forked from geekyutao/Inpaint-Anything
-
Notifications
You must be signed in to change notification settings - Fork 1
/
remove_anything_3d.py
568 lines (516 loc) · 19.5 KB
/
remove_anything_3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
import torch
import sys
import os
import cv2
import argparse
import torch.nn as nn
import numpy as np
from pathlib import Path
from matplotlib import pyplot as plt
import glob
import imageio.v2 as iio
import tempfile
import matplotlib.patches as patches
from typing import Any, Dict, List
from pytracking.lib.test.evaluation.data import Sequence
from sam_segment import build_sam_model
from lama_inpaint import build_lama_model, inpaint_img_with_builded_lama
from ostrack import build_ostrack_model, get_box_using_ostrack
from utils import load_img_to_array, save_array_to_img, dilate_mask, \
show_mask, show_points, get_clicked_point
from nerf.run_nerf import train
def setup_args(parser):
#remove object from source images option
parser.add_argument(
"--input_dir", type=str, required=True,
help="Path to the directory with source images",
)
parser.add_argument(
"--coords_type", type=str, required=True,
default="key_in", choices=["click", "key_in"],
help="The way to select coords",
)
parser.add_argument(
"--point_coords", type=float, nargs='+', required=True,
help="The coordinate of the point prompt, [coord_W coord_H].",
)
parser.add_argument(
"--point_labels", type=int, default=1, nargs='+', required=True,
help="The labels of the point prompt, 1 or 0.",
)
parser.add_argument(
"--dilate_kernel_size", type=int, default=15,
help="Dilate kernel size. Default: None",
)
parser.add_argument(
"--output_dir", type=str, required=True,
help="Output path to the directory with results.",
)
parser.add_argument(
"--sam_model_type", type=str,
default="vit_h", choices=['vit_h', 'vit_l', 'vit_b', 'vit_t'],
help="The type of sam model to load. Default: 'vit_h"
)
parser.add_argument(
"--sam_ckpt", type=str, required=True,
help="The path to the SAM checkpoint to use for mask generation.",
)
parser.add_argument(
"--lama_config", type=str,
default="./lama/configs/prediction/default.yaml",
help="The path to the config file of lama model. "
"Default: the config of big-lama",
)
parser.add_argument(
"--lama_ckpt", type=str, required=True,
help="The path to the lama checkpoint.",
)
parser.add_argument(
"--tracker_ckpt", type=str, required=True,
help="The path to tracker checkpoint.",
)
parser.add_argument(
"--mask_idx", type=int, default=1, required=True,
help="Which mask in the first frame to determine the inpaint region.",
)
#novel views synthesis option
parser.add_argument(
'--config', type=str, default=None,
help='config file path'
)
parser.add_argument(
"--expname", type=str,
help='experiment name'
)
# training options
parser.add_argument(
"--netdepth", type=int, default=8,
help='layers in network'
)
parser.add_argument(
"--netwidth", type=int, default=256,
help='channels per layer'
)
parser.add_argument(
"--netdepth_fine", type=int, default=8,
help='layers in fine network'
)
parser.add_argument(
"--netwidth_fine", type=int, default=256,
help='channels per layer in fine network'
)
parser.add_argument(
"--N_rand", type=int, default=32*32*4,
help='batch size (number of random rays per gradient step)'
)
parser.add_argument(
"--lrate", type=float, default=5e-4,
help='learning rate'
)
parser.add_argument(
"--lrate_decay", type=int, default=250,
help='exponential learning rate decay (in 1000 steps)'
)
parser.add_argument(
"--chunk", type=int, default=1024*32,
help='number of rays processed in parallel, decrease if running out of memory'
)
parser.add_argument(
"--netchunk", type=int, default=1024*64,
help='number of pts sent through network in parallel, decrease if running out of memory'
)
parser.add_argument(
"--no_batching", action='store_true',
help='only take random rays from 1 image at a time'
)
parser.add_argument(
"--no_reload", action='store_true',
help='do not reload weights from saved ckpt'
)
parser.add_argument(
"--ft_path", type=str, default=None,
help='specific weights npy file to reload for coarse network'
)
# rendering options
parser.add_argument(
"--N_samples", type=int, default=64,
help='number of coarse samples per ray'
)
parser.add_argument(
"--N_importance", type=int, default=64,
help='number of additional fine samples per ray'
)
parser.add_argument(
"--perturb", type=float, default=1.,
help='set to 0. for no jitter, 1. for jitter'
)
parser.add_argument(
"--use_viewdirs", action='store_true',
help='use full 5D input instead of 3D'
)
parser.add_argument(
"--i_embed", type=int, default=0,
help='set 0 for default positional encoding, -1 for none'
)
parser.add_argument(
"--multires", type=int, default=10,
help='log2 of max freq for positional encoding (3D location)'
)
parser.add_argument(
"--multires_views", type=int, default=4,
help='log2 of max freq for positional encoding (2D direction)'
)
parser.add_argument(
"--raw_noise_std", type=float, default=0.,
help='std dev of noise added to regularize sigma_a output, 1e0 recommended'
)
parser.add_argument(
"--render_only", action='store_true',
help='do not optimize, reload weights and render out render_poses path'
)
parser.add_argument(
"--render_test", action='store_true',
help='render the test set instead of render_poses path'
)
parser.add_argument(
"--render_factor", type=int, default=0,
help='downsampling factor to speed up rendering, set 4 or 8 for fast preview'
)
# training options
parser.add_argument(
"--precrop_iters", type=int, default=0,
help='number of steps to train on central crops'
)
parser.add_argument(
"--precrop_frac", type=float,
default=.5, help='fraction of img taken for central crops'
)
# dataset options
parser.add_argument(
"--dataset_type", type=str, default='llff',
help='options: llff / blender / deepvoxels'
)
parser.add_argument(
"--testskip", type=int, default=8,
help='will load 1/N images from test/val sets, useful for large datasets like deepvoxels'
)
## deepvoxels flags
parser.add_argument(
"--shape", type=str, default='greek',
help='options : armchair / cube / greek / vase'
)
## blender flags
parser.add_argument(
"--white_bkgd", action='store_true',
help='set to render synthetic data on a white bkgd (always use for dvoxels)'
)
parser.add_argument(
"--half_res", action='store_true',
help='load blender synthetic data at 400x400 instead of 800x800'
)
## llff flags
parser.add_argument(
"--factor", type=int, default=4,
help='downsample factor for LLFF images'
)
parser.add_argument(
"--no_ndc", action='store_true',
help='do not use normalized device coordinates (set for non-forward facing scenes)'
)
parser.add_argument(
"--lindisp", action='store_true',
help='sampling linearly in disparity rather than depth'
)
parser.add_argument(
"--spherify", action='store_true',
help='set for spherical 360 scenes'
)
parser.add_argument(
"--llffhold", type=int, default=8,
help='will take every 1/N images as LLFF test set, paper uses 8'
)
# logging/saving options
parser.add_argument(
"--i_print", type=int, default=100,
help='frequency of console printout and metric loggin'
)
parser.add_argument(
"--i_img", type=int, default=500,
help='frequency of tensorboard image logging'
)
parser.add_argument(
"--i_weights", type=int, default=10000,
help='frequency of weight ckpt saving'
)
parser.add_argument(
"--i_testset", type=int, default=50000,
help='frequency of testset saving'
)
parser.add_argument(
"--i_video", type=int, default=50000,
help='frequency of render_poses video saving'
)
class RemoveAnything3D(nn.Module):
def __init__(
self,
args,
tracker_target="ostrack",
segmentor_target="sam",
inpainter_target="lama",
):
super().__init__()
tracker_build_args = {
"tracker_param": args.tracker_ckpt
}
segmentor_build_args = {
"model_type": args.sam_model_type,
"ckpt_p": args.sam_ckpt
}
inpainter_build_args = {
"config_p": args.lama_config,
"ckpt_p": args.lama_ckpt
}
self.tracker = self.build_tracker(
tracker_target, **tracker_build_args)
self.segmentor = self.build_segmentor(
segmentor_target, **segmentor_build_args)
self.inpainter = self.build_inpainter(
inpainter_target, **inpainter_build_args)
self.tracker_target = tracker_target
self.segmentor_target = segmentor_target
self.inpainter_target = inpainter_target
def build_tracker(self, target, **kwargs):
assert target == "ostrack", "Only support sam now."
return build_ostrack_model(**kwargs)
def build_segmentor(self, target="sam", **kwargs):
assert target == "sam", "Only support sam now."
return build_sam_model(**kwargs)
def build_inpainter(self, target="lama", **kwargs):
assert target == "lama", "Only support lama now."
return build_lama_model(**kwargs)
def forward_tracker(self, image_ps, init_box):
init_box = np.array(init_box).astype(np.float32).reshape(-1, 4)
seq = Sequence("tmp", image_ps, 'inpaint-anything', init_box)
all_box_xywh = get_box_using_ostrack(self.tracker, seq)
return all_box_xywh
def forward_segmentor(self, img, point_coords=None, point_labels=None,
box=None, mask_input=None, multimask_output=True,
return_logits=False):
self.segmentor.set_image(img)
masks, scores, logits = self.segmentor.predict(
point_coords=point_coords,
point_labels=point_labels,
box=box,
mask_input=mask_input,
multimask_output=multimask_output,
return_logits=return_logits
)
self.segmentor.reset_image()
return masks, scores
def forward_inpainter(self, images, masks):
if self.inpainter_target == "lama":
for idx in range(len(images)):
images[idx] = inpaint_img_with_builded_lama(
self.inpainter, images[idx], masks[idx], device=self.device)
else:
raise NotImplementedError
return images
@property
def device(self):
return "cuda" if torch.cuda.is_available() else "cpu"
def mask_selection(self, masks, scores, ref_mask=None, interactive=False):
if interactive:
raise NotImplementedError
else:
if ref_mask is not None:
mse = np.mean(
(masks.astype(np.int32) - ref_mask.astype(np.int32))**2,
axis=(-2, -1)
)
idx = mse.argmin()
else:
idx = scores.argmax()
return masks[idx]
@staticmethod
def get_box_from_mask(mask):
x, y, w, h = cv2.boundingRect(mask)
return np.array([x, y, w, h])
def forward(
self,
image_ps: List[str],
key_image_idx: int,
key_image_point_coords: np.ndarray,
key_image_point_labels: np.ndarray,
key_image_mask_idx: int = None,
dilate_kernel_size: int = 15,
):
"""
Mask is 0-1 ndarray in default
"""
assert key_image_idx == 0, "Only support key image at the beginning."
# get key-image mask
key_image_p = image_ps[key_image_idx]
key_image = iio.imread(key_image_p)
key_masks, key_scores = self.forward_segmentor(
key_image, key_image_point_coords, key_image_point_labels)
# key-image mask selection
if key_image_mask_idx is not None:
key_mask = key_masks[key_image_mask_idx]
else:
key_mask = self.mask_selection(key_masks, key_scores)
if dilate_kernel_size is not None:
key_mask = dilate_mask(key_mask, dilate_kernel_size)
# get key-image box
key_box = self.get_box_from_mask(key_mask)
# get all-image boxes using tracker
print("Tracking ...")
all_box = self.forward_tracker(image_ps, key_box)
# get all-image masks using sam
print("Segmenting ...")
all_mask = [key_mask]
all_image = [key_image]
ref_mask = key_mask
for image_p, box in zip(image_ps[1:], all_box[1:]):
image = iio.imread(image_p)
# XYWH -> XYXY
x, y, w, h = box
sam_box = np.array([x, y, x + w, y + h])
masks, scores = self.forward_segmentor(image, box=sam_box)
mask = self.mask_selection(masks, scores, ref_mask)
if dilate_kernel_size is not None:
mask = dilate_mask(mask, dilate_kernel_size)
ref_mask = mask
all_mask.append(mask)
all_image.append(image)
# get all-image inpainted results
print("Inpainting ...")
all_image = self.forward_inpainter(all_image, all_mask)
return all_image, all_mask, all_box
def mkstemp(suffix, dir=None):
fd, path = tempfile.mkstemp(suffix=f"{suffix}", dir=dir)
os.close(fd)
return Path(path)
def show_img_with_mask(img, mask):
if np.max(mask) == 1:
mask = np.uint8(mask * 255)
dpi = plt.rcParams['figure.dpi']
height, width = img.shape[:2]
plt.figure(figsize=(width / dpi / 0.77, height / dpi / 0.77))
plt.imshow(img)
plt.axis('off')
show_mask(plt.gca(), mask, random_color=False)
tmp_p = mkstemp(".png")
plt.savefig(tmp_p, bbox_inches='tight', pad_inches=0)
plt.close()
return iio.imread(tmp_p)
def show_img_with_point(img, point_coords, point_labels):
dpi = plt.rcParams['figure.dpi']
height, width = img.shape[:2]
plt.figure(figsize=(width / dpi / 0.77, height / dpi / 0.77))
plt.imshow(img)
plt.axis('off')
show_points(plt.gca(), point_coords, point_labels,
size=(width * 0.04) ** 2)
tmp_p = mkstemp(".png")
plt.savefig(tmp_p, bbox_inches='tight', pad_inches=0)
