logger.info("using YouTube-VOS")
vid_names_youtubevos = self._load_roidb_youtubevos(subset)
vid_names_youtubevos = ["YouTubeVOS/" + x for x in vid_names_youtubevos]
vid_names += vid_names_youtubevos
if cfg.DATA.GOT10K:
logger.info("using GOT10K")
vid_names_got = self._load_roidb_got10k(subset)
vid_names_got = ["GOT10K/" + x for x in vid_names_got]
vid_names += vid_names_got
if cfg.DATA.LASOT:
logger.info("using LaSOT")
vid_names_lasot = self._load_roidb_lasot(subset)
vid_names_lasot = ["LaSOT/" + x for x in vid_names_lasot]
vid_names += vid_names_lasot
if cfg.DATA.YOUTUBE_BB:
logger.info("using YouTube-BB")
vid_names_youtube_bb = self._load_roidb_youtube_bb(subset)
vid_names_youtube_bb = ["YouTube-BB/" + x for x in vid_names_youtube_bb]
# duplicate all other vid names in order to sample them more often (YouTube-BB is very large, 300k clips)
vid_names *= 60
vid_names += vid_names_youtube_bb
if cfg.DATA.TRACKINGNET:
logger.info("using TrackingNet")
vid_names_trackingnet = self._load_roidb_trackingnet(subset)
vid_names_trackingnet = ["TrackingNet/" + x for x in vid_names_trackingnet]
# duplicate all other vid names in order to sample them more often (trackingnet is very large)
vid_names *= 2
vid_names += vid_names_trackingnet
random.shuffle(vid_names)
return vid_names
def load_training_roidbs(self, names):
"""
Args:
names (list[str]): name of the training datasets, e.g. ['train2014', 'valminusminival2014']
Returns:
roidbs (list[dict]):
Produce "roidbs" as a list of dict, each dict corresponds to one image with k>=0 instances.
and the following keys are expected for training:
height, width: integer
file_name: str, full path to the image
boxes: numpy array of kx4 floats, each row is [x1, y1, x2, y2]
category: numpy array of k integers, in the range of [1, #categories]
is_crowd: k booleans. Use k False if you don't know what it means.
segmentation: k lists of numpy arrays (one for each instance).
Each list of numpy arrays corresponds to the mask for one instance.
Each numpy array in the list is a polygon of shape Nx2,
because one mask can be represented by N polygons.
If your segmentation annotations are originally masks rather than polygons,
either convert it, or the augmentation will need to be changed or skipped accordingly.
Include this field only if training Mask R-CNN.
"""
return self._load_roidb("train")
def load_inference_roidbs(self, name):
"""
Args:
name (str): name of one inference dataset, e.g. 'minival2014'
Returns:
roidbs (list[dict]):
Each dict corresponds to one image to run inference on. The
following keys in the dict are expected:
file_name (str): full path to the image
id (str): an id for the image. The inference results will be stored with this id.
"""
return self._load_roidb("val")
def eval_or_save_inference_results(self, results, dataset, output=None):
ious_at_k = [[] for _ in range(10)]
ious_per_obj = {}
# results.sort(key=lambda x: x.gt_file)
for r in results:
gt_file, res, target_box = r
seq, obj_id, timestep = gt_file.split('__')
obj_name = seq + "__" + obj_id
res.sort(key=lambda x: x.score, reverse=True)
max_iou = 0.0
if obj_name not in ious_per_obj.keys():
ious_per_obj[obj_name] = [[] for _ in range(10)]
for k in range(10):
if len(res) > k:
det = res[k]
det_box = det.box
iou = calculate_ious(target_box[np.newaxis], det_box[np.newaxis])[0, 0]
max_iou = max(max_iou, iou)
if k == 0:
best_box = det_box
ious_per_obj[obj_name][k].append(max_iou)
# print(seq,obj_id,timestep,target_box, best_box, ious_per_obj[obj_name][0][-1])
for obj_name in ious_per_obj.keys():
for k in range(10):
ious_at_k[k].append(np.mean(ious_per_obj[obj_name][k]))
print(obj_name, np.mean(ious_per_obj[obj_name][0]))
eval_res = {"miou@" + str(k + 1): np.mean(ious_at_k[k]) for k in range(10)}
print(eval_res)
return eval_res
# code for singleton:
_instance = None
def __new__(cls):
if not isinstance(cls._instance, cls):
cls._instance = object.__new__(cls)
return cls._instance
else:
class DetectionDataset(object):
"""
A singleton to load datasets, evaluate results, and provide metadata.
