diff --git "a/\345\221\250\345\277\227\345\215\216\343\200\212Machine Learning\343\200\213\345\255\246\344\271\240\347\254\224\350\256\260(8)--\350\264\235\345\217\266\346\226\257\345\210\206\347\261\273\345\231\250.md" "b/\345\221\250\345\277\227\345\215\216\343\200\212Machine Learning\343\200\213\345\255\246\344\271\240\347\254\224\350\256\260(8)--\350\264\235\345\217\266\346\226\257\345\210\206\347\261\273\345\231\250.md" index b4ae7e8..ea9d61e 100644 --- "a/\345\221\250\345\277\227\345\215\216\343\200\212Machine Learning\343\200\213\345\255\246\344\271\240\347\254\224\350\256\260(8)--\350\264\235\345\217\266\346\226\257\345\210\206\347\261\273\345\231\250.md" +++ "b/\345\221\250\345\277\227\345\215\216\343\200\212Machine Learning\343\200\213\345\255\246\344\271\240\347\254\224\350\256\260(8)--\350\264\235\345\217\266\346\226\257\345\210\206\347\261\273\345\231\250.md" @@ -1,12 +1,12 @@ 上篇主要介绍和讨论了支持向量机。从最初的分类函数,通过最大化分类间隔,max(1/||w||),min(1/2||w||^2),凸二次规划,朗格朗日函数,对偶问题,一直到最后的SMO算法求解,都为寻找一个最优解。接着引入核函数将低维空间映射到高维特征空间,解决了非线性可分的情形。最后介绍了软间隔支持向量机,解决了outlier挤歪超平面的问题。本篇将讨论一个经典的统计学习算法--**贝叶斯分类器**。 -#**7、贝叶斯分类器** +# **7、贝叶斯分类器** 贝叶斯分类器是一种概率框架下的统计学习分类器,对分类任务而言,假设在相关概率都已知的情况下,贝叶斯分类器考虑如何基于这些概率为样本判定最优的类标。在开始介绍贝叶斯决策论之前,我们首先来回顾下概率论委员会常委--贝叶斯公式。 ![1.png](https://i.loli.net/2018/10/18/5bc83fd7a2575.png) -##**7.1 贝叶斯决策论** +## **7.1 贝叶斯决策论** 若将上述定义中样本空间的划分Bi看做为类标,A看做为一个新的样本,则很容易将条件概率理解为样本A是类别Bi的概率。在机器学习训练模型的过程中,往往我们都试图去优化一个风险函数,因此在概率框架下我们也可以为贝叶斯定义“**条件风险**”(conditional risk)。 @@ -44,7 +44,7 @@ 回归正题,对于类先验概率P(c),p(c)就是样本空间中各类样本所占的比例,根据大数定理(当样本足够多时,频率趋于稳定等于其概率),这样当训练样本充足时,p(c)可以使用各类出现的频率来代替。因此只剩下类条件概率p(x | c ),它表达的意思是在类别c中出现x的概率,它涉及到属性的联合概率问题,若只有一个离散属性还好,当属性多时采用频率估计起来就十分困难,因此这里一般采用极大似然法进行估计。 -##**7.2 极大似然法** +## **7.2 极大似然法** 极大似然估计(Maximum Likelihood Estimation,简称MLE),是一种根据数据采样来估计概率分布的经典方法。常用的策略是先假定总体具有某种确定的概率分布,再基于训练样本对概率分布的参数进行估计。运用到类条件概率p(x | c )中,假设p(x | c )服从一个参数为θ的分布,问题就变为根据已知的训练样本来估计θ。极大似然法的核心思想就是:估计出的参数使得已知样本出现的概率最大,即使得训练数据的似然最大。 @@ -64,7 +64,7 @@ 上述结果看起来十分合乎实际,但是采用最大似然法估计参数的效果很大程度上依赖于作出的假设是否合理,是否符合潜在的真实数据分布。这就需要大量的经验知识,搞统计越来越值钱也是这个道理,大牛们掐指一算比我们搬砖几天更有效果。 -##**7.3 朴素贝叶斯分类器** +## **7.3 朴素贝叶斯分类器** 不难看出:原始的贝叶斯分类器最大的问题在于联合概率密度函数的估计,首先需要根据经验来假设联合概率分布,其次当属性很多时,训练样本往往覆盖不够,参数的估计会出现很大的偏差。为了避免这个问题,朴素贝叶斯分类器(naive Bayes classifier)采用了“属性条件独立性假设”,即样本数据的所有属性之间相互独立。这样类条件概率p(x | c )可以改写为: