forked from hadley/r4ds
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model-building.Rmd
474 lines (345 loc) · 21.2 KB
/
model-building.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
# Model building
## Introduction
In the previous chapter you learned how linear models worked, and learned some basic tools for understanding what a model is telling you about your data. The previous chapter focussed on simulated datasets to help you learn about how models work. This chapter will focus on real data, showing you how you can progressively build up a model to aid your understanding of the data.
We will take advantage of the fact that you can think about a model partitioning your data into pattern and residuals. We'll find patterns with visualisation, then make them concrete and precise with a model. We'll them repeat the process, but replace the old response variable with the residuals from the model. The goal is to transition from implicit knowledge in the data and your head to explicit knowledge in a quantitative model. This makes it easier to apply to new domains, and easier for others to use.
For very large and complex datasets this will be a lot of work. There are certainly alternative approaches - a more machine learning approach is simply to focus on the predictive ability of the model. These approaches tend to produce black boxes: the model does a really good job at generating predictions, but you don't know why. This is a totally reasonable approach, but it does make it hard to apply your real world knowledge to the model. That, in turn, makes it difficult to assess whether or not the model will continue to work in the long-term, as fundamentals change. For most real models, I'd expect you to use some combination of this approach and a more classic automated approach.
It's a challenge to know when to stop. You need to figure out when your model is good enough, and when additional investment is unlikely to pay off. I particularly this quote from reddit user Broseidon241:
> A long time ago in art class, my teacher told me "An artist needs to know
> when a piece is done. You can't tweak something into perfection - wrap it up.
> If you don't like it, do it over again. Otherwise begin something new". Later
> in life, I heard "A poor seamstress makes many mistakes. A good seamstress
> works hard to correct those mistakes. A great seamstress isn't afraid to
> throw out the garment and start over."
-- Broseidon241, <https://www.reddit.com/r/datascience/comments/4irajq>
### Prerequisites
We'll start with modelling and EDA tools we used in the last chapter. Then we'll add in some real datasets: `diamonds` from ggplot2, and `flights` from nycflights13. We'll also need lubridate to extract useful components of date-times.
```{r setup, message = FALSE}
# Modelling functions
library(modelr)
options(na.action = na.warn)
# Data
library(nycflights13)
# EDA tools
library(ggplot2)
library(dplyr)
library(lubridate)
```
## Why are low quality diamonds more expensive?
In previous chapters we've seen a surprising relationship between the quality of diamonds and their price: low quality diamonds (poor cuts, bad colours, and inferior clarity) have higher prices.
```{r dev = "png"}
ggplot(diamonds, aes(cut, price)) + geom_boxplot()
ggplot(diamonds, aes(color, price)) + geom_boxplot()
ggplot(diamonds, aes(clarity, price)) + geom_boxplot()
```
Note that the worst diamond color is J (slightly yellow), and the worst clarity is I1 (inclusions visible to the naked eye).
### Price and carat
It looks like lower quality diamonds have higher prices because there is an important cofounding variable: the weight (`carat`) of the diamond. The weight of the diamond is the single most important factor for determining the price of the diamond, and lower quality diamonds tend to be larger.
```{r}
ggplot(diamonds, aes(carat, price)) +
geom_hex(bins = 50)
```
We can make it easier to see how the other attributes of a diamond affect its relative `price` by fitting a model to separate out the effect of `carat`. But first, lets make a couple of tweaks to the diamonds dataset to make it easier to work with:
