Skip to content

Latest commit

 

History

History

HAN

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 

HAN code

Adapted from dgl/han.

We add GCN and GAT comparison under --hetero setting.

running environment

  • Python 3.8.5
  • torch 1.4.0 cuda 10.1
  • dgl 0.5.2 cuda 10.1

running procedure

python main.py --model gcn
python main.py --model gat
python main.py --model han

performance report

micro f1 score macro f1 score
Softmax regression 89.66 89.62
HAN 91.90 91.95
GCN 92.79 92.87
GAT 92.83 92.86

The following content is from the initial dgl/han repo.

Heterogeneous Graph Attention Network (HAN) with DGL

This is an attempt to implement HAN with DGL's latest APIs for heterogeneous graphs. The authors' implementation can be found here.

Usage

python main.py for reproducing HAN's work on their dataset.

python main.py --hetero for reproducing HAN's work on DGL's own dataset from here. The dataset is noisy because there are same author occurring multiple times as different nodes.

Performance

Reference performance numbers for the ACM dataset:

micro f1 score macro f1 score
Paper 89.22 89.40
DGL 88.99 89.02
Softmax regression (own dataset) 89.66 89.62
DGL (own dataset) 91.51 91.66

We ran a softmax regression to check the easiness of our own dataset. HAN did show some improvements.