diff --git a/.github/workflows/premerge-py-min.yml b/.github/workflows/premerge-py-min.yml
new file mode 100644
index 0000000..d7e6da8
--- /dev/null
+++ b/.github/workflows/premerge-py-min.yml
@@ -0,0 +1,56 @@
+name: premerge-min
+
+on:
+ # quick tests for pull requests and the releasing branches
+ push:
+ branches:
+ - vista3d
+ - main
+ pull_request:
+
+concurrency:
+ # automatically cancel the previously triggered workflows when there's a newer version
+ group: py-min-${{ github.event.pull_request.number || github.ref }}
+ cancel-in-progress: true
+
+jobs:
+ min-dep-py3: # min dependencies installed tests for different python
+ runs-on: ubuntu-latest
+ strategy:
+ fail-fast: false
+ matrix:
+ python-version: ['3.9', '3.10', '3.11']
+ timeout-minutes: 40
+ steps:
+ - uses: actions/checkout@v4
+ - name: Set up Python ${{ matrix.python-version }}
+ uses: actions/setup-python@v5
+ with:
+ python-version: ${{ matrix.python-version }}
+ - name: Prepare pip wheel
+ run: |
+ which python
+ python -m pip install --user --upgrade pip setuptools wheel
+ - name: cache weekly timestamp
+ id: pip-cache
+ run: |
+ echo "datew=$(date '+%Y-%V')" >> $GITHUB_OUTPUT
+ echo "dir=$(pip cache dir)" >> $GITHUB_OUTPUT
+ shell: bash
+ - name: cache for pip
+ uses: actions/cache@v4
+ id: cache
+ with:
+ path: ${{ steps.pip-cache.outputs.dir }}
+ key: ubuntu-latest-latest-pip-${{ steps.pip-cache.outputs.datew }}
+ - name: Install the dependencies
+ run: |
+ python -m pip install torch --extra-index-url https://download.pytorch.org/whl/cpu
+ python -m pip install "monai[all]"
+ python -m pip list
+ shell: bash
+ - name: Run quick tests (CPU ${{ runner.os }})
+ run: |
+ python -c 'import torch; print(torch.__version__); print(torch.rand(5,3))'
+ python -c "import monai; monai.config.print_config()"
+ python -m unittest -v
diff --git a/.gitignore b/.gitignore
index 1c01314..4d2179c 100644
--- a/.gitignore
+++ b/.gitignore
@@ -108,6 +108,7 @@ temp/
runs
*.gz
*.pth
+*.pt
lib/
pip-wheel-metadata/
share/python-wheels/
diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml
index 4d277df..b093c1e 100644
--- a/.pre-commit-config.yaml
+++ b/.pre-commit-config.yaml
@@ -9,7 +9,7 @@ ci:
repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
- rev: v4.4.0
+ rev: v4.6.0
hooks:
- id: end-of-file-fixer
- id: trailing-whitespace
@@ -27,23 +27,23 @@ repos:
- id: end-of-file-fixer
- id: mixed-line-ending
- repo: https://github.com/psf/black
- rev: "23.3.0"
+ rev: "24.4.2"
hooks:
- id: black
- id: black-jupyter
- repo: https://github.com/pycqa/isort
- rev: 5.12.0
+ rev: 5.13.2
hooks:
- id: isort
args: ["--profile", "black"]
- - repo: https://github.com/charliermarsh/ruff-pre-commit
- rev: v0.0.261
+ - repo: https://github.com/astral-sh/ruff-pre-commit
+ rev: v0.5.0
hooks:
- id: ruff
args: ['--fix']
- repo: https://github.com/asottile/yesqa
- rev: v1.4.0
+ rev: v1.5.0
hooks:
- id: yesqa
name: Unused noqa
@@ -54,8 +54,7 @@ repos:
- pep8-naming
exclude: |
(?x)^(
- monai/__init__.py|
- docs/source/conf.py|
+ .*/__init__.py|
tests/utils.py
)$
diff --git a/3rdParty/data_license.txt b/3rdParty/data_license.txt
deleted file mode 100644
index 0f702f0..0000000
--- a/3rdParty/data_license.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-Third Party Licenses
------------------------------------------------------------------------
-
-/*********************************************************************/
-i. TotalSegmentator
- https://zenodo.org/record/6802614#.Y9iTydLMJ6I
diff --git a/3rdParty/segment-anything.LICENSE.txt b/LICENSE.txt
similarity index 100%
rename from 3rdParty/segment-anything.LICENSE.txt
rename to LICENSE.txt
diff --git a/README.md b/README.md
index 5baa84a..33fec7a 100644
--- a/README.md
+++ b/README.md
@@ -11,184 +11,5 @@ See the License for the specific language governing permissions and
limitations under the License.
-->
-# MONAI VISTA
-
-MONAI **V**ersatile **I**maging **S**egmen**T**ation and **A**nnotation
-
-
-
-*(We're seeking collaborators.
-If your institution is interested, please fill out the survey: https://forms.office.com/r/RedPQc9fmw)*
-
-### Table of Contents
-- [Overview](#overview)
-- [MONAI VISTA Training and FineTuning](training/)
-- [MONAI VISTA with MONAI Label](#monai-label-integration)
- - [Step 1. Installation](#installation)
- - [Step 2. MONAI Label monaivista app](#monai-vista-app)
- - [Step 3. MONAI VISTA - Label Plugins](#monai-vista-viewer-plugins)
- - [Step 4. Data Preparation](#sample-data)
- - [Step 5. Start MONAI Label Server and Start Annotating!](#start-monai-label-server-with-vista-model)
-- [Video Demo](https://drive.google.com/file/d/1rEF1y9ZKo3Kj0Zms_gxkKwHlz75CYjwA/view?usp=sharing)
-- [Community](#community)
-- [License](#license)
-- [Reference](#reference)
-
-## Overview
-
-[MONAI Meetup presentation at MIDL 2023](https://docs.google.com/presentation/d/1evp8txCyTzkqLT0fVE_0eFlXL4hux5myb7ggFhokRFQ)
-
-MONAI VISTA provides domain-specific workflows for building and utilizing foundation models
-for medical image segmentation.
-It leverages state-of-the-art deep learning technology to establish a
-new collaborative approach for developing robust and versatile
- segmentation models and applications.
-
-This repository hosts the ongoing effort of building MONAI VISTA and
-is currently under active development.
-
-
-
-
-
-
-## MONAI Label Integration
-This section provides MONAI Label integration and sample apps. The integration is a server-client
-system that facilitates interactive medical image segmentation using VISTA via the sample 3D slicer plugin.
-
-### Installation
-
-MONAI VISTA models are integrated based on [MONAI Label](https://docs.monai.io/projects/label/en/latest/index.html#).
-Start using MONAI Label locally and run the installation with your familiar visualization tools.
-Stable version software represents the currently tested and supported visualization tools with
-the latest release of MONAI Label.
-
-Refer to [MONAI Label installation](https://docs.monai.io/projects/label/en/latest/installation.html) page
-for details. For milestone releases, users can install from PyPl with the command:
-
-```bash
-pip install monailabel
-
-```
-
-For Docker and Github installation, refer to MONAI Label [Github](https://github.com/Project-MONAI/MONAILabel)
-
-### MONAI VISTA APP
-
-Based on MONAI Label, MONAI VISTA is developed as an app. This app has example models
-to do both interactive and "Everything" segmentation over medical images.
-Prompt-based segment experience is highlighted. Including class prompts and point click prompts, Segmentation with the latest deep learning architectures (e.g., Segmentation Anything Model (SAM)) for multiple lung, abdominal, and pelvis
-organs. Interactive tools include control points and class prompt check boxes developed with viewer plugins.
-
-Get the monaivista app with:
-
-```bash
-# Clone MONAI VISTA repo
-git clone git@github.com:Project-MONAI/VISTA.git
-# the sample monaivista app is in the monailabel folder
-cd VISTA/monailabel
-```
-
-For more details on `monaivista` app, see the [sample-app page](https://github.com/Project-MONAI/VISTA/tree/main/monailabel/monaivista).
-
-### MONAI VISTA Viewer Plugins
-
-The interactive annotation experience with prompt-based segmentation models needs the integration of medical image viewers.
-MONAI VISTA and MONAI Label support multiple open-sourced viewers, such as [3D Slicer](https://www.slicer.org/) and [OHIF](https://ohif.org/).
-
-Example of 3D Slicer integration:
-
-3D Slicer is a free, open-source software for visualization, processing, segmentation, registration,
-and other 3D images and meshes. 3D Slicer is a mature and well-tested viewer for radiology studies and algorithms.
-
-#### Installing 3D Slicer
-
-To use MONAI Label with 3D Slicer, you'll need to download and install 3D Slicer.
-MONAI Label supports stable and preview versions of 3D Slicer, version 5.0 or higher.
-For more information on installing 3D Slicer,
-check out the [3D Slicer Documentation](https://slicer.readthedocs.io/en/latest/user_guide/getting_started.html#installing-3d-slicer)
-
-#### Install MONAI VISTA-Label plugin of 3D Slicer
-
-The plugin needs to be added in developer mode. Please follow the below steps.
-
-##### Plugin in Developer Mode
-
-- `git clone git@github.com:Project-MONAI/VISTA.git`
-- Find the plugin folder: `plugins/slicer/MONAILabel`
-- Open 3D Slicer: Go to **Edit** -> **Application Settings** -> **Modules** -> **Additional Module Paths**
-- Add New Module Path: __/plugins/slicer/MONAILabel (You can drag the slicer/MONAILabel folder to the module panel.)
-- _**Restart**_ 3D Slicer
-
-
-
-
-
-### Sample Data
-
-Prepare some sample data to start with:
-
-Download MSD pancreas dataset as the sample dataset using monailabel API.
-The task is the volumetric (3D) segmentation of the pancreas from CT image.
-The dataset is from the 2018 MICCAI challenge.
-
-```bash
-monailabel datasets --download --name Task07_Pancreas --output .
-```
-
-### Start MONAI Label Server with VISTA Model
-
-Specify the sample app and sample datasets' path in the following command:
-
-```bash
-monailabel start_server --app monaivista --studies ./Task07_Pancreas/imagesTs --conf models vista_point_2pt5
-```
-
-- Open 3D Slicer and MONAI VISTA-Label plugin.
-
-
-- Connect to the monailabel server, start annotating!
-
-
-## Community
-
-Join the conversation on Twitter [@ProjectMONAI](https://twitter.com/ProjectMONAI) or join
-our [Slack channel](https://projectmonai.slack.com/archives/C031QRE0M1C).
-
-Ask and answer questions on [MONAI VISTA's GitHub discussions tab](https://github.com/Project-MONAI/VISTA/discussions).
-
-## License
-
-The model is licensed under the Apache 2.0 license.
-
-## Reference
-
-The current model is trained and developed based on [Segment Anything Model (SAM)](https://github.com/facebookresearch/segment-anything). Check the 3rd party license for reference.
-
-We greatly appreciate the authors of [`Segment Anything`](https://github.com/facebookresearch/segment-anything) and [`TotalSegmentator`](https://github.com/wasserth/TotalSegmentator) for releasing their work under a permissive license to the community.
-
-```
-@article{kirillov2023segany,
- title={Segment Anything},
- author={Kirillov, Alexander and Mintun, Eric and Ravi, Nikhila and Mao, Hanzi and Rolland, Chloe and Gustafson, Laura and Xiao, Tete and Whitehead, Spencer and Berg, Alexander C. and Lo, Wan-Yen and Doll{\'a}r, Piotr and Girshick, Ross},
- journal={arXiv:2304.02643},
- year={2023}
- }
-@article{wasserthal2022totalsegmentator,
- title={TotalSegmentator: robust segmentation of 104 anatomical structures in CT images},
- author={Wasserthal, Jakob and Meyer, Manfred and Breit, Hanns-Christian and Cyriac, Joshy and Yang, Shan and Segeroth, Martin},
- journal={arXiv preprint arXiv:2208.05868},
- year={2022}
- }
-```
-
-This integration is based on MONAI Label:
-
-```bash
-@article{diaz2022monai,
- title={Monai label: A framework for ai-assisted interactive labeling of 3d medical images},
- author={Diaz-Pinto, Andres and Alle, Sachidanand and Nath, Vishwesh and Tang, Yucheng and Ihsani, Alvin and Asad, Muhammad and P{\'e}rez-Garc{\'\i}a, Fernando and Mehta, Pritesh and Li, Wenqi and Flores, Mona and others},
- journal={arXiv preprint arXiv:2203.12362},
- year={2022}
-}
-```
+# MONAI VISTA Repository
+This is the repository for VISTA3D and VISTA2D For the older VISTA2.5d code, please checkout the vista2.5d branch
diff --git a/assets/img.png b/assets/img.png
deleted file mode 100644
index 046b4f4..0000000
Binary files a/assets/img.png and /dev/null differ
diff --git a/assets/img_1.png b/assets/img_1.png
deleted file mode 100644
index 88c6d3e..0000000
Binary files a/assets/img_1.png and /dev/null differ
diff --git a/assets/imgs/3dslicer_annotating.png b/assets/imgs/3dslicer_annotating.png
deleted file mode 100644
index 95f65b1..0000000
Binary files a/assets/imgs/3dslicer_annotating.png and /dev/null differ
diff --git a/assets/imgs/3dslicer_module.png b/assets/imgs/3dslicer_module.png
deleted file mode 100644
index 50abfc0..0000000
Binary files a/assets/imgs/3dslicer_module.png and /dev/null differ
diff --git a/assets/imgs/3dslicer_open.jpeg b/assets/imgs/3dslicer_open.jpeg
deleted file mode 100644
index 43a6ce1..0000000
Binary files a/assets/imgs/3dslicer_open.jpeg and /dev/null differ
diff --git a/assets/imgs/3dslicer_plugin.png b/assets/imgs/3dslicer_plugin.png
deleted file mode 100644
index fe90b48..0000000
Binary files a/assets/imgs/3dslicer_plugin.png and /dev/null differ
diff --git a/monailabel/monaivista/README.md b/monailabel/monaivista/README.md
deleted file mode 100644
index d896418..0000000
--- a/monailabel/monaivista/README.md
+++ /dev/null
@@ -1,46 +0,0 @@
-
-
-The MONAI VISTA app contains several tasks:
-
-- Inferencing tasks: These tasks allow end-users to invoke pre-trained models for image analysis.
-- Training and fine-tuning tasks: (coming soon)
-
-#### Implementing an Inference Task
-To implement an inference task, developers must inherit the [InferTask](https://github.com/Project-MONAI/MONAILabel/blob/main/monailabel/tasks/infer/basic_infer.py) interface, which specifies a list of pre- and post-transforms and an inferer.
-
-The code snippet below demonstrates an example implementation of `InferTask`. In this example, the image is pre-processed to a Numpy array and input into the `SimpleInferer`. The resulting output is post-processed by applying sigmoid activation with binary discretization.
-
-
-from monai.inferers import SimpleInferer
-from monai.transforms import (LoadImaged, ToNumpyd, Activationsd AsDiscreted, ToNumpyd)
-from monailabel.interfaces.tasks import InferTask
-
-class MyInfer(InferTask):
- def pre_transforms(self, data=None):
- return [
- LoadImaged(keys="image"),
- ToNumpyd(keys="image"),
- ]
- def inferer(self, data=None):
- return SimpleInferer()
-
- def post_transforms(self, data=None):
- return [
- Activationsd(keys="pred", sigmoid=True),
- AsDiscreted(keys="pred", threshold=0.5),
- ToNumpyd(keys="pred"),
- ]
-
-
-Note that `inferer` needs to be defined by developers.
diff --git a/monailabel/monaivista/lib/activelearning/__init__.py b/monailabel/monaivista/lib/activelearning/__init__.py
deleted file mode 100644
index b24dd5b..0000000
--- a/monailabel/monaivista/lib/activelearning/__init__.py
+++ /dev/null
@@ -1,12 +0,0 @@
-# Copyright (c) MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-from .last import Last
diff --git a/monailabel/monaivista/lib/activelearning/last.py b/monailabel/monaivista/lib/activelearning/last.py
deleted file mode 100644
index d62863c..0000000
--- a/monailabel/monaivista/lib/activelearning/last.py
+++ /dev/null
@@ -1,37 +0,0 @@
-# Copyright (c) MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-import logging
-
-from monailabel.interfaces.datastore import Datastore
-from monailabel.interfaces.tasks.strategy import Strategy
-
-logger = logging.getLogger(__name__)
-
-
-class Last(Strategy):
- """
- Consider implementing a first strategy for active learning
- """
-
- def __init__(self):
- super().__init__("Get Last Sample")
-
- def __call__(self, request, datastore: Datastore):
- images = datastore.get_unlabeled_images()
- if not len(images):
- return None
-
- images.sort()
- image = images[-1]
-
- logger.info(f"First: Selected Image: {image}")
- return {"id": image}
diff --git a/monailabel/monaivista/lib/basic_infer.py b/monailabel/monaivista/lib/basic_infer.py
deleted file mode 100644
index 0d913fc..0000000
--- a/monailabel/monaivista/lib/basic_infer.py
+++ /dev/null
@@ -1,664 +0,0 @@
-# Copyright (c) MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-import copy
-import logging
-import os
-import time
-from abc import abstractmethod
-from enum import Enum
-from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, Union
-
-import torch
-from monai.data import decollate_batch
-from monai.inferers import Inferer, SimpleInferer, SlidingWindowInferer
-from monailabel.interfaces.exception import MONAILabelError, MONAILabelException
-from monailabel.interfaces.tasks.infer_v2 import InferTask, InferType
-from monailabel.interfaces.utils.transform import dump_data, run_transforms
-from monailabel.transform.cache import CacheTransformDatad
-
-# from monailabel.transform.writer import ClassificationWriter, DetectionWriter, Writer
-from monailabel.utils.others.generic import device_list, device_map, name_to_device
-
-from .writer import ClassificationWriter, DetectionWriter, Writer
-
-logger = logging.getLogger(__name__)
-
-
-class CallBackTypes(str, Enum):
- PRE_TRANSFORMS = "PRE_TRANSFORMS"
- INFERER = "INFERER"
- INVERT_TRANSFORMS = "INVERT_TRANSFORMS"
- POST_TRANSFORMS = "POST_TRANSFORMS"
- WRITER = "WRITER"
-
-
-class BasicInferTask(InferTask):
- """
- Basic Inference Task Helper
- """
-
- def __init__(
- self,
- path: Union[None, str, Sequence[str]],
- network: Union[None, Any],
- type: Union[str, InferType],
- labels: Union[str, None, Sequence[str], Dict[Any, Any]],
- dimension: int,
- description: str,
- model_state_dict: str = "model",
- input_key: str = "image",
- output_label_key: str = "pred",
- output_json_key: str = "result",
- config: Union[None, Dict[str, Any]] = None,
- load_strict: bool = False,
- roi_size=None,
- preload=False,
- train_mode=False,
- skip_writer=False,
- ):
- """
- :param path: Model File Path. Supports multiple paths to support versions (Last item will be picked as latest)
- :param network: Model Network (e.g. monai.networks.xyz). None in case if you use TorchScript (torch.jit).
- :param type: Type of Infer (segmentation, deepgrow etc..)
- :param labels: Labels associated to this Infer
- :param dimension: Input dimension
- :param description: Description
- :param model_state_dict: Key for loading the model state from checkpoint
- :param input_key: Input key for running inference
- :param output_label_key: Output key for storing result/label of inference
- :param output_json_key: Output key for storing result/label of inference
- :param config: K,V pairs to be part of user config
- :param load_strict: Load model in strict mode
- :param roi_size: ROI size for scanning window inference
- :param preload: Preload model/network on all available GPU devices
- :param train_mode: Run in Train mode instead of eval (when network has dropouts)
- :param skip_writer: Skip Writer and return data dictionary
- """
-
- super().__init__(type, labels, dimension, description, config)
-
- self.path = [] if not path else [path] if isinstance(path, str) else path
- self.network = network
- self.model_state_dict = model_state_dict
- self.input_key = input_key
- self.output_label_key = output_label_key
- self.output_json_key = output_json_key
- self.load_strict = load_strict
- self.roi_size = roi_size
- self.train_mode = train_mode
- self.skip_writer = skip_writer
-
- self._networks: Dict = {}
- self._cachedData: Dict = {}
- self._cachedEmbedding: Dict = {}
-
- self.computeEmbedding = False
-
- self._config.update(
- {
- "device": device_list(),
- # "result_extension": None,
- # "result_dtype": None,
- # "result_compress": False
- # "roi_size": self.roi_size,
- # "sw_batch_size": 1,
- # "sw_overlap": 0.25,
- }
- )
-
- if config:
- self._config.update(config)
-
- if preload:
- for device in device_map().values():
- logger.info(f"Preload Network for device: {device}")
- self._get_network(device, None)
-
- def info(self) -> Dict[str, Any]:
- return {
- "type": self.type,
- "labels": self.labels,
- "dimension": self.dimension,
- "description": self.description,
- "config": self.config(),
- }
-
- def config(self) -> Dict[str, Any]:
- return self._config
-
- def is_valid(self) -> bool:
- if self.network or self.type == InferType.SCRIBBLES:
- return True
-
- paths = self.path
- for path in reversed(paths):
- if path and os.path.exists(path):
- return True
- return False
-
- def get_path(self, validate=True):
- if not self.path:
- return None
-
- paths = self.path
- for path in reversed(paths):
- if path:
- if not validate or os.path.exists(path):
- return path
- return None
-
- def add_cache_transform(self, t, data, keys=("image", "image_meta_dict"), hash_key=("image_path", "model")):
- if data and data.get("cache_transforms", False):
- in_memory = data.get("cache_transforms_in_memory", True)
- ttl = data.get("cache_transforms_ttl", 300)
-
- t.append(CacheTransformDatad(keys=keys, hash_key=hash_key, in_memory=in_memory, ttl=ttl))
-
- @abstractmethod
- def pre_transforms(self, data=None) -> Sequence[Callable]:
- """
- Provide List of pre-transforms
-
- :param data: current data dictionary/request which can be helpful to define the transforms per-request basis
-
- For Example::
-
- return [
- monai.transforms.LoadImaged(keys='image'),
- monai.transforms.AddChanneld(keys='image'),
- monai.transforms.Spacingd(keys='image', pixdim=[1.0, 1.0, 1.0]),
- monai.transforms.ScaleIntensityRanged(keys='image',
- a_min=-57, a_max=164, b_min=0.0, b_max=1.0, clip=True),
- ]
-
- """
- pass
-
- def inverse_transforms(self, data=None) -> Union[None, Sequence[Callable]]:
- """
- Provide List of inverse-transforms. They are normally subset of pre-transforms.
- This task is performed on output_label (using the references from input_key)
-
- :param data: current data dictionary/request which can be helpful to define the transforms per-request basis
-
- Return one of the following.
- - None: Return None to disable running any inverse transforms (default behavior).
- - Empty: Return [] to run all applicable pre-transforms which has inverse method
- - list: Return list of specific pre-transforms names/classes to run inverse method
-
- For Example::
-
- return [
- monai.transforms.Spacingd,
- ]
-
- """
- return None
-
- @abstractmethod
- def post_transforms(self, data=None) -> Sequence[Callable]:
- """
- Provide List of post-transforms
-
- :param data: current data dictionary/request which can be helpful to define the transforms per-request basis
-
- For Example::
-
- return [
- monai.transforms.AddChanneld(keys='pred'),
- monai.transforms.Activationsd(keys='pred', softmax=True),
- monai.transforms.AsDiscreted(keys='pred', argmax=True),
- monai.transforms.SqueezeDimd(keys='pred', dim=0),
- monai.transforms.ToNumpyd(keys='pred'),
- monailabel.interface.utils.Restored(keys='pred', ref_image='image'),
- monailabel.interface.utils.ExtremePointsd(keys='pred', result='result', points='points'),
- monailabel.interface.utils.BoundingBoxd(keys='pred', result='result', bbox='bbox'),
- ]
-
- """
- pass
-
- def inferer(self, data=None) -> Inferer:
- input_shape = data[self.input_key].shape if data else None
-
- roi_size = data.get("roi_size", self.roi_size) if data else self.roi_size
- sw_batch_size = data.get("sw_batch_size", 1) if data else 1
- sw_overlap = data.get("sw_overlap", 0.25) if data else 0.25
- device = data.get("device")
-
- sliding = False
- if input_shape and roi_size:
- for i in range(len(roi_size)):
- if input_shape[-i] > roi_size[-i]:
- sliding = True
-
- if sliding:
- return SlidingWindowInferer(
- roi_size=roi_size,
- overlap=sw_overlap,
- sw_batch_size=sw_batch_size,
- sw_device=device,
- device=device,
- )
- return SimpleInferer()
-
- def detector(self, data=None) -> Optional[Callable]:
- return None
-
- def __call__(
- self, request, callbacks: Union[Dict[CallBackTypes, Any], None] = None
- ) -> Union[Dict, Tuple[str, Dict[str, Any]]]:
- """
- It provides basic implementation to run the following in order
- - Run Pre Transforms
- - Run Inferer
- - Run Invert Transforms
- - Run Post Transforms
- - Run Writer to save the label mask and result params
-
- You can provide callbacks which can be useful while writing pipelines to consume intermediate outputs
- Callback function should consume data and return data (modified/updated) e.g. `def my_cb(data): return data`
-
- Returns: Label (File Path) and Result Params (JSON)
- """
- begin = time.time()
- req = copy.deepcopy(self._config)
- req.update(request)
-
- # device
- device = name_to_device(req.get("device", "cuda"))
- req["device"] = device
-
- logger.setLevel(req.get("logging", "INFO").upper())
- if req.get("image") is not None and isinstance(req.get("image"), str):
- logger.info(f"Infer Request (final): {req}")
- data = copy.deepcopy(req)
- data.update({"image_path": req.get("image")})
- else:
- dump_data(req, logger.level)
- data = req
-
- self.class_prompts = request.get("class_prompts", None)
- self.point_prompts = request.get("point_prompts", None)
- self.computeEmbedding = request.get("computeEmbedding", False)
-
- # callbacks useful in case of pipeliens to consume intermediate output from each of the following stages
- # callback function should consume data and returns data (modified/updated)
- callbacks = callbacks if callbacks else {}
- callback_run_pre_transforms = callbacks.get(CallBackTypes.PRE_TRANSFORMS)
- callback_run_inferer = callbacks.get(CallBackTypes.INFERER)
- callback_run_invert_transforms = callbacks.get(CallBackTypes.INVERT_TRANSFORMS)
- callback_run_post_transforms = callbacks.get(CallBackTypes.POST_TRANSFORMS)
- callback_writer = callbacks.get(CallBackTypes.WRITER)
-
- start = time.time()
- pre_transforms = self.pre_transforms(data)
- data = self.run_pre_transforms(data, pre_transforms)
- if callback_run_pre_transforms:
- data = callback_run_pre_transforms(data)
- latency_pre = time.time() - start
-
- start = time.time()
-
- self._cachedData = (
- {}
- if self._cachedData and data.get("image_path") != self._cachedData.get("image_path")
- else self._cachedData or {}
- )
-
- if self.type == InferType.DETECTION:
- data = self.run_detector(data, device=device)
- else:
- data = self.run_inferer(data, self._cachedEmbedding, self._cachedData, device=device)
-
- if not self.computeEmbedding:
- self._cachedData = data.copy()
-
- if callback_run_inferer:
- data = callback_run_inferer(data)
- latency_inferer = time.time() - start
-
- start = time.time()
- data = self.run_invert_transforms(data, pre_transforms, self.inverse_transforms(data))
- if callback_run_invert_transforms:
- data = callback_run_invert_transforms(data)
- latency_invert = time.time() - start
-
- start = time.time()
- data = self.run_post_transforms(data, self.post_transforms(data))
- if callback_run_post_transforms:
- data = callback_run_post_transforms(data)
- latency_post = time.time() - start
-
- if self.skip_writer:
- return dict(data)
-
- start = time.time()
- result_file_name, result_json = self.writer(data)
- if callback_writer:
- data = callback_writer(data)
- latency_write = time.time() - start
-
- latency_total = time.time() - begin
- logger.info(
- "++ Latencies => Total: {:.4f}; "
- "Pre: {:.4f}; Inferer: {:.4f}; Invert: {:.4f}; Post: {:.4f}; Write: {:.4f}".format(
- latency_total,
- latency_pre,
- latency_inferer,
- latency_invert,
- latency_post,
- latency_write,
- )
- )
-
- result_json["label_names"] = self.labels
- result_json["latencies"] = {
- "pre": round(latency_pre, 2),
- "infer": round(latency_inferer, 2),
- "invert": round(latency_invert, 2),
- "post": round(latency_post, 2),
- "write": round(latency_write, 2),
- "total": round(latency_total, 2),
- "transform": data.get("latencies"),
- }
-
- if result_file_name is not None and isinstance(result_file_name, str):
- logger.info(f"Result File: {result_file_name}")
- logger.info(f"Result Json Keys: {list(result_json.keys())}")
- return result_file_name, result_json
- else:
- # result_file_name, result_json = self.writer(data, embedding=True)
-
- self._cachedEmbedding = data
- result_json = {"Cache": "embedding"}
- result_file_name = "CacheEmbedding"
- # logger.info(f"Computed image mebedding: {data}")
- self.computeEmbedding = False
- self._cachedData = {}
- return result_file_name, result_json
-
- def run_pre_transforms(self, data: Dict[str, Any], transforms):
- pre_cache: List[Any] = []
- post_cache: List[Any] = []
-
- current = pre_cache
- cache_t = None
- for t in transforms:
- if isinstance(t, CacheTransformDatad):
- cache_t = t
- current = post_cache
- else:
- current.append(t)
-
- if cache_t is not None:
-
- class LoadFromCache:
- def __call__(self, data):
- return cache_t.load(data)
-
- d = run_transforms(data, [LoadFromCache()], log_prefix="PRE", use_compose=False)
-
- # Failed/Cache-Miss (run everything)
- if d is None:
- return run_transforms(data, transforms, log_prefix="PRE", use_compose=False)
- return run_transforms(d, post_cache, log_prefix="PRE", use_compose=False) if post_cache else d
-
- return run_transforms(data, transforms, log_prefix="PRE", use_compose=False)
-
- def run_invert_transforms(self, data: Dict[str, Any], pre_transforms, names):
- if names is None:
- return data
-
- pre_names = dict()
- transforms = []
- for t in reversed(pre_transforms):
- if hasattr(t, "inverse"):
- pre_names[t.__class__.__name__] = t
- transforms.append(t)
-
- # Run only selected/given
- if len(names) > 0:
- transforms = [pre_transforms[n if isinstance(n, str) else n.__name__] for n in names]
-
- d = copy.deepcopy(dict(data))
- d[self.input_key] = data[self.output_label_key]
-
- d = run_transforms(d, transforms, inverse=True, log_prefix="INV")
- data[self.output_label_key] = d[self.input_key]
- return data
-
- def run_post_transforms(self, data: Dict[str, Any], transforms):
- return run_transforms(data, transforms, log_prefix="POST")
-
- def clear_cache(self):
- self._networks.clear()
-
- def _get_network(self, device, data):
- path = self.get_path()
- logger.info(f"Infer model path: {path}")
-
- if data and self._config.get("model_filename"):
- model_filename = data.get("model_filename")
- model_filename = model_filename if isinstance(model_filename, str) else model_filename[0]
- user_path = os.path.join(os.path.dirname(self.path[0]), model_filename)
- if user_path and os.path.exists(user_path):
- path = user_path
- logger.info(f"Using provided model_file: {user_path}")
- else:
- logger.info(f"Ignoring provided model_file (not valid): {user_path}")
-
- if not path and not self.network:
- if self.type == InferType.SCRIBBLES:
- return None
-
- raise MONAILabelException(
- MONAILabelError.INFERENCE_ERROR,
- f"Model Path ({self.path}) does not exist/valid",
- )
-
- cached = self._networks.get(device)
- statbuf = os.stat(path) if path else None
- network = None
- if cached:
- if statbuf and statbuf.st_mtime == cached[1]:
- network = cached[0]
- elif statbuf:
- logger.warning(f"Reload model from cache. Prev ts: {cached[1]}; Current ts: {statbuf.st_mtime}")
-
- if network is None:
- if self.network:
- network = copy.deepcopy(self.network)
- network.to(torch.device(device))
-
- if path:
- model_state_dict = torch.load(path, map_location=torch.device(device))
- load_dict = model_state_dict["state_dict"]
-
- network.load_state_dict(load_dict, strict=True)
-
- else:
- network = torch.jit.load(path, map_location=torch.device(device))
-
- if self.train_mode:
- network.train()
- else:
- network.eval()
-
- self._networks[device] = (network, statbuf.st_mtime if statbuf else 0)
-
- return network
-
- def run_inferer(self, data: Dict[str, Any], cachedEmbedding, cachedData, convert_to_batch=True, device="cuda"):
- """
- Run Inferer over pre-processed Data. Derive this logic to customize the normal behavior.
- In some cases, you want to implement your own for running chained inferers over pre-processed data
-
- :param data: pre-processed data
- :param convert_to_batch: convert input to batched input
- :param device: device type run load the model and run inferer
- :return: updated data with output_key stored that will be used for post-processing
- """
- inferer = self.inferer(data)
- logger.info(f"Inferer:: {device} => {inferer.__class__.__name__} => {inferer.__dict__}")
-
- image_meta_dict = data.get("image_meta_dict", None)
- if image_meta_dict:
- original_affine = image_meta_dict.get("original_affine", None)
- else:
- original_affine = None
-
- network = self._get_network(device, data)
- if network:
- inputs = data[self.input_key]
- inputs = inputs if torch.is_tensor(inputs) else torch.from_numpy(inputs)
- inputs = inputs[None] if convert_to_batch else inputs
- inputs = inputs.to(torch.device(device))
-
- with torch.no_grad():
- if self.computeEmbedding:
- outputs = inferer(
- inputs, network, computeEmbedding=self.computeEmbedding, labels=self.labels, device=device
- )
- return outputs
- else:
- outputs = inferer(
- inputs,
- network,
- class_prompts=self.class_prompts,
- point_prompts=self.point_prompts,
- cachedEmbedding=cachedEmbedding,
- cached_data=cachedData,
- computeEmbedding=self.computeEmbedding,
- labels=self.labels,
- device=device,
- original_affine=original_affine,
- )
-
- if device.startswith("cuda"):
- torch.cuda.empty_cache()
-
- if convert_to_batch:
- if isinstance(outputs, dict):
- outputs_d = decollate_batch(outputs)
- outputs = outputs_d[0]
- else:
- outputs = outputs[0]
-
- data[self.output_label_key] = outputs
- else:
- # consider them as callable transforms
- data = run_transforms(data, inferer, log_prefix="INF", log_name="Inferer")
- return data
-
- def run_detector(self, data: Dict[str, Any], convert_to_batch=True, device="cuda"):
- """
- Run Detector over pre-processed Data. Derive this logic to customize the normal behavior.
- In some cases, you want to implement your own for running chained inferers over pre-processed data
-
- :param data: pre-processed data
- :param convert_to_batch: convert input to batched input
- :param device: device type run load the model and run inferer
- :return: updated data with output_key stored that will be used for post-processing
- """
-
- """
- Run Detector over pre-processed Data. Derive this logic to customize the normal behavior.
- In some cases, you want to implement your own for running chained detector ops over pre-processed data
-
- :param data: pre-processed data
- :param device: device type run load the model and run inferer
- :return: updated data with output_key stored that will be used for post-processing
- """
- detector = self.detector(data)
- if detector is None:
- raise ValueError("Detector is Not Provided")
-
- if hasattr(detector, "inferer"):
- logger.info(
- f"Detector Inferer:: {device} => {detector.inferer.__class__.__name__} => "
- f"{detector.inferer.__dict__}"
- )
-
- network = self._get_network(device, data)
- if network:
- inputs = data[self.input_key]
- inputs = inputs if torch.is_tensor(inputs) else torch.from_numpy(inputs)
- inputs = inputs[None] if convert_to_batch else inputs
- inputs = inputs.to(torch.device(device))
-
- if hasattr(detector, "network"):
- detector.network = network # type: ignore
- else:
- logger.warning("Detector has no 'network' attribute defined; Running without pretrained network")
-
- with torch.no_grad():
- if callable(getattr(detector, "eval", None)):
- detector.eval() # type: ignore
- network.eval()
- outputs = detector(inputs, use_inferer=True)
-
- if device.startswith("cuda"):
- torch.cuda.empty_cache()
-
- if convert_to_batch:
- if isinstance(outputs, dict):
- outputs_d = decollate_batch(outputs)
- outputs = outputs_d[0]
- else:
- outputs = outputs[0]
-
- if isinstance(outputs, dict):
- data.update(outputs)
- else:
- data[self.output_label_key] = outputs
- return data
-
- def writer(self, data: Dict[str, Any], extension=None, dtype=None) -> Tuple[Any, Any]:
- """
- You can provide your own writer. However, this writer saves the prediction/label mask to file
- and fetches result json
-
- :param data: typically it is post processed data
- :param extension: output label extension
- :param dtype: output label dtype
- :return: tuple of output_file and result_json
- """
- logger.info("Writing Result...")
- if extension is not None:
- data["result_extension"] = extension
- if dtype is not None:
- data["result_dtype"] = dtype
- if self.labels is not None:
- data["labels"] = self.labels
-
- if self.type == InferType.CLASSIFICATION:
- if isinstance(self.labels, dict):
- label_names = {v: k for k, v in self.labels.items()}
- else:
- label_names = {v: k for v, k in enumerate(self.labels)} if isinstance(self.labels, Sequence) else None
-
- cw = ClassificationWriter(label=self.output_label_key, label_names=label_names)
- return cw(data)
-
- if self.type == InferType.DETECTION:
- dw = DetectionWriter()
- return dw(data)
-
- writer = Writer(label=self.output_label_key, json=self.output_json_key)
- return writer(data)
-
- def clear(self):
- self._networks.clear()
-
- def set_loglevel(self, level: str):
- logger.setLevel(level.upper())
diff --git a/monailabel/monaivista/lib/class_utils.py b/monailabel/monaivista/lib/class_utils.py
deleted file mode 100644
index bb8c49a..0000000
--- a/monailabel/monaivista/lib/class_utils.py
+++ /dev/null
@@ -1,197 +0,0 @@
-# Copyright (c) MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-import glob
-import importlib.util
-import inspect
-import logging
-import os
-import sys
-from distutils.util import strtobool
-from typing import List
-
-from monailabel.interfaces.exception import MONAILabelError, MONAILabelException
-
-logger = logging.getLogger(__name__)
-
-
-def unload_module(name):
- modules = []
- for m in sorted(sys.modules):
- if m == name or m.startswith(f"{name}."):
- modules.append(m)
-
- if modules and strtobool(os.environ.get("MONAI_LABEL_RELOAD_APP_LIB", "true")):
- logger.info(f"Remove/Reload previous Modules: {modules}")
- for m in modules:
- del sys.modules[m]
-
-
-def module_from_file(module_name, file_path):
- app_dir = os.path.dirname(file_path)
- sys.path.insert(0, app_dir)
- unload_module("lib")
-
- spec = importlib.util.spec_from_file_location(module_name, file_path)
- module = importlib.util.module_from_spec(spec)
- spec.loader.exec_module(module)
-
- sys.path.remove(app_dir)
- logger.debug(f"module: {module}")
- return module
-
-
-def is_subclass(n, o, class_c):
- if inspect.isclass(o) and n != class_c:
- b = [cls.__name__ for cls in o.__bases__]
- logger.debug(f"Base classes => {b}")
- if class_c in b:
- logger.info(f"Subclass for {class_c} Found: {o}")
- return True
- return False
-
-
-def get_class_of_subclass(module, class_c):
- logger.debug(f"{module} => {class_c}")
- for n, o in inspect.getmembers(module):
- if not inspect.isclass(o):
- continue
-
- logger.debug(f"{n} => {o}")
- if is_subclass(n, o, class_c):
- return o
- return None
-
-
-def get_class_of_subclass_from_file(module_name, file_path, class_c):
- return get_class_of_subclass(module_from_file(module_name, file_path), class_c)
-
-
-def to_expression(class_path, class_args):
- key_val = []
- for key in class_args:
- val = class_args[key]
- if isinstance(val, str):
- val = f"'{val}'"
- elif isinstance(val, tuple) or isinstance(val, list):
- vals = []
- for v in val:
- if isinstance(v, str):
- v = f"'{v}'"
- else:
- v = str(v)
- vals.append(v)
- if isinstance(val, tuple):
- val = f"({', '.join(vals)})"
- else:
- val = f"[{', '.join(vals)}]"
- else:
- val = str(val)
- key_val.append(f"{key}={val}")
- return f"{class_path}({', '.join(key_val)})"
-
-
-def class_args_to_exp(c, mappings=None):
- class_name = c["name"]
- class_name = mappings.get(class_name, class_name) if mappings else class_name
- class_args = c.get("args", {})
- return to_expression(class_name, class_args)
-
-
-def get_class_info(exp, handle_bool=True):
- if isinstance(exp, dict):
- return exp["name"], exp["args"]
- if exp.find("(") == -1:
- return exp, {}
-
- def foo(**kwargs):
- return kwargs
-
- if handle_bool:
- exp = exp.replace("=true", "=True").replace("=false", "=False") # safe to assume
- exp = exp.replace(" true", " True").replace(" false", " False")
- class_path = exp[: exp.find("(")]
- class_args = exp[exp.find("(") + 1 : -1] if exp.find("(") >= 0 else None
-
- logger.debug(f"Eval Input:: {class_path} => {class_args}")
- class_args = eval("foo(" + class_args + ")") if class_args else None
-
- logger.debug(f"{class_path} => {class_args}")
- return class_path, class_args
-
-
-def init_class(class_path, class_args):
- if "." not in class_path:
- raise MONAILabelException(
- MONAILabelError.CLASS_INIT_ERROR, "Class path need to be in the form [module/file].[class_name]."
- )
- module_name, class_name = class_path.rsplit(".", 1)
-
- m = importlib.import_module(module_name)
- importlib.reload(m)
- c = getattr(m, class_name)
- return c(**class_args) if class_args else c()
-
-
-def init_class_from_exp(exp):
- class_path, class_args = get_class_info(exp)
- return init_class(class_path, class_args)
-
-
-def get_class_names(p, subclass=None) -> List[str]:
- logger = logging.getLogger(__name__)
-
- result = []
- logger.debug(f"Module File Path: {p.__file__}")
-
- if os.path.basename(p.__file__).startswith("__"):
- current_dir = os.path.dirname(p.__file__)
- current_module_name = p.__package__
-
- for file in glob.glob(current_dir + "/*.py*"):
- name = os.path.splitext(os.path.basename(file))[0]
- if name.startswith("__"):
- continue
-
- module = importlib.import_module("." + name, package=current_module_name)
- # print("!!! 0: {}".format(module))
-
- for m in dir(module):
- c = getattr(module, m)
- if not c or inspect.isabstract(c):
- continue
-
- # if "lib.configs.samm_clipUM" in module.__name__:
- # # print("!!! 1: {}".format(m))
-
- if (
- inspect.isclass(c)
- and c.__module__ == module.__name__
- and (not subclass or is_subclass(c.__name__, c, subclass))
- ):
- result.append(c.__module__ + "." + c.__name__)
-
- else:
- for m in dir(p):
- c = getattr(p, m)
- if not c or inspect.isabstract(c):
- continue
- print("!!! 1: {}".format(p.__name__))
- print("!!! 2: {}".format(c.__module__))
-
- if (
- inspect.isclass(c)
- and c.__module__ == p.__name__
- and (not subclass or is_subclass(c.__name__, c, subclass))
- ):
- result.append(c.__module__ + "." + c.__name__)
-
- return result
diff --git a/monailabel/monaivista/lib/configs/vista_point_2pt5.py b/monailabel/monaivista/lib/configs/vista_point_2pt5.py
deleted file mode 100644
index 0ff4b4d..0000000
--- a/monailabel/monaivista/lib/configs/vista_point_2pt5.py
+++ /dev/null
@@ -1,170 +0,0 @@
-# Copyright (c) MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-import logging
-import os
-from typing import Any, Dict, Optional, Union
-
-import lib.infers
-import lib.trainers
-from lib.model.vista_point_2pt5.model_2pt5 import sam_model_registry
-from monailabel.interfaces.config import TaskConfig
-from monailabel.interfaces.tasks.infer_v2 import InferTask
-from monailabel.interfaces.tasks.train import TrainTask
-from monailabel.utils.others.generic import download_file, strtobool
-
-logger = logging.getLogger(__name__)
-
-
-class VISTAPOINT2PT5(TaskConfig):
- def __init__(self):
- super().__init__()
-
- def init(self, name: str, model_dir: str, conf: Dict[str, str], planner: Any, **kwargs):
- super().init(name, model_dir, conf, planner, **kwargs)
-
- # Labels
- self.labels = {
- "spleen": 1,
- "kidney_right": 2,
- "kidney_left": 3,
- "gallbladder": 4,
- "liver": 5,
- "stomach": 6,
- "aorta": 7,
- "inferior_vena_cava": 8,
- "portal_vein_and_splenic_vein": 9,
- "pancreas": 10,
- "adrenal_gland_right": 11,
- "adrenal_gland_left": 12,
- "lung_upper_lobe_left": 13,
- "lung_lower_lobe_left": 14,
- "lung_upper_lobe_right": 15,
- "lung_middle_lobe_right": 16,
- "lung_lower_lobe_right": 17,
- "vertebrae_L5": 18,
- "vertebrae_L4": 19,
- "vertebrae_L3": 20,
- "vertebrae_L2": 21,
- "vertebrae_L1": 22,
- "vertebrae_T12": 23,
- "vertebrae_T11": 24,
- "vertebrae_T10": 25,
- "vertebrae_T9": 26,
- "vertebrae_T8": 27,
- "vertebrae_T7": 28,
- "vertebrae_T6": 29,
- "vertebrae_T5": 30,
- "vertebrae_T4": 31,
- "vertebrae_T3": 32,
- "vertebrae_T2": 33,
- "vertebrae_T1": 34,
- "vertebrae_C7": 35,
- "vertebrae_C6": 36,
- "vertebrae_C5": 37,
- "vertebrae_C4": 38,
- "vertebrae_C3": 39,
- "vertebrae_C2": 40,
- "vertebrae_C1": 41,
- "esophagus": 42,
- "trachea": 43,
- "heart_myocardium": 44,
- "heart_atrium_left": 45,
- "heart_ventricle_left": 46,
- "heart_atrium_right": 47,
- "heart_ventricle_right": 48,
- "pulmonary_artery": 49,
- "brain": 50,
- "iliac_artery_left": 51,
- "iliac_artery_right": 52,
- "iliac_vena_left": 53,
- "iliac_vena_right": 54,
- "small_bowel": 55,
- "duodenum": 56,
- "colon": 57,
- "rib_left_1": 58,
- "rib_left_2": 59,
- "rib_left_3": 60,
- "rib_left_4": 61,
- "rib_left_5": 62,
- "rib_left_6": 63,
- "rib_left_7": 64,
- "rib_left_8": 65,
- "rib_left_9": 66,
- "rib_left_10": 67,
- "rib_left_11": 68,
- "rib_left_12": 69,
- "rib_right_1": 70,
- "rib_right_2": 71,
- "rib_right_3": 72,
- "rib_right_4": 73,
- "rib_right_5": 74,
- "rib_right_6": 75,
- "rib_right_7": 76,
- "rib_right_8": 77,
- "rib_right_9": 78,
- "rib_right_10": 79,
- "rib_right_11": 80,
- "rib_right_12": 81,
- "humerus_left": 82,
- "humerus_right": 83,
- "scapula_left": 84,
- "scapula_right": 85,
- "clavicula_left": 86,
- "clavicula_right": 87,
- "femur_left": 88,
- "femur_right": 89,
- "hip_left": 90,
- "hip_right": 91,
- "sacrum": 92,
- "face": 93,
- "gluteus_maximus_left": 94,
- "gluteus_maximus_right": 95,
- "gluteus_medius_left": 96,
- "gluteus_medius_right": 97,
- "gluteus_minimus_left": 98,
- "gluteus_minimus_right": 99,
- "autochthon_left": 100,
- "autochthon_right": 101,
- "iliopsoas_left": 102,
- "iliopsoas_right": 103,
- "urinary_bladder": 104,
- }
-
- # Model Files
- self.path = [
- os.path.join(self.model_dir, f"pretrained_{name}.pt"), # pretrained
- os.path.join(self.model_dir, f"{name}.pt"), # published
- ]
-
- # Download PreTrained Model
- if strtobool(self.conf.get("use_pretrained_model", "true")):
- url = f"{self.conf.get('pretrained_path', self.PRE_TRAINED_PATH)}"
- url = f"{url}/monaivista_point_104_sam_2pt5.pt"
- download_file(url, self.path[0])
-
- self.target_spacing = (1.5, 1.5, 1.5) # target space for image
- # Setting ROI size - This is for the image padding
- self.roi_size = (96, 96, 96)
-
- self.network = sam_model_registry["vit_b"](checkpoint=None, image_size=1024, encoder_in_chans=9 * 3)
-
- def infer(self) -> Union[InferTask, Dict[str, InferTask]]:
- task: InferTask = lib.infers.VISTAPOINT2PT5(
- path=self.path,
- network=self.network,
- labels=self.labels,
- preload=strtobool(self.conf.get("preload", "false")),
- )
- return task
-
- def trainer(self) -> Optional[TrainTask]:
- None
diff --git a/monailabel/monaivista/lib/infers/__init__.py b/monailabel/monaivista/lib/infers/__init__.py
deleted file mode 100644
index 83dda98..0000000
--- a/monailabel/monaivista/lib/infers/__init__.py
+++ /dev/null
@@ -1,12 +0,0 @@
-# Copyright (c) MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-from .vista_point_2pt5 import VISTAPOINT2PT5
diff --git a/monailabel/monaivista/lib/infers/vista_point_2pt5.py b/monailabel/monaivista/lib/infers/vista_point_2pt5.py
deleted file mode 100644
index ee35286..0000000
--- a/monailabel/monaivista/lib/infers/vista_point_2pt5.py
+++ /dev/null
@@ -1,76 +0,0 @@
-# Copyright (c) MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-from typing import Callable, Sequence
-
-from lib.basic_infer import BasicInferTask
-from lib.model.vista_point_2pt5.inferer import VISTASliceInferer
-from monai.inferers import Inferer
-from monai.transforms import (
- EnsureChannelFirstd,
- EnsureTyped,
- LoadImaged,
- Orientationd,
- ScaleIntensityRanged,
-)
-from monailabel.interfaces.tasks.infer_v2 import InferType
-from monailabel.transform.post import Restored
-
-
-class VISTAPOINT2PT5(BasicInferTask):
- """
- This provides Inference Engine for pre-trained VISTA segmentation model.
- """
-
- def __init__(
- self,
- path,
- network=None,
- target_spacing=(1.5, 1.5, 1.5),
- type=InferType.SEGMENTATION,
- labels=None,
- dimension=2,
- description="A pre-trained model for volumetric (2.5D) segmentation of the monai vista",
- **kwargs,
- ):
- super().__init__(
- path=path,
- network=network,
- type=type,
- labels=labels,
- dimension=dimension,
- description=description,
- **kwargs,
- )
- self.target_spacing = target_spacing
-
- def is_valid(self) -> bool:
- return True
-
- def pre_transforms(self, data=None) -> Sequence[Callable]:
- return [
- LoadImaged(keys="image"),
- EnsureChannelFirstd(keys="image"),
- Orientationd(keys="image", axcodes="RAS"),
- ScaleIntensityRanged(keys="image", a_min=-1024, a_max=1024, b_min=0.0, b_max=1.0, clip=True),
- ]
-
- def inferer(self, data=None) -> Inferer:
- return VISTASliceInferer(device=data.get("device") if data else None)
-
- def inverse_transforms(self, data=None):
- return []
-
- def post_transforms(self, data=None) -> Sequence[Callable]:
- return [
- EnsureTyped(keys="pred", device=data.get("device") if data else None),
- Restored(keys="pred", ref_image="image"),
- ]
diff --git a/monailabel/monaivista/lib/model/vista_point_2pt5/__init__.py b/monailabel/monaivista/lib/model/vista_point_2pt5/__init__.py
deleted file mode 100644
index 1e97f89..0000000
--- a/monailabel/monaivista/lib/model/vista_point_2pt5/__init__.py
+++ /dev/null
@@ -1,10 +0,0 @@
-# Copyright (c) MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
diff --git a/monailabel/monaivista/lib/model/vista_point_2pt5/inferer.py b/monailabel/monaivista/lib/model/vista_point_2pt5/inferer.py
deleted file mode 100644
index 77e52f7..0000000
--- a/monailabel/monaivista/lib/model/vista_point_2pt5/inferer.py
+++ /dev/null
@@ -1,327 +0,0 @@
-# Copyright (c) MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-from __future__ import annotations
-
-from collections.abc import Callable, Sequence
-from typing import Any
-
-import torch
-import torch.nn.functional as F
-from monai.apps.utils import get_logger
-from monai.data.meta_tensor import MetaTensor
-from monai.inferers import Inferer
-from monai.transforms import Activations, AsDiscrete, Compose
-from monai.utils import convert_to_dst_type
-from torch.cuda.amp import autocast
-
-from .utils.utils import prepare_sam_val_input
-
-logger = get_logger(__name__)
-
-
-class VISTASliceInferer(Inferer):
- def __init__(
- self,
- device: torch.device | str | None = None,
- progress: bool = False,
- cpu_thresh: int | None = None,
- ) -> None:
- super().__init__()
- self.device = device
- self.progress = progress
- self.cpu_thresh = cpu_thresh
-
- def __call__(
- self,
- inputs: torch.Tensor,
- network: Callable[..., torch.Tensor | Sequence[torch.Tensor] | dict[Any, torch.Tensor]],
- device: torch.device | str | None = None,
- n_z_slices: int = 9,
- *args: Any,
- **kwargs: Any,
- ) -> torch.Tensor | tuple[torch.Tensor, ...] | dict[Any, torch.Tensor]:
- """
-
- Args:
- inputs: model input data for inference.
- network: target model to execute inference.
- supports callables such as ``lambda x: my_torch_model(x, additional_config)``
- args: optional args to be passed to ``network``.
- kwargs: optional keyword args to be passed to ``network``.
-
- """
-
- device = kwargs.pop("device", self.device)
-
- if device is None and self.cpu_thresh is not None and inputs.shape[2:].numel() > self.cpu_thresh:
- device = "cpu" # stitch in cpu memory if image is too large
-
- return vista_slice_inference(
- inputs,
- network,
- device,
- n_z_slices,
- *args,
- **kwargs,
- )
-
-
-def vista_slice_inference(
- inputs: torch.Tensor | MetaTensor,
- predictor: Callable[..., torch.Tensor | Sequence[torch.Tensor] | dict[Any, torch.Tensor]],
- device: torch.device | str | None = None,
- n_z_slices: int = 9,
- *args: Any,
- **kwargs: Any,
-) -> torch.Tensor | tuple[torch.Tensor, ...] | dict[Any, torch.Tensor]:
- temp_meta = None
- if isinstance(inputs, MetaTensor):
- temp_meta = MetaTensor([]).copy_meta_from(inputs, copy_attr=False)
-
- labels = kwargs.pop("labels")
- num_classes = len(labels)
-
- inputs_l = inputs
- pred_volume = torch.repeat_interleave(torch.zeros_like(inputs_l), num_classes + 1, dim=1).float()
-
- inputs_l = inputs_l.squeeze()
- n_z_before_pad = inputs_l.shape[-1]
- # pad the z direction, so we can easily extract 2.5D input and predict labels for the center slice
-
- pd = (n_z_slices // 2, n_z_slices // 2)
- inputs_l = F.pad(inputs_l, pd, "constant", 0)
-
- computeEmbedding = kwargs.pop("computeEmbedding")
-
- if computeEmbedding:
- embedding = compute_embedding(n_z_slices, n_z_before_pad, inputs_l, predictor)
- return embedding
-
- post_pred = Compose([Activations(sigmoid=True)])
- post_pred_slice = Compose([Activations(sigmoid=True), AsDiscrete(threshold=0.5)])
-
- class_prompts = kwargs.pop("class_prompts")
- point_prompts = kwargs.pop("point_prompts")
- cached_data = kwargs.pop("cached_data")
- cached_pred = cached_data["pred"] if cached_data else None
-
- cachedEmbedding = kwargs.pop("cachedEmbedding")
- cachedEmbedding = cachedEmbedding if cachedEmbedding else None
- original_affine = kwargs.pop("original_affine")
-
- if (class_prompts is None) and (point_prompts is None):
- # Everything button: no class, no point prompts: iterate all slices
- class_prompts = [i for i in range(num_classes)]
- point_prompts = {"foreground": [], "background": []}
- pred_volume = iterate_all(
- pred_volume,
- n_z_slices,
- n_z_before_pad,
- inputs_l,
- class_prompts,
- point_prompts,
- predictor,
- post_pred,
- cachedEmbedding,
- cached_pred,
- device,
- )
- elif (point_prompts is None) and (class_prompts is not None):
- if class_prompts:
- # class prompts only: need to iterate all slices
- point_prompts = {"foreground": [], "background": []}
- pred_volume = iterate_all(
- pred_volume,
- n_z_slices,
- n_z_before_pad,
- inputs_l,
- class_prompts,
- point_prompts,
- predictor,
- post_pred,
- cachedEmbedding,
- cached_pred,
- device,
- )
- else:
- pred_volume = pred_volume.argmax(1).unsqueeze(1)
- elif (class_prompts is None) and (point_prompts is not None):
- class_prompts = []
- pred_volume = update_slice(
- pred_volume,
- n_z_slices,
- n_z_before_pad,
- inputs_l,
- class_prompts,
- point_prompts,
- predictor,
- post_pred_slice,
- cached_pred,
- num_classes,
- original_affine,
- device,
- )
- else:
- pred_volume = update_slice(
- pred_volume,
- n_z_slices,
- n_z_before_pad,
- inputs_l,
- class_prompts,
- point_prompts,
- predictor,
- post_pred_slice,
- cached_pred,
- num_classes,
- original_affine,
- device,
- )
-
- if temp_meta is not None:
- final_output = convert_to_dst_type(pred_volume, temp_meta, device=device)[0]
- else:
- final_output = convert_to_dst_type(pred_volume, inputs, device=device)[0]
-
- return final_output # type: ignore
-
-
-def compute_embedding(n_z_slices, n_z_before_pad, inputs_l, predictor):
- # image_embedding_dict saves the image embedding for each slice.
- # The key (int) is the index of center slice in original volume (before padding), e.g., 0,1,2,...n if the
- # original volume has n slices.
- # The value (torch.tensor) is the corresponding image embedding.
- image_embedding_dict = {}
- # get image embedding from the predictor (network) forward function
- for start_idx in range((n_z_slices // 2), (n_z_slices // 2 + n_z_before_pad)):
- inputs = inputs_l[..., start_idx - (n_z_slices // 2) : start_idx + (n_z_slices // 2) + 1].permute(2, 0, 1)
- # Here, the batch size is 1 (it is possible to increase batch size if the device has enough memory).
- data = [{"image": inputs}]
- with autocast():
- image_embeddings = predictor.get_image_embeddings(data) # (1, C, H, W)
- # Save image embedding for each slice to RAM
- image_embedding_dict[start_idx - (n_z_slices // 2)] = image_embeddings.cpu()
-
- return image_embedding_dict
-
-
-def update_slice(
- pred_volume,
- n_z_slices,
- n_z_before_pad,
- inputs_l,
- class_prompts,
- point_prompts,
- predictor,
- post_pred_slice,
- cached_pred,
- num_classes,
- original_affine,
- device,
-):
- z_indices = [p[2] + (9 // 2) for p in point_prompts["foreground"]]
- z_indices.extend([p[2] + (9 // 2) for p in point_prompts["background"]])
- z_indices = list(set(z_indices))
-
- pred_volume = pred_volume.argmax(1).unsqueeze(1)
-
- for start_idx in z_indices:
- if start_idx < (n_z_slices // 2):
- continue
-
- inputs = inputs_l[..., start_idx - (n_z_slices // 2) : start_idx + (n_z_slices // 2) + 1].permute(2, 0, 1)
- if device and (device == "cuda" or isinstance(device, torch.device) and device.type == "cuda"):
- inputs = inputs.cuda()
- data, unique_labels = prepare_sam_val_input(
- inputs, class_prompts, point_prompts, start_idx, original_affine, device=device
- )
-
- predictor.eval()
- if device == "cuda" or (isinstance(device, torch.device) and device.type == "cuda"):
- with torch.cuda.amp.autocast():
- outputs = predictor(data)
- logit = outputs[0]["high_res_logits"]
- else:
- with torch.cpu.amp.autocast():
- outputs = predictor(data)
- logit = outputs[0]["high_res_logits"]
-
- out_list = torch.unbind(logit, dim=0)
- y_pred = torch.stack(post_pred_slice(out_list)).float()
-
- pred_volume = pred_volume.float()
- idx = torch.where(y_pred[0] == 1)
- z_idx = start_idx - (n_z_slices // 2)
-
- if cached_pred is not None:
- if class_prompts:
- cached_pred_idx = torch.where(cached_pred[:, :, :, z_idx] == class_prompts[0] + 1)
- cached_pred[:, :, :, z_idx][cached_pred_idx] = 0
- cached_pred[:, :, :, z_idx][idx] = class_prompts[0] + 1
- else:
- cached_pred[:, :, :, z_idx][idx] = num_classes + 1
- else:
- pred_volume[0, :, :, :, z_idx][idx] = class_prompts[0] + 1 if class_prompts else num_classes + 1
-
- if cached_pred is not None:
- pred_volume[0] = cached_pred.float()
-
- return pred_volume
-
-
-def iterate_all(
- pred_volume,
- n_z_slices,
- n_z_before_pad,
- inputs_l,
- class_prompts,
- point_prompts,
- predictor,
- post_pred,
- cachedEmbedding,
- cached_pred,
- device,
-):
- start_range = (
- range(n_z_slices // 2, min((n_z_slices // 2 + n_z_before_pad), len(cachedEmbedding)))
- if cachedEmbedding
- else range(n_z_slices // 2, n_z_slices // 2 + n_z_before_pad)
- )
- for start_idx in start_range:
- inputs = inputs_l[..., start_idx - n_z_slices // 2 : start_idx + n_z_slices // 2 + 1].permute(2, 0, 1)
- if device == "cuda" or (isinstance(device, torch.device) and device.type == "cuda"):
- inputs = inputs.cuda()
- data, unique_labels = prepare_sam_val_input(inputs, class_prompts, point_prompts, start_idx, device=device)
- predictor = predictor.eval()
- with autocast():
- if cachedEmbedding:
- curr_embedding = cachedEmbedding[start_idx]
- if device == "cuda" or (isinstance(device, torch.device) and device.type == "cuda"):
- curr_embedding = curr_embedding.cuda()
- outputs = predictor.get_mask_prediction(data, curr_embedding)
- else:
- outputs = predictor(data)
- logit = outputs[0]["high_res_logits"]
-
- out_list = torch.unbind(logit, dim=0)
- y_pred = torch.stack(post_pred(out_list)).float()
- pred_idx = start_idx - (n_z_slices // 2) if not cachedEmbedding else start_idx
- pred_volume[0, unique_labels, ..., pred_idx] = y_pred
-
- pred_volume = pred_volume.argmax(1).unsqueeze(1).cpu()
- pred_volume = pred_volume.float()
-
- if cached_pred is not None:
- pred_volume_idx = torch.where(pred_volume[0] != 0)
- cached_pred[pred_volume_idx] = pred_volume[0][pred_volume_idx]
- pred_volume[0] = cached_pred.float()
-
- return pred_volume
diff --git a/monailabel/monaivista/lib/model/vista_point_2pt5/model_2pt5.py b/monailabel/monaivista/lib/model/vista_point_2pt5/model_2pt5.py
deleted file mode 100644
index 08759ec..0000000
--- a/monailabel/monaivista/lib/model/vista_point_2pt5/model_2pt5.py
+++ /dev/null
@@ -1,439 +0,0 @@
-# Copyright (c) MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-# Copyright (c) Meta Platforms, Inc. and affiliates.
-# All rights reserved.
-
-# This source code is licensed under the license found in the
-# LICENSE file in the root directory of this source tree.
-
-from functools import partial
-from typing import Any, Dict, List, Tuple
-
-import monai
-import torch
-from segment_anything.modeling import TwoWayTransformer
-from segment_anything.modeling.mask_decoder import MaskDecoder
-from torch import nn
-from torch.nn import functional as F
-
-from .vista_2pt5_image_encoder import VistaImageEncoderViT
-from .vista_2pt5_prompt_encoder import VistaPromptEncoder
-
-
-class Vista2pt5D(nn.Module):
- mask_threshold: float = 0.5
- image_format: str = "RGB"
-
- def __init__(
- self,
- image_encoder: VistaImageEncoderViT,
- prompt_encoder: VistaPromptEncoder,
- mask_decoder: MaskDecoder,
- pixel_mean: List[float] = [123.675, 116.28, 103.53],
- pixel_std: List[float] = [58.395, 57.12, 57.375],
- ) -> None:
- """
- SAM predicts object masks from an image and input prompts.
