forked from Alvin-Zeng/PGCN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pgcn_train.py
369 lines (296 loc) · 14.9 KB
/
pgcn_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
from tensorboardX import SummaryWriter
import os
import time
import shutil
import torch
import random
import torchvision
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
from torch.nn.utils import clip_grad_norm
import numpy as np
from pgcn_dataset import PGCNDataSet
from pgcn_models import PGCN
from pgcn_opts import parser
from ops.pgcn_ops import CompletenessLoss, ClassWiseRegressionLoss
from ops.utils import get_and_save_args, get_logger
from tools.Recorder import Recorder
#from tensorboardX import SummaryWriter
SEED = 777
random.seed(SEED)
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
np.random.seed(SEED)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
best_loss = 100
cudnn.benchmark = True
pin_memory = True
os.environ['CUDA_DEVICE_ORDER'] = "PCI_BUS_ID"
os.environ['CUDA_VISIBLE_DEVICES'] = "0"
def main():
global args, best_loss, writer, adj_num, logger
configs = get_and_save_args(parser)
parser.set_defaults(**configs)
dataset_configs = configs["dataset_configs"]
model_configs = configs["model_configs"]
graph_configs = configs["graph_configs"]
args = parser.parse_args()
"""copy codes and creat dir for saving models and logs"""
if not os.path.isdir(args.snapshot_pref):
os.makedirs(args.snapshot_pref)
logger = get_logger(args)
logger.info('\ncreating folder: ' + args.snapshot_pref)
if not args.evaluate:
writer = SummaryWriter(args.snapshot_pref)
recorder = Recorder(args.snapshot_pref, ["models", "__pycache__"])
recorder.writeopt(args)
logger.info('\nruntime args\n\n{}\n\nconfig\n\n{}'.format(args, dataset_configs))
"""construct model"""
model = PGCN(model_configs, graph_configs)
policies = model.get_optim_policies()
model = torch.nn.DataParallel(model, device_ids=args.gpus).cuda()
if args.resume:
if os.path.isfile(args.resume):
logger.info(("=> loading checkpoint '{}'".format(args.resume)))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
best_loss = checkpoint['best_loss']
model.load_state_dict(checkpoint['state_dict'])
logger.info(("=> loaded checkpoint '{}' (epoch {})"
.format(args.evaluate, checkpoint['epoch'])))
else:
logger.info(("=> no checkpoint found at '{}'".format(args.resume)))
"""construct dataset"""
train_loader = torch.utils.data.DataLoader(
PGCNDataSet(dataset_configs, graph_configs,
prop_file=dataset_configs['train_prop_file'],
prop_dict_path=dataset_configs['train_dict_path'],
ft_path=dataset_configs['train_ft_path'],
epoch_multiplier=dataset_configs['training_epoch_multiplier'],
test_mode=False),
batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True, drop_last=True) # in training we drop the last incomplete minibatch
val_loader = torch.utils.data.DataLoader(
PGCNDataSet(dataset_configs, graph_configs,
prop_file=dataset_configs['test_prop_file'],
prop_dict_path=dataset_configs['val_dict_path'],
ft_path=dataset_configs['test_ft_path'],
epoch_multiplier=dataset_configs['testing_epoch_multiplier'],
reg_stats=train_loader.dataset.stats,
test_mode=False),
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
"""loss and optimizer"""
activity_criterion = torch.nn.CrossEntropyLoss().cuda()
completeness_criterion = CompletenessLoss().cuda()
regression_criterion = ClassWiseRegressionLoss().cuda()
for group in policies:
logger.info(('group: {} has {} params, lr_mult: {}, decay_mult: {}'.format(
group['name'], len(group['params']), group['lr_mult'], group['decay_mult'])))
optimizer = torch.optim.SGD(policies,
args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
if args.evaluate:
validate(val_loader, model, activity_criterion, completeness_criterion, regression_criterion, 0)
return
for epoch in range(args.start_epoch, args.epochs):
adjust_learning_rate(optimizer, epoch, args.lr_steps)