1. Focus on diamonds smaller than 2.5 carats (99.7% of the data)
1. Log-transform the carat and price variables.
```{r}
diamonds2 <- diamonds %>%
filter(carat <= 2.5) %>%
mutate(lprice = log2(price), lcarat = log2(carat))
```
Together, these changes make it easier to see the relationship between `carat` and `price`:
```{r}
ggplot(diamonds2, aes(lcarat, lprice)) +
geom_hex(bins = 50)
```
The log-transformation is particularly useful here because it makes the pattern linear, and linear patterns are the easiest to work with. Let's take the next step and remove that strong linear pattern. We first make the pattern explicit by fitting a model:
```{r}
mod_diamond <- lm(lprice ~ lcarat, data = diamonds2)
```
Then we look at what the model tells us about the data. Note that I back transform the predictions, undoing the log transformation, so I can overlay the predictions on the raw data:
```{r}
grid <- diamonds2 %>%
data_grid(carat = seq_range(carat, 20)) %>%
mutate(lcarat = log2(carat)) %>%
add_predictions(mod_diamond, "lprice") %>%
mutate(price = 2 ^ lprice)
ggplot(diamonds2, aes(carat, price)) +
geom_hex(bins = 50) +
geom_line(data = grid, colour = "red", size = 1)
```
That tells us something interesting about. If we believe our model, then the large diamonds are much cheaper than expected. This is probably because no diamond in this dataset costs more than $19,000.
Now we can look at the residuals, which verifies that we've successfully removed the strong linear pattern:
```{r}
diamonds2 <- diamonds2 %>%
add_residuals(mod_diamond, "lresid")
ggplot(diamonds2, aes(lcarat, lresid)) +
geom_hex(bins = 50)
```
Importantly, we can now re-do our motivating plots using those residuals instead of `price`.
```{r dev = "png"}
ggplot(diamonds2, aes(cut, lresid)) + geom_boxplot()
ggplot(diamonds2, aes(color, lresid)) + geom_boxplot()
ggplot(diamonds2, aes(clarity, lresid)) + geom_boxplot()
```
Now we see the relationship we expect: as the quality of the diamond increases, so to does it's relative price. To interpret the `y` axis, we need to think about what the residuals are telling us, and what scale they are on. A residual of -1 indicates that `lprice` was 1 unit lower than a prediction based solely on its weight. $2^{-1}$ is 1/2, points with a value of -1 are half the expected price, and residuals with value 1 are twice the predicted price.
### A model complicated model
If we wanted to, we could continue to build up our model, moving the effects we've observed into the model to make them explicit. For example, we could include `color`, `cut`, and `clarity` into the model so that we also make explicit the effect of these three categorical variables:
```{r}
mod_diamond2 <- lm(lprice ~ lcarat + color + cut + clarity, data = diamonds2)
```
This model now includes four predictors, so it's getting harder to visualise. Fortunately, they're currently all independent which means that we can plot them individually in four plots. To make the process a little easier, we're going to use the `model` argument to `data_grid`:
```{r}
grid <- diamonds2 %>%
data_grid(cut, .model = mod_diamond2) %>%
add_predictions(mod_diamond2)
grid
ggplot(grid, aes(cut, pred)) +
geom_point()
```
If the model needs variables that you haven't explicitly supplied, `data_grid()` will automatically fill them in with "typical" value. For continous variables, it uses the median, and categorical variables it uses the most common value (or values, if there's a tie).
```{r}
diamonds2 <- diamonds2 %>%
add_residuals(mod_diamond2, "lresid2")
ggplot(diamonds2, aes(lcarat, lresid2)) +
geom_hex(bins = 50)
```
This plot indicates that there are some diamonds with quite large residuals - remember a residual of 4 indicates that the diamond is 4x the price that we expected. It's often useful to look at unusual values individually:
```{r}
diamonds2 %>%
filter(abs(lresid2) > 1) %>%
add_predictions(mod_diamond2) %>%
mutate(pred = round(2 ^ pred)) %>%
select(price, pred, carat:table, x:z) %>%
arrange(price)
```
Nothing really jumps out at me here, but it's probably worth spending time considering if this indicates a problem with our model, or if there are a errors in the data. If there are mistakes in the data, this could be an opportunity to buy diamonds that have been priced low incorrectly.
### Exercises
1. In the plot of `lcarat` vs. `lprice`, there are some bright vertical
strips. What do they represent?