-
- Arguments:
- image_encoder (ImageEncoderViT): The backbone used to encode the
- image into image embeddings that allow for efficient mask prediction.
- prompt_encoder (PromptEncoder): Encodes various types of input prompts.
- mask_decoder (MaskDecoder): Predicts masks from the image embeddings
- and encoded prompts.
- pixel_mean (list(float)): Mean values for normalizing pixels in the input image.
- pixel_std (list(float)): Std values for normalizing pixels in the input image.
- """
- super().__init__()
- self.image_encoder = image_encoder
- self.prompt_encoder = prompt_encoder
- self.mask_decoder = mask_decoder
- self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False)
- self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False)
-
- @property
- def device(self) -> Any:
- return self.pixel_mean.device
-
- def get_image_embeddings(
- self,
- batched_input: List[Dict[str, Any]],
- ):
- input_images = torch.stack([self.preprocess(x["image"]) for x in batched_input], dim=0)
- image_embeddings = self.image_encoder(input_images)
- return image_embeddings
-
- def get_mask_prediction(
- self, batched_input: List[Dict[str, Any]], image_embeddings, multimask_output: bool = False
- ):
- outputs = []
- for image_record, curr_embedding in zip(batched_input, image_embeddings):
- if "point_coords" in image_record:
- points = (image_record["point_coords"], image_record["point_labels"])
- else:
- points = None
- sparse_embeddings, dense_embeddings = self.prompt_encoder(
- points=points,
- boxes=image_record.get("boxes", None),
- masks=image_record.get("mask_inputs", None),
- class_labels=image_record.get("labels", None),
- )
- low_res_masks, iou_predictions = self.mask_decoder(
- image_embeddings=curr_embedding.unsqueeze(0),
- image_pe=self.prompt_encoder.get_dense_pe(),
- sparse_prompt_embeddings=sparse_embeddings,
- dense_prompt_embeddings=dense_embeddings,
- multimask_output=multimask_output,
- )
-
- high_res_masks = self.postprocess_masks(
- low_res_masks,
- original_size=image_record["original_size"],
- )
- masks = high_res_masks > self.mask_threshold
- outputs.append(
- {
- "masks": masks,
- "iou_predictions": iou_predictions,
- "low_res_logits": low_res_masks,
- "high_res_logits": high_res_masks,
- }
- )
- return outputs
-
- def forward(
- self,
- batched_input: List[Dict[str, Any]],
- multimask_output: bool = False,
- is_train: bool = False,
- ) -> List[Dict[str, torch.Tensor]]:
- """
- Predicts masks end-to-end from provided images and prompts.
- If prompts are not known in advance, using SamPredictor is
- recommended over calling the model directly.
-
- Arguments:
- batched_input (list(dict)): A list over input images, each a
- dictionary with the following keys. A prompt key can be
- excluded if it is not present.
- 'image': The image as a torch tensor in 3xHxW format,
- already transformed for input to the model.
- 'original_size': (tuple(int, int)) The original size of
- the image before transformation, as (H, W).
- 'point_coords': (torch.Tensor) Batched point prompts for
- this image, with shape BxNx2. Already transformed to the
- input frame of the model.
- 'point_labels': (torch.Tensor) Batched labels for point prompts,
- with shape BxN.
- 'labels': (torch.Tensor) Batched labels for class-label prompt,
- with shape BxN.
- 'boxes': (torch.Tensor) Batched box inputs, with shape Bx4.
- Already transformed to the input frame of the model.
- 'mask_inputs': (torch.Tensor) Batched mask inputs to the model,
- in the form Bx1xHxW.
- multimask_output (bool): Whether the model should predict multiple
- disambiguating masks, or return a single mask.
-
- Returns:
- (list(dict)): A list over input images, where each element is
- as dictionary with the following keys.
- 'masks': (torch.Tensor) Batched binary mask predictions,
- with shape BxCxHxW, where B is the number of input promts,
- C is determiend by multimask_output, and (H, W) is the
- original size of the image.
- 'iou_predictions': (torch.Tensor) The model's predictions
- of mask quality, in shape BxC.
- 'low_res_logits': (torch.Tensor) Low resolution logits with
- shape BxCxHxW, where H=W=256. Can be passed as mask input
- to subsequent iterations of prediction.
- """
- input_images = torch.stack([self.preprocess(x["image"]) for x in batched_input], dim=0)
- image_embeddings = self.image_encoder(input_images)
-
- outputs = []
- for image_record, curr_embedding in zip(batched_input, image_embeddings):
- if "point_coords" in image_record:
- points = (image_record["point_coords"], image_record["point_labels"])
- else:
- points = None
- sparse_embeddings, dense_embeddings = self.prompt_encoder(
- points=points,
- boxes=image_record.get("boxes", None),
- masks=image_record.get("mask_inputs", None),
- class_labels=image_record.get("labels", None),
- )
- low_res_masks, iou_predictions = self.mask_decoder(
- image_embeddings=curr_embedding.unsqueeze(0),
- image_pe=self.prompt_encoder.get_dense_pe(),
- sparse_prompt_embeddings=sparse_embeddings,
- dense_prompt_embeddings=dense_embeddings,
- multimask_output=multimask_output,
- )
- if is_train:
- outputs.append(
- {
- "iou_predictions": iou_predictions,
- "low_res_logits": low_res_masks,
- }
- )
- else:
- high_res_masks = self.postprocess_masks(
- low_res_masks,
- # input_size=image_record["image"].shape[-2:],
- original_size=image_record["original_size"],
- )
- masks = high_res_masks > self.mask_threshold
- outputs.append(
- {
- "masks": masks,
- "iou_predictions": iou_predictions,
- "low_res_logits": low_res_masks,
- "high_res_logits": high_res_masks,
- }
- )
- return outputs
-
- def postprocess_masks(
- self,
- masks: torch.Tensor,
- original_size: Tuple[int, ...],
- ) -> torch.Tensor:
- """
- Remove padding and upscale masks to the original image size.
-
- Arguments:
- masks (torch.Tensor): Batched masks from the mask_decoder,
- in BxCxHxW format.
- input_size (tuple(int, int)): The size of the image input to the
- model, in (H, W) format. Used to remove padding.
- original_size (tuple(int, int)): The original size of the image
- before resizing for input to the model, in (H, W) format.
-
- Returns:
- (torch.Tensor): Batched masks in BxCxHxW format, where (H, W)
- is given by original_size.
- """
- # make it high resolution
- masks = F.interpolate(
- masks,
- (self.image_encoder.img_size, self.image_encoder.img_size),
- mode="bilinear",
- align_corners=False,
- )
- # resize it back to the longest dim (square image)
- masks = F.interpolate(masks, max(original_size), mode="bilinear", align_corners=False)
- # remove padding
- masks = masks[..., : original_size[0], : original_size[1]]
- return masks
-
- def preprocess(self, x: torch.Tensor, is_input=True) -> torch.Tensor:
- """Normalize pixel values and pad to a square input."""
- if is_input:
- if x.shape[0] == 1:
- # Normalize colors map the values in [0,1] to [0,255] for input images and then using
- # original pixel_mean and pixel_std to do normalization
- x = (x * 255.0 - self.pixel_mean) / self.pixel_std
- else:
- # for other 2.5d data, we normalize each input slice
- x = torch.cat(
- [(x[i].unsqueeze(0) * 255.0 - self.pixel_mean) / self.pixel_std for i in range(x.shape[0])], dim=0
- )
-
- # Pad image and make it a square image
- h, w = x.shape[-2:]
- # find the longest dim
- target_length = max(h, w)
- padh = target_length - h
- padw = target_length - w
- x = F.pad(x, (0, padw, 0, padh))
- if is_input:
- # Resize it to self.image_encoder.img_size
- x = F.interpolate(
- x.unsqueeze(0),
- (self.image_encoder.img_size, self.image_encoder.img_size),
- mode="bilinear",
- align_corners=False,
- ).squeeze(0)
- else:
- # Resize it to self.image_encoder.img_size // 4 (for labels). the size is same as low-res logit
- x = F.interpolate(
- x.unsqueeze(0), (self.image_encoder.img_size // 4, self.image_encoder.img_size // 4), mode="nearest"
- ).squeeze(0)
- return x
-
-
-def _build_vista2pt5d(
- encoder_in_chans,
- encoder_embed_dim,
- encoder_depth,
- encoder_num_heads,
- encoder_global_attn_indexes,
- checkpoint=None,
- image_size=1024,
- clip_class_label_prompt=False,
- patch_embed_3d=False,
-):
- prompt_embed_dim = 256
- image_size = image_size
- vit_patch_size = 16
- image_embedding_size = image_size // vit_patch_size
- sam = Vista2pt5D(
- image_encoder=VistaImageEncoderViT(
- in_chans=encoder_in_chans,
- depth=encoder_depth,
- embed_dim=encoder_embed_dim,
- img_size=image_size,
- mlp_ratio=4,
- norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
- num_heads=encoder_num_heads,
- patch_size=vit_patch_size,
- qkv_bias=True,
- use_rel_pos=True,
- global_attn_indexes=encoder_global_attn_indexes,
- window_size=14,
- out_chans=prompt_embed_dim,
- patch_embed_3d=patch_embed_3d,
- ),
- prompt_encoder=VistaPromptEncoder(
- embed_dim=prompt_embed_dim,
- image_embedding_size=(image_embedding_size, image_embedding_size),
- input_image_size=(image_size, image_size),
- mask_in_chans=16,
- clip_class_label_prompt=clip_class_label_prompt,
- ),
- mask_decoder=MaskDecoder(
- num_multimask_outputs=3, # TODO: only predict one binary mask
- transformer=TwoWayTransformer(
- depth=2,
- embedding_dim=prompt_embed_dim,
- mlp_dim=2048,
- num_heads=8,
- ),
- transformer_dim=prompt_embed_dim,
- iou_head_depth=3,
- iou_head_hidden_dim=256,
- ),
- pixel_mean=[123.675, 116.28, 103.53],
- pixel_std=[58.395, 57.12, 57.375],
- )
-
- if checkpoint is not None:
- with open(checkpoint, "rb") as f:
- state_dict = torch.load(f)
-
- if image_size == 1024:
- # we try to use all pretrained weights
- new_dict = state_dict
- else:
- new_dict = {}
- for k, v in state_dict.items():
- # skip weights in position embedding and learned relative positional embeddings
- # due to the change of input size
- if ("pos_embed" in k and k.startswith("image_encoder")) or (
- "attn.rel_pos" in k and k.startswith("image_encoder")
- ):
- continue
- else:
- new_dict[k] = v
-
- if encoder_in_chans != 3:
- new_dict.pop("image_encoder.patch_embed.proj.weight")
- new_dict.pop("image_encoder.patch_embed.proj.bias")
-
- sam.load_state_dict(new_dict, strict=False)
- print(f"Load {len(new_dict)} keys from checkpoint {checkpoint}, current model has {len(sam.state_dict())} keys")
-
- total_params = []
- image_encoder_params = []
- prompt_encoder_params = []
- mask_decoder_params = []
- for name, param in sam.named_parameters():
- n_param = param.numel()
- total_params.append(n_param)
- if name.startswith("image_encoder"):
- image_encoder_params.append(n_param)
- elif name.startswith("prompt_encoder"):
- prompt_encoder_params.append(n_param)
- elif name.startswith("mask_decoder"):
- mask_decoder_params.append(n_param)
-
- print(
- f"{sam.__class__.__name__} has {sum(total_params) * 1.e-6:.2f} M params, "
- f"{sum(image_encoder_params) * 1.e-6:.2f} M params in image encoder,"
- f"{sum(prompt_encoder_params) * 1.e-6:.2f} M params in prompt encoder,"
- f"{sum(mask_decoder_params) * 1.e-6:.2f} M params in mask decoder."
- )
-
- total_trainable_params = sum(p.numel() if p.requires_grad else 0 for p in sam.parameters())
- print(f"{sam.__class__.__name__} has {total_trainable_params * 1.e-6:.2f} M trainable params.")
- return sam
-
-
-def build_vista2pt5d_vit_h(
- checkpoint=None, image_size=1024, encoder_in_chans=3, clip_class_label_prompt=False, patch_embed_3d=False
-):
- return _build_vista2pt5d(
- encoder_in_chans=encoder_in_chans,
- encoder_embed_dim=1280,
- encoder_depth=32,
- encoder_num_heads=16,
- encoder_global_attn_indexes=[7, 15, 23, 31],
- checkpoint=checkpoint,
- image_size=image_size,
- clip_class_label_prompt=clip_class_label_prompt,
- patch_embed_3d=patch_embed_3d,
- )
-
-
-def build_vista2pt5d_vit_l(
- checkpoint=None, image_size=1024, encoder_in_chans=3, clip_class_label_prompt=False, patch_embed_3d=False
-):
- return _build_vista2pt5d(
- encoder_in_chans=encoder_in_chans,
- encoder_embed_dim=1024,
- encoder_depth=24,
- encoder_num_heads=16,
- encoder_global_attn_indexes=[5, 11, 17, 23],
- checkpoint=checkpoint,
- image_size=image_size,
- clip_class_label_prompt=clip_class_label_prompt,
- patch_embed_3d=patch_embed_3d,
- )
-
-
-def build_vista2pt5d_vit_b(
- checkpoint=None, image_size=1024, encoder_in_chans=3, clip_class_label_prompt=False, patch_embed_3d=False
-):
- return _build_vista2pt5d(
- encoder_in_chans=encoder_in_chans,
- encoder_embed_dim=768,
- encoder_depth=12,
- encoder_num_heads=12,
- encoder_global_attn_indexes=[2, 5, 8, 11],
- checkpoint=checkpoint,
- image_size=image_size,
- clip_class_label_prompt=clip_class_label_prompt,
- patch_embed_3d=patch_embed_3d,
- )
-
-
-sam_model_registry = {
- "default": build_vista2pt5d_vit_h,
- "vit_h": build_vista2pt5d_vit_h,
- "vit_l": build_vista2pt5d_vit_l,
- "vit_b": build_vista2pt5d_vit_b,
-}
-
-
-if __name__ == "__main__":
- model = build_vista2pt5d_vit_b()
- model.cuda()
diff --git a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/__init__.py b/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/__init__.py
deleted file mode 100644
index 718fdc3..0000000
--- a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/__init__.py
+++ /dev/null
@@ -1,15 +0,0 @@
-# Copyright (c) Meta Platforms, Inc. and affiliates.
-# All rights reserved.
-
-# This source code is licensed under the license found in the
-# LICENSE file in the root directory of this source tree.
-
-from .automatic_mask_generator import SamAutomaticMaskGenerator
-from .build_sam import (
- build_sam,
- build_sam_vit_b,
- build_sam_vit_h,
- build_sam_vit_l,
- sam_model_registry,
-)
-from .predictor import SamPredictor
diff --git a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/automatic_mask_generator.py b/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/automatic_mask_generator.py
deleted file mode 100644
index 2cd252d..0000000
--- a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/automatic_mask_generator.py
+++ /dev/null
@@ -1,368 +0,0 @@
-# Copyright (c) Meta Platforms, Inc. and affiliates.
-# All rights reserved.
-
-# This source code is licensed under the license found in the
-# LICENSE file in the root directory of this source tree.
-
-from typing import Any, Dict, List, Optional, Tuple
-
-import numpy as np
-import torch
-from torchvision.ops.boxes import batched_nms, box_area # type: ignore
-
-from .modeling import Sam
-from .predictor import SamPredictor
-from .utils.amg import (
- MaskData,
- area_from_rle,
- batch_iterator,
- batched_mask_to_box,
- box_xyxy_to_xywh,
- build_all_layer_point_grids,
- calculate_stability_score,
- coco_encode_rle,
- generate_crop_boxes,
- is_box_near_crop_edge,
- mask_to_rle_pytorch,
- remove_small_regions,
- rle_to_mask,
- uncrop_boxes_xyxy,
- uncrop_masks,
- uncrop_points,
-)
-
-
-class SamAutomaticMaskGenerator:
- def __init__(
- self,
- model: Sam,
- points_per_side: Optional[int] = 32,
- points_per_batch: int = 64,
- pred_iou_thresh: float = 0.88,
- stability_score_thresh: float = 0.95,
- stability_score_offset: float = 1.0,
- box_nms_thresh: float = 0.7,
- crop_n_layers: int = 0,
- crop_nms_thresh: float = 0.7,
- crop_overlap_ratio: float = 512 / 1500,
- crop_n_points_downscale_factor: int = 1,
- point_grids: Optional[List[np.ndarray]] = None,
- min_mask_region_area: int = 0,
- output_mode: str = "binary_mask",
- ) -> None:
- """
- Using a SAM model, generates masks for the entire image.
- Generates a grid of point prompts over the image, then filters
- low quality and duplicate masks. The default settings are chosen
- for SAM with a ViT-H backbone.
-
- Arguments:
- model (Sam): The SAM model to use for mask prediction.
- points_per_side (int or None): The number of points to be sampled
- along one side of the image. The total number of points is
- points_per_side**2. If None, 'point_grids' must provide explicit
- point sampling.
- points_per_batch (int): Sets the number of points run simultaneously
- by the model. Higher numbers may be faster but use more GPU memory.
- pred_iou_thresh (float): A filtering threshold in [0,1], using the
- model's predicted mask quality.
- stability_score_thresh (float): A filtering threshold in [0,1], using
- the stability of the mask under changes to the cutoff used to binarize
- the model's mask predictions.
- stability_score_offset (float): The amount to shift the cutoff when
- calculated the stability score.
- box_nms_thresh (float): The box IoU cutoff used by non-maximal
- suppression to filter duplicate masks.
- crops_n_layers (int): If >0, mask prediction will be run again on
- crops of the image. Sets the number of layers to run, where each
- layer has 2**i_layer number of image crops.
- crops_nms_thresh (float): The box IoU cutoff used by non-maximal
- suppression to filter duplicate masks between different crops.
- crop_overlap_ratio (float): Sets the degree to which crops overlap.
- In the first crop layer, crops will overlap by this fraction of
- the image length. Later layers with more crops scale down this overlap.
- crop_n_points_downscale_factor (int): The number of points-per-side
- sampled in layer n is scaled down by crop_n_points_downscale_factor**n.
- point_grids (list(np.ndarray) or None): A list over explicit grids
- of points used for sampling, normalized to [0,1]. The nth grid in the
- list is used in the nth crop layer. Exclusive with points_per_side.
- min_mask_region_area (int): If >0, postprocessing will be applied
- to remove disconnected regions and holes in masks with area smaller
- than min_mask_region_area. Requires opencv.
- output_mode (str): The form masks are returned in. Can be 'binary_mask',
- 'uncompressed_rle', or 'coco_rle'. 'coco_rle' requires pycocotools.
- For large resolutions, 'binary_mask' may consume large amounts of
- memory.
- """
-
- assert (points_per_side is None) != (
- point_grids is None
- ), "Exactly one of points_per_side or point_grid must be provided."
- if points_per_side is not None:
- self.point_grids = build_all_layer_point_grids(
- points_per_side,
- crop_n_layers,
- crop_n_points_downscale_factor,
- )
- elif point_grids is not None:
- self.point_grids = point_grids
- else:
- raise ValueError("Can't have both points_per_side and point_grid be None.")
-
- assert output_mode in [
- "binary_mask",
- "uncompressed_rle",
- "coco_rle",
- ], f"Unknown output_mode {output_mode}."
- if output_mode == "coco_rle":
- from pycocotools import mask as mask_utils # type: ignore # noqa: F401
-
- if min_mask_region_area > 0:
- import cv2 # type: ignore # noqa: F401
-
- self.predictor = SamPredictor(model)
- self.points_per_batch = points_per_batch
- self.pred_iou_thresh = pred_iou_thresh
- self.stability_score_thresh = stability_score_thresh
- self.stability_score_offset = stability_score_offset
- self.box_nms_thresh = box_nms_thresh
- self.crop_n_layers = crop_n_layers
- self.crop_nms_thresh = crop_nms_thresh
- self.crop_overlap_ratio = crop_overlap_ratio
- self.crop_n_points_downscale_factor = crop_n_points_downscale_factor
- self.min_mask_region_area = min_mask_region_area
- self.output_mode = output_mode
-
- @torch.no_grad()
- def generate(self, image: np.ndarray) -> List[Dict[str, Any]]:
- """
- Generates masks for the given image.
-
- Arguments:
- image (np.ndarray): The image to generate masks for, in HWC uint8 format.
-
- Returns:
- list(dict(str, any)): A list over records for masks. Each record is
- a dict containing the following keys:
- segmentation (dict(str, any) or np.ndarray): The mask. If
- output_mode='binary_mask', is an array of shape HW. Otherwise,
- is a dictionary containing the RLE.
- bbox (list(float)): The box around the mask, in XYWH format.
- area (int): The area in pixels of the mask.
- predicted_iou (float): The model's own prediction of the mask's
- quality. This is filtered by the pred_iou_thresh parameter.
- point_coords (list(list(float))): The point coordinates input
- to the model to generate this mask.
- stability_score (float): A measure of the mask's quality. This
- is filtered on using the stability_score_thresh parameter.
- crop_box (list(float)): The crop of the image used to generate
- the mask, given in XYWH format.
- """
-
- # Generate masks
- mask_data = self._generate_masks(image)
-
- # Filter small disconnected regions and holes in masks
- if self.min_mask_region_area > 0:
- mask_data = self.postprocess_small_regions(
- mask_data,
- self.min_mask_region_area,
- max(self.box_nms_thresh, self.crop_nms_thresh),
- )
-
- # Encode masks
- if self.output_mode == "coco_rle":
- mask_data["segmentations"] = [coco_encode_rle(rle) for rle in mask_data["rles"]]
- elif self.output_mode == "binary_mask":
- mask_data["segmentations"] = [rle_to_mask(rle) for rle in mask_data["rles"]]
- else:
- mask_data["segmentations"] = mask_data["rles"]
-
- # Write mask records
- curr_anns = []
- for idx in range(len(mask_data["segmentations"])):
- ann = {
- "segmentation": mask_data["segmentations"][idx],
- "area": area_from_rle(mask_data["rles"][idx]),
- "bbox": box_xyxy_to_xywh(mask_data["boxes"][idx]).tolist(),
- "predicted_iou": mask_data["iou_preds"][idx].item(),
- "point_coords": [mask_data["points"][idx].tolist()],
- "stability_score": mask_data["stability_score"][idx].item(),
- "crop_box": box_xyxy_to_xywh(mask_data["crop_boxes"][idx]).tolist(),
- }
- curr_anns.append(ann)
-
- return curr_anns
-
- def _generate_masks(self, image: np.ndarray) -> MaskData:
- orig_size = image.shape[:2]
- crop_boxes, layer_idxs = generate_crop_boxes(orig_size, self.crop_n_layers, self.crop_overlap_ratio)
-
- # Iterate over image crops
- data = MaskData()
- for crop_box, layer_idx in zip(crop_boxes, layer_idxs):
- crop_data = self._process_crop(image, crop_box, layer_idx, orig_size)
- data.cat(crop_data)
-
- # Remove duplicate masks between crops
- if len(crop_boxes) > 1:
- # Prefer masks from smaller crops
- scores = 1 / box_area(data["crop_boxes"])
- scores = scores.to(data["boxes"].device)
- keep_by_nms = batched_nms(
- data["boxes"].float(),
- scores,
- torch.zeros(len(data["boxes"])), # categories
- iou_threshold=self.crop_nms_thresh,
- )
- data.filter(keep_by_nms)
-
- data.to_numpy()
- return data
-
- def _process_crop(
- self,
- image: np.ndarray,
- crop_box: List[int],
- crop_layer_idx: int,
- orig_size: Tuple[int, ...],
- ) -> MaskData:
- # Crop the image and calculate embeddings
- x0, y0, x1, y1 = crop_box
- cropped_im = image[y0:y1, x0:x1, :]
- cropped_im_size = cropped_im.shape[:2]
- self.predictor.set_image(cropped_im)
-
- # Get points for this crop
- points_scale = np.array(cropped_im_size)[None, ::-1]
- points_for_image = self.point_grids[crop_layer_idx] * points_scale
-
- # Generate masks for this crop in batches
- data = MaskData()
- for (points,) in batch_iterator(self.points_per_batch, points_for_image):
- batch_data = self._process_batch(points, cropped_im_size, crop_box, orig_size)
- data.cat(batch_data)
- del batch_data
- self.predictor.reset_image()
-
- # Remove duplicates within this crop.
- keep_by_nms = batched_nms(
- data["boxes"].float(),
- data["iou_preds"],
- torch.zeros(len(data["boxes"])), # categories
- iou_threshold=self.box_nms_thresh,
- )
- data.filter(keep_by_nms)
-
- # Return to the original image frame
- data["boxes"] = uncrop_boxes_xyxy(data["boxes"], crop_box)
- data["points"] = uncrop_points(data["points"], crop_box)
- data["crop_boxes"] = torch.tensor([crop_box for _ in range(len(data["rles"]))])
-
- return data
-
- def _process_batch(
- self,
- points: np.ndarray,
- im_size: Tuple[int, ...],
- crop_box: List[int],
- orig_size: Tuple[int, ...],
- ) -> MaskData:
- orig_h, orig_w = orig_size
-
- # Run model on this batch
- transformed_points = self.predictor.transform.apply_coords(points, im_size)
- in_points = torch.as_tensor(transformed_points, device=self.predictor.device)
- in_labels = torch.ones(in_points.shape[0], dtype=torch.int, device=in_points.device)
- masks, iou_preds, _ = self.predictor.predict_torch(
- in_points[:, None, :],
- in_labels[:, None],
- multimask_output=True,
- return_logits=True,
- )
-
- # Serialize predictions and store in MaskData
- data = MaskData(
- masks=masks.flatten(0, 1),
- iou_preds=iou_preds.flatten(0, 1),
- points=torch.as_tensor(points.repeat(masks.shape[1], axis=0)),
- )
- del masks
-
- # Filter by predicted IoU
- if self.pred_iou_thresh > 0.0:
- keep_mask = data["iou_preds"] > self.pred_iou_thresh
- data.filter(keep_mask)
-
- # Calculate stability score
- data["stability_score"] = calculate_stability_score(
- data["masks"], self.predictor.model.mask_threshold, self.stability_score_offset
- )
- if self.stability_score_thresh > 0.0:
- keep_mask = data["stability_score"] >= self.stability_score_thresh
- data.filter(keep_mask)
-
- # Threshold masks and calculate boxes
- data["masks"] = data["masks"] > self.predictor.model.mask_threshold
- data["boxes"] = batched_mask_to_box(data["masks"])
-
- # Filter boxes that touch crop boundaries
- keep_mask = ~is_box_near_crop_edge(data["boxes"], crop_box, [0, 0, orig_w, orig_h])
- if not torch.all(keep_mask):
- data.filter(keep_mask)
-
- # Compress to RLE
- data["masks"] = uncrop_masks(data["masks"], crop_box, orig_h, orig_w)
- data["rles"] = mask_to_rle_pytorch(data["masks"])
- del data["masks"]
-
- return data
-
- @staticmethod
- def postprocess_small_regions(mask_data: MaskData, min_area: int, nms_thresh: float) -> MaskData:
- """
- Removes small disconnected regions and holes in masks, then reruns
- box NMS to remove any new duplicates.
-
- Edits mask_data in place.
-
- Requires open-cv as a dependency.
- """
- if len(mask_data["rles"]) == 0:
- return mask_data
-
- # Filter small disconnected regions and holes
- new_masks = []
- scores = []
- for rle in mask_data["rles"]:
- mask = rle_to_mask(rle)
-
- mask, changed = remove_small_regions(mask, min_area, mode="holes")
- unchanged = not changed
- mask, changed = remove_small_regions(mask, min_area, mode="islands")
- unchanged = unchanged and not changed
-
- new_masks.append(torch.as_tensor(mask).unsqueeze(0))
- # Give score=0 to changed masks and score=1 to unchanged masks
- # so NMS will prefer ones that didn't need postprocessing
- scores.append(float(unchanged))
-
- # Recalculate boxes and remove any new duplicates
- masks = torch.cat(new_masks, dim=0)
- boxes = batched_mask_to_box(masks)
- keep_by_nms = batched_nms(
- boxes.float(),
- torch.as_tensor(scores),
- torch.zeros(len(boxes)), # categories
- iou_threshold=nms_thresh,
- )
-
- # Only recalculate RLEs for masks that have changed
- for i_mask in keep_by_nms:
- if scores[i_mask] == 0.0:
- mask_torch = masks[i_mask].unsqueeze(0)
- mask_data["rles"][i_mask] = mask_to_rle_pytorch(mask_torch)[0]
- mask_data["boxes"][i_mask] = boxes[i_mask] # update res directly
- mask_data.filter(keep_by_nms)
-
- return mask_data
diff --git a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/build_sam.py b/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/build_sam.py
deleted file mode 100644
index fef9980..0000000
--- a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/build_sam.py
+++ /dev/null
@@ -1,113 +0,0 @@
-# Copyright (c) Meta Platforms, Inc. and affiliates.
-# All rights reserved.
-
-# This source code is licensed under the license found in the
-# LICENSE file in the root directory of this source tree.
-
-from functools import partial
-
-import torch
-
-from .modeling import (
- ImageEncoderViT,
- MaskDecoder,
- PromptEncoder,
- Sam,
- TwoWayTransformer,
-)
-
-
-def build_sam_vit_h(checkpoint=None):
- return _build_sam(
- encoder_embed_dim=1280,
- encoder_depth=32,
- encoder_num_heads=16,
- encoder_global_attn_indexes=[7, 15, 23, 31],
- checkpoint=checkpoint,
- )
-
-
-build_sam = build_sam_vit_h
-
-
-def build_sam_vit_l(checkpoint=None):
- return _build_sam(
- encoder_embed_dim=1024,
- encoder_depth=24,
- encoder_num_heads=16,
- encoder_global_attn_indexes=[5, 11, 17, 23],
- checkpoint=checkpoint,
- )
-
-
-def build_sam_vit_b(checkpoint=None):
- return _build_sam(
- encoder_embed_dim=768,
- encoder_depth=12,
- encoder_num_heads=12,
- encoder_global_attn_indexes=[2, 5, 8, 11],
- checkpoint=checkpoint,
- )
-
-
-sam_model_registry = {
- "default": build_sam,
- "vit_h": build_sam,
- "vit_l": build_sam_vit_l,
- "vit_b": build_sam_vit_b,
-}
-
-
-def _build_sam(
- encoder_embed_dim,
- encoder_depth,
- encoder_num_heads,
- encoder_global_attn_indexes,
- checkpoint=None,
-):
- prompt_embed_dim = 256
- image_size = 1024
- vit_patch_size = 16
- image_embedding_size = image_size // vit_patch_size
- sam = Sam(
- image_encoder=ImageEncoderViT(
- depth=encoder_depth,
- embed_dim=encoder_embed_dim,
- img_size=image_size,
- mlp_ratio=4,
- norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
- num_heads=encoder_num_heads,
- patch_size=vit_patch_size,
- qkv_bias=True,
- use_rel_pos=True,
- global_attn_indexes=encoder_global_attn_indexes,
- window_size=14,
- out_chans=prompt_embed_dim,
- ),
- prompt_encoder=PromptEncoder(
- embed_dim=prompt_embed_dim,
- image_embedding_size=(image_embedding_size, image_embedding_size),
- input_image_size=(image_size, image_size),
- mask_in_chans=16,
- ),
- mask_decoder=MaskDecoder(
- num_multimask_outputs=3,
- transformer=TwoWayTransformer(
- depth=2,
- embedding_dim=prompt_embed_dim,
- mlp_dim=2048,
- num_heads=8,
- ),
- transformer_dim=prompt_embed_dim,
- iou_head_depth=3,
- iou_head_hidden_dim=256,
- ),
- pixel_mean=[123.675, 116.28, 103.53],
- pixel_std=[58.395, 57.12, 57.375],
- )
- sam.eval()
- if checkpoint is not None:
- with open(checkpoint, "rb") as f:
- state_dict = torch.load(f)
- sam.load_state_dict(state_dict)
- return sam
diff --git a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/modeling/__init__.py b/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/modeling/__init__.py
deleted file mode 100644
index 088af38..0000000
--- a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/modeling/__init__.py
+++ /dev/null
@@ -1,11 +0,0 @@
-# Copyright (c) Meta Platforms, Inc. and affiliates.
-# All rights reserved.
-
-# This source code is licensed under the license found in the
-# LICENSE file in the root directory of this source tree.
-
-from .image_encoder import ImageEncoderViT
-from .mask_decoder import MaskDecoder
-from .prompt_encoder import PromptEncoder
-from .sam import Sam
-from .transformer import TwoWayTransformer
diff --git a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/modeling/common.py b/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/modeling/common.py
deleted file mode 100644
index e872781..0000000
--- a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/modeling/common.py
+++ /dev/null
@@ -1,43 +0,0 @@
-# Copyright (c) Meta Platforms, Inc. and affiliates.
-# All rights reserved.
-
-# This source code is licensed under the license found in the
-# LICENSE file in the root directory of this source tree.
-
-from typing import Type
-
-import torch
-import torch.nn as nn
-
-
-class MLPBlock(nn.Module):
- def __init__(
- self,
- embedding_dim: int,
- mlp_dim: int,
- act: Type[nn.Module] = nn.GELU,
- ) -> None:
- super().__init__()
- self.lin1 = nn.Linear(embedding_dim, mlp_dim)
- self.lin2 = nn.Linear(mlp_dim, embedding_dim)
- self.act = act()
-
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- return self.lin2(self.act(self.lin1(x)))
-
-
-# From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa
-# Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa
-class LayerNorm2d(nn.Module):
- def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
- super().__init__()
- self.weight = nn.Parameter(torch.ones(num_channels))
- self.bias = nn.Parameter(torch.zeros(num_channels))
- self.eps = eps
-
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- u = x.mean(1, keepdim=True)
- s = (x - u).pow(2).mean(1, keepdim=True)
- x = (x - u) / torch.sqrt(s + self.eps)
- x = self.weight[:, None, None] * x + self.bias[:, None, None]
- return x
diff --git a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/modeling/image_encoder.py b/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/modeling/image_encoder.py
deleted file mode 100644
index 4e4b63b..0000000
--- a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/modeling/image_encoder.py
+++ /dev/null
@@ -1,440 +0,0 @@
-# Copyright (c) Meta Platforms, Inc. and affiliates.
-# All rights reserved.
-
-# This source code is licensed under the license found in the
-# LICENSE file in the root directory of this source tree.
-
-from typing import Optional, Tuple, Type
-
-import torch
-import torch.nn as nn
-import torch.nn.functional as F
-
-from .common import LayerNorm2d, MLPBlock
-
-
-# This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py # noqa
-class ImageEncoderViT(nn.Module):
- def __init__(
- self,
- img_size: int = 1024,
- patch_size: int = 16,
- in_chans: int = 3,
- embed_dim: int = 768,
- depth: int = 12,
- num_heads: int = 12,
- mlp_ratio: float = 4.0,
- out_chans: int = 256,
- qkv_bias: bool = True,
- norm_layer: Type[nn.Module] = nn.LayerNorm,
- act_layer: Type[nn.Module] = nn.GELU,
- use_abs_pos: bool = True,
- use_rel_pos: bool = False,
- rel_pos_zero_init: bool = True,
- window_size: int = 0,
- global_attn_indexes: Tuple[int, ...] = (),
- ) -> None:
- """
- Args:
- img_size (int): Input image size.
- patch_size (int): Patch size.
- in_chans (int): Number of input image channels.
- embed_dim (int): Patch embedding dimension.
- depth (int): Depth of ViT.
- num_heads (int): Number of attention heads in each ViT block.
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
- qkv_bias (bool): If True, add a learnable bias to query, key, value.
- norm_layer (nn.Module): Normalization layer.
- act_layer (nn.Module): Activation layer.
- use_abs_pos (bool): If True, use absolute positional embeddings.
- use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
- rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
- window_size (int): Window size for window attention blocks.
- global_attn_indexes (list): Indexes for blocks using global attention.
- """
- super().__init__()
- self.img_size = img_size
-
- # if in_chans == 3:
- # self.patch_embed = PatchEmbed(
- # kernel_size=(patch_size, patch_size),
- # stride=(patch_size, patch_size),
- # in_chans=in_chans,
- # embed_dim=embed_dim,
- # )
- # else:
- # self.patch_embed = PatchEmbed2pt5D(
- # kernel_size=(patch_size, patch_size, in_chans//3),
- # stride=(patch_size, patch_size, in_chans//3),
- # in_chans=3,
- # embed_dim=embed_dim,
- # )
- self.patch_embed = PatchEmbed(
- kernel_size=(patch_size, patch_size),
- stride=(patch_size, patch_size),
- in_chans=in_chans,
- embed_dim=embed_dim,
- )
-
- self.pos_embed: Optional[nn.Parameter] = None
- if use_abs_pos:
- # Initialize absolute positional embedding with pretrain image size.
- self.pos_embed = nn.Parameter(torch.zeros(1, img_size // patch_size, img_size // patch_size, embed_dim))
-
- self.blocks = nn.ModuleList()
- for i in range(depth):
- block = Block(
- dim=embed_dim,
- num_heads=num_heads,
- mlp_ratio=mlp_ratio,
- qkv_bias=qkv_bias,
- norm_layer=norm_layer,
- act_layer=act_layer,
- use_rel_pos=use_rel_pos,
- rel_pos_zero_init=rel_pos_zero_init,
- window_size=window_size if i not in global_attn_indexes else 0,
- input_size=(img_size // patch_size, img_size // patch_size),
- )
- self.blocks.append(block)
-
- self.neck = nn.Sequential(
- nn.Conv2d(
- embed_dim,
- out_chans,
- kernel_size=1,
- bias=False,
- ),
- LayerNorm2d(out_chans),
- nn.Conv2d(
- out_chans,
- out_chans,
- kernel_size=3,
- padding=1,
- bias=False,
- ),
- LayerNorm2d(out_chans),
- )
-
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- x = self.patch_embed(x)
- if self.pos_embed is not None:
- x = x + self.pos_embed
-
- for blk in self.blocks:
- x = blk(x)
-
- x = self.neck(x.permute(0, 3, 1, 2))
-
- return x
-
-
-class Block(nn.Module):
- """Transformer blocks with support of window attention and residual propagation blocks"""
-
- def __init__(
- self,
- dim: int,
- num_heads: int,
- mlp_ratio: float = 4.0,
- qkv_bias: bool = True,
- norm_layer: Type[nn.Module] = nn.LayerNorm,
- act_layer: Type[nn.Module] = nn.GELU,
- use_rel_pos: bool = False,
- rel_pos_zero_init: bool = True,
- window_size: int = 0,
- input_size: Optional[Tuple[int, int]] = None,
- ) -> None:
- """
- Args:
- dim (int): Number of input channels.
- num_heads (int): Number of attention heads in each ViT block.
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
- qkv_bias (bool): If True, add a learnable bias to query, key, value.
- norm_layer (nn.Module): Normalization layer.
- act_layer (nn.Module): Activation layer.
- use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
- rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
- window_size (int): Window size for window attention blocks. If it equals 0, then
- use global attention.
- input_size (int or None): Input resolution for calculating the relative positional
- parameter size.
- """
- super().__init__()
- self.norm1 = norm_layer(dim)
- self.attn = Attention(
- dim,
- num_heads=num_heads,
- qkv_bias=qkv_bias,
- use_rel_pos=use_rel_pos,
- rel_pos_zero_init=rel_pos_zero_init,
- input_size=input_size if window_size == 0 else (window_size, window_size),
- )
-
- self.norm2 = norm_layer(dim)
- self.mlp = MLPBlock(embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer)
-
- self.window_size = window_size
-
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- shortcut = x
- x = self.norm1(x)
- # Window partition
- if self.window_size > 0:
- H, W = x.shape[1], x.shape[2]
- x, pad_hw = window_partition(x, self.window_size)
-
- x = self.attn(x)
- # Reverse window partition
- if self.window_size > 0:
- x = window_unpartition(x, self.window_size, pad_hw, (H, W))
-
- x = shortcut + x
- x = x + self.mlp(self.norm2(x))
-
- return x
-
-
-class Attention(nn.Module):
- """Multi-head Attention block with relative position embeddings."""
-
- def __init__(
- self,
- dim: int,
- num_heads: int = 8,
- qkv_bias: bool = True,
- use_rel_pos: bool = False,
- rel_pos_zero_init: bool = True,
- input_size: Optional[Tuple[int, int]] = None,
- ) -> None:
- """
- Args:
- dim (int): Number of input channels.
- num_heads (int): Number of attention heads.
- qkv_bias (bool: If True, add a learnable bias to query, key, value.
- rel_pos (bool): If True, add relative positional embeddings to the attention map.
- rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
- input_size (int or None): Input resolution for calculating the relative positional
- parameter size.
- """
- super().__init__()
- self.num_heads = num_heads
- head_dim = dim // num_heads
- self.scale = head_dim**-0.5
-
- self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
- self.proj = nn.Linear(dim, dim)
-
- self.use_rel_pos = use_rel_pos
- if self.use_rel_pos:
- assert input_size is not None, "Input size must be provided if using relative positional encoding."
- # initialize relative positional embeddings
- self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
- self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
-
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- B, H, W, _ = x.shape
- # qkv with shape (3, B, nHead, H * W, C)
- qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
- # q, k, v with shape (B * nHead, H * W, C)
- q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)
-
- attn = (q * self.scale) @ k.transpose(-2, -1)
-
- if self.use_rel_pos:
- attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W))
-
- attn = attn.softmax(dim=-1)
- x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1)
- x = self.proj(x)
-
- return x
-
-
-def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]:
- """
- Partition into non-overlapping windows with padding if needed.
- Args:
- x (tensor): input tokens with [B, H, W, C].
- window_size (int): window size.
-
- Returns:
- windows: windows after partition with [B * num_windows, window_size, window_size, C].
- (Hp, Wp): padded height and width before partition
- """
- B, H, W, C = x.shape
-
- pad_h = (window_size - H % window_size) % window_size
- pad_w = (window_size - W % window_size) % window_size
- if pad_h > 0 or pad_w > 0:
- x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
- Hp, Wp = H + pad_h, W + pad_w
-
- x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
- windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
- return windows, (Hp, Wp)
-
-
-def window_unpartition(
- windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int], hw: Tuple[int, int]
-) -> torch.Tensor:
- """
- Window unpartition into original sequences and removing padding.
- Args:
- x (tensor): input tokens with [B * num_windows, window_size, window_size, C].
- window_size (int): window size.
- pad_hw (Tuple): padded height and width (Hp, Wp).
- hw (Tuple): original height and width (H, W) before padding.
-
- Returns:
- x: unpartitioned sequences with [B, H, W, C].
- """
- Hp, Wp = pad_hw
- H, W = hw
- B = windows.shape[0] // (Hp * Wp // window_size // window_size)
- x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
- x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
-
- if Hp > H or Wp > W:
- x = x[:, :H, :W, :].contiguous()
- return x
-
-
-def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
- """
- Get relative positional embeddings according to the relative positions of
- query and key sizes.
- Args:
- q_size (int): size of query q.
- k_size (int): size of key k.
- rel_pos (Tensor): relative position embeddings (L, C).
-
- Returns:
- Extracted positional embeddings according to relative positions.
- """
- max_rel_dist = int(2 * max(q_size, k_size) - 1)
- # Interpolate rel pos if needed.
- if rel_pos.shape[0] != max_rel_dist:
- # Interpolate rel pos.
- rel_pos_resized = F.interpolate(
- rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
- size=max_rel_dist,
- mode="linear",
- )
- rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
- else:
- rel_pos_resized = rel_pos
-
- # Scale the coords with short length if shapes for q and k are different.
- q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
- k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
- relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
-
- return rel_pos_resized[relative_coords.long()]
-
-
-def add_decomposed_rel_pos(
- attn: torch.Tensor,
- q: torch.Tensor,
- rel_pos_h: torch.Tensor,
- rel_pos_w: torch.Tensor,
- q_size: Tuple[int, int],
- k_size: Tuple[int, int],
-) -> torch.Tensor:
- """
- Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
- https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950
- Args:
- attn (Tensor): attention map.
- q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).
- rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis.
- rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis.
- q_size (Tuple): spatial sequence size of query q with (q_h, q_w).
- k_size (Tuple): spatial sequence size of key k with (k_h, k_w).
-
- Returns:
- attn (Tensor): attention map with added relative positional embeddings.
- """
- q_h, q_w = q_size
- k_h, k_w = k_size
- Rh = get_rel_pos(q_h, k_h, rel_pos_h)
- Rw = get_rel_pos(q_w, k_w, rel_pos_w)
-
- B, _, dim = q.shape
- r_q = q.reshape(B, q_h, q_w, dim)
- rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
- rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)
-
- attn = (attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]).view(
- B, q_h * q_w, k_h * k_w
- )
-
- return attn
-
-
-class PatchEmbed(nn.Module):
- """
- Image to Patch Embedding.
- """
-
- def __init__(
- self,
- kernel_size: Tuple[int, int] = (16, 16),
- stride: Tuple[int, int] = (16, 16),
- padding: Tuple[int, int] = (0, 0),
- in_chans: int = 3,
- embed_dim: int = 768,
- ) -> None:
- """
- Args:
- kernel_size (Tuple): kernel size of the projection layer.
- stride (Tuple): stride of the projection layer.
- padding (Tuple): padding size of the projection layer.
- in_chans (int): Number of input image channels.
- embed_dim (int): embed_dim (int): Patch embedding dimension.
- """
- super().__init__()
-
- self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding)
-
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- x = self.proj(x)
- # B C H W -> B H W C
- x = x.permute(0, 2, 3, 1)
- return x
-
-
-class PatchEmbed2pt5D(nn.Module):
- """
- Image to Patch Embedding.
- """
-
- def __init__(
- self,
- kernel_size: Tuple[int, int, int] = (16, 16, 1),
- stride: Tuple[int, int, int] = (16, 16, 1),
- padding: Tuple[int, int, int] = (0, 0, 0),
- in_chans: int = 3,
- embed_dim: int = 768,
- ) -> None:
- """
- Args:
- kernel_size (Tuple): kernel size of the projection layer.
- stride (Tuple): stride of the projection layer.
- padding (Tuple): padding size of the projection layer.
- in_chans (int): Number of input image channels.
- embed_dim (int): embed_dim (int): Patch embedding dimension.
- """
- super().__init__()
-
- self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding)
-
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- # got restore RGB channel dim and the depth dim
- c = x.shape[1]
- x = torch.stack(x.chunk(c // 3, dim=1), dim=-1)
- x = self.proj(x)
- # remove dummy depth dim to make it 2d
- x = x.squeeze(-1)
- # B C H W -> B H W C
- x = x.permute(0, 2, 3, 1)
- return x
diff --git a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/modeling/mask_decoder.py b/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/modeling/mask_decoder.py
deleted file mode 100644
index dfacfe5..0000000
--- a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/modeling/mask_decoder.py
+++ /dev/null
@@ -1,170 +0,0 @@
-# Copyright (c) Meta Platforms, Inc. and affiliates.
-# All rights reserved.
-
-# This source code is licensed under the license found in the
-# LICENSE file in the root directory of this source tree.
-
-from typing import List, Tuple, Type
-
-import torch
-from torch import nn
-from torch.nn import functional as F
-
-from .common import LayerNorm2d
-
-
-class MaskDecoder(nn.Module):
- def __init__(
- self,
- *,
- transformer_dim: int,
- transformer: nn.Module,
- num_multimask_outputs: int = 3,
- activation: Type[nn.Module] = nn.GELU,
- iou_head_depth: int = 3,
- iou_head_hidden_dim: int = 256,
- ) -> None:
- """
- Predicts masks given an image and prompt embeddings, using a
- tranformer architecture.
-
- Arguments:
- transformer_dim (int): the channel dimension of the transformer
- transformer (nn.Module): the transformer used to predict masks
- num_multimask_outputs (int): the number of masks to predict
- when disambiguating masks
- activation (nn.Module): the type of activation to use when
- upscaling masks
- iou_head_depth (int): the depth of the MLP used to predict
- mask quality
- iou_head_hidden_dim (int): the hidden dimension of the MLP
- used to predict mask quality
- """
- super().__init__()
- self.transformer_dim = transformer_dim
- self.transformer = transformer
-
- self.num_multimask_outputs = num_multimask_outputs
-
- self.iou_token = nn.Embedding(1, transformer_dim)
- self.num_mask_tokens = num_multimask_outputs + 1
- self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
-
- self.output_upscaling = nn.Sequential(
- nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
- LayerNorm2d(transformer_dim // 4),
- activation(),
- nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
- activation(),
- )
- self.output_hypernetworks_mlps = nn.ModuleList(
- [MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) for i in range(self.num_mask_tokens)]
- )
-
- self.iou_prediction_head = MLP(transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth)
-
- def forward(
- self,
- image_embeddings: torch.Tensor,
- image_pe: torch.Tensor,
- sparse_prompt_embeddings: torch.Tensor,
- dense_prompt_embeddings: torch.Tensor,
- multimask_output: bool,
- ) -> Tuple[torch.Tensor, torch.Tensor]:
- """
- Predict masks given image and prompt embeddings.
-
- Arguments:
- image_embeddings (torch.Tensor): the embeddings from the image encoder
- image_pe (torch.Tensor): positional encoding with the shape of image_embeddings
- sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes
- dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs
- multimask_output (bool): Whether to return multiple masks or a single
- mask.
-
- Returns:
- torch.Tensor: batched predicted masks
- torch.Tensor: batched predictions of mask quality
- """
- masks, iou_pred = self.predict_masks(
- image_embeddings=image_embeddings,
- image_pe=image_pe,
- sparse_prompt_embeddings=sparse_prompt_embeddings,
- dense_prompt_embeddings=dense_prompt_embeddings,
- )
-
- # Select the correct mask or masks for output
- if multimask_output:
- mask_slice = slice(1, None)
- else:
- mask_slice = slice(0, 1)
- masks = masks[:, mask_slice, :, :]
- iou_pred = iou_pred[:, mask_slice]
-
- # Prepare output
- return masks, iou_pred
-
- def predict_masks(
- self,
- image_embeddings: torch.Tensor,
- image_pe: torch.Tensor,
- sparse_prompt_embeddings: torch.Tensor,
- dense_prompt_embeddings: torch.Tensor,
- ) -> Tuple[torch.Tensor, torch.Tensor]:
- """Predicts masks. See 'forward' for more details."""
- # Concatenate output tokens
- output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
- output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1)
- tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
-
- # Expand per-image data in batch direction to be per-mask
- src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
- src = src + dense_prompt_embeddings
- pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
- b, c, h, w = src.shape
-
- # Run the transformer
- hs, src = self.transformer(src, pos_src, tokens)
- iou_token_out = hs[:, 0, :]
- mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :]
-
- # Upscale mask embeddings and predict masks using the mask tokens
- src = src.transpose(1, 2).view(b, c, h, w)
- upscaled_embedding = self.output_upscaling(src)
- hyper_in_list: List[torch.Tensor] = []
- for i in range(self.num_mask_tokens):
- hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]))
- hyper_in = torch.stack(hyper_in_list, dim=1)
- b, c, h, w = upscaled_embedding.shape
-
- masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)
-
- # Generate mask quality predictions
- iou_pred = self.iou_prediction_head(iou_token_out)
-
- return masks, iou_pred
-
-
-# Lightly adapted from
-# https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa
-class MLP(nn.Module):
- def __init__(
- self,
- input_dim: int,
- hidden_dim: int,
- output_dim: int,
- num_layers: int,
- sigmoid_output: bool = False,
- ) -> None:
- super().__init__()
- self.num_layers = num_layers
- h = [hidden_dim] * (num_layers - 1)
- self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
- self.sigmoid_output = sigmoid_output
-
- def forward(self, x):
- for i, layer in enumerate(self.layers):
- x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
- if self.sigmoid_output:
- x = F.sigmoid(x)
- return x
diff --git a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/modeling/prompt_encoder.py b/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/modeling/prompt_encoder.py
deleted file mode 100644
index 7a7da9a..0000000
--- a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/modeling/prompt_encoder.py
+++ /dev/null
@@ -1,239 +0,0 @@
-# Copyright (c) Meta Platforms, Inc. and affiliates.
-# All rights reserved.
-
-# This source code is licensed under the license found in the
-# LICENSE file in the root directory of this source tree.
-
-from typing import Any, Optional, Tuple, Type
-
-import numpy as np
-import torch
-from torch import nn
-
-from .common import LayerNorm2d
-
-
-class PromptEncoder(nn.Module):
- def __init__(
- self,
- embed_dim: int,
- image_embedding_size: Tuple[int, int],
- input_image_size: Tuple[int, int],
- mask_in_chans: int,
- activation: Type[nn.Module] = nn.GELU,
- n_classes: int = 512,
- ) -> None:
- """
- Encodes prompts for input to SAM's mask decoder.
-
- Arguments:
- embed_dim (int): The prompts' embedding dimension
- image_embedding_size (tuple(int, int)): The spatial size of the
- image embedding, as (H, W).
- input_image_size (int): The padded size of the image as input
- to the image encoder, as (H, W).
- mask_in_chans (int): The number of hidden channels used for
- encoding input masks.
- activation (nn.Module): The activation to use when encoding
- input masks.
- n_classes (int): The number of pre-defined classes.
- """
- super().__init__()
- self.embed_dim = embed_dim
- self.input_image_size = input_image_size
- self.image_embedding_size = image_embedding_size
- self.pe_layer = PositionEmbeddingRandom(embed_dim // 2)
-
- self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners
- point_embeddings = [nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings)]
- self.point_embeddings = nn.ModuleList(point_embeddings)
- self.not_a_point_embed = nn.Embedding(1, embed_dim)
-
- self.mask_input_size = (4 * image_embedding_size[0], 4 * image_embedding_size[1])
- self.mask_downscaling = nn.Sequential(
- nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2),
- LayerNorm2d(mask_in_chans // 4),
- activation(),
- nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2),
- LayerNorm2d(mask_in_chans),
- activation(),
- nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1),
- )
- self.no_mask_embed = nn.Embedding(1, embed_dim)
-
- # Add support for onehot vector embedding for pre-defined classes
- self.label_embeddings = nn.Embedding(n_classes, embed_dim)
- self.no_label_embed = nn.Embedding(1, embed_dim)
-
- def get_dense_pe(self) -> torch.Tensor:
- """
- Returns the positional encoding used to encode point prompts,
- applied to a dense set of points the shape of the image encoding.
-
- Returns:
- torch.Tensor: Positional encoding with shape
- 1x(embed_dim)x(embedding_h)x(embedding_w)
- """
- return self.pe_layer(self.image_embedding_size).unsqueeze(0)
-
- def _embed_points(
- self,
- points: torch.Tensor,
- labels: torch.Tensor,
- pad: bool,
- ) -> torch.Tensor:
- """Embeds point prompts."""
- points = points + 0.5 # Shift to center of pixel
- if pad:
- padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device)
- padding_label = -torch.ones((labels.shape[0], 1), device=labels.device)
- points = torch.cat([points, padding_point], dim=1)
- labels = torch.cat([labels, padding_label], dim=1)
- point_embedding = self.pe_layer.forward_with_coords(points, self.input_image_size)
- point_embedding[labels == -1] = 0.0
- point_embedding[labels == -1] += self.not_a_point_embed.weight
- point_embedding[labels == 0] += self.point_embeddings[0].weight
- point_embedding[labels == 1] += self.point_embeddings[1].weight
- return point_embedding
-
- def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor:
- """Embeds box prompts."""
- boxes = boxes + 0.5 # Shift to center of pixel
- coords = boxes.reshape(-1, 2, 2)
- corner_embedding = self.pe_layer.forward_with_coords(coords, self.input_image_size)
- corner_embedding[:, 0, :] += self.point_embeddings[2].weight
- corner_embedding[:, 1, :] += self.point_embeddings[3].weight
- return corner_embedding
-
- def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor:
- """Embeds mask inputs."""
- mask_embedding = self.mask_downscaling(masks)
- return mask_embedding
-
- def _embed_labels(self, labels: torch.Tensor) -> torch.Tensor:
- """Embeds onehot vector inputs."""
- # Add support for onehot vector embedding for pre-defined classes
- label_embedding = self.label_embeddings(labels)
- return label_embedding
-
- def _get_batch_size(
- self,
- points: Optional[Tuple[torch.Tensor, torch.Tensor]],
- boxes: Optional[torch.Tensor],
- masks: Optional[torch.Tensor],
- labels: Optional[torch.Tensor],
- ) -> int:
- """
- Gets the batch size of the output given the batch size of the input prompts.
- """
- if points is not None:
- return points[0].shape[0]
- elif boxes is not None:
- return boxes.shape[0]
- elif masks is not None:
- return masks.shape[0]
- elif labels is not None:
- return labels.shape[0]
- else:
- return 1
-
- def _get_device(self) -> torch.device:
- return self.point_embeddings[0].weight.device
-
- def forward(
- self,
- points: Optional[Tuple[torch.Tensor, torch.Tensor]],
- boxes: Optional[torch.Tensor],
- masks: Optional[torch.Tensor],
- class_labels: Optional[torch.Tensor],
- ) -> Tuple[torch.Tensor, torch.Tensor]:
- """
- Embeds different types of prompts, returning both sparse and dense
- embeddings.
-
- Arguments:
- points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates
- and labels to embed.
- boxes (torch.Tensor or none): boxes to embed
- masks (torch.Tensor or none): masks to embed
-
- Returns:
- torch.Tensor: sparse embeddings for the points and boxes, with shape
- BxNx(embed_dim), where N is determined by the number of input points
- and boxes.
- torch.Tensor: dense embeddings for the masks, in the shape
- Bx(embed_dim)x(embed_H)x(embed_W)
- """
- bs = self._get_batch_size(points, boxes, masks, class_labels)
-
- # Add support for onehot vector embedding for pre-defined classes
- if class_labels is not None:
- label_embeddings = self._embed_labels(class_labels)
- else:
- label_embeddings = self.no_label_embed.weight.reshape(1, 1, -1).expand(bs, -1, -1)
-
- sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self._get_device())
-
- # Add support for onehot vector embedding for pre-defined classes
- sparse_embeddings = torch.cat([sparse_embeddings, label_embeddings], dim=1)
-
- if points is not None:
- coords, labels = points
- point_embeddings = self._embed_points(coords, labels, pad=(boxes is None))
- sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1)
- if boxes is not None:
- box_embeddings = self._embed_boxes(boxes)
- sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1)
-
- if masks is not None:
- dense_embeddings = self._embed_masks(masks)
- else:
- dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(
- bs, -1, self.image_embedding_size[0], self.image_embedding_size[1]
- )
-
- return sparse_embeddings, dense_embeddings
-
-
-class PositionEmbeddingRandom(nn.Module):
- """
- Positional encoding using random spatial frequencies.
- """
-
- def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None:
- super().__init__()
- if scale is None or scale <= 0.0:
- scale = 1.0
- self.register_buffer(
- "positional_encoding_gaussian_matrix",
- scale * torch.randn((2, num_pos_feats)),
- )
-
- def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
- """Positionally encode points that are normalized to [0,1]."""
- # assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
- coords = 2 * coords - 1
- coords = coords @ self.positional_encoding_gaussian_matrix
- coords = 2 * np.pi * coords
- # outputs d_1 x ... x d_n x C shape
- return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1)
-
- def forward(self, size: Tuple[int, int]) -> torch.Tensor:
- """Generate positional encoding for a grid of the specified size."""
- h, w = size
- device: Any = self.positional_encoding_gaussian_matrix.device
- grid = torch.ones((h, w), device=device, dtype=torch.float32)
- y_embed = grid.cumsum(dim=0) - 0.5
- x_embed = grid.cumsum(dim=1) - 0.5
- y_embed = y_embed / h
- x_embed = x_embed / w
-
- pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1))
- return pe.permute(2, 0, 1) # C x H x W
-
- def forward_with_coords(self, coords_input: torch.Tensor, image_size: Tuple[int, int]) -> torch.Tensor:
- """Positionally encode points that are not normalized to [0,1]."""
- coords = coords_input.clone()
- coords[:, :, 0] = coords[:, :, 0] / image_size[1]
- coords[:, :, 1] = coords[:, :, 1] / image_size[0]
- return self._pe_encoding(coords.to(torch.float)) # B x N x C
diff --git a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/modeling/sam.py b/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/modeling/sam.py
deleted file mode 100644
index c1ce4ec..0000000
--- a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/modeling/sam.py
+++ /dev/null
@@ -1,174 +0,0 @@
-# Copyright (c) Meta Platforms, Inc. and affiliates.
-# All rights reserved.
-
-# This source code is licensed under the license found in the
-# LICENSE file in the root directory of this source tree.
-
-from typing import Any, Dict, List, Tuple
-
-import torch
-from torch import nn
-from torch.nn import functional as F
-
-from .image_encoder import ImageEncoderViT
-from .mask_decoder import MaskDecoder
-from .prompt_encoder import PromptEncoder
-
-
-class Sam(nn.Module):
- mask_threshold: float = 0.0
- image_format: str = "RGB"
-
- def __init__(
- self,
- image_encoder: ImageEncoderViT,
- prompt_encoder: PromptEncoder,
- mask_decoder: MaskDecoder,
- pixel_mean: List[float] = [123.675, 116.28, 103.53],
- pixel_std: List[float] = [58.395, 57.12, 57.375],
- ) -> None:
- """
- SAM predicts object masks from an image and input prompts.
-
- Arguments:
- image_encoder (ImageEncoderViT): The backbone used to encode the
- image into image embeddings that allow for efficient mask prediction.
- prompt_encoder (PromptEncoder): Encodes various types of input prompts.
- mask_decoder (MaskDecoder): Predicts masks from the image embeddings
- and encoded prompts.
- pixel_mean (list(float)): Mean values for normalizing pixels in the input image.
- pixel_std (list(float)): Std values for normalizing pixels in the input image.
- """
- super().__init__()
- self.image_encoder = image_encoder
- self.prompt_encoder = prompt_encoder
- self.mask_decoder = mask_decoder
- self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False)
- self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False)
-
- @property
- def device(self) -> Any:
- return self.pixel_mean.device
-
- @torch.no_grad()
- def forward(
- self,
- batched_input: List[Dict[str, Any]],
- multimask_output: bool,
- ) -> List[Dict[str, torch.Tensor]]:
- """
- Predicts masks end-to-end from provided images and prompts.
- If prompts are not known in advance, using SamPredictor is
- recommended over calling the model directly.
-
- Arguments:
- batched_input (list(dict)): A list over input images, each a
- dictionary with the following keys. A prompt key can be
- excluded if it is not present.
- 'image': The image as a torch tensor in 3xHxW format,
- already transformed for input to the model.
- 'original_size': (tuple(int, int)) The original size of
- the image before transformation, as (H, W).
- 'point_coords': (torch.Tensor) Batched point prompts for
- this image, with shape BxNx2. Already transformed to the
- input frame of the model.
- 'point_labels': (torch.Tensor) Batched labels for point prompts,
- with shape BxN.
- 'boxes': (torch.Tensor) Batched box inputs, with shape Bx4.
- Already transformed to the input frame of the model.
- 'mask_inputs': (torch.Tensor) Batched mask inputs to the model,
- in the form Bx1xHxW.
- multimask_output (bool): Whether the model should predict multiple
- disambiguating masks, or return a single mask.
-
- Returns:
- (list(dict)): A list over input images, where each element is
- as dictionary with the following keys.
- 'masks': (torch.Tensor) Batched binary mask predictions,
- with shape BxCxHxW, where B is the number of input promts,
- C is determiend by multimask_output, and (H, W) is the
- original size of the image.
- 'iou_predictions': (torch.Tensor) The model's predictions
- of mask quality, in shape BxC.
- 'low_res_logits': (torch.Tensor) Low resolution logits with
- shape BxCxHxW, where H=W=256. Can be passed as mask input
- to subsequent iterations of prediction.
- """
- input_images = torch.stack([self.preprocess(x["image"]) for x in batched_input], dim=0)
- image_embeddings = self.image_encoder(input_images)
-
- outputs = []
- for image_record, curr_embedding in zip(batched_input, image_embeddings):
- if "point_coords" in image_record:
- points = (image_record["point_coords"], image_record["point_labels"])
- else:
- points = None
- sparse_embeddings, dense_embeddings = self.prompt_encoder(
- points=points,
- boxes=image_record.get("boxes", None),
- masks=image_record.get("mask_inputs", None),
- )
- low_res_masks, iou_predictions = self.mask_decoder(
- image_embeddings=curr_embedding.unsqueeze(0),
- image_pe=self.prompt_encoder.get_dense_pe(),
- sparse_prompt_embeddings=sparse_embeddings,
- dense_prompt_embeddings=dense_embeddings,
- multimask_output=multimask_output,
- )
- masks = self.postprocess_masks(
- low_res_masks,
- input_size=image_record["image"].shape[-2:],
- original_size=image_record["original_size"],
- )
- masks = masks > self.mask_threshold
- outputs.append(
- {
- "masks": masks,
- "iou_predictions": iou_predictions,
- "low_res_logits": low_res_masks,
- }
- )
- return outputs
-
- def postprocess_masks(
- self,
- masks: torch.Tensor,
- input_size: Tuple[int, ...],
- original_size: Tuple[int, ...],
- ) -> torch.Tensor:
- """
- Remove padding and upscale masks to the original image size.
