-
Notifications
You must be signed in to change notification settings - Fork 5
/
interface.py
127 lines (104 loc) · 4.35 KB
/
interface.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
#!/usr/bin/env python
# coding: utf-8
# In[2]:
import tkinter as tk
from tkinter import filedialog
from tkinter import *
from PIL import ImageTk, Image
import numpy
# We need to load the trained model from the 'Road Traffic Sign Recognition.ipynb' as saved in the hdf5 file.
from keras.models import load_model
model = load_model('model_RTSR.h5')
# To label all the traffic signs with their respective class names, we are required to create a dictionary.
classes = { 1:'Speed limit (20km/h)',
2:'Speed limit (30km/h)',
3:'Speed limit (50km/h)',
4:'Speed limit (60km/h)',
5:'Speed limit (70km/h)',
6:'Speed limit (80km/h)',
7:'End of speed limit (80km/h)',
8:'Speed limit (100km/h)',
9:'Speed limit (120km/h)',
10:'No passing',
11:'No passing veh over 3.5 tons',
12:'Right-of-way at intersection',
13:'Priority road',
14:'Yield',
15:'Stop',
16:'No vehicles',
17:'Veh > 3.5 tons prohibited',
18:'No entry',
19:'General caution',
20:'Dangerous curve left',
21:'Dangerous curve right',
22:'Double curve',
23:'Bumpy road',
24:'Slippery road',
25:'Road narrows on the right',
26:'Road work',
27:'Traffic signals',
28:'Pedestrians',
29:'Children crossing',
30:'Bicycles crossing',
31:'Beware of ice/snow',
32:'Wild animals crossing',
33:'End speed + passing limits',
34:'Turn right ahead',
35:'Turn left ahead',
36:'Ahead only',
37:'Go straight or right',
38:'Go straight or left',
39:'Keep right',
40:'Keep left',
41:'Roundabout mandatory',
42:'End of no passing',
43:'End no passing veh > 3.5 tons' }
# Initialising the user interface.
top=tk.Tk()
top.geometry('1200x700')
top.title('Road Traffic Sign Recognition')
top.configure(background='#2F4F4F')
label=Label(top,background='#2F4F4F', font=('georgia',20,'bold'))
sign_image = Label(top)
# The function defined below is used to resize the image that is selected by the user.
# Also, it displays the respective class name of the selected image by using the stored predicted data in the hdf5 file created in the 'Road Traffic Sign Recognition.ipynb'
def classify(file_path):
global label_packed
image = Image.open(file_path)
image = image.resize((30,30))
image = numpy.expand_dims(image, axis=0)
image = numpy.array(image)
pred = model.predict_classes([image])[0]
sign = classes[pred+1]
print(sign)
label.configure(foreground='#FFC0CB', text=sign)
# A user interactive button is required which on trigger displays the sign.
def show_classify_button(file_path):
classify_b=Button(top,text="Recognize the Sign ?",command=lambda: classify(file_path),padx=10,pady=10)
classify_b.configure(background='#FEBD07', foreground='#2F4F4F',font=('georgia',15,'bold'))
classify_b.place(relx=0.40,rely=0.38)
# After the user selects an image we need to upload the image on the interface.
def upload_image():
try:
file_path=filedialog.askopenfilename()
uploaded=Image.open(file_path)
uploaded.thumbnail(((top.winfo_width()/2.25),(top.winfo_height()/2.25)))
im=ImageTk.PhotoImage(uploaded)
sign_image.configure(image=im)
sign_image.image=im
label.configure(text='')
show_classify_button(file_path)
except:
pass
# Now we need to create a user interactive button so that the user can select an image from the file path.
upload=Button(top,text="Select a traffic sign",command=upload_image,padx=10,pady=10)
upload.configure(background='#FEBD07', foreground='#2F4F4F',font=('georgia',15,'bold'))
upload.pack(side=BOTTOM,pady=50)
sign_image.pack(side=BOTTOM,expand=True)
label.pack(side=BOTTOM,expand=True)
heading = Label(top, text="Road Traffic Sign Recognition",pady=20, font=('georgia',30,'bold'))
heading.configure(background='#2F4F4F',foreground='#FFD700')
heading.pack()
# The entire code should be repeated on each instance triggered by the user. For that we use the mainloop()
top.mainloop()
# In[ ]: