-
Notifications
You must be signed in to change notification settings - Fork 81
/
VideoFaceDetector.vue
251 lines (230 loc) · 6.66 KB
/
VideoFaceDetector.vue
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
<script setup>
import * as faceapi from "@vladmandic/face-api";
import { onMounted, onUnmounted, reactive } from "vue";
/**属性状态 */
const state = reactive({
/**初始化模型加载 */
netsLoadModel: true,
/**算法模型 */
netsType: "ssdMobilenetv1",
/**模型参数 */
netsOptions: {
ssdMobilenetv1: undefined,
tinyFaceDetector: undefined,
},
/**检测人脸 多或单 */
detectFace: "detectAllFaces",
/**面框分值, 面部轮廓, 面部表情, 年龄性别 */
draws: ["box", "landmark", "expression", "ageGender"],
/**视频元素 */
videoEl: null,
/**画布图层元素 */
canvasEl: null,
/**绘制定时器 */
timer: 0,
});
/**初始化模型加载 */
async function fnLoadModel() {
// 模型文件访问路径
const modelsPath = `/models`;
// 面部轮廓模型
await faceapi.nets.faceLandmark68Net.load(modelsPath);
// 面部表情模型
await faceapi.nets.faceExpressionNet.load(modelsPath);
// 年龄性别模型
await faceapi.nets.ageGenderNet.load(modelsPath);
// 模型参数-ssdMobilenetv1
await faceapi.nets.ssdMobilenetv1.load(modelsPath);
state.netsOptions.ssdMobilenetv1 = new faceapi.SsdMobilenetv1Options({
minConfidence: 0.5, // 0 ~ 1
maxResults: 50, // 0 ~ 100
});
// 模型参数-tinyFaceDetector
await faceapi.nets.tinyFaceDetector.load(modelsPath);
state.netsOptions.tinyFaceDetector = new faceapi.TinyFaceDetectorOptions({
inputSize: 416, // 160 224 320 416 512 608
scoreThreshold: 0.5, // 0 ~ 1
});
// 输出库版本
console.log(
`FaceAPI Version: ${
faceapi?.version || "(not loaded)"
} \nTensorFlow/JS Version: ${
faceapi.tf?.version_core || "(not loaded)"
} \nBackend: ${
faceapi.tf?.getBackend() || "(not loaded)"
} \nModels loaded: ${faceapi.tf.engine().state.numTensors} tensors`
);
// 节点元素
state.videoEl = document.getElementById("page_draw-video");
state.canvasEl = document.getElementById("page_draw-video-canvas");
// 关闭模型加载
state.netsLoadModel = false;
}
/**根据模型参数识别绘制 */
async function fnRedraw() {
if (!state.videoEl || !state.canvasEl) return;
console.log("Run Redraw");
// 暂停视频时清除定时
if (state.videoEl.paused) {
clearTimeout(state.timer);
state.timer = 0;
return;
}
// 识别绘制人脸信息
const detect = await faceapi[state.detectFace](
state.videoEl,
state.netsOptions[state.netsType]
)
// 需引入面部轮廓模型
.withFaceLandmarks()
// 需引入面部表情模型
.withFaceExpressions()
// 需引入年龄性别模型
.withAgeAndGender();
// 无识别数据时,清除定时重新再次识别
if (!detect) {
clearTimeout(state.timer);
state.timer = 0;
fnRedraw();
return;
}
// 匹配元素大小
const dims = faceapi.matchDimensions(state.canvasEl, state.videoEl, true);
const result = faceapi.resizeResults(detect, dims);
// 面框分值
if (state.draws.includes("box")) {
faceapi.draw.drawDetections(state.canvasEl, result);
}
// 面部轮廓
if (state.draws.includes("landmark")) {
// 需引入面部轮廓模型
faceapi.draw.drawFaceLandmarks(state.canvasEl, result);
}
// 面部表情
if (state.draws.includes("expression")) {
// 需引入面部表情模型
faceapi.draw.drawFaceExpressions(state.canvasEl, result, 0.05);
}
// 年龄性别
if (state.draws.includes("ageGender")) {
// 需引入年龄性别模型模型
const drawItem = (item) => {
const { age, gender, genderProbability } = item;
new faceapi.draw.DrawTextField(
[
`${Math.round(age)} Age`,
`${gender} (${Math.round(genderProbability)})`,
],
item.detection.box.topRight
).draw(state.canvasEl);
};
// 多结果
if (Array.isArray(result)) {
result.forEach((item) => drawItem(item));
} else {
drawItem(result);
}
}
// 定时器句柄
state.timer = setTimeout(() => fnRedraw(), 0);
}
/**
* 视频暂停播放
*
* 播放视频,开始识别绘制
*
* 暂停视频,不清除画布
*/
function fnVidelPaused() {
if (state.videoEl.paused) {
state.videoEl.play();
setTimeout(() => fnRedraw(), 300);
} else {
state.videoEl.pause();
}
}
/**更换视频 */
function fnChange(e) {
if (!state.videoEl || !state.canvasEl) return;
if (!e.target || !e.target.files.length) return;
// 将文件显示为视频并识别
state.videoEl.pause();
state.videoEl.src = URL.createObjectURL(e.target.files[0]);
clearTimeout(state.timer);
state.timer = 0;
setTimeout(() => {
// 清空画布
state.canvasEl
.getContext("2d")
.clearRect(0, 0, state.canvasEl.width, state.canvasEl.height);
}, 500);
}
onMounted(() => {
fnLoadModel();
});
onUnmounted(() => {
clearTimeout(state.timer);
state.timer = 0;
});
</script>
<template>
<div class="page">
<div class="page_option">
<div>
<label>更换视频:</label>
<input
type="file"
accept="video/mp4, video/ogg, video/webm"
@change="fnChange($event)"
/>
</div>
<div>
<label>视频媒体:</label>
<button @click="fnVidelPaused()">播放/暂停</button>
</div>
<div>
<label>面框分值:</label>
<input type="checkbox" value="box" v-model="state.draws" />
</div>
<div>
<label>面部轮廓:</label>
<input type="checkbox" value="landmark" v-model="state.draws" />
</div>
<div>
<label>面部表情:</label>
<input type="checkbox" value="expression" v-model="state.draws" />
</div>
<div>
<label>年龄性别:</label>
<input type="checkbox" value="ageGender" v-model="state.draws" />
</div>
<div>
<label>算法模型:</label>
<select v-model="state.netsType">
<option value="ssdMobilenetv1">SSD Mobilenet V1</option>
<option value="tinyFaceDetector">Tiny Face Detector</option>
</select>
</div>
<div>
<label>检测人脸:</label>
<select v-model="state.detectFace">
<option value="detectSingleFace">Detect Single Face</option>
<option value="detectAllFaces">Detect All Faces</option>
</select>
</div>
</div>
<div class="page_load" v-show="state.netsLoadModel">Load Model...</div>
<div class="page_draw" v-show="!state.netsLoadModel">
<video
id="page_draw-video"
poster="/images/720x480.png"
src="/videos/test.mp4"
muted
playsinline
></video>
<canvas id="page_draw-video-canvas"></canvas>
</div>
</div>
</template>
<style scoped></style>