-
- Arguments:
- masks (torch.Tensor): Batched masks from the mask_decoder,
- in BxCxHxW format.
- input_size (tuple(int, int)): The size of the image input to the
- model, in (H, W) format. Used to remove padding.
- original_size (tuple(int, int)): The original size of the image
- before resizing for input to the model, in (H, W) format.
-
- Returns:
- (torch.Tensor): Batched masks in BxCxHxW format, where (H, W)
- is given by original_size.
- """
- masks = F.interpolate(
- masks,
- (self.image_encoder.img_size, self.image_encoder.img_size),
- mode="bilinear",
- align_corners=False,
- )
- masks = masks[..., : input_size[0], : input_size[1]]
- masks = F.interpolate(masks, original_size, mode="bilinear", align_corners=False)
- return masks
-
- def preprocess(self, x: torch.Tensor) -> torch.Tensor:
- """Normalize pixel values and pad to a square input."""
- # Normalize colors
- x = (x - self.pixel_mean) / self.pixel_std
-
- # Pad
- h, w = x.shape[-2:]
- padh = self.image_encoder.img_size - h
- padw = self.image_encoder.img_size - w
- x = F.pad(x, (0, padw, 0, padh))
- return x
diff --git a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/modeling/transformer.py b/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/modeling/transformer.py
deleted file mode 100644
index 5bdd753..0000000
--- a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/modeling/transformer.py
+++ /dev/null
@@ -1,232 +0,0 @@
-# Copyright (c) Meta Platforms, Inc. and affiliates.
-# All rights reserved.
-
-# This source code is licensed under the license found in the
-# LICENSE file in the root directory of this source tree.
-
-import math
-from typing import Tuple, Type
-
-import torch
-from torch import Tensor, nn
-
-from .common import MLPBlock
-
-
-class TwoWayTransformer(nn.Module):
- def __init__(
- self,
- depth: int,
- embedding_dim: int,
- num_heads: int,
- mlp_dim: int,
- activation: Type[nn.Module] = nn.ReLU,
- attention_downsample_rate: int = 2,
- ) -> None:
- """
- A transformer decoder that attends to an input image using
- queries whose positional embedding is supplied.
-
- Args:
- depth (int): number of layers in the transformer
- embedding_dim (int): the channel dimension for the input embeddings
- num_heads (int): the number of heads for multihead attention. Must
- divide embedding_dim
- mlp_dim (int): the channel dimension internal to the MLP block
- activation (nn.Module): the activation to use in the MLP block
- """
- super().__init__()
- self.depth = depth
- self.embedding_dim = embedding_dim
- self.num_heads = num_heads
- self.mlp_dim = mlp_dim
- self.layers = nn.ModuleList()
-
- for i in range(depth):
- self.layers.append(
- TwoWayAttentionBlock(
- embedding_dim=embedding_dim,
- num_heads=num_heads,
- mlp_dim=mlp_dim,
- activation=activation,
- attention_downsample_rate=attention_downsample_rate,
- skip_first_layer_pe=(i == 0),
- )
- )
-
- self.final_attn_token_to_image = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate)
- self.norm_final_attn = nn.LayerNorm(embedding_dim)
-
- def forward(
- self,
- image_embedding: Tensor,
- image_pe: Tensor,
- point_embedding: Tensor,
- ) -> Tuple[Tensor, Tensor]:
- """
- Args:
- image_embedding (torch.Tensor): image to attend to. Should be shape
- B x embedding_dim x h x w for any h and w.
- image_pe (torch.Tensor): the positional encoding to add to the image. Must
- have the same shape as image_embedding.
- point_embedding (torch.Tensor): the embedding to add to the query points.
- Must have shape B x N_points x embedding_dim for any N_points.
-
- Returns:
- torch.Tensor: the processed point_embedding
- torch.Tensor: the processed image_embedding
- """
- # BxCxHxW -> BxHWxC == B x N_image_tokens x C
- bs, c, h, w = image_embedding.shape
- image_embedding = image_embedding.flatten(2).permute(0, 2, 1)
- image_pe = image_pe.flatten(2).permute(0, 2, 1)
-
- # Prepare queries
- queries = point_embedding
- keys = image_embedding
-
- # Apply transformer blocks and final layernorm
- for layer in self.layers:
- queries, keys = layer(
- queries=queries,
- keys=keys,
- query_pe=point_embedding,
- key_pe=image_pe,
- )
-
- # Apply the final attenion layer from the points to the image
- q = queries + point_embedding
- k = keys + image_pe
- attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys)
- queries = queries + attn_out
- queries = self.norm_final_attn(queries)
-
- return queries, keys
-
-
-class TwoWayAttentionBlock(nn.Module):
- def __init__(
- self,
- embedding_dim: int,
- num_heads: int,
- mlp_dim: int = 2048,
- activation: Type[nn.Module] = nn.ReLU,
- attention_downsample_rate: int = 2,
- skip_first_layer_pe: bool = False,
- ) -> None:
- """
- A transformer block with four layers: (1) self-attention of sparse
- inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp
- block on sparse inputs, and (4) cross attention of dense inputs to sparse
- inputs.
-
- Arguments:
- embedding_dim (int): the channel dimension of the embeddings
- num_heads (int): the number of heads in the attention layers
- mlp_dim (int): the hidden dimension of the mlp block
- activation (nn.Module): the activation of the mlp block
- skip_first_layer_pe (bool): skip the PE on the first layer
- """
- super().__init__()
- self.self_attn = Attention(embedding_dim, num_heads)
- self.norm1 = nn.LayerNorm(embedding_dim)
-
- self.cross_attn_token_to_image = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate)
- self.norm2 = nn.LayerNorm(embedding_dim)
-
- self.mlp = MLPBlock(embedding_dim, mlp_dim, activation)
- self.norm3 = nn.LayerNorm(embedding_dim)
-
- self.norm4 = nn.LayerNorm(embedding_dim)
- self.cross_attn_image_to_token = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate)
-
- self.skip_first_layer_pe = skip_first_layer_pe
-
- def forward(self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor) -> Tuple[Tensor, Tensor]:
- # Self attention block
- if self.skip_first_layer_pe:
- queries = self.self_attn(q=queries, k=queries, v=queries)
- else:
- q = queries + query_pe
- attn_out = self.self_attn(q=q, k=q, v=queries)
- queries = queries + attn_out
- queries = self.norm1(queries)
-
- # Cross attention block, tokens attending to image embedding
- q = queries + query_pe
- k = keys + key_pe
- attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys)
- queries = queries + attn_out
- queries = self.norm2(queries)
-
- # MLP block
- mlp_out = self.mlp(queries)
- queries = queries + mlp_out
- queries = self.norm3(queries)
-
- # Cross attention block, image embedding attending to tokens
- q = queries + query_pe
- k = keys + key_pe
- attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries)
- keys = keys + attn_out
- keys = self.norm4(keys)
-
- return queries, keys
-
-
-class Attention(nn.Module):
- """
- An attention layer that allows for downscaling the size of the embedding
- after projection to queries, keys, and values.
- """
-
- def __init__(
- self,
- embedding_dim: int,
- num_heads: int,
- downsample_rate: int = 1,
- ) -> None:
- super().__init__()
- self.embedding_dim = embedding_dim
- self.internal_dim = embedding_dim // downsample_rate
- self.num_heads = num_heads
- assert self.internal_dim % num_heads == 0, "num_heads must divide embedding_dim."
-
- self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
- self.k_proj = nn.Linear(embedding_dim, self.internal_dim)
- self.v_proj = nn.Linear(embedding_dim, self.internal_dim)
- self.out_proj = nn.Linear(self.internal_dim, embedding_dim)
-
- def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor:
- b, n, c = x.shape
- x = x.reshape(b, n, num_heads, c // num_heads)
- return x.transpose(1, 2) # B x N_heads x N_tokens x C_per_head
-
- def _recombine_heads(self, x: Tensor) -> Tensor:
- b, n_heads, n_tokens, c_per_head = x.shape
- x = x.transpose(1, 2)
- return x.reshape(b, n_tokens, n_heads * c_per_head) # B x N_tokens x C
-
- def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
- # Input projections
- q = self.q_proj(q)
- k = self.k_proj(k)
- v = self.v_proj(v)
-
- # Separate into heads
- q = self._separate_heads(q, self.num_heads)
- k = self._separate_heads(k, self.num_heads)
- v = self._separate_heads(v, self.num_heads)
-
- # Attention
- _, _, _, c_per_head = q.shape
- attn = q @ k.permute(0, 1, 3, 2) # B x N_heads x N_tokens x N_tokens
- attn = attn / math.sqrt(c_per_head)
- attn = torch.softmax(attn, dim=-1)
-
- # Get output
- out = attn @ v
- out = self._recombine_heads(out)
- out = self.out_proj(out)
-
- return out
diff --git a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/predictor.py b/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/predictor.py
deleted file mode 100644
index d80ca28..0000000
--- a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/predictor.py
+++ /dev/null
@@ -1,264 +0,0 @@
-# Copyright (c) Meta Platforms, Inc. and affiliates.
-# All rights reserved.
-
-# This source code is licensed under the license found in the
-# LICENSE file in the root directory of this source tree.
-
-from typing import Optional, Tuple
-
-import numpy as np
-import torch
-
-from .modeling import Sam
-from .utils.transforms import ResizeLongestSide
-
-
-class SamPredictor:
- def __init__(
- self,
- sam_model: Sam,
- ) -> None:
- """
- Uses SAM to calculate the image embedding for an image, and then
- allow repeated, efficient mask prediction given prompts.
-
- Arguments:
- sam_model (Sam): The model to use for mask prediction.
- """
- super().__init__()
- self.model = sam_model
- self.transform = ResizeLongestSide(sam_model.image_encoder.img_size)
- self.reset_image()
-
- def set_image(
- self,
- image: np.ndarray,
- image_format: str = "RGB",
- ) -> None:
- """
- Calculates the image embeddings for the provided image, allowing
- masks to be predicted with the 'predict' method.
-
- Arguments:
- image (np.ndarray): The image for calculating masks. Expects an
- image in HWC uint8 format, with pixel values in [0, 255].
- image_format (str): The color format of the image, in ['RGB', 'BGR'].
- """
- assert image_format in [
- "RGB",
- "BGR",
- ], f"image_format must be in ['RGB', 'BGR'], is {image_format}."
- if image_format != self.model.image_format:
- image = image[..., ::-1]
-
- # Transform the image to the form expected by the model
- input_image = self.transform.apply_image(image)
- input_image_torch = torch.as_tensor(input_image, device=self.device)
- input_image_torch = input_image_torch.permute(2, 0, 1).contiguous()[None, :, :, :]
-
- self.set_torch_image(input_image_torch, image.shape[:2])
-
- @torch.no_grad()
- def set_torch_image(
- self,
- transformed_image: torch.Tensor,
- original_image_size: Tuple[int, ...],
- ) -> None:
- """
- Calculates the image embeddings for the provided image, allowing
- masks to be predicted with the 'predict' method. Expects the input
- image to be already transformed to the format expected by the model.
-
- Arguments:
- transformed_image (torch.Tensor): The input image, with shape
- 1x3xHxW, which has been transformed with ResizeLongestSide.
- original_image_size (tuple(int, int)): The size of the image
- before transformation, in (H, W) format.
- """
- assert (
- len(transformed_image.shape) == 4
- and transformed_image.shape[1] == 3
- and max(*transformed_image.shape[2:]) == self.model.image_encoder.img_size
- ), f"set_torch_image input must be BCHW with long side {self.model.image_encoder.img_size}."
- self.reset_image()
-
- self.original_size = original_image_size
- self.input_size = tuple(transformed_image.shape[-2:])
- input_image = self.model.preprocess(transformed_image)
- self.features = self.model.image_encoder(input_image)
- self.is_image_set = True
-
- def predict(
- self,
- point_coords: Optional[np.ndarray] = None,
- point_labels: Optional[np.ndarray] = None,
- box: Optional[np.ndarray] = None,
- mask_input: Optional[np.ndarray] = None,
- multimask_output: bool = True,
- return_logits: bool = False,
- ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
- """
- Predict masks for the given input prompts, using the currently set image.
-
- Arguments:
- point_coords (np.ndarray or None): A Nx2 array of point prompts to the
- model. Each point is in (X,Y) in pixels.
- point_labels (np.ndarray or None): A length N array of labels for the
- point prompts. 1 indicates a foreground point and 0 indicates a
- background point.
- box (np.ndarray or None): A length 4 array given a box prompt to the
- model, in XYXY format.
- mask_input (np.ndarray): A low resolution mask input to the model, typically
- coming from a previous prediction iteration. Has form 1xHxW, where
- for SAM, H=W=256.
- multimask_output (bool): If true, the model will return three masks.
- For ambiguous input prompts (such as a single click), this will often
- produce better masks than a single prediction. If only a single
- mask is needed, the model's predicted quality score can be used
- to select the best mask. For non-ambiguous prompts, such as multiple
- input prompts, multimask_output=False can give better results.
- return_logits (bool): If true, returns un-thresholded masks logits
- instead of a binary mask.
-
- Returns:
- (np.ndarray): The output masks in CxHxW format, where C is the
- number of masks, and (H, W) is the original image size.
- (np.ndarray): An array of length C containing the model's
- predictions for the quality of each mask.
- (np.ndarray): An array of shape CxHxW, where C is the number
- of masks and H=W=256. These low resolution logits can be passed to
- a subsequent iteration as mask input.
- """
- if not self.is_image_set:
- raise RuntimeError("An image must be set with .set_image(...) before mask prediction.")
-
- # Transform input prompts
- coords_torch, labels_torch, box_torch, mask_input_torch = None, None, None, None
- if point_coords is not None:
- assert point_labels is not None, "point_labels must be supplied if point_coords is supplied."
- point_coords = self.transform.apply_coords(point_coords, self.original_size)
- coords_torch = torch.as_tensor(point_coords, dtype=torch.float, device=self.device)
- labels_torch = torch.as_tensor(point_labels, dtype=torch.int, device=self.device)
- coords_torch, labels_torch = coords_torch[None, :, :], labels_torch[None, :]
- if box is not None:
- box = self.transform.apply_boxes(box, self.original_size)
- box_torch = torch.as_tensor(box, dtype=torch.float, device=self.device)
- box_torch = box_torch[None, :]
- if mask_input is not None:
- mask_input_torch = torch.as_tensor(mask_input, dtype=torch.float, device=self.device)
- mask_input_torch = mask_input_torch[None, :, :, :]
-
- masks, iou_predictions, low_res_masks = self.predict_torch(
- coords_torch,
- labels_torch,
- box_torch,
- mask_input_torch,
- multimask_output,
- return_logits=return_logits,
- )
-
- masks = masks[0].detach().cpu().numpy()
- iou_predictions = iou_predictions[0].detach().cpu().numpy()
- low_res_masks = low_res_masks[0].detach().cpu().numpy()
- return masks, iou_predictions, low_res_masks
-
- @torch.no_grad()
- def predict_torch(
- self,
- point_coords: Optional[torch.Tensor],
- point_labels: Optional[torch.Tensor],
- boxes: Optional[torch.Tensor] = None,
- mask_input: Optional[torch.Tensor] = None,
- multimask_output: bool = True,
- return_logits: bool = False,
- ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
- """
- Predict masks for the given input prompts, using the currently set image.
- Input prompts are batched torch tensors and are expected to already be
- transformed to the input frame using ResizeLongestSide.
-
- Arguments:
- point_coords (torch.Tensor or None): A BxNx2 array of point prompts to the
- model. Each point is in (X,Y) in pixels.
- point_labels (torch.Tensor or None): A BxN array of labels for the
- point prompts. 1 indicates a foreground point and 0 indicates a
- background point.
- box (np.ndarray or None): A Bx4 array given a box prompt to the
- model, in XYXY format.
- mask_input (np.ndarray): A low resolution mask input to the model, typically
- coming from a previous prediction iteration. Has form Bx1xHxW, where
- for SAM, H=W=256. Masks returned by a previous iteration of the
- predict method do not need further transformation.
- multimask_output (bool): If true, the model will return three masks.
- For ambiguous input prompts (such as a single click), this will often
- produce better masks than a single prediction. If only a single
- mask is needed, the model's predicted quality score can be used
- to select the best mask. For non-ambiguous prompts, such as multiple
- input prompts, multimask_output=False can give better results.
- return_logits (bool): If true, returns un-thresholded masks logits
- instead of a binary mask.
-
- Returns:
- (torch.Tensor): The output masks in BxCxHxW format, where C is the
- number of masks, and (H, W) is the original image size.
- (torch.Tensor): An array of shape BxC containing the model's
- predictions for the quality of each mask.
- (torch.Tensor): An array of shape BxCxHxW, where C is the number
- of masks and H=W=256. These low res logits can be passed to
- a subsequent iteration as mask input.
- """
- if not self.is_image_set:
- raise RuntimeError("An image must be set with .set_image(...) before mask prediction.")
-
- if point_coords is not None:
- points = (point_coords, point_labels)
- else:
- points = None
-
- # Embed prompts
- sparse_embeddings, dense_embeddings = self.model.prompt_encoder(
- points=points,
- boxes=boxes,
- masks=mask_input,
- )
-
- # Predict masks
- low_res_masks, iou_predictions = self.model.mask_decoder(
- image_embeddings=self.features,
- image_pe=self.model.prompt_encoder.get_dense_pe(),
- sparse_prompt_embeddings=sparse_embeddings,
- dense_prompt_embeddings=dense_embeddings,
- multimask_output=multimask_output,
- )
-
- # Upscale the masks to the original image resolution
- masks = self.model.postprocess_masks(low_res_masks, self.input_size, self.original_size)
-
- if not return_logits:
- masks = masks > self.model.mask_threshold
-
- return masks, iou_predictions, low_res_masks
-
- def get_image_embedding(self) -> torch.Tensor:
- """
- Returns the image embeddings for the currently set image, with
- shape 1xCxHxW, where C is the embedding dimension and (H,W) are
- the embedding spatial dimension of SAM (typically C=256, H=W=64).
- """
- if not self.is_image_set:
- raise RuntimeError("An image must be set with .set_image(...) to generate an embedding.")
- assert self.features is not None, "Features must exist if an image has been set."
- return self.features
-
- @property
- def device(self) -> torch.device:
- return self.model.device
-
- def reset_image(self) -> None:
- """Resets the currently set image."""
- self.is_image_set = False
- self.features = None
- self.orig_h = None
- self.orig_w = None
- self.input_h = None
- self.input_w = None
diff --git a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/utils/__init__.py b/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/utils/__init__.py
deleted file mode 100644
index 5277f46..0000000
--- a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/utils/__init__.py
+++ /dev/null
@@ -1,5 +0,0 @@
-# Copyright (c) Meta Platforms, Inc. and affiliates.
-# All rights reserved.
-
-# This source code is licensed under the license found in the
-# LICENSE file in the root directory of this source tree.
diff --git a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/utils/amg.py b/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/utils/amg.py
deleted file mode 100644
index 1c9c491..0000000
--- a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/utils/amg.py
+++ /dev/null
@@ -1,330 +0,0 @@
-# Copyright (c) Meta Platforms, Inc. and affiliates.
-# All rights reserved.
-
-# This source code is licensed under the license found in the
-# LICENSE file in the root directory of this source tree.
-
-import math
-from copy import deepcopy
-from itertools import product
-from typing import Any, Dict, Generator, ItemsView, List, Tuple
-
-import numpy as np
-import torch
-
-
-class MaskData:
- """
- A structure for storing masks and their related data in batched format.
- Implements basic filtering and concatenation.
- """
-
- def __init__(self, **kwargs) -> None:
- for v in kwargs.values():
- assert isinstance(
- v, (list, np.ndarray, torch.Tensor)
- ), "MaskData only supports list, numpy arrays, and torch tensors."
- self._stats = dict(**kwargs)
-
- def __setitem__(self, key: str, item: Any) -> None:
- assert isinstance(
- item, (list, np.ndarray, torch.Tensor)
- ), "MaskData only supports list, numpy arrays, and torch tensors."
- self._stats[key] = item
-
- def __delitem__(self, key: str) -> None:
- del self._stats[key]
-
- def __getitem__(self, key: str) -> Any:
- return self._stats[key]
-
- def items(self) -> ItemsView[str, Any]:
- return self._stats.items()
-
- def filter(self, keep: torch.Tensor) -> None:
- for k, v in self._stats.items():
- if v is None:
- self._stats[k] = None
- elif isinstance(v, torch.Tensor):
- self._stats[k] = v[torch.as_tensor(keep, device=v.device)]
- elif isinstance(v, np.ndarray):
- self._stats[k] = v[keep.detach().cpu().numpy()]
- elif isinstance(v, list) and keep.dtype == torch.bool:
- self._stats[k] = [a for i, a in enumerate(v) if keep[i]]
- elif isinstance(v, list):
- self._stats[k] = [v[i] for i in keep]
- else:
- raise TypeError(f"MaskData key {k} has an unsupported type {type(v)}.")
-
- def cat(self, new_stats: "MaskData") -> None:
- for k, v in new_stats.items():
- if k not in self._stats or self._stats[k] is None:
- self._stats[k] = deepcopy(v)
- elif isinstance(v, torch.Tensor):
- self._stats[k] = torch.cat([self._stats[k], v], dim=0)
- elif isinstance(v, np.ndarray):
- self._stats[k] = np.concatenate([self._stats[k], v], axis=0)
- elif isinstance(v, list):
- self._stats[k] = self._stats[k] + deepcopy(v)
- else:
- raise TypeError(f"MaskData key {k} has an unsupported type {type(v)}.")
-
- def to_numpy(self) -> None:
- for k, v in self._stats.items():
- if isinstance(v, torch.Tensor):
- self._stats[k] = v.detach().cpu().numpy()
-
-
-def is_box_near_crop_edge(
- boxes: torch.Tensor, crop_box: List[int], orig_box: List[int], atol: float = 20.0
-) -> torch.Tensor:
- """Filter masks at the edge of a crop, but not at the edge of the original image."""
- crop_box_torch = torch.as_tensor(crop_box, dtype=torch.float, device=boxes.device)
- orig_box_torch = torch.as_tensor(orig_box, dtype=torch.float, device=boxes.device)
- boxes = uncrop_boxes_xyxy(boxes, crop_box).float()
- near_crop_edge = torch.isclose(boxes, crop_box_torch[None, :], atol=atol, rtol=0)
- near_image_edge = torch.isclose(boxes, orig_box_torch[None, :], atol=atol, rtol=0)
- near_crop_edge = torch.logical_and(near_crop_edge, ~near_image_edge)
- return torch.any(near_crop_edge, dim=1)
-
-
-def box_xyxy_to_xywh(box_xyxy: torch.Tensor) -> torch.Tensor:
- box_xywh = deepcopy(box_xyxy)
- box_xywh[2] = box_xywh[2] - box_xywh[0]
- box_xywh[3] = box_xywh[3] - box_xywh[1]
- return box_xywh
-
-
-def batch_iterator(batch_size: int, *args) -> Generator[List[Any], None, None]:
- assert len(args) > 0 and all(
- len(a) == len(args[0]) for a in args
- ), "Batched iteration must have inputs of all the same size."
- n_batches = len(args[0]) // batch_size + int(len(args[0]) % batch_size != 0)
- for b in range(n_batches):
- yield [arg[b * batch_size : (b + 1) * batch_size] for arg in args]
-
-
-def mask_to_rle_pytorch(tensor: torch.Tensor) -> List[Dict[str, Any]]:
- """
- Encodes masks to an uncompressed RLE, in the format expected by
- pycoco tools.
- """
- # Put in fortran order and flatten h,w
- b, h, w = tensor.shape
- tensor = tensor.permute(0, 2, 1).flatten(1)
-
- # Compute change indices
- diff = tensor[:, 1:] ^ tensor[:, :-1]
- change_indices = diff.nonzero()
-
- # Encode run length
- out = []
- for i in range(b):
- cur_idxs = change_indices[change_indices[:, 0] == i, 1]
- cur_idxs = torch.cat(
- [
- torch.tensor([0], dtype=cur_idxs.dtype, device=cur_idxs.device),
- cur_idxs + 1,
- torch.tensor([h * w], dtype=cur_idxs.dtype, device=cur_idxs.device),
- ]
- )
- btw_idxs = cur_idxs[1:] - cur_idxs[:-1]
- counts = [] if tensor[i, 0] == 0 else [0]
- counts.extend(btw_idxs.detach().cpu().tolist())
- out.append({"size": [h, w], "counts": counts})
- return out
-
-
-def rle_to_mask(rle: Dict[str, Any]) -> np.ndarray:
- """Compute a binary mask from an uncompressed RLE."""
- h, w = rle["size"]
- mask = np.empty(h * w, dtype=bool)
- idx = 0
- parity = False
- for count in rle["counts"]:
- mask[idx : idx + count] = parity
- idx += count
- parity ^= True
- mask = mask.reshape(w, h)
- return mask.transpose() # Put in C order
-
-
-def area_from_rle(rle: Dict[str, Any]) -> int:
- return sum(rle["counts"][1::2])
-
-
-def calculate_stability_score(masks: torch.Tensor, mask_threshold: float, threshold_offset: float) -> torch.Tensor:
- """
- Computes the stability score for a batch of masks. The stability
- score is the IoU between the binary masks obtained by thresholding
- the predicted mask logits at high and low values.
- """
- # One mask is always contained inside the other.
- # Save memory by preventing unnecesary cast to torch.int64
- intersections = (masks > (mask_threshold + threshold_offset)).sum(-1, dtype=torch.int16).sum(-1, dtype=torch.int32)
- unions = (masks > (mask_threshold - threshold_offset)).sum(-1, dtype=torch.int16).sum(-1, dtype=torch.int32)
- return intersections / unions
-
-
-def build_point_grid(n_per_side: int) -> np.ndarray:
- """Generates a 2D grid of points evenly spaced in [0,1]x[0,1]."""
- offset = 1 / (2 * n_per_side)
- points_one_side = np.linspace(offset, 1 - offset, n_per_side)
- points_x = np.tile(points_one_side[None, :], (n_per_side, 1))
- points_y = np.tile(points_one_side[:, None], (1, n_per_side))
- points = np.stack([points_x, points_y], axis=-1).reshape(-1, 2)
- return points
-
-
-def build_all_layer_point_grids(n_per_side: int, n_layers: int, scale_per_layer: int) -> List[np.ndarray]:
- """Generates point grids for all crop layers."""
- points_by_layer = []
- for i in range(n_layers + 1):
- n_points = int(n_per_side / (scale_per_layer**i))
- points_by_layer.append(build_point_grid(n_points))
- return points_by_layer
-
-
-def generate_crop_boxes(
- im_size: Tuple[int, ...], n_layers: int, overlap_ratio: float
-) -> Tuple[List[List[int]], List[int]]:
- """
- Generates a list of crop boxes of different sizes. Each layer
- has (2**i)**2 boxes for the ith layer.
- """
- crop_boxes, layer_idxs = [], []
- im_h, im_w = im_size
- short_side = min(im_h, im_w)
-
- # Original image
- crop_boxes.append([0, 0, im_w, im_h])
- layer_idxs.append(0)
-
- def crop_len(orig_len, n_crops, overlap):
- return int(math.ceil((overlap * (n_crops - 1) + orig_len) / n_crops))
-
- for i_layer in range(n_layers):
- n_crops_per_side = 2 ** (i_layer + 1)
- overlap = int(overlap_ratio * short_side * (2 / n_crops_per_side))
-
- crop_w = crop_len(im_w, n_crops_per_side, overlap)
- crop_h = crop_len(im_h, n_crops_per_side, overlap)
-
- crop_box_x0 = [int((crop_w - overlap) * i) for i in range(n_crops_per_side)]
- crop_box_y0 = [int((crop_h - overlap) * i) for i in range(n_crops_per_side)]
-
- # Crops in XYWH format
- for x0, y0 in product(crop_box_x0, crop_box_y0):
- box = [x0, y0, min(x0 + crop_w, im_w), min(y0 + crop_h, im_h)]
- crop_boxes.append(box)
- layer_idxs.append(i_layer + 1)
-
- return crop_boxes, layer_idxs
-
-
-def uncrop_boxes_xyxy(boxes: torch.Tensor, crop_box: List[int]) -> torch.Tensor:
- x0, y0, _, _ = crop_box
- offset = torch.tensor([[x0, y0, x0, y0]], device=boxes.device)
- # Check if boxes has a channel dimension
- if len(boxes.shape) == 3:
- offset = offset.unsqueeze(1)
- return boxes + offset
-
-
-def uncrop_points(points: torch.Tensor, crop_box: List[int]) -> torch.Tensor:
- x0, y0, _, _ = crop_box
- offset = torch.tensor([[x0, y0]], device=points.device)
- # Check if points has a channel dimension
- if len(points.shape) == 3:
- offset = offset.unsqueeze(1)
- return points + offset
-
-
-def uncrop_masks(masks: torch.Tensor, crop_box: List[int], orig_h: int, orig_w: int) -> torch.Tensor:
- x0, y0, x1, y1 = crop_box
- if x0 == 0 and y0 == 0 and x1 == orig_w and y1 == orig_h:
- return masks
- # Coordinate transform masks
- pad_x, pad_y = orig_w - (x1 - x0), orig_h - (y1 - y0)
- pad = (x0, pad_x - x0, y0, pad_y - y0)
- return torch.nn.functional.pad(masks, pad, value=0)
-
-
-def remove_small_regions(mask: np.ndarray, area_thresh: float, mode: str) -> Tuple[np.ndarray, bool]:
- """
- Removes small disconnected regions and holes in a mask. Returns the
- mask and an indicator of if the mask has been modified.
- """
- import cv2 # type: ignore
-
- assert mode in ["holes", "islands"]
- correct_holes = mode == "holes"
- working_mask = (correct_holes ^ mask).astype(np.uint8)
- n_labels, regions, stats, _ = cv2.connectedComponentsWithStats(working_mask, 8)
- sizes = stats[:, -1][1:] # Row 0 is background label
- small_regions = [i + 1 for i, s in enumerate(sizes) if s < area_thresh]
- if len(small_regions) == 0:
- return mask, False
- fill_labels = [0] + small_regions
- if not correct_holes:
- fill_labels = [i for i in range(n_labels) if i not in fill_labels]
- # If every region is below threshold, keep largest
- if len(fill_labels) == 0:
- fill_labels = [int(np.argmax(sizes)) + 1]
- mask = np.isin(regions, fill_labels)
- return mask, True
-
-
-def coco_encode_rle(uncompressed_rle: Dict[str, Any]) -> Dict[str, Any]:
- from pycocotools import mask as mask_utils # type: ignore
-
- h, w = uncompressed_rle["size"]
- rle = mask_utils.frPyObjects(uncompressed_rle, h, w)
- rle["counts"] = rle["counts"].decode("utf-8") # Necessary to serialize with json
- return rle
-
-
-def batched_mask_to_box(masks: torch.Tensor) -> torch.Tensor:
- """
- Calculates boxes in XYXY format around masks. Return [0,0,0,0] for
- an empty mask. For input shape C1xC2x...xHxW, the output shape is C1xC2x...x4.
- """
- # torch.max below raises an error on empty inputs, just skip in this case
- if torch.numel(masks) == 0:
- return torch.zeros(*masks.shape[:-2], 4, device=masks.device)
-
- # Normalize shape to CxHxW
- shape = masks.shape
- h, w = shape[-2:]
- if len(shape) > 2:
- masks = masks.flatten(0, -3)
- else:
- masks = masks.unsqueeze(0)
-
- # Get top and bottom edges
- in_height, _ = torch.max(masks, dim=-1)
- in_height_coords = in_height * torch.arange(h, device=in_height.device)[None, :]
- bottom_edges, _ = torch.max(in_height_coords, dim=-1)
- in_height_coords = in_height_coords + h * (~in_height)
- top_edges, _ = torch.min(in_height_coords, dim=-1)
-
- # Get left and right edges
- in_width, _ = torch.max(masks, dim=-2)
- in_width_coords = in_width * torch.arange(w, device=in_width.device)[None, :]
- right_edges, _ = torch.max(in_width_coords, dim=-1)
- in_width_coords = in_width_coords + w * (~in_width)
- left_edges, _ = torch.min(in_width_coords, dim=-1)
-
- # If the mask is empty the right edge will be to the left of the left edge.
- # Replace these boxes with [0, 0, 0, 0]
- empty_filter = (right_edges < left_edges) | (bottom_edges < top_edges)
- out = torch.stack([left_edges, top_edges, right_edges, bottom_edges], dim=-1)
- out = out * (~empty_filter).unsqueeze(-1)
-
- # Return to original shape
- if len(shape) > 2:
- out = out.reshape(*shape[:-2], 4)
- else:
- out = out[0]
-
- return out
diff --git a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/utils/onnx.py b/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/utils/onnx.py
deleted file mode 100644
index 9cd17c7..0000000
--- a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/utils/onnx.py
+++ /dev/null
@@ -1,138 +0,0 @@
-# Copyright (c) Meta Platforms, Inc. and affiliates.
-# All rights reserved.
-
-# This source code is licensed under the license found in the
-# LICENSE file in the root directory of this source tree.
-
-from typing import Tuple
-
-import torch
-import torch.nn as nn
-from torch.nn import functional as F
-
-from ..modeling import Sam
-from .amg import calculate_stability_score
-
-
-class SamOnnxModel(nn.Module):
- """
- This model should not be called directly, but is used in ONNX export.
- It combines the prompt encoder, mask decoder, and mask postprocessing of Sam,
- with some functions modified to enable model tracing. Also supports extra
- options controlling what information. See the ONNX export script for details.
- """
-
- def __init__(
- self,
- model: Sam,
- return_single_mask: bool,
- use_stability_score: bool = False,
- return_extra_metrics: bool = False,
- ) -> None:
- super().__init__()
- self.mask_decoder = model.mask_decoder
- self.model = model
- self.img_size = model.image_encoder.img_size
- self.return_single_mask = return_single_mask
- self.use_stability_score = use_stability_score
- self.stability_score_offset = 1.0
- self.return_extra_metrics = return_extra_metrics
-
- @staticmethod
- def resize_longest_image_size(input_image_size: torch.Tensor, longest_side: int) -> torch.Tensor:
- input_image_size = input_image_size.to(torch.float32)
- scale = longest_side / torch.max(input_image_size)
- transformed_size = scale * input_image_size
- transformed_size = torch.floor(transformed_size + 0.5).to(torch.int64)
- return transformed_size
-
- def _embed_points(self, point_coords: torch.Tensor, point_labels: torch.Tensor) -> torch.Tensor:
- point_coords = point_coords + 0.5
- point_coords = point_coords / self.img_size
- point_embedding = self.model.prompt_encoder.pe_layer._pe_encoding(point_coords)
- point_labels = point_labels.unsqueeze(-1).expand_as(point_embedding)
-
- point_embedding = point_embedding * (point_labels != -1)
- point_embedding = point_embedding + self.model.prompt_encoder.not_a_point_embed.weight * (point_labels == -1)
-
- for i in range(self.model.prompt_encoder.num_point_embeddings):
- point_embedding = point_embedding + self.model.prompt_encoder.point_embeddings[i].weight * (
- point_labels == i
- )
-
- return point_embedding
-
- def _embed_masks(self, input_mask: torch.Tensor, has_mask_input: torch.Tensor) -> torch.Tensor:
- mask_embedding = has_mask_input * self.model.prompt_encoder.mask_downscaling(input_mask)
- mask_embedding = mask_embedding + (1 - has_mask_input) * self.model.prompt_encoder.no_mask_embed.weight.reshape(
- 1, -1, 1, 1
- )
- return mask_embedding
-
- def mask_postprocessing(self, masks: torch.Tensor, orig_im_size: torch.Tensor) -> torch.Tensor:
- masks = F.interpolate(
- masks,
- size=(self.img_size, self.img_size),
- mode="bilinear",
- align_corners=False,
- )
-
- prepadded_size = self.resize_longest_image_size(orig_im_size, self.img_size)
- masks = masks[..., : int(prepadded_size[0]), : int(prepadded_size[1])]
-
- orig_im_size = orig_im_size.to(torch.int64)
- h, w = orig_im_size[0], orig_im_size[1]
- masks = F.interpolate(masks, size=(h, w), mode="bilinear", align_corners=False)
- return masks
-
- def select_masks(
- self, masks: torch.Tensor, iou_preds: torch.Tensor, num_points: int
- ) -> Tuple[torch.Tensor, torch.Tensor]:
- # Determine if we should return the multiclick mask or not from the number of points.
- # The reweighting is used to avoid control flow.
- score_reweight = torch.tensor([[1000] + [0] * (self.model.mask_decoder.num_mask_tokens - 1)]).to(
- iou_preds.device
- )
- score = iou_preds + (num_points - 2.5) * score_reweight
- best_idx = torch.argmax(score, dim=1)
- masks = masks[torch.arange(masks.shape[0]), best_idx, :, :].unsqueeze(1)
- iou_preds = iou_preds[torch.arange(masks.shape[0]), best_idx].unsqueeze(1)
-
- return masks, iou_preds
-
- @torch.no_grad()
- def forward(
- self,
- image_embeddings: torch.Tensor,
- point_coords: torch.Tensor,
- point_labels: torch.Tensor,
- mask_input: torch.Tensor,
- has_mask_input: torch.Tensor,
- orig_im_size: torch.Tensor,
- ):
- sparse_embedding = self._embed_points(point_coords, point_labels)
- dense_embedding = self._embed_masks(mask_input, has_mask_input)
-
- masks, scores = self.model.mask_decoder.predict_masks(
- image_embeddings=image_embeddings,
- image_pe=self.model.prompt_encoder.get_dense_pe(),
- sparse_prompt_embeddings=sparse_embedding,
- dense_prompt_embeddings=dense_embedding,
- )
-
- if self.use_stability_score:
- scores = calculate_stability_score(masks, self.model.mask_threshold, self.stability_score_offset)
-
- if self.return_single_mask:
- masks, scores = self.select_masks(masks, scores, point_coords.shape[1])
-
- upscaled_masks = self.mask_postprocessing(masks, orig_im_size)
-
- if self.return_extra_metrics:
- stability_scores = calculate_stability_score(
- upscaled_masks, self.model.mask_threshold, self.stability_score_offset
- )
- areas = (upscaled_masks > self.model.mask_threshold).sum(-1).sum(-1)
- return upscaled_masks, scores, stability_scores, areas, masks
-
- return upscaled_masks, scores, masks
diff --git a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/utils/transforms.py b/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/utils/transforms.py
deleted file mode 100644
index 96a4ed6..0000000
--- a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/utils/transforms.py
+++ /dev/null
@@ -1,92 +0,0 @@
-# Copyright (c) Meta Platforms, Inc. and affiliates.
-# All rights reserved.
-
-# This source code is licensed under the license found in the
-# LICENSE file in the root directory of this source tree.
-
-from copy import deepcopy
-from typing import Tuple
-
-import numpy as np
-import torch
-from torch.nn import functional as F
-from torchvision.transforms.functional import resize, to_pil_image # type: ignore
-
-
-class ResizeLongestSide:
- """
- Resizes images to longest side 'target_length', as well as provides
- methods for resizing coordinates and boxes. Provides methods for
- transforming both numpy array and batched torch tensors.
- """
-
- def __init__(self, target_length: int) -> None:
- self.target_length = target_length
-
- def apply_image(self, image: np.ndarray) -> np.ndarray:
- """
- Expects a numpy array with shape HxWxC in uint8 format.
- """
- target_size = self.get_preprocess_shape(image.shape[0], image.shape[1], self.target_length)
- return np.array(resize(to_pil_image(image), target_size))
-
- def apply_coords(self, coords: np.ndarray, original_size: Tuple[int, ...]) -> np.ndarray:
- """
- Expects a numpy array of length 2 in the final dimension. Requires the
- original image size in (H, W) format.
- """
- old_h, old_w = original_size
- new_h, new_w = self.get_preprocess_shape(original_size[0], original_size[1], self.target_length)
- coords = deepcopy(coords).astype(float)
- coords[..., 0] = coords[..., 0] * (new_w / old_w)
- coords[..., 1] = coords[..., 1] * (new_h / old_h)
- return coords
-
- def apply_boxes(self, boxes: np.ndarray, original_size: Tuple[int, ...]) -> np.ndarray:
- """
- Expects a numpy array shape Bx4. Requires the original image size
- in (H, W) format.
- """
- boxes = self.apply_coords(boxes.reshape(-1, 2, 2), original_size)
- return boxes.reshape(-1, 4)
-
- def apply_image_torch(self, image: torch.Tensor) -> torch.Tensor:
- """
- Expects batched images with shape BxCxHxW and float format. This
- transformation may not exactly match apply_image. apply_image is
- the transformation expected by the model.
- """
- # Expects an image in BCHW format. May not exactly match apply_image.
- target_size = self.get_preprocess_shape(image.shape[0], image.shape[1], self.target_length)
- return F.interpolate(image, target_size, mode="bilinear", align_corners=False, antialias=True)
-
- def apply_coords_torch(self, coords: torch.Tensor, original_size: Tuple[int, ...]) -> torch.Tensor:
- """
- Expects a torch tensor with length 2 in the last dimension. Requires the
- original image size in (H, W) format.
- """
- old_h, old_w = original_size
- new_h, new_w = self.get_preprocess_shape(original_size[0], original_size[1], self.target_length)
- coords = deepcopy(coords).to(torch.float)
- coords[..., 0] = coords[..., 0] * (new_w / old_w)
- coords[..., 1] = coords[..., 1] * (new_h / old_h)
- return coords
-
- def apply_boxes_torch(self, boxes: torch.Tensor, original_size: Tuple[int, ...]) -> torch.Tensor:
- """
- Expects a torch tensor with shape Bx4. Requires the original image
- size in (H, W) format.
- """
- boxes = self.apply_coords_torch(boxes.reshape(-1, 2, 2), original_size)
- return boxes.reshape(-1, 4)
-
- @staticmethod
- def get_preprocess_shape(oldh: int, oldw: int, long_side_length: int) -> Tuple[int, int]:
- """
- Compute the output size given input size and target long side length.
- """
- scale = long_side_length * 1.0 / max(oldh, oldw)
- newh, neww = oldh * scale, oldw * scale
- neww = int(neww + 0.5)
- newh = int(newh + 0.5)
- return (newh, neww)
diff --git a/monailabel/monaivista/lib/model/vista_point_2pt5/utils/data_utils.py b/monailabel/monaivista/lib/model/vista_point_2pt5/utils/data_utils.py
deleted file mode 100644
index 02bf82c..0000000
--- a/monailabel/monaivista/lib/model/vista_point_2pt5/utils/data_utils.py
+++ /dev/null
@@ -1,257 +0,0 @@
-# Copyright 2020 - 2022 MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-import copy
-import math
-import os
-
-import numpy as np
-import torch
-from monai import data, transforms
-from monai.transforms import ScaleIntensityRanged
-
-
-class Sampler(torch.utils.data.Sampler):
- def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True, make_even=True):
- if num_replicas is None:
- if not torch.distributed.is_available():
- raise RuntimeError("Requires distributed package to be available")
- num_replicas = torch.distributed.get_world_size()
- if rank is None:
- if not torch.distributed.is_available():
- raise RuntimeError("Requires distributed package to be available")
- rank = torch.distributed.get_rank()
- self.shuffle = shuffle
- self.make_even = make_even
- self.dataset = dataset
- self.num_replicas = num_replicas
- self.rank = rank
- self.epoch = 0
- self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas))
- self.total_size = self.num_samples * self.num_replicas
- indices = list(range(len(self.dataset)))
- self.valid_length = len(indices[self.rank : self.total_size : self.num_replicas])
-
- def __iter__(self):
- if self.shuffle:
- g = torch.Generator()
- g.manual_seed(self.epoch)
- indices = torch.randperm(len(self.dataset), generator=g).tolist()
- else:
- indices = list(range(len(self.dataset)))
- if self.make_even:
- if len(indices) < self.total_size:
- if self.total_size - len(indices) < len(indices):
- indices += indices[: (self.total_size - len(indices))]
- else:
- extra_ids = np.random.randint(low=0, high=len(indices), size=self.total_size - len(indices))
- indices += [indices[ids] for ids in extra_ids]
- assert len(indices) == self.total_size
- indices = indices[self.rank : self.total_size : self.num_replicas]
- self.num_samples = len(indices)
- return iter(indices)
-
- def __len__(self):
- return self.num_samples
-
- def set_epoch(self, epoch):
- self.epoch = epoch
-
-
-def get_loader(args):
- # min_val = -1024
- # max_val = 1024
- train_files, val_files, test_files = split_data(args)
-
- train_transform = transforms.Compose(
- [
- transforms.LoadImaged(keys=["image", "label"]),
- transforms.EnsureChannelFirstd(keys=["image", "label"]),
- transforms.Orientationd(keys=["image", "label"], axcodes="RAS"),
- ScaleIntensityRanged(
- keys=["image"], a_min=args.a_min, a_max=args.a_max, b_min=args.b_min, b_max=args.b_max, clip=True
- ),
- # transforms.Resized(keys=["image", "label"], spatial_size=[512, 512, -1], mode=["trilinear", "nearest"]),
- # SpatialPadd(keys=["image", "label"], spatial_size=[256, 256, -1]),
- # transforms.CropForegroundd(keys=["image", "label"], source_key="image")
- # transforms.Spacingd(keys=["image", "label"], pixdim=[3.0, 3.0, 3.0], mode=["bilinear", "nearest"])
- # transforms.SpatialPadd
- ]
- )
-
- val_transform = transforms.Compose(
- [
- transforms.LoadImaged(keys=["image", "label"]),
- transforms.EnsureChannelFirstd(keys=["image", "label"]),
- transforms.Orientationd(keys=["image", "label"], axcodes="RAS"),
- ScaleIntensityRanged(
- keys=["image"], a_min=args.a_min, a_max=args.a_max, b_min=args.b_min, b_max=args.b_max, clip=True
- ),
- # transforms.CropForegroundd(keys=["image", "label"], source_key="image"),
- # transforms.Spacingd(keys=["image", "label"], pixdim=[1.0, 1.0, 1.0], mode=["bilinear", "nearest"])
- ]
- )
-
- if args.test_mode:
- pass
- else:
- datalist = train_files
- if args.use_normal_dataset:
- train_ds = data.Dataset(data=datalist[:1], transform=train_transform)
- else:
- if args.distributed:
- datalist = data.partition_dataset(
- data=datalist,
- shuffle=True,
- num_partitions=args.world_size,
- even_divisible=True,
- )[args.rank]
-
- train_ds = data.CacheDataset(
- data=datalist,
- transform=train_transform,
- cache_rate=1.0,
- num_workers=args.workers,
- )
- # train_sampler = Sampler(train_ds) if args.distributed else None
- train_sampler = None
-
- train_loader = data.DataLoader(
- train_ds,
- batch_size=args.batch_size,
- shuffle=(train_sampler is None),
- num_workers=args.workers,
- sampler=train_sampler,
- pin_memory=True,
- )
- val_files = val_files
- if args.distributed:
- val_files = data.partition_dataset(
- data=val_files,
- shuffle=False,
- num_partitions=args.world_size,
- even_divisible=False,
- )[args.rank]
- val_ds = data.CacheDataset(
- data=val_files,
- transform=val_transform,
- cache_rate=1.0,
- num_workers=args.workers,
- )
- val_sampler = None # Sampler(val_ds, shuffle=False) if args.distributed else None
- val_loader = data.DataLoader(
- val_ds, batch_size=1, shuffle=False, num_workers=args.workers, sampler=val_sampler, pin_memory=True
- )
- loader = [train_loader, val_loader]
-
- return loader
-
-
-def split_data(args):
- data_dir = args.data_dir
- import json
-
- with open(args.json_list, "r") as f:
- json_data = json.load(f)
-
- list_train = []
- list_valid = []
- if "validation" in json_data.keys():
- list_train = json_data["training"]
- list_valid = json_data["validation"]
- list_test = json_data["testing"]
- else:
- for item in json_data["training"]:
- if item["fold"] == args.fold:
- item.pop("fold", None)
- list_valid.append(item)
- else:
- item.pop("fold", None)
- list_train.append(item)
- if "testing" in json_data.keys() and "label" in json_data["testing"][0]:
- list_test = json_data["testing"]
- else:
- list_test = copy.deepcopy(list_valid)
- if args.splitval > 0:
- list_train = sorted(list_train, key=lambda x: x["image"])
- l = int((len(list_train) + len(list_valid)) * args.splitval)
- list_valid = list_train[-l:]
- list_train = list_train[:-l]
-
- if hasattr(args, "rank") and args.rank == 0:
- print("train files", len(list_train), [os.path.basename(_["image"]).split(".")[0] for _ in list_train])
- print("val files", len(list_valid), [os.path.basename(_["image"]).split(".")[0] for _ in list_valid])
- print("test files", len(list_test), [os.path.basename(_["image"]).split(".")[0] for _ in list_test])
-
- # training data
- files = []
- for _i in range(len(list_train)):
- str_img = os.path.join(data_dir, list_train[_i]["image"])
- str_seg = os.path.join(data_dir, list_train[_i]["label"])
-
- if (not os.path.exists(str_img)) or (not os.path.exists(str_seg)):
- continue
-
- files.append({"image": str_img, "label": str_seg})
-
- train_files = copy.deepcopy(files)
-
- files = []
- for _i in range(len(list_valid)):
- str_img = os.path.join(data_dir, list_valid[_i]["image"])
- str_seg = os.path.join(data_dir, list_valid[_i]["label"])
-
- if (not os.path.exists(str_img)) or (not os.path.exists(str_seg)):
- continue
-
- files.append({"image": str_img, "label": str_seg})
- val_files = copy.deepcopy(files)
-
- files = []
- for _i in range(len(list_test)):
- str_img = os.path.join(data_dir, list_test[_i]["image"])
- str_seg = os.path.join(data_dir, list_test[_i]["label"])
-
- if (not os.path.exists(str_img)) or (not os.path.exists(str_seg)):
- continue
-
- files.append({"image": str_img, "label": str_seg})
- test_files = copy.deepcopy(files)
- # return train_files[:2], val_files[:2], test_files
- return train_files, val_files, test_files
-
-
-if __name__ == "__main__":
- import argparse
-
- parser = argparse.ArgumentParser(description="dummy parser")
- args = parser.parse_args()
- args.data_dir = "/mnt/3td1/dummy_totalsegmentator_104"
- args.json_list = "/home/pengfeig/code/samm_2pt5/dummy_totalsegmentator_104organs_folds_v2.json"
- args.fold = 0
- args.splitval = 0
- train_files, val_files, test_files = split_data(args=args)
- args.use_normal_dataset = True
- args.test_mode = False
- args.distributed = False
- args.batch_size = 1
- args.workers = 0
- loaders = get_loader(args)
- d = next(iter(loaders[0]))
- volume = torch.squeeze(d["image"])
- import matplotlib
-
- matplotlib.use("TkAgg")
- import matplotlib.pyplot as plt
-
- plt.imshow(volume[..., 50], cmap="gray")
- plt.show()
- print()
diff --git a/monailabel/monaivista/lib/model/vista_point_2pt5/utils/utils.py b/monailabel/monaivista/lib/model/vista_point_2pt5/utils/utils.py
deleted file mode 100644
index 695aeee..0000000
--- a/monailabel/monaivista/lib/model/vista_point_2pt5/utils/utils.py
+++ /dev/null
@@ -1,142 +0,0 @@
-# Copyright 2020 - 2022 MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-import numpy as np
-import scipy.ndimage as ndimage
-import torch
-
-SAM_IMAGE_SIZE = 1024
-
-
-def resample_3d(img, target_size):
- imx, imy, imz = img.shape
- tx, ty, tz = target_size
- zoom_ratio = (float(tx) / float(imx), float(ty) / float(imy), float(tz) / float(imz))
- img_resampled = ndimage.zoom(img, zoom_ratio, order=0, prefilter=False)
- return img_resampled
-
-
-def dice(x, y):
- intersect = np.sum(np.sum(np.sum(x * y)))
- y_sum = np.sum(np.sum(np.sum(y)))
- if y_sum == 0:
- return 0.0
- x_sum = np.sum(np.sum(np.sum(x)))
- return 2 * intersect / (x_sum + y_sum)
-
-
-class AverageMeter(object):
- def __init__(self):
- self.reset()
-
- def reset(self):
- self.val = 0
- self.avg = 0
- self.sum = 0
- self.count = 0
-
- def update(self, val, n=1):
- self.val = val
- self.sum += val * n
- self.count += n
- self.avg = np.where(self.count > 0, self.sum / self.count, self.sum)
-
-
-def distributed_all_gather(
- tensor_list, valid_batch_size=None, out_numpy=False, world_size=None, no_barrier=False, is_valid=None
-):
- if world_size is None:
- world_size = torch.distributed.get_world_size()
- if valid_batch_size is not None:
- valid_batch_size = min(valid_batch_size, world_size)
- elif is_valid is not None:
- is_valid = torch.tensor(bool(is_valid), dtype=torch.bool, device=tensor_list[0].device)
- if not no_barrier:
- torch.distributed.barrier()
- tensor_list_out = []
- with torch.no_grad():
- if is_valid is not None:
- is_valid_list = [torch.zeros_like(is_valid) for _ in range(world_size)]
- torch.distributed.all_gather(is_valid_list, is_valid)
- is_valid = [x.item() for x in is_valid_list]
- for tensor in tensor_list:
- gather_list = [torch.zeros_like(tensor) for _ in range(world_size)]
- torch.distributed.all_gather(gather_list, tensor)
- if valid_batch_size is not None:
- gather_list = gather_list[:valid_batch_size]
- elif is_valid is not None:
- gather_list = [g for g, v in zip(gather_list, is_valid_list) if v]
- if out_numpy:
- gather_list = [t.cpu().numpy() for t in gather_list]
- tensor_list_out.append(gather_list)
- return tensor_list_out
-
-
-def prepare_sam_val_input(inputs, class_prompts, point_prompts, start_idx, original_affine=None, device=None):
- # Don't exclude background in val but will ignore it in metric calculation
- H, W = inputs.shape[1:]
- foreground_all = point_prompts["foreground"]
- background_all = point_prompts["background"]
-
- class_list = [[i + 1] for i in class_prompts]
- unique_labels = torch.tensor(class_list).long()
- if device == "cuda" or (isinstance(device, torch.device) and device.type == "cuda"):
- unique_labels = unique_labels.cuda()
-
- volume_point_coords = [cp for cp in foreground_all]
- volume_point_labels = [1] * len(foreground_all)
-
- for cp in background_all:
- volume_point_coords.append(cp)
- volume_point_labels.append(0)
-
- point_coords = [[]]
- point_labels = [[]]
-
- # Reoriente point coord if not in RAS
- if original_affine is not None:
- IJK2orientation = np.diag(original_affine[:3, :3])
- negative_indices = np.where(IJK2orientation < 0)[0]
- if len(negative_indices) > 0:
- for idx, c in enumerate(volume_point_coords):
- volume_point_coords[idx][negative_indices[0]] = H - volume_point_coords[idx][negative_indices[0]]
- volume_point_coords[idx][negative_indices[1]] = W - volume_point_coords[idx][negative_indices[1]]
-
- for idx, cp in enumerate(volume_point_coords):
- if cp[2] + 4 == start_idx:
- new_H = cp[0] * (SAM_IMAGE_SIZE / H)
- new_W = cp[1] * (SAM_IMAGE_SIZE / W)
- point_coords[0].append([new_H, new_W])
- point_labels[0].append(volume_point_labels[idx])
-
- if len(point_coords[0]) == 0:
- point_coords = None
- point_labels = None
-
- prepared_input = [{"image": inputs, "original_size": tuple(inputs.shape[1:])}]
-
- if len(class_prompts) == 0:
- class_enabled = False
- else:
- class_enabled = True
- if class_enabled:
- prepared_input[0].update({"labels": unique_labels})
-
- if point_coords:
- point_coords = torch.tensor(point_coords).long()
- point_labels = torch.tensor(point_labels).long()
- if device == "cuda" or (isinstance(device, torch.device) and device.type == "cuda"):
- point_coords = point_coords.cuda()
- point_labels = point_labels.cuda()
-
- prepared_input[0].update({"point_coords": point_coords, "point_labels": point_labels})
-
- return prepared_input, unique_labels
diff --git a/monailabel/monaivista/lib/model/vista_point_2pt5/vista_2pt5_image_encoder.py b/monailabel/monaivista/lib/model/vista_point_2pt5/vista_2pt5_image_encoder.py
deleted file mode 100644
index 166794e..0000000
--- a/monailabel/monaivista/lib/model/vista_point_2pt5/vista_2pt5_image_encoder.py
+++ /dev/null
@@ -1,138 +0,0 @@
-# Copyright (c) MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-# Copyright (c) Meta Platforms, Inc. and affiliates.
-# All rights reserved.
-
-# This source code is licensed under the license found in the
-# LICENSE file in the root directory of this source tree.
-
-from typing import Tuple, Type
-
-import torch
-import torch.nn as nn
-from segment_anything.modeling.image_encoder import ImageEncoderViT, PatchEmbed
-
-
-# This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py
-class VistaImageEncoderViT(ImageEncoderViT):
- def __init__(
- self,
- img_size: int = 1024,
- patch_size: int = 16,
- in_chans: int = 3,
- embed_dim: int = 768,
- depth: int = 12,
- num_heads: int = 12,
- mlp_ratio: float = 4.0,
- out_chans: int = 256,
- qkv_bias: bool = True,
- norm_layer: Type[nn.Module] = nn.LayerNorm,
- act_layer: Type[nn.Module] = nn.GELU,
- use_abs_pos: bool = True,
- use_rel_pos: bool = False,
- rel_pos_zero_init: bool = True,
- window_size: int = 0,
- global_attn_indexes: Tuple[int, ...] = (),
- patch_embed_3d: bool = False,
- ) -> None:
- """
- Args:
- img_size (int): Input image size.
- patch_size (int): Patch size.
- in_chans (int): Number of input image channels.
- embed_dim (int): Patch embedding dimension.
- depth (int): Depth of ViT.
- num_heads (int): Number of attention heads in each ViT block.
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
- qkv_bias (bool): If True, add a learnable bias to query, key, value.
- norm_layer (nn.Module): Normalization layer.
- act_layer (nn.Module): Activation layer.
- use_abs_pos (bool): If True, use absolute positional embeddings.
- use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
- rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
- window_size (int): Window size for window attention blocks.
- global_attn_indexes (list): Indexes for blocks using global attention.
- patch_embed_3d (bool): If True, use 3D Patch Embedding.
- """
- super().__init__(
- img_size,
- patch_size,
- in_chans,
- embed_dim,
- depth,
- num_heads,
- mlp_ratio,
- out_chans,
- qkv_bias,
- norm_layer,
- act_layer,
- use_abs_pos,
- use_rel_pos,
- rel_pos_zero_init,
- window_size,
- global_attn_indexes,
- )
-
- self.img_size = img_size
-
- if in_chans > 3 and patch_embed_3d:
- print("ImageEncoderViT: Using 3D PatchEmbed")
- self.patch_embed = PatchEmbed2pt5D(
- kernel_size=(patch_size, patch_size, in_chans // 3),
- stride=(patch_size, patch_size, in_chans // 3),
- in_chans=3,
- embed_dim=embed_dim,
- )
- else:
- self.patch_embed = PatchEmbed(
- kernel_size=(patch_size, patch_size),
- stride=(patch_size, patch_size),
- in_chans=in_chans,
- embed_dim=embed_dim,
- )
-
-
-class PatchEmbed2pt5D(nn.Module):
- """
- Image to Patch Embedding by 3D Conv.
- """
-
- def __init__(
- self,
- kernel_size: Tuple[int, int, int] = (16, 16, 1),
- stride: Tuple[int, int, int] = (16, 16, 1),
- padding: Tuple[int, int, int] = (0, 0, 0),
- in_chans: int = 3,
- embed_dim: int = 768,
- ) -> None:
- """
- Args:
- kernel_size (Tuple): kernel size of the projection layer.
- stride (Tuple): stride of the projection layer.
- padding (Tuple): padding size of the projection layer.
- in_chans (int): Number of input image channels.
- embed_dim (int): embed_dim (int): Patch embedding dimension.
- """
- super().__init__()
-
- self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding)
-
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- # got restore RGB channel dim and the depth dim
- c = x.shape[1]
- x = torch.stack(x.chunk(c // 3, dim=1), dim=-1)
- x = self.proj(x)
- # remove dummy depth dim to make it 2d
- x = x.squeeze(-1)
- # B C H W -> B H W C
- x = x.permute(0, 2, 3, 1)
- return x
diff --git a/monailabel/monaivista/lib/model/vista_point_2pt5/vista_2pt5_prompt_encoder.py b/monailabel/monaivista/lib/model/vista_point_2pt5/vista_2pt5_prompt_encoder.py
deleted file mode 100644
index 16958e2..0000000
--- a/monailabel/monaivista/lib/model/vista_point_2pt5/vista_2pt5_prompt_encoder.py
+++ /dev/null
@@ -1,148 +0,0 @@
-# Copyright (c) MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-# Copyright (c) Meta Platforms, Inc. and affiliates.
-# All rights reserved.
-
-# This source code is licensed under the license found in the
-# LICENSE file in the root directory of this source tree.
-
-from typing import Any, Optional, Tuple, Type
-
-import numpy as np
-import torch
-from segment_anything.modeling.common import LayerNorm2d
-from segment_anything.modeling.prompt_encoder import PromptEncoder
-from torch import nn
-
-
-class VistaPromptEncoder(PromptEncoder):
- def __init__(
- self,
- embed_dim: int,
- image_embedding_size: Tuple[int, int],
- input_image_size: Tuple[int, int],
- mask_in_chans: int,
- activation: Type[nn.Module] = nn.GELU,
- n_classes: int = 512,
- clip_class_label_prompt: bool = False,
- ) -> None:
- """
- Encodes prompts for input to Segment Anything Model's mask decoder.
-
- Arguments:
- embed_dim (int): The prompts' embedding dimension
- image_embedding_size (tuple(int, int)): The spatial size of the
- image embedding, as (H, W).
- input_image_size (int): The padded size of the image as input
- to the image encoder, as (H, W).
- mask_in_chans (int): The number of hidden channels used for
- encoding input masks.
- activation (nn.Module): The activation to use when encoding
- input masks.
- n_classes (int): The number of pre-defined classes.
- clip_class_label_prompt (bool): Using clip txt features
- as class label prompt.
- """
- super().__init__(embed_dim, image_embedding_size, input_image_size, mask_in_chans, activation)
-
- self.clip_class_label_prompt = clip_class_label_prompt
- # Add support for onehot vector embedding for pre-defined classes
- if self.clip_class_label_prompt:
- raise NotImplementedError
- else:
- self.label_embeddings = nn.Embedding(n_classes, embed_dim)
- self.no_label_embed = nn.Embedding(1, embed_dim)
-
- def _embed_labels(self, labels: torch.Tensor) -> torch.Tensor:
- """Embeds onehot vector inputs."""
- if self.clip_class_label_prompt:
- raise NotImplementedError
- else:
- # Add support for onehot vector embedding for pre-defined classes
- label_embedding = self.label_embeddings(labels)
- return label_embedding
-
- def _get_batch_size(
- self,
- points: Optional[Tuple[torch.Tensor, torch.Tensor]],
- boxes: Optional[torch.Tensor],
- masks: Optional[torch.Tensor],
- labels: Optional[torch.Tensor],
- ) -> int:
- """
- Gets the batch size of the output given the batch size of the input prompts.
- """
- if points is not None:
- return points[0].shape[0]
- elif boxes is not None:
- return boxes.shape[0]
- elif masks is not None:
- return masks.shape[0]
- elif labels is not None:
- return labels.shape[0]
- else:
- return 1
-
- def forward(
- self,
- points: Optional[Tuple[torch.Tensor, torch.Tensor]],
- boxes: Optional[torch.Tensor],
- masks: Optional[torch.Tensor],
- class_labels: Optional[torch.Tensor],
- ) -> Tuple[torch.Tensor, torch.Tensor]:
- """
- Embeds different types of prompts, returning both sparse and dense
- embeddings.
-
- Arguments:
- points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates
- and labels to embed.
- boxes (torch.Tensor or none): boxes to embed
- masks (torch.Tensor or none): masks to embed
- class_labels (torch.Tensor or none): labels to embed
-
- Returns:
- torch.Tensor: sparse embeddings for the points and boxes, with shape
- BxNx(embed_dim), where N is determined by the number of input points
- and boxes.
