-
Notifications
You must be signed in to change notification settings - Fork 676
/
NLP Facebook Analysis
255 lines (193 loc) · 7.06 KB
/
NLP Facebook Analysis
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import urllib
import json
import datetime
import csv
import urllib
from bs4 import BeautifulSoup
from nltk import sent_tokenize, word_tokenize, pos_tag
import nltk
import numpy as np
import matplotlib.pyplot as plt
import codecs
reader = codecs.getreader("utf-8")
app_id = "12345" # YOUR APP ID HERE
app_secret = "12345" # YOUR PASSWORD HERE
access_token = app_id + "|" + app_secret
page_id = 'foxnews'
def feedFacebook(page_id, access_token,num_statuses):
base = "https://graph.facebook.com/v2.8"
node = "/" + page_id + "/feed"
parameters = "/?fields=message,link,likes.limit(1).summary(true),comments.limit(1).summary(true),shares&limit=%s&access_token=%s" % (num_statuses, access_token) # changed url = base + node +parameters
url = base + node + parameters
print(url)
response = urllib.request.urlopen(url)
data = json.load(reader(response))
print(json.dumps(data, indent=4, sort_keys=True))
b=json.dumps(data, indent=4, sort_keys=True)
return data
a=feedFacebook(page_id, access_token,10)
a
a['data'][0]['shares']['count']
for i in range(0,10):
print(a['data'][i]['message'])
print('Shares:',a['data'][i]['shares']['count'])
txt=[]
share=[]
for i in range(0,10):
txt.append(a['data'][i]['message'])
share.append(a['data'][i]['shares']['count'])
txt
tokens = word_tokenize(str(a))
tokens
long_words1 = [w for w in tokens if 7<len(w)<9]
sorted(long_words1)
fdist01 = nltk.FreqDist(long_words1)
fdist01
a1=fdist01.most_common(20)
a1
names0=[]
value0=[]
for i in range(5,len(a1)):
names0.append(a1[i][0])
value0.append(a1[i][1])
names0.reverse()
value0.reverse()
val = value0 # the bar lengths
pos = np.arange(len(a1)-5)+.5 # the bar centers on the y axis
pos
val
plt.figure(figsize=(9,4))
plt.barh(pos,val, align='center',alpha=0.7,color='rgbcmyk')
plt.yticks(pos, names0)
plt.xlabel('Mentions')
plt.title('FACEBOOK ANALYSIS\n'+page_id)
sentences = sent_tokenize(str(txt))
##### LDA
import logging
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
import matplotlib.pyplot as plt
from gensim import corpora
documents = sentences
# remove common words and tokenize
stoplist = set('for a of the and to in'.split())
texts = [[word for word in document.lower().split() if word not in stoplist]
for document in documents]
texts
# remove words that appear only once
from collections import defaultdict
frequency = defaultdict(int)
for text in texts:
for token in text:
frequency[token] += 1
frequency
texts = [[token for token in text if frequency[token] > 1]
for text in texts]
from pprint import pprint # pretty-printer
pprint(texts)
dictionary = corpora.Dictionary(texts)
dictionary.save('/tmp/deerwester4.dict')
print(dictionary.token2id)
## VETOR DAS FRASES
corpus = [dictionary.doc2bow(text) for text in texts]
corpora.MmCorpus.serialize('/tmp/deerwester4.mm', corpus) # store to disk, for later use
print(corpus)
from gensim import corpora, models, similarities
tfidf = models.TfidfModel(corpus) # step 1 -- initialize a model
corpus_tfidf = tfidf[corpus]
for doc in corpus_tfidf:
print(doc)
lsi = models.LsiModel(corpus_tfidf, id2word=dictionary, num_topics=2) # initialize an LSI transformation
corpus_lsi = lsi[corpus_tfidf] # create a double wrapper over the original corpus: bow->tfidf->fold-in-lsi
lsi.print_topics(2)
## COORDENADAS DOS TEXTOS
todas=[]
for doc in corpus_lsi: # both bow->tfidf and tfidf->lsi transformations are actually executed here, on the fly
