The following subsections present instructions and/or Java-snippets for some common tasks in Tink.
Tink for Java comes in two flavors:
- The main flavor.
- The Android flavor that is optimized for Android.
Tink can be installed with Maven or Gradle. The Maven group ID is
com.google.crypto.tink
, and the artifact ID is tink
.
To add a dependency using Maven:
<dependency>
<groupId>com.google.crypto.tink</groupId>
<artifactId>tink</artifactId>
<version>1.0.0</version>
<!-- or, for Android: -->
<artifactId>tink-android</artifactId>
<version>1.0.0</version>
</dependency>
To add a dependency using Gradle:
dependencies {
compile 'com.google.crypto.tink:tink:1.0.0'
// or, for Android:
compile 'com.google.crypto.tink:tink-android:1.0.0'
}
Snapshots of Tink built from the master branch are available through Maven using
version HEAD-SNAPSHOT
.
To add a dependency using Maven:
<repositories>
<repository>
<id>sonatype-snapshots</id>
<name>sonatype-snapshots</name>
<url>https://oss.sonatype.org/content/repositories/snapshots/</url>
<snapshots>
<enabled>true</enabled>
<updatePolicy>always</updatePolicy>
</snapshots>
<releases>
<updatePolicy>always</updatePolicy>
</releases>
</repository>
</repositories>
<dependency>
<groupId>com.google.crypto.tink</groupId>
<artifactId>tink</artifactId>
<!-- or, for Android: -->
<artifactId>tink-android</artifactId>
<version>HEAD-SNAPSHOT</version>
</dependency>
To add a dependency using Gradle:
repositories {
maven { url "https://oss.sonatype.org/content/repositories/snapshots" }
}
dependencies {
compile 'com.google.crypto.tink:tink:HEAD-SNAPSHOT'
// or, for Android:
compile 'com.google.crypto.tink:tink-android:HEAD-SNAPSHOT'
}
Do not use APIs including fields and methods marked with the @Alpha
annotation.
They can be modified in any way, or even removed, at any time. They are in the
package, but not for official, production release, but only for testing.
Tink provides customizable initialization, which allows for choosing specific implementations (identified by key types) of desired primitives. This initialization happens via registration of the implementations.
For example, if you want to use all implementations of all primitives in Tink 1.0.0, the initialization would look as follows:
import com.google.crypto.tink.Config;
import com.google.crypto.tink.config.TinkConfig;
Config.register(TinkConfig.TINK_1_0_0);
To use only implementations of the AEAD primitive:
import com.google.crypto.tink.Config;
import com.google.crypto.tink.aead.AeadConfig;
Config.register(AeadConfig.TINK_1_0_0);
For custom initialization the registration proceeds directly via
Registry
-class:
import com.google.crypto.tink.Registry;
import my.custom.package.aead.MyAeadKeyManager;
// Register a custom implementation of AEAD.
Registry.registerKeyManager(
MyAeadKeyManager.TYPE_URL, new MyAeadKeyManager());
Each KeyManager
-implementation provides newKey(..)
-methods that generate new
keys of the corresponding key type. However to avoid accidental leakage of
sensitive key material you should be careful with mixing key(set) generation
with key(set) usage in code. To support the separation between these activities
Tink package provides a command-line tool called Tinkey, which can
be used for common key management tasks.
Still, if there is a need to generate a KeysetHandle with fresh key material
directly in Java code, you can use
KeysetHandle
:
KeysetHandle keysetHandle = KeysetHandle.generateNew(keyTemplate);
where keyTemplate
can be initialized with one of pre-generated templates from
examples/keytemplates-folder.
Alternatively, you can also use
KeysetManager
.
After generating key material, you might want to persist it to a storage system, e.g., writing to a file:
import com.google.crypto.tink.CleartextKeysetHandle;
import com.google.crypto.tink.KeysetHandle;
import com.google.crypto.tink.aead.AeadKeyTemplates;
import com.google.crypto.tink.JsonKeysetWriter;
import java.io.File;
// Generate the key material...
KeysetHandle keysetHandle = KeysetHandle.generateNew(
AeadKeyTemplates.AES_128_GCM);
// and write it to a file.