- torch.Tensor: dense embeddings for the masks, in the shape
- Bx(embed_dim)x(embed_H)x(embed_W)
- """
- bs = self._get_batch_size(points, boxes, masks, class_labels)
-
- # Add support for onehot vector embedding for pre-defined classes
- if class_labels is not None:
- label_embeddings = self._embed_labels(class_labels)
- else:
- label_embeddings = self.no_label_embed.weight.reshape(1, 1, -1).expand(bs, -1, -1)
-
- sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self._get_device())
-
- # Add support for onehot vector embedding for pre-defined classes
- sparse_embeddings = torch.cat([sparse_embeddings, label_embeddings], dim=1)
-
- if points is not None:
- coords, labels = points
- point_embeddings = self._embed_points(coords, labels, pad=(boxes is None))
- sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1)
- if boxes is not None:
- box_embeddings = self._embed_boxes(boxes)
- sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1)
-
- if masks is not None:
- dense_embeddings = self._embed_masks(masks)
- else:
- dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(
- bs, -1, self.image_embedding_size[0], self.image_embedding_size[1]
- )
-
- return sparse_embeddings, dense_embeddings
diff --git a/monailabel/monaivista/lib/trainers/__init__.py b/monailabel/monaivista/lib/trainers/__init__.py
deleted file mode 100644
index 1e97f89..0000000
--- a/monailabel/monaivista/lib/trainers/__init__.py
+++ /dev/null
@@ -1,10 +0,0 @@
-# Copyright (c) MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
diff --git a/monailabel/monaivista/lib/transforms/__init__.py b/monailabel/monaivista/lib/transforms/__init__.py
deleted file mode 100644
index 1e97f89..0000000
--- a/monailabel/monaivista/lib/transforms/__init__.py
+++ /dev/null
@@ -1,10 +0,0 @@
-# Copyright (c) MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
diff --git a/monailabel/monaivista/lib/transforms/transforms.py b/monailabel/monaivista/lib/transforms/transforms.py
deleted file mode 100644
index 65a509b..0000000
--- a/monailabel/monaivista/lib/transforms/transforms.py
+++ /dev/null
@@ -1,528 +0,0 @@
-# Copyright (c) MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-import copy
-import logging
-from typing import Dict, Hashable, Mapping
-
-import numpy as np
-import torch
-from monai.config import KeysCollection, NdarrayOrTensor
-from monai.transforms import (
- CropForeground,
- GaussianSmooth,
- Randomizable,
- Resize,
- ScaleIntensity,
- SpatialCrop,
-)
-from monai.transforms.transform import MapTransform, Transform
-
-logger = logging.getLogger(__name__)
-
-THRESHOLD_DIC = {
- "Spleen": 0.5,
- "Right Kidney": 0.5,
- "Left Kidney": 0.5,
- "Gall Bladder": 0.5,
- "Esophagus": 0.5,
- "Liver": 0.5,
- "Stomach": 0.5,
- "Arota": 0.5,
- "Postcava": 0.5,
- "Portal Vein and Splenic Vein": 0.5,
- "Pancreas": 0.5,
- "Right Adrenal Gland": 0.5,
- "Left Adrenal Gland": 0.5,
- "Duodenum": 0.5,
- "Hepatic Vessel": 0.5,
- "Right Lung": 0.5,
- "Left Lung": 0.5,
- "Colon": 0.5,
- "Intestine": 0.5,
- "Rectum": 0.5,
- "Bladder": 0.5,
- "Prostate": 0.5,
- "Left Head of Femur": 0.5,
- "Right Head of Femur": 0.5,
- "Celiac Truck": 0.5,
- "Kidney Tumor": 0.5,
- "Liver Tumor": 0.5,
- "Pancreas Tumor": 0.5,
- "Hepatic Vessel Tumor": 0.5,
- "Lung Tumor": 0.5,
- "Colon Tumor": 0.5,
- "Kidney Cyst": 0.5,
-}
-
-
-THRESHOLD_DIC_PRO = {
- "spleen": 0.5,
- "Right Kidney": 0.5,
- "Left Kidney": 0.5,
- "Gall Bladder": 0.5,
- "Esophagus": 0.5,
- "Liver": 0.5,
- "Stomach": 0.5,
- "Arota": 0.5,
- "Postcava": 0.5,
- "Portal Vein and Splenic Vein": 0.5,
- "Pancreas": 0.5,
- "Right Adrenal Gland": 0.5,
- "Left Adrenal Gland": 0.5,
- "Duodenum": 0.5,
- "Hepatic Vessel": 0.5,
- "Right Lung": 0.5,
- "Left Lung": 0.5,
- "Colon": 0.5,
- "Intestine": 0.5,
- "Rectum": 0.5,
- "Bladder": 0.5,
- "Prostate": 0.5,
- "Left Head of Femur": 0.5,
- "Right Head of Femur": 0.5,
- "Celiac Truck": 0.5,
- "Kidney Tumor": 0.5,
- "Liver Tumor": 0.5,
- "Pancreas Tumor": 0.5,
- "Hepatic Vessel Tumor": 0.5,
- "Lung Tumor": 0.5,
- "Colon Tumor": 0.5,
- "Kidney Cyst": 0.5,
- "Left Lung Upper Lobe": 0.5,
- "Left Lung Lower Lobe": 0.5,
- "Right Lung Upper Lobe": 0.5,
- "Right Lung Middle Lobe": 0.5,
- "Right Lung Lower Lobe": 0.5,
- "Vertebrae L5": 0.5,
- "Vertebrae L4": 0.5,
- "Vertebrae L3": 0.5,
- "Vertebrae L2": 0.5,
- "Vertebrae L1": 0.5,
- "Vertebrae T12": 0.5,
- "Vertebrae T11": 0.5,
- "Vertebrae T10": 0.5,
- "Vertebrae T9": 0.5,
- "Vertebrae T8": 0.5,
- "Vertebrae T7": 0.5,
- "Vertebrae T6": 0.5,
- "Vertebrae T5": 0.5,
- "Vertebrae T4": 0.5,
- "Vertebrae T3": 0.5,
- "Vertebrae T2": 0.5,
- "Vertebrae T1": 0.5,
- "Vertebrae C7": 0.5,
- "Vertebrae C6": 0.5,
- "Vertebrae C5": 0.5,
- "Vertebrae C4": 0.5,
- "Vertebrae C3": 0.5,
- "Vertebrae C2": 0.5,
- "Vertebrae C1": 0.5,
- "Trachea": 0.5,
- "Heart Myocardium": 0.5,
- "Left Heart Atrium": 0.5,
- "Left Heart Ventricle": 0.5,
- "Right Heart Atrium": 0.5,
- "Right Heart Ventricle": 0.5,
- "Pulmonary Artery": 0.5,
- "Brain": 0.5,
- "Left Iliac Artery": 0.5,
- "Right Iliac Artery": 0.5,
- "Left Iliac Vena": 0.5,
- "Right Iliac Vena": 0.5,
- "Small Bowel": 0.5,
- "Left Rib 1": 0.5,
- "Left Rib 2": 0.5,
- "Left Rib 3": 0.5,
- "Left Rib 4": 0.5,
- "Left Rib 5": 0.5,
- "Left Rib 6": 0.5,
- "Left Rib 7": 0.5,
- "Left Rib 8": 0.5,
- "Left Rib 9": 0.5,
- "Left Rib 10": 0.5,
- "Left Rib 11": 0.5,
- "Left Rib 12": 0.5,
- "Right Rib 1": 0.5,
- "Right Rib 2": 0.5,
- "Right Rib 3": 0.5,
- "Right Rib 4": 0.5,
- "Right Rib 5": 0.5,
- "Right Rib 6": 0.5,
- "Right Rib 7": 0.5,
- "Right Rib 8": 0.5,
- "Right Rib 9": 0.5,
- "Right Rib 10": 0.5,
- "Right Rib 11": 0.5,
- "Right Rib 12": 0.5,
- "Left Humerus": 0.5,
- "Right Humerus": 0.5,
- "Left Scapula": 0.5,
- "Right Scapula": 0.5,
- "Left Clavicula": 0.5,
- "Right Clavicula": 0.5,
- "Left Hip": 0.5,
- "Right Hip": 0.5,
- "Sacrum": 0.5,
- "Face": 0.5,
- "Left Gluteus Maximus": 0.5,
- "Right Gluteus Maximus": 0.5,
- "Left Gluteus Medius": 0.5,
- "Right Gluteus Medius": 0.5,
- "Left Gluteus Minimus": 0.5,
- "Right Gluteus Minimus": 0.5,
- "Left Autochthon": 0.5,
- "Right Autochthon": 0.5,
- "Left iliopsoas": 0.5,
- "Right iliopsoas": 0.5,
-}
-
-
-class BinaryMaskd(MapTransform):
- def __init__(self, keys: KeysCollection, allow_missing_keys: bool = False):
- """
- Convert to single label - This should actually create the heat map for the first stage
-
- :param keys: The ``keys`` parameter will be used to get and set the actual data item to transform
-
- """
- super().__init__(keys, allow_missing_keys)
-
- def __call__(self, data):
- d: Dict = dict(data)
- for key in self.key_iterator(d):
- d[key][d[key] > 0] = 1
- return d
-
-
-class PlaceCroppedAread(MapTransform):
- def __init__(self, keys: KeysCollection, allow_missing_keys: bool = False):
- """
- Place the ROI predicted in the full image
-
- :param keys: The ``keys`` parameter will be used to get and set the actual data item to transform
-
- """
- super().__init__(keys, allow_missing_keys)
-
- def __call__(self, data):
- d: Dict = dict(data)
- for _ in self.key_iterator(d):
- final_pred = np.zeros(
- (1, d["original_size"][-3], d["original_size"][-2], d["original_size"][-1]), dtype=np.float32
- )
- # Undo/invert the resize of d["pred"] #
- d["pred"] = Resize(spatial_size=d["cropped_size"], mode="nearest")(d["pred"])
- final_pred[
- :,
- d["slices_cropped"][-3][0] : d["slices_cropped"][-3][1],
- d["slices_cropped"][-2][0] : d["slices_cropped"][-2][1],
- d["slices_cropped"][-1][0] : d["slices_cropped"][-1][1],
- ] = d["pred"]
- d["pred"] = final_pred * int(d["current_label"])
- return d
-
-
-class CropAndCreateSignald(MapTransform):
- def __init__(self, keys: KeysCollection, signal_key, allow_missing_keys: bool = False):
- """
- Based on the centroids:
-
- 1/ Crop the image around the centroid,
- 2/ Create Gaussian smoothed signal
-
- :param keys: The ``keys`` parameter will be used to get and set the actual data item to transform
-
- """
- super().__init__(keys, allow_missing_keys)
- self.signal_key = signal_key
-
- def __call__(self, data):
- d: Dict = dict(data)
- for key in self.key_iterator(d):
- ###########
- # Crop the image
- ###########
- d["current_label"] = list(d["centroids"][0].values())[0][-4]
-
- (
- x,
- y,
- z,
- ) = (
- list(d["centroids"][0].values())[0][-3],
- list(d["centroids"][0].values())[0][-2],
- list(d["centroids"][0].values())[0][-1],
- )
- current_size = d[key].shape[1:]
- original_size = d[key].meta["spatial_shape"]
- x = int(x * current_size[0] / original_size[0])
- y = int(y * current_size[1] / original_size[1])
- z = int(z * current_size[2] / original_size[2])
-
- # Cropping
- cropper = SpatialCrop(roi_center=[x, y, z], roi_size=(96, 96, 64))
-
- slices_cropped = [
- [cropper.slices[-3].start, cropper.slices[-3].stop],
- [cropper.slices[-2].start, cropper.slices[-2].stop],
- [cropper.slices[-1].start, cropper.slices[-1].stop],
- ]
- d["slices_cropped"] = slices_cropped
- d[key] = cropper(d[key])
-
- cropped_size = d[key].shape[1:]
- d["cropped_size"] = cropped_size
-
- #################################
- # Create signal based on centroid
- #################################
- signal = torch.zeros_like(d[key])
- signal[:, cropped_size[0] // 2, cropped_size[1] // 2, cropped_size[2] // 2] = 1.0
-
- sigma = 1.6 + (d["current_label"] - 1.0) * 0.1
- signal = GaussianSmooth(sigma)(signal)
- d[self.signal_key] = signal
-
- return d
-
-
-class GetOriginalInformation(MapTransform):
- def __init__(self, keys: KeysCollection, allow_missing_keys: bool = False):
- """
- Get information from original image
-
- """
- super().__init__(keys, allow_missing_keys)
-
- def __call__(self, data):
- d: Dict = dict(data)
- for key in self.key_iterator(d):
- d["original_size"] = d[key].shape[-3], d[key].shape[-2], d[key].shape[-1]
- return d
-
-
-class AddCentroidFromClicks(Transform, Randomizable):
- def __init__(self, label_names, key_label="label", key_clicks="foreground", key_centroids="centroids"):
- self.label_names = label_names
- self.key_label = key_label
- self.key_clicks = key_clicks
- self.key_centroids = key_centroids
-
- def __call__(self, data):
- d: Dict = dict(data)
-
- clicks = d.get(self.key_clicks, [])
- if clicks:
- label = d.get(self.key_label, "label")
- label_idx = self.label_names.get(label, 0)
- for click in clicks:
- d[self.key_centroids] = [{f"label_{label_idx}": [label_idx, click[-3], click[-2], click[-1]]}]
-
- logger.info(f"Using Centroid: {label} => {d[self.key_centroids]}")
- return d
-
-
-class CacheObjectd(MapTransform):
- def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]:
- d: Dict = dict(data)
- for key in self.key_iterator(d):
- cache_key = f"{key}_cached"
- if d.get(cache_key) is None:
- d[cache_key] = copy.deepcopy(d[key])
- return d
-
-
-class ThreshMergeLabeld(MapTransform):
- def __init__(self, keys: KeysCollection, allow_missing_keys: bool = False):
- """
- Normalize label values according to label names dictionary
-
- Args:
- keys: The ``keys`` parameter will be used to get and set the actual data item to transform
- label_names: all label names
- """
- super().__init__(keys, allow_missing_keys)
-
- def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]:
- d: Dict = dict(data)
- class_prompts = d.get("class_prompts", None)
- for key in self.key_iterator(d):
- C, W, H, D = d[key].shape
-
- threshold_list = []
- if class_prompts:
- for organ in class_prompts:
- for idx, k in enumerate(THRESHOLD_DIC.keys()):
- if organ == idx:
- threshold_list.append(THRESHOLD_DIC[k])
- else:
- for k, value in THRESHOLD_DIC.items():
- threshold_list.append(value)
- threshold_list = torch.tensor(threshold_list).repeat(1).reshape(len(threshold_list), 1, 1, 1).cuda()
-
- pred_hard = d[key] > threshold_list
-
- print("in post transform before merge pred shape: {}".format(pred_hard.shape))
- new_pred = torch.zeros(1, W, H, D)
-
- if class_prompts:
- for idx, item in enumerate(class_prompts):
- new_pred[0][pred_hard[idx] == 1] = item + 1
- else:
- for i in range(d[key].shape[0]):
- new_pred[0][pred_hard[i] == 1] = i + 1
-
- print("in post transform after merge pred shape: {}".format(new_pred.shape))
- print("Hey values: {}".format(np.unique(new_pred)))
-
- d[key] = new_pred
- return d
-
-
-class ThreshMergeLabelProd(MapTransform):
- def __init__(self, keys: KeysCollection, allow_missing_keys: bool = False):
- """
- Normalize label values according to label names dictionary
-
- Args:
- keys: The ``keys`` parameter will be used to get and set the actual data item to transform
- label_names: all label names
- """
- super().__init__(keys, allow_missing_keys)
-
- def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]:
- d: Dict = dict(data)
- class_prompts = d.get("class_prompts", None)
- for key in self.key_iterator(d):
- C, W, H, D = d[key].shape
-
- threshold_list = []
- if class_prompts:
- for organ in class_prompts:
- for idx, k in enumerate(THRESHOLD_DIC_PRO.keys()):
- if organ == idx:
- threshold_list.append(THRESHOLD_DIC_PRO[k])
- else:
- for k, value in THRESHOLD_DIC_PRO.items():
- threshold_list.append(value)
- threshold_list = torch.tensor(threshold_list).repeat(1).reshape(len(threshold_list), 1, 1, 1).cuda()
-
- pred_hard = d[key] > threshold_list
-
- print("in post transform before merge pred shape: {}".format(pred_hard.shape))
- new_pred = torch.zeros(1, W, H, D)
-
- if class_prompts:
- for idx, item in enumerate(class_prompts):
- new_pred[0][pred_hard[idx] == 1] = item + 1
- else:
- for i in range(d[key].shape[0]):
- new_pred[0][pred_hard[i] == 1] = i + 1
-
- print("in post transform after merge pred shape: {}".format(new_pred.shape))
- print("Hey values: {}".format(np.unique(new_pred)))
-
- d[key] = new_pred
- return d
-
-
-class ThreshMergeLabeld_bk(MapTransform):
- def __init__(self, keys: KeysCollection, allow_missing_keys: bool = False):
- """
- Normalize label values according to label names dictionary
-
- Args:
- keys: The ``keys`` parameter will be used to get and set the actual data item to transform
- label_names: all label names
- """
- super().__init__(keys, allow_missing_keys)
-
- def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]:
- d: Dict = dict(data)
- class_prompts = None
- for key in self.key_iterator(d):
- C, W, H, D = d[key].shape
-
- threshold_list = []
-
- if class_prompts:
- for organ in class_prompts:
- for idx, k in enumerate(THRESHOLD_DIC.keys()):
- if organ == idx:
- threshold_list.append(THRESHOLD_DIC[k])
- else:
- for k, value in THRESHOLD_DIC.items():
- threshold_list.append(value)
- threshold_list = torch.tensor(threshold_list).repeat(1).reshape(len(threshold_list), 1, 1, 1).cuda()
-
- pred_hard = d[key] > threshold_list
-
- print("in post transform before merge pred shape: {}".format(pred_hard.shape))
- new_pred = torch.zeros(1, W, H, D)
-
- if class_prompts:
- for idx, item in enumerate(class_prompts):
- new_pred[0][pred_hard[idx] == 1] = item + 1
- else:
- for i in range(d[key].shape[0]):
- new_pred[0][pred_hard[i] == 1] = i + 1
-
- print("in post transform after merge pred shape: {}".format(new_pred.shape))
-
- d[key].array = new_pred
- return d
-
-
-class ThreshMergeLabelPFd(MapTransform):
- def __init__(self, keys: KeysCollection, allow_missing_keys: bool = False):
- """
- Normalize label values according to label names dictionary
-
- Args:
- keys: The ``keys`` parameter will be used to get and set the actual data item to transform
- label_names: all label names
- """
- super().__init__(keys, allow_missing_keys)
-
- def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]:
- d: Dict = dict(data)
- class_prompts = d.get("class_prompts", None)
- for key in self.key_iterator(d):
- C, W, H, D = d[key].shape
-
- threshold_list = []
- if class_prompts:
- for organ in class_prompts:
- for idx, k in enumerate(THRESHOLD_DIC_PRO.keys()):
- if organ == idx:
- threshold_list.append(THRESHOLD_DIC_PRO[k])
- else:
- for k, value in THRESHOLD_DIC_PRO.items():
- threshold_list.append(value)
- threshold_list = torch.tensor(threshold_list).repeat(1).reshape(len(threshold_list), 1, 1, 1).cuda()
-
- pred_hard = d[key] > threshold_list
-
- print("in post transform before merge pred shape: {}".format(pred_hard.shape))
- new_pred = torch.zeros(1, W, H, D)
-
- if class_prompts:
- for idx, item in enumerate(class_prompts):
- new_pred[0][pred_hard[idx] == 1] = item + 1
- else:
- for i in range(d[key].shape[0]):
- new_pred[0][pred_hard[i] == 1] = i + 1
-
- print("in post transform after merge pred shape: {}".format(new_pred.shape))
- print("Hey values: {}".format(np.unique(new_pred)))
-
- d[key] = new_pred
- return d
diff --git a/monailabel/monaivista/lib/writer.py b/monailabel/monaivista/lib/writer.py
deleted file mode 100644
index b193225..0000000
--- a/monailabel/monaivista/lib/writer.py
+++ /dev/null
@@ -1,386 +0,0 @@
-# Copyright (c) MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-import logging
-import tempfile
-from typing import Any, Dict, Iterable, List, Optional, Tuple
-
-import itk
-import nrrd
-import numpy as np
-import torch
-from monai.data import MetaTensor
-from monai.data.image_writer import NibabelWriter
-from monailabel.utils.others.detection import create_slicer_detection_json
-from monailabel.utils.others.generic import file_ext
-from monailabel.utils.others.pathology import (
- create_asap_annotations_xml,
- create_dsa_annotations_json,
-)
-
-logger = logging.getLogger(__name__)
-
-
-def write_nifti(data, filename, affine=None, original_affine=None, output_dtype=np.float32):
- writer = NibabelWriter(output_dtype=output_dtype)
- writer.set_data_array(data, channel_dim=None, spatial_ndim=None)
- writer.set_metadata({"affine": affine, "original_affine": original_affine})
- writer.write(filename)
-
-
-def write_itk(image_np, output_file, affine, dtype, compress):
- if isinstance(image_np, torch.Tensor):
- image_np = image_np.numpy()
- if isinstance(affine, torch.Tensor):
- affine = affine.numpy()
- if len(image_np.shape) >= 2:
- image_np = image_np.transpose().copy()
- if dtype:
- image_np = image_np.astype(dtype)
-
- result_image = itk.image_from_array(image_np)
- logger.debug(f"ITK Image size: {itk.size(result_image)}")
-
- # https://github.com/RSIP-Vision/medio/blob/master/medio/metadata/affine.py#L108-L121
- if affine is not None:
- convert_aff_mat = np.diag([-1, -1, 1, 1])
- if affine.shape[0] == 3: # Handle RGB (2D Image)
- convert_aff_mat = np.diag([-1, -1, 1])
- affine = convert_aff_mat @ affine
-
- dim = affine.shape[0] - 1
- _origin_key = (slice(-1), -1)
- _m_key = (slice(-1), slice(-1))
-
- origin = affine[_origin_key]
- spacing = np.linalg.norm(affine[_m_key] @ np.eye(dim), axis=0)
- direction = affine[_m_key] @ np.diag(1 / spacing)
-
- logger.debug(f"Affine: {affine}")
- logger.debug(f"Origin: {origin}")
- logger.debug(f"Spacing: {spacing}")
- logger.debug(f"Direction: {direction}")
-
- result_image.SetDirection(itk.matrix_from_array(direction))
- result_image.SetSpacing(spacing)
- result_image.SetOrigin(origin)
-
- itk.imwrite(result_image, output_file, compress)
-
-
-def write_seg_nrrd(
- image_np: np.ndarray,
- output_file: str,
- dtype: type,
- affine: np.ndarray,
- labels: List[str],
- color_map: Optional[Dict[str, List[float]]] = None,
- index_order: str = "C",
- space: str = "left-posterior-superior",
-) -> None:
- """Write multi-channel seg.nrrd file.
-
- Args:
- image_np: Image as numpy ndarray
- output_file: Output file path that the seg.nrrd file should be saved to
- dtype: numpy type e.g. float32
- affine: Affine matrix
- labels: Labels of image segment which will be written to the nrrd header
- color_map: Mapping from segment_name(str) to it's color e.g. {'heart': [255/255, 244/255, 209/255]}
- index_order: Either 'C' or 'F' (see nrrd.write() documentation)
-
- Raises:
- ValueError: In case affine is not provided
- ValueError: In case labels are not provided
- """
- if isinstance(image_np, torch.Tensor):
- image_np = image_np.numpy()
- if isinstance(affine, torch.Tensor):
- affine = affine.numpy()
- image_np = image_np.transpose().copy()
- if dtype:
- image_np = image_np.astype(dtype)
-
- if not isinstance(labels, Iterable):
- raise ValueError("Labels have to be defined, e.g. as a list")
-
- header: Dict[str, Any] = {}
- for i, segment_name in enumerate(labels):
- header.update(
- {
- f"Segment{i}_ID": segment_name,
- f"Segment{i}_Name": segment_name,
- }
- )
- if color_map is not None:
- header[f"Segment{i}_Color"] = " ".join(list(map(str, color_map[segment_name])))
-
- if affine is None:
- raise ValueError("Affine matrix has to be defined")
-
- kinds = ["list", "domain", "domain", "domain"]
-
- convert_aff_mat = np.diag([-1, -1, 1, 1])
- affine = convert_aff_mat @ affine
-
- _origin_key = (slice(-1), -1)
- origin = affine[_origin_key]
-
- space_directions = np.array(
- [
- [np.nan, np.nan, np.nan],
- affine[0, :3],
- affine[1, :3],
- affine[2, :3],
- ]
- )
-
- header.update(
- {
- "kinds": kinds,
- "space directions": space_directions,
- "space origin": origin,
- "space": space,
- }
- )
- nrrd.write(
- output_file,
- image_np,
- header=header,
- index_order=index_order,
- )
-
-
-class Writer:
- def __init__(
- self,
- label="pred",
- json=None,
- ref_image=None,
- key_extension="result_extension",
- key_dtype="result_dtype",
- key_compress="result_compress",
- key_write_to_file="result_write_to_file",
- meta_key_postfix="meta_dict",
- nibabel=False,
- embedding=False,
- ):
- self.label = label
- self.json = json
- self.ref_image = ref_image if ref_image else label
-
- # User can specify through params
- self.key_extension = key_extension
- self.key_dtype = key_dtype
- self.key_compress = key_compress
- self.key_write_to_file = key_write_to_file
- self.meta_key_postfix = meta_key_postfix
- self.nibabel = nibabel
- self.embedding = embedding
-
- def __call__(self, data) -> Tuple[Any, Any]:
- logger.setLevel(data.get("logging", "INFO").upper())
-
- path = data.get("image_path")
- ext = file_ext(path) if path else None
- dtype = data.get(self.key_dtype, None)
- compress = data.get(self.key_compress, False)
- write_to_file = data.get(self.key_write_to_file, True)
-
- ext = data.get(self.key_extension) if data.get(self.key_extension) else ext
- write_to_file = write_to_file if ext else False
- logger.info(f"Result ext: {ext}; write_to_file: {write_to_file}; dtype: {dtype}")
-
- if isinstance(data[self.label], MetaTensor):
- image_np = data[self.label].array
- else:
- image_np = data[self.label]
-
- # Always using Restored as the last transform before writing
- meta_dict = data.get(f"{self.ref_image}_{self.meta_key_postfix}")
- affine = meta_dict.get("affine") if meta_dict else None
- if affine is None and isinstance(data[self.ref_image], MetaTensor):
- affine = data[self.ref_image].affine
-
- logger.debug(f"Image: {image_np.shape}; Data Image: {data[self.label].shape}")
-
- output_file = None
- output_json = data.get(self.json, {})
-
- if self.embedding:
- write_to_file = False
- output_file = tempfile.NamedTemporaryFile(suffix=ext).name
- write_h5(image_np, output_file)
-
- if write_to_file:
- output_file = tempfile.NamedTemporaryFile(suffix=ext).name
- logger.debug(f"Saving Image to: {output_file}")
-
- if self.is_multichannel_image(image_np):
- if ext != ".seg.nrrd":
- logger.warning(
- f"Using extension '{ext}' with multi-channel 4D label will probably fail"
- + "Consider to use extension '.seg.nrrd'"
- )
- labels = data.get("labels")
- color_map = data.get("color_map")
- logger.debug("Using write_seg_nrrd...")
- write_seg_nrrd(image_np, output_file, dtype, affine, labels, color_map)
- # Issue with slicer:: https://discourse.itk.org/t/saving-non-orthogonal-volume-in-nifti-format/2760/22
- elif self.nibabel and ext and ext.lower() in [".nii", ".nii.gz"]:
- logger.debug("Using MONAI write_nifti...")
- write_nifti(image_np, output_file, affine=affine, output_dtype=dtype)
- else:
- write_itk(image_np, output_file, affine if len(image_np.shape) > 2 else None, dtype, compress)
- else:
- output_file = image_np
-
- return output_file, output_json
-
- def is_multichannel_image(self, image_np: np.ndarray) -> bool:
- """Check if the provided image contains multiple channels
-
- Args:
- image_np : Expected shape (channels, width, height, batch)
-
- Returns:
- bool: If this is a multi-channel image or not
- """
- return len(image_np.shape) == 4 and image_np.shape[0] > 1
-
-
-def write_h5(data, filename, affine=None, original_affine=None, output_dtype=np.float32):
- writer = NibabelWriter(output_dtype=output_dtype)
- writer.set_data_array(data, channel_dim=None, spatial_ndim=None)
- writer.set_metadata({"affine": affine, "original_affine": original_affine})
- writer.write(filename)
-
-
-class ClassificationWriter:
- def __init__(self, label="pred", label_names=None):
- self.label = label
- self.label_names = label_names
-
- def __call__(self, data) -> Tuple[Any, Any]:
- logger.info(data[self.label].array)
-
- result = []
- for idx, score in enumerate(data[self.label]):
- name = f"label_{idx}"
- name = self.label_names.get(idx) if self.label_names else name
- if name:
- result.append({"idx": idx, "label": name, "score": float(score)})
-
- return None, {"prediction": result}
-
-
-class PolygonWriter:
- def __init__(
- self,
- label="pred",
- json="result",
- key_write_to_file="result_write_to_file",
- key_annotations="annotations",
- key_label_colors="label_colors",
- key_output_format="output",
- ):
- self.label = label
- self.json = json
- self.key_write_to_file = key_write_to_file
- self.key_annotations = key_annotations
- self.key_label_colors = key_label_colors
- self.key_output_format = key_output_format
- self.format = format
-
- def __call__(self, data) -> Tuple[Any, Any]:
- loglevel = data.get("logging", "INFO").upper()
- logger.setLevel(loglevel)
-
- output = data.get(self.key_output_format, "dsa")
- logger.info(f"+++ Output Type: {output}")
-
- output_json = data.get(self.json, {})
- write_to_file = data.get(self.key_write_to_file, True)
- if not write_to_file:
- return None, output_json
-
- res_json = {
- "name": f"MONAILabel Annotations - {data.get('model')}",
- "description": data.get("description"),
- "model": data.get("model"),
- "location": data.get("location"),
- "size": data.get("size"),
- "annotations": [output_json],
- "latencies": data.get("latencies"),
- }
-
- output_file = None
- if output == "asap":
- logger.info("+++ Generating ASAP XML Annotation")
- output_file, _ = create_asap_annotations_xml(res_json, loglevel=loglevel)
- elif output == "dsa":
- logger.info("+++ Generating DSA JSON Annotation")
- output_file, _ = create_dsa_annotations_json(res_json, loglevel=loglevel)
- else:
- logger.info("+++ Return Default JSON Annotation")
-
- return output_file, res_json
-
-
-class DetectionWriter:
- def __init__(
- self,
- json="result",
- pred_box_key="box",
- pred_label_key="label",
- key_write_to_file="result_write_to_file",
- key_output_format="slicer",
- ):
- self.json = json
- self.pred_box_key = pred_box_key
- self.pred_label_key = pred_label_key
- self.key_write_to_file = key_write_to_file
- self.key_output_format = key_output_format
- self.format = format
-
- def __call__(self, data) -> Tuple[Any, Any]:
- loglevel = data.get("logging", "INFO").upper()
- logger.setLevel(loglevel)
-
- output = data.get(self.key_output_format, "slicer")
- logger.info(f"+++ Output Type: {output}")
-
- output_json = data.get(self.json, {})
- write_to_file = data.get(self.key_write_to_file, True)
- if not write_to_file:
- return None, output_json
-
- res_json = {
- "name": f"MONAILabel Annotations - {data.get('model')}",
- "description": data.get("description"),
- "model": data.get("model"),
- "location": data.get("location"),
- "size": data.get("size"),
- "box": data.get(self.pred_box_key).cpu().detach().tolist(),
- "label": data.get(self.pred_label_key).cpu().detach().tolist(),
- "image": data.get("image_path", None),
- "latencies": data.get("latencies"),
- }
-
- output_files = None
-
- if output == "slicer":
- logger.info("+++ Generating Slicer Detection ROI Node JSON file")
- output_files, _ = create_slicer_detection_json(res_json, loglevel=loglevel)
- else:
- logger.info("+++ Return Default JSON Annotation")
-
- return output_files, res_json
diff --git a/monailabel/monaivista/main.py b/monailabel/monaivista/main.py
deleted file mode 100644
index 963b1bd..0000000
--- a/monailabel/monaivista/main.py
+++ /dev/null
@@ -1,268 +0,0 @@
-# Copyright (c) MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-import json
-import logging
-import os
-from typing import Dict
-
-import lib.configs
-from lib.class_utils import get_class_names
-from monailabel.interfaces.app import MONAILabelApp
-from monailabel.interfaces.config import TaskConfig
-from monailabel.interfaces.datastore import Datastore
-from monailabel.interfaces.tasks.infer_v2 import InferTask
-from monailabel.interfaces.tasks.strategy import Strategy
-from monailabel.interfaces.tasks.train import TrainTask
-from monailabel.tasks.activelearning.first import First
-from monailabel.tasks.activelearning.random import Random
-
-# bundle
-from monailabel.tasks.infer.bundle import BundleInferTask
-from monailabel.tasks.train.bundle import BundleTrainTask
-
-# from monailabel.utils.others.class_utils import get_class_names
-from monailabel.utils.others.generic import get_bundle_models, strtobool
-from monailabel.utils.others.planner import HeuristicPlanner
-
-import monailabel
-
-logger = logging.getLogger(__name__)
-
-
-class MyApp(MONAILabelApp):
- def __init__(self, app_dir, studies, conf):
- self.model_dir = os.path.join(app_dir, "model")
-
- configs = {}
- for c in get_class_names(lib.configs, "TaskConfig"):
- # print("!!!!!!:{}".format(c))
- name = c.split(".")[-2].lower()
- configs[name] = c
-
- configs = {k: v for k, v in sorted(configs.items())}
-
- # Load models from app model implementation, e.g., --conf models
- models = conf.get("models")
- if not models:
- print("")
- print("---------------------------------------------------------------------------------------")
- print("Provide --conf models ")
- print("Following are the available models. You can pass comma (,) seperated names to pass multiple")
- print(f" {', '.join(configs.keys())}")
- print("---------------------------------------------------------------------------------------")
- print("")
- exit(-1)
-
- models = models.split(",")
- models = [m.strip() for m in models]
- invalid = [m for m in models if m != "all" and not configs.get(m)]
- if invalid:
- print("")
- print("---------------------------------------------------------------------------------------")
- print(f"Invalid Model(s) are provided: {invalid}")
- print("Following are the available models. You can pass comma (,) seperated names to pass multiple")
- print(f" {', '.join(configs.keys())}")
- print("---------------------------------------------------------------------------------------")
- print("")
- exit(-1)
-
- # Use Heuristic Planner to determine target spacing and spatial size based on dataset+gpu
- spatial_size = json.loads(conf.get("spatial_size", "[48, 48, 32]"))
- target_spacing = json.loads(conf.get("target_spacing", "[1.0, 1.0, 1.0]"))
- self.heuristic_planner = strtobool(conf.get("heuristic_planner", "false"))
- self.planner = HeuristicPlanner(spatial_size=spatial_size, target_spacing=target_spacing)
-
- # app models
- self.models: Dict[str, TaskConfig] = {}
- for n in models:
- for k, v in configs.items():
- if self.models.get(k):
- continue
- if n == k or n == "all":
- logger.info(f"+++ Adding Model: {k} => {v}")
- self.models[k] = eval(f"{v}()")
- self.models[k].init(k, self.model_dir, conf, self.planner)
- logger.info(f"+++ Using Models: {list(self.models.keys())}")
-
- # Load models from bundle config files, local or released in Model-Zoo, e.g., --conf bundles
- self.bundles = get_bundle_models(app_dir, conf, conf_key="bundles") if conf.get("bundles") else None
-
- super().__init__(
- app_dir=app_dir,
- studies=studies,
- conf=conf,
- name=f"MONAILabel - monaivista ({monailabel.__version__})",
- description="MONAI VISTA: A foundational model for medical image segmentation",
- version=monailabel.__version__,
- )
-
- def init_datastore(self) -> Datastore:
- datastore = super().init_datastore()
- if self.heuristic_planner:
- self.planner.run(datastore)
- return datastore
-
- def init_infers(self) -> Dict[str, InferTask]:
- infers: Dict[str, InferTask] = {}
-
- #################################################
- # Models
- #################################################
- for n, task_config in self.models.items():
- c = task_config.infer()
- c = c if isinstance(c, dict) else {n: c}
- for k, v in c.items():
- logger.info(f"+++ Adding Inferer:: {k} => {v}")
- infers[k] = v
-
- #################################################
- # Bundle Models
- #################################################
- if self.bundles:
- for n, b in self.bundles.items():
- i = BundleInferTask(b, self.conf)
- logger.info(f"+++ Adding Bundle Inferer:: {n} => {i}")
- infers[n] = i
-
- logger.info(infers)
- return infers
-
- def init_trainers(self) -> Dict[str, TrainTask]:
- trainers: Dict[str, TrainTask] = {}
- if strtobool(self.conf.get("skip_trainers", "false")):
- return trainers
- #################################################
- # Models
- #################################################
- for n, task_config in self.models.items():
- t = task_config.trainer()
- if not t:
- continue
-
- logger.info(f"+++ Adding Trainer:: {n} => {t}")
- trainers[n] = t
-
- #################################################
- # Bundle Models
- #################################################
- if self.bundles:
- for n, b in self.bundles.items():
- t = BundleTrainTask(b, self.conf)
- if not t or not t.is_valid():
- continue
-
- logger.info(f"+++ Adding Bundle Trainer:: {n} => {t}")
- trainers[n] = t
-
- return trainers
-
- def init_strategies(self) -> Dict[str, Strategy]:
- strategies: Dict[str, Strategy] = {
- "random": Random(),
- "first": First(),
- }
-
- if strtobool(self.conf.get("skip_strategies", "true")):
- return strategies
-
- for n, task_config in self.models.items():
- s = task_config.strategy()
- if not s:
- continue
- s = s if isinstance(s, dict) else {n: s}
- for k, v in s.items():
- logger.info(f"+++ Adding Strategy:: {k} => {v}")
- strategies[k] = v
-
- logger.info(f"Active Learning Strategies:: {list(strategies.keys())}")
- return strategies
-
-
-def main():
- """
- Example to run train/infer/scoring task(s) locally without actually running MONAI Label Server
- """
- import argparse
- import shutil
- from pathlib import Path
-
- from monailabel.utils.others.generic import device_list, file_ext
-
- os.putenv("MASTER_ADDR", "127.0.0.1")
- os.putenv("MASTER_PORT", "1234")
-
- logging.basicConfig(
- level=logging.INFO,
- format="[%(asctime)s] [%(process)s] [%(threadName)s] [%(levelname)s] (%(name)s:%(lineno)d) - %(message)s",
- datefmt="%Y-%m-%d %H:%M:%S",
- force=True,
- )
-
- home = str(Path.home())
- studies = f"{home}/Dataset/Radiology/WholeBodyCTDataset/test"
-
- parser = argparse.ArgumentParser()
- parser.add_argument("-s", "--studies", default=studies)
- parser.add_argument("-m", "--model", default="vista_point_2pt5")
- parser.add_argument("-t", "--test", default="infer", choices=("train", "infer"))
- args = parser.parse_args()
-
- app_dir = os.path.dirname(__file__)
- studies = args.studies
- conf = {
- "models": args.model,
- "preload": "false",
- }
-
- app = MyApp(app_dir, studies, conf)
-
- # Infer
- if args.test == "infer":
- sample = app.next_sample(request={"strategy": "first"})
- image_id = sample["id"]
- image_path = sample["path"]
-
- # Run on all devices
- for device in device_list():
- res = app.infer(request={"model": args.model, "image": image_id, "device": device})
- label = res["file"]
- label_json = res["params"]
- test_dir = os.path.join(args.studies, "test_labels")
- os.makedirs(test_dir, exist_ok=True)
-
- label_file = os.path.join(test_dir, image_id + file_ext(image_path))
- shutil.move(label, label_file)
-
- print(label_json)
- print(f"++++ Image File: {image_path}")
- print(f"++++ Label File: {label_file}")
- break
- return
-
- # Train
- app.train(
- request={
- "model": args.model,
- "max_epochs": 10,
- "dataset": "Dataset", # PersistentDataset, CacheDataset
- "train_batch_size": 1,
- "val_batch_size": 1,
- "multi_gpu": False,
- "val_split": 0.1,
- },
- )
-
-
-if __name__ == "__main__":
- # export PYTHONPATH=~/Projects/MONAILabel:`pwd`
- # python main.py
- main()
diff --git a/monailabel/monaivista/requirements.txt b/monailabel/monaivista/requirements.txt
deleted file mode 100644
index 1e97f89..0000000
--- a/monailabel/monaivista/requirements.txt
+++ /dev/null
@@ -1,10 +0,0 @@
-# Copyright (c) MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
diff --git a/monailabel/plugins/slicer/.gitignore b/monailabel/plugins/slicer/.gitignore
deleted file mode 100644
index 1e97f89..0000000
--- a/monailabel/plugins/slicer/.gitignore
+++ /dev/null
@@ -1,10 +0,0 @@
-# Copyright (c) MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
diff --git a/monailabel/plugins/slicer/CMakeLists.txt b/monailabel/plugins/slicer/CMakeLists.txt
deleted file mode 100644
index e6bf749..0000000
--- a/monailabel/plugins/slicer/CMakeLists.txt
+++ /dev/null
@@ -1,39 +0,0 @@
-# Copyright (c) MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-cmake_minimum_required(VERSION 3.13.4)
-
-project(MONAILabel)
-
-#-----------------------------------------------------------------------------
-# Extension meta-information
-set(EXTENSION_HOMEPAGE "https://github.com/Project-MONAI/MONAILabel/tree/main/plugins/slicer/MONAILabel")
-set(EXTENSION_CATEGORY "Active Learning")
-set(EXTENSION_CONTRIBUTORS "NVIDIA, KCL")
-set(EXTENSION_DESCRIPTION "This is Active Learning solution developed under project MONAILabel")
-set(EXTENSION_ICONURL "https://github.com/Project-MONAI/MONAILabel/raw/main/plugins/slicer/MONAILabel/Resources/Icons/MONAILabel.png")
-set(EXTENSION_SCREENSHOTURLS "https://github.com/Project-MONAI/MONAILabel/raw/main/plugins/slicer/MONAILabel/Screenshots/1.png https://github.com/Project-MONAI/MONAILabel/raw/main/plugins/slicer/MONAILabel/Screenshots/2.png")
-set(EXTENSION_DEPENDS "NA") # Specified as a list or "NA" if no dependencies
-
-#-----------------------------------------------------------------------------
-# Extension dependencies
-find_package(Slicer REQUIRED)
-include(${Slicer_USE_FILE})
-
-#-----------------------------------------------------------------------------
-# Extension modules
-add_subdirectory(MONAILabel)
-add_subdirectory(MONAILabelReviewer)
-## NEXT_MODULE
-
-#-----------------------------------------------------------------------------
-include(${Slicer_EXTENSION_GENERATE_CONFIG})
-include(${Slicer_EXTENSION_CPACK})
diff --git a/monailabel/plugins/slicer/MONAI-Label.png b/monailabel/plugins/slicer/MONAI-Label.png
deleted file mode 100644
index 614a736..0000000
Binary files a/monailabel/plugins/slicer/MONAI-Label.png and /dev/null differ
diff --git a/monailabel/plugins/slicer/MONAILabel/CMakeLists.txt b/monailabel/plugins/slicer/MONAILabel/CMakeLists.txt
deleted file mode 100644
index 7d0f07b..0000000
--- a/monailabel/plugins/slicer/MONAILabel/CMakeLists.txt
+++ /dev/null
@@ -1,57 +0,0 @@
-# Copyright (c) MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-#-----------------------------------------------------------------------------
-set(MODULE_NAME MONAILabel)
-
-#-----------------------------------------------------------------------------
-set(MODULE_PYTHON_SCRIPTS
- ${MODULE_NAME}.py
- ${MODULE_NAME}Lib/__init__.py
- ${MODULE_NAME}Lib/client.py
- ${MODULE_NAME}Lib/labelcolors.py
- )
-
-set(MODULE_PYTHON_RESOURCES
- Resources/Icons/${MODULE_NAME}.png
- Resources/Icons/refresh-icon.png
- Resources/Icons/download.png
- Resources/Icons/save.png
- Resources/Icons/segment.png
- Resources/Icons/stop.png
- Resources/Icons/training.png
- Resources/Icons/upload.svg
- Resources/Icons/contour.svg
- Resources/Icons/paint.png
- Resources/Icons/eraser.png
- Resources/Icons/fg_green.png
- Resources/Icons/bg_red.png
- Resources/UI/${MODULE_NAME}.ui
- )
-
-#-----------------------------------------------------------------------------
-slicerMacroBuildScriptedModule(
- NAME ${MODULE_NAME}
- SCRIPTS ${MODULE_PYTHON_SCRIPTS}
- RESOURCES ${MODULE_PYTHON_RESOURCES}
- WITH_GENERIC_TESTS
- )
-
-#-----------------------------------------------------------------------------
-if(BUILD_TESTING)
-
- # Register the unittest subclass in the main script as a ctest.
- # Note that the test will also be available at runtime.
- slicer_add_python_unittest(SCRIPT ${MODULE_NAME}.py)
-
- # Additional build-time testing
- add_subdirectory(Testing)
-endif()
diff --git a/monailabel/plugins/slicer/MONAILabel/MONAILabel.py b/monailabel/plugins/slicer/MONAILabel/MONAILabel.py
deleted file mode 100644
index 7056586..0000000
--- a/monailabel/plugins/slicer/MONAILabel/MONAILabel.py
+++ /dev/null
@@ -1,2665 +0,0 @@
-# Copyright (c) MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-import json
-import logging
-import os
-import shutil
-import tempfile
-import time
-import traceback
-from collections import OrderedDict
-from urllib.parse import quote_plus
-
-import ctk
-import qt
-import SampleData
-import SimpleITK as sitk
-import sitkUtils
-import slicer
-import vtk
-import vtkSegmentationCore
-from MONAILabelLib import GenericAnatomyColors, MONAILabelClient
-from slicer.ScriptedLoadableModule import *
-from slicer.util import VTKObservationMixin
-
-
-class MONAILabel(ScriptedLoadableModule):
- def __init__(self, parent):
- ScriptedLoadableModule.__init__(self, parent)
- self.parent.title = "MONAILabel"
- self.parent.categories = ["Active Learning"]
- self.parent.dependencies = []
- self.parent.contributors = ["NVIDIA, KCL"]
- self.parent.helpText = """
-Active Learning solution.
-See more information in module documentation .
-"""
- self.parent.acknowledgementText = """
-Developed by NVIDIA, KCL
-"""
-
- # Additional initialization step after application startup is complete
- slicer.app.connect("startupCompleted()", self.initializeAfterStartup)
-
- def initializeAfterStartup(self):
- if not slicer.app.commandOptions().noMainWindow:
- self.settingsPanel = MONAILabelSettingsPanel()
- slicer.app.settingsDialog().addPanel("MONAI Label", self.settingsPanel)
-
-
-class _ui_MONAILabelSettingsPanel:
- def __init__(self, parent):
- vBoxLayout = qt.QVBoxLayout(parent)
-
- # settings
- groupBox = ctk.ctkCollapsibleGroupBox()
- groupBox.title = "MONAI Label Server"
- groupLayout = qt.QFormLayout(groupBox)
-
- serverUrl = qt.QLineEdit()
- groupLayout.addRow("Server address:", serverUrl)
- parent.registerProperty("MONAILabel/serverUrl", serverUrl, "text", str(qt.SIGNAL("textChanged(QString)")))
-
- serverUrlHistory = qt.QLineEdit()
- groupLayout.addRow("Server address history:", serverUrlHistory)
- parent.registerProperty(
- "MONAILabel/serverUrlHistory", serverUrlHistory, "text", str(qt.SIGNAL("textChanged(QString)"))
- )
-
- fileExtension = qt.QLineEdit()
- fileExtension.setText(".nii.gz")
- fileExtension.toolTip = "Default extension for uploading images/labels"
- groupLayout.addRow("File Extension:", fileExtension)
- parent.registerProperty(
- "MONAILabel/fileExtension", fileExtension, "text", str(qt.SIGNAL("textChanged(QString)"))
- )
-
- clientId = qt.QLineEdit()
- clientId.setText("user-xyz")
- clientId.toolTip = "Client/User ID that will be sent to MONAI Label server for reference"
- groupLayout.addRow("Client/User-ID:", clientId)
- parent.registerProperty("MONAILabel/clientId", clientId, "text", str(qt.SIGNAL("textChanged(QString)")))
-
- autoRunSegmentationCheckBox = qt.QCheckBox()
- autoRunSegmentationCheckBox.checked = False
- autoRunSegmentationCheckBox.toolTip = (
- "Enable this option to auto run segmentation if pre-trained model exists when Next Sample is fetched"
- )
- groupLayout.addRow("Auto-Run Pre-Trained Model:", autoRunSegmentationCheckBox)
- parent.registerProperty(
- "MONAILabel/autoRunSegmentationOnNextSample",
- ctk.ctkBooleanMapper(autoRunSegmentationCheckBox, "checked", str(qt.SIGNAL("toggled(bool)"))),
- "valueAsInt",
- str(qt.SIGNAL("valueAsIntChanged(int)")),
- )
-
- autoFetchNextSampleCheckBox = qt.QCheckBox()
- autoFetchNextSampleCheckBox.checked = False
- autoFetchNextSampleCheckBox.toolTip = "Enable this option to fetch Next Sample after saving the label"
- groupLayout.addRow("Auto-Fetch Next Sample:", autoFetchNextSampleCheckBox)
- parent.registerProperty(
- "MONAILabel/autoFetchNextSample",
- ctk.ctkBooleanMapper(autoFetchNextSampleCheckBox, "checked", str(qt.SIGNAL("toggled(bool)"))),
- "valueAsInt",
- str(qt.SIGNAL("valueAsIntChanged(int)")),
- )
-
- autoUpdateModelCheckBox = qt.QCheckBox()
- autoUpdateModelCheckBox.checked = False
- autoUpdateModelCheckBox.toolTip = "Enable this option to auto update model after submitting the label"
- groupLayout.addRow("Auto-Update Model:", autoUpdateModelCheckBox)
- parent.registerProperty(
- "MONAILabel/autoUpdateModelV2",
- ctk.ctkBooleanMapper(autoUpdateModelCheckBox, "checked", str(qt.SIGNAL("toggled(bool)"))),
- "valueAsInt",
- str(qt.SIGNAL("valueAsIntChanged(int)")),
- )
-
- askForUserNameCheckBox = qt.QCheckBox()
- askForUserNameCheckBox.checked = False
- askForUserNameCheckBox.toolTip = (
- "Enable this option to ask for the user name every time the MONAILabel "
- + "extension is loaded for the first time"
- )
- groupLayout.addRow("Ask For User Name:", askForUserNameCheckBox)
- parent.registerProperty(
- "MONAILabel/askForUserName",
- ctk.ctkBooleanMapper(askForUserNameCheckBox, "checked", str(qt.SIGNAL("toggled(bool)"))),
- "valueAsInt",
- str(qt.SIGNAL("valueAsIntChanged(int)")),
- )
-
- allowOverlapCheckBox = qt.QCheckBox()
- allowOverlapCheckBox.checked = False
- allowOverlapCheckBox.toolTip = "Enable this option to allow overlapping segmentations"
- groupLayout.addRow("Allow Overlapping Segmentations:", allowOverlapCheckBox)
- parent.registerProperty(
- "MONAILabel/allowOverlappingSegments",
- ctk.ctkBooleanMapper(allowOverlapCheckBox, "checked", str(qt.SIGNAL("toggled(bool)"))),
- "valueAsInt",
- str(qt.SIGNAL("valueAsIntChanged(int)")),
- )
- allowOverlapCheckBox.connect("toggled(bool)", self.onUpdateAllowOverlap)
-
- originalLabelCheckBox = qt.QCheckBox()
- originalLabelCheckBox.checked = True
- originalLabelCheckBox.toolTip = "Enable this option to first read original label (predictions)"
- groupLayout.addRow("Original Labels:", originalLabelCheckBox)
- parent.registerProperty(
- "MONAILabel/originalLabel",
- ctk.ctkBooleanMapper(originalLabelCheckBox, "checked", str(qt.SIGNAL("toggled(bool)"))),
- "valueAsInt",
- str(qt.SIGNAL("valueAsIntChanged(int)")),
- )
-
- developerModeCheckBox = qt.QCheckBox()
- developerModeCheckBox.checked = True
- developerModeCheckBox.toolTip = "Enable this option to find options tab etc..."
- groupLayout.addRow("Developer Mode:", developerModeCheckBox)
- parent.registerProperty(
- "MONAILabel/developerMode",
- ctk.ctkBooleanMapper(developerModeCheckBox, "checked", str(qt.SIGNAL("toggled(bool)"))),
- "valueAsInt",
- str(qt.SIGNAL("valueAsIntChanged(int)")),
- )
-
- preComputeEmbeddingCheckBox = qt.QCheckBox()
- preComputeEmbeddingCheckBox.checked = True
- preComputeEmbeddingCheckBox.toolTip = "Enable this option to automatically pre-compute image embedding"
- groupLayout.addRow("Pre-Compute Embedding:", preComputeEmbeddingCheckBox)
- parent.registerProperty(
- "MONAILabel/preComputeEmbeddingMode",
- ctk.ctkBooleanMapper(preComputeEmbeddingCheckBox, "checked", str(qt.SIGNAL("toggled(bool)"))),
- "valueAsInt",
- str(qt.SIGNAL("valueAsIntChanged(int)")),
- )
-
- showSegmentsIn3DCheckBox = qt.QCheckBox()
- showSegmentsIn3DCheckBox.checked = False
- showSegmentsIn3DCheckBox.toolTip = "Enable this option to show segments in 3D (slow) after mask update..."
- groupLayout.addRow("Show Segments In 3D:", showSegmentsIn3DCheckBox)
- parent.registerProperty(
- "MONAILabel/showSegmentsIn3D",
- ctk.ctkBooleanMapper(showSegmentsIn3DCheckBox, "checked", str(qt.SIGNAL("toggled(bool)"))),
- "valueAsInt",
- str(qt.SIGNAL("valueAsIntChanged(int)")),
- )
-
- vBoxLayout.addWidget(groupBox)
- vBoxLayout.addStretch(1)
-
- def onUpdateAllowOverlap(self):
- if slicer.util.settingsValue("MONAILabel/allowOverlappingSegments", True, converter=slicer.util.toBool):
- if slicer.util.settingsValue("MONAILabel/fileExtension", None) != ".seg.nrrd":
- slicer.util.warningDisplay(
- "Overlapping segmentations are only availabel with the '.seg.nrrd' file extension! "
- + "Consider changing MONAILabel file extension."
- )
-
-
-class MONAILabelSettingsPanel(ctk.ctkSettingsPanel):
- def __init__(self, *args, **kwargs):
- ctk.ctkSettingsPanel.__init__(self, *args, **kwargs)
- self.ui = _ui_MONAILabelSettingsPanel(self)
-
-
-class MONAILabelWidget(ScriptedLoadableModuleWidget, VTKObservationMixin):
- def __init__(self, parent=None):
- """
- Called when the user opens the module the first time and the widget is initialized.
- """
- ScriptedLoadableModuleWidget.__init__(self, parent)
- VTKObservationMixin.__init__(self) # needed for parameter node observation
-
- self.logic = None
- self._parameterNode = None
- self._volumeNode = None
- self._segmentNode = None
- self._scribblesROINode = None
- self._volumeNodes = []
- self._updatingGUIFromParameterNode = False
-
- self.info = {}
- self.models = OrderedDict()
- self.trainers = OrderedDict()
- self.config = OrderedDict()
- self.current_sample = None
- self.samples = {}
- self.state = {
- "SegmentationModel": "",
- "DeepgrowModel": "",
- "ScribblesMethod": "",
- "CurrentStrategy": "",
- "CurrentTrainer": "",
- }
- self.file_ext = ".nii.gz"
-
- self.dgPositivePointListNode = None
- self.dgPositivePointListNodeObservers = []
- self.dgNegativePointListNode = None
- self.dgNegativePointListNodeObservers = []
- self.ignorePointListNodeAddEvent = False
-
- self.progressBar = None
- self.tmpdir = None
- self.timer = None
-
- self.scribblesMode = None
- self.ignoreScribblesLabelChangeEvent = False
- self.deepedit_multi_label = False
-
- self.optionsSectionIndex = 0
- self.optionsNameIndex = 0
-
- self.sammPositivePointListNode = None
- self.sammPositivePointListNodeObservers = []
- self.sammNegativePointListNode = None
- self.sammNegativePointListNodeObservers = []
- self.ignoreSAMMPointListNodeAddEvent = False
-
- def setup(self):
- """
- Called when the user opens the module the first time and the widget is initialized.
- """
- ScriptedLoadableModuleWidget.setup(self)
-
- # Load widget from .ui file (created by Qt Designer).
- # Additional widgets can be instantiated manually and added to self.layout.
- uiWidget = slicer.util.loadUI(self.resourcePath("UI/MONAILabel.ui"))
- self.layout.addWidget(uiWidget)
- self.ui = slicer.util.childWidgetVariables(uiWidget)
-
- # Set scene in MRML widgets. Make sure that in Qt designer the top-level qMRMLWidget's
- # "mrmlSceneChanged(vtkMRMLScene*)" signal in is connected to each MRML widget's.
- # "setMRMLScene(vtkMRMLScene*)" slot.
- uiWidget.setMRMLScene(slicer.mrmlScene)
-
- # These connections ensure that we update parameter node when scene is closed
- self.addObserver(slicer.mrmlScene, slicer.mrmlScene.StartCloseEvent, self.onSceneStartClose)
- self.addObserver(slicer.mrmlScene, slicer.mrmlScene.EndCloseEvent, self.onSceneEndClose)
- self.addObserver(slicer.mrmlScene, slicer.mrmlScene.NodeAddedEvent, self.onSceneEndImport)
-
- # Create logic class. Logic implements all computations that should be possible to run
- # in batch mode, without a graphical user interface.