1. If `log(price) = a_0 + a_1 * log(carat)`, what does that say about
the relationship between `price` and `carat?
1. Extract the diamonds that have very high and very low residuals.
Is there any unusual about these diamonds? Are the particularly bad
or good, or do you think these are pricing errors?
1. Does the final model, `mod_diamonds2`, do a good job of predicting
diamond prices? Would you trust it to tell you how much to spend
if you were buying a diamond?
## What affects the number of daily flights?
Let's work through a similar process for a dataset that seems even simpler at first glance: the number of flights that leave NYC per day. This is a really small dataset --- only 365 rows and 2 columns --- and we're not going to end up with a fully realised model, but as you'll see, the steps along the way will help us better understand the data. Let's get started by counting the number of flights per day and visualising it with ggplot2.
```{r}
daily <- flights %>%
mutate(date = make_datetime(year, month, day)) %>%
group_by(date) %>%
summarise(n = n())
daily
ggplot(daily, aes(date, n)) +
geom_line()
```
### Day of week
Understanding the long-term trend is challenging because there's a very strong day-of-week effect that dominates the subtler patterns. Let's start by looking at the distribution of flight numbers by day-of-week:
```{r}
daily <- daily %>%
mutate(wday = wday(date, label = TRUE))
ggplot(daily, aes(wday, n)) +
geom_boxplot()
```
There are fewer flights on weekends because most travel is for business. The effect is particularly pronounced on Saturday: you might sometimes leave on Sunday for a Monday morning meeting, but it's very rare that you'd leave on Saturday as you'd much rather be at home with your family.
One way to remove this strong pattern is to use a model. First, we fit the model, and display its predictions overlaid on the original data:
```{r}
mod <- lm(n ~ wday, data = daily)
grid <- daily %>%
data_grid(wday) %>%
add_predictions(mod, "n")
ggplot(daily, aes(wday, n)) +
geom_boxplot() +
geom_point(data = grid, colour = "red", size = 4)
```
Next we compute and visualise the residuals:
```{r}
daily <- daily %>%
add_residuals(mod)
daily %>%
ggplot(aes(date, resid)) +
geom_ref_line(h = 0) +
geom_line()
```
Note the change in the y-axis: now we are seeing the deviation from the expected number of flights, given the day of week. This plot is useful because now that we've removed much of the large day-of-week effect, we can see some of the subtler patterns that remain:
1. Our model seems to fail starting in June: you can still see a strong
regular pattern that our model hasn't captured. Drawing a plot with one
line for each day of the week makes the cause easier to see:
```{r}
ggplot(daily, aes(date, resid, colour = wday)) +
geom_ref_line(h = 0) +
geom_line()
```
Our model fails to accurately predict the number of flights on Saturday:
during summer there are more flights than we expect, and during Fall there
are fewer. We'll see how we can do capture this pattern in the next section.
1. There are some days with far fewer flights than expected:
```{r}
daily %>%
filter(resid < -100)
```
If you're familiar with American public holidays, you might spot New Year's
day, July 4th, Thanksgiving and Christmas. There are some others that don't
seem to correspond to public holidays. You'll work on those in one
of the exercises.
1. There seems to be some smoother long term trend over the course of a year.
We can highlight that trend with `geom_smooth()`:
```{r}
daily %>%
ggplot(aes(date, resid)) +
geom_ref_line(h = 0) +
geom_line(colour = "grey50") +
geom_smooth(se = FALSE, span = 0.20)
```
There are fewer flights in January (and December), and more in summer
(May-Sep). We can't do much with this pattern quantitatively, because we
only have a single year of data. But we can use our domain knowledge to
brainstorm potential explanations.
### Seasonal Saturday effect
Let's first tackle our failure to accurately predict the number of flights on Saturday. A good place to start is to go back to the raw numbers, focussing on Saturdays:
```{r}
daily %>%
filter(wday == "Sat") %>%
ggplot(aes(date, n)) +
geom_point() +
geom_line() +
scale_x_datetime(NULL, date_breaks = "1 month", date_labels = "%b")
```
(I've used both points and lines to make it more clear what is data and what is interpolation.)