plt.close()
return iio.imread(tmp_p)
def show_img_with_box(img, box):
dpi = plt.rcParams['figure.dpi']
height, width = img.shape[:2]
fig, ax = plt.subplots(1, figsize=(width / dpi / 0.77, height / dpi / 0.77))
ax.imshow(img)
ax.axis('off')
x1, y1, w, h = box
rect = patches.Rectangle((x1, y1), w, h, linewidth=2,
edgecolor='r', facecolor='none')
ax.add_patch(rect)
tmp_p = mkstemp(".png")
fig.savefig(tmp_p, bbox_inches='tight', pad_inches=0)
plt.close()
return iio.imread(tmp_p)
if __name__ == "__main__":
"""Example usage:
python remove_anything_3d.py \
--input_dir ./example/3d/horns \
--coords_type key_in \
--point_coords 830 405 \
--point_labels 1 \
--dilate_kernel_size 15 \
--output_dir ./results \
--sam_model_type "vit_h" \
--sam_ckpt ./pretrained_models/sam_vit_h_4b8939.pth \
--lama_config ./lama/configs/prediction/default.yaml \
--lama_ckpt ./pretrained_models/big-lama \
--tracker_ckpt vitb_384_mae_ce_32x4_ep300 \
--mask_idx 1 \
--config ./nerf/configs/horns.txt \
--expname horns
"""
parser = argparse.ArgumentParser()
setup_args(parser)
args = parser.parse_args()
device = "cuda" if torch.cuda.is_available() else "cpu"
dilate_kernel_size = args.dilate_kernel_size
key_image_mask_idx = args.mask_idx
images_raw_dir = args.input_dir
factor = args.factor
images_raw_dir = Path(f"{images_raw_dir}")
removed_dir = images_raw_dir / f"images_remove_{factor}"
image_mask_dir = removed_dir / f"mask_{dilate_kernel_size}" #存mask images
images_rm_w_mask_dir = removed_dir / f"removed_with_mask_{dilate_kernel_size}" #removed images
images_w_mask_dir = removed_dir / f"w_mask_{dilate_kernel_size}"
images_w_box_dir = removed_dir / f"w_box_{dilate_kernel_size}"
removed_dir.mkdir(exist_ok=True, parents=True)
image_mask_dir.mkdir(exist_ok=True, parents=True)
images_rm_w_mask_dir.mkdir(exist_ok=True, parents=True)
images_w_mask_dir.mkdir(exist_ok=True, parents=True)
images_w_box_dir.mkdir(exist_ok=True, parents=True)
#load source multi-view images
image_ps =[]
assert Path(images_raw_dir).exists()
if args.factor is not None:
images_raw_dir = os.path.join(images_raw_dir,'images'+'_{}'.format(factor))
else:
images_raw_dir = os.path.join(images_raw_dir,'images')
image_ps = sorted(glob.glob(os.path.join(images_raw_dir,'*.png')))
point_labels = np.array(args.point_labels)
if args.coords_type == "click":
point_coords = get_clicked_point(image_ps[0])
elif args.coords_type == "key_in":
point_coords = args.point_coords
point_coords = np.array([point_coords])
#remove object from source images
# device = "cuda:4" if torch.cuda.is_available() else "cpu"
model = RemoveAnything3D(args)
model.to(device)
with torch.no_grad():
all_images_rm_w_mask, all_mask, all_box = model(
image_ps, 0, point_coords, point_labels, key_image_mask_idx,
dilate_kernel_size
)
#save removed images
for i in range(len(all_images_rm_w_mask)):
all_images_rm_w_mask_p = images_rm_w_mask_dir / f"{Path(image_ps[i]).stem}.png"
# images_raw_p = images_raw_dir / f"{Path(image_ps[i]).stem}.png"
save_array_to_img(all_images_rm_w_mask[i], all_images_rm_w_mask_p)
# save_array_to_img(all_images_rm_w_mask[i], images_raw_p)
#save the mask
all_mask = [np.uint8(mask * 255) for mask in all_mask]
for i in range(len(all_mask)):
all_mask_p = image_mask_dir / f"{Path(image_ps[i]).stem}.png"
save_array_to_img(all_mask[i], all_mask_p)
#save the source images with mask
images_w_mask = []
for i in range(len(all_mask)):
images_w_mask.append(show_img_with_mask(iio.imread(image_ps[i]), all_mask[i]))
images_w_mask_p = images_w_mask_dir / f"{Path(image_ps[i]).stem}.png"
save_array_to_img(images_w_mask[i], images_w_mask_p)
#save the source images with box
images_w_box = []
for i in range(len(all_box)):
images_w_box.append(show_img_with_box(iio.imread(image_ps[i]), all_box[i]))
images_w_box_p = images_w_box_dir / f"{Path(image_ps[i]).stem}.png"
save_array_to_img(images_w_box[i], images_w_box_p)
#novel view synthesis with removed images
train(args)