To use your own dataset that's not in COCO format, rewrite all methods of this class.
"""
def __init__(self):
"""
This function is responsible for setting the dataset-specific
attributes in both cfg and self.
"""
self.num_category = cfg.DATA.NUM_CATEGORY = len(COCODetection.class_names)
self.num_classes = self.num_category + 1
self.class_names = cfg.DATA.CLASS_NAMES = ["BG"] + COCODetection.class_names
def load_training_roidbs(self, names):
"""
Args:
names (list[str]): name of the training datasets, e.g. ['train2014', 'valminusminival2014']
Returns:
roidbs (list[dict]):
Produce "roidbs" as a list of dict, each dict corresponds to one image with k>=0 instances.
and the following keys are expected for training:
height, width: integer
file_name: str, full path to the image
boxes: numpy array of kx4 floats, each row is [x1, y1, x2, y2]
category: numpy array of k integers, in the range of [1, #categories]
is_crowd: k booleans. Use k False if you don't know what it means.
segmentation: k lists of numpy arrays (one for each instance).
Each list of numpy arrays corresponds to the mask for one instance.
Each numpy array in the list is a polygon of shape Nx2,
because one mask can be represented by N polygons.
If your segmentation annotations are originally masks rather than polygons,
either convert it, or the augmentation will need to be changed or skipped accordingly.
Include this field only if training Mask R-CNN.
"""
return COCODetection.load_many(
cfg.DATA.BASEDIR, cfg.DATA.TRAIN, add_gt=True, add_mask=cfg.MODE_MASK)
def load_inference_roidbs(self, name):
"""
Args:
name (str): name of one inference dataset, e.g. 'minival2014'
Returns:
roidbs (list[dict]):
Each dict corresponds to one image to run inference on. The
following keys in the dict are expected:
file_name (str): full path to the image
id (str): an id for the image. The inference results will be stored with this id.
"""
return COCODetection.load_many(cfg.DATA.BASEDIR, name, add_gt=False)
def eval_or_save_inference_results(self, results, dataset, output=None):
"""
Args:
results (list[dict]): the inference results as dicts.
Each dict corresponds to one __instance__. It contains the following keys:
image_id (str): the id that matches `load_inference_roidbs`.
category_id (int): the category prediction, in range [1, #category]
bbox (list[float]): x1, y1, x2, y2
score (float):
segmentation: the segmentation mask in COCO's rle format.
dataset (str): the name of the dataset to evaluate.
output (str): the output file to optionally save the results to.
Returns:
dict: the evaluation results.
"""
continuous_id_to_COCO_id = {v: k for k, v in COCODetection.COCO_id_to_category_id.items()}
for res in results:
# convert to COCO's incontinuous category id
res['category_id'] = continuous_id_to_COCO_id[res['category_id']]
# COCO expects results in xywh format
box = res['bbox']
box[2] -= box[0]
box[3] -= box[1]
res['bbox'] = [round(float(x), 3) for x in box]
assert output is not None, "COCO evaluation requires an output file!"
with open(output, 'w') as f:
json.dump(results, f)
if len(output):
# sometimes may crash if the results are empty?
return COCODetection(cfg.DATA.BASEDIR, dataset).print_coco_metrics(output)
else:
return {}
# code for singleton:
_instance = None
def __new__(cls):
if not isinstance(cls._instance, cls):
cls._instance = object.__new__(cls)
return cls._instance
if __name__ == '__main__':
c = COCODetection(cfg.DATA.BASEDIR, 'train2014')
gt_boxes = c.load(add_gt=True, add_mask=True)
print("#Images:", len(gt_boxes))