I suspect this pattern is caused by summer holidays: many people go on holiday in the summer, and people don't mind travelling on Saturdays for vacation. Looking at this plot, we might guess that summer holidays are from early June to late August. That seems to line up fairly well with the [state's school terms](http://schools.nyc.gov/Calendar/2013-2014+School+Year+Calendars.htm): summer break in 2013 was Jun 26--Sep 9.
Why are there more Saturday flights in the Fall than the Spring? I asked some American friends and they suggested that it's less common to plan family vacations during the Fall because of the big Thanksgiving and Christmas holidays. We don't have the data to know for sure, but it seems like a plausible working hypothesis.
Lets create a "term" variable that roughly captures the three school terms, and check our work with a plot:
```{r}
term <- function(date) {
cut(date,
breaks = as.POSIXct(ymd(20130101, 20130605, 20130825, 20140101)),
labels = c("spring", "summer", "fall")
)
}
daily <- daily %>%
mutate(term = term(date))
daily %>%
filter(wday == "Sat") %>%
ggplot(aes(date, n, colour = term)) +
geom_point(alpha = 1/3) +
geom_line() +
scale_x_datetime(NULL, date_breaks = "1 month", date_labels = "%b")
```
(I manually tweaked the dates to get nice breaks in the plot. Using a visualisation to help you understand what your function is doing is a really powerful and general technique.)
It's useful to see how this new variable affects the other days of the week:
```{r}
daily %>%
ggplot(aes(wday, n, colour = term)) +
geom_boxplot()
```
It looks like there is significant variation across the terms, so fitting a separate day of week effect for each term is reasonable. This improves our model, but not as much as we might hope:
```{r}
mod1 <- lm(n ~ wday, data = daily)
mod2 <- lm(n ~ wday * term, data = daily)
daily %>%
gather_residuals(without_term = mod1, with_term = mod2) %>%
ggplot(aes(date, resid, colour = model)) +
geom_line(alpha = 0.75)
```
We can see the problem by overlaying the predictions from the model on to the raw data:
```{r}
grid <- daily %>%
data_grid(wday, term) %>%
add_predictions(mod2, "n")
ggplot(daily, aes(wday, n)) +
geom_boxplot() +
geom_point(data = grid, colour = "red") +
facet_wrap(~ term)
```
Our model is finding the _mean_ effect, but we have a lot of big outliers, so mean tends to be far away from the typical value. We can alleviate this problem by using a model that is robust to the effect of outliers: `MASS::rlm()`. This greatly reduces the impact of the outliers on our estimates, and gives a model that does a good job of removing the day of week pattern:
```{r, warn = FALSE}
mod3 <- MASS::rlm(n ~ wday * term, data = daily)
daily %>%
add_residuals(mod3, "resid") %>%
ggplot(aes(date, resid)) +
geom_hline(yintercept = 0, size = 2, colour = "white") +
geom_line()
```
It's now much easier to see the long-term trend, and the positive and negative outliers.
### Computed variables
If you're experimenting with many models and many visualisations, it's a good idea to bundle the creation of variables up into a function so there's no chance of accidentally applying a different transformation in different places. For example, we could write:
```{r}
compute_vars <- function(data) {
data %>%
mutate(
term = term(date),
wday = wday(date, label = TRUE)
)
}
```
Another option is to put the transformations directly in the model formula:
```{r}
wday2 <- function(x) wday(x, label = TRUE)
mod3 <- lm(n ~ wday2(date) * term(date), data = daily)
```
Either approach is reasonable. Making the transformed variable explicit is useful if you want to check your work, or use them in a visualisation. But you can't easily use transformations (like splines) that return multiple columns. Including the transformations in the model function makes life a little easier when you're working with many different datasets because the model is self contained.