- self.tmpdir = slicer.util.tempDirectory("slicer-monai-label")
- self.logic = MONAILabelLogic(self.tmpdir, resourcePath=self.resourcePath)
-
- # Set icons and tune widget properties
- self.ui.serverComboBox.lineEdit().setPlaceholderText("enter server address or leave empty to use default")
- self.ui.anatomyComboBox.setPlaceholderText("enter and search anatomy or leave empty")
-
- self.ui.fetchServerInfoButton.setIcon(self.icon("refresh-icon.png"))
- self.ui.sammButton.setIcon(self.icon("samm_everything.png"))
- self.ui.nextSampleButton.setIcon(self.icon("segment.png"))
- self.ui.saveLabelButton.setIcon(self.icon("save.png"))
- self.ui.trainingButton.setIcon(self.icon("training.png"))
- self.ui.stopTrainingButton.setIcon(self.icon("stop.png"))
- self.ui.uploadImageButton.setIcon(self.icon("upload.svg"))
- self.ui.importLabelButton.setIcon(self.icon("download.png"))
- self.ui.pointSegButton.setIcon(self.icon("samm_points.png"))
- self.ui.promptSegButton.setIcon(self.icon("samm_class.png"))
- self.ui.uncheckPromptButton.setIcon(self.icon("samm_reset.png"))
-
- self.ui.sammPosPlacementWidget.setMRMLScene(slicer.mrmlScene)
- self.ui.sammPosPlacementWidget.placeButton().toolTip = "Select +ve points"
- self.ui.sammPosPlacementWidget.buttonsVisible = True
- self.ui.sammPosPlacementWidget.placeButton().show()
- self.ui.sammPosPlacementWidget.deleteButton().show()
- # self.ui.sammPosPlacementWidget.setEnabled(True)
- # self.ui.sammPosPlacementWidget.setPlaceModeEnabled(True)
-
- self.ui.sammNegPlacementWidget.setMRMLScene(slicer.mrmlScene)
- self.ui.sammNegPlacementWidget.placeButton().toolTip = "Select -ve points"
- self.ui.sammNegPlacementWidget.buttonsVisible = True
- self.ui.sammNegPlacementWidget.placeButton().show()
- self.ui.sammNegPlacementWidget.deleteButton().show()
- # self.ui.sammNegPlacementWidget.setEnabled(True)
- # self.ui.sammNegPlacementWidget.setPlaceModeEnabled(True)
-
- self.ui.dgPositiveControlPointPlacementWidget.setMRMLScene(slicer.mrmlScene)
- self.ui.dgPositiveControlPointPlacementWidget.placeButton().toolTip = "Select +ve points"
- self.ui.dgPositiveControlPointPlacementWidget.buttonsVisible = False
- self.ui.dgPositiveControlPointPlacementWidget.placeButton().show()
- self.ui.dgPositiveControlPointPlacementWidget.deleteButton().show()
-
- self.ui.dgNegativeControlPointPlacementWidget.setMRMLScene(slicer.mrmlScene)
- self.ui.dgNegativeControlPointPlacementWidget.placeButton().toolTip = "Select -ve points"
- self.ui.dgNegativeControlPointPlacementWidget.buttonsVisible = False
- self.ui.dgNegativeControlPointPlacementWidget.placeButton().show()
- self.ui.dgNegativeControlPointPlacementWidget.deleteButton().show()
-
- self.ui.dgUpdateButton.setIcon(self.icon("segment.png"))
-
- # Connections
- self.ui.fetchServerInfoButton.connect("clicked(bool)", self.onClickFetchInfo)
- self.ui.serverComboBox.connect("currentIndexChanged(int)", self.onClickFetchInfo)
- self.ui.sammModelSelector.connect("currentIndexChanged(int)", self.updateParameterNodeFromGUI)
- self.ui.sammButton.connect("clicked(bool)", self.onClickSegmentation)
- self.ui.deepgrowModelSelector.connect("currentIndexChanged(int)", self.updateParameterNodeFromGUI)
- self.ui.nextSampleButton.connect("clicked(bool)", self.onNextSampleButton)
- # self.ui.trainingButton.connect("clicked(bool)", self.onTraining)
- self.ui.stopTrainingButton.connect("clicked(bool)", self.onStopTraining)
- self.ui.saveLabelButton.connect("clicked(bool)", self.onSaveLabel)
- self.ui.uploadImageButton.connect("clicked(bool)", self.onUploadImage)
- self.ui.importLabelButton.connect("clicked(bool)", self.onImportLabel)
- self.ui.labelComboBox.connect("currentIndexChanged(int)", self.onSelectLabel)
- self.ui.scribLabelComboBox.connect("currentIndexChanged(int)", self.onSelectScribLabel)
- self.ui.dgUpdateButton.connect("clicked(bool)", self.onUpdateDeepgrow)
- self.ui.dgUpdateCheckBox.setStyleSheet("padding-left: 10px;")
- self.ui.optionsSection.connect("currentIndexChanged(int)", self.onSelectOptionsSection)
- self.ui.optionsName.connect("currentIndexChanged(int)", self.onSelectOptionsName)
-
- self.ui.promptSegButton.connect("clicked(bool)", self.onSetPromptSegmentation)
- self.ui.uncheckPromptButton.connect("clicked(bool)", self.updateClassPromptTable)
-
- self.ui.pointSegButton.connect("clicked(bool)", self.onPointPromptSegmentation)
-
- self.ui.anatomyComboBox.textChanged.connect(self.filterClassPromptTable)
-
- # self.ui.sammModelSelector.connect("currentIndexChanged(int)", self.updateParameterNodeFromGUI)
-
- # Scribbles
- # brush and eraser icon from: https://tablericons.com/
- self.ui.scribblesMethodSelector.connect("currentIndexChanged(int)", self.updateParameterNodeFromGUI)
-
- self.ui.paintScribblesButton.setIcon(self.icon("paint.png"))
- self.ui.paintScribblesButton.setToolTip("Paint scribbles for selected scribble layer")
- self.ui.eraseScribblesButton.setIcon(self.icon("eraser.png"))
- self.ui.eraseScribblesButton.setToolTip("Erase scribbles for selected scribble layer")
- self.ui.updateScribblesButton.setIcon(self.icon("segment.png"))
- self.ui.updateScribblesButton.setToolTip(
- "Update label by sending scribbles to server to apply selected post processing method"
- )
-
- self.ui.brushSizeSlider.connect("valueChanged(double)", self.updateBrushSize)
- self.ui.brushSizeSlider.setToolTip("Change brush size for scribbles tool")
- self.ui.brush3dCheckbox.stateChanged.connect(self.on3dBrushCheckbox)
- self.ui.brush3dCheckbox.setToolTip("Use 3D brush to paint/erase in multiple slices in 3D")
- self.ui.updateScribblesButton.clicked.connect(self.onUpdateScribbles)
- self.ui.paintScribblesButton.clicked.connect(self.onPaintScribbles)
- self.ui.eraseScribblesButton.clicked.connect(self.onEraseScribbles)
- self.ui.scribblesSelector.connect("currentIndexChanged(int)", self.onSelectScribblesLabel)
-
- # creating editable combo box
- self.ui.scribblesSelector.addItem(self.icon("fg_green.png"), "Foreground")
- self.ui.scribblesSelector.addItem(self.icon("bg_red.png"), "Background")
- self.ui.scribblesSelector.setCurrentIndex(0)
-
- # ROI placement for scribbles
- self.ui.scribblesPlaceWidget.setButtonsVisible(False)
- self.ui.scribblesPlaceWidget.placeButton().show()
- self.ui.scribblesPlaceWidget.setMRMLScene(slicer.mrmlScene)
-
- # start with scribbles section disabled
- self.ui.scribblesCollapsibleButton.setEnabled(False)
- self.ui.scribblesCollapsibleButton.collapsed = True
-
- # embedded segment editor
- self.ui.embeddedSegmentEditorWidget.setMRMLScene(slicer.mrmlScene)
- self.ui.embeddedSegmentEditorWidget.setSegmentationNodeSelectorVisible(False)
- self.ui.embeddedSegmentEditorWidget.setSourceVolumeNodeSelectorVisible(False)
- self.ui.embeddedSegmentEditorWidget.setMRMLSegmentEditorNode(self.logic.get_segment_editor_node())
-
- # options section
- self.ui.optionsSection.addItem("infer")
- self.ui.optionsSection.addItem("train")
- self.ui.optionsSection.addItem("activelearning")
- self.ui.optionsSection.addItem("scoring")
-
- self.initializeParameterNode()
- self.updateServerUrlGUIFromSettings()
- # self.onClickFetchInfo()
-
- if slicer.util.settingsValue("MONAILabel/askForUserName", False, converter=slicer.util.toBool):
- text = qt.QInputDialog().getText(
- self.parent,
- "User Name",
- "Please enter your name:",
- qt.QLineEdit.Normal,
- slicer.util.settingsValue("MONAILabel/clientId", None),
- )
- if text:
- settings = qt.QSettings()
- settings.setValue("MONAILabel/clientId", text)
-
- def cleanup(self):
- self.removeObservers()
- shutil.rmtree(self.tmpdir, ignore_errors=True)
-
- def enter(self):
- self.initializeParameterNode()
- if self._segmentNode:
- self.updateGUIFromParameterNode()
-
- def exit(self):
- self.removeObserver(self._parameterNode, vtk.vtkCommand.ModifiedEvent, self.updateGUIFromParameterNode)
-
- def onSceneStartClose(self, caller, event):
- self.state = {
- "SegmentationModel": self.ui.sammModelSelector.currentText,
- "DeepgrowModel": self.ui.deepgrowModelSelector.currentText,
- "ScribblesMethod": self.ui.scribblesMethodSelector.currentText,
- "CurrentStrategy": self.ui.strategyBox.currentText,
- "CurrentTrainer": self.ui.trainerBox.currentText,
- # "SAMMModel": self.ui.sammModelSelector.currentText,
- }
-
- self._volumeNode = None
- self._segmentNode = None
- self._volumeNodes.clear()
- self.setParameterNode(None)
- self.current_sample = None
- self.samples.clear()
- self._scribblesROINode = None
-
- self.resetPointList(
- self.ui.dgPositiveControlPointPlacementWidget,
- self.dgPositivePointListNode,
- self.dgPositivePointListNodeObservers,
- )
- self.dgPositivePointListNode = None
- self.resetPointList(
- self.ui.dgNegativeControlPointPlacementWidget,
- self.dgNegativePointListNode,
- self.dgNegativePointListNodeObservers,
- )
- self.dgNegativePointListNode = None
-
- self.sammPositivePointListNode = None
- self.resetPointList(
- self.ui.sammPosPlacementWidget,
- self.sammPositivePointListNode,
- self.sammPositivePointListNodeObservers,
- )
- self.sammNegativePointListNode = None
- self.resetPointList(
- self.ui.sammNegPlacementWidget,
- self.sammNegativePointListNode,
- self.sammNegativePointListNodeObservers,
- )
-
- self.onResetScribbles()
-
- def resetPointList(self, markupsPlaceWidget, pointListNode, pointListNodeObservers):
- if markupsPlaceWidget.placeModeEnabled:
- markupsPlaceWidget.setPlaceModeEnabled(False)
-
- if pointListNode:
- slicer.mrmlScene.RemoveNode(pointListNode)
- self.removePointListNodeObservers(pointListNode, pointListNodeObservers)
-
- def onSceneEndClose(self, caller, event):
- if self.parent.isEntered:
- self.initializeParameterNode()
-
- def onSceneEndImport(self, caller, event):
- if not self._volumeNode:
- self.updateGUIFromParameterNode()
-
- def initializeParameterNode(self):
- self.setParameterNode(self.logic.getParameterNode())
-
- # Select default input nodes if nothing is selected yet to save a few clicks for the user
- if not self._parameterNode.GetNodeReference("InputVolume"):
- firstVolumeNode = slicer.mrmlScene.GetFirstNodeByClass("vtkMRMLScalarVolumeNode")
- if firstVolumeNode:
- self._parameterNode.SetNodeReferenceID("InputVolume", firstVolumeNode.GetID())
-
- def setParameterNode(self, inputParameterNode):
- if inputParameterNode:
- self.logic.setDefaultParameters(inputParameterNode)
-
- if self._parameterNode is not None:
- self.removeObserver(self._parameterNode, vtk.vtkCommand.ModifiedEvent, self.updateGUIFromParameterNode)
- self._parameterNode = inputParameterNode
- if self._parameterNode is not None:
- self.addObserver(self._parameterNode, vtk.vtkCommand.ModifiedEvent, self.updateGUIFromParameterNode)
-
- # Initial GUI update
- self.updateGUIFromParameterNode()
-
- def monitorTraining(self):
- status = self.isTrainingRunning(check_only=False)
- if status and status.get("status") == "RUNNING":
- info = self.logic.info()
- train_stats = info.get("train_stats")
- if not train_stats:
- return
-
- train_stats = next(iter(train_stats.values()))
-
- current = 0 if train_stats.get("total_time") else train_stats.get("epoch", 1)
- total = train_stats.get("total_epochs", 1)
- percent = max(1, 100 * current / total)
- if self.ui.trainingProgressBar.value != percent:
- self.ui.trainingProgressBar.setValue(percent)
- self.ui.trainingProgressBar.setToolTip(f"{current}/{total} epoch is completed")
-
- dice = train_stats.get("best_metric", 0)
- self.updateAccuracyBar(dice)
- return
-
- print("Training completed")
- self.ui.trainingProgressBar.setValue(100)
- self.timer.stop()
- self.timer = None
- self.ui.trainingProgressBar.setToolTip(f"Training: {status.get('status', 'DONE')}")
-
- self.ui.trainingButton.setEnabled(True)
- self.ui.stopTrainingButton.setEnabled(False)
- self.fetchInfo()
-
- def updateGUIFromParameterNode(self, caller=None, event=None):
- if self._parameterNode is None or self._updatingGUIFromParameterNode:
- return
-
- # Make sure GUI changes do not call updateParameterNodeFromGUI (it could cause infinite loop)
- self._updatingGUIFromParameterNode = True
-
- file_ext = slicer.util.settingsValue("MONAILabel/fileExtension", self.file_ext)
- self.file_ext = file_ext if file_ext else self.file_ext
-
- # Update node selectors and sliders
- self.ui.inputSelector.clear()
- for v in self._volumeNodes:
- self.ui.inputSelector.addItem(v.GetName())
- self.ui.inputSelector.setToolTip(self.current_sample.get("name", "") if self.current_sample else "")
- if self._volumeNode:
- self.ui.inputSelector.setCurrentIndex(self.ui.inputSelector.findText(self._volumeNode.GetName()))
- self.ui.inputSelector.setEnabled(False) # Allow only one active scene
-
- self.ui.uploadImageButton.setEnabled(False)
- if self.info and slicer.mrmlScene.GetFirstNodeByClass("vtkMRMLScalarVolumeNode") and self._volumeNode is None:
- self._volumeNode = slicer.mrmlScene.GetFirstNodeByClass("vtkMRMLScalarVolumeNode")
- self.initSample({"id": self._volumeNode.GetName(), "session": True}, autosegment=False)
- self.ui.inputSelector.setEnabled(False)
-
- self.ui.uploadImageButton.setEnabled(self.current_sample and self.current_sample.get("session"))
-
- self.updateSelector(self.ui.sammModelSelector, ["segmentation", "detection"], "SegmentationModel", 0)
- self.updateSelector(self.ui.deepgrowModelSelector, ["deepgrow", "deepedit"], "DeepgrowModel", 0)
- self.updateSelector(self.ui.scribblesMethodSelector, ["scribbles"], "ScribblesMethod", 0)
- # self.updateSelector(self.ui.sammModelSelector, ["segmentation", "detection"], "SegmentationModel", 0)
-
- if self.models and [k for k, v in self.models.items() if v["type"] in ("segmentation", "detection")]:
- self.ui.promptCollapsibleButton.collapsed = False
- self.ui.promptCollapsibleButton.show()
- self.ui.segmentationCollapsibleButton.hide()
-
- # self.ui.segmentationCollapsibleButton.collapsed = False
- # self.ui.segmentationCollapsibleButton.show()
- else:
- self.ui.segmentationCollapsibleButton.hide()
-
- if self.models and [k for k, v in self.models.items() if v["type"] in ("deepgrow", "deepedit")]:
- self.ui.deepgrowCollapsibleButton.collapsed = False
- self.ui.deepgrowCollapsibleButton.show()
- else:
- self.ui.deepgrowCollapsibleButton.hide()
-
- if self.models and [k for k, v in self.models.items() if v["type"] == "scribbles"]:
- self.ui.scribblesCollapsibleButton.collapsed = False
- self.ui.scribblesCollapsibleButton.show()
- else:
- self.ui.scribblesCollapsibleButton.hide()
-
- if self.info.get("trainers", {}):
- self.ui.trainWidget.show()
- else:
- self.ui.trainWidget.hide()
-
- self.ignoreScribblesLabelChangeEvent = True
- self.ui.labelComboBox.clear()
- self.ui.scribLabelComboBox.clear()
- if self._segmentNode:
- segmentation = self._segmentNode.GetSegmentation()
- totalSegments = segmentation.GetNumberOfSegments()
- segmentIds = [segmentation.GetNthSegmentID(i) for i in range(totalSegments)]
- for idx, segmentId in enumerate(segmentIds):
- segment = segmentation.GetSegment(segmentId)
- label = segment.GetName()
- if label not in ["foreground_scribbles", "background_scribbles"]:
- self.ui.labelComboBox.addItem(label)
- if label not in ["background", "foreground_scribbles", "background_scribbles"]:
- self.ui.scribLabelComboBox.addItem(label)
- else:
- for label in self.info.get("labels", {}):
- self.ui.labelComboBox.addItem(label)
- if label != "background":
- self.ui.scribLabelComboBox.addItem(label)
-
- currentLabel = self._parameterNode.GetParameter("CurrentLabel")
- idx = self.ui.labelComboBox.findText(currentLabel) if currentLabel else 0
- idx = 0 if idx < 0 < self.ui.labelComboBox.count else idx
- self.ui.labelComboBox.setCurrentIndex(idx)
-
- currentScribbleLabel = self._parameterNode.GetParameter("CurrentScribLabel")
- idx = self.ui.scribLabelComboBox.findText(currentScribbleLabel) if currentScribbleLabel else 0
- idx = 0 if idx < 0 < self.ui.scribLabelComboBox.count else idx
- self.ui.scribLabelComboBox.setCurrentIndex(idx)
- self.ignoreScribblesLabelChangeEvent = False
-
- self.ui.appComboBox.clear()
- self.ui.appComboBox.addItem(self.info.get("name", ""))
-
- datastore_stats = self.info.get("datastore", {})
- current = datastore_stats.get("completed", 0)
- total = datastore_stats.get("total", 0)
- self.ui.activeLearningProgressBar.setValue(current / max(total, 1) * 100)
- self.ui.activeLearningProgressBar.setToolTip(f"{current}/{total} samples are labeled")
-
- train_stats = self.info.get("train_stats", {})
- train_stats = next(iter(train_stats.values())) if train_stats else train_stats
-
- dice = train_stats.get("best_metric", 0)
- self.updateAccuracyBar(dice)
-
- self.ui.strategyBox.clear()
- for strategy in self.info.get("strategies", {}):
- self.ui.strategyBox.addItem(strategy)
- currentStrategy = self._parameterNode.GetParameter("CurrentStrategy")
- currentStrategy = currentStrategy if currentStrategy else self.state["CurrentStrategy"]
- self.ui.strategyBox.setCurrentIndex(self.ui.strategyBox.findText(currentStrategy) if currentStrategy else 0)
-
- self.ui.trainerBox.clear()
- trainers = self.info.get("trainers", {})
- for t in trainers:
- self.ui.trainerBox.addItem(t)
- if trainers:
- currentTrainer = self._parameterNode.GetParameter("CurrentTrainer")
- currentTrainer = currentTrainer if currentTrainer else self.state["CurrentTrainer"]
- self.ui.trainerBox.setCurrentIndex(self.ui.trainerBox.findText(currentTrainer) if currentTrainer else 0)
-
- developer_mode = slicer.util.settingsValue("MONAILabel/developerMode", True, converter=slicer.util.toBool)
- self.ui.optionsCollapsibleButton.setVisible(developer_mode)
- self.ui.promptCollapsibleButton.setVisible(developer_mode)
-
- self.computeEmbedding = slicer.util.settingsValue(
- "MONAILabel/preComputeEmbeddingMode", True, converter=slicer.util.toBool
- )
-
- # Enable/Disable
- self.ui.nextSampleButton.setEnabled(self.ui.strategyBox.count)
-
- is_training_running = True if self.info and self.isTrainingRunning() else False
- self.ui.trainingButton.setEnabled(self.info and not is_training_running and current)
- self.ui.stopTrainingButton.setEnabled(is_training_running)
- if is_training_running and self.timer is None:
- self.timer = qt.QTimer()
- self.timer.setInterval(5000)
- self.timer.connect("timeout()", self.monitorTraining)
- self.timer.start()
-
- self.ui.sammButton.setEnabled(self.ui.sammModelSelector.currentText and self._volumeNode is not None)
-
- self.ui.pointSegButton.setEnabled(self.ui.sammModelSelector.currentText and self._volumeNode is not None)
-
- # self.ui.sammButton.setEnabled(
- # self.ui.sammModelSelector.currentText and self._volumeNode is not None
- # )
-
- self.ui.promptSegButton.setEnabled(self.ui.sammModelSelector.currentText and self._volumeNode is not None)
- self.ui.uncheckPromptButton.setEnabled(self.ui.sammModelSelector.currentText and self._volumeNode is not None)
- # self.ui.uncheckPromptButton.setEnabled()
-
- self.ui.saveLabelButton.setEnabled(self._segmentNode is not None)
- self.ui.importLabelButton.setEnabled(self._segmentNode is not None)
-
- # Create empty markup point list node for deep grow +ve and -ve
- if self._segmentNode:
- if not self.dgPositivePointListNode:
- self.dgPositivePointListNode, self.dgPositivePointListNodeObservers = self.createPointListNode(
- "P", self.onDeepGrowPointListNodeModified, [0.5, 1, 0.5]
- )
- self.ui.dgPositiveControlPointPlacementWidget.setCurrentNode(self.dgPositivePointListNode)
- self.ui.dgPositiveControlPointPlacementWidget.setPlaceModeEnabled(False)
-
- if not self.dgNegativePointListNode:
- self.dgNegativePointListNode, self.dgNegativePointListNodeObservers = self.createPointListNode(
- "N", self.onDeepGrowPointListNodeModified, [0.5, 0.5, 1]
- )
- self.ui.dgNegativeControlPointPlacementWidget.setCurrentNode(self.dgNegativePointListNode)
- self.ui.dgNegativeControlPointPlacementWidget.setPlaceModeEnabled(False)
-
- self.ui.scribblesCollapsibleButton.setEnabled(self.ui.scribblesMethodSelector.count)
- self.ui.scribblesCollapsibleButton.collapsed = False
-
- if not self.sammPositivePointListNode:
- self.sammPositivePointListNode, self.sammPositivePointListNodeObservers = self.createPointListNode(
- "SAMM Pos", self.onSAMMPointListNodeModified, [0.5, 1, 0.5]
- )
- sammPosCPDisplayNode = self.sammPositivePointListNode.GetDisplayNode()
- sammPosCPDisplayNode.SetGlyphScale(0.8)
-
- self.ui.sammPosPlacementWidget.setCurrentNode(self.sammPositivePointListNode)
- self.ui.sammPosPlacementWidget.setPlaceModeEnabled(False)
-
- if not self.sammNegativePointListNode:
- self.sammNegativePointListNode, self.sammNegativePointListNodeObservers = self.createPointListNode(
- "SAMM Neg", self.onSAMMPointListNodeModified, [0.4, 0.4, 0.9]
- )
- sammNegCPDisplayNode = self.sammNegativePointListNode.GetDisplayNode()
- sammNegCPDisplayNode.SetGlyphScale(0.8)
- self.ui.sammNegPlacementWidget.setCurrentNode(self.sammNegativePointListNode)
- self.ui.sammNegPlacementWidget.setPlaceModeEnabled(False)
-
- self.ui.dgPositiveControlPointPlacementWidget.setEnabled(self.ui.deepgrowModelSelector.currentText)
- self.ui.dgNegativeControlPointPlacementWidget.setEnabled(self.ui.deepgrowModelSelector.currentText)
-
- self.ui.sammPosPlacementWidget.setEnabled(True)
- self.ui.sammNegPlacementWidget.setEnabled(True)
-
- self.deepedit_multi_label = False
- m = self.models.get(self.ui.deepgrowModelSelector.currentText) if self.models else None
- self.deepedit_multi_label = m and m.get("type") == "deepedit" and len(m.get("labels")) > 0
-
- if self.deepedit_multi_label:
- self.ui.dgLabelBackground.hide()
- self.ui.dgNegativeControlPointPlacementWidget.hide()
- self.ui.freezeUpdateCheckBox.show()
- self.ui.dgLabelForeground.setText("Landmarks:")
- else:
- self.ui.dgNegativeControlPointPlacementWidget.show()
- self.ui.freezeUpdateCheckBox.hide()
- self.ui.dgLabelForeground.setText("Foreground:")
-
- self.ui.dgUpdateCheckBox.setEnabled(self.ui.deepgrowModelSelector.currentText and self._segmentNode)
- self.ui.dgUpdateButton.setEnabled(self.ui.deepgrowModelSelector.currentText and self._segmentNode)
-
- # All the GUI updates are done
- self._updatingGUIFromParameterNode = False
-
- def updateParameterNodeFromGUI(self, caller=None, event=None):
- if self._parameterNode is None or self._updatingGUIFromParameterNode:
- return
-
- wasModified = self._parameterNode.StartModify() # Modify all properties in a single batch
-
- segmentationModelIndex = self.ui.sammModelSelector.currentIndex
- if segmentationModelIndex >= 0:
- segmentationModel = self.ui.sammModelSelector.itemText(segmentationModelIndex)
- self._parameterNode.SetParameter("SegmentationModel", segmentationModel)
-
- # sammModelIndex = self.ui.sammModelSelector.currentIndex
- # if sammModelIndex >= 0:
- # segmentationModel = self.ui.sammModelSelector.itemText(sammModelIndex)
- # self._parameterNode.SetParameter("SegmentationModel", segmentationModel)
-
- deepgrowModelIndex = self.ui.deepgrowModelSelector.currentIndex
- if deepgrowModelIndex >= 0:
- deepgrowModel = self.ui.deepgrowModelSelector.itemText(deepgrowModelIndex)
- self._parameterNode.SetParameter("DeepgrowModel", deepgrowModel)
-
- scribblesMethodIndex = self.ui.scribblesMethodSelector.currentIndex
- if scribblesMethodIndex >= 0:
- scribblesMethod = self.ui.scribblesMethodSelector.itemText(scribblesMethodIndex)
- self._parameterNode.SetParameter("ScribblesMethod", scribblesMethod)
-
- currentLabelIndex = self.ui.labelComboBox.currentIndex
- if currentLabelIndex >= 0:
- currentLabel = self.ui.labelComboBox.itemText(currentLabelIndex)
- self._parameterNode.SetParameter("CurrentLabel", currentLabel)
-
- currentScribLabelIndex = self.ui.scribLabelComboBox.currentIndex
- if currentScribLabelIndex >= 0:
- currentScribLabel = self.ui.scribLabelComboBox.itemText(currentScribLabelIndex)
- self._parameterNode.SetParameter("CurrentScribLabel", currentScribLabel)
-
- currentStrategyIndex = self.ui.strategyBox.currentIndex
- if currentStrategyIndex >= 0:
- currentStrategy = self.ui.strategyBox.itemText(currentStrategyIndex)
- self._parameterNode.SetParameter("CurrentStrategy", currentStrategy)
-
- currentTrainerIndex = self.ui.trainerBox.currentIndex
- if currentTrainerIndex >= 0:
- currentTrainer = self.ui.trainerBox.itemText(currentTrainerIndex)
- self._parameterNode.SetParameter("CurrentTrainer", currentTrainer)
-
- self._parameterNode.EndModify(wasModified)
-
- def updateSelector(self, selector, model_types, param, defaultIndex=0):
- wasSelectorBlocked = selector.blockSignals(True)
- selector.clear()
-
- for model_name, model in self.models.items():
- if model["type"] in model_types:
- selector.addItem(model_name)
- selector.setItemData(selector.count - 1, model["description"], qt.Qt.ToolTipRole)
-
- model = self._parameterNode.GetParameter(param)
- model = model if model else self.state.get(param, "")
- modelIndex = selector.findText(model)
- modelIndex = defaultIndex if modelIndex < 0 < selector.count else modelIndex
- selector.setCurrentIndex(modelIndex)
-
- try:
- modelInfo = self.models[model]
- selector.setToolTip(modelInfo["description"])
- except BaseException:
- selector.setToolTip("")
- selector.blockSignals(wasSelectorBlocked)
-
- def getSelectedOptionSection(self, index=-1):
- optionsSectionIndex = index if index >= 0 else self.ui.optionsSection.currentIndex
- optionsSectionIndex = optionsSectionIndex if optionsSectionIndex > 0 else 0
- optionsSection = self.ui.optionsSection.itemText(optionsSectionIndex)
-
- logging.info(f"Current Selection Options Section: {optionsSection}")
- mapping = {"infer": "models", "train": "trainers", "activelearning": "strategies", "scoring": "scoring"}
-
- return mapping.get(optionsSection)
-
- def getSelectedOptionName(self, index=-1):
- optionsNameIndex = index if index >= 0 else self.ui.optionsName.currentIndex
- optionsNameIndex = optionsNameIndex if optionsNameIndex > 0 else 0
- optionsName = self.ui.optionsName.itemText(optionsNameIndex)
-
- logging.info(f"Current Selection Options Name: {optionsName}")
- return optionsName
-
- def invalidateConfigTable(self, selection=-1, name=-1):
- section = self.getSelectedOptionSection(selection)
- name = self.getSelectedOptionName(name)
- if not section or not name:
- return
-
- mapping = {"infer": "models", "train": "trainers", "activelearning": "strategies", "scoring": "scoring"}
- section = mapping.get(section, section)
- for row in range(self.ui.configTable.rowCount):
- key = str(self.ui.configTable.item(row, 0).text())
- value = self.ui.configTable.item(row, 1)
-
- v = self.info.get(section, {}).get(name, {}).get("config", {}).get(key, {})
- if value is None:
- value = self.ui.configTable.cellWidget(row, 1)
- if isinstance(value, qt.QCheckBox):
- value = True if value.checked else False
- else:
- value = value.currentText
- else:
- value = str(value.text())
-
- if isinstance(v, bool):
- value = True if value else False
- elif isinstance(v, int):
- value = int(value) if value else 0
- elif isinstance(v, float):
- value = float(value) if value else 0.0
- elif isinstance(v, list):
- v.remove(value)
- v.insert(0, value)
- value = v
-
- logging.info(f"Invalidate:: {section} => {name} => {key} => {value} => {type(v)}")
- self.info.get(section, {}).get(name, {}).get("config", {})[key] = value
-
- def updateConfigTable(self, refresh=True):
- logging.info(f"updateConfigTable => refresh:{refresh}")
- section = self.getSelectedOptionSection()
- sectionConfig = self.info.get(section, {})
- if refresh:
- self.ui.optionsName.blockSignals(True)
- self.ui.optionsName.clear()
- for k in sectionConfig.keys():
- if sectionConfig[k].get("config"):
- self.ui.optionsName.addItem(k)
- if self.ui.optionsName.count:
- self.ui.optionsName.setCurrentIndex(0)
- self.ui.optionsName.blockSignals(False)
-
- name = self.getSelectedOptionName()
- nameConfig = sectionConfig.get(name, {}).get("config", {})
-
- table = self.ui.configTable
- table.clear()
- headers = ["key", "value"]
- table.setColumnCount(len(headers))
- table.setHorizontalHeaderLabels(headers)
- table.setColumnWidth(0, 250)
- table.setRowCount(len(nameConfig))
-
- n = 0
- for key, val in nameConfig.items():
- item = qt.QTableWidgetItem(key)
- table.setItem(n, 0, item)
- item.setFlags(item.flags() & ~qt.Qt.ItemIsEditable)
-
- if isinstance(val, dict) or isinstance(val, list):
- combo = qt.QComboBox()
- for m, v in enumerate(val):
- combo.addItem(v)
- combo.setCurrentIndex(0)
- table.setCellWidget(n, 1, combo)
- elif isinstance(val, bool):
- checkbox = qt.QCheckBox()
- checkbox.setChecked(val)
- table.setCellWidget(n, 1, checkbox)
- else:
- table.setItem(n, 1, qt.QTableWidgetItem(str(val) if val else ""))
-
- logging.info(f"{n} => {section} => {name} => {key} => {val}")
- n = n + 1
-
- def updateAccuracyBar(self, dice):
- self.ui.accuracyProgressBar.setValue(dice * 100)
- css = ["stop: 0 red"]
- if dice > 0.5:
- css.append(f"stop: {0.5 / dice} orange")
- if dice > 0.6:
- css.append(f"stop: {0.6 / dice} yellow")
- if dice > 0.7:
- css.append(f"stop: {0.7 / dice} lightgreen")
- if dice > 0.8:
- css.append(f"stop: {0.8 / dice} green")
- if dice > 0.9:
- css.append(f"stop: {0.9 / dice} darkgreen")
- self.ui.accuracyProgressBar.setStyleSheet(
- "QProgressBar {text-align: center;} "
- "QProgressBar::chunk {background-color: "
- "qlineargradient(x0: 0, x2: 1, " + ",".join(css) + ")}"
- )
- self.ui.accuracyProgressBar.setToolTip(f"Accuracy: {dice:.4f}")
-
- def getParamsFromConfig(self, section, name):
- self.invalidateConfigTable()
-
- mapping = {"infer": "models", "train": "trainers", "activelearning": "strategies", "scoring": "scoring"}
- section = mapping.get(section, section)
- sectionConfig = self.info.get(section, {})
- nameConfig = sectionConfig.get(name, {}).get("config", {})
-
- return {k: v[0] if isinstance(v, list) else v for k, v in nameConfig.items()}
-
- def onDeepGrowPointListNodeModified(self, observer, eventid):
- logging.debug("Deepgrow Point Event!!")
-
- if self.ignorePointListNodeAddEvent:
- return
-
- markupsNode = observer
- movingMarkupIndex = markupsNode.GetDisplayNode().GetActiveControlPoint()
- logging.debug(f"Markup point added; point ID = {movingMarkupIndex}")
-
- current_point = self.getControlPointXYZ(markupsNode, movingMarkupIndex)
-
- if not self.ui.dgUpdateCheckBox.checked:
- self.onClickDeepgrow(current_point, skip_infer=True)
- return
-
- self.onClickDeepgrow(current_point)
-
- self.ignorePointListNodeAddEvent = True
- self.onEditControlPoints(self.dgPositivePointListNode, "MONAILabel.ForegroundPoints")
- self.onEditControlPoints(self.dgNegativePointListNode, "MONAILabel.BackgroundPoints")
- self.ignorePointListNodeAddEvent = False
-
- def onSAMMPointListNodeModified(self, observer, eventid):
- logging.debug("SAMM Point Event!")
-
- if self.ignoreSAMMPointListNodeAddEvent:
- return
-
- markupsNode = observer
- movingMarkupIndex = markupsNode.GetDisplayNode().GetActiveControlPoint()
- logging.debug(f"Markup point added; point ID = {movingMarkupIndex}")
-
- self.getControlPointXYZ(markupsNode, movingMarkupIndex)
-
- # if not self.ui.dgUpdateCheckBox.checked:
- # self.onClickDeepgrow(current_point, skip_infer=True)
- # return
-
- # self.onClickSAMMPoint(current_point)
-
- self.ignoreSAMMPointListNodeAddEvent = True
- # self.onEditControlPoints(self.sammPositivePointListNode, "MONAILabel.ForegroundPoints")
- # self.onEditControlPoints(self.sammNegativePointListNode, "MONAILabel.BackgroundPoints")
- self.ignoreSAMMPointListNodeAddEvent = False
-
- def getControlPointsXYZ(self, pointListNode, name):
- v = self._volumeNode
- RasToIjkMatrix = vtk.vtkMatrix4x4()
- v.GetRASToIJKMatrix(RasToIjkMatrix)
-
- point_set = []
- n = pointListNode.GetNumberOfControlPoints()
- for i in range(n):
- coord = pointListNode.GetNthControlPointPosition(i)
-
- world = [0, 0, 0]
- pointListNode.GetNthControlPointPositionWorld(i, world)
-
- p_Ras = [coord[0], coord[1], coord[2], 1.0]
- p_Ijk = RasToIjkMatrix.MultiplyDoublePoint(p_Ras)
- p_Ijk = [round(i) for i in p_Ijk]
-
- logging.debug(f"RAS: {coord}; WORLD: {world}; IJK: {p_Ijk}")
- point_set.append(p_Ijk[0:3])
-
- logging.info(f"{name} => Current control points: {point_set}")
- return point_set
-
- def getControlPointXYZ(self, pointListNode, index):
- v = self._volumeNode
- RasToIjkMatrix = vtk.vtkMatrix4x4()
- v.GetRASToIJKMatrix(RasToIjkMatrix)
-
- coord = pointListNode.GetNthControlPointPosition(index)
-
- world = [0, 0, 0]
- pointListNode.GetNthControlPointPositionWorld(index, world)
-
- p_Ras = [coord[0], coord[1], coord[2], 1.0]
- p_Ijk = RasToIjkMatrix.MultiplyDoublePoint(p_Ras)
- p_Ijk = [round(i) for i in p_Ijk]
-
- logging.debug(f"RAS: {coord}; WORLD: {world}; IJK: {p_Ijk}")
- return p_Ijk[0:3]
-
- def onEditControlPoints(self, pointListNode, tagName):
- if pointListNode is None:
- return
-
- pointListNode.RemoveAllControlPoints()
- segmentId, segment = self.currentSegment()
- if segment and segmentId:
- v = self._volumeNode
- IjkToRasMatrix = vtk.vtkMatrix4x4()
- v.GetIJKToRASMatrix(IjkToRasMatrix)
-
- fPosStr = vtk.mutable("")
- segment.GetTag(tagName, fPosStr)
- pointset = str(fPosStr)
- logging.debug(f"{segmentId} => {segment.GetName()} Control points are: {pointset}")
-
- if fPosStr is not None and len(pointset) > 0:
- points = json.loads(pointset)
- for p in points:
- p_Ijk = [p[0], p[1], p[2], 1.0]
- p_Ras = IjkToRasMatrix.MultiplyDoublePoint(p_Ijk)
- logging.debug(f"Add Control Point: {p_Ijk} => {p_Ras}")
- pointListNode.AddControlPoint(p_Ras[0:3])
-
- def currentSegment(self):
- segmentation = self._segmentNode.GetSegmentation()
- segmentId = segmentation.GetSegmentIdBySegmentName(self.ui.labelComboBox.currentText)
- segment = segmentation.GetSegment(segmentId)
-
- logging.debug(f"Current SegmentID: {segmentId}; Segment: {segment}")
- return segmentId, segment
-
- def currentScribSegment(self):
- segmentation = self._segmentNode.GetSegmentation()
- segmentId = segmentation.GetSegmentIdBySegmentName(self.ui.scribLabelComboBox.currentText)
- segment = segmentation.GetSegment(segmentId)
-
- logging.debug(f"Current SegmentID: {segmentId}; Segment: {segment}")
- return segmentId, segment
-
- def onSelectLabel(self, caller=None, event=None):
- self.updateParameterNodeFromGUI(caller, event)
-
- self.ignorePointListNodeAddEvent = True
- self.onEditControlPoints(self.dgPositivePointListNode, "MONAILabel.ForegroundPoints")
- self.onEditControlPoints(self.dgNegativePointListNode, "MONAILabel.BackgroundPoints")
- self.ignorePointListNodeAddEvent = False
-
- def onSelectOptionsSection(self, index, caller=None, event=None):
- self.updateParameterNodeFromGUI(caller, event)
- logging.info(f"Options Section Selection Changed.... current:{index}; prev: {self.optionsSectionIndex}")
-
- self.invalidateConfigTable(self.optionsSectionIndex, self.optionsNameIndex)
- self.optionsSectionIndex = index
- self.optionsNameIndex = 0
- self.updateConfigTable()
-
- def onSelectOptionsName(self, index, caller=None, event=None):
- self.updateParameterNodeFromGUI(caller, event)
- logging.info(f"Options Name Selection Changed.... current:{index}; prev: {self.optionsNameIndex}")
-
- self.invalidateConfigTable(self.optionsSectionIndex, self.optionsNameIndex)
- self.optionsNameIndex = index
- self.updateConfigTable(refresh=False)
-
- def onSelectScribLabel(self, caller=None, event=None):
- if self.scribblesLayersPresent() and not self.ignoreScribblesLabelChangeEvent:
- if not slicer.util.confirmOkCancelDisplay(
- "This will clear current scribbles session.\n" "Are you sure to continue?"
- ):
- # undo changes to combobox
- currentScribLabel = self._parameterNode.GetParameter("CurrentScribLabel")
- logging.info(f"Cancel: reverting to original selection {currentScribLabel}")
- self.ignoreScribblesLabelChangeEvent = True
- self.ui.scribLabelComboBox.setCurrentIndex(self.ui.scribLabelComboBox.findText(currentScribLabel))
- self.ignoreScribblesLabelChangeEvent = False
- return
- self.onClearScribbles()
-
- self.updateParameterNodeFromGUI(caller, event)
-
- def icon(self, name="MONAILabel.png"):
- # It should not be necessary to modify this method
- iconPath = os.path.join(os.path.dirname(__file__), "Resources", "Icons", name)
- if os.path.exists(iconPath):
- return qt.QIcon(iconPath)
- return qt.QIcon()
-
- def updateServerSettings(self):
- self.logic.setServer(self.serverUrl())
- self.logic.setClientId(slicer.util.settingsValue("MONAILabel/clientId", "user-xyz"))
- self.saveServerUrl()
-
- def serverUrl(self):
- serverUrl = self.ui.serverComboBox.currentText
- if not serverUrl:
- serverUrl = "http://127.0.0.1:8000"
- return serverUrl.rstrip("/")
-
- def saveServerUrl(self):
- self.updateParameterNodeFromGUI()
-
- # Save selected server URL
- settings = qt.QSettings()
- serverUrl = self.ui.serverComboBox.currentText
- settings.setValue("MONAILabel/serverUrl", serverUrl)
-
- # Save current server URL to the top of history
- serverUrlHistory = settings.value("MONAILabel/serverUrlHistory")
- if serverUrlHistory:
- serverUrlHistory = serverUrlHistory.split(";")
- else:
- serverUrlHistory = []
- try:
- serverUrlHistory.remove(serverUrl)
- except ValueError:
- pass
-
- serverUrlHistory.insert(0, serverUrl)
- serverUrlHistory = serverUrlHistory[:10] # keep up to first 10 elements
- settings.setValue("MONAILabel/serverUrlHistory", ";".join(serverUrlHistory))
-
- self.updateServerUrlGUIFromSettings()
-
- def onClickFetchInfo(self):
- self.fetchInfo()
- self.updateConfigTable()
- self.updateClassPromptTable()
-
- def fetchInfo(self, showInfo=False):
- if not self.logic:
- return
-
- start = time.time()
- try:
- self.updateServerSettings()
- info = self.logic.info()
- self.info = info
- if self.info.get("config"):
- slicer.util.errorDisplay(
- "Please upgrade the monai server to latest version",
- detailedText=traceback.format_exc(),
- )
- return
- except BaseException as e:
- msg = f"Message:: {e.msg}" if hasattr(e, "msg") else ""
- slicer.util.errorDisplay(
- "Failed to fetch models from remote server. "
- "Make sure server address is correct and /info/ "
- f"is accessible in browser.\n{msg}",
- detailedText=traceback.format_exc(),
- )
- return
-
- self.models.clear()
- self.config = info.get("config", {})
-
- model_count = {}
- models = info.get("models", {})
- for k, v in models.items():
- model_type = v.get("type", "segmentation")
- model_count[model_type] = model_count.get(model_type, 0) + 1
-
- logging.debug(f"{k} = {model_type}")
- self.models[k] = v
-
- self.updateGUIFromParameterNode()
-
- msg = ""
- msg += "-----------------------------------------------------\t\n"
- msg += "Total Models Available: \t" + str(len(models)) + "\t\n"
- msg += "-----------------------------------------------------\t\n"
- for model_type in model_count.keys():
- msg += model_type.capitalize() + " Models: \t" + str(model_count[model_type]) + "\t\n"
- msg += "-----------------------------------------------------\t\n"
-
- if showInfo:
- qt.QMessageBox.information(slicer.util.mainWindow(), "MONAI Label", msg)
- logging.info(msg)
- logging.info(f"Time consumed by fetch info: {time.time() - start:3.1f}")
-
- def setProgressBarLabelText(self, label):
- if not self.progressBar:
- self.progressBar = slicer.util.createProgressDialog(windowTitle="Wait...", maximum=100)
- self.progressBar.labelText = label
-
- def reportProgress(self, progressPercentage):
- if not self.progressBar:
- self.progressBar = slicer.util.createProgressDialog(windowTitle="Wait...", maximum=100)
- self.progressBar.show()
- self.progressBar.activateWindow()
- self.progressBar.setValue(progressPercentage)
- slicer.app.processEvents()
-
- def onTraining(self):
- start = time.time()
- status = None
- try:
- qt.QApplication.setOverrideCursor(qt.Qt.WaitCursor)
- self.updateServerSettings()
-
- model = self.ui.trainerBox.currentText
- if not model:
- slicer.util.errorDisplay(
- "No Model selected is to run the training", detailedText=traceback.format_exc()
- )
- return
-
- params = self.getParamsFromConfig("train", model)
- status = self.logic.train_start(model, params)
-
- self.ui.trainingProgressBar.setValue(1)
- self.ui.trainingProgressBar.setToolTip("Training: STARTED")
-
- time.sleep(1)
- self.updateGUIFromParameterNode()
- except BaseException as e:
- msg = f"Message:: {e.msg}" if hasattr(e, "msg") else ""
- slicer.util.errorDisplay(
- f"Failed to run training in MONAI Label Server.\n{msg}",
- detailedText=traceback.format_exc(),
- )
- finally:
- qt.QApplication.restoreOverrideCursor()
-
- if status:
- msg = "ID: {}\nStatus: {}\nStart Time: {}\n".format(
- status.get("id"),
- status.get("status"),
- status.get("start_ts"),
- )
- # slicer.util.infoDisplay(msg, detailedText=json.dumps(status, indent=2))
- logging.info(msg)
-
- logging.info(f"Time consumed by training: {time.time() - start:3.1f}")
-
- def onStopTraining(self):
- start = time.time()
- status = None
- if not slicer.util.confirmOkCancelDisplay(
- "This will kill/stop current Training task. Are you sure to continue?"
- ):
- return
-
- try:
- qt.QApplication.setOverrideCursor(qt.Qt.WaitCursor)
- self.updateServerSettings()
- status = self.logic.train_stop()
- except BaseException as e:
- msg = f"Message:: {e.msg}" if hasattr(e, "msg") else ""
- slicer.util.errorDisplay(
- f"Failed to stop Training Task.\n{msg}",
- detailedText=traceback.format_exc(),
- )
- finally:
- qt.QApplication.restoreOverrideCursor()
-
- if status:
- msg = "Status: {}\nStart Time: {}\nEnd Time: {}\nResult: {}".format(
- status.get("status"),
- status.get("start_ts"),
- status.get("end_ts"),
- status.get("result", status.get("details", [])[-1]),
- )
- # slicer.util.infoDisplay(msg, detailedText=json.dumps(status, indent=2))
- logging.info(msg)
- self.updateGUIFromParameterNode()
-
- logging.info(f"Time consumed by stop training: {time.time() - start:3.1f}")
-
- def isTrainingRunning(self, check_only=True):
- if not self.logic:
- return False
- self.updateServerSettings()
- return self.logic.train_status(check_only)
-
- def onNextSampleButton(self):
- if not self.logic:
- return
-
- if self._volumeNode or len(slicer.util.getNodesByClass("vtkMRMLScalarVolumeNode")):
- if not slicer.util.confirmOkCancelDisplay(
- "This will close current scene. Please make sure you have saved your current work.\n"
- "Are you sure to continue?"
- ):
- return
- self.onResetScribbles()
- slicer.mrmlScene.Clear(0)
-
- start = time.time()
- try:
- qt.QApplication.setOverrideCursor(qt.Qt.WaitCursor)
-
- self.updateServerSettings()
- strategy = self.ui.strategyBox.currentText
- if not strategy:
- slicer.util.errorDisplay("No Strategy Found/Selected\t")
- return
-
- sample = self.logic.next_sample(strategy, self.getParamsFromConfig("activelearning", strategy))
- logging.debug(sample)
- if not sample.get("id"):
- slicer.util.warningDisplay(
- "Unlabeled samples or images not found at server.\n"
- "Instead please go to File -> Add Data to load image."
- )
- return
-
- if self.samples.get(sample["id"]) is not None:
- self.current_sample = self.samples[sample["id"]]
- name = self.current_sample["VolumeNodeName"]
- index = self.ui.inputSelector.findText(name)
- self.ui.inputSelector.setCurrentIndex(index)
- return
-
- logging.info(sample)
- image_id = sample["id"]
- image_file = sample.get("path")
- image_name = sample.get("name", image_id)
- node_name = sample.get("PatientID", sample.get("name", image_id))
- checksum = sample.get("checksum")
- local_exists = image_file and os.path.exists(image_file)
-
- logging.info(f"Check if file exists/shared locally: {image_file} => {local_exists}")
- if local_exists:
- self._volumeNode = slicer.util.loadVolume(image_file)
- self._volumeNode.SetName(node_name)
- else:
- download_uri = f"{self.serverUrl()}/datastore/image?image={quote_plus(image_id)}"
- logging.info(download_uri)
-
- sampleDataLogic = SampleData.SampleDataLogic()
- self._volumeNode = sampleDataLogic.downloadFromURL(
- nodeNames=node_name, fileNames=image_name, uris=download_uri, checksums=checksum
- )[0]
-
- self.computeEmbedding = True
- if self.computeEmbedding:
- model = self.ui.sammModelSelector.currentText
- # image_file = self.current_sample["id"]
- params = self.getParamsFromConfig("infer", model)
- params.update({"computeEmbedding": True})
-
- if not self.progressBar:
- self.progressBar = slicer.util.createProgressDialog(
- windowTitle="Extracting 3D embedding...", maximum=100
- )
- self.progressBar.setLabelText("Initializing...")
- self.progressBar.setFixedSize(400, 100)
- self.progressBar.show()
- # self.progressBar.activateWindow()
- self.progressBar.setValue(0)
- self.progressBar.setCancelButton(None)
-
- slicer.app.processEvents()
-
- _, params = self.logic.infer(model, image_file, params, session_id=self.getSessionId())
-
- if slicer.util.settingsValue("MONAILabel/originalLabel", True, converter=slicer.util.toBool):
- try:
- datastore = self.logic.datastore()
- label_info = datastore["objects"][image_id]["labels"]["original"]["info"]
- labels = label_info.get("params", {}).get("label_names", {})
-
- if labels:
- # labels are available in original label info
- labels = labels.keys()
- else:
- # labels not available
- # assume labels in app info are valid for original label file
- labels = self.logic.info().get("labels")
-
- # ext = datastore['objects'][image_id]['labels']['original']['ext']
- maskFile = self.logic.download_label(image_id, "original")
- self.updateSegmentationMask(maskFile, list(labels))
- print("Original label uploaded! ")
-
- except BaseException as e:
- print(f"Original label not found ... {e}")
-
- self.initSample(sample)
-
- except BaseException as e:
- print(e)
- msg = f"Message:: {e.msg}" if hasattr(e, "msg") else ""
- slicer.util.errorDisplay(
- f"Failed to fetch Sample from MONAI Label Server.\n{msg}",
- detailedText=traceback.format_exc(),
- )
- finally:
- qt.QApplication.restoreOverrideCursor()
-
- self.updateGUIFromParameterNode()
- logging.info(f"Time consumed by next_sample: {time.time() - start:3.1f}")
-
- def initSample(self, sample, autosegment=True):
- sample["VolumeNodeName"] = self._volumeNode.GetName()
- self.current_sample = sample
- self.samples[sample["id"]] = sample
- self._volumeNodes.append(self._volumeNode)
-
- # Create Empty Segments for all labels for this node
- self.createSegmentNode()
- self.ui.embeddedSegmentEditorWidget.setSegmentationNode(self._segmentNode)
- self.ui.embeddedSegmentEditorWidget.setSourceVolumeNode(self._volumeNode)
-
- self.createScribblesROINode()
- self.ui.scribblesPlaceWidget.setCurrentNode(self._scribblesROINode)
-
- # check if user allows overlapping segments
- if slicer.util.settingsValue("MONAILabel/allowOverlappingSegments", False, converter=slicer.util.toBool):
- # set segment editor to allow overlaps
- self.logic.get_segment_editor_node().SetOverwriteMode(slicer.vtkMRMLSegmentEditorNode.OverwriteNone)
-
- if self.info.get("labels"):
- self.updateSegmentationMask(None, self.info.get("labels"))
-
- # Check if user wants to run auto-segmentation on new sample
- if autosegment and slicer.util.settingsValue(
- "MONAILabel/autoRunSegmentationOnNextSample", True, converter=slicer.util.toBool
- ):
- for label in self.info.get("labels", []):
- for name, model in self.models.items():
- if label in model.get("labels", []):
- qt.QApplication.restoreOverrideCursor()
- self.ui.sammModelSelector.currentText = name
- self.onClickSegmentation()
- return
-
- def getPermissionForImageDataUpload(self):
- return slicer.util.confirmOkCancelDisplay(
- "Source volume - without any additional patient information -"
- " will be sent to remote data processing server: {}.\n\n"
- "Click 'OK' to proceed with the segmentation.\n"
- "Click 'Cancel' to not upload any data and cancel segmentation.\n".format(self.serverUrl()),
- dontShowAgainSettingsKey="MONAILabel/showImageDataSendWarning",
- )
-
- def onUploadImage(self, init_sample=True, session=False):
- volumeNode = slicer.mrmlScene.GetFirstNodeByClass("vtkMRMLScalarVolumeNode")
- image_id = volumeNode.GetName()
-
- if not self.getPermissionForImageDataUpload():
- return False
-
- try:
- qt.QApplication.setOverrideCursor(qt.Qt.WaitCursor)
- in_file = tempfile.NamedTemporaryFile(suffix=self.file_ext, dir=self.tmpdir).name
- self.reportProgress(5)
-
- start = time.time()
- slicer.util.saveNode(volumeNode, in_file)
- logging.info(f"Saved Input Node into {in_file} in {time.time() - start:3.1f}s")
- self.reportProgress(30)
-
- if session:
- self.current_sample["session_id"] = self.logic.create_session(in_file)["session_id"]
- else:
- self.logic.upload_image(in_file, image_id)
- self.current_sample["session"] = False
- self.reportProgress(100)
-
- self._volumeNode = volumeNode
- if init_sample:
- self.initSample({"id": image_id}, autosegment=False)
- qt.QApplication.restoreOverrideCursor()
-
- self.updateGUIFromParameterNode()
- return True
- except BaseException as e:
- msg = f"Message:: {e.msg}" if hasattr(e, "msg") else ""
- self.reportProgress(100)
- qt.QApplication.restoreOverrideCursor()
- if session:
- slicer.util.errorDisplay(
- "Server Error:: Session creation Failed\nPlease upgrade to latest monailable version (> 0.2.0)",
- detailedText=traceback.format_exc(),
- )
- self.current_sample["session"] = None
- else:
- slicer.util.errorDisplay(
- f"Failed to upload volume to Server.\n{msg}",
- detailedText=traceback.format_exc(),
- )
- return False
-
- def onImportLabel(self):
- if not self.ui.labelPathLineEdit.currentPath or not os.path.exists(self.ui.labelPathLineEdit.currentPath):
- slicer.util.warningDisplay("Label File not selected")
- return
-
- try:
- qt.QApplication.setOverrideCursor(qt.Qt.WaitCursor)
- self.updateSegmentationMask(self.ui.labelPathLineEdit.currentPath, self.info["labels"])
- qt.QApplication.restoreOverrideCursor()
- except BaseException:
- qt.QApplication.restoreOverrideCursor()
- slicer.util.errorDisplay("Failed to import label", detailedText=traceback.format_exc())
-
- def onSaveLabel(self):
- start = time.time()
- labelmapVolumeNode = None
- result = None
- self.onResetScribbles()
-
- if self.current_sample.get("session"):
- if not self.onUploadImage(init_sample=False):
- return
-
- try:
- qt.QApplication.setOverrideCursor(qt.Qt.WaitCursor)
- model = self.ui.sammModelSelector.currentText
-
- if model and self.models[model]["type"] == "detection":
- label_in, label_info = self.onGenerateJSONFromMulipltROIs()
- self.reportProgress(30)
- else:
- segmentationNode = self._segmentNode
- segmentation = segmentationNode.GetSegmentation()
- totalSegments = segmentation.GetNumberOfSegments()
- segmentIds = [segmentation.GetNthSegmentID(i) for i in range(totalSegments)]
-
- # remove background and scribbles labels
- label_info = []
- save_segment_ids = vtk.vtkStringArray()
- for idx, segmentId in enumerate(segmentIds):
- segment = segmentation.GetSegment(segmentId)
- if segment.GetName() in ["background", "foreground_scribbles", "background_scribbles"]:
- logging.info(f"Removing segment {segmentId}: {segment.GetName()}")
- continue
-
- save_segment_ids.InsertNextValue(segmentId)
- label_info.append({"name": segment.GetName(), "idx": idx + 1})
- # label_info.append({"color": segment.GetColor()})
-
- # export labelmap
- labelmapVolumeNode = slicer.mrmlScene.AddNewNodeByClass("vtkMRMLLabelMapVolumeNode")
- slicer.modules.segmentations.logic().ExportSegmentsToLabelmapNode(
- segmentationNode, save_segment_ids, labelmapVolumeNode, self._volumeNode
- )
-
- label_in = tempfile.NamedTemporaryFile(suffix=self.file_ext, dir=self.tmpdir).name
- self.reportProgress(5)
-
- if (
- slicer.util.settingsValue("MONAILabel/allowOverlappingSegments", True, converter=slicer.util.toBool)
- and slicer.util.settingsValue("MONAILabel/fileExtension", self.file_ext) == ".seg.nrrd"
- ):
- slicer.util.saveNode(segmentationNode, label_in)
- else:
- slicer.util.saveNode(labelmapVolumeNode, label_in)
- self.reportProgress(30)
-
- self.updateServerSettings()
- result = self.logic.save_label(self.current_sample["id"], label_in, {"label_info": label_info})
- self.fetchInfo()
-
- if slicer.util.settingsValue("MONAILabel/autoUpdateModelV2", False, converter=slicer.util.toBool):
- try:
- if self.isTrainingRunning(check_only=True):
- self.logic.train_stop()
- except BaseException:
- logging.info("Failed to stop training; or already stopped")
- self.onTraining()
- except BaseException as e:
- msg = f"Message:: {e.msg}" if hasattr(e, "msg") else ""
- slicer.util.errorDisplay(
- f"Failed to save Label to MONAI Label Server.\n{msg}",
- detailedText=traceback.format_exc(),
- )
- finally:
- qt.QApplication.restoreOverrideCursor()
- self.reportProgress(100)
-
- if labelmapVolumeNode:
- slicer.mrmlScene.RemoveNode(labelmapVolumeNode)
- if result:
- slicer.util.infoDisplay(
- "Label-Mask saved into MONAI Label Server\t\t", detailedText=json.dumps(result, indent=2)
- )
-
- if slicer.util.settingsValue("MONAILabel/autoFetchNextSample", False, converter=slicer.util.toBool):
- slicer.mrmlScene.Clear(0)
- self.onNextSampleButton()
-
- logging.info(f"Time consumed by save label: {time.time() - start:3.1f}")
-
- def getSessionId(self):
- session_id = None
- if self.current_sample.get("session", False):
- session_id = self.current_sample.get("session_id")
- if not session_id or not self.logic.get_session(session_id):
- self.onUploadImage(init_sample=False, session=True)
- session_id = self.current_sample["session_id"]
- return session_id
-
- def onClickSegmentation(self):
- if not self.current_sample:
- return
-
- start = time.time()
- result_file = None
- try:
- qt.QApplication.setOverrideCursor(qt.Qt.WaitCursor)
-
- self.updateServerSettings()
-
- model = self.ui.sammModelSelector.currentText
- image_file = self.current_sample["id"]
- params = self.getParamsFromConfig("infer", model)
-
- result_file, params = self.logic.infer(model, image_file, params, session_id=self.getSessionId())
- print(f"Result Params for Segmentation: {params}")
-
- labels = (
- params.get("label_names") if params and params.get("label_names") else self.models[model].get("labels")
- )
- if labels and isinstance(labels, dict):
- labels = [k for k, _ in sorted(labels.items(), key=lambda item: item[1])]
- self.updateSegmentationMask(result_file, labels)
- except BaseException as e:
- msg = f"Message:: {e.msg}" if hasattr(e, "msg") else ""
- slicer.util.errorDisplay(
- f"Failed to run inference in MONAI Label Server.\n{msg}",
- detailedText=traceback.format_exc(),
- )
- finally:
- qt.QApplication.restoreOverrideCursor()
- if result_file and os.path.exists(result_file):
- os.unlink(result_file)
-
- self.updateGUIFromParameterNode()
- logging.info(f"Time consumed by segmentation: {time.time() - start:3.1f}")
-
- def onUpdateDeepgrow(self):
- self.onClickDeepgrow(None)
-
- def onClickDeepgrow(self, current_point, skip_infer=False):
- model = self.ui.deepgrowModelSelector.currentText
- if not model:
- slicer.util.warningDisplay("Please select a deepgrow model")
- return
-
- _, segment = self.currentSegment()
- if not segment:
- slicer.util.warningDisplay("Please add the required label to run deepgrow")
- return
-
- foreground_all = self.getControlPointsXYZ(self.dgPositivePointListNode, "foreground")
- background_all = self.getControlPointsXYZ(self.dgNegativePointListNode, "background")
-
- segment.SetTag("MONAILabel.ForegroundPoints", json.dumps(foreground_all))
- segment.SetTag("MONAILabel.BackgroundPoints", json.dumps(background_all))
- if skip_infer:
- return
-
- # use model info "deepgrow" to determine
- deepgrow_3d = False if self.models[model].get("dimension", 3) == 2 else True
- print(f"Is DeepGrow 3D: {deepgrow_3d}")
- start = time.time()
-
- label = segment.GetName()
- operationDescription = f"Run Deepgrow for segment: {label}; model: {model}; 3d {deepgrow_3d}"
- logging.debug(operationDescription)
-
- if not current_point:
- if not foreground_all and not deepgrow_3d:
- slicer.util.warningDisplay(operationDescription + " - points not added")
- return
- current_point = foreground_all[-1] if foreground_all else background_all[-1] if background_all else None
-
- try:
- qt.QApplication.setOverrideCursor(qt.Qt.WaitCursor)
-
- sliceIndex = None
- if self.deepedit_multi_label:
- params = {}
- segmentation = self._segmentNode.GetSegmentation()
- for name in self.info.get("labels", []):
- points = []
- segmentId = segmentation.GetSegmentIdBySegmentName(name)
- segment = segmentation.GetSegment(segmentId) if segmentId else None
- if segment:
- fPosStr = vtk.mutable("")
- segment.GetTag("MONAILabel.ForegroundPoints", fPosStr)
- pointset = str(fPosStr)
- print(f"{segmentId} => {name} Control points are: {pointset}")
- if fPosStr is not None and len(pointset) > 0:
- points = json.loads(pointset)
-
- params[name] = points
- params["label"] = label
- labels = None
- else:
- sliceIndex = current_point[2] if current_point else None
- print(f"Slice Index: {sliceIndex}")
-
- if deepgrow_3d or not sliceIndex:
- foreground = foreground_all
- background = background_all
- else:
- foreground = [x for x in foreground_all if x[2] == sliceIndex]
- background = [x for x in background_all if x[2] == sliceIndex]
-
- logging.debug(f"Foreground: {foreground}")
- logging.debug(f"Background: {background}")
- logging.debug(f"Current point: {current_point}")
-
- params = {
- "label": label,
- "foreground": foreground,
- "background": background,
- }
- labels = [label]
-
- params["label"] = label
- params.update(self.getParamsFromConfig("infer", model))
- print(f"Request Params for Deepgrow/Deepedit: {params}")
-
- image_file = self.current_sample["id"]
- result_file, params = self.logic.infer(model, image_file, params, session_id=self.getSessionId())
- print(f"Result Params for Deepgrow/Deepedit: {params}")
- if labels is None:
- labels = (
- params.get("label_names")
- if params and params.get("label_names")
- else self.models[model].get("labels")
- )
- if labels and isinstance(labels, dict):
- labels = [k for k, _ in sorted(labels.items(), key=lambda item: item[1])]
-
- freeze = label if self.ui.freezeUpdateCheckBox.checked else None
- self.updateSegmentationMask(result_file, labels, None if deepgrow_3d else sliceIndex, freeze=freeze)
- except BaseException as e:
- msg = f"Message:: {e.msg}" if hasattr(e, "msg") else ""
- slicer.util.errorDisplay(
- operationDescription + f" - unexpected error.\n{msg}",
- detailedText=traceback.format_exc(),
- )
- finally:
- qt.QApplication.restoreOverrideCursor()
-
- self.updateGUIFromParameterNode()
- logging.info(f"Time consumed by Deepgrow: {time.time() - start:3.1f}")
-
- def updateClassPromptTable(self, refresh=True):
- logging.info(f"updateClassPromptTable => refresh:{refresh}")
- model = self.ui.sammModelSelector.currentText
- params = self.getParamsFromConfig("infer", model)
- print(params)
- labels = params.get("label_names") if params and params.get("label_names") else self.models[model].get("labels")
-
- class_table = self.ui.classPromptsTable
- class_table.clear()
- headers = ["Anatomy", "Prompt"]
- class_table.setColumnCount(len(headers))
- class_table.setHorizontalHeaderLabels(headers)
- class_table.setColumnWidth(0, 250)
- class_table.setRowCount(len(labels))
-
- n = 0
- for key in labels:
- item = qt.QTableWidgetItem(key)
- class_table.setItem(n, 0, item)
- item.setFlags(item.flags() & ~qt.Qt.ItemIsEditable)
-
- checkbox = qt.QCheckBox()
- # checkbox.setChecked(val)
- class_table.setCellWidget(n, 1, checkbox)
-
- logging.info(f"{n} => Add class checkbox => {key}")
- n = n + 1
-
- def getClassPromptTable(self):
- class_prompts = []
- for row in range(self.ui.classPromptsTable.rowCount):
- key = str(self.ui.classPromptsTable.item(row, 0).text())
- value = self.ui.classPromptsTable.item(row, 1)
-
- if value is None:
- value = self.ui.classPromptsTable.cellWidget(row, 1)
- if isinstance(value, qt.QCheckBox):
- value = True if value.checked else False
- else:
- value = value.currentText
- else:
- value = str(value.text())
-
- value = True if value else False
-
- if value is True:
- class_prompts.append(key)
-
- logging.info(f"Class prompts:: => {class_prompts}")
- return class_prompts
-
- def filterClassPromptTable(self, text):
- self.ui.classPromptsTable.setUpdatesEnabled(False)
-
- for row in range(self.ui.classPromptsTable.rowCount):
- key = str(self.ui.classPromptsTable.item(row, 0).text())
- showRow = text.lower() in key.lower()
- self.ui.classPromptsTable.setRowHidden(row, not showRow)
-
- self.ui.classPromptsTable.setUpdatesEnabled(True)
-
- def onSetPromptSegmentation(self):
- if not self.current_sample:
- return
-
- start = time.time()
- result_file = None
- try:
- qt.QApplication.setOverrideCursor(qt.Qt.WaitCursor)
- self.updateServerSettings()
- model = self.ui.sammModelSelector.currentText
- image_file = self.current_sample["id"]
-
- # get class prompt from checkbox
- params = self.getParamsFromConfig("infer", model)
- labels = (
- params.get("label_names") if params and params.get("label_names") else self.models[model].get("labels")
- )
- class_names = self.getClassPromptTable()
-
- class_prompts = []
-
- for k in class_names:
- class_prompts.append(labels[k] - 1)
-
- # params = {
- # "class_prompts": class_prompts,
- # }
- # -------
- params.update({"class_prompts": class_prompts})
-
- result_file, params = self.logic.infer(model, image_file, params, session_id=self.getSessionId())
- print(f"Result Params for Segmentation: {params}")
-
- if labels and isinstance(labels, dict):
- labels = [k for k, _ in sorted(labels.items(), key=lambda item: item[1])]
- self.updateSegmentationMask(result_file, labels)
- except BaseException as e:
- msg = f"Message:: {e.msg}" if hasattr(e, "msg") else ""
- slicer.util.errorDisplay(
- f"Failed to run inference in MONAI Label Server.\n{msg}",
- detailedText=traceback.format_exc(),
- )
- finally:
- qt.QApplication.restoreOverrideCursor()
- if result_file and os.path.exists(result_file):
- os.unlink(result_file)
-
- self.updateGUIFromParameterNode()
- logging.info(f"Time consumed by segmentation: {time.time() - start:3.1f}")
-
- def onPointPromptSegmentation(self):
- if not self.current_sample:
- return
- start = time.time()
- result_file = None
- try:
- qt.QApplication.setOverrideCursor(qt.Qt.WaitCursor)
- self.updateServerSettings()
- model = self.ui.sammModelSelector.currentText
- image_file = self.current_sample["id"]
-
- # get class prompt from checkbox
- params = self.getParamsFromConfig("infer", model)
- labels = (
- params.get("label_names") if params and params.get("label_names") else self.models[model].get("labels")
- )
- class_names = self.getClassPromptTable()
-
- class_prompts = []
-
- for k in class_names:
- class_prompts.append(labels[k] - 1)
-
- foreground_all = self.getControlPointsXYZ(self.sammPositivePointListNode, "foreground")
- background_all = self.getControlPointsXYZ(self.sammNegativePointListNode, "background")
- foreground = foreground_all
- background = background_all
-
- logging.debug(f"Foreground: {foreground}")
- logging.debug(f"Background: {background}")
- point_prompts = {
- "foreground": foreground,
- "background": background,
- }
-
- params.update({"class_prompts": class_prompts, "point_prompts": point_prompts})
-
- result_file, params = self.logic.infer(model, image_file, params, session_id=self.getSessionId())
- print(f"Result Params for Segmentation: {params}")
-
- if labels and isinstance(labels, dict):
- labels = [k for k, _ in sorted(labels.items(), key=lambda item: item[1])]
- self.updateSegmentationMask(result_file, labels)
- except BaseException as e:
- msg = f"Message:: {e.msg}" if hasattr(e, "msg") else ""
- slicer.util.errorDisplay(
- f"Failed to run inference in MONAI Label Server.\n{msg}",
- detailedText=traceback.format_exc(),
- )
- finally:
- qt.QApplication.restoreOverrideCursor()
- if result_file and os.path.exists(result_file):
- os.unlink(result_file)
-
- self.updateGUIFromParameterNode()
- logging.info(f"Time consumed by segmentation: {time.time() - start:3.1f}")
-
- def createCursor(self, widget):
- return slicer.util.mainWindow().cursor
-
- def createSegmentNode(self):
- if self._volumeNode is None:
- return
- if self._segmentNode is None:
- name = "segmentation_" + self._volumeNode.GetName()
- self._segmentNode = slicer.mrmlScene.AddNewNodeByClass("vtkMRMLSegmentationNode")
- self._segmentNode.SetReferenceImageGeometryParameterFromVolumeNode(self._volumeNode)
- self._segmentNode.SetName(name)
-
- def createScribblesROINode(self):
- if self._volumeNode is None:
- return
- if self._scribblesROINode is None:
- scribblesROINode = slicer.mrmlScene.AddNewNodeByClass("vtkMRMLMarkupsROINode")
- scribblesROINode.SetName("Scribbles ROI")
- scribblesROINode.CreateDefaultDisplayNodes()
- scribblesROINode.GetDisplayNode().SetFillOpacity(0.4)
- scribblesROINode.GetDisplayNode().SetSelectedColor(1, 1, 1)
- scribblesROINode.GetDisplayNode().SetColor(1, 1, 1)
- scribblesROINode.GetDisplayNode().SetActiveColor(1, 1, 1)
- self._scribblesROINode = scribblesROINode
-
- def getLabelColor(self, name):
- color = GenericAnatomyColors.get(name.lower())
- return [c / 255.0 for c in color] if color else None
-
- def updateSegmentationMask(self, in_file, labels, sliceIndex=None, freeze=None):
- # TODO:: Add ROI Node (for Bounding Box if provided in the result)
- start = time.time()
- logging.debug(f"Update Segmentation Mask from: {in_file}")
- if in_file and not os.path.exists(in_file):
- return False
-
- segmentationNode = self._segmentNode
- segmentation = segmentationNode.GetSegmentation()
-
- if in_file is None:
- for label in labels:
- if not segmentation.GetSegmentIdBySegmentName(label):
- segmentation.AddEmptySegment(label, label, self.getLabelColor(label))
- return True
-
- if in_file.endswith(".seg.nrrd") and self.file_ext == ".seg.nrrd":
- source_node = slicer.modules.segmentations.logic().LoadSegmentationFromFile(in_file, False)
- destination_node = segmentationNode
- destination_segmentations = destination_node.GetSegmentation()
- source_segmentations = source_node.GetSegmentation()
-
- destination_segmentations.DeepCopy(source_segmentations)
-
- if self._volumeNode:
- destination_node.SetReferenceImageGeometryParameterFromVolumeNode(self._volumeNode)
-
- slicer.mrmlScene.RemoveNode(source_node)
- elif in_file.endswith(".json"):
- # Add bounding box ROI nodes, load multiple ROI nodes in the same scene.