String keysetFilename = "my_keyset.json";
CleartextKeysetHandle.write(keysetHandle, JsonKeysetWriter.withFile(
new File(keysetFilename));
Storing cleartext keysets on disk is not recommended. Tink supports encrypting keysets with master keys stored in a remote key management systems.
For example, you can encrypt the key material with a Google Cloud KMS key at
gcp-kms:/projects/tink-examples/locations/global/keyRings/foo/cryptoKeys/bar
as follows:
import com.google.crypto.tink.JsonKeysetWriter;
import com.google.crypto.tink.KeysetHandle;
import com.google.crypto.tink.aead.AeadKeyTemplates;
import com.google.crypto.tink.integration.gcpkms.GcpKmsClient;
import java.io.File;
// Generate the key material...
KeysetHandle keysetHandle = KeysetHandle.generateNew(
AeadKeyTemplates.AES_128_GCM);
// and write it to a file...
String keysetFilename = "my_keyset.json";
// encrypted with the this key in GCP KMS
String masterKeyUri = "gcp-kms://projects/tink-examples/locations/global/keyRings/foo/cryptoKeys/bar";
keysetHandle.write(JsonKeysetWriter.withFile(new File(keysetFilename)),
new GcpKmsClient().getAead(masterKeyUri));
To load encrypted keysets, you can use
KeysetHandle
:
import com.google.crypto.tink.JsonKeysetReader;
import com.google.crypto.tink.KeysetHandle;
import com.google.crypto.tink.integration.awskms.AwsKmsClient;
import java.io.File;
String keysetFilename = "my_keyset.json";
// The keyset is encrypted with the this key in AWS KMS.
String masterKeyUri = "aws-kms://arn:aws:kms:us-east-1:007084425826:key/84a65985-f868-4bfc-83c2-366618acf147";
KeysetHandle keysetHandle = KeysetHandle.read(
JsonKeysetReader.withFile(new File(keysetFilename)),
new AwsKmsClient().getAead(masterKeyUri));
To load cleartext keysets, use
CleartextKeysetHandle
:
import com.google.crypto.tink.CleartextKeysetHandle;
import com.google.crypto.tink.KeysetHandle;
import java.io.File;
String keysetFilename = "my_keyset.json";
KeysetHandle keysetHandle = CleartextKeysetHandle.read(
JsonKeysetReader.withFile(new File(keysetFilename)));
Primitives represent cryptographic operations offered by Tink, hence they form the core of Tink API. A primitive is just an interface that specifies what operations are offered by the primitive. A primitive can have multiple implementations, and user chooses a desired implementation by using a key of corresponding type (see the this section for details).
The following table summarizes Java implementations of primitives that are currently available or planned (the latter are listed in brackets).
Primitive | Implementations |
---|---|
AEAD | AES-EAX, AES-GCM, AES-CTR-HMAC, KMS Envelope, (ChaCha20-Poly1305) |
Streaming AEAD | AES-GCM-HKDF-STREAMING, AES-CTR-HMAC-STREAMING |
Deterministic AEAD | AES-SIV |
MAC | HMAC-SHA2 |
Digital Signatures | ECDSA over NIST curves, (EdDSA over edwards25519) |
Hybrid Encryption | ECIES with AEAD and HKDF, (NaCl CryptoBox) |
Exact listings of primitives and their implementations available in a release x.y.z of Tink
are given in a corresponding TinkConfig.TINK_x_y_z
-variable.
Tink user accesses implementations of a primitive via a factory that corresponds
to the primitive: AEAD via AeadFactory
, MAC via MacFactory
, etc. where each
factory offers corresponding getPrimitive(...)
methods.
Here is how you can obtain and use an AEAD (Authenticated Encryption with Associated Data primitive to encrypt or decrypt data:
import com.google.crypto.tink.Aead;
import com.google.crypto.tink.KeysetHandle;
import com.google.crypto.tink.aead.AeadFactory;
import com.google.crypto.tink.aead.AeadKeyTemplates;
// 1. Generate the key material.
KeysetHandle keysetHandle = KeysetHandle.generateNew(
AeadKeyTemplates.AES128_GCM);
// 2. Get the primitive.
