forked from TransformerOptimus/SuperAGI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Dockerfile-gpu
45 lines (32 loc) · 1.4 KB
/
Dockerfile-gpu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# Define the CUDA SDK version you need
ARG CUDA_IMAGE="12.1.1-devel-ubuntu22.04"
FROM nvidia/cuda:${CUDA_IMAGE}
ENV DEBIAN_FRONTEND=noninteractive
WORKDIR /app
RUN apt-get update && apt-get upgrade -y \
&& apt-get install -y git build-essential \
python3 python3-pip python3.10-venv libpq-dev gcc wget \
ocl-icd-opencl-dev opencl-headers clinfo \
libclblast-dev libopenblas-dev \
&& mkdir -p /etc/OpenCL/vendors && echo "libnvidia-opencl.so.1" > /etc/OpenCL/vendors/nvidia.icd
# Create a virtual environment and activate it
RUN python3 -m venv /opt/venv
ENV PATH="/opt/venv/bin:$PATH"
# Install Python dependencies from requirements.txt
COPY requirements.txt .
RUN pip install --upgrade pip && \
pip install --no-cache-dir -r requirements.txt
# Running nltk setup as you mentioned
RUN python3.10 -c "import nltk; nltk.download('punkt')" && \
python3.10 -c "import nltk; nltk.download('averaged_perceptron_tagger')"
# Copy the application code
COPY . .
ENV CUDA_DOCKER_ARCH=all
ENV LLAMA_CUBLAS=1
RUN CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python==0.2.7 --force-reinstall --upgrade --no-cache-dir
# Make necessary scripts executable
RUN chmod +x ./entrypoint.sh ./wait-for-it.sh ./install_tool_dependencies.sh ./entrypoint_celery.sh
# Set environment variable to point to the custom libllama.so
# ENV LLAMA_CPP_LIB=/app/llama.cpp/libllama.so
EXPOSE 8001
CMD ["./entrypoint.sh"]