- logging.info("Update Detection ROI Bounding Box")
- slicer.util.loadMarkups(in_file)
- detectionROIs = slicer.mrmlScene.GetNodesByClass("vtkMRMLMarkupsROINode") # Get all ROI node from scene
- numNodes = detectionROIs.GetNumberOfItems()
- for i in range(numNodes):
- ROINode = detectionROIs.GetItemAsObject(i)
- if ROINode.GetName() != "Scribbles ROI":
- ROINode.SetName(f"Detection ROI - {i}")
- ROINode.GetDisplayNode().SetInteractionHandleScale(0.7) # set handle size
- else:
- labels = [label for label in labels if label != "background"]
- logging.info(f"Update Segmentation Mask using Labels: {labels}")
-
- # segmentId, segment = self.currentSegment()
- labelImage = sitk.ReadImage(in_file)
- labelmapVolumeNode = sitkUtils.PushVolumeToSlicer(labelImage, None, className="vtkMRMLLabelMapVolumeNode")
- logging.info(f"Time consumed by Import LabelMask: {time.time() - start:3.1f}")
-
- freeze = [freeze] if freeze and isinstance(freeze, str) else freeze
- logging.info(f"Import only Freezed label: {freeze}")
-
- if sliceIndex is None and not freeze:
- # List of segments to import
- segmentIds = vtk.vtkStringArray()
- for label in labels:
- segmentIds.InsertNextValue(label)
-
- # faster import (based on selected segmentIds)
- slicer.modules.segmentations.logic().ImportLabelmapToSegmentationNode(
- labelmapVolumeNode, segmentationNode, segmentIds
- )
- slicer.mrmlScene.RemoveNode(labelmapVolumeNode)
- else:
- existingCount = segmentation.GetNumberOfSegments()
- existing_label_ids = {}
- for label in labels:
- id = segmentation.GetSegmentIdBySegmentName(label)
- if id:
- existing_label_ids[label] = id
-
- # slower import (import all - use only when you have to update one particular slice for 2D)
- slicer.modules.segmentations.logic().ImportLabelmapToSegmentationNode(
- labelmapVolumeNode, segmentationNode
- )
- slicer.mrmlScene.RemoveNode(labelmapVolumeNode)
-
- addedCount = segmentation.GetNumberOfSegments() - existingCount
- addedSegmentIds = [segmentation.GetNthSegmentID(existingCount + i) for i in range(addedCount)]
-
- self.ui.embeddedSegmentEditorWidget.setSegmentationNode(segmentationNode)
- self.ui.embeddedSegmentEditorWidget.setSourceVolumeNode(self._volumeNode)
-
- for i, segmentId in enumerate(addedSegmentIds):
- label = labels[i] if i < len(labels) else f"unknown {i}"
- if freeze and label not in freeze:
- logging.info(f"Discard label update for: {label}")
- else:
- segment = segmentation.GetSegment(segmentId)
- logging.info(f"select segmentation with id: {segmentId} => {segment.GetName()} => {label}")
- if label in existing_label_ids:
- l_start = time.time()
- label_id = existing_label_ids[label]
-
- self.ui.embeddedSegmentEditorWidget.setCurrentSegmentID(label_id)
- effect = self.ui.embeddedSegmentEditorWidget.effectByName("Logical operators")
-
- if sliceIndex is not None:
- selectedSegmentLabelmap = effect.selectedSegmentLabelmap()
- dims = selectedSegmentLabelmap.GetDimensions()
- for x in range(dims[0]):
- for y in range(dims[1]):
- selectedSegmentLabelmap.SetScalarComponentFromDouble(x, y, sliceIndex, 0, 0)
-
- logging.info(f"{label} - Time to Clean the slice: {time.time() - l_start:3.1f}")
-
- l_start = time.time()
- newLabelmap = slicer.vtkOrientedImageData()
- segmentationNode.GetBinaryLabelmapRepresentation(segmentId, newLabelmap)
- op = (
- slicer.qSlicerSegmentEditorAbstractEffect.ModificationModeSet
- if sliceIndex is None
- else slicer.qSlicerSegmentEditorAbstractEffect.ModificationModeAdd
- )
- effect.modifySelectedSegmentByLabelmap(newLabelmap, op)
- logging.info(f"{label} - Time to Update the segment: {time.time() - l_start:3.1f}")
-
- segmentationNode.RemoveSegment(segmentId)
- logging.info(f"Time consumed until Import Segment => {label}: {time.time() - start:3.1f}")
-
- if slicer.util.settingsValue("MONAILabel/showSegmentsIn3D", False, converter=slicer.util.toBool):
- self.showSegmentationsIn3D()
-
- logging.info(f"Time consumed by updateSegmentationMask: {time.time() - start:3.1f}")
- return True
-
- def showSegmentationsIn3D(self):
- # add closed surface representation
- if self._segmentNode:
- self._segmentNode.CreateClosedSurfaceRepresentation()
- view = slicer.app.layoutManager().threeDWidget(0).threeDView()
- view.resetFocalPoint()
-
- def updateServerUrlGUIFromSettings(self):
- # Save current server URL to the top of history
- settings = qt.QSettings()
- serverUrlHistory = settings.value("MONAILabel/serverUrlHistory")
-
- wasBlocked = self.ui.serverComboBox.blockSignals(True)
- self.ui.serverComboBox.clear()
- if serverUrlHistory:
- self.ui.serverComboBox.addItems(serverUrlHistory.split(";"))
- self.ui.serverComboBox.setCurrentText(settings.value("MONAILabel/serverUrl"))
- self.ui.serverComboBox.blockSignals(wasBlocked)
-
- def createPointListNode(self, name, onMarkupNodeModified, color):
- displayNode = slicer.mrmlScene.AddNewNodeByClass("vtkMRMLMarkupsDisplayNode")
- displayNode.SetTextScale(0)
- displayNode.SetSelectedColor(color)
-
- pointListNode = slicer.mrmlScene.AddNewNodeByClass("vtkMRMLMarkupsFiducialNode")
- pointListNode.SetName(name)
- pointListNode.SetAndObserveDisplayNodeID(displayNode.GetID())
-
- pointListNodeObservers = []
- self.addPointListNodeObserver(pointListNode, onMarkupNodeModified)
- return pointListNode, pointListNodeObservers
-
- def removePointListNodeObservers(self, pointListNode, pointListNodeObservers):
- if pointListNode and pointListNodeObservers:
- for observer in pointListNodeObservers:
- pointListNode.RemoveObserver(observer)
-
- def addPointListNodeObserver(self, pointListNode, onMarkupNodeModified):
- pointListNodeObservers = []
- if pointListNode:
- eventIds = [slicer.vtkMRMLMarkupsNode.PointPositionDefinedEvent]
- for eventId in eventIds:
- pointListNodeObservers.append(pointListNode.AddObserver(eventId, onMarkupNodeModified))
- return pointListNodeObservers
-
- def scribblesLayersPresent(self):
- scribbles_exist = False
- if self._segmentNode is not None:
- segmentationNode = self._segmentNode
- segmentation = segmentationNode.GetSegmentation()
- numSegments = segmentation.GetNumberOfSegments()
- segmentIds = [segmentation.GetNthSegmentID(i) for i in range(numSegments)]
- scribbles_exist = sum(int("scribbles" in sid) for sid in segmentIds) > 0
- return scribbles_exist
-
- def ensureScribblesLayersPresent(self):
- if (not self._segmentNode) or self.scribblesLayersPresent():
- return
-
- # add background, layer index = -2 [2], color = red
- self._segmentNode.GetSegmentation().AddEmptySegment(
- "background_scribbles", "background_scribbles", [1.0, 0.0, 0.0]
- )
-
- # add foreground, layer index = -1 [3], color = green
- self._segmentNode.GetSegmentation().AddEmptySegment(
- "foreground_scribbles", "foreground_scribbles", [0.0, 1.0, 0.0]
- )
-
- # change segmentation display properties to "see through" the scribbles
- # further explanation at:
- # https://apidocs.slicer.org/main/classvtkMRMLSegmentationDisplayNode.html
- segmentationDisplayNode = self._segmentNode.GetDisplayNode()
-
- # background
- opacity = 0.2
- segmentationDisplayNode.SetSegmentOpacity2DFill("background_scribbles", opacity)
- segmentationDisplayNode.SetSegmentOpacity2DOutline("background_scribbles", opacity)
-
- # foreground
- segmentationDisplayNode.SetSegmentOpacity2DFill("foreground_scribbles", opacity)
- segmentationDisplayNode.SetSegmentOpacity2DOutline("foreground_scribbles", opacity)
-
- def onUpdateScribbles(self):
- logging.info("Scribbles update event")
- scribblesMethod = self.ui.scribblesMethodSelector.currentText
- scribbles_in = None
- result_file = None
-
- try:
- qt.QApplication.setOverrideCursor(qt.Qt.WaitCursor)
-
- # get scribbles + label
- segmentationNode = self._segmentNode
- labelmapVolumeNode = slicer.mrmlScene.AddNewNodeByClass("vtkMRMLLabelMapVolumeNode")
- save_segment_ids = vtk.vtkStringArray()
- segmentationNode.GetSegmentation().GetSegmentIDs(save_segment_ids)
- slicer.modules.segmentations.logic().ExportSegmentsToLabelmapNode(
- segmentationNode, save_segment_ids, labelmapVolumeNode, self._volumeNode
- )
- segmentation = segmentationNode.GetSegmentation()
- totalSegments = segmentation.GetNumberOfSegments()
- segmentIds = [segmentation.GetNthSegmentID(i) for i in range(totalSegments)]
-
- label_info = []
- for idx, segmentId in enumerate(segmentIds):
- segment = segmentation.GetSegment(segmentId)
- label_info.append({"name": segment.GetName(), "id": idx + 1})
-
- scribbles_in = tempfile.NamedTemporaryFile(suffix=self.file_ext, dir=self.tmpdir).name
- self.reportProgress(5)
-
- # save scribbles + label to file
- slicer.util.saveNode(labelmapVolumeNode, scribbles_in)
- slicer.mrmlScene.RemoveNode(labelmapVolumeNode)
- self.reportProgress(30)
- self.updateServerSettings()
- self.reportProgress(60)
-
- # try to get roi if placed
- roiNode = self.ui.scribblesPlaceWidget.currentNode()
- selected_roi = []
- if roiNode and roiNode.GetControlPointPlacementComplete():
- selected_roi = self.getROIPointsXYZ(roiNode)
-
- # send scribbles + label to server along with selected scribbles method
- params = self.getParamsFromConfig("infer", scribblesMethod)
- params.update({"roi": selected_roi})
- params.update({"label_info": label_info})
- _, segment = self.currentScribSegment()
- selected_label_name = segment.GetName()
- params.update({"selected_label_name": selected_label_name})
-
- image_file = self.current_sample["id"]
- result_file, params = self.logic.infer(
- scribblesMethod, image_file, params, scribbles_in, session_id=self.getSessionId()
- )
-
- # display result from server
- self.reportProgress(90)
- self.updateSegmentationMask(result_file, [selected_label_name])
- except BaseException as e:
- msg = f"Message:: {e.msg}" if hasattr(e, "msg") else ""
- slicer.util.errorDisplay(
- f"Failed to post process label on MONAI Label Server using {scribblesMethod}.\n{msg}",
- detailedText=traceback.format_exc(),
- )
- finally:
- qt.QApplication.restoreOverrideCursor()
- self.reportProgress(100)
-
- # clear all temporary files
- if scribbles_in and os.path.exists(scribbles_in):
- os.unlink(scribbles_in)
-
- if result_file and os.path.exists(result_file):
- os.unlink(result_file)
-
- def getROIPointsXYZ(self, roiNode):
- if roiNode is None:
- return []
-
- v = self._volumeNode
- RasToIjkMatrix = vtk.vtkMatrix4x4()
- v.GetRASToIJKMatrix(RasToIjkMatrix)
-
- roi_points_ras = [0.0] * 6
- center = [0] * 3
- roiNode.GetCenter(center)
- roi_points_ras = [(x - s / 2, x + s / 2) for x, s in zip(center, roiNode.GetSize())]
- roi_points_ras = [item for sublist in roi_points_ras for item in sublist]
-
- min_points_ras = [roi_points_ras[0], roi_points_ras[2], roi_points_ras[4], 1.0]
- max_points_ras = [roi_points_ras[0 + 1], roi_points_ras[2 + 1], roi_points_ras[4 + 1], 1.0]
-
- min_points_ijk = RasToIjkMatrix.MultiplyDoublePoint(min_points_ras)
- max_points_ijk = RasToIjkMatrix.MultiplyDoublePoint(max_points_ras)
-
- min_points_ijk = [round(i) for i in min_points_ijk]
- max_points_ijk = [round(i) for i in max_points_ijk]
-
- roi_points_ijk = [val for pair in zip(min_points_ijk[0:3], max_points_ijk[0:3]) for val in pair]
- logging.debug(f"RAS: {roi_points_ras}; IJK: {roi_points_ijk}")
- # print("RAS: {}; IJK: {}".format(roi_points_ras, roi_points_ijk))
-
- return roi_points_ijk
-
- def onClearScribblesSegmentNodes(self):
- # more explanation on this at:
- # https://discourse.slicer.org/t/how-to-clear-segmentation/7433/4
- # clear "scribbles" segment before saving the label
- if not self._segmentNode:
- return
-
- segmentation = self._segmentNode
- num_segments = segmentation.GetSegmentation().GetNumberOfSegments()
- for i in range(num_segments):
- segmentId = segmentation.GetSegmentation().GetNthSegmentID(i)
- if "scribbles" in segmentId:
- logging.info(f"clearing {segmentId}")
- labelMapRep = slicer.vtkOrientedImageData()
- segmentation.GetBinaryLabelmapRepresentation(segmentId, labelMapRep)
- vtkSegmentationCore.vtkOrientedImageDataResample.FillImage(labelMapRep, 0, labelMapRep.GetExtent())
- slicer.vtkSlicerSegmentationsModuleLogic.SetBinaryLabelmapToSegment(
- labelMapRep, segmentation, segmentId, slicer.vtkSlicerSegmentationsModuleLogic.MODE_REPLACE
- )
-
- # refresh segmentation view to clear scribbles segmentations
- # help from: https://discourse.slicer.org/t/refresh-volume-rendering/11847/6
- segmentation.SetDisplayVisibility(False)
- segmentation.SetDisplayVisibility(True)
-
- def resetScribblesROI(self):
- if self._scribblesROINode:
- self._scribblesROINode.RemoveAllControlPoints()
-
- def onClearScribbles(self):
- # for clearing scribbles and resetting tools to default
- # remove "scribbles" segments from label
- self.onClearScribblesSegmentNodes()
-
- self.resetScribblesROI()
-
- self.ui.paintScribblesButton.setChecked(True)
- self.ui.eraseScribblesButton.setChecked(False)
-
- self.ui.scribblesSelector.setCurrentIndex(0)
-
- def onResetScribbles(self):
- # reset scribbles mode
- self.scribblesMode = None
-
- # remove "scribbles" segments from label
- self.onClearScribblesSegmentNodes()
-
- self.ui.paintScribblesButton.setChecked(False)
- self.ui.eraseScribblesButton.setChecked(False)
-
- self.ui.scribblesSelector.setCurrentIndex(0)
- self.ignoreScribblesLabelChangeEvent = True
- self.ui.scribLabelComboBox.setCurrentIndex(0)
- self.ignoreScribblesLabelChangeEvent = False
-
- def updateScribToolLayerFromMode(self):
- if not self._segmentNode:
- return
-
- logging.info(f"Scribbles mode {self.scribblesMode} ")
-
- if self.scribblesMode is None:
- self.changeScribblesMode(tool="Paint", layer="foreground_scribbles")
- self.updateScribToolLayerFromMode()
-
- # update tool/layer select for scribblesEditorWidget
- tool, layer = self.getToolAndLayerFromScribblesMode()
- if self.scribblesMode is not None:
- self.ensureScribblesLayersPresent()
-
- # adding new scribbles can overwrite a new one-hot vector, hence erase any existing
- # labels - this is not a desired behaviour hence we swith to overlay mode that enables drawing
- # scribbles without changing existing labels. Further explanation at:
- # https://discourse.slicer.org/t/how-can-i-set-masking-settings-on-a-segment-editor-effect-in-python/4406/7
- self.logic.get_segment_editor_node().SetOverwriteMode(slicer.vtkMRMLSegmentEditorNode.OverwriteNone)
-
- self.ui.embeddedSegmentEditorWidget.setActiveEffectByName(tool)
- self.ui.embeddedSegmentEditorWidget.setCurrentSegmentID(layer)
-
- # update brush type from checkbox
- if tool in ("Paint", "Erase"):
- is3dbrush = self.ui.brush3dCheckbox.checkState()
- self.on3dBrushCheckbox(state=is3dbrush)
-
- # update brush size from slider
- brushSize = self.ui.brushSizeSlider.value
- self.updateBrushSize(value=brushSize)
-
- def getToolAndLayerFromScribblesMode(self):
- if self.scribblesMode is not None:
- return self.scribblesMode.split("+")
- else:
- # default modes
- return "Paint", "foreground_scribbles"
-
- def changeScribblesMode(self, tool=None, layer=None):
- ctool, clayer = self.getToolAndLayerFromScribblesMode()
-
- ctool = tool if tool is not None else ctool
- clayer = layer if layer is not None else clayer
-
- self.scribblesMode = "+".join([ctool, clayer])
-
- def onPaintScribbles(self):
- if not self._segmentNode:
- return
-
- if self.ui.eraseScribblesButton.checked:
- self.ui.eraseScribblesButton.setChecked(False)
-
- self.changeScribblesMode(tool="Paint" if self.ui.paintScribblesButton.checked else "None")
- self.updateScribToolLayerFromMode()
-
- def onEraseScribbles(self):
- if not self._segmentNode:
- return
-
- if self.ui.paintScribblesButton.checked:
- self.ui.paintScribblesButton.setChecked(False)
-
- self.changeScribblesMode(tool="Erase" if self.ui.eraseScribblesButton.checked else "None")
- self.updateScribToolLayerFromMode()
-
- def onSelectScribblesLabel(self):
- if not self._segmentNode:
- return
-
- index = self.ui.scribblesSelector.currentIndex
- index = 0 if index < 0 else index
- selected = self.ui.scribblesSelector.itemText(index)
-
- layer = "foreground_scribbles" if selected == "Foreground" else "background_scribbles"
- self.changeScribblesMode(layer=layer)
- self.updateScribToolLayerFromMode()
-
- def on3dBrushCheckbox(self, state):
- logging.info(f"3D brush update {state}")
- # enable scribbles in 3d using a sphere brush
- effect = self.ui.embeddedSegmentEditorWidget.effectByName("Paint")
- effect.setParameter("BrushSphere", state)
-
- def updateBrushSize(self, value):
- logging.info(f"brush size update {value}")
- effect = self.ui.embeddedSegmentEditorWidget.effectByName("Paint")
- effect.setParameter("BrushAbsoluteDiameter", value)
-
- def onGenerateJSONFromMulipltROIs(self):
- """
- The functon to generate output JSON label fils with multiple ROI nodes.
- """
- detectionROIs = slicer.mrmlScene.GetNodesByClass("vtkMRMLMarkupsROINode")
- numNodes = detectionROIs.GetNumberOfItems()
-
- label_in = tempfile.NamedTemporaryFile(suffix=".json", dir=self.tmpdir).name
- total_count = 0
- with open(label_in, "w") as fp:
- fp.write("{\n")
- fp.write(
- ' "@schema": "https://raw.githubusercontent.com/slicer/slicer/master/Modules/Loadable/Markups/Resources/Schema/markups-schema-v1.0.3.json#",\n'
- )
- fp.write(' "markups": [\n')
- for i in range(numNodes):
- ROINode = detectionROIs.GetItemAsObject(i)
- if ROINode.GetName() != "Scribbles ROI":
- box_label = tempfile.NamedTemporaryFile(suffix=".json", dir=self.tmpdir).name
- slicer.util.saveNode(ROINode, box_label)
- f = open(box_label)
- jsob = json.load(f)
- markupsDict = jsob["markups"][0]
- if total_count > 0:
- fp.write(",\n")
- fp.write(f" {json.dumps(markupsDict)}")
- total_count += 1
- f.close()
- fp.write("]\n") # close elements
- fp.write("}") # end of root
- label_info = []
- return label_in, label_info
-
-
-class MONAILabelLogic(ScriptedLoadableModuleLogic):
- def __init__(self, tmpdir=None, server_url=None, progress_callback=None, client_id=None, resourcePath=None):
- ScriptedLoadableModuleLogic.__init__(self)
-
- self.server_url = server_url
- self.tmpdir = slicer.util.tempDirectory("slicer-monai-label") if tmpdir is None else tmpdir
- self.client_id = client_id
- self.resourcePath = resourcePath
- self.username = None
- self.password = None
- self.auth_token = None
-
- self.volumeToSessions = dict()
- self.progress_callback = progress_callback
-
- def setDefaultParameters(self, parameterNode):
- if not parameterNode.GetParameter("SegmentationModel"):
- parameterNode.SetParameter("SegmentationModel", "")
- if not parameterNode.GetParameter("DeepgrowModel"):
- parameterNode.SetParameter("DeepgrowModel", "")
- if not parameterNode.GetParameter("ScribblesMethod"):
- parameterNode.SetParameter("ScribblesMethod", "")
-
- def __del__(self):
- shutil.rmtree(self.tmpdir, ignore_errors=True)
-
- def setServer(self, server_url=None):
- if self.server_url != server_url:
- self.username = None
- self.password = None
- self.auth_token = None
-
- self.server_url = server_url if server_url else "http://127.0.0.1:8000"
-
- def setClientId(self, client_id):
- self.client_id = client_id if client_id else "user-xyz"
-
- def setProgressCallback(self, progress_callback=None):
- self.progress_callback = progress_callback
-
- def reportProgress(self, progress):
- if self.progress_callback:
- self.progress_callback(progress)
-
- def get_segment_editor_node(self):
- # Use the Segment Editor module's parameter node for the embedded segment editor widget.
- # This ensures that if the user switches to the Segment Editor then the selected
- # segmentation node, volume node, etc. are the same.
- segmentEditorSingletonTag = "SegmentEditor"
- segmentEditorNode = slicer.mrmlScene.GetSingletonNode(segmentEditorSingletonTag, "vtkMRMLSegmentEditorNode")
- if segmentEditorNode is None:
- segmentEditorNode = slicer.mrmlScene.CreateNodeByClass("vtkMRMLSegmentEditorNode")
- segmentEditorNode.UnRegister(None)
- segmentEditorNode.SetSingletonTag(segmentEditorSingletonTag)
- segmentEditorNode = slicer.mrmlScene.AddNode(segmentEditorNode)
- return segmentEditorNode
-
- def _client(self):
- mc = MONAILabelClient(self.server_url, self.tmpdir, self.client_id)
- if mc.auth_enabled():
- if not self.username or not self.password:
- dlg = LoginDialog(username=self.client_id, password="", resourcePath=self.resourcePath)
- dlg.exec()
-
- self.username = dlg.ui.username.text
- self.password = dlg.ui.password.text
-
- if self.auth_token:
- mc.update_auth(self.auth_token)
-
- # TODO:: JWT token can be validated (with additional py dependencies) to avoid further calls to server
- if not self.auth_token or not mc.auth_valid_token():
- try:
- print(f"Fetching new Token for: {self.username}")
- self.auth_token = mc.auth_token(self.username, self.password)
- mc.update_auth(self.auth_token)
- except BaseException:
- self.username = None
- self.password = None
- self.auth_token = None
- return mc
-
- def info(self):
- return self._client().info()
-
- def datastore(self):
- return self._client().datastore()
-
- def download_label(self, label_id, tag):
- return self._client().download_label(label_id, tag)
-
- def next_sample(self, strategy, params={}):
- return self._client().next_sample(strategy, params)
-
- def create_session(self, image_in):
- return self._client().create_session(image_in)
-
- def get_session(self, session_id):
- return self._client().get_session(session_id)
-
- def remove_session(self, session_id):
- return self._client().remove_session(session_id)
-
- def upload_image(self, image_in, image_id=None):
- return self._client().upload_image(image_in, image_id)
-
- def save_label(self, image_in, label_in, params):
- return self._client().save_label(image_in, label_in, params=params)
-
- def infer(self, model, image_in, params={}, label_in=None, file=None, session_id=None):
- logging.debug("Preparing input data for segmentation")
- self.reportProgress(0)
-
- client = self._client()
- params["result_extension"] = ".nrrd" # expect .nrrd
- params["result_dtype"] = "uint8"
- result_file, params = client.infer(model, image_in, params, label_in, file, session_id)
-
- logging.debug(f"Image Response: {result_file}")
- logging.debug(f"JSON Response: {params}")
-
- self.reportProgress(100)
- return result_file, params
-
- def train_start(self, model=None, params={}):
- return self._client().train_start(model, params)
-
- def train_status(self, check_if_running):
- return self._client().train_status(check_if_running)
-
- def train_stop(self):
- return self._client().train_stop()
-
-
-class LoginDialog(qt.QDialog):
- def __init__(self, username, password, resourcePath):
- super().__init__()
- self.setWindowTitle("User Login")
-
- layout = qt.QVBoxLayout()
- uiWidget = slicer.util.loadUI(resourcePath("UI/LoginDialog.ui"))
- layout.addWidget(uiWidget)
-
- self.ui = slicer.util.childWidgetVariables(uiWidget)
- self.setLayout(layout)
- self.ui.username.setText(username)
- self.ui.password.setText(password if password else "")
- self.ui.loginButton.connect("clicked(bool)", self.onLogin)
-
- def onLogin(self):
- self.close()
-
-
-class MONAILabelTest(ScriptedLoadableModuleTest):
- def setUp(self):
- slicer.mrmlScene.Clear()
-
- def runTest(self):
- self.setUp()
- self.test_MONAILabel1()
-
- def test_MONAILabel1(self):
- self.delayDisplay("Test passed")
diff --git a/monailabel/plugins/slicer/MONAILabel/MONAILabelLib/__init__.py b/monailabel/plugins/slicer/MONAILabel/MONAILabelLib/__init__.py
deleted file mode 100644
index b59d6bb..0000000
--- a/monailabel/plugins/slicer/MONAILabel/MONAILabelLib/__init__.py
+++ /dev/null
@@ -1,13 +0,0 @@
-# Copyright (c) MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-from .client import *
-from .labelcolors import *
diff --git a/monailabel/plugins/slicer/MONAILabel/MONAILabelLib/client.py b/monailabel/plugins/slicer/MONAILabel/MONAILabelLib/client.py
deleted file mode 100644
index 920dda2..0000000
--- a/monailabel/plugins/slicer/MONAILabel/MONAILabelLib/client.py
+++ /dev/null
@@ -1,672 +0,0 @@
-# Copyright (c) MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-import cgi
-import http.client
-import json
-import logging
-import mimetypes
-import os
-import re
-import ssl
-import tempfile
-from pathlib import Path
-from urllib.parse import quote_plus, unquote, urlencode, urlparse
-
-import requests
-
-logger = logging.getLogger(__name__)
-
-
-def bytes_to_str(b):
- return b.decode("utf-8") if isinstance(b, bytes) else b
-
-
-class MONAILabelClient:
- """
- Basic MONAILabel Client to invoke infer/train APIs over http/https
- """
-
- def __init__(self, server_url, tmpdir=None, client_id=None):
- """
- :param server_url: Server URL for MONAILabel (e.g. http://127.0.0.1:8000)
- :param tmpdir: Temp directory to save temporary files. If None then it uses tempfile.tempdir
- :param client_id: Client ID that will be added for all basic requests
- """
-
- self._server_url = server_url.rstrip("/").strip()
- self._tmpdir = tmpdir if tmpdir else tempfile.tempdir if tempfile.tempdir else "/tmp"
- self._client_id = client_id
- self._headers = {}
-
- def _update_client_id(self, params):
- if params:
- params["client_id"] = self._client_id
- else:
- params = {"client_id": self._client_id}
- return params
-
- def update_auth(self, token):
- if token:
- self._headers["Authorization"] = f"{token['token_type']} {token['access_token']}"
-
- def get_server_url(self):
- """
- Return server url
-
- :return: the url for monailabel server
- """
- return self._server_url
-
- def set_server_url(self, server_url):
- """
- Set url for monailabel server
-
- :param server_url: server url for monailabel
- """
- self._server_url = server_url.rstrip("/").strip()
-
- def auth_enabled(self) -> bool:
- """
- Check if Auth is enabled
-
- """
- selector = "/auth/"
- status, response, _, _ = MONAILabelUtils.http_method("GET", self._server_url, selector)
- if status != 200:
- return False
-
- response = bytes_to_str(response)
- logger.debug(f"Response: {response}")
- enabled = json.loads(response).get("enabled", False)
- return True if enabled else False
-
- def auth_token(self, username, password):
- """
- Fetch Auth Token. Currently only basic authentication is supported.
-
- :param username: UserName for basic authentication
- :param password: Password for basic authentication
- """
- selector = "/auth/token"
- data = urlencode({"username": username, "password": password, "grant_type": "password"})
- status, response, _, _ = MONAILabelUtils.http_method(
- "POST", self._server_url, selector, data, None, "application/x-www-form-urlencoded"
- )
- if status != 200:
- raise MONAILabelClientException(
- MONAILabelError.SERVER_ERROR, f"Status: {status}; Response: {bytes_to_str(response)}", status, response
- )
-
- response = bytes_to_str(response)
- logger.debug(f"Response: {response}")
- return json.loads(response)
-
- def auth_valid_token(self) -> bool:
- selector = "/auth/token/valid"
- status, _, _, _ = MONAILabelUtils.http_method("GET", self._server_url, selector, headers=self._headers)
- return True if status == 200 else False
-
- def info(self):
- """
- Invoke /info/ request over MONAILabel Server
-
- :return: json response
- """
- selector = "/info/"
- status, response, _, _ = MONAILabelUtils.http_method("GET", self._server_url, selector, headers=self._headers)
- if status != 200:
- raise MONAILabelClientException(
- MONAILabelError.SERVER_ERROR, f"Status: {status}; Response: {bytes_to_str(response)}", status, response
- )
-
- response = bytes_to_str(response)
- logging.debug(f"Response: {response}")
- return json.loads(response)
-
- def next_sample(self, strategy, params):
- """
- Get Next sample
-
- :param strategy: Name of strategy to be used for fetching next sample
- :param params: Additional JSON params as part of strategy request
- :return: json response which contains information about next image selected for annotation
- """
- params = self._update_client_id(params)
- selector = f"/activelearning/{MONAILabelUtils.urllib_quote_plus(strategy)}"
- status, response, _, _ = MONAILabelUtils.http_method(
- "POST", self._server_url, selector, params, headers=self._headers
- )
- if status != 200:
- raise MONAILabelClientException(
- MONAILabelError.SERVER_ERROR, f"Status: {status}; Response: {bytes_to_str(response)}", status, response
- )
-
- response = bytes_to_str(response)
- logging.debug(f"Response: {response}")
- return json.loads(response)
-
- def create_session(self, image_in, params=None):
- """
- Create New Session
-
- :param image_in: filepath for image to be sent to server as part of session creation
- :param params: additional JSON params as part of session reqeust
- :return: json response which contains session id and other details
- """
- selector = "/session/"
- params = self._update_client_id(params)
-
- status, response, _ = MONAILabelUtils.http_upload(
- "PUT", self._server_url, selector, params, [image_in], headers=self._headers
- )
- if status != 200:
- raise MONAILabelClientException(
- MONAILabelError.SERVER_ERROR, f"Status: {status}; Response: {bytes_to_str(response)}", status, response
- )
-
- response = bytes_to_str(response)
- logging.debug(f"Response: {response}")
- return json.loads(response)
-
- def get_session(self, session_id):
- """
- Get Session
-
- :param session_id: Session Id
- :return: json response which contains more details about the session
- """
- selector = f"/session/{MONAILabelUtils.urllib_quote_plus(session_id)}"
- status, response, _, _ = MONAILabelUtils.http_method("GET", self._server_url, selector, headers=self._headers)
- if status != 200:
- raise MONAILabelClientException(
- MONAILabelError.SERVER_ERROR, f"Status: {status}; Response: {bytes_to_str(response)}", status, response
- )
-
- response = bytes_to_str(response)
- logging.debug(f"Response: {response}")
- return json.loads(response)
-
- def remove_session(self, session_id):
- """
- Remove any existing Session
-
- :param session_id: Session Id
- :return: json response
- """
- selector = f"/session/{MONAILabelUtils.urllib_quote_plus(session_id)}"
- status, response, _, _ = MONAILabelUtils.http_method(
- "DELETE", self._server_url, selector, headers=self._headers
- )
- if status != 200:
- raise MONAILabelClientException(
- MONAILabelError.SERVER_ERROR, f"Status: {status}; Response: {bytes_to_str(response)}", status, response
- )
-
- response = bytes_to_str(response)
- logging.debug(f"Response: {response}")
- return json.loads(response)
-
- def upload_image(self, image_in, image_id=None, params=None):
- """
- Upload New Image to MONAILabel Datastore
-
- :param image_in: Image File Path
- :param image_id: Force Image ID; If not provided then Server it auto generate new Image ID
- :param params: Additional JSON params
- :return: json response which contains image id and other details
- """
- selector = f"/datastore/?image={MONAILabelUtils.urllib_quote_plus(image_id)}"
-
- files = {"file": image_in}
- params = self._update_client_id(params)
- fields = {"params": json.dumps(params) if params else "{}"}
-
- status, response, _, _ = MONAILabelUtils.http_multipart(
- "PUT", self._server_url, selector, fields, files, headers=self._headers
- )
- if status != 200:
- raise MONAILabelClientException(
- MONAILabelError.SERVER_ERROR,
- f"Status: {status}; Response: {bytes_to_str(response)}",
- )
-
- response = bytes_to_str(response)
- logging.debug(f"Response: {response}")
- return json.loads(response)
-
- def save_label(self, image_id, label_in, tag="", params=None):
- """
- Save/Submit Label
-
- :param image_id: Image Id for which label needs to saved/submitted
- :param label_in: Label File path which shall be saved/submitted
- :param tag: Save label against tag in datastore
- :param params: Additional JSON params for the request
- :return: json response
- """
- selector = f"/datastore/label?image={MONAILabelUtils.urllib_quote_plus(image_id)}"
- if tag:
- selector += f"&tag={MONAILabelUtils.urllib_quote_plus(tag)}"
-
- params = self._update_client_id(params)
- fields = {
- "params": json.dumps(params),
- }
- files = {"label": label_in}
-
- status, response, _, _ = MONAILabelUtils.http_multipart(
- "PUT", self._server_url, selector, fields, files, headers=self._headers
- )
- if status != 200:
- raise MONAILabelClientException(
- MONAILabelError.SERVER_ERROR,
- f"Status: {status}; Response: {bytes_to_str(response)}",
- )
-
- response = bytes_to_str(response)
- logging.debug(f"Response: {response}")
- return json.loads(response)
-
- def datastore(self):
- selector = "/datastore/?output=all"
- status, response, _, _ = MONAILabelUtils.http_method("GET", self._server_url, selector, headers=self._headers)
- if status != 200:
- raise MONAILabelClientException(
- MONAILabelError.SERVER_ERROR, f"Status: {status}; Response: {bytes_to_str(response)}", status, response
- )
-
- response = bytes_to_str(response)
- logging.debug(f"Response: {response}")
- return json.loads(response)
-
- def download_label(self, label_id, tag):
- selector = "/datastore/label?label={}&tag={}".format(
- MONAILabelUtils.urllib_quote_plus(label_id), MONAILabelUtils.urllib_quote_plus(tag)
- )
- status, response, _, headers = MONAILabelUtils.http_method(
- "GET", self._server_url, selector, headers=self._headers
- )
- if status != 200:
- raise MONAILabelClientException(
- MONAILabelError.SERVER_ERROR, f"Status: {status}; Response: {bytes_to_str(response)}", status, response
- )
-
- content_disposition = headers.get("content-disposition")
-
- if not content_disposition:
- logging.warning("Filename not found. Fall back to no loaded labels")
- file_name = MONAILabelUtils.get_filename(content_disposition)
-
- file_ext = "".join(Path(file_name).suffixes)
- local_filename = tempfile.NamedTemporaryFile(dir=self._tmpdir, suffix=file_ext).name
- with open(local_filename, "wb") as f:
- f.write(response)
-
- return local_filename
-
- def infer(self, model, image_id, params, label_in=None, file=None, session_id=None):
- """
- Run Infer
-
- :param model: Name of Model
- :param image_id: Image Id
- :param params: Additional configs/json params as part of Infer request
- :param label_in: File path for label mask which is needed to run Inference (e.g. In case of Scribbles)
- :param file: File path for Image (use raw image instead of image_id)
- :param session_id: Session ID (use existing session id instead of image_id)
- :return: response_file (label mask), response_body (json result/output params)
- """
- selector = "/infer/{}?image={}".format(
- MONAILabelUtils.urllib_quote_plus(model),
- MONAILabelUtils.urllib_quote_plus(image_id),
- )
- if session_id:
- selector += f"&session_id={MONAILabelUtils.urllib_quote_plus(session_id)}"
-
- params = self._update_client_id(params)
- fields = {"params": json.dumps(params) if params else "{}"}
- files = {"label": label_in} if label_in else {}
- files.update({"file": file} if file and not session_id else {})
-
- status, form, files, _ = MONAILabelUtils.http_multipart(
- "POST", self._server_url, selector, fields, files, headers=self._headers
- )
- if status != 200:
- raise MONAILabelClientException(
- MONAILabelError.SERVER_ERROR,
- f"Status: {status}; Response: {bytes_to_str(form)}",
- )
-
- form = json.loads(form) if isinstance(form, str) else form
- params = form.get("params") if files else form
- params = json.loads(params) if isinstance(params, str) else params
-
- image_out = MONAILabelUtils.save_result(files, self._tmpdir)
- return image_out, params
-
- def wsi_infer(self, model, image_id, body=None, output="dsa", session_id=None):
- """
- Run WSI Infer in case of Pathology App
-
- :param model: Name of Model
- :param image_id: Image Id
- :param body: Additional configs/json params as part of Infer request
- :param output: Output File format (dsa|asap|json)
- :param session_id: Session ID (use existing session id instead of image_id)
- :return: response_file (None), response_body
- """
- selector = "/infer/wsi/{}?image={}".format(
- MONAILabelUtils.urllib_quote_plus(model),
- MONAILabelUtils.urllib_quote_plus(image_id),
- )
- if session_id:
- selector += f"&session_id={MONAILabelUtils.urllib_quote_plus(session_id)}"
- if output:
- selector += f"&output={MONAILabelUtils.urllib_quote_plus(output)}"
-
- body = self._update_client_id(body if body else {})
- status, form, _, _ = MONAILabelUtils.http_method("POST", self._server_url, selector, body)
- if status != 200:
- raise MONAILabelClientException(
- MONAILabelError.SERVER_ERROR,
- f"Status: {status}; Response: {bytes_to_str(form)}",
- )
-
- return None, form
-
- def train_start(self, model, params):
- """
- Run Train Task
-
- :param model: Name of Model
- :param params: Additional configs/json params as part of Train request
- :return: json response
- """
- params = self._update_client_id(params)
-
- selector = "/train/"
- if model:
- selector += MONAILabelUtils.urllib_quote_plus(model)
-
- status, response, _, _ = MONAILabelUtils.http_method(
- "POST", self._server_url, selector, params, headers=self._headers
- )
- if status != 200:
- raise MONAILabelClientException(
- MONAILabelError.SERVER_ERROR,
- f"Status: {status}; Response: {bytes_to_str(response)}",
- )
-
- response = bytes_to_str(response)
- logging.debug(f"Response: {response}")
- return json.loads(response)
-
- def train_stop(self):
- """
- Stop any running Train Task(s)
-
- :return: json response
- """
- selector = "/train/"
- status, response, _, _ = MONAILabelUtils.http_method(
- "DELETE", self._server_url, selector, headers=self._headers
- )
- if status != 200:
- raise MONAILabelClientException(
- MONAILabelError.SERVER_ERROR,
- f"Status: {status}; Response: {bytes_to_str(response)}",
- )
-
- response = bytes_to_str(response)
- logging.debug(f"Response: {response}")
- return json.loads(response)
-
- def train_status(self, check_if_running=False):
- """
- Check Train Task Status
-
- :param check_if_running: Fast mode. Only check if training is Running
- :return: boolean if check_if_running is enabled; else json response that contains of full details
- """
- selector = "/train/"
- if check_if_running:
- selector += "?check_if_running=true"
- status, response, _, _ = MONAILabelUtils.http_method("GET", self._server_url, selector, headers=self._headers)
- if check_if_running:
- return status == 200
-
- if status != 200:
- raise MONAILabelClientException(
- MONAILabelError.SERVER_ERROR,
- f"Status: {status}; Response: {bytes_to_str(response)}",
- )
-
- response = bytes_to_str(response)
- logging.debug(f"Response: {response}")
- return json.loads(response)
-
-
-class MONAILabelError:
- """
- Type of Inference Model
-
- Attributes:
- SERVER_ERROR - Server Error
- SESSION_EXPIRED - Session Expired
- UNKNOWN - Unknown Error
- """
-
- SERVER_ERROR = 1
- SESSION_EXPIRED = 2
- UNKNOWN = 3
-
-
-class MONAILabelClientException(Exception):
- """
- MONAILabel Client Exception
- """
-
- __slots__ = ["error", "msg"]
-
- def __init__(self, error, msg, status_code=None, response=None):
- """
- :param error: Error code represented by MONAILabelError
- :param msg: Error message
- :param status_code: HTTP Response code
- :param response: HTTP Response
- """
- self.error = error
- self.msg = msg
- self.status_code = status_code
- self.response = response
-
-
-class MONAILabelUtils:
- @staticmethod
- def http_method(method, server_url, selector, body=None, headers=None, content_type=None):
- logging.debug(f"{method} {server_url}{selector}")
-
- parsed = urlparse(server_url)
- path = parsed.path.rstrip("/")
- selector = path + "/" + selector.lstrip("/")
- logging.debug(f"URI Path: {selector}")
-
- parsed = urlparse(server_url)
- if parsed.scheme == "https":
- logger.debug("Using HTTPS mode")
- # noinspection PyProtectedMember
- conn = http.client.HTTPSConnection(parsed.hostname, parsed.port, context=ssl._create_unverified_context())
- else:
- conn = http.client.HTTPConnection(parsed.hostname, parsed.port)
-
- headers = headers if headers else {}
- if body:
- if not content_type:
- if isinstance(body, dict):
- body = json.dumps(body)
- content_type = "application/json"
- else:
- content_type = "text/plain"
- headers.update({"content-type": content_type, "content-length": str(len(body))})
-
- conn.request(method, selector, body=body, headers=headers)
- return MONAILabelUtils.send_response(conn)
-
- @staticmethod
- def http_upload(method, server_url, selector, fields, files, headers=None):
- logging.debug(f"{method} {server_url}{selector}")
-
- url = server_url.rstrip("/") + "/" + selector.lstrip("/")
- logging.debug(f"URL: {url}")
-
- files = [("files", (os.path.basename(f), open(f, "rb"))) for f in files]
- headers = headers if headers else {}
- response = (
- requests.post(url, files=files, headers=headers)
- if method == "POST"
- else requests.put(url, files=files, data=fields, headers=headers)
- )
- return response.status_code, response.text, None
-
- @staticmethod
- def http_multipart(method, server_url, selector, fields, files, headers={}):
- logging.debug(f"{method} {server_url}{selector}")
-
- content_type, body = MONAILabelUtils.encode_multipart_formdata(fields, files)
- headers = headers if headers else {}
- headers.update({"content-type": content_type, "content-length": str(len(body))})
-
- parsed = urlparse(server_url)
- path = parsed.path.rstrip("/")
- selector = path + "/" + selector.lstrip("/")
- logging.debug(f"URI Path: {selector}")
-
- if parsed.scheme == "https":
- logger.debug("Using HTTPS mode")
- # noinspection PyProtectedMember
- conn = http.client.HTTPSConnection(parsed.hostname, parsed.port, context=ssl._create_unverified_context())
- else:
- conn = http.client.HTTPConnection(parsed.hostname, parsed.port)
-
- conn.request(method, selector, body, headers)
- return MONAILabelUtils.send_response(conn, content_type)
-
- @staticmethod
- def send_response(conn, content_type="application/json"):
- response = conn.getresponse()
- logging.debug(f"HTTP Response Code: {response.status}")
- logging.debug(f"HTTP Response Message: {response.reason}")
- logging.debug(f"HTTP Response Headers: {response.getheaders()}")
-
- response_content_type = response.getheader("content-type", content_type)
- logging.debug(f"HTTP Response Content-Type: {response_content_type}")
-
- if "multipart" in response_content_type:
- if response.status == 200:
- form, files = MONAILabelUtils.parse_multipart(response.fp if response.fp else response, response.msg)
- logging.debug(f"Response FORM: {form}")
- logging.debug(f"Response FILES: {files.keys()}")
- return response.status, form, files, response.headers
- else:
- return response.status, response.read(), None, response.headers
-
- logging.debug("Reading status/content from simple response!")
- return response.status, response.read(), None, response.headers
-
- @staticmethod
- def save_result(files, tmpdir):
- if files is None:
- return
- for name in files:
- data = files[name]
- result_file = os.path.join(tmpdir, name)
-
- logging.debug(f"Saving {name} to {result_file}; Size: {len(data)}")
- dir_path = os.path.dirname(os.path.realpath(result_file))
- if not os.path.exists(dir_path):
- os.makedirs(dir_path)
-
- with open(result_file, "wb") as f:
- if isinstance(data, bytes):
- f.write(data)
- else:
- f.write(data.encode("utf-8"))
-
- # Currently only one file per response supported
- return result_file
-
- @staticmethod
- def encode_multipart_formdata(fields, files):
- limit = "----------lImIt_of_THE_fIle_eW_$"
- lines = []
- for key, value in fields.items():
- lines.append("--" + limit)
- lines.append('Content-Disposition: form-data; name="%s"' % key)
- lines.append("")
- lines.append(value)
- for key, filename in files.items():
- lines.append("--" + limit)
- lines.append(f'Content-Disposition: form-data; name="{key}"; filename="{filename}"')
- lines.append("Content-Type: %s" % MONAILabelUtils.get_content_type(filename))
- lines.append("")
- with open(filename, mode="rb") as f:
- data = f.read()
- lines.append(data)
- lines.append("--" + limit + "--")
- lines.append("")
-
- body = bytearray()
- for line in lines:
- body.extend(line if isinstance(line, bytes) else line.encode("utf-8"))
- body.extend(b"\r\n")
-
- content_type = "multipart/form-data; boundary=%s" % limit
- return content_type, body
-
- @staticmethod
- def get_content_type(filename):
- return mimetypes.guess_type(filename)[0] or "application/octet-stream"
-
- @staticmethod
- def parse_multipart(fp, headers):
- fs = cgi.FieldStorage(
- fp=fp,
- environ={"REQUEST_METHOD": "POST"},
- headers=headers,
- keep_blank_values=True,
- )
- form = {}
- files = {}
- if hasattr(fs, "list") and isinstance(fs.list, list):
- for f in fs.list:
- logger.debug(f"FILE-NAME: {f.filename}; NAME: {f.name}; SIZE: {len(f.value)}")
- if f.filename:
- files[f.filename] = f.value
- else:
- form[f.name] = f.value
- return form, files
-
- @staticmethod
- def urllib_quote_plus(s):
- return quote_plus(s)
-
- @staticmethod
- def get_filename(content_disposition):
- file_name = re.findall(r"filename\*=([^;]+)", content_disposition, flags=re.IGNORECASE)
- if not file_name:
- file_name = re.findall('filename="(.+)"', content_disposition, flags=re.IGNORECASE)
- if "utf-8''" in file_name[0].lower():
- file_name = re.sub("utf-8''", "", file_name[0], flags=re.IGNORECASE)
- file_name = unquote(file_name)
- else:
- file_name = file_name[0]
- return file_name
diff --git a/monailabel/plugins/slicer/MONAILabel/MONAILabelLib/labelcolors.py b/monailabel/plugins/slicer/MONAILabel/MONAILabelLib/labelcolors.py
deleted file mode 100644
index ad9ee36..0000000
--- a/monailabel/plugins/slicer/MONAILabel/MONAILabelLib/labelcolors.py
+++ /dev/null
@@ -1,323 +0,0 @@
-# Copyright (c) MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-GenericAnatomyColors = {
- "background": (0, 0, 0),
- "tissue": (128, 174, 128),
- "bone": (241, 214, 145),
- "skin": (177, 122, 101),
- "connective tissue": (111, 184, 210),
- "blood": (216, 101, 79),
- "organ": (221, 130, 101),
- "mass": (144, 238, 144),
- "muscle": (192, 104, 88),
- "foreign object": (220, 245, 20),
- "waste": (78, 63, 0),
- "teeth": (255, 250, 220),
- "fat": (230, 220, 70),
- "gray matter": (200, 200, 235),
- "white matter": (250, 250, 210),
- "nerve": (244, 214, 49),
- "vein": (0, 151, 206),
- "artery": (216, 101, 79),
- "capillary": (183, 156, 220),
- "ligament": (183, 214, 211),
- "tendon": (152, 189, 207),
- "cartilage": (111, 184, 210),
- "meniscus": (178, 212, 242),
- "lymph node": (68, 172, 100),
- "lymphatic vessel": (111, 197, 131),
- "cerebro-spinal fluid": (85, 188, 255),
- "bile": (0, 145, 30),
- "urine": (214, 230, 130),
- "feces": (78, 63, 0),
- "gas": (218, 255, 255),
- "fluid": (170, 250, 250),
- "edema": (140, 224, 228),
- "bleeding": (188, 65, 28),
- "necrosis": (216, 191, 216),
- "clot": (145, 60, 66),
- "embolism": (150, 98, 83),
- "head": (177, 122, 101),
- "central nervous system": (244, 214, 49),
- "brain": (250, 250, 225),
- "gray matter of brain": (200, 200, 215),
- "telencephalon": (68, 131, 98),
- "cerebral cortex": (128, 174, 128),
- "right frontal lobe": (83, 146, 164),
- "left frontal lobe": (83, 146, 164),
- "right temporal lobe": (162, 115, 105),
- "left temporal lobe": (162, 115, 105),
- "right parietal lobe": (141, 93, 137),
- "left parietal lobe": (141, 93, 137),
- "right occipital lobe": (182, 166, 110),
- "left occipital lobe": (182, 166, 110),
- "right insular lobe": (188, 135, 166),
- "left insular lobe": (188, 135, 166),
- "right limbic lobe": (154, 150, 201),
- "left limbic lobe": (154, 150, 201),
- "right striatum": (177, 140, 190),
- "left striatum": (177, 140, 190),
- "right caudate nucleus": (30, 111, 85),
- "left caudate nucleus": (30, 111, 85),
- "right putamen": (210, 157, 166),
- "left putamen": (210, 157, 166),
- "right pallidum": (48, 129, 126),
- "left pallidum": (48, 129, 126),
- "right amygdaloid complex": (98, 153, 112),
- "left amygdaloid complex": (98, 153, 112),
- "diencephalon": (69, 110, 53),
- "thalamus": (166, 113, 137),
- "right thalamus": (122, 101, 38),
- "left thalamus": (122, 101, 38),
- "pineal gland": (253, 135, 192),
- "midbrain": (145, 92, 109),
- "substantia nigra": (46, 101, 131),
- "right substantia nigra": (0, 108, 112),
- "left substantia nigra": (0, 108, 112),
- "cerebral white matter": (250, 250, 225),
- "right superior longitudinal fasciculus": (127, 150, 88),
- "left superior longitudinal fasciculus": (127, 150, 88),
- "right inferior longitudinal fasciculus": (159, 116, 163),
- "left inferior longitudinal fasciculus": (159, 116, 163),
- "right arcuate fasciculus": (125, 102, 154),
- "left arcuate fasciculus": (125, 102, 154),
- "right uncinate fasciculus": (106, 174, 155),
- "left uncinate fasciculus": (106, 174, 155),
- "right cingulum bundle": (154, 146, 83),
- "left cingulum bundle": (154, 146, 83),
- "projection fibers": (126, 126, 55),
- "right corticospinal tract": (201, 160, 133),
- "left corticospinal tract": (201, 160, 133),
- "right optic radiation": (78, 152, 141),
- "left optic radiation": (78, 152, 141),
- "right medial lemniscus": (174, 140, 103),
- "left medial lemniscus": (174, 140, 103),
- "right superior cerebellar peduncle": (139, 126, 177),
- "left superior cerebellar peduncle": (139, 126, 177),
- "right middle cerebellar peduncle": (148, 120, 72),
- "left middle cerebellar peduncle": (148, 120, 72),
- "right inferior cerebellar peduncle": (186, 135, 135),
- "left inferior cerebellar peduncle": (186, 135, 135),
- "optic chiasm": (99, 106, 24),
- "right optic tract": (156, 171, 108),
- "left optic tract": (156, 171, 108),
- "right fornix": (64, 123, 147),
- "left fornix": (64, 123, 147),
- "commissural fibers": (138, 95, 74),
- "corpus callosum": (97, 113, 158),
- "posterior commissure": (126, 161, 197),
- "cerebellar white matter": (194, 195, 164),
- "CSF space": (85, 188, 255),
- "ventricles of brain": (88, 106, 215),
- "right lateral ventricle": (88, 106, 215),
- "left lateral ventricle": (88, 106, 215),
- "right third ventricle": (88, 106, 215),
- "left third ventricle": (88, 106, 215),
- "cerebral aqueduct": (88, 106, 215),
- "fourth ventricle": (88, 106, 215),
- "subarachnoid space": (88, 106, 215),
- "spinal cord": (244, 214, 49),
- "gray matter of spinal cord": (200, 200, 215),
- "white matter of spinal cord": (250, 250, 225),
- "endocrine system of brain": (82, 174, 128),
- "pituitary gland": (57, 157, 110),
- "adenohypophysis": (60, 143, 83),
- "neurohypophysis": (92, 162, 109),
- "meninges": (255, 244, 209),
- "dura mater": (255, 244, 209),
- "arachnoid": (255, 244, 209),
- "pia mater": (255, 244, 209),
- "muscles of head": (201, 121, 77),
- "salivary glands": (70, 163, 117),
- "lips": (188, 91, 95),
- "nose": (177, 122, 101),
- "tongue": (166, 84, 94),
- "soft palate": (182, 105, 107),
- "right inner ear": (229, 147, 118),
- "left inner ear": (229, 147, 118),
- "right external ear": (174, 122, 90),
- "left external ear": (174, 122, 90),
- "right middle ear": (201, 112, 73),
- "left middle ear": (201, 112, 73),
- "right eyeball": (194, 142, 0),
- "left eyeball": (194, 142, 0),
- "skull": (241, 213, 144),
- "right frontal bone": (203, 179, 77),
- "left frontal bone": (203, 179, 77),
- "right parietal bone": (229, 204, 109),
- "left parietal bone": (229, 204, 109),
- "right temporal bone": (255, 243, 152),
- "left temporal bone": (255, 243, 152),
- "right sphenoid bone": (209, 185, 85),
- "left sphenoid bone": (209, 185, 85),
- "right ethmoid bone": (248, 223, 131),
- "left ethmoid bone": (248, 223, 131),
- "occipital bone": (255, 230, 138),
- "maxilla": (196, 172, 68),
- "right zygomatic bone": (255, 255, 167),
- "right lacrimal bone": (255, 250, 160),
- "vomer bone": (255, 237, 145),
- "right palatine bone": (242, 217, 123),
- "left palatine bone": (242, 217, 123),
- "mandible": (222, 198, 101),
- "neck": (177, 122, 101),
- "muscles of neck": (213, 124, 109),
- "pharynx": (184, 105, 108),
- "larynx": (150, 208, 243),
- "thyroid gland": (62, 162, 114),
- "right parathyroid glands": (62, 162, 114),
- "left parathyroid glands": (62, 162, 114),
- "skeleton of neck": (242, 206, 142),
- "hyoid bone": (250, 210, 139),
- "cervical vertebral column": (255, 255, 207),
- "thorax": (177, 122, 101),
- "trachea": (182, 228, 255),
- "bronchi": (175, 216, 244),
- "right lung": (197, 165, 145),
- "left lung": (197, 165, 180),
- "superior lobe of right lung": (172, 138, 115),
- "superior lobe of left lung": (172, 138, 115),
- "middle lobe of right lung": (202, 164, 140),
- "inferior lobe of right lung": (224, 186, 162),
- "inferior lobe of left lung": (224, 186, 162),
- "pleura": (255, 245, 217),
- "heart": (206, 110, 84),
- "right atrium": (210, 115, 89),
- "left atrium": (203, 108, 81),
- "atrial septum": (233, 138, 112),
- "ventricular septum": (195, 100, 73),
- "right ventricle of heart": (181, 85, 57),
- "left ventricle of heart": (152, 55, 13),
- "mitral valve": (159, 63, 27),
- "tricuspid valve": (166, 70, 38),
- "aortic valve": (218, 123, 97),
- "pulmonary valve": (225, 130, 104),
- "aorta": (224, 97, 76),
- "pericardium": (255, 244, 209),
- "pericardial cavity": (184, 122, 154),
- "esophagus": (211, 171, 143),
- "thymus": (47, 150, 103),
- "mediastinum": (255, 244, 209),
- "skin of thoracic wall": (173, 121, 88),
- "muscles of thoracic wall": (188, 95, 76),
- "skeleton of thorax": (255, 239, 172),
- "thoracic vertebral column": (226, 202, 134),
- "ribs": (253, 232, 158),
- "sternum": (244, 217, 154),
- "right clavicle": (205, 179, 108),
- "left clavicle": (205, 179, 108),
- "abdominal cavity": (186, 124, 161),
- "abdomen": (177, 122, 101),
- "peritoneum": (255, 255, 220),
- "omentum": (234, 234, 194),
- "peritoneal cavity": (204, 142, 178),
- "retroperitoneal space": (180, 119, 153),
- "stomach": (216, 132, 105),
- "duodenum": (255, 253, 229),
- "small bowel": (205, 167, 142),
- "colon": (204, 168, 143),
- "anus": (255, 224, 199),
- "liver": (221, 130, 101),
- "biliary tree": (0, 145, 30),
- "gallbladder": (139, 150, 98),
- "pancreas": (249, 180, 111),
- "spleen": (157, 108, 162),
- "urinary system": (203, 136, 116),
- "right kidney": (185, 102, 83),
- "left kidney": (185, 102, 140),
- "right ureter": (247, 182, 164),
- "left ureter": (247, 182, 164),
- "urinary bladder": (222, 154, 132),
- "urethra": (124, 186, 223),
- "right adrenal gland": (249, 186, 150),
- "left adrenal gland": (249, 186, 195),
- "female internal genitalia": (244, 170, 147),
- "uterus": (255, 181, 158),
- "right fallopian tube": (255, 190, 165),
- "left fallopian tube": (227, 153, 130),
- "right ovary": (213, 141, 113),
- "left ovary": (213, 141, 113),
- "vagina": (193, 123, 103),
- "male internal genitalia": (216, 146, 127),
- "prostate": (230, 158, 140),
- "right seminal vesicle": (245, 172, 147),
- "left seminal vesicle": (245, 172, 147),
- "right deferent duct": (241, 172, 151),
- "left deferent duct": (241, 172, 151),
- "skin of abdominal wall": (177, 124, 92),
- "muscles of abdominal wall": (171, 85, 68),
- "skeleton of abdomen": (217, 198, 131),
- "lumbar vertebral column": (212, 188, 102),
- "female external genitalia": (185, 135, 134),
- "male external genitalia": (185, 135, 134),
- "skeleton of upper limb": (198, 175, 125),
- "muscles of upper limb": (194, 98, 79),
- "right upper limb": (177, 122, 101),
- "left upper limb": (177, 122, 101),
- "right shoulder": (177, 122, 101),
- "left shoulder": (177, 122, 101),
- "right arm": (177, 122, 101),
- "left arm": (177, 122, 101),
- "right elbow": (177, 122, 101),
- "left elbow": (177, 122, 101),
- "right forearm": (177, 122, 101),
- "left forearm": (177, 122, 101),
- "right wrist": (177, 122, 101),
- "left wrist": (177, 122, 101),
- "right hand": (177, 122, 101),
- "left hand": (177, 122, 101),
- "skeleton of lower limb": (255, 238, 170),
- "muscles of lower limb": (206, 111, 93),
- "right lower limb": (177, 122, 101),
- "left lower limb": (177, 122, 101),
- "right hip": (177, 122, 101),
- "left hip": (177, 122, 101),
- "right thigh": (177, 122, 101),
- "left thigh": (177, 122, 101),
- "right knee": (177, 122, 101),
- "left knee": (177, 122, 101),
- "right leg": (177, 122, 101),
- "left leg": (177, 122, 101),
- "right foot": (177, 122, 101),
- "left foot": (177, 122, 101),
- "peripheral nervous system": (216, 186, 0),
- "autonomic nerve": (255, 226, 77),
- "sympathetic trunk": (255, 243, 106),
- "cranial nerves": (255, 234, 92),
- "vagus nerve": (240, 210, 35),
- "peripheral nerve": (224, 194, 0),
- "circulatory system": (213, 99, 79),
- "systemic arterial system": (217, 102, 81),
- "systemic venous system": (0, 147, 202),
- "pulmonary arterial system": (0, 122, 171),
- "pulmonary venous system": (186, 77, 64),
- "lymphatic system": (111, 197, 131),
- "needle": (240, 255, 30),
- "region 0": (185, 232, 61),
- "region 1": (0, 226, 255),
- "region 2": (251, 159, 255),
- "region 3": (230, 169, 29),
- "region 4": (0, 194, 113),
- "region 5": (104, 160, 249),
- "region 6": (221, 108, 158),
- "region 7": (137, 142, 0),
- "region 8": (230, 70, 0),
- "region 9": (0, 147, 0),
- "region 10": (0, 147, 248),
- "region 11": (231, 0, 206),
- "region 12": (129, 78, 0),
- "region 13": (0, 116, 0),
- "region 14": (0, 0, 255),
- "region 15": (157, 0, 0),
- "unknown": (100, 100, 130),
- "cyst": (205, 205, 100),
-}
diff --git a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/MONAILabel.png b/monailabel/plugins/slicer/MONAILabel/Resources/Icons/MONAILabel.png
deleted file mode 100644
index 614a736..0000000
Binary files a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/MONAILabel.png and /dev/null differ
diff --git a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/bg_red.png b/monailabel/plugins/slicer/MONAILabel/Resources/Icons/bg_red.png
deleted file mode 100644
index 0b52f69..0000000
Binary files a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/bg_red.png and /dev/null differ
diff --git a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/contour.svg b/monailabel/plugins/slicer/MONAILabel/Resources/Icons/contour.svg
deleted file mode 100644
index 54fad6b..0000000
--- a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/contour.svg
+++ /dev/null
@@ -1 +0,0 @@
-
diff --git a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/download.png b/monailabel/plugins/slicer/MONAILabel/Resources/Icons/download.png
deleted file mode 100644
index 31a8275..0000000
Binary files a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/download.png and /dev/null differ
diff --git a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/eraser.png b/monailabel/plugins/slicer/MONAILabel/Resources/Icons/eraser.png
deleted file mode 100644
index 15a86c3..0000000
Binary files a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/eraser.png and /dev/null differ
diff --git a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/fg_green.png b/monailabel/plugins/slicer/MONAILabel/Resources/Icons/fg_green.png
deleted file mode 100644
index 34615c7..0000000
Binary files a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/fg_green.png and /dev/null differ
diff --git a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/gray.svg b/monailabel/plugins/slicer/MONAILabel/Resources/Icons/gray.svg
deleted file mode 100644
index 6cea84f..0000000
--- a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/gray.svg
+++ /dev/null
@@ -1 +0,0 @@
-
diff --git a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/paint.png b/monailabel/plugins/slicer/MONAILabel/Resources/Icons/paint.png
deleted file mode 100644
index 87e3a2c..0000000
Binary files a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/paint.png and /dev/null differ
diff --git a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/refresh-icon.png b/monailabel/plugins/slicer/MONAILabel/Resources/Icons/refresh-icon.png
deleted file mode 100644
index 602c760..0000000
Binary files a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/refresh-icon.png and /dev/null differ
diff --git a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/samm_box.png b/monailabel/plugins/slicer/MONAILabel/Resources/Icons/samm_box.png
deleted file mode 100755
index a3d6b36..0000000
Binary files a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/samm_box.png and /dev/null differ
diff --git a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/samm_class.png b/monailabel/plugins/slicer/MONAILabel/Resources/Icons/samm_class.png
deleted file mode 100755
index 03acac9..0000000
Binary files a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/samm_class.png and /dev/null differ
diff --git a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/samm_everything.png b/monailabel/plugins/slicer/MONAILabel/Resources/Icons/samm_everything.png
deleted file mode 100755
index 9b673b2..0000000
Binary files a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/samm_everything.png and /dev/null differ
diff --git a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/samm_points.png b/monailabel/plugins/slicer/MONAILabel/Resources/Icons/samm_points.png
deleted file mode 100755
index a20fbab..0000000
Binary files a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/samm_points.png and /dev/null differ
diff --git a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/samm_reset.png b/monailabel/plugins/slicer/MONAILabel/Resources/Icons/samm_reset.png
deleted file mode 100755
index efaab32..0000000
Binary files a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/samm_reset.png and /dev/null differ
diff --git a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/save.png b/monailabel/plugins/slicer/MONAILabel/Resources/Icons/save.png
deleted file mode 100644
index 1451506..0000000
Binary files a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/save.png and /dev/null differ
diff --git a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/segment.png b/monailabel/plugins/slicer/MONAILabel/Resources/Icons/segment.png
deleted file mode 100644
index 99940a4..0000000
Binary files a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/segment.png and /dev/null differ
diff --git a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/stop.png b/monailabel/plugins/slicer/MONAILabel/Resources/Icons/stop.png
deleted file mode 100644
index 09f649c..0000000
Binary files a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/stop.png and /dev/null differ
diff --git a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/training.png b/monailabel/plugins/slicer/MONAILabel/Resources/Icons/training.png
deleted file mode 100644
index b5703c9..0000000
Binary files a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/training.png and /dev/null differ
diff --git a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/upload.svg b/monailabel/plugins/slicer/MONAILabel/Resources/Icons/upload.svg
deleted file mode 100644
index 970305d..0000000
--- a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/upload.svg
+++ /dev/null
@@ -1 +0,0 @@
-Upload
diff --git a/monailabel/plugins/slicer/MONAILabel/Resources/UI/LoginDialog.ui b/monailabel/plugins/slicer/MONAILabel/Resources/UI/LoginDialog.ui
deleted file mode 100644
index 378488f..0000000
--- a/monailabel/plugins/slicer/MONAILabel/Resources/UI/LoginDialog.ui
+++ /dev/null
@@ -1,72 +0,0 @@
-
-
- Dialog
-
-
-
- 0
- 0
- 375
- 76
-
-
-
-
- 375
- 76
-
-
-
- Login
-
-
- -
-
-
- -
-
-
- Password:
-
-
-
- -
-
-
- QLineEdit::Password
-
-
-
- -
-
-
- UserName:
-
-
-
- -
-
-
-
- 0
- 44
-
-
-
- Login
-
-
- true
-
-
-
-
-
-
- password
- username
- loginButton
-
-
-
-
diff --git a/monailabel/plugins/slicer/MONAILabel/Resources/UI/MONAILabel.ui b/monailabel/plugins/slicer/MONAILabel/Resources/UI/MONAILabel.ui
deleted file mode 100644
index a10dde5..0000000
--- a/monailabel/plugins/slicer/MONAILabel/Resources/UI/MONAILabel.ui
+++ /dev/null
@@ -1,1067 +0,0 @@
-
-
- MONAILabel
-
-
-
- 0
- 0
- 448
- 1055
-
-
-
-
- 400
- 0
-
-
-
-
- 5
-
-
- 5
-
-
- 5
-
-
- 5
-
- -
-
- -
-
-
- true
-
-
- Fetch/Refresh models from Server
-
-
-
-
-
-
- -
-
-
- App Name:
-
-
-
- -
-
-
- -
-
-
-
- 0
- 0
-
-
-
- true
-
-
-
- -
-
-
- MONAI Label server:
-
-
-
- -
-
-
- Source Volume:
-
-
-
- -
-
-
-
-
-
- Select Node
-
-
- Qt::ElideMiddle
-
-
-
- -
-
-
- true
-
-
- Upload Volume
-
-
-
-
-
-
-
-
- -
-
-
- Options
-
-
- true
-
-
- 9
-
-
-
- 0
-
-
- 0
-
- -
-
-
- true
-
-
- true
-
-
- 2
-
-
- true
-
-
- 21
-
-
-
-
-
-
- -
-
- -
-
-
- Section:
-
-
-
- -
-
-
-
- 0
- 0
-
-
-
-
- -
-
-
- Name:
-
-
-
- -
-
-
-
-
-
-
-
- -
-
-
- Active Learning
-
-
- false
-
-
- 9
-
-
-
- 0
-
-
- 0
-
- -
-
-
- 0
-
-
-
- -
-
-
- -
-
-
- Status:
-
-
-
- -
-
-
- 0
-
-
-
- -
-
-
- Accuracy:
-
-
-
- -
-
-
- Average Dice score computed over submitted labels
-
-
- 0
-
-
-
- -
-
-
- Model:
-
-
-
- -
-
- -
-
-
-
- 0
- 0
-
-
-
-
- -
-
-
- Train
-
-
-
- -
-
-
- Stop
-
-
-
-
-
-
-
-
- -
-
-
- Submit Label
-
-
-
- -
-
-
- Strategy:
-
-
-
- -
-
-
- Next Sample
-
-
-
- -
-
-
-
-
-
- -
-
-
- Segment Editor
-
-
- true
-
-
- 9
-
-
- -
-
-
- true
-
-
- 10
-
-
-
-
-
-
- -
-
-
- Auto Segmentation
-
-
- true
-
-
- 9
-
-
-
- 0
-
-
- 0
-
- -
-
-
-
- 0
- 0
-
-
-
- Select pre-trained segmentation model
-
-
-
- -
-
-
- Model:
-
-
-
- -
-
-
- false
-
-
- Run
-
-
-
-
-
-
- -
-
-
- SmartEdit / Deepgrow
-
-
- true
-
-
- 9
-
-
-
- 0
-
-
- 0
-
- -
-
- -
-
-
- Model:
-
-
-
- -
-
-
- false
-
-
-
- 0
- 0
-
-
-
- Update
-
-
-
- -
-
-
-
- 0
- 0
-
-
-
- Select Deepgrow/DeepEdit Model
-
-
-
- -
-
-
- Label:
-
-
-
- -
-
- -
-
-
-
- 0
- 0
-
-
-
- false
-
-
-
- -
-
-
-
- 16777215
- 16777211
-
-
-
- Freeze
-
-
-
-
-
- -
-
-
- Foreground:
-
-
-
- -
-
- -
-
-
-
- 0
- 0
-
-
-
- qSlicerMarkupsPlaceWidget::ForcePlaceMultipleMarkups
-
-
-
- -
-
-
- Background:
-
-
-
- -
-
-
-
- 0
- 0
-
-
-
- qSlicerMarkupsPlaceWidget::ForcePlaceMultipleMarkups
-
-
-
-
-
- -
-
-
- Auto
-
-
- true
-
-
-
-
-
-
-
-
-
- -
-
-
- MONAI VISTA
-
-
- true
-
-
- 9
-
-
-
-
- 0
-
-
- 0
-
-
-
- -
-
-
- true
-
-
- true
-
-
-
-
-
- 2
-
-
- true
-
-
- 17
-
-
-
-
-
-
-
- -
-
- -
-
-
- Model:
-
-
-
- -
-
-
-
- 0
- 0
-
-
-
-
- -
-
-
- false
-
-
- Everything
-
-
-
-
-
- -
-
-
- Point prompts:
-
-
-
-
-
-
-
-
- -
-
-
- -
-
-
- Foreground:
-
-
-
- -
-
-
-
- 0
- 0
-
-
-
- qSlicerMarkupsPlaceWidget::ForcePlaceMultipleMarkups
-
-
-
-
-
-
- -
-
-
- -
-
-
- Background:
-
-
-
- -
-
-
-
- 0
- 0
-
-
-
- qSlicerMarkupsPlaceWidget::ForcePlaceMultipleMarkups
-
-
-
- -
-
-
- false
-
-
- Points
-
-
-
-
-
-
-
-
-
-
- -
-
-
- Class prompts:
-
-
-
-
-
-
- -
-
-
- -
-
-
-
-
-
-
- -
-
-
- false
-
-
- Reset
-
-
-
-
-
-
-
- -
-
-
- false
-
-
- Classes
-
-
-
-
-
-
-
-
-
-
-
-
-
- -
-
-
- Scribbles
-
-
-
- 0
-
-
- 0
-
- -
-
- -
-
- -
-
-
- Update
-
-
-
- -
-
-
- Paint
-
-
- true
-
-
-
- -
-
-
- Erase
-
-
- true
-
-
-
-
-
- -
-
- -
-
-
- Size:
-
-
- Qt::AlignCenter
-
-
-
- -
-
-
-
- 0
- 0
-
-
-
- 0
-
-
- 5.000000000000000
-
-
- 80.000000000000000
-
-
- 10.000000000000000
-
-
-
- -
-
-
- Qt::LeftToRight
-
-
- false
-
-
- 3D
-
-
- true
-
-
-
-
-
- -
-
-
- Scribbles:
-
-
-
- -
-
-
- Label:
-
-
-
- -
-
-
-
- 0
- 0
-
-
-
-
- -
-
-
- Qt::LeftToRight
-
-
- Model:
-
-
-
- -
-
-
-
- 0
- 0
-
-
-
-
- -
-
-
- -
-
- -
-
-
- ROI:
-
-
-
- -
-
-
- qSlicerMarkupsPlaceWidget::ForcePlaceSingleMarkup
-
-
-
- 0
- 0
-
-
-
-
-
-
-
-
-
-
-
- -
-
-
- Tools
-
-
- true
-
-
- 9
-
-
-
- 0
-
-
- 0
-
- -
-
-
- -
-
-
- Import Label:
-
-
-
- -
-
-
-
-
-
-
-
-
-
- -
-
-
- Qt::Vertical
-
-
-
- 20
- 40
-
-
-
-
-
-
-
-
- ctkCollapsibleButton
- QWidget
-
- 1
-
-
- ctkComboBox
- QComboBox
-
-
-
- ctkPathLineEdit
- QWidget
-
-
-
- ctkSliderWidget
- QWidget
-
-
-
- qMRMLWidget
- QWidget
-
- 1
-
-
- qSlicerWidget
- QWidget
-
- 1
-
-
- qSlicerMarkupsPlaceWidget
- qSlicerWidget
- qSlicerMarkupsPlaceWidget.h
-
-
- qMRMLSegmentEditorWidget
- qMRMLWidget
- qMRMLSegmentEditorWidget.h
-
-
-
-
-
diff --git a/monailabel/plugins/slicer/MONAILabel/Screenshots/1.png b/monailabel/plugins/slicer/MONAILabel/Screenshots/1.png
deleted file mode 100644
index 2da5a92..0000000
Binary files a/monailabel/plugins/slicer/MONAILabel/Screenshots/1.png and /dev/null differ
diff --git a/monailabel/plugins/slicer/MONAILabel/Screenshots/2.png b/monailabel/plugins/slicer/MONAILabel/Screenshots/2.png
deleted file mode 100644
index 39a60b5..0000000
Binary files a/monailabel/plugins/slicer/MONAILabel/Screenshots/2.png and /dev/null differ
diff --git a/monailabel/plugins/slicer/MONAILabel/Screenshots/3.png b/monailabel/plugins/slicer/MONAILabel/Screenshots/3.png
deleted file mode 100644
index edb54d0..0000000
Binary files a/monailabel/plugins/slicer/MONAILabel/Screenshots/3.png and /dev/null differ
diff --git a/monailabel/plugins/slicer/MONAILabel/Testing/CMakeLists.txt b/monailabel/plugins/slicer/MONAILabel/Testing/CMakeLists.txt
deleted file mode 100644
index b3dd1c9..0000000
--- a/monailabel/plugins/slicer/MONAILabel/Testing/CMakeLists.txt
+++ /dev/null
@@ -1,12 +0,0 @@
-# Copyright (c) MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-add_subdirectory(Python)
diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/.qt_for_python/uic/MONAILabelReviewer.py b/monailabel/plugins/slicer/MONAILabelReviewer/.qt_for_python/uic/MONAILabelReviewer.py
deleted file mode 100644
index 104649f..0000000
--- a/monailabel/plugins/slicer/MONAILabelReviewer/.qt_for_python/uic/MONAILabelReviewer.py
+++ /dev/null
@@ -1,706 +0,0 @@
-################################################################################
-# Form generated from reading UI file 'MONAILabelReviewer.ui'
-#
-# Created by: Qt User Interface Compiler version 5.15.2
-#
-# WARNING! All changes made in this file will be lost when recompiling UI file!
