Adapted from dgl/han.
We add GCN and GAT comparison under --hetero setting.
- Python 3.8.5
- torch 1.4.0 cuda 10.1
- dgl 0.5.2 cuda 10.1
- Download ACM.mat from tsinghua-cloud or google-drive
- Move ACM.dat to the current directory
- run main.py
python main.py --model gcn
python main.py --model gat
python main.py --model han
micro f1 score | macro f1 score | |
---|---|---|
Softmax regression | 89.66 | 89.62 |
HAN | 91.90 | 91.95 |
GCN | 92.79 | 92.87 |
GAT | 92.83 | 92.86 |
The following content is from the initial dgl/han repo.
This is an attempt to implement HAN with DGL's latest APIs for heterogeneous graphs. The authors' implementation can be found here.
python main.py
for reproducing HAN's work on their dataset.
python main.py --hetero
for reproducing HAN's work on DGL's own dataset from
here. The dataset is noisy
because there are same author occurring multiple times as different nodes.
Reference performance numbers for the ACM dataset:
micro f1 score | macro f1 score | |
---|---|---|
Paper | 89.22 | 89.40 |
DGL | 88.99 | 89.02 |
Softmax regression (own dataset) | 89.66 | 89.62 |
DGL (own dataset) | 91.51 | 91.66 |
We ran a softmax regression to check the easiness of our own dataset. HAN did show some improvements.