train(train_loader, model, activity_criterion, completeness_criterion, regression_criterion, optimizer, epoch)
# evaluate on validation set
if (epoch + 1) % args.eval_freq == 0 or epoch == args.epochs - 1:
loss = validate(val_loader, model, activity_criterion, completeness_criterion, regression_criterion, (epoch + 1) * len(train_loader))
# remember best validation loss and save checkpoint
is_best = loss < best_loss
best_loss = min(loss, best_loss)
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'best_loss': loss,
'reg_stats': torch.from_numpy(train_loader.dataset.stats)
}, is_best, epoch, filename='checkpoint.pth.tar')
writer.close()
def train(train_loader, model, act_criterion, comp_criterion, regression_criterion, optimizer, epoch):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
act_losses = AverageMeter()
comp_losses = AverageMeter()
reg_losses = AverageMeter()
act_accuracies = AverageMeter()
fg_accuracies = AverageMeter()
bg_accuracies = AverageMeter()
# switch to train mode
model.train()
end = time.time()
optimizer.zero_grad()
ohem_num = train_loader.dataset.fg_per_video
comp_group_size = train_loader.dataset.fg_per_video + train_loader.dataset.incomplete_per_video
for i, (prop_fts, prop_type, prop_labels, prop_reg_targets) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
batch_size = prop_fts[0].size(0)
activity_out, activity_target, activity_prop_type, \
completeness_out, completeness_target, \
regression_out, regression_labels, regression_target = model((prop_fts[0], prop_fts[1]), prop_labels,
prop_reg_targets, prop_type)
act_loss = act_criterion(activity_out, activity_target)
comp_loss = comp_criterion(completeness_out, completeness_target, ohem_num, comp_group_size)
reg_loss = regression_criterion(regression_out, regression_labels, regression_target)
loss = act_loss + comp_loss * args.comp_loss_weight + reg_loss * args.reg_loss_weight
losses.update(loss.item(), batch_size)
act_losses.update(act_loss.item(), batch_size)
comp_losses.update(comp_loss.item(), batch_size)
reg_losses.update(reg_loss.item(), batch_size)
act_acc = accuracy(activity_out, activity_target)
act_accuracies.update(act_acc[0].item(), activity_out.size(0))
fg_indexer = (activity_prop_type == 0).nonzero().squeeze()
bg_indexer = (activity_prop_type == 2).nonzero().squeeze()
fg_acc = accuracy(activity_out[fg_indexer, :], activity_target[fg_indexer])
fg_accuracies.update(fg_acc[0].item(), len(fg_indexer))
if len(bg_indexer) > 0:
bg_acc = accuracy(activity_out[bg_indexer, :], activity_target[bg_indexer])
bg_accuracies.update(bg_acc[0].item(), len(bg_indexer))
loss.backward()
if i % args.iter_size == 0:
# scale down gradients when iter size is functioning
if args.iter_size != 1:
for g in optimizer.param_groups:
for p in g['params']:
p.grad /= args.iter_size
if args.clip_gradient is not None:
total_norm = clip_grad_norm(model.parameters(), args.clip_gradient)
if total_norm > args.clip_gradient:
logger.info("clipping gradient: {} with coef {}".format(total_norm, args.clip_gradient / total_norm))
else:
total_norm = 0
optimizer.step()
optimizer.zero_grad()
batch_time.update(time.time() - end)
end = time.time()
writer.add_scalar('data/loss', losses.val, epoch*len(train_loader)+i+1)
writer.add_scalar('data/Reg_loss', reg_losses.val, epoch*len(train_loader)+i+1)
writer.add_scalar('data/Act_loss', act_losses.val, epoch*len(train_loader)+i+1)
writer.add_scalar('data/comp_loss', comp_losses.val, epoch*len(train_loader)+i+1)
if i % args.print_freq == 0:
logger.info('Epoch: [{0}][{1}/{2}], lr: {lr:.5f}\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Act. Loss {act_losses.val:.3f} ({act_losses.avg: .3f}) \t'
'Comp. Loss {comp_losses.val:.3f} ({comp_losses.avg: .3f}) '
.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, act_losses=act_losses,
comp_losses=comp_losses, lr=optimizer.param_groups[0]['lr'], ) +
'\tReg. Loss {reg_loss.val:.3f} ({reg_loss.avg:.3f})'.format(
reg_loss=reg_losses)
+ '\n Act. FG {fg_acc.val:.02f} ({fg_acc.avg:.02f}) Act. BG {bg_acc.avg:.02f} ({bg_acc.avg:.02f})'
.format(act_acc=act_accuracies,
fg_acc=fg_accuracies, bg_acc=bg_accuracies)
)
def validate(val_loader, model, act_criterion, comp_criterion, regression_criterion, iter):
batch_time = AverageMeter()
losses = AverageMeter()
act_losses = AverageMeter()
comp_losses = AverageMeter()
reg_losses = AverageMeter()
act_accuracies = AverageMeter()
fg_accuracies = AverageMeter()
bg_accuracies = AverageMeter()
# switch to evaluate mode
model.eval()
end = time.time()
ohem_num = val_loader.dataset.fg_per_video
comp_group_size = val_loader.dataset.fg_per_video + val_loader.dataset.incomplete_per_video
for i, (prop_fts, prop_type, prop_labels, prop_reg_targets) in enumerate(val_loader):
# measure data loading time
batch_size = prop_fts[0].size(0)
activity_out, activity_target, activity_prop_type, \
completeness_out, completeness_target, \
regression_out, regression_labels, regression_target = model((prop_fts[0], prop_fts[1]), prop_labels,
prop_reg_targets, prop_type)
act_loss = act_criterion(activity_out, activity_target)
comp_loss = comp_criterion(completeness_out, completeness_target, ohem_num, comp_group_size)
reg_loss = regression_criterion(regression_out, regression_labels, regression_target)
loss = act_loss + comp_loss * args.comp_loss_weight + reg_loss * args.reg_loss_weight
losses.update(loss.item(), batch_size)
act_losses.update(act_loss.item(), batch_size)
comp_losses.update(comp_loss.item(), batch_size)
reg_losses.update(reg_loss.item(), batch_size)
act_acc = accuracy(activity_out, activity_target)
act_accuracies.update(act_acc[0].item(), activity_out.size(0))
fg_indexer = (activity_prop_type == 0).nonzero().squeeze()
bg_indexer = (activity_prop_type == 2).nonzero().squeeze()
fg_acc = accuracy(activity_out[fg_indexer, :], activity_target[fg_indexer])
fg_accuracies.update(fg_acc[0].item(), len(fg_indexer))
if len(bg_indexer) > 0:
bg_acc = accuracy(activity_out[bg_indexer, :], activity_target[bg_indexer])
bg_accuracies.update(bg_acc[0].item(), len(bg_indexer))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
logger.info('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Act. Loss {act_loss.val:.3f} ({act_loss.avg:.3f})\t'
'Comp. Loss {comp_loss.val:.3f} ({comp_loss.avg:.3f})\t'
'Act. Accuracy {act_acc.val:.02f} ({act_acc.avg:.2f}) FG {fg_acc.val:.02f} BG {bg_acc.val:.02f}'.format(
i, len(val_loader), batch_time=batch_time, loss=losses,
act_loss=act_losses, comp_loss=comp_losses, act_acc=act_accuracies,
fg_acc=fg_accuracies, bg_acc=bg_accuracies) +
'\tReg. Loss {reg_loss.val:.3f} ({reg_loss.avg:.3f})'.format(
reg_loss=reg_losses))
logger.info('Testing Results: Loss {loss.avg:.5f} \t '
'Activity Loss {act_loss.avg:.3f} \t '
'Completeness Loss {comp_loss.avg:.3f}\n'
'Act Accuracy {act_acc.avg:.02f} FG Acc. {fg_acc.avg:.02f} BG Acc. {bg_acc.avg:.02f}'
.format(act_loss=act_losses, comp_loss=comp_losses, loss=losses, act_acc=act_accuracies,
fg_acc=fg_accuracies, bg_acc=bg_accuracies)
+ '\t Regression Loss {reg_loss.avg:.3f}'.format(reg_loss=reg_losses))
return losses.avg
def save_checkpoint(state, is_best, epoch, filename='checkpoint.pth.tar'):
filename = args.snapshot_pref + '_'.join(('PGCN', args.dataset, 'epoch', str(epoch), filename))
torch.save(state, filename)
if is_best:
best_name = args.snapshot_pref + '_'.join(('PGCN', args.dataset, 'model_best.pth.tar'))
shutil.copyfile(filename, best_name)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def adjust_learning_rate(optimizer, epoch, lr_steps):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
decay = 0.1 ** (sum(epoch >= np.array(lr_steps)))
lr = args.lr * decay
decay = args.weight_decay
for param_group in optimizer.param_groups:
param_group['lr'] = lr * param_group['lr_mult']
param_group['weight_decay'] = decay * param_group['decay_mult']
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__ == '__main__':
main()