Aead aead = AeadFactory.getPrimitive(keysetHandle);
// 3. Use the primitive to encrypt a plaintext,
byte[] ciphertext = aead.encrypt(plaintext, aad);
// ... or to decrypt a ciphertext.
byte[] decrypted = aead.decrypt(ciphertext, aad);
Here is how you can obtain and use an Streaming AEAD (Streaming Authenticated Encryption with Associated Data) primitive to encrypt or decrypt data streams:
import com.google.crypto.tink.StreamingAead;
import com.google.crypto.tink.KeysetHandle;
import com.google.crypto.tink.streamingaead.StreamingAeadFactory;
import com.google.crypto.tink.streamingaead.StreamingAeadKeyTemplates;
import java.nio.ByteBuffer
import java.nio.channels.FileChannel;
import java.nio.channels.SeekableByteChannel;
import java.nio.channels.WritableByteChannel;
// 1. Generate the key material.
KeysetHandle keysetHandle = KeysetHandle.generateNew(
StreamingAeadKeyTemplates.AES128_CTR_HMAC_SHA256_4KB);
// 2. Get the primitive.
StreamingAead streamingAead = StreamingAeadFactory.getPrimitive(keysetHandle);
// 3. Use the primitive to encrypt some data and write the ciphertext to a file,
FileChannel ciphertextDestination = new FileOutputStream(ciphertextFileName).getChannel();
byte[] aad = ...
WritableByteChannel encryptingChannel =
streamingAead.newEncryptingChannel(ciphertextDestination, aad);
ByteBuffer buffer = ByteBuffer.allocate(chunkSize);
while ( bufferContainsDataToEncrypt ) {
int r = encryptingChannel.write(buffer);
// Try to get into buffer more data for encryption.
}
// Complete the encryption (process the remaining plaintext, if any, and close the channel).
encryptingChannel.close();
// ... or to decrypt an existing ciphertext stream.
FileChannel ciphertextSource = new FileInputStream(ciphertextFileName).getChannel();
byte[] aad = ...
ReadableByteChannel decryptingChannel = s.newDecryptingChannel(ciphertextSource, aad);
ByteBuffer buffer = ByteBuffer.allocate(chunkSize);
do {
buffer.clear();
int cnt = decryptingChannel.read(buffer);
if (cnt > 0) {
// Process cnt bytes of plaintext.
} else if (read == -1) {
// End of plaintext detected.
break;
} else if (read == 0) {
// No ciphertext is available at the moment.
}
}
The following snippets shows how to compute or verify a MAC (Message Authentication Code):
import com.google.crypto.tink.KeysetHandle;
import com.google.crypto.tink.Mac;
import com.google.crypto.tink.mac.MacFactory;
import com.google.crypto.tink.mac.MacKeyTemplates;
// 1. Generate the key material.
KeysetHandle keysetHandle = KeysetHandle.generateNew(
MacKeyTemplates.HMAC_SHA256_128BITTAG);
// 2. Get the primitive.
Mac mac = MacFactory.getPrimitive(keysetHandle);
// 3. Use the primitive to compute a tag,
byte[] tag = mac.computeMac(data);
// ... or to verify a tag.
mac.verifyMac(tag, data);
Here is an example of how to sign or verify a digital signature:
import com.google.crypto.tink.KeysetHandle;
import com.google.crypto.tink.PublicKeySign;
import com.google.crypto.tink.PublicKeyVerify;
import com.google.crypto.tink.signature.PublicKeySignFactory;
import com.google.crypto.tink.signature.PublicKeyVerifyFactory;
import com.google.crypto.tink.signature.SignatureKeyTemplates;
// SIGNING
// 1. Generate the private key material.
KeysetHandle privateKeysetHandle = KeysetHandle.generateNew(
SignatureKeyTemplates.ECDSA_P256);
// 2. Get the primitive.
PublicKeySign signer = PublicKeySignFactory.getPrimitive(
privateKeysetHandle);
// 3. Use the primitive to sign.
byte[] signature = signer.sign(data);
// VERIFYING
// 1. Obtain a handle for the public key material.
KeysetHandle publicKeysetHandle =
privateKeysetHandle.getPublicKeysetHandle();
// 2. Get the primitive.
PublicKeyVerify verifier = PublicKeyVerifyFactory.getPrimitive(
publicKeysetHandle);
// 4. Use the primitive to verify.
verifier.verify(signature, data);
To encrypt or decrypt using a combination of public key encryption and symmetric key encryption one can use the following:
import com.google.crypto.tink.HybridDecrypt;
import com.google.crypto.tink.HybridEncrypt;
import com.google.crypto.tink.hybrid.HybridDecryptFactory;
import com.google.crypto.tink.hybrid.HybridEncryptFactory;
import com.google.crypto.tink.hybrid.HybridKeyTemplates;
import com.google.crypto.tink.KeysetHandle;
// 1. Generate the private key material.
KeysetHandle privateKeysetHandle = KeysetHandle.generateNew(
HybridKeyTemplates.ECIES_P256_HKDF_HMAC_SHA256_AES128_GCM);
// Obtain the public key material.
KeysetHandle publicKeysetHandle =
privateKeysetHandle.getPublicKeysetHandle();
// ENCRYPTING
// 2. Get the primitive.
HybridEncrypt hybridEncrypt = HybridEncryptFactory.getPrimitive(
publicKeysetHandle);
// 3. Use the primitive.
byte[] ciphertext = hybridEncrypt.encrypt(plaintext, contextInfo);
// DECRYPTING
// 2. Get the primitive.
HybridDecrypt hybridDecrypt = HybridDecryptFactory.getPrimitive(
privateKeysetHandle);
// 3. Use the primitive.
byte[] plaintext = hybridDecrypt.decrypt(ciphertext, contextInfo);
Via the AEAD interface, Tink supports envelope encryption (a.k.a. KMS Envelope) which is getting popular with Cloud users.
In this mode, Cloud users first create a key encryption key (KEK) in a Key Management System (KMS) such as AWS KMS or Google Cloud KMS. To encrypt some data, users then generate locally a data encryption key (DEK), encrypt data with the DEK, ask the KMS to encrypt the DEK with the KEK, and stores the encrypted DEK with the encrypted data. At a later point Cloud users can retrieve encrypted data and the DEK, ask the KMS to decrypt DEK, and use the decrypted DEK to decrypt the data.
For example, you can perform envelope encryption with a Google Cloud KMS key at
gcp-kms://projects/tink-examples/locations/global/keyRings/foo/cryptoKeys/bar
using the credentials in credentials.json
as follows:
import com.google.crypto.tink.Aead;
import com.google.crypto.tink.KeysetHandle;
import com.google.crypto.tink.KmsClients;
import com.google.crypto.tink.aead.AeadFactory;
import com.google.crypto.tink.aead.AeadKeyTemplates;
import com.google.crypto.tink.integration.gcpkms.GcpKmsClient;
// 1. Generate the key material.
String kmsKeyUri =
"gcp-kms://projects/tink-examples/locations/global/keyRings/foo/cryptoKeys/bar";
KeysetHandle keysetHandle = KeysetHandle.generateNew(
AeadKeyTemplates.createKmsEnvelopeAeadKeyTemplate(kmsKeyUri, AeadKeyTemplates.AES128_GCM));
// 2. Register the KMS client.
KmsClients.add(new GcpKmsClient()
.withCredentials("credentials.json"));
// 3. Get the primitive.
Aead aead = AeadFactory.getPrimitive(keysetHandle);
// 4. Use the primitive.
byte[] ciphertext = aead.encrypt(plaintext, aad);
The support for key rotation in Tink is provided via
KeysetManager
-class.
You have to provide a KeysetHandle
-object that contains the keyset that should
be rotated, and a specification of the new key via a
KeyTemplate
-message.
import com.google.crypto.tink.KeysetHandle;
import com.google.crypto.tink.KeysetManager;
import com.google.crypto.tink.proto.KeyTemplate;
KeysetHandle keysetHandle = ...; // existing keyset
KeyTemplate keyTemplate = ...; // template for the new key
KeysetHandle rotatedKeysetHandle = KeysetManager
.withKeysetHandle(keysetHandle)
.rotate(keyTemplate)
.getKeysetHandle();
Some common specifications are available as pre-generated templates
in examples/keytemplates-folder,
and can be accessed via ...KeyTemplates.java
classes of the respective
primitives. After a successful rotation the resulting keyset contains a new key
generated according to the specification in keyTemplate
, and the new key
becomes the primary key of the keyset. For the rotation to succeed the
Registry
must contain a key manager for the key type specified in
keyTemplate
.