todas.append(doc)
todas
from gensim import corpora, models, similarities
dictionary = corpora.Dictionary.load('/tmp/deerwester4.dict')
corpus = corpora.MmCorpus('/tmp/deerwester4.mm') # comes from the first tutorial, "From strings to vectors"
print(corpus)
np.array(corpus).shape
lsi = models.LsiModel(corpus, id2word=dictionary, num_topics=2)
p=[]
for i in range(0,len(documents)):
doc1 = documents[i]
vec_bow2 = dictionary.doc2bow(doc1.lower().split())
vec_lsi2 = lsi[vec_bow2] # convert the query to LSI space
p.append(vec_lsi2)
p
index = similarities.MatrixSimilarity(lsi[corpus]) # transform corpus to LSI space and index it
index.save('/tmp/deerwester4.index')
index = similarities.MatrixSimilarity.load('/tmp/deerwester4.index')
#################
import gensim
import numpy as np
import matplotlib.colors as colors
import matplotlib.cm as cmx
import matplotlib as mpl
matrix1 = gensim.matutils.corpus2dense(p, num_terms=2)
matrix3=matrix1.T
matrix3
from sklearn import manifold, datasets, decomposition, ensemble,discriminant_analysis, random_projection
def norm(x):
return (x-np.min(x))/(np.max(x)-np.min(x))
X=norm(matrix3)
tsne = manifold.TSNE(n_components=2, init='pca', random_state=0,perplexity=50,verbose=1,n_iter=1500)
X_tsne = tsne.fit_transform(X)
### WORK HERE - COMO DESCOBRI QUE TINHA 3 CLUSTERS ???? SORT X_tsne
from sklearn.cluster import KMeans
model3=KMeans(n_clusters=3,random_state=0)
model3.fit(X_tsne)
cc=model3.predict(X_tsne)
## ALSO TRY COM X PARA VER QUE TOPICO SELECIONA
tokens2 = word_tokenize(str(sentences[0:10]))
tokens2
long_words12 = [w for w in tokens2 if 7<len(w)<10]
sorted(long_words12)
fdist012 = nltk.FreqDist(long_words12)
a12=fdist012.most_common(50)
from matplotlib.colors import LinearSegmentedColormap
colors = [(1, 0, 0), (0, 1, 0), (0, 0, 1)]
cm = LinearSegmentedColormap.from_list(
cc, colors, N=3)
print('TOPIC 1\n')
print(a12,'\n')
for i in np.where(cc==2)[0][2:10]:
print(i,sentences[i])
fig = plt.figure(figsize=(8,4))
plt.title('NATURAL LANGUAGE PROCESSING\n\n'+'TOPIC MODELLING - LDA at page:',fontweight="bold")
plt.scatter(X_tsne[:, 0], X_tsne[:, 1], c=cc,cmap=cm,marker='o', s=200)
plt.show()
from nltk.corpus import stopwords
from nltk.stem.wordnet import WordNetLemmatizer
import string
stop = set(stopwords.words('english'))
exclude = set(string.punctuation)
lemma = WordNetLemmatizer()
def clean(doc):
stop_free = " ".join([i for i in doc.lower().split() if i not in stop])
punc_free = ''.join(ch for ch in stop_free if ch not in exclude)
normalized = " ".join(lemma.lemmatize(word) for word in punc_free.split())
return normalized
doc_clean = [clean(doc).split() for doc in long_words12]
import gensim
from gensim import corpora
dictionary = corpora.Dictionary(doc_clean)
doc_term_matrix = [dictionary.doc2bow(doc) for doc in doc_clean]
Lda = gensim.models.ldamodel.LdaModel
ldamodel = Lda(doc_term_matrix, num_topics=3, id2word = dictionary, passes=50)
plt.figure(figsize=(8,3))
plt.barh(pos,val, align='center',alpha=0.7,color='rgbcmyk')
plt.yticks(pos, names0)
plt.xlabel('Mentions')
plt.title('FACEBOOK ANALYSIS '+page_id+' Word Frequency',fontweight="bold")
fig = plt.figure(figsize=(8,3))
plt.title('FACEBOOK ANALYSIS\n\n'+'TOPIC MODELLING - Latent Dirichlet at Fox News page:',fontweight="bold")
plt.scatter(X_tsne[:, 0], X_tsne[:, 1], c=cc,cmap=cm,marker='o', s=200)
plt.annotate('Topic 0',(-400,600),fontweight="bold")
plt.annotate('Topic 1',(-200,-400),fontweight="bold")
plt.annotate('Topic 2',(300,400),fontweight="bold")
plt.show()
print('TOPICS','\n')
ldamodel.print_topics(num_topics=3, num_words=3)