### Time of year: an alternative approach
In the previous section we used our domain knowledge (how the US school term affects travel) to improve the model. An alternative to using making our knowledge explicit in the model is to give the data more room to speak. We could use a more flexible model and allow that to capture the pattern we're interested in. A simple linear trend isn't adeqaute, so we could try using a natural spline to fit a smooth curve across the year:
```{r}
library(splines)
mod <- MASS::rlm(n ~ wday * ns(date, 5), data = daily)
daily %>%
data_grid(wday, date = seq_range(date, n = 13)) %>%
add_predictions(mod) %>%
ggplot(aes(date, pred, colour = wday)) +
geom_line() +
geom_point()
```
We see a strong pattern in the numbers of Saturday flights. This is reassuring, because we also saw that pattern in the raw data. It's a good sign when you get the same signal from different approaches.
### Exercises
1. Use your google sleuthing skills to brainstorm why there were fewer than
expected flights on Jan 20, May 26, and Sep 9. (Hint: they all have the
same explanation.) How would these days generalise to another year?
1. What do the three days with high positive residuals represent?
How would these days generalise to another year?
```{r}
daily %>%
filter(resid > 80)
```
1. Create a new variable that splits the `wday` variable into terms, but only
for Saturdays, i.e. it should have `Thurs`, `Fri`, but `Sat-summer`,
`Sat-spring`, `Sat-fall`. How does this model compare with the model with
every combination of `wday` and `term`?
1. Create a new `wday` variable that combines the day of week, term
(for Saturdays), and public holidays. What do the residuals of
that model look like?
1. What happens if you fit a day of week effect that varies by month
(i.e. `n ~ wday * month`)? Why is this not very helpful?
1. What would you expect the model `n ~ wday + ns(date, 5)` to look like?
Knowing what you know about the data, why would you expect it to be
not particularly effective?
1. We hypothesised that people leaving on Sundays are more likely to be
business travellers who need to be somewhere on Monday. Explore that
hypothesis by seeing how it breaks down based on distance and itme: if
it's true, you'd expect to see more Sunday evening flights to places that
are far away.
1. It's a little frustrating that Sunday and Saturday are on separate ends
of the plot. Write a small function to set the manipulate the levels of the
factor so that the week starts on Monday.
## Learning more about models
We have only scratched the absolute surface of modelling, but you have hopefully gained some simple, but general purpose tools that you can use to improve your own data analyses. It's ok to start simple! As you've seen, even very simple models can make a dramatic difference in your ability to tease out interactions between variables.
These modelling chapters are even more opinionated than the rest of the book. I approach modelling from a somewhat different perspective to most others, and there is relatively little space devoted to it. Modelling really deserves a book on its own, so I'd highly recommend that you read at least one of these three books:
* *Statistical Modeling: A Fresh Approach* by Danny Kaplan,
<http://www.mosaic-web.org/go/StatisticalModeling/>. This book provides
a gentle introduction to modelling, where you build your intuition,
mathematical tools, and R skills in parallel. The book replaces a traditional
"introduction to statistics" course, providing a curriculum that is up-to-date
and relevant to data science.
* *An Introduction to Statistical Learning* by Gareth James, Daniela Witten,
Trevor Hastie, and Robert Tibshirani, <http://www-bcf.usc.edu/~gareth/ISL/>
(available online for free). This book presents a family of modern modelling
techniques collectively known as statistical learning. For an even deeper
understanding of the math behind the models, read the classic
*Elements of Statistical Learning* by Trevor Hastie, Robert Tibshirani, and
Jerome Friedman, <http://statweb.stanford.edu/~tibs/ElemStatLearn/> (also
available online for free).
* *Applied Predictive Modeling* by Max Kuhn and Kjell Johnson,
<http://appliedpredictivemodeling.com>. This book is a companion to the
__caret__ package, and provides practical tools for dealing with real-life
predictive modelling challenges.