Alternatively, you can use Tinkey to rotate or manage a keyset.
NOTE: The usage of custom key managers should be enjoyed responsibly: we (i.e. Tink developers) have no way checking or enforcing that a custom implementation satisfies security properties of the corresponding primitive interface, so it is up to the implementer and the user of the custom implementation ensure the required properties.
TIP For a working example, please check out the AES-CBC-HMAC implementation of the AEAD primitive in the timestamper example.
The main cryptographic operations offered by Tink are accessible via so-called primitives, which essentially are interfaces that represent corresponding cryptographic functionalities. While Tink comes with several standard implementations of common primitives, it allows also for adding custom implementations of primitives. Such implementations allow for seamless integration of Tink with custom third-party cryptographic schemes or hardware modules, and in combination with key rotation-features enable painless migration between cryptographic schemes.
To create a custom implementation of a primitive proceed as follows:
- Determine for which primitive a custom implementation is needed.
- Define protocol buffers that hold key material and parameters for the custom cryptographic scheme; the name of the key protocol buffer (a.k.a. type URL) determines the key type for the custom implementation.
- Implement
KeyManager
interface for the primitive from step #1 and the key type from step #2.
To use a custom implementation of a primitive in an application, register with
the Registry
the custom KeyManager
-implementation (from step #3 above) for the custom key
type (from step #2 above):
Registry.registerKeyManager(keyType, keyManager);
Afterwards the implementation will be accessed automatically by the Factory
corresponding to the primitive (when keys of the specific key type are in use),
or can be retrieved directly via Registry.getKeyManager(keyType)
.
When defining the protocol buffers for the key material and parameters (step #2 above), you should provide definitions of three messages:
...Params
: parameters of an instantiation of the primitive, needed when a key is being used....Key
: the actual key proto, contains the key material and the corresponding...Params
-proto....KeyFormat
: parameters needed to generate a new key.
Here are a few conventions/recommendations wrt. defining these messages (see tink.proto and definitions of existing key types for details):
...Key
should contain a version field (a monotonic counter,uint32 version;
), which identifies the version of implementation that can work with this key....Params
should be a field of...Key
, as by definition...Params
contains parameters needed when the key is being used....Params
should be also a field of...KeyFormat
, so that given...KeyFormat
one has all information it needs to generate a new...Key
message.
Alternatively, depending on the use case requirements, you can skip step #2
entirely and re-use for the key material an existing protocol buffer messages.
In such a case you should not configure the Registry via the Config
-class, but
rather register the needed KeyManager
-instances manually.
For a concrete example, let's assume that we'd like a custom implementation of
Aead
-primitive
(step #1). We define then three protocol buffer messages (step #2):
MyCustomAeadParams
: holds parameters needed for the use of the key material.MyCustomAeadKey
: holds the actual key material and parameters needed for its use.MyCustomAeadKeyFormat
: holds parameters needed for generation of a newMyCustomAeadKey
-key.
syntax = "proto3";
package mycompany.mypackage;
message MyCustomAeadParams {
uint32 iv_size = 1; // size of initialization vector in bytes
}
message MyCustomAeadKeyFormat {
MyCustomAeadParams params = 1;
uint32 key_size = 2; // key size in bytes
}
// key_type: type.googleapis.com/mycompany.mypackage.MyCustomAeadKey
message MyCustomAeadKey {
uint32 version = 1;
MyCustomAeadParams params = 2;
bytes key_value = 3; // the actual key material
}
The corresponding key type in Java is defined as
String keyType = "type.googleapis.com/mycompany.mypackage.MyCustomAeadKey";`
and the corresponding key manager implements (step #3) the interface
KeyManager<Aead>
class MyCustomAeadKeyManager implements KeyManager<Aead> {
// ...
}
After registering MyCustomAeadKeyManager
with the Registry we can use it
via AeadFactory
.