This tutorial walks through using NeoML to clusterize the well-known Iris Data Set. We will use the k-means clustering algorithm (represented by the CKMeansClustering class).
We assume that the input data set is serialized in a file on disk as a CSparseFloatMatrix
. The library serialization methods can be used to load the data into memory for processing.
CSparseFloatMatrix matrix;
CArchiveFile file( "iris.carchive", CArchive::load );
CArchive archive( &file, CArchive::load );
archive >> matrix;
Each clustering algorithm receives the data as IClusteringData object; we will implement this interface over CSparseFloatMatrix
.
class CClusteringData : public IClusteringData {
public:
explicit CClusteringData( const CSparseFloatMatrix& _matrix ) :
matrix( _matrix )
{
}
virtual int GetVectorCount() const { return matrix.GetHeight(); }
virtual int GetFeaturesCount() const { return matrix.GetWidth(); }
virtual CFloatMatrixDesc GetMatrix() const { return matrix.GetDesc(); }
virtual double GetVectorWeight( int /*index*/ ) const { return 1.0; }
private:
CSparseFloatMatrix matrix;
};
CPtr<CClusteringData> data = new CClusteringData( matrix );
Once the data is ready, we can set up the clustering algorithm. Use the CParam
class object and set:
- InitialClustersCount to 3, as the data set has 3 clusters.
- DistanceFunc to
DF_Euclid
, so that euclidean distance will be used. - MaxIterations to the number of elements in the data set.
CKMeansClustering::CParam params;
params.InitialClustersCount = 3;
params.DistanceFunc = DF_Euclid;
params.MaxIterations = data->GetVectorCount();
CKMeansClustering kMeans( params );
CClusteringResult result;
kMeans.Clusterize( data, result );
Printing out the clustering results:
printf("Count %d:\n", result.ClusterCount );
for( int i = 0; i < result.ClusterCount; i++ ) {
for( int j = 0; j < result.Data.Size(); j++ ) {
if( result.Data[j] == i ) {
printf("%d ", j );
}
}
printf("\n");
}
It can be seen that the algorithm actually split the incoming data into three clusters:
Count 3:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
50 51 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 101 106 113 114 119 121 123 126 127 133 138 142 146 149
52 77 100 102 103 104 105 107 108 109 110 111 112 115 116 117 118 120 122 124 125 128 129 130 131 132 134 135 136 137 139 140 141 143 144 145 147 148