-################################################################################
-
-from ctkCollapsibleButton import ctkCollapsibleButton
-from PySide2.QtCore import *
-from PySide2.QtGui import *
-from PySide2.QtWidgets import *
-
-
-class Ui_MONAILabelReviewer:
- def setupUi(self, MONAILabelReviewer):
- if not MONAILabelReviewer.objectName():
- MONAILabelReviewer.setObjectName("MONAILabelReviewer")
- MONAILabelReviewer.resize(517, 752)
- self.gridLayout = QGridLayout(MONAILabelReviewer)
- self.gridLayout.setObjectName("gridLayout")
- self.horizontalLayout_9 = QHBoxLayout()
- self.horizontalLayout_9.setObjectName("horizontalLayout_9")
- self.btn_basic_mode = QPushButton(MONAILabelReviewer)
- self.btn_basic_mode.setObjectName("btn_basic_mode")
- self.btn_basic_mode.setStyleSheet("background-color: rgb(118, 214, 255);")
- self.btn_basic_mode.setCheckable(True)
- self.btn_basic_mode.setChecked(True)
-
- self.horizontalLayout_9.addWidget(self.btn_basic_mode)
-
- self.btn_reviewers_mode = QPushButton(MONAILabelReviewer)
- self.btn_reviewers_mode.setObjectName("btn_reviewers_mode")
- self.btn_reviewers_mode.setStyleSheet("background-color: rgb(255, 126, 121);")
- self.btn_reviewers_mode.setCheckable(True)
-
- self.horizontalLayout_9.addWidget(self.btn_reviewers_mode)
-
- self.gridLayout.addLayout(self.horizontalLayout_9, 2, 0, 1, 1)
-
- self.collapsibleButton_search_image = ctkCollapsibleButton(MONAILabelReviewer)
- self.collapsibleButton_search_image.setObjectName("collapsibleButton_search_image")
- self.collapsibleButton_search_image.setEnabled(False)
- self.collapsibleButton_search_image.setCollapsed(True)
- self.horizontalLayout = QHBoxLayout(self.collapsibleButton_search_image)
- self.horizontalLayout.setObjectName("horizontalLayout")
- self.verticalLayout_15 = QVBoxLayout()
- self.verticalLayout_15.setObjectName("verticalLayout_15")
- self.tabWidget = QTabWidget(self.collapsibleButton_search_image)
- self.tabWidget.setObjectName("tabWidget")
- self.ById = QWidget()
- self.ById.setObjectName("ById")
- self.ById.setMinimumSize(QSize(252, 0))
- self.verticalLayout_4 = QVBoxLayout(self.ById)
- self.verticalLayout_4.setObjectName("verticalLayout_4")
- self.label_18 = QLabel(self.ById)
- self.label_18.setObjectName("label_18")
-
- self.verticalLayout_4.addWidget(self.label_18)
-
- self.textEdit_search = QTextEdit(self.ById)
- self.textEdit_search.setObjectName("textEdit_search")
-
- self.verticalLayout_4.addWidget(self.textEdit_search)
-
- self.btn_search = QPushButton(self.ById)
- self.btn_search.setObjectName("btn_search")
- self.btn_search.setStyleSheet("background-color: rgb(146, 146, 146);")
-
- self.verticalLayout_4.addWidget(self.btn_search)
-
- self.tabWidget.addTab(self.ById, "")
- self.tab_8 = QWidget()
- self.tab_8.setObjectName("tab_8")
- self.verticalLayout_6 = QVBoxLayout(self.tab_8)
- self.verticalLayout_6.setObjectName("verticalLayout_6")
- self.label = QLabel(self.tab_8)
- self.label.setObjectName("label")
-
- self.verticalLayout_6.addWidget(self.label)
-
- self.comboBox_search_annotator = QComboBox(self.tab_8)
- self.comboBox_search_annotator.setObjectName("comboBox_search_annotator")
-
- self.verticalLayout_6.addWidget(self.comboBox_search_annotator)
-
- self.label_3 = QLabel(self.tab_8)
- self.label_3.setObjectName("label_3")
-
- self.verticalLayout_6.addWidget(self.label_3)
-
- self.comboBox_search_reviewer = QComboBox(self.tab_8)
- self.comboBox_search_reviewer.setObjectName("comboBox_search_reviewer")
-
- self.verticalLayout_6.addWidget(self.comboBox_search_reviewer)
-
- self.checkBox_search_approved = QCheckBox(self.tab_8)
- self.checkBox_search_approved.setObjectName("checkBox_search_approved")
-
- self.verticalLayout_6.addWidget(self.checkBox_search_approved)
-
- self.checkBox_search_flagged = QCheckBox(self.tab_8)
- self.checkBox_search_flagged.setObjectName("checkBox_search_flagged")
-
- self.verticalLayout_6.addWidget(self.checkBox_search_flagged)
-
- self.verticalSpacer_2 = QSpacerItem(20, 40, QSizePolicy.Minimum, QSizePolicy.Expanding)
-
- self.verticalLayout_6.addItem(self.verticalSpacer_2)
-
- self.btn_search_annotator_reviewer = QPushButton(self.tab_8)
- self.btn_search_annotator_reviewer.setObjectName("btn_search_annotator_reviewer")
- self.btn_search_annotator_reviewer.setStyleSheet("background-color: rgb(146, 146, 146);")
-
- self.verticalLayout_6.addWidget(self.btn_search_annotator_reviewer)
-
- self.tabWidget.addTab(self.tab_8, "")
- self.tab = QWidget()
- self.tab.setObjectName("tab")
- self.verticalLayout_7 = QVBoxLayout(self.tab)
- self.verticalLayout_7.setObjectName("verticalLayout_7")
- self.label_2 = QLabel(self.tab)
- self.label_2.setObjectName("label_2")
-
- self.verticalLayout_7.addWidget(self.label_2)
-
- self.verticalSpacer_3 = QSpacerItem(20, 40, QSizePolicy.Minimum, QSizePolicy.Expanding)
-
- self.verticalLayout_7.addItem(self.verticalSpacer_3)
-
- self.checkBox_search_easy = QCheckBox(self.tab)
- self.checkBox_search_easy.setObjectName("checkBox_search_easy")
-
- self.verticalLayout_7.addWidget(self.checkBox_search_easy)
-
- self.checkBox_search_medium = QCheckBox(self.tab)
- self.checkBox_search_medium.setObjectName("checkBox_search_medium")
-
- self.verticalLayout_7.addWidget(self.checkBox_search_medium)
-
- self.checkBox_search_hard = QCheckBox(self.tab)
- self.checkBox_search_hard.setObjectName("checkBox_search_hard")
-
- self.verticalLayout_7.addWidget(self.checkBox_search_hard)
-
- self.verticalSpacer_4 = QSpacerItem(20, 40, QSizePolicy.Minimum, QSizePolicy.Expanding)
-
- self.verticalLayout_7.addItem(self.verticalSpacer_4)
-
- self.btn_search_level = QPushButton(self.tab)
- self.btn_search_level.setObjectName("btn_search_level")
- self.btn_search_level.setStyleSheet("background-color: rgb(146, 146, 146);")
-
- self.verticalLayout_7.addWidget(self.btn_search_level)
-
- self.tabWidget.addTab(self.tab, "")
-
- self.verticalLayout_15.addWidget(self.tabWidget)
-
- self.horizontalLayout.addLayout(self.verticalLayout_15)
-
- self.verticalLayout_16 = QVBoxLayout()
- self.verticalLayout_16.setObjectName("verticalLayout_16")
- self.label_search_result = QLabel(self.collapsibleButton_search_image)
- self.label_search_result.setObjectName("label_search_result")
-
- self.verticalLayout_16.addWidget(self.label_search_result)
-
- self.tableWidge_imageMeta = QTableWidget(self.collapsibleButton_search_image)
- if self.tableWidge_imageMeta.columnCount() < 3:
- self.tableWidge_imageMeta.setColumnCount(3)
- font = QFont()
- font.setPointSize(10)
- __qtablewidgetitem = QTableWidgetItem()
- __qtablewidgetitem.setTextAlignment(Qt.AlignCenter)
- __qtablewidgetitem.setFont(font)
- self.tableWidge_imageMeta.setHorizontalHeaderItem(0, __qtablewidgetitem)
- __qtablewidgetitem1 = QTableWidgetItem()
- __qtablewidgetitem1.setTextAlignment(Qt.AlignCenter)
- __qtablewidgetitem1.setFont(font)
- self.tableWidge_imageMeta.setHorizontalHeaderItem(1, __qtablewidgetitem1)
- __qtablewidgetitem2 = QTableWidgetItem()
- self.tableWidge_imageMeta.setHorizontalHeaderItem(2, __qtablewidgetitem2)
- self.tableWidge_imageMeta.setObjectName("tableWidge_imageMeta")
- self.tableWidge_imageMeta.setSortingEnabled(True)
-
- self.verticalLayout_16.addWidget(self.tableWidge_imageMeta)
-
- self.btn_show_image = QPushButton(self.collapsibleButton_search_image)
- self.btn_show_image.setObjectName("btn_show_image")
- self.btn_show_image.setEnabled(False)
-
- self.verticalLayout_16.addWidget(self.btn_show_image)
-
- self.horizontalLayout.addLayout(self.verticalLayout_16)
-
- self.gridLayout.addWidget(self.collapsibleButton_search_image, 8, 0, 1, 1)
-
- self.CollapsibleButton = ctkCollapsibleButton(MONAILabelReviewer)
- self.CollapsibleButton.setObjectName("CollapsibleButton")
- self.gridLayout_2 = QGridLayout(self.CollapsibleButton)
- self.gridLayout_2.setObjectName("gridLayout_2")
- self.gridLayout_3 = QGridLayout()
- self.gridLayout_3.setObjectName("gridLayout_3")
- self.comboBox_server_url = QComboBox(self.CollapsibleButton)
- self.comboBox_server_url.setObjectName("comboBox_server_url")
- self.comboBox_server_url.setEditable(True)
-
- self.gridLayout_3.addWidget(self.comboBox_server_url, 1, 1, 1, 1)
-
- self.label_idx_seg_image = QLabel(self.CollapsibleButton)
- self.label_idx_seg_image.setObjectName("label_idx_seg_image")
- self.label_idx_seg_image.setAlignment(Qt.AlignCenter)
-
- self.gridLayout_3.addWidget(self.label_idx_seg_image, 3, 2, 1, 1)
-
- self.label_idx_appr_image = QLabel(self.CollapsibleButton)
- self.label_idx_appr_image.setObjectName("label_idx_appr_image")
- self.label_idx_appr_image.setAlignment(Qt.AlignCenter)
-
- self.gridLayout_3.addWidget(self.label_idx_appr_image, 4, 2, 1, 1)
-
- self.btn_connect_monai = QPushButton(self.CollapsibleButton)
- self.btn_connect_monai.setObjectName("btn_connect_monai")
- self.btn_connect_monai.setStyleSheet("background-color: rgba(0, 144, 81, 1);")
-
- self.gridLayout_3.addWidget(self.btn_connect_monai, 1, 2, 1, 1)
-
- self.label_8 = QLabel(self.CollapsibleButton)
- self.label_8.setObjectName("label_8")
-
- self.gridLayout_3.addWidget(self.label_8, 3, 0, 1, 1)
-
- self.progressBar_approved_total = QProgressBar(self.CollapsibleButton)
- self.progressBar_approved_total.setObjectName("progressBar_approved_total")
- self.progressBar_approved_total.setStyleSheet("selection-background-color: rgb(255, 147, 0);")
- self.progressBar_approved_total.setValue(0)
-
- self.gridLayout_3.addWidget(self.progressBar_approved_total, 4, 1, 1, 1)
-
- self.label_17 = QLabel(self.CollapsibleButton)
- self.label_17.setObjectName("label_17")
-
- self.gridLayout_3.addWidget(self.label_17, 4, 0, 1, 1)
-
- self.progressBar_segmentation = QProgressBar(self.CollapsibleButton)
- self.progressBar_segmentation.setObjectName("progressBar_segmentation")
- self.progressBar_segmentation.setValue(0)
-
- self.gridLayout_3.addWidget(self.progressBar_segmentation, 3, 1, 1, 1)
-
- self.label_19 = QLabel(self.CollapsibleButton)
- self.label_19.setObjectName("label_19")
-
- self.gridLayout_3.addWidget(self.label_19, 1, 0, 1, 1)
-
- self.comboBox_reviewers = QComboBox(self.CollapsibleButton)
- self.comboBox_reviewers.setObjectName("comboBox_reviewers")
- self.comboBox_reviewers.setEnabled(True)
- self.comboBox_reviewers.setEditable(True)
-
- self.gridLayout_3.addWidget(self.comboBox_reviewers, 2, 1, 1, 1)
-
- self.label_20 = QLabel(self.CollapsibleButton)
- self.label_20.setObjectName("label_20")
-
- self.gridLayout_3.addWidget(self.label_20, 2, 0, 1, 1)
-
- self.gridLayout_2.addLayout(self.gridLayout_3, 0, 0, 1, 1)
-
- self.gridLayout.addWidget(self.CollapsibleButton, 4, 0, 1, 1)
-
- self.collapsibleButton_dicom_evaluation = ctkCollapsibleButton(MONAILabelReviewer)
- self.collapsibleButton_dicom_evaluation.setObjectName("collapsibleButton_dicom_evaluation")
- self.collapsibleButton_dicom_evaluation.setEnabled(False)
- self.collapsibleButton_dicom_evaluation.setCollapsed(False)
- self.verticalLayout_12 = QVBoxLayout(self.collapsibleButton_dicom_evaluation)
- self.verticalLayout_12.setObjectName("verticalLayout_12")
- self.verticalLayout_11 = QVBoxLayout()
- self.verticalLayout_11.setObjectName("verticalLayout_11")
- self.verticalLayout_2 = QVBoxLayout()
- self.verticalLayout_2.setObjectName("verticalLayout_2")
- self.label_level_difficulty = QLabel(self.collapsibleButton_dicom_evaluation)
- self.label_level_difficulty.setObjectName("label_level_difficulty")
-
- self.verticalLayout_2.addWidget(self.label_level_difficulty)
-
- self.horizontalLayout_5 = QHBoxLayout()
- self.horizontalLayout_5.setObjectName("horizontalLayout_5")
- self.btn_easy = QPushButton(self.collapsibleButton_dicom_evaluation)
- self.btn_easy.setObjectName("btn_easy")
- self.btn_easy.setStyleSheet("background-color: rgb(0, 250, 146);")
-
- self.horizontalLayout_5.addWidget(self.btn_easy)
-
- self.btn_medium = QPushButton(self.collapsibleButton_dicom_evaluation)
- self.btn_medium.setObjectName("btn_medium")
- self.btn_medium.setStyleSheet("background-color: rgba(255, 251, 0, 179);")
-
- self.horizontalLayout_5.addWidget(self.btn_medium)
-
- self.btn_hard = QPushButton(self.collapsibleButton_dicom_evaluation)
- self.btn_hard.setObjectName("btn_hard")
- self.btn_hard.setStyleSheet("background-color: rgba(255, 38, 0, 179);")
-
- self.horizontalLayout_5.addWidget(self.btn_hard)
-
- self.verticalLayout_2.addLayout(self.horizontalLayout_5)
-
- self.verticalLayout_11.addLayout(self.verticalLayout_2)
-
- self.horizontalLayout_3 = QHBoxLayout()
- self.horizontalLayout_3.setObjectName("horizontalLayout_3")
- self.btn_previous = QPushButton(self.collapsibleButton_dicom_evaluation)
- self.btn_previous.setObjectName("btn_previous")
- self.btn_previous.setStyleSheet("background-color: rgb(255, 147, 0);")
-
- self.horizontalLayout_3.addWidget(self.btn_previous)
-
- self.btn_next = QPushButton(self.collapsibleButton_dicom_evaluation)
- self.btn_next.setObjectName("btn_next")
- self.btn_next.setStyleSheet("background-color: rgb(118, 214, 255);")
-
- self.horizontalLayout_3.addWidget(self.btn_next)
-
- self.btn_mark_revision = QPushButton(self.collapsibleButton_dicom_evaluation)
- self.btn_mark_revision.setObjectName("btn_mark_revision")
-
- self.horizontalLayout_3.addWidget(self.btn_mark_revision)
-
- self.btn_approved = QPushButton(self.collapsibleButton_dicom_evaluation)
- self.btn_approved.setObjectName("btn_approved")
-
- self.horizontalLayout_3.addWidget(self.btn_approved)
-
- self.verticalLayout_11.addLayout(self.horizontalLayout_3)
-
- self.verticalLayout = QVBoxLayout()
- self.verticalLayout.setObjectName("verticalLayout")
- self.label_idx_image = QLabel(self.collapsibleButton_dicom_evaluation)
- self.label_idx_image.setObjectName("label_idx_image")
-
- self.verticalLayout.addWidget(self.label_idx_image)
-
- self.horizontalSlider_image_idx = QSlider(self.collapsibleButton_dicom_evaluation)
- self.horizontalSlider_image_idx.setObjectName("horizontalSlider_image_idx")
- self.horizontalSlider_image_idx.setEnabled(False)
- self.horizontalSlider_image_idx.setOrientation(Qt.Horizontal)
-
- self.verticalLayout.addWidget(self.horizontalSlider_image_idx)
-
- self.verticalLayout_11.addLayout(self.verticalLayout)
-
- self.verticalLayout_12.addLayout(self.verticalLayout_11)
-
- self.verticalLayout_10 = QVBoxLayout()
- self.verticalLayout_10.setObjectName("verticalLayout_10")
- self.label_version_labels = QLabel(self.collapsibleButton_dicom_evaluation)
- self.label_version_labels.setObjectName("label_version_labels")
-
- self.verticalLayout_10.addWidget(self.label_version_labels)
-
- self.splitter = QSplitter(self.collapsibleButton_dicom_evaluation)
- self.splitter.setObjectName("splitter")
- self.splitter.setOrientation(Qt.Horizontal)
- self.comboBox_label_version = QComboBox(self.splitter)
- self.comboBox_label_version.setObjectName("comboBox_label_version")
- self.splitter.addWidget(self.comboBox_label_version)
- self.btn_edit_label = QPushButton(self.splitter)
- self.btn_edit_label.setObjectName("btn_edit_label")
- self.btn_edit_label.setStyleSheet("background-color: rgb(0, 150, 255);")
- self.splitter.addWidget(self.btn_edit_label)
-
- self.verticalLayout_10.addWidget(self.splitter)
-
- self.splitter_3 = QSplitter(self.collapsibleButton_dicom_evaluation)
- self.splitter_3.setObjectName("splitter_3")
- self.splitter_3.setOrientation(Qt.Horizontal)
- self.btn_overwrite_version = QPushButton(self.splitter_3)
- self.btn_overwrite_version.setObjectName("btn_overwrite_version")
- self.btn_overwrite_version.setStyleSheet("")
- self.splitter_3.addWidget(self.btn_overwrite_version)
- self.btn_save_new_version = QPushButton(self.splitter_3)
- self.btn_save_new_version.setObjectName("btn_save_new_version")
- self.btn_save_new_version.setStyleSheet("")
- self.splitter_3.addWidget(self.btn_save_new_version)
- self.btn_delete_version = QPushButton(self.splitter_3)
- self.btn_delete_version.setObjectName("btn_delete_version")
- self.splitter_3.addWidget(self.btn_delete_version)
-
- self.verticalLayout_10.addWidget(self.splitter_3)
-
- self.btn_update_version = QPushButton(self.collapsibleButton_dicom_evaluation)
- self.btn_update_version.setObjectName("btn_update_version")
- self.btn_update_version.setStyleSheet("background-color: rgb(115, 250, 121);")
-
- self.verticalLayout_10.addWidget(self.btn_update_version)
-
- self.verticalLayout_12.addLayout(self.verticalLayout_10)
-
- self.horizontalLayout_4 = QHBoxLayout()
- self.horizontalLayout_4.setObjectName("horizontalLayout_4")
- self.horizontalLayout_2 = QHBoxLayout()
- self.horizontalLayout_2.setObjectName("horizontalLayout_2")
- self.verticalLayout_9 = QVBoxLayout()
- self.verticalLayout_9.setObjectName("verticalLayout_9")
- self.label_12 = QLabel(self.collapsibleButton_dicom_evaluation)
- self.label_12.setObjectName("label_12")
-
- self.verticalLayout_9.addWidget(self.label_12)
-
- self.label_13 = QLabel(self.collapsibleButton_dicom_evaluation)
- self.label_13.setObjectName("label_13")
-
- self.verticalLayout_9.addWidget(self.label_13)
-
- self.label_15 = QLabel(self.collapsibleButton_dicom_evaluation)
- self.label_15.setObjectName("label_15")
-
- self.verticalLayout_9.addWidget(self.label_15)
-
- self.label_16 = QLabel(self.collapsibleButton_dicom_evaluation)
- self.label_16.setObjectName("label_16")
-
- self.verticalLayout_9.addWidget(self.label_16)
-
- self.label_14 = QLabel(self.collapsibleButton_dicom_evaluation)
- self.label_14.setObjectName("label_14")
-
- self.verticalLayout_9.addWidget(self.label_14)
-
- self.label_5 = QLabel(self.collapsibleButton_dicom_evaluation)
- self.label_5.setObjectName("label_5")
-
- self.verticalLayout_9.addWidget(self.label_5)
-
- self.label_11 = QLabel(self.collapsibleButton_dicom_evaluation)
- self.label_11.setObjectName("label_11")
-
- self.verticalLayout_9.addWidget(self.label_11)
-
- self.horizontalLayout_2.addLayout(self.verticalLayout_9)
-
- self.verticalLayout_8 = QVBoxLayout()
- self.verticalLayout_8.setObjectName("verticalLayout_8")
- self.lineEdit_image_id = QLineEdit(self.collapsibleButton_dicom_evaluation)
- self.lineEdit_image_id.setObjectName("lineEdit_image_id")
- self.lineEdit_image_id.setEnabled(False)
-
- self.verticalLayout_8.addWidget(self.lineEdit_image_id)
-
- self.lineEdit_segmentator = QLineEdit(self.collapsibleButton_dicom_evaluation)
- self.lineEdit_segmentator.setObjectName("lineEdit_segmentator")
- self.lineEdit_segmentator.setEnabled(False)
-
- self.verticalLayout_8.addWidget(self.lineEdit_segmentator)
-
- self.lineEdit_date = QLineEdit(self.collapsibleButton_dicom_evaluation)
- self.lineEdit_date.setObjectName("lineEdit_date")
- self.lineEdit_date.setEnabled(False)
-
- self.verticalLayout_8.addWidget(self.lineEdit_date)
-
- self.lineEdit_level = QLineEdit(self.collapsibleButton_dicom_evaluation)
- self.lineEdit_level.setObjectName("lineEdit_level")
- self.lineEdit_level.setEnabled(False)
-
- self.verticalLayout_8.addWidget(self.lineEdit_level)
-
- self.lineEdit_status = QLineEdit(self.collapsibleButton_dicom_evaluation)
- self.lineEdit_status.setObjectName("lineEdit_status")
- self.lineEdit_status.setEnabled(False)
-
- self.verticalLayout_8.addWidget(self.lineEdit_status)
-
- self.lineEdit_editor = QLineEdit(self.collapsibleButton_dicom_evaluation)
- self.lineEdit_editor.setObjectName("lineEdit_editor")
-
- self.verticalLayout_8.addWidget(self.lineEdit_editor)
-
- self.lineEdit_editing_date = QLineEdit(self.collapsibleButton_dicom_evaluation)
- self.lineEdit_editing_date.setObjectName("lineEdit_editing_date")
-
- self.verticalLayout_8.addWidget(self.lineEdit_editing_date)
-
- self.horizontalLayout_2.addLayout(self.verticalLayout_8)
-
- self.horizontalLayout_4.addLayout(self.horizontalLayout_2)
-
- self.plainText_comment = QPlainTextEdit(self.collapsibleButton_dicom_evaluation)
- self.plainText_comment.setObjectName("plainText_comment")
-
- self.horizontalLayout_4.addWidget(self.plainText_comment)
-
- self.verticalLayout_12.addLayout(self.horizontalLayout_4)
-
- self.gridLayout.addWidget(self.collapsibleButton_dicom_evaluation, 7, 0, 1, 1)
-
- self.collapsibleButton_dicom_stream = ctkCollapsibleButton(MONAILabelReviewer)
- self.collapsibleButton_dicom_stream.setObjectName("collapsibleButton_dicom_stream")
- self.collapsibleButton_dicom_stream.setEnabled(False)
- self.collapsibleButton_dicom_stream.setCollapsed(True)
- self.gridLayout_5 = QGridLayout(self.collapsibleButton_dicom_stream)
- self.gridLayout_5.setObjectName("gridLayout_5")
- self.gridLayout_4 = QGridLayout()
- self.gridLayout_4.setObjectName("gridLayout_4")
- self.btn_load = QPushButton(self.collapsibleButton_dicom_stream)
- self.btn_load.setObjectName("btn_load")
-
- self.gridLayout_4.addWidget(self.btn_load, 0, 2, 1, 1)
-
- self.progressBar_approved_client = QProgressBar(self.collapsibleButton_dicom_stream)
- self.progressBar_approved_client.setObjectName("progressBar_approved_client")
- self.progressBar_approved_client.setStyleSheet("selection-background-color: rgba(255, 147, 0, 209);")
- self.progressBar_approved_client.setValue(0)
-
- self.gridLayout_4.addWidget(self.progressBar_approved_client, 2, 1, 1, 1)
-
- self.comboBox_clients = QComboBox(self.collapsibleButton_dicom_stream)
- self.comboBox_clients.setObjectName("comboBox_clients")
-
- self.gridLayout_4.addWidget(self.comboBox_clients, 0, 1, 1, 1)
-
- self.label_10 = QLabel(self.collapsibleButton_dicom_stream)
- self.label_10.setObjectName("label_10")
-
- self.gridLayout_4.addWidget(self.label_10, 2, 0, 1, 1)
-
- self.label_9 = QLabel(self.collapsibleButton_dicom_stream)
- self.label_9.setObjectName("label_9")
-
- self.gridLayout_4.addWidget(self.label_9, 1, 0, 1, 1)
-
- self.label_7 = QLabel(self.collapsibleButton_dicom_stream)
- self.label_7.setObjectName("label_7")
-
- self.gridLayout_4.addWidget(self.label_7, 0, 0, 1, 1)
-
- self.progressBar_segmented_client = QProgressBar(self.collapsibleButton_dicom_stream)
- self.progressBar_segmented_client.setObjectName("progressBar_segmented_client")
- self.progressBar_segmented_client.setStyleSheet("selection-background-color: rgba(78, 157, 246, 209);")
- self.progressBar_segmented_client.setValue(0)
- self.progressBar_segmented_client.setTextVisible(True)
-
- self.gridLayout_4.addWidget(self.progressBar_segmented_client, 1, 1, 1, 1)
-
- self.label_6 = QLabel(self.collapsibleButton_dicom_stream)
- self.label_6.setObjectName("label_6")
-
- self.gridLayout_4.addWidget(self.label_6, 3, 0, 1, 1)
-
- self.horizontalLayout_6 = QHBoxLayout()
- self.horizontalLayout_6.setObjectName("horizontalLayout_6")
- self.verticalLayout_3 = QVBoxLayout()
- self.verticalLayout_3.setObjectName("verticalLayout_3")
- self.checkBox_not_segmented = QCheckBox(self.collapsibleButton_dicom_stream)
- self.checkBox_not_segmented.setObjectName("checkBox_not_segmented")
- self.checkBox_not_segmented.setEnabled(False)
-
- self.verticalLayout_3.addWidget(self.checkBox_not_segmented)
-
- self.checkBox_flagged = QCheckBox(self.collapsibleButton_dicom_stream)
- self.checkBox_flagged.setObjectName("checkBox_flagged")
-
- self.verticalLayout_3.addWidget(self.checkBox_flagged)
-
- self.horizontalLayout_6.addLayout(self.verticalLayout_3)
-
- self.verticalLayout_5 = QVBoxLayout()
- self.verticalLayout_5.setObjectName("verticalLayout_5")
- self.checkBox_segmented = QCheckBox(self.collapsibleButton_dicom_stream)
- self.checkBox_segmented.setObjectName("checkBox_segmented")
-
- self.verticalLayout_5.addWidget(self.checkBox_segmented)
-
- self.checkBox_approved = QCheckBox(self.collapsibleButton_dicom_stream)
- self.checkBox_approved.setObjectName("checkBox_approved")
-
- self.verticalLayout_5.addWidget(self.checkBox_approved)
-
- self.horizontalLayout_6.addLayout(self.verticalLayout_5)
-
- self.gridLayout_4.addLayout(self.horizontalLayout_6, 3, 1, 1, 1)
-
- self.label_idx_seg_image_client = QLabel(self.collapsibleButton_dicom_stream)
- self.label_idx_seg_image_client.setObjectName("label_idx_seg_image_client")
- self.label_idx_seg_image_client.setAlignment(Qt.AlignCenter)
-
- self.gridLayout_4.addWidget(self.label_idx_seg_image_client, 1, 2, 1, 1)
-
- self.label_idx_appr_image_client = QLabel(self.collapsibleButton_dicom_stream)
- self.label_idx_appr_image_client.setObjectName("label_idx_appr_image_client")
- self.label_idx_appr_image_client.setAlignment(Qt.AlignCenter)
-
- self.gridLayout_4.addWidget(self.label_idx_appr_image_client, 2, 2, 1, 1)
-
- self.gridLayout_5.addLayout(self.gridLayout_4, 0, 0, 1, 1)
-
- self.gridLayout.addWidget(self.collapsibleButton_dicom_stream, 6, 0, 1, 1)
-
- self.verticalSpacer = QSpacerItem(20, 40, QSizePolicy.Minimum, QSizePolicy.Expanding)
-
- self.gridLayout.addItem(self.verticalSpacer, 9, 0, 1, 1)
-
- self.retranslateUi(MONAILabelReviewer)
-
- self.tabWidget.setCurrentIndex(2)
-
- QMetaObject.connectSlotsByName(MONAILabelReviewer)
-
- # setupUi
-
- def retranslateUi(self, MONAILabelReviewer):
- self.btn_basic_mode.setText(QCoreApplication.translate("MONAILabelReviewer", "Basic mode", None))
- self.btn_reviewers_mode.setText(QCoreApplication.translate("MONAILabelReviewer", "Reviewer's mode", None))
- self.collapsibleButton_search_image.setText(
- QCoreApplication.translate("MONAILabelReviewer", "Search Images", None)
- )
- self.label_18.setText(QCoreApplication.translate("MONAILabelReviewer", "Image Ids", None))
- self.textEdit_search.setPlaceholderText(
- QCoreApplication.translate("MONAILabelReviewer", "imageId_1, imageId2, ...", None)
- )
- self.btn_search.setText(QCoreApplication.translate("MONAILabelReviewer", "Search", None))
- self.tabWidget.setTabText(
- self.tabWidget.indexOf(self.ById), QCoreApplication.translate("MONAILabelReviewer", "Ids", None)
- )
- self.label.setText(QCoreApplication.translate("MONAILabelReviewer", "Select annotator", None))
- self.label_3.setText(QCoreApplication.translate("MONAILabelReviewer", "Select reviewer", None))
- self.checkBox_search_approved.setText(QCoreApplication.translate("MONAILabelReviewer", "approved", None))
- self.checkBox_search_flagged.setText(QCoreApplication.translate("MONAILabelReviewer", "flagged", None))
- self.btn_search_annotator_reviewer.setText(QCoreApplication.translate("MONAILabelReviewer", "Search", None))
- self.tabWidget.setTabText(
- self.tabWidget.indexOf(self.tab_8),
- QCoreApplication.translate("MONAILabelReviewer", "Annotator/Reviewer", None),
- )
- self.label_2.setText(QCoreApplication.translate("MONAILabelReviewer", "Select level of difficulty", None))
- self.checkBox_search_easy.setText(QCoreApplication.translate("MONAILabelReviewer", "easy", None))
- self.checkBox_search_medium.setText(QCoreApplication.translate("MONAILabelReviewer", "medium", None))
- self.checkBox_search_hard.setText(QCoreApplication.translate("MONAILabelReviewer", "hard", None))
- self.btn_search_level.setText(QCoreApplication.translate("MONAILabelReviewer", "Search", None))
- self.tabWidget.setTabText(
- self.tabWidget.indexOf(self.tab), QCoreApplication.translate("MONAILabelReviewer", "Quality", None)
- )
- self.label_search_result.setText(QCoreApplication.translate("MONAILabelReviewer", "Result:", None))
- ___qtablewidgetitem = self.tableWidge_imageMeta.horizontalHeaderItem(0)
- ___qtablewidgetitem.setText(QCoreApplication.translate("MONAILabelReviewer", "Image Id", None))
- ___qtablewidgetitem1 = self.tableWidge_imageMeta.horizontalHeaderItem(1)
- ___qtablewidgetitem1.setText(QCoreApplication.translate("MONAILabelReviewer", "found", None))
- ___qtablewidgetitem2 = self.tableWidge_imageMeta.horizontalHeaderItem(2)
- ___qtablewidgetitem2.setText(QCoreApplication.translate("MONAILabelReviewer", "segmented", None))
- self.btn_show_image.setText(QCoreApplication.translate("MONAILabelReviewer", "Show", None))
- self.CollapsibleButton.setText(QCoreApplication.translate("MONAILabelReviewer", "Server", None))
- self.label_idx_seg_image.setText("")
- self.label_idx_appr_image.setText("")
- self.btn_connect_monai.setText(QCoreApplication.translate("MONAILabelReviewer", "Connect", None))
- self.label_8.setText(QCoreApplication.translate("MONAILabelReviewer", "Segmented", None))
- self.label_17.setText(QCoreApplication.translate("MONAILabelReviewer", "Approved", None))
- self.label_19.setText(QCoreApplication.translate("MONAILabelReviewer", "Server IP:", None))
- self.label_20.setText(QCoreApplication.translate("MONAILabelReviewer", "Reviewer:", None))
- self.collapsibleButton_dicom_evaluation.setText(
- QCoreApplication.translate("MONAILabelReviewer", "Data Evaluation", None)
- )
- self.label_level_difficulty.setText(
- QCoreApplication.translate("MONAILabelReviewer", "Level of difficulty", None)
- )
- self.btn_easy.setText(QCoreApplication.translate("MONAILabelReviewer", "Easy", None))
- self.btn_medium.setText(QCoreApplication.translate("MONAILabelReviewer", "Medium", None))
- self.btn_hard.setText(QCoreApplication.translate("MONAILabelReviewer", "Hard", None))
- self.btn_previous.setText(QCoreApplication.translate("MONAILabelReviewer", "Previous", None))
- self.btn_next.setText(QCoreApplication.translate("MONAILabelReviewer", "Next", None))
- self.btn_mark_revision.setText(QCoreApplication.translate("MONAILabelReviewer", "Flag", None))
- self.btn_approved.setText(QCoreApplication.translate("MONAILabelReviewer", "Approve", None))
- self.label_idx_image.setText(QCoreApplication.translate("MONAILabelReviewer", "Image: x/y", None))
- self.label_version_labels.setText(QCoreApplication.translate("MONAILabelReviewer", "Version of labels", None))
- self.btn_edit_label.setText(QCoreApplication.translate("MONAILabelReviewer", "Start label edit", None))
- self.btn_overwrite_version.setText(
- QCoreApplication.translate("MONAILabelReviewer", "Overwrite this version", None)
- )
- self.btn_save_new_version.setText(QCoreApplication.translate("MONAILabelReviewer", "Save as new version", None))
- self.btn_delete_version.setText(QCoreApplication.translate("MONAILabelReviewer", "Delete this version", None))
- self.btn_update_version.setText(QCoreApplication.translate("MONAILabelReviewer", "Confirm", None))
- self.label_12.setText(QCoreApplication.translate("MONAILabelReviewer", "Image Id: ", None))
- self.label_13.setText(QCoreApplication.translate("MONAILabelReviewer", "Annotator:", None))
- self.label_15.setText(QCoreApplication.translate("MONAILabelReviewer", "Annotation Date:", None))
- self.label_16.setText(QCoreApplication.translate("MONAILabelReviewer", "Difficulty Level:", None))
- self.label_14.setText(QCoreApplication.translate("MONAILabelReviewer", "Status:", None))
- self.label_5.setText(QCoreApplication.translate("MONAILabelReviewer", "Editor: ", None))
- self.label_11.setText(QCoreApplication.translate("MONAILabelReviewer", "Editing Date:", None))
- self.plainText_comment.setPlaceholderText(QCoreApplication.translate("MONAILabelReviewer", "Add Comment", None))
- self.collapsibleButton_dicom_stream.setText(
- QCoreApplication.translate("MONAILabelReviewer", "Data Set Explorer", None)
- )
- self.btn_load.setText(QCoreApplication.translate("MONAILabelReviewer", "Load", None))
- self.label_10.setText(QCoreApplication.translate("MONAILabelReviewer", "Approved", None))
- self.label_9.setText(QCoreApplication.translate("MONAILabelReviewer", "Segmented", None))
- self.label_7.setText(QCoreApplication.translate("MONAILabelReviewer", "Annotator", None))
- self.label_6.setText(QCoreApplication.translate("MONAILabelReviewer", "Filter", None))
- self.checkBox_not_segmented.setText(QCoreApplication.translate("MONAILabelReviewer", "not segmented", None))
- self.checkBox_flagged.setText(QCoreApplication.translate("MONAILabelReviewer", "flagged", None))
- self.checkBox_segmented.setText(QCoreApplication.translate("MONAILabelReviewer", "segmented", None))
- self.checkBox_approved.setText(QCoreApplication.translate("MONAILabelReviewer", "approved", None))
- self.label_idx_seg_image_client.setText("")
- self.label_idx_appr_image_client.setText("")
- pass
-
- # retranslateUi
diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/CMakeLists.txt b/monailabel/plugins/slicer/MONAILabelReviewer/CMakeLists.txt
deleted file mode 100644
index 5e3dd65..0000000
--- a/monailabel/plugins/slicer/MONAILabelReviewer/CMakeLists.txt
+++ /dev/null
@@ -1,52 +0,0 @@
-# Copyright (c) MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-#-----------------------------------------------------------------------------
-set(MODULE_NAME MONAILabelReviewer)
-
-#-----------------------------------------------------------------------------
-set(MODULE_PYTHON_SCRIPTS
- ${MODULE_NAME}.py
- ${MODULE_NAME}Lib/__init__
- ${MODULE_NAME}Lib/DataStoreKeys.py
- ${MODULE_NAME}Lib/ImageData.py
- ${MODULE_NAME}Lib/ImageDataController.py
- ${MODULE_NAME}Lib/ImageDataExtractor.py
- ${MODULE_NAME}Lib/ImageDataStatistics.py
- ${MODULE_NAME}Lib/JsonParser.py
- ${MODULE_NAME}Lib/MONAILabelReviewerEnum.py
- ${MODULE_NAME}Lib/MonaiServerREST.py
- ${MODULE_NAME}Lib/SegmentationMeta.py
- )
-
-set(MODULE_PYTHON_RESOURCES
- Resources/Icons/${MODULE_NAME}.png
- Resources/UI/${MODULE_NAME}.ui
- )
-
-#-----------------------------------------------------------------------------
-slicerMacroBuildScriptedModule(
- NAME ${MODULE_NAME}
- SCRIPTS ${MODULE_PYTHON_SCRIPTS}
- RESOURCES ${MODULE_PYTHON_RESOURCES}
- WITH_GENERIC_TESTS
- )
-
-#-----------------------------------------------------------------------------
-if(BUILD_TESTING)
-
- # Register the unittest subclass in the main script as a ctest.
- # Note that the test will also be available at runtime.
- slicer_add_python_unittest(SCRIPT ${MODULE_NAME}.py)
-
- # Additional build-time testing
- add_subdirectory(Testing)
-endif()
diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewer.py b/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewer.py
deleted file mode 100644
index 3b7b7ee..0000000
--- a/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewer.py
+++ /dev/null
@@ -1,1772 +0,0 @@
-# Copyright (c) MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-import datetime
-import logging
-import os
-import re
-import tempfile
-from typing import Dict, List
-
-import qt
-import requests
-import SampleData
-import slicer
-from MONAILabelReviewerLib.ImageData import ImageData
-from MONAILabelReviewerLib.ImageDataController import (
- ImageDataController,
- ImageDataStatistics,
-)
-from MONAILabelReviewerLib.MONAILabelReviewerEnum import Label, Level, SegStatus
-from slicer.ScriptedLoadableModule import *
-from slicer.util import VTKObservationMixin
-
-
-class MONAILabelReviewer(ScriptedLoadableModule):
- """Uses ScriptedLoadableModule base class, available at:
- https://github.com/Slicer/Slicer/blob/main/Base/Python/slicer/ScriptedLoadableModule.py
- """
-
- def __init__(self, parent):
- ScriptedLoadableModule.__init__(self, parent)
- self.parent.title = "MONAILabel Reviewer"
- self.parent.categories = ["Active Learning"]
- self.parent.dependencies = []
- self.parent.contributors = ["Minh Duc, Do (rAIdiance)"]
- self.parent.helpText = """
-This module provides the user to review on segmentations on X-Ray-dicom images.
-See more information in module documentation .
-"""
- self.parent.acknowledgementText = """
-Developed by rAiDiance, and funded by Berlin Institute of Health (BIH).
-"""
-
-
-class MONAILabelReviewerWidget(ScriptedLoadableModuleWidget, VTKObservationMixin):
- """Uses ScriptedLoadableModuleWidget base class, available at:
- https://github.com/Slicer/Slicer/blob/main/Base/Python/slicer/ScriptedLoadableModule.py
- """
-
- def __init__(self, parent=None):
- """
- Called when the user opens the module the first time and the widget is initialized.
- """
- ScriptedLoadableModuleWidget.__init__(self, parent)
- VTKObservationMixin.__init__(self) # needed for parameter node observation
-
- # Color set
- self.colorGreenPressedButton = "background-color : rgb(0, 250, 146)"
- self.colorDarkGrayButton = "background-color : rgb(169, 169, 169)"
- self.colorGreenButtonAfterSuccessfulLoad = "background-color : rgb(0, 144, 81)"
- self.colorGreenEasyButton = "background-color : rgb(0, 250, 146)"
- self.colorYellowMediumButton = "background-color : rgba(255, 251, 0, 179)"
- self.colorRedHardButton = "background-color : rgba(255, 38, 0, 179)"
- self.colorLightGreenButton = "background-color : rgb(115, 250, 121)"
- self.colorRedReviewerModeButton = "background-color : rgb(255, 126, 121)"
- self.colorBlueBasicModeButton = "background-color : rgb(118, 214, 255)"
- self.colorRed = "color: red"
- self.colorGreen = "color: green"
- self.colorLightYellow = "background-color : rgb(255,255,153)"
-
- self.logic = None
- self._parameterNode = None
- self._updatingGUIFromParameterNode = False
-
- self.STATUS = SegStatus()
- self.LEVEL = Level()
- self.LABEL = Label()
-
- self.selectedReviewer: str = ""
- self.selectedClientId: str = ""
- self.currentImageId: str = ""
- self.currentLabelVersion: str = ""
- self.listImageData: List[ImageData] = None
- self.imageCounter: int = 0
- self.currentImageData: ImageData = None
- self.idToimageData: Dict[str, ImageData] = None
-
- # Meta Information
- self.finalStatus: str = ""
- self.finalLevel: str = ""
- self.finalComment: str = ""
- self.tmpdir = ""
-
- self.reviewersModeIsActive = False
- self.isSelectableByLabelVersion = False
-
- self.mapFiltersToBool: Dict[str, bool] = {
- "segmented": False,
- "notSegemented": False,
- "approved": False,
- "flagged": False,
- }
-
- def setup(self):
- """
- Called when the user opens the module the first time and the widget is initialized.
- """
- ScriptedLoadableModuleWidget.setup(self)
-
- # Load widget from .ui file (created by Qt Designer).
- # Additional widgets can be instantiated manually and added to self.layout.
- uiWidget = slicer.util.loadUI(self.resourcePath("UI/MONAILabelReviewer.ui"))
- self.layout.addWidget(uiWidget)
- self.ui = slicer.util.childWidgetVariables(uiWidget)
-
- # Set scene in MRML widgets. Make sure that in Qt designer the top-level qMRMLWidget's
- # "mrmlSceneChanged(vtkMRMLScene*)" signal in is connected to each MRML widget's.
- # "setMRMLScene(vtkMRMLScene*)" slot.
- uiWidget.setMRMLScene(slicer.mrmlScene)
-
- # Create logic class. Logic implements all computations that should be possible to run
- # in batch mode, without a graphical user interface.
- self.logic = MONAILabelReviewerLogic()
-
- # set segmentator editor
- self.segmentEditorWidget = slicer.qMRMLSegmentEditorWidget()
- self.addSegmentator()
- self.setLightVersion()
-
- self.ui.verticalLayout_10.addWidget(self.segmentEditorWidget)
- self.loadServerSelection()
-
- # Section: Widget Elements
- self.ui.btn_connect_monai.clicked.connect(self.init_dicom_stream)
- self.ui.btn_load.clicked.connect(self.loadImageData)
-
- self.ui.btn_approved.clicked.connect(self.approveSegmentation)
- self.ui.btn_mark_revision.clicked.connect(self.flagSegmentation)
-
- self.ui.btn_next.clicked.connect(self.getNextSegmentation)
- self.ui.btn_previous.clicked.connect(self.getPreviousSegmenation)
-
- self.ui.btn_easy.clicked.connect(self.setEasy)
- self.ui.btn_medium.clicked.connect(self.setMedium)
- self.ui.btn_hard.clicked.connect(self.setHard)
-
- self.ui.btn_search.clicked.connect(self.search)
- self.ui.btn_search_annotator_reviewer.clicked.connect(self.searchByAnnotatorReviewer)
- self.ui.btn_search_level.clicked.connect(self.searchByLevel)
-
- self.ui.checkBox_search_approved.clicked.connect(self.checkedAppprovedSearch)
- self.ui.checkBox_search_flagged.clicked.connect(self.checkedFlaggedSearch)
-
- self.ui.btn_show_image.clicked.connect(self.showSearchedImage)
-
- self.ui.checkBox_flagged.clicked.connect(self.checkedFlagged)
- self.ui.checkBox_approved.clicked.connect(self.checkApproved)
- self.ui.checkBox_not_segmented.clicked.connect(self.checkNotSegmented)
- self.ui.checkBox_segmented.clicked.connect(self.checkSegmented)
-
- self.ui.btn_basic_mode.clicked.connect(self.setLightVersion)
- self.ui.btn_reviewers_mode.clicked.connect(self.setReviewerVersion)
- self.ui.comboBox_clients.currentIndexChanged.connect(self.index_changed)
- self.ui.comboBox_reviewers.currentIndexChanged.connect(self.indexReviewerchanged)
-
- self.ui.comboBox_label_version.currentIndexChanged.connect(self.indexLabelVersionChanged)
- self.ui.btn_save_new_version.clicked.connect(self.setSaveAsNewVersion)
- self.ui.btn_overwrite_version.clicked.connect(self.setOverwriteCurrentVersion)
- self.ui.btn_update_version.clicked.connect(self.updateAfterEditingSegmentation)
- self.ui.btn_edit_label.clicked.connect(self.displayEditorTools)
- self.ui.btn_delete_version.clicked.connect(self.setDeleteVersion)
-
- def getCurrentTime(self):
- return datetime.datetime.now()
-
- def getCurrentMetaStatus(self) -> str:
- if not self.finalStatus:
- return ""
- return self.finalStatus
-
- def setCurrentMetaStatus(self, status=""):
- self.finalStatus = status
-
- def getCurrentMetaLevel(self) -> str:
- if not self.finalLevel:
- return ""
- return self.finalLevel
-
- def setCurrentMetaLevel(self, level=""):
- self.finalLevel = level
-
- def getCurrentComment(self) -> str:
- comment = self.ui.plainText_comment.toPlainText()
- if not comment:
- return ""
- return comment
-
- def setCurrentComment(self, comment=""):
- self.finalComment = comment
-
- def getSelectedReviewer(self) -> str:
- selectedReviewer = self.ui.comboBox_reviewers.currentText
- if not selectedReviewer:
- return ""
- return selectedReviewer
-
- def getSelectedClientFromComboBox(self) -> str:
- selectedClient = self.ui.comboBox_clients.currentText
- if not selectedClient:
- return ""
- return selectedClient
-
- def cleanup(self):
- """
- Called when the application closes and the module widget is destroyed.
