Skip to content

Latest commit

 

History

History
129 lines (92 loc) · 5.85 KB

README.md

File metadata and controls

129 lines (92 loc) · 5.85 KB

DynamicDet [arXiv]

This repo contains the official implementation of "DynamicDet: A Unified Dynamic Architecture for Object Detection".

Performance

MS COCO

Model Easy / Hard Size FLOPs FPS APval APtest
Dy-YOLOv7 90% / 10% 640 112.4G 110 51.4% 52.1%
50% / 50% 640 143.2G 96 52.7% 53.3%
10% / 90% 640 174.0G 85 53.3% 53.8%
0% / 100% 640 181.7G 83 53.5% 53.9%
Dy-YOLOv7-X 90% / 10% 640 201.7G 98 53.0% 53.3%
50% / 50% 640 248.9G 78 54.2% 54.4%
10% / 90% 640 296.1G 65 54.7% 55.0%
0% / 100% 640 307.9G 64 54.8% 55.0%
Dy-YOLOv7-W6 90% / 10% 1280 384.2G 74 54.9% 55.2%
50% / 50% 1280 480.8G 58 55.9% 56.1%
10% / 90% 1280 577.4G 48 56.4% 56.7%
0% / 100% 1280 601.6G 46 56.5% 56.8%
Table Notes
  • FPS is measured on the same machine with 1 NVIDIA V100 GPU, with batch_size = 1, no_trace and fp16.

  • More results can be found on the paper.

Quick Start

Installation

cd DynamicDet
conda install pytorch=1.11 cudatoolkit=11.3 torchvision -c pytorch
pip install -r requirements.txt

Data preparation

Download MS COCO dataset images (train, val, test) and labels.

├── coco
│   ├── train2017.txt
│   ├── val2017.txt
│   ├── test-dev2017.txt
│   ├── images
│   │   ├── train2017
│   │   ├── val2017
│   │   ├── test2017
│   ├── labels
│   │   ├── train2017
│   │   ├── val2017
│   ├── annotations
│   │   ├── instances_val2017.json

Training

Step1: Training cascaded detector

  • Single GPU training

    python train_step1.py --workers 8 --device 0 --batch-size 16 --epochs 300 --img 640 --cfg cfg/dy-yolov7-step1.yaml --weight '' --data data/coco.yaml --hyp hyp/hyp.scratch.p5.yaml --name dy-yolov7-step1
  • Multiple GPU training (OURS, RECOMMENDED 🚀)

    python -m torch.distributed.launch --nproc_per_node 8 --master_port 9527 train_step1.py --workers 8 --device 0,1,2,3,4,5,6,7 --sync-bn --batch-size 128 --epochs 300 --img 640 --cfg cfg/dy-yolov7-step1.yaml --weight '' --data data/coco.yaml --hyp hyp/hyp.scratch.p5.yaml --name dy-yolov7-step1

Step2: Training adaptive router

python train_step2.py --workers 4 --device 0 --batch-size 1 --epochs 2 --img 640 --adam --cfg cfg/dy-yolov7-step2.yaml --weight runs/train/dy-yolov7-step1/weights/last.pt --data data/coco.yaml --hyp hyp/hyp.finetune.dynamic.adam.yaml --name dy-yolov7-step2

Getting the dynamic thresholds for variable-speed inference

python get_dynamic_thres.py --device 0 --batch-size 1 --img-size 640 --cfg cfg/dy-yolov7-step2.yaml --weight weights/dy-yolov7.pt --data data/coco.yaml --task val

Testing

python test.py --img-size 640 --batch-size 1 --conf 0.001 --iou 0.65 --device 0 --cfg cfg/dy-yolov7-step2.yaml --weight weights/dy-yolov7.pt --data data/coco.yaml --dy-thres <DY_THRESHOLD>

Inference

python detect.py --cfg cfg/dy-yolov7-step2.yaml --weight weights/dy-yolov7.pt --num-classes 80 --source <IMAGE/VIDEO> --device 0 --dy-thres <DY_THRESHOLD>

Citation

If you find this repo useful in your research, please consider citing the following paper:

@inproceedings{lin2023dynamicdet,
  title={DynamicDet: A Unified Dynamic Architecture for Object Detection},
  author={Lin, Zhihao and Wang, Yongtao and Zhang, Jinhe and Chu, Xiaojie},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2023}
}

License

The project is only free for academic research purposes, but needs authorization for commerce. For commerce permission, please contact [email protected].