- """
- self.removeObservers()
-
- def indexReviewerchanged(self, index):
- logging.info(f"{self.getCurrentTime()}: Selected reviewer: '{self.ui.comboBox_reviewers.currentText}'")
- self.selectedReviewer = self.ui.comboBox_reviewers.currentText
-
- def index_changed(self, index):
- self.loadImageData()
-
- def indexLabelVersionChanged(self, index):
- logging.warn(
- f"{self.getCurrentTime()}: Selected labal version: '{self.getCurrentLabelVersionFromComboBox()}', "
- f"is enabled '{self.isSelectableByLabelVersion}'"
- )
- self.displayAdditionalMetaIfEdited(self.getCurrentLabelVersionFromComboBox())
- if self.isSelectableByLabelVersion:
- self.disableDifficultyButtons(tag=self.getCurrentLabelVersion())
- self.loadNextImage(imageData=self.currentImageData, tag=self.getCurrentLabelVersion())
-
- def getCurrentLabelVersionFromComboBox(self) -> str:
- labelString = self.ui.comboBox_label_version.currentText
- return self.parseSelectedVersionFromComboBox(labelString)
-
- def getCurrentLabelVersion(self) -> str:
- label = self.getCurrentLabelVersionFromComboBox()
- if label == "":
- label = self.LABEL.FINAL
- return label
-
- def disableDifficultyButtons(self, tag: str):
- if self.LABEL.VERSION in tag:
- self.ui.btn_easy.hide()
- self.ui.btn_medium.hide()
- self.ui.btn_hard.hide()
- else:
- self.ui.btn_easy.show()
- self.ui.btn_medium.show()
- self.ui.btn_hard.show()
-
- def setSaveAsNewVersion(self) -> bool:
- setToSave = bool(self.ui.btn_save_new_version.isChecked())
- self.ui.btn_update_version.enabled = True
- if setToSave:
- self.ui.btn_overwrite_version.setChecked(False)
- self.ui.btn_overwrite_version.setStyleSheet(self.colorDarkGrayButton)
-
- self.ui.btn_delete_version.setChecked(False)
- self.ui.btn_delete_version.setStyleSheet(self.colorDarkGrayButton)
-
- self.ui.btn_save_new_version.setStyleSheet(self.colorGreenPressedButton)
- self.ui.btn_update_version.setText("Confirm: Saving")
- return setToSave
-
- def setOverwriteCurrentVersion(self) -> bool:
- setToOverwrite = bool(self.ui.btn_overwrite_version.isChecked())
- self.ui.btn_update_version.enabled = True
- if setToOverwrite:
- self.ui.btn_save_new_version.setChecked(False)
- self.ui.btn_save_new_version.setStyleSheet(self.colorDarkGrayButton)
-
- self.ui.btn_delete_version.setChecked(False)
- self.ui.btn_delete_version.setStyleSheet(self.colorDarkGrayButton)
-
- self.ui.btn_overwrite_version.setStyleSheet(self.colorGreenPressedButton)
- self.ui.btn_update_version.setText("Confirm: Overwriting")
-
- return setToOverwrite
-
- def setDeleteVersion(self) -> bool:
- setToDelete = bool(self.ui.btn_delete_version.isChecked())
- self.ui.btn_update_version.enabled = True
- if setToDelete:
- self.ui.btn_save_new_version.setChecked(False)
- self.ui.btn_save_new_version.setStyleSheet(self.colorDarkGrayButton)
-
- self.ui.btn_overwrite_version.setChecked(False)
- self.ui.btn_overwrite_version.setStyleSheet(self.colorDarkGrayButton)
-
- self.ui.btn_delete_version.setStyleSheet(self.colorGreenPressedButton)
- self.ui.btn_update_version.setText("Confirm: Deletion")
-
- return setToDelete
-
- def setButtonColorReviewerOrBasicMode(self, isReviewerMode: bool):
- if isReviewerMode:
- self.ui.btn_reviewers_mode.setStyleSheet(self.colorRedReviewerModeButton)
- self.ui.btn_basic_mode.setStyleSheet(self.colorDarkGrayButton)
- else:
- self.ui.btn_reviewers_mode.setStyleSheet(self.colorDarkGrayButton)
- self.ui.btn_basic_mode.setStyleSheet(self.colorBlueBasicModeButton)
-
- def setReviewerVersion(self):
- self.reviewersModeIsActive = True
- self.setButtonColorReviewerOrBasicMode(isReviewerMode=self.reviewersModeIsActive)
- # section: Server
- # Reviewer Field
- self.ui.label_20.show()
- self.ui.comboBox_reviewers.show()
-
- # Approved bar
- self.ui.label_17.show()
- self.ui.progressBar_approved_total.show()
- self.ui.label_idx_appr_image.show()
-
- # section: Data set explorer
-
- # Approved bar
- self.ui.label_10.show()
- self.ui.progressBar_approved_client.show()
- self.ui.label_idx_appr_image_client.show()
-
- # filter option
- self.ui.label_6.show()
- self.ui.checkBox_not_segmented.show()
- self.ui.checkBox_flagged.show()
- self.ui.checkBox_segmented.show()
- self.ui.checkBox_approved.show()
-
- # section: Data evaluation
- self.ui.btn_easy.show()
- self.ui.btn_medium.show()
- self.ui.btn_hard.show()
- self.ui.label_level_difficulty.show()
- self.ui.btn_mark_revision.show()
- self.ui.btn_approved.show()
-
- # imag information
- self.ui.label_14.show()
- self.ui.lineEdit_status.show()
- self.ui.label_16.show()
- self.ui.lineEdit_level.show()
- self.ui.plainText_comment.show()
- if self.ui.btn_basic_mode.isChecked():
- self.ui.btn_basic_mode.setChecked(False)
-
- self.collapseAllSecions()
-
- self.activateSegmentatorEditor(activated=False)
- self.hideEditingSelectionOption(isHidden=False)
-
- # Section: Light version Option
- def setLightVersion(self):
- self.reviewersModeIsActive = False
- self.setButtonColorReviewerOrBasicMode(isReviewerMode=self.reviewersModeIsActive)
- # section: Server
- # Reviewer Field
- self.ui.label_20.hide()
- self.ui.comboBox_reviewers.hide()
-
- # Approved bar
- self.ui.label_17.hide()
- self.ui.progressBar_approved_total.hide()
- self.ui.label_idx_appr_image.hide()
-
- # section: Data set explorer
- # Approved bar
- self.ui.label_10.hide()
- self.ui.progressBar_approved_client.hide()
- self.ui.label_idx_appr_image_client.hide()
-
- # filter option
- self.ui.label_6.hide()
- self.ui.checkBox_not_segmented.hide()
- self.ui.checkBox_flagged.hide()
- self.ui.checkBox_segmented.hide()
- self.ui.checkBox_approved.hide()
-
- # section: Data evaluation
- self.ui.btn_easy.hide()
- self.ui.btn_medium.hide()
- self.ui.btn_hard.hide()
- self.ui.label_level_difficulty.hide()
- self.ui.btn_mark_revision.hide()
- self.ui.btn_approved.hide()
-
- # imag information
- self.ui.label_14.hide()
- self.ui.lineEdit_status.hide()
- self.ui.label_16.hide()
- self.ui.lineEdit_level.hide()
- self.ui.plainText_comment.hide()
- if self.ui.btn_reviewers_mode.isChecked():
- self.ui.btn_reviewers_mode.setChecked(False)
-
- self.collapseAllSecions()
-
- self.activateSegmentatorEditor(activated=False)
- self.hideEditingSelectionOption(isHidden=True)
-
- def cleanCache(self):
- self.logic = MONAILabelReviewerLogic()
- self.selectedReviewer = ""
- self.selectedClientId = ""
-
- self.listImageData = None
- self.imageCounter = 0
- self.currentImageData = None
- self.idToimageData = None
-
- # Meta Information
- self.setCurrentMetaStatus(status="")
- self.setCurrentMetaLevel(level="")
- self.setCurrentComment(comment="")
-
- logging.info(f"{self.getCurrentTime()}: Cache is cleaned")
-
- # Section: Server
- def loadServerSelection(self):
- settings = qt.QSettings()
- serverUrlHistory = settings.value("MONAILabel/serverUrlHistory")
-
- self.ui.comboBox_server_url.clear()
- self.ui.comboBox_server_url.addItems(serverUrlHistory.split(";"))
-
- def init_dicom_stream(self):
- """
- initiates connection to monai server
- Default: client listens on "http://127.0.0.1:8000"
- """
- # Check Connection
- self.cleanCache()
- serverUrl: str = self.ui.comboBox_server_url.currentText
- isConnected: bool = self.logic.connectToMonaiServer(serverUrl)
- if not isConnected:
- warningMessage = f"Connection to server failed \ndue to invalid ip '{serverUrl}'"
- slicer.util.warningDisplay(warningMessage)
- return
- self.ui.btn_connect_monai.setStyleSheet(self.colorGreenButtonAfterSuccessfulLoad)
- self.processDataStoreRecords()
- self.initUI()
-
- def collapseAllSecions(self):
- self.ui.collapsibleButton_search_image.enabled = False
- self.ui.collapsibleButton_dicom_stream.enabled = False
- self.ui.collapsibleButton_dicom_evaluation.enabled = False
-
- self.ui.collapsibleButton_search_image.collapsed = True
- self.ui.collapsibleButton_dicom_stream.collapsed = True
- self.ui.collapsibleButton_dicom_evaluation.collapsed = True
-
- def initUI(self):
- self.selectedReviewer = self.ui.comboBox_reviewers.currentText
- if self.reviewersModeIsActive and self.selectedReviewer == "":
- warningMessage = "Missing reviewer's name.\nPlease enter your id or name in the reviewer's field!"
- slicer.util.warningDisplay(warningMessage)
- return
- self.ui.collapsibleButton_search_image.enabled = True
- self.ui.collapsibleButton_dicom_stream.enabled = True
-
- # set Segmentation progress bar
- self.setProgessBar()
-
- # fill combobox
- self.fillComboBoxes()
-
- # set up buttons
- self.setButtons()
-
- self.selectedClientId = ""
-
- def setButtons(self):
- self.ui.btn_approved.setCheckable(True)
- self.ui.btn_mark_revision.setCheckable(True)
- self.ui.btn_easy.setCheckable(True)
- self.ui.btn_medium.setCheckable(True)
- self.ui.btn_hard.setCheckable(True)
- self.ui.btn_reviewers_mode.setCheckable(True)
- self.ui.btn_basic_mode.setCheckable(True)
-
- self.ui.btn_edit_label.setCheckable(True)
- self.ui.btn_save_new_version.setCheckable(True)
- self.ui.btn_overwrite_version.setCheckable(True)
- self.ui.btn_delete_version.setCheckable(True)
- self.ui.btn_update_version.setCheckable(True)
-
- self.ui.btn_delete_version.hide()
- self.ui.btn_save_new_version.hide()
- self.ui.btn_overwrite_version.hide()
- self.ui.btn_update_version.hide()
- self.ui.btn_update_version.enabled = False
-
- self.ui.btn_show_image.enabled = False
-
- def setProgessBar(self):
- statistics = self.logic.getStatistics()
-
- self.ui.progressBar_segmentation.setProperty("value", statistics.getSegmentationProgress())
- self.ui.label_idx_seg_image.setText(statistics.getIdxTotalSegmented())
- self.ui.label_idx_appr_image.setText(statistics.getIdxTotalApproved())
- self.ui.progressBar_approved_total.setProperty("value", statistics.getProgressPercentage())
-
- def fillComboBoxes(self):
- # clients
- clientIds = self.logic.getClientIds()
-
- self.ui.comboBox_clients.clear()
- self.ui.comboBox_clients.addItem("All")
- for clientId in clientIds:
- self.ui.comboBox_clients.addItem(str(clientId))
-
- # combobox in search section
- self.ui.comboBox_search_annotator.clear()
- self.ui.comboBox_search_annotator.addItem("All")
- for clientId in clientIds:
- self.ui.comboBox_search_annotator.addItem(str(clientId))
-
- # reviewers
- self.ui.comboBox_reviewers.clear()
- reviewers = self.logic.getReviewers()
- self.ui.comboBox_reviewers.addItem(self.selectedReviewer)
-
- for reviewer in reviewers:
- if reviewer == self.selectedReviewer:
- continue
- self.ui.comboBox_reviewers.addItem(str(reviewer))
- self.ui.comboBox_reviewers.setCurrentText(self.selectedReviewer)
-
- # combobox in search section
- self.ui.comboBox_search_reviewer.clear()
- self.ui.comboBox_search_reviewer.addItem("All")
- for reviewer in reviewers:
- self.ui.comboBox_search_reviewer.addItem(str(reviewer))
-
- def cleanDicomStreamSection(self):
- self.setCurrentMetaStatus(status="")
- self.setCurrentMetaLevel(level="")
- self.setCurrentComment(comment="")
-
- self.selectedClientId = None
- self.imageCounter = 0
- self.currentImageData = None
- self.idToimageData = None
- self.listImageData = None
-
- self.cleanProgressBarDicomStreamSection()
- self.cleanCheckBoxes()
- self.resetHorizontalSlider()
-
- # Section: Loading images
- def loadImageData(self):
- if (self.selectedClientId == self.getSelectedClientFromComboBox()) and (self.isDifferentFilter() is False):
- return
- self.imageCounter = 0
-
- self.cleanSearchSection()
- # select segmentator: ALL
- self.selectedClientId = self.getSelectedClientFromComboBox()
- if self.selectedClientId == "All":
- self.listImageData = self.loadImageDataWithFilter(selectedClientId="")
- self.ui.checkBox_segmented.setEnabled(True)
- self.ui.checkBox_not_segmented.setEnabled(True)
- self.setProgressBarOfAll()
-
- # select segmentator: client was selected
- if self.selectedClientId != "All":
- self.listImageData = self.loadImageDataWithFilter(selectedClientId=self.selectedClientId)
- self.setCheckBoxesClient()
- self.setProgressBarOfClient(self.selectedClientId)
-
- logging.info(
- "{}: Successfully loaded Image data [total = {}, category = '{}']".format(
- self.getCurrentTime(), len(self.listImageData), self.selectedClientId
- )
- )
-
- if len(self.listImageData) > 0:
- self.currentImageData = self.listImageData[self.imageCounter]
- self.loadNextImage(self.currentImageData)
-
- self.ui.collapsibleButton_dicom_evaluation.enabled = True
- self.ui.collapsibleButton_dicom_evaluation.collapsed = False
- self.setHorizontalSlider(len(self.listImageData))
- self.collectFilters()
- self.setLoadButtonColor(reload=False)
-
- def loadImageDataWithFilter(self, selectedClientId: str) -> list:
- isApproved = bool(self.ui.checkBox_approved.isChecked())
- isFlagged = bool(self.ui.checkBox_flagged.isChecked())
- isNotSegmented = bool(self.ui.checkBox_not_segmented.isChecked())
- segmented = bool(self.ui.checkBox_segmented.isChecked())
- logging.info(
- "{}: Selected filters: segmented= {} | isNotSegmented= {} | isApproved= {} | isFlagged= {}".format(
- self.getCurrentTime(), segmented, isNotSegmented, isApproved, isFlagged
- )
- )
- if selectedClientId == "":
- return self.logic.getAllImageData(segmented, isNotSegmented, isApproved, isFlagged)
- return self.logic.getImageDataByClientId(selectedClientId, isApproved, isFlagged)
-
- def setProgressBarOfAll(self):
- statistics: ImageDataStatistics = self.logic.getStatistics()
- # Progress bar: Segmented/TotalImage
- self.ui.progressBar_segmented_client.setProperty("value", statistics.getSegmentationProgressAllPercentage())
- self.ui.label_idx_seg_image_client.setText(statistics.getIdxTotalSegmented())
- # Progress bar: approvalCount/TotalImage
- self.ui.progressBar_approved_client.setProperty("value", statistics.getApprovalProgressPercentage())
- self.ui.label_idx_appr_image_client.setText(statistics.getIdxTotalApproved())
-
- def cleanProgressBarDicomStreamSection(self):
- self.ui.progressBar_segmented_client.setProperty("value", 0)
- self.ui.progressBar_approved_client.setProperty("value", 0)
- self.ui.label_idx_seg_image_client.setText("x/y")
- self.ui.label_idx_appr_image_client.setText("x/y")
-
- def setLoadButtonColor(self, reload: bool):
- if reload: # reload required
- self.ui.btn_load.setStyleSheet(self.colorDarkGrayButton)
- return
- self.ui.btn_load.setStyleSheet(self.colorGreenButtonAfterSuccessfulLoad)
-
- def setProgressBarOfClient(self, selectedClientId: str):
- percentageApprovedOfClient, idxApprovedOfClient = self.logic.getPercentageApproved(selectedClientId)
- self.ui.progressBar_approved_client.setProperty("value", percentageApprovedOfClient)
- self.ui.label_idx_appr_image_client.setText(idxApprovedOfClient)
-
- percentageSemgmentedByClient, idxSegmentedByClient = self.logic.getPercentageSemgmentedByClient(
- selectedClientId
- )
- self.ui.progressBar_segmented_client.setProperty("value", percentageSemgmentedByClient)
- self.ui.label_idx_seg_image_client.setText(idxSegmentedByClient)
-
- def setHorizontalSlider(self, loadesImageCount: int):
- self.ui.horizontalSlider_image_idx.setMinimum(0)
- self.ui.horizontalSlider_image_idx.setMaximum(loadesImageCount - 1)
- idxImage = f"Image: {self.imageCounter + 1}/{len(self.listImageData)}"
- self.ui.label_idx_image.setText(idxImage)
-
- def updateHorizontalSlider(self):
- self.ui.horizontalSlider_image_idx.setValue(self.imageCounter)
- idxImage = f"Image: {self.imageCounter + 1}/{len(self.listImageData)}"
- self.ui.label_idx_image.setText(idxImage)
-
- def resetHorizontalSlider(self):
- self.ui.horizontalSlider_image_idx.setValue(1)
- self.ui.label_idx_image.setText("Image:")
-
- # Section: Filter
- def collectFilters(self):
- self.mapFiltersToBool["segmented"] = self.ui.checkBox_segmented.isChecked()
- self.mapFiltersToBool["notSegemented"] = self.ui.checkBox_not_segmented.isChecked()
- self.mapFiltersToBool["approved"] = self.ui.checkBox_approved.isChecked()
- self.mapFiltersToBool["flagged"] = self.ui.checkBox_flagged.isChecked()
-
- def isDifferentFilter(self) -> bool:
- if self.mapFiltersToBool["segmented"] != self.ui.checkBox_segmented.isChecked():
- return True
- if self.mapFiltersToBool["notSegemented"] != self.ui.checkBox_not_segmented.isChecked():
- return True
- if self.mapFiltersToBool["approved"] != self.ui.checkBox_approved.isChecked():
- return True
- if self.mapFiltersToBool["flagged"] != self.ui.checkBox_flagged.isChecked():
- return True
- return False
-
- # CheckBox: clean
- def cleanCheckBoxes(self):
- self.ui.checkBox_segmented.setChecked(False)
- self.ui.checkBox_not_segmented.setChecked(False)
- self.ui.checkBox_flagged.setChecked(False)
- self.ui.checkBox_approved.setChecked(False)
-
- # CheckBox: flagged
- def setCheckBoxesClient(self):
- self.setLoadButtonColor(reload=True)
- self.ui.checkBox_not_segmented.setEnabled(False)
- self.ui.checkBox_segmented.setChecked(True)
- self.ui.checkBox_segmented.setEnabled(False)
-
- # CheckBox: flagged
- def checkedFlagged(self):
- self.setLoadButtonColor(reload=True)
- self.ui.checkBox_segmented.setChecked(True)
- if self.ui.checkBox_approved.isChecked():
- self.ui.checkBox_approved.setChecked(False)
- if self.ui.checkBox_not_segmented.isChecked():
- self.ui.checkBox_not_segmented.setChecked(False)
-
- # CheckBox: approved
- def checkApproved(self):
- self.setLoadButtonColor(reload=True)
- self.ui.checkBox_segmented.setChecked(True)
- if self.ui.checkBox_flagged.isChecked():
- self.ui.checkBox_flagged.setChecked(False)
- if self.ui.checkBox_not_segmented.isChecked():
- self.ui.checkBox_not_segmented.setChecked(False)
-
- # CheckBox: NOT segmented
- def checkNotSegmented(self):
- self.setLoadButtonColor(reload=True)
- if self.ui.checkBox_approved.isChecked():
- self.ui.checkBox_approved.setChecked(False)
- if self.ui.checkBox_flagged.isChecked():
- self.ui.checkBox_flagged.setChecked(False)
- if self.ui.checkBox_segmented.isChecked():
- self.ui.checkBox_segmented.setChecked(False)
-
- # CheckBox: segmented
- def checkSegmented(self):
- self.setLoadButtonColor(reload=True)
- if self.ui.checkBox_segmented.isChecked() is False:
- self.ui.checkBox_approved.setChecked(False)
- self.ui.checkBox_flagged.setChecked(False)
- return
-
- if self.ui.checkBox_not_segmented.isChecked():
- self.ui.checkBox_not_segmented.setChecked(False)
-
- # Section: Search Image
- def cleanSearchSection(self):
- self.ui.tableWidge_imageMeta.setRowCount(0)
- self.ui.tableWidge_imageMeta.clearContents()
- self.ui.textEdit_search.clear()
-
- def search(self):
- """
- After triggering search button, load images and segmentation by input ids
- """
- self.cleanDicomStreamSection()
-
- if self.ui.textEdit_search.toPlainText() == "":
- logging.info(f"{self.getCurrentTime()}: Search input field is empty")
- return
-
- idsStr = self.ui.textEdit_search.toPlainText()
- idList = self.getIdsFromString(idsStr)
-
- self.idToimageData = self.logic.getMultImageDataByIds(idList)
- self.listImageData = [*self.idToimageData.values()]
-
- foundIdList = [imageData.getName() for imageData in self.listImageData]
- notFoundIdList = [id for id in idList if (id not in foundIdList)]
- self.loadSearchImageMetaInTable(self.listImageData, notFoundIdList)
-
- self.ui.collapsibleButton_dicom_evaluation.enabled = True
- self.setHorizontalSlider(len(foundIdList))
- if len(foundIdList) > 0:
- self.setSearchResultMessage(numOfFound=len(foundIdList))
- self.loadFirstImage()
- else:
- self.setSearchResultMessage(numOfFound=0)
-
- def searchByAnnotatorReviewer(self):
- selectedAnnotator: str = self.ui.comboBox_search_annotator.currentText
- selectedReviewer: str = self.ui.comboBox_search_reviewer.currentText
- isApproved: bool = bool(self.ui.checkBox_search_approved.isChecked())
- isFlagged: bool = bool(self.ui.checkBox_search_flagged.isChecked())
- logging.warn(
- f"{self.getCurrentTime()}: Search by annontator: '{selectedAnnotator}' | reviewer: '{selectedReviewer}' "
- f"| isApproved: '{isApproved}' | isFlagged: '{isFlagged}'"
- )
-
- self.idToimageData = self.logic.searchByAnnotatorReviewer(
- selectedAnnotator, selectedReviewer, isApproved, isFlagged
- )
- self.listImageData = [*self.idToimageData.values()]
-
- self.loadSearchImageMetaInTable(self.listImageData, [])
- if len(self.listImageData) > 0:
- self.ui.collapsibleButton_dicom_evaluation.enabled = True
- self.setSearchResultMessage(numOfFound=len(self.idToimageData))
- self.setHorizontalSlider(len(self.idToimageData))
- self.loadFirstImage()
- else:
- self.setSearchResultMessage(numOfFound=0)
-
- def searchByLevel(self):
- isEasy: bool = bool(self.ui.checkBox_search_easy.isChecked())
- isMedium: bool = bool(self.ui.checkBox_search_medium.isChecked())
- isHard: bool = bool(self.ui.checkBox_search_hard.isChecked())
-
- self.idToimageData = self.logic.searchByLevel(isEasy, isMedium, isHard)
- self.listImageData = [*self.idToimageData.values()]
-
- self.loadSearchImageMetaInTable(self.listImageData, [])
- if len(self.listImageData) > 0:
- self.ui.collapsibleButton_dicom_evaluation.enabled = True
- self.setSearchResultMessage(numOfFound=len(self.idToimageData))
- self.setHorizontalSlider(len(self.idToimageData))
- self.loadFirstImage()
- else:
- self.setSearchResultMessage(numOfFound=0)
-
- def setSearchResultMessage(self, numOfFound: int):
- if numOfFound == 0:
- self.ui.label_search_result.setText("Result: No images found.")
- self.ui.label_search_result.setStyleSheet(self.colorRed)
- else:
- resultMessage = f"Result: {numOfFound} images found."
- self.ui.label_search_result.setText(resultMessage)
- self.ui.label_search_result.setStyleSheet(self.colorGreen)
-
- def checkedAppprovedSearch(self):
- isFlagged = bool(self.ui.checkBox_search_flagged.isChecked())
- if isFlagged:
- self.ui.checkBox_search_flagged.setChecked(False)
-
- def checkedFlaggedSearch(self):
- isApproved = bool(self.ui.checkBox_search_approved.isChecked())
- if isApproved:
- self.ui.checkBox_search_approved.setChecked(False)
-
- def loadSearchImageMetaInTable(self, foundlist: List[ImageData], notFoundIdList: List[str]):
- """
- Set table content after triggering button "show"
- Parameters:
- foundlist (list): list contains found ids
- notFoundIdList (list): list contains not found ids
- """
- rowCount = len(foundlist) + len(notFoundIdList)
- self.ui.tableWidge_imageMeta.setRowCount(rowCount)
- rowCounter = 0
- for row, imageData in enumerate(foundlist):
- self.ui.tableWidge_imageMeta.setItem(row, 0, qt.QTableWidgetItem(imageData.getName()))
- self.ui.tableWidge_imageMeta.setItem(row, 1, qt.QTableWidgetItem("Yes"))
- self.ui.tableWidge_imageMeta.setItem(row, 2, qt.QTableWidgetItem(str(imageData.isSegemented())))
- rowCounter += 1
-
- for row, notFoundId in enumerate(notFoundIdList):
- self.ui.tableWidge_imageMeta.setItem(rowCounter, 0, qt.QTableWidgetItem(notFoundId))
- self.ui.tableWidge_imageMeta.setItem(rowCounter, 1, qt.QTableWidgetItem("No"))
- self.ui.tableWidge_imageMeta.setItem(rowCounter, 2, qt.QTableWidgetItem("No"))
- rowCounter += 1
-
- self.ui.btn_show_image.enabled = True
-
- def loadFirstImage(self):
- self.imageCounter = 0
- self.currentImageData = self.listImageData[self.imageCounter]
- self.loadNextImage(self.currentImageData)
- self.updateHorizontalSlider()
-
- def showSearchedImage(self):
- """
- displays dicom & segmentation to corresponding selected row in listed ids
- """
- selectedRow = self.ui.tableWidge_imageMeta.currentRow()
- if selectedRow == -1:
- logging.warn(f"{self.getCurrentTime()}: Selected row [row number = {selectedRow}]is not valid")
- return
- selectedImageId = self.ui.tableWidge_imageMeta.item(selectedRow, 0).text()
-
- if selectedImageId not in self.idToimageData:
- logging.info(f"{self.getCurrentTime()}: Selected image id [id = {selectedImageId}] was not found")
- return
- self.currentImageData = self.idToimageData[selectedImageId]
- self.loadNextImage(self.currentImageData)
-
- def removeAllWhiteSpaces(self, strChain) -> str:
- """
- removes white spaces within string
- """
- pattern = r"\s+"
- return re.sub(pattern, "", strChain)
-
- def getIdsFromString(self, idStr: str) -> List[str]:
- """
- parses string which contains comma seperated ids
- Parameters:
- idStr (str): string which contains comma seperated ids
- Returns:
- list: contains ids
- """
- cleanedStr = self.removeAllWhiteSpaces(idStr)
- idsList = cleanedStr.split(",")
- return list(dict.fromkeys(idsList)) # remove all duplicates
-
- # Section: Dicom stream
- # Button: Approve
- def approveSegmentation(self):
- statusApproved = self.ui.btn_approved.isChecked()
- statusFlagged = self.ui.btn_mark_revision.isChecked()
-
- if statusFlagged or self.getCurrentMetaStatus() == self.STATUS.FLAGGED:
- self.ui.btn_mark_revision.setChecked(False)
- self.ui.btn_mark_revision.setDown(False)
- self.ui.btn_mark_revision.setStyleSheet(self.colorDarkGrayButton)
-
- if statusApproved:
- self.setCurrentMetaStatus(status=self.STATUS.APPROVED)
- self.ui.btn_approved.setChecked(True)
- self.ui.btn_approved.setStyleSheet(self.colorLightGreenButton)
- self.ui.btn_mark_revision.setStyleSheet(self.colorDarkGrayButton)
- self.ui.lineEdit_status.setStyleSheet(self.colorLightGreenButton)
- else:
- self.setCurrentMetaStatus(status="")
- self.resetButtonsOfApproveOrFlag()
- self.updateDisplayImageMetaData()
-
- # Button: Flagge
- def flagSegmentation(self):
- statusApproved = self.ui.btn_approved.isChecked()
- statusFlagged = self.ui.btn_mark_revision.isChecked()
-
- if statusApproved or self.getCurrentMetaStatus() == self.STATUS.APPROVED:
- self.ui.btn_approved.setChecked(False)
- self.ui.btn_approved.setDown(False)
- self.ui.btn_approved.setStyleSheet(self.colorDarkGrayButton)
- if statusFlagged:
- self.setCurrentMetaStatus(status=self.STATUS.FLAGGED)
- self.ui.btn_mark_revision.setChecked(True)
- self.ui.btn_mark_revision.setStyleSheet(self.colorLightGreenButton)
- self.ui.btn_approved.setStyleSheet(self.colorDarkGrayButton)
- self.ui.lineEdit_status.setStyleSheet(self.colorLightYellow)
- else:
- self.setCurrentMetaStatus(status="")
- self.resetButtonsOfApproveOrFlag()
- self.updateDisplayImageMetaData()
-
- def resetButtonsOfApproveOrFlag(self):
- self.ui.btn_mark_revision.setStyleSheet("")
- self.ui.btn_approved.setStyleSheet("")
- self.ui.lineEdit_status.setStyleSheet("")
-
- # Button: Clear
- def clearButtons(self):
- self.ui.btn_mark_revision.setChecked(False)
- self.ui.btn_approved.setChecked(False)
-
- self.ui.btn_mark_revision.setDown(False)
- self.ui.btn_approved.setDown(False)
-
- self.resetButtonsOfApproveOrFlag()
-
- self.ui.btn_easy.setChecked(False)
- self.ui.btn_medium.setChecked(False)
- self.ui.btn_hard.setChecked(False)
-
- self.ui.btn_easy.setDown(False)
- self.ui.btn_medium.setDown(False)
- self.ui.btn_hard.setDown(False)
-
- self.resetButtonOfDifficulty()
-
- def disableButtons(self):
- self.ui.btn_easy.setDown(False)
- self.ui.btn_medium.setDown(False)
- self.ui.btn_hard.setDown(False)
-
- def setDifficultyButtonAccordingColorAndChecked(self, difficulty: str):
- if difficulty == self.LEVEL.EASY:
- self.ui.btn_easy.setStyleSheet(self.colorGreenEasyButton)
- self.ui.lineEdit_level.setStyleSheet(self.colorGreenEasyButton)
-
- self.ui.btn_medium.setChecked(False)
- self.ui.btn_hard.setChecked(False)
-
- self.ui.btn_medium.setDown(False)
- self.ui.btn_hard.setDown(False)
-
- self.ui.btn_medium.setStyleSheet(self.colorDarkGrayButton)
- self.ui.btn_hard.setStyleSheet(self.colorDarkGrayButton)
-
- elif difficulty == self.LEVEL.MEDIUM:
- self.ui.btn_medium.setStyleSheet(self.colorYellowMediumButton)
- self.ui.lineEdit_level.setStyleSheet(self.colorYellowMediumButton)
-
- self.ui.btn_easy.setChecked(False)
- self.ui.btn_hard.setChecked(False)
-
- self.ui.btn_easy.setDown(False)
- self.ui.btn_hard.setDown(False)
-
- self.ui.btn_easy.setStyleSheet(self.colorDarkGrayButton)
- self.ui.btn_hard.setStyleSheet(self.colorDarkGrayButton)
-
- elif difficulty == self.LEVEL.HARD:
- self.ui.btn_hard.setStyleSheet(self.colorRedHardButton)
- self.ui.lineEdit_level.setStyleSheet(self.colorRedHardButton)
-
- self.ui.btn_easy.setChecked(False)
- self.ui.btn_medium.setChecked(False)
-
- self.ui.btn_easy.setDown(False)
- self.ui.btn_medium.setDown(False)
-
- self.ui.btn_easy.setStyleSheet(self.colorDarkGrayButton)
- self.ui.btn_medium.setStyleSheet(self.colorDarkGrayButton)
-
- # Button: Easy
- def setEasy(self):
- levelEasy = self.ui.btn_easy.isChecked()
- if levelEasy:
- self.setCurrentMetaLevel(level=self.LEVEL.EASY)
- self.setDifficultyButtonAccordingColorAndChecked(difficulty=self.LEVEL.EASY)
- self.ui.lineEdit_level.setText(self.getCurrentMetaLevel())
-
- if levelEasy is False and self.getCurrentMetaLevel() == self.LEVEL.EASY:
- self.setCurrentMetaLevel(level="")
- self.resetButtonOfDifficulty()
- self.ui.lineEdit_level.setStyleSheet("")
-
- self.updateDisplayImageMetaData()
-
- # Button: Medium
- def setMedium(self):
- levelMedium = self.ui.btn_medium.isChecked()
- if levelMedium:
- self.setCurrentMetaLevel(level=self.LEVEL.MEDIUM)
- self.setDifficultyButtonAccordingColorAndChecked(difficulty=self.LEVEL.MEDIUM)
- self.ui.lineEdit_level.setText(self.getCurrentMetaLevel())
-
- if levelMedium is False and self.getCurrentMetaLevel() == self.LEVEL.MEDIUM:
- self.setCurrentMetaLevel(level="")
- self.resetButtonOfDifficulty()
- self.ui.lineEdit_level.setStyleSheet("")
-
- self.updateDisplayImageMetaData()
-
- # Button: Hard
- def setHard(self):
- levelHard = self.ui.btn_hard.isChecked()
-
- if levelHard:
- self.setCurrentMetaLevel(level=self.LEVEL.HARD)
- self.setDifficultyButtonAccordingColorAndChecked(difficulty=self.LEVEL.HARD)
- self.ui.lineEdit_level.setText(self.getCurrentMetaLevel())
-
- if levelHard is False and self.getCurrentMetaLevel() == self.LEVEL.HARD:
- self.setCurrentMetaLevel(level="")
- self.resetButtonOfDifficulty()
- self.ui.lineEdit_level.setStyleSheet("")
-
- self.updateDisplayImageMetaData()
-
- def resetButtonOfDifficulty(self):
- self.ui.btn_easy.setStyleSheet(self.colorGreenEasyButton)
- self.ui.btn_medium.setStyleSheet(self.colorYellowMediumButton)
- self.ui.btn_hard.setStyleSheet(self.colorRedHardButton)
-
- # Button: Next
- def getNextSegmentation(self):
- """
- after triggering next button:
- 1. persist meta data in monai server
- 2. update progess bar
- 3. load next dicom & segmentation
- """
-
- self.persistMetaInMonaiServer()
-
- # Re process Meta Data after image data was persisted
- self.reloadOverallStatistic()
- # Request Next Image
- self.imageCounter += 1
-
- if self.imageCounter >= len(self.listImageData):
- message = f"{self.getCurrentTime()}: End of list has been reached."
- slicer.util.warningDisplay(message)
- self.imageCounter = len(self.listImageData) - 1
- return
- self.updateHorizontalSlider()
- self.currentImageData = self.listImageData[self.imageCounter]
-
- # Displays Next Image
- self.loadNextImage(self.currentImageData)
- self.resetSegmentationEditorTools()
- self.activateSegmentatorEditor(activated=False)
-
- # Monai Server: Put
- def persistMetaInMonaiServer(self):
- """
- Sends the updated meta data of dicom and segmentation to monai-server
- Monai-server incorporates that information into datastore.json file
- """
- self.logic.updateLabelInfo(
- imageData=self.currentImageData,
- versionTag=self.getCurrentLabelVersion(),
- status=self.getCurrentMetaStatus(),
- level=self.getCurrentMetaLevel(),
- approvedBy=self.selectedReviewer,
- comment=self.getCurrentComment(),
- )
-
- # Button: Previouse
- def getPreviousSegmenation(self):
- """
- Loads the previous dicom and corresponding segmentation
- after useres tiggers Previous-Button
- """
- self.imageCounter -= 1
- if self.imageCounter < 0:
- message = f"{self.getCurrentTime()}: Lower limit of data set has been reached."
- slicer.util.warningDisplay(message)
- self.imageCounter = 0
- return
- self.updateHorizontalSlider()
- self.currentImageData = self.listImageData[self.imageCounter]
- self.currentImageData.display()
-
- self.fillComboBoxLabelVersions(self.currentImageData)
- approvedOrLatestVersionTag = self.currentImageData.getApprovedVersionTagElseReturnLatestVersion()
- self.loadNextImage(self.currentImageData, tag=approvedOrLatestVersionTag)
- self.resetSegmentationEditorTools()
-
- def cleanLineEditsContainingSegMeta(self):
- self.ui.lineEdit_image_id.setText("")
- self.ui.lineEdit_status.setText("")
- self.ui.lineEdit_segmentator.setText("")
- self.ui.lineEdit_level.setText("")
- self.ui.lineEdit_level.setStyleSheet("")
- self.ui.lineEdit_date.setText("")
- self.ui.plainText_comment.setPlainText("")
-
- def displayImageMetaData(self, imageData: ImageData, currentLabelVersion: str):
- """
- Displays meta info of dicom and segmentation in the info box on slicer
-
- Parameters:
- imageData (ImageData): Contains meta data (of dicom and segmenation)
- """
- self.cleanLineEditsContainingSegMeta()
- self.clearButtons()
-
- self.setCurrentMetaStatus(status=imageData.getStatus(currentLabelVersion))
-
- self.fillLineEditsWithSegmenationMeta(imageData, currentLabelVersion)
- self.setMetaButtonsAccordingToImageData(imageData, currentLabelVersion)
-
- self.setCurrentMetaLevel(level=imageData.getLevel(currentLabelVersion))
-
- def setMetaButtonsAccordingToImageData(self, imageData: ImageData, currentLabelVersion: str):
- finalLevel = imageData.getLevel(currentLabelVersion)
- if finalLevel != "":
- self.activateBtnLevelOfDifficulty(finalLevel)
-
- if imageData.isApprovedVersion(currentLabelVersion):
- self.activateBtnApproved(True)
-
- if imageData.isFlagged(currentLabelVersion):
- self.activateBtnApproved(False)
-
- def fillLineEditsWithSegmenationMeta(self, imageData: ImageData, currentLabelVersion: str):
- logging.info(f"==== currentLabelVersion: {currentLabelVersion}")
- logging.info(f"==== getName: {imageData.getName()}")
- logging.info(f"==== getClientId: {imageData.getClientId(currentLabelVersion)}")
- logging.info(f"==== getTime: {imageData.getTimeOfAnnotation()}")
- logging.info(f"==== getStatus: {imageData.getStatus(currentLabelVersion)}")
- logging.info(f"==== getComment: {imageData.getComment(currentLabelVersion)}")
- logging.info(f"==== getLevel: {imageData.getLevel(currentLabelVersion)}")
- logging.info(f"==== edtitingTme: {imageData.getTimeOfEditing(currentLabelVersion)}")
-
- name = imageData.getName()
- annotator = imageData.getClientId(currentLabelVersion)
- editor = imageData.getApprovedBy(currentLabelVersion)
- edtitingTme = imageData.getTimeOfEditing(currentLabelVersion)
- annotationTime = imageData.getTimeOfAnnotation()
- status = imageData.getStatus(currentLabelVersion)
- comment = imageData.getComment(currentLabelVersion)
-
- self.ui.lineEdit_image_id.setText(name)
- self.ui.lineEdit_segmentator.setText(annotator)
- self.ui.lineEdit_editor.setText(editor)
- self.ui.lineEdit_editing_date.setText(edtitingTme)
- self.ui.lineEdit_date.setText(annotationTime)
- self.ui.lineEdit_status.setText(status)
- self.ui.plainText_comment.setPlainText(comment)
-
- finalLevel = imageData.getLevel(currentLabelVersion)
- self.ui.lineEdit_level.setText(finalLevel)
-
- def activateBtnLevelOfDifficulty(self, finalLevel):
- if finalLevel == self.LEVEL.EASY:
- self.ui.btn_easy.setDown(True)
- self.ui.btn_easy.setChecked(True)
-
- self.ui.btn_easy.setStyleSheet(self.colorGreenEasyButton)
- self.ui.btn_medium.setStyleSheet(self.colorDarkGrayButton)
- self.ui.btn_hard.setStyleSheet(self.colorDarkGrayButton)
-
- self.ui.lineEdit_level.setStyleSheet(self.colorGreenEasyButton)
- self.setEasy()
-
- elif finalLevel == self.LEVEL.MEDIUM:
- self.ui.btn_medium.setDown(True)
- self.ui.btn_medium.setChecked(True)
-
- self.ui.btn_easy.setStyleSheet(self.colorDarkGrayButton)
- self.ui.btn_medium.setStyleSheet(self.colorYellowMediumButton)
- self.ui.btn_hard.setStyleSheet(self.colorDarkGrayButton)
-
- self.ui.lineEdit_level.setStyleSheet(self.colorYellowMediumButton)
- self.setMedium()
-
- elif finalLevel == self.LEVEL.HARD:
- self.ui.btn_hard.setDown(True)
- self.ui.btn_hard.setChecked(True)
-
- self.ui.btn_easy.setStyleSheet(self.colorDarkGrayButton)
- self.ui.btn_medium.setStyleSheet(self.colorDarkGrayButton)
- self.ui.btn_hard.setStyleSheet(self.colorRedHardButton)
-
- self.ui.lineEdit_level.setStyleSheet(self.colorRedHardButton)
- self.setHard()
-
- def activateBtnApproved(self, activated: bool):
- self.ui.btn_mark_revision.setChecked(not activated)
- self.ui.btn_mark_revision.setDown(not activated)
- self.ui.btn_approved.setChecked(activated)
- self.ui.btn_approved.setDown(activated)
- if activated:
- self.ui.btn_approved.setStyleSheet(self.colorLightGreenButton)
- self.ui.btn_mark_revision.setStyleSheet(self.colorDarkGrayButton)
- self.ui.lineEdit_status.setStyleSheet(self.colorLightGreenButton)
- else:
- self.ui.btn_approved.setStyleSheet(self.colorDarkGrayButton)
- self.ui.btn_mark_revision.setStyleSheet(self.colorLightGreenButton)
- self.ui.lineEdit_status.setStyleSheet(self.colorLightYellow)
-
- def updateDisplayImageMetaData(self):
- """
- Displays updated level (easy, medium, hard)
- in the info box on slicer
- """
- self.ui.lineEdit_status.setText(self.getCurrentMetaStatus())
-
- def loadNextImage(self, imageData: ImageData, tag=""):
- """
- Loads original Dicom image and Segmentation into slicer window
- Parameters:
- imageData (ImageData): Contains meta data (of dicom and segmenation)
- which is required for rest request to monai server
- in order to get dicom and segmenation (.nrrd).
- """
- slicer.mrmlScene.Clear()
- self.clearInformationFields()
-
- if tag == "":
- tag = self.currentImageData.getApprovedVersionTagElseReturnLatestVersion()
- if tag == "":
- tag = self.getCurrentLabelVersion()
- logging.warn(f"{self.getCurrentTime()} Loading image (id='{imageData.getName()}', tag='{tag}')")
- self.disableDifficultyButtons(tag=tag)
- self.displayImageMetaData(imageData, tag)
-
- self.logic.loadDicomAndSegmentation(imageData, tag)
-
- if imageData.getStatus() != self.STATUS.NOT_SEGMENTED:
- self.displayLabelOfSegmentation()
-
- if self.currentImageId is not imageData.getName():
- self.currentImageId = imageData.getName()
- self.fillComboBoxLabelVersions(imageData)
-
- def fillComboBoxLabelVersions(self, imageData: ImageData):
- self.isSelectableByLabelVersion = False
- self.ui.comboBox_label_version.clear()
- labelVersions = imageData.getVersionNames()
- approvedVersion = ""
- labelVersion = ""
- for labelVersion in labelVersions:
- if imageData.isApprovedVersion(versionTag=labelVersion) is True:
- labelVersion = "{} ({})".format(labelVersion, "approved")
- approvedVersion = labelVersion
- self.ui.comboBox_label_version.addItem(labelVersion)
- if approvedVersion != "":
- self.setVersionTagInComboBox(approvedVersion)
- elif labelVersion != "":
- self.setVersionTagInComboBox(labelVersion)
- self.isSelectableByLabelVersion = True
-
- def setVersionTagInComboBox(self, versionTag="", currentImageData=None):
- if self.isBlank(versionTag):
- return
- if (currentImageData is not None) and (currentImageData.isApprovedVersion(versionTag=versionTag) is True):
- versionTag = "{} ({})".format(versionTag, "approved")
- self.ui.comboBox_label_version.setCurrentText(versionTag)
-
- def parseSelectedVersionFromComboBox(self, versionTagString: str) -> str:
- if self.isBlank(versionTagString):
- return ""
- array = versionTagString.split()
- if len(array) == 0:
- return ""
- return array[0]
-
- # Sub Section: Display version selection option
- def activateSegmentatorEditor(self, activated=False):
- self.segmentEditorWidget.setSourceVolumeNodeSelectorVisible(activated)
- self.segmentEditorWidget.setSegmentationNodeSelectorVisible(activated)
- self.segmentEditorWidget.setSwitchToSegmentationsButtonVisible(activated)
- self.segmentEditorWidget.unorderedEffectsVisible = activated
- self.segmentEditorWidget.setReadOnly(not activated)
-
- def displayEditorTools(self):
- isCheckedForEdit = self.ui.btn_edit_label.isChecked()
- if isCheckedForEdit:
- self.clearButtons()
- self.ui.btn_edit_label.setText("Reset current label edit")
- self.cleanLineEditsContainingSegMetaWhenStartEditing()
- self.activatedEditorTools()
- else:
- self.deactivatedEditorTools()
- self.loadNextImage(imageData=self.currentImageData, tag=self.getCurrentLabelVersion())
-
- def cleanLineEditsContainingSegMetaWhenStartEditing(self):
- self.setCurrentMetaStatus(status="")
- self.setCurrentComment(comment="")
- self.ui.lineEdit_status.setText("")
- self.ui.lineEdit_editing_date.setText("")
- self.ui.plainText_comment.setPlainText("")
-
- def clearInformationFields(self):
- self.setCurrentMetaStatus(status="")
- self.setCurrentComment(comment="")
- self.setCurrentMetaLevel(level="")
-
- def activatedEditorTools(self):
- self.activateSegmentatorEditor(activated=True)
- self.ui.btn_save_new_version.setChecked(False)
- self.ui.btn_overwrite_version.setChecked(False)
- self.ui.btn_delete_version.setChecked(False)
-
- self.ui.btn_save_new_version.show()
- self.ui.btn_save_new_version.setStyleSheet("")
-
- self.ui.btn_overwrite_version.show()
- self.ui.btn_overwrite_version.setStyleSheet("")
-
- self.ui.btn_delete_version.show()
- self.ui.btn_delete_version.setStyleSheet("")
- self.ui.btn_update_version.show()
-
- self.ui.btn_next.enabled = False
- self.ui.btn_previous.enabled = False
- self.ui.btn_easy.enabled = False
- self.ui.btn_medium.enabled = False
- self.ui.btn_hard.enabled = False
- self.ui.btn_mark_revision.enabled = False
- self.ui.btn_approved.enabled = False
-
- def deactivatedEditorTools(self):
- self.activateSegmentatorEditor(activated=False)
- self.ui.btn_save_new_version.setChecked(False)
- self.ui.btn_overwrite_version.setChecked(False)
- self.ui.btn_delete_version.setChecked(False)
-
- self.ui.btn_save_new_version.hide()
- self.ui.btn_overwrite_version.hide()
- self.ui.btn_delete_version.hide()
- self.ui.btn_update_version.hide()
- self.ui.btn_update_version.enabled = False
-
- self.ui.btn_next.enabled = True
- self.ui.btn_previous.enabled = True
- self.ui.btn_easy.enabled = True
- self.ui.btn_medium.enabled = True
- self.ui.btn_hard.enabled = True
- self.ui.btn_mark_revision.enabled = True
- self.ui.btn_approved.enabled = True
-
- self.ui.btn_update_version.setText("Confirm")
- self.ui.btn_edit_label.setText("Start label edit")
-
- def resetSegmentationEditorTools(self):
- self.ui.btn_edit_label.setChecked(False)
- self.deactivatedEditorTools()
-
- def hideEditingSelectionOption(self, isHidden: bool):
- if isHidden:
- self.ui.btn_edit_label.hide()
- else:
- self.ui.btn_edit_label.show()
-
- # Section: Display label
- def addSegmentator(self):
- self.segmentEditorWidget.setMRMLScene(slicer.mrmlScene)
- self.selectParameterNode()
- self.segmentEditorWidget.setEffectNameOrder([])
-
- def displayLabelOfSegmentation(self):
- self.selectParameterNode()
- self.getDefaultSourceVolumeNodeID()
- self.segmentEditorWidget.SegmentationNodeComboBox.setCurrentNodeIndex(0)
- self.segmentEditorWidget.SourceVolumeNodeComboBox.setCurrentNodeIndex(0)
-
- def selectParameterNode(self):
- # Select parameter set node if one is found in the scene, and create one otherwise
- segmentEditorSingletonTag = "SegmentEditor"
- segmentEditorNode = slicer.mrmlScene.GetSingletonNode(segmentEditorSingletonTag, "vtkMRMLSegmentEditorNode")
- if segmentEditorNode is None:
- segmentEditorNode = slicer.mrmlScene.CreateNodeByClass("vtkMRMLSegmentEditorNode")
- segmentEditorNode.UnRegister(None)
- segmentEditorNode.SetSingletonTag(segmentEditorSingletonTag)
- segmentEditorNode = slicer.mrmlScene.AddNode(segmentEditorNode)
- self.segmentEditorWidget.setMRMLSegmentEditorNode(segmentEditorNode)
-
- def getDefaultSourceVolumeNodeID(self):
- layoutManager = slicer.app.layoutManager()
- firstForegroundVolumeID = None
- # Use first background volume node in any of the displayed layouts.
- # If no beackground volume node is in any slice view then use the first
- # foreground volume node.
- for sliceViewName in layoutManager.sliceViewNames():
- sliceWidget = layoutManager.sliceWidget(sliceViewName)
- if not sliceWidget:
- continue
- compositeNode = sliceWidget.mrmlSliceCompositeNode()
- if compositeNode.GetBackgroundVolumeID():
- return compositeNode.GetBackgroundVolumeID()
- if compositeNode.GetForegroundVolumeID() and not firstForegroundVolumeID:
- firstForegroundVolumeID = compositeNode.GetForegroundVolumeID()
- # No background volume was found, so use the foreground volume (if any was found)
- return firstForegroundVolumeID
-
- def getVersionName(self) -> str:
- if self.setOverwriteCurrentVersion():
- return self.getCurrentLabelVersion()
- else:
- return self.currentImageData.getNewVersionName()
-
- def persistEditedSegmentation(self, newVersionName: str):
- self.currentImageData.updateSegmentationMetaByVerionTag(
- tag=newVersionName,
- status=self.getCurrentMetaStatus(),
- level=self.getCurrentMetaLevel(),
- approvedBy=self.selectedReviewer,
- comment=self.getCurrentComment(),
- )
-
- segmentationNode = self.segmentEditorWidget.segmentationNode()
- self.tmpdir = slicer.util.tempDirectory("slicer-monai-reviewer")
- label_in = tempfile.NamedTemporaryFile(suffix=".nrrd", dir=self.tmpdir).name
- slicer.util.saveNode(segmentationNode, label_in)
-
- self.logic.saveLabelInMonaiServer(imageData=self.currentImageData, label_in=label_in, tag=newVersionName)
-
- def deleteLabelByVersionTag(self):
- imageVersionTag = self.getCurrentLabelVersion()
- if self.isBlank(imageVersionTag):
- return
- if self.currentImageData.hasVersionTag(versionTag=imageVersionTag) is False:
- return
- self.logic.deleteLabelByVersionTag(imageData=self.currentImageData, versionTag=imageVersionTag)
-
- def updateAfterEditingSegmentation(self):
- imageVersionTag = self.getCurrentLabelVersion()
- setToSave = bool(self.ui.btn_save_new_version.isChecked())
- setToOverwrite = bool(self.ui.btn_overwrite_version.isChecked())
- setToDelete = bool(self.ui.btn_delete_version.isChecked())
- newLabelNameCreated = ""
- if setToSave:
- newLabelNameCreated = self.currentImageData.getNewVersionName()
- self.persistEditedSegmentation(newVersionName=newLabelNameCreated)
-
- elif setToOverwrite:
- if (imageVersionTag == self.LABEL.FINAL) or (imageVersionTag == self.LABEL.ORIGINAL):
- warningMessage: str = (
- "Initial Segmentation with label 'final' or 'original' \n"
- "cannot be overwritten.\n Please save current edit as new version."
- )
- slicer.util.warningDisplay(warningMessage)
- logging.warn(warningMessage)
- return
-
- self.persistEditedSegmentation(newVersionName=imageVersionTag)
-
- elif setToDelete:
- if (imageVersionTag == self.LABEL.FINAL) or (imageVersionTag == self.LABEL.ORIGINAL):
- warningMessage: str = "Initial Segmentation with label 'final' or 'original' \ncannot be deleted."
- slicer.util.warningDisplay(warningMessage)
- logging.warn(warningMessage)
- return
-
- self.deleteLabelByVersionTag()
-
- self.resetSegmentationEditorTools()
- self.reloadImageAfterEditingLabel()
- if newLabelNameCreated != "":
- self.setVersionTagInComboBox(versionTag=newLabelNameCreated)
-
- def reloadImageAfterEditingLabel(self):
- imageId = self.currentImageData.getFileName()
- latestVersion = self.currentImageData.getLatestVersionTag()
- logging.info(f"{self.getCurrentTime()}: Loading image (id='{imageId}') with version tag = '{latestVersion}'")
- self.loadNextImage(imageData=self.currentImageData, tag=latestVersion)
- self.fillComboBoxLabelVersions(self.currentImageData)
-
- def processDataStoreRecords(self):
- serverUrl: str = self.ui.comboBox_server_url.currentText
- result: bool = self.logic.initMetaDataProcessing()
- if result is False:
- warningMessage = (
- "Request for datastore-info failed.\nPlease check if server address is correct \n('{}')!".format(
- serverUrl
- )
- )
- slicer.util.warningDisplay(warningMessage)
- logging.warn(warningMessage)
- return
- logging.info(f"{self.getCurrentTime()}: Successfully processed all records in datastore.")
-
- def reloadOverallStatistic(self):
- if self.reviewersModeIsActive:
- self.processDataStoreRecords()
- self.setProgessBar()
- self.setProgressBarOfAll()
-
- def displayAdditionalMetaIfEdited(self, tag: str):
- if tag == self.LABEL.FINAL or tag == self.LABEL.ORIGINAL:
- self.ui.lineEdit_editor.hide()
- self.ui.lineEdit_editing_date.hide()
- self.ui.label_editor.hide()
- self.ui.label_editing_date.hide()
- else:
- self.ui.lineEdit_editor.show()
- self.ui.lineEdit_editing_date.show()
- self.ui.label_editor.show()
- self.ui.label_editing_date.show()
-
- def isBlank(self, string) -> bool:
- return not (string and string.strip())
-
-
-class MONAILabelReviewerLogic(ScriptedLoadableModuleLogic):
- """This class should implement all the actual
- computation done by module. The interface
- should be such that other python code can import
- this class and make use of the functionality without
- requiring an instance of the Widget.
- Uses ScriptedLoadableModuleLogic base class, available at:
- https://github.com/Slicer/Slicer/blob/main/Base/Python/slicer/ScriptedLoadableModule.py
- """
-
- def __init__(self):
- """
- Called when the logic class is instantiated. Can be used for initializing member variables.
- """
- ScriptedLoadableModuleLogic.__init__(self)
- self.temp_dir = None
- self.imageDataController: ImageDataController = ImageDataController()
-
- # Section: Server
- def getServerUrl(self) -> str:
- return self.imageDataController.getServerUrl()
-
- def getCurrentTime(self) -> datetime:
- return datetime.datetime.now()
-
- def connectToMonaiServer(self, serverUrl: str) -> bool:
- return self.imageDataController.connectToMonaiServer(serverUrl)
-
- def getMapIdToImageData(self) -> Dict[str, ImageData]:
- """
- Returns dictionary (Dict[str:ImageData]) which maps id to Imagedata-object
- """
- return self.imageDataController.getMapIdToImageData()
-
- def initMetaDataProcessing(self) -> bool:
- return self.imageDataController.initMetaDataProcessing()
-
- def getStatistics(self) -> ImageDataStatistics:
- return self.imageDataController.getStatistics()
-
- def getClientIds(self) -> List[str]:
- return self.imageDataController.getClientIds()
-
- def getReviewers(self) -> List[str]:
- return self.imageDataController.getReviewers()
-
- # Section: Loading images
- def getAllImageData(
- self, segmented: str, isNotSegmented: str, isApproved: bool, isFlagged: bool
- ) -> List[ImageData]:
- return self.imageDataController.getAllImageData(segmented, isNotSegmented, isApproved, isFlagged)
-
- def getImageDataByClientId(self, selectedClientId: str, isApproved: bool, isFlagged: bool) -> List[ImageData]:
- return self.imageDataController.getImageDataByClientId(selectedClientId, isApproved, isFlagged)
-
- def getPercentageApproved(self, selectedClientId: str):
- percentageApprovedOfClient, idxApprovedOfClient = self.imageDataController.getPercentageApproved(
- selectedClientId
- )
- return percentageApprovedOfClient, idxApprovedOfClient
-
- def getPercentageSemgmentedByClient(self, selectedClientId: str):
- percentageSemgmentedByClient, idxSegmentedByClient = self.imageDataController.getPercentageSemgmentedByClient(
- selectedClientId
- )
- return percentageSemgmentedByClient, idxSegmentedByClient
-
- # Section: Search Image
- def getMultImageDataByIds(self, idList: List[str]) -> Dict[str, ImageData]:
- return self.imageDataController.getMultImageDataByIds(idList)
-
- def searchByAnnotatorReviewer(
- self, selectedAnnotator: str, selectedReviewer: str, isApproved: bool, isFlagged: bool
- ) -> Dict[str, ImageData]:
- return self.imageDataController.searchByAnnotatorReviewer(
- selectedAnnotator, selectedReviewer, isApproved, isFlagged
- )
-
- def searchByLevel(self, isEasy: bool, isMedium: bool, isHard: bool) -> Dict[str, ImageData]:
- return self.imageDataController.getImageDataByLevel(isEasy=isEasy, isMedium=isMedium, isHard=isHard)
-
- def updateImageData(
- self, imageData: ImageData, versionTag: str, status: str, level: str, approvedBy: str, comment: str
- ) -> dict:
- """
- update meta data in information box
- Returns: jsonDict: json dictionary which contains updated meta data
- """
- imageId = imageData.getName()
- isEqual = imageData.isEqualSegmentationMeta(
- tag=versionTag, status=status, level=level, approvedBy=approvedBy, comment=comment
- )
- if isEqual:
- logging.info(f"{self.getCurrentTime()}: No changes for image (id='{imageId}')")
- return ""
-
- imageData.updateSegmentationMetaByVerionTag(
- tag=versionTag, status=status, level=level, approvedBy=approvedBy, comment=comment
- )
- jsonDict = imageData.getMetaByVersionTag(tag=versionTag)
-
- if jsonDict is None:
- logging.info(f"{self.getCurrentTime()}: No update for Image (id='{imageId}')")
- return ""
- logging.info(f"{self.getCurrentTime()}: Successfully updated Image (id='{imageId}')")
- return jsonDict
-
- # Section: Dicom stream
- def updateLabelInfo(
- self, imageData: ImageData, versionTag: str, status: str, level: str, approvedBy: str, comment: str
- ):
- imageId = imageData.getName()
- updatedMetaJson = self.updateImageData(imageData, versionTag, status, level, approvedBy, comment)
- if updatedMetaJson == "":
- logging.info(
- "{} : Image update (id='{}', version tag='{}') is empty".format(
- self.getCurrentTime(), imageId, versionTag
- )
- )
- return
-
- logging.info(f"{self.getCurrentTime()} : Image update (id='{imageId}', version tag='{versionTag}')")
- logging.info(updatedMetaJson)
- self.imageDataController.updateLabelInfoOfAllVersionTags(
- imageData=imageData, versionTag=versionTag, level=level, updatedMetaJson=updatedMetaJson
- )
-
- def loadDicomAndSegmentation(self, imageData: ImageData, tag: str):
- """
- Loads original Dicom image and Segmentation into slicer window
- Parameters:
- imageData (ImageData): Contains meta data (of dicom and segmenation)
- which is required for rest request to monai server
- in order to get dicom and segmenation (.nrrd).
- """
- # Request dicom
- image_name = imageData.getFileName()
- image_id = imageData.getName()
- node_name = imageData.getNodeName()
- logging.info(
- "{}: Request Data image_name='{}', node_name='{}', image_id='{}'".format(
- self.getCurrentTime(), image_name, node_name, image_id
- )
- )
-
- self.requestDicomImage(image_id, image_name, node_name)
- self.setTempFolderDir()
-
- # Request segmentation
- if imageData.isSegemented():
- segmentationFileName = imageData.getSegmentationFileName()
- img_blob = self.imageDataController.reuqestSegmentation(image_id, tag)
- destination = self.storeSegmentation(img_blob, segmentationFileName, self.temp_dir.name)
- self.displaySegmention(destination)
- os.remove(destination)
- logging.info(f"{self.getCurrentTime()}: Removed file at {destination}")
-
- def storeSegmentation(
- self, response: requests.models.Response, segmentationFileName: str, tempDirectory: str
- ) -> str:
- """
- stores loaded segmenation temporarily in local directory
- Parameters:
- response (requests.models.Response): contains segmentation data
- image_id (str): image id of segmentation
- """
- segmentation = response.content
- destination = self.getPathToStore(segmentationFileName, tempDirectory)
- with open(destination, "wb") as img_file:
- img_file.write(segmentation)
- logging.info(f"{self.getCurrentTime()}: Image segmentation is stored temoparily in: {destination}")
- return destination
-
- def getPathToStore(self, segmentationFileName: str, tempDirectory: str) -> str:
- return tempDirectory + "/" + segmentationFileName
-
- def displaySegmention(self, destination: str):
- """
- Displays the segmentation in slicer window
- """
- slicer.util.loadSegmentation(destination)
-
- def requestDicomImage(self, image_id: str, image_name: str, node_name: str):
- download_uri = self.imageDataController.getDicomDownloadUri(image_id)
- SampleData.SampleDataLogic().downloadFromURL(nodeNames=node_name, fileNames=image_name, uris=download_uri)
-
- def setTempFolderDir(self):
- """
- Create temporary dirctory to store the downloaded segmentation (.nrrd)
- """
- if self.temp_dir is None:
- self.temp_dir = tempfile.TemporaryDirectory()
- logging.info(f"{self.getCurrentTime()}: Temporary Directory: '{self.temp_dir.name}'")
-
- def saveLabelInMonaiServer(self, imageData: ImageData, label_in: str, tag: str):
- imageName = imageData.getName()
- params = imageData.obtainUpdatedParams(tag)
- self.imageDataController.saveLabelInMonaiServer(imageName, label_in, tag, params)
-
- def deleteLabelByVersionTag(self, imageData: ImageData, versionTag: str) -> bool:
- imageId = imageData.getName()
- imageData.deleteVersionName(versionTag)
- successfullyDeleted: bool = self.imageDataController.deleteLabelByVersionTag(imageId, versionTag)
- return successfullyDeleted
-
-
-class MONAILabelReviewerTest(ScriptedLoadableModuleTest):
- """
- This is the test case for your scripted module.
- Uses ScriptedLoadableModuleTest base class, available at:
- https://github.com/Slicer/Slicer/blob/main/Base/Python/slicer/ScriptedLoadableModule.py
- """
-
- def setUp(self):
- """Do whatever is needed to reset the state - typically a scene clear will be enough."""
- slicer.mrmlScene.Clear()
-
- def runTest(self):
- """Run as few or as many tests as needed here."""
- self.setUp()
- self.test_MONAILabelReviewer1()
-
- def test_MONAILabelReviewer1(self):
- """Ideally you should have several levels of tests. At the lowest level
- tests should exercise the functionality of the logic with different inputs
- (both valid and invalid). At higher levels your tests should emulate the
- way the user would interact with your code and confirm that it still works
- the way you intended.
- One of the most important features of the tests is that it should alert other
- developers when their changes will have an impact on the behavior of your
- module. For example, if a developer removes a feature that you depend on,
- your test should break so they know that the feature is needed.
- """
-
- self.delayDisplay("Starting the test")
diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/DataStoreKeys.py b/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/DataStoreKeys.py
deleted file mode 100644
index 5c38878..0000000
--- a/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/DataStoreKeys.py
+++ /dev/null
@@ -1,81 +0,0 @@
-# Copyright (c) MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-from typing import List
-
-
-class DataStoreKeys:
- """
- DataStoreKeys contains arrays which represent the structure of datastore.json
- That provides an overview of keys which are relevant for the access the key-value-pair
- within json file.
- Below please have a look on an example of such entry in datastore.json.
- """
-
- def __init__(self):
- self.OBJECT = "objects"
- self.FINAL = "final"
- self.ORIGINAL = "original"
- self.ANNOTATE = "annotate"
- self.RANDOM = "Random"
- self.INFO = "info"
- self.LABEL_INFO = "label_info"
-
- self.IMAGE_INFO = ["image", "info"]
- self.FILENAME = ["image", "info", "name"]
- self.NODE_NAME = ["image", "info", "name"]
-
- self.TIMESTAMP = ["image", "info", "ts"]
- self.TIMESTAMP_ANNOTATE = ["image", "info", "strategy", "annotate", "ts"]
- self.TIMESTAMP_RANDOM = ["image", "info", "strategy", "Random", "ts"]
-
- self.STRATEGY = ["image", "info", "strategy"]
- self.CLIENT_ID_BY_ANNOTATE = ["image", "info", "strategy", "annotate", "client_id"]
- self.CLIENT_ID_BY_RANDOM = ["image", "info", "strategy", "Random", "client_id"]
- self.CLIENT_ID = ["labels", "final", "info", "client_id"]
-
- self.LABELS = ["labels"]
- self.LABELS_FINAL = ["labels", "final"]
- self.LABELS_FINAL_INFO = ["labels", "final", "info"]
- self.LABELS_INFO = ["labels", "original", "info", "label_info"]
- self.LABELS_FINAL_INFO_LABELS_INFO = ["labels", "final", "info", "label_info"]
- self.SEGMENTATION_NAME_BY_FINAL = ["labels", "final", "info", "name"]
- self.SEGMENTATION_NAME_BY_ORIGINAL = ["labels", "original", "info", "name"]
-
- # Additional entries in json file which contains meta data
- self.META = "segmentationMeta"
- self.META_STATUS = "status"
- self.META_LEVEL = "level"
- self.APPROVED_BY = "approvedBy"
-
- self.META_EDIT_TIME = "editTime"
- self.META_COMMENT = "comment"
-
- def getMeta(self, key: str, label: str) -> List[str]:
- return ["labels"] + [label] + ["info", "segmentationMeta"] + [key]
-
- def getMetaStatus(self, label: str):
- return self.getMeta(key=self.META_STATUS, label=label)
-
- def getMetaLevel(self, label: str):
- return self.getMeta(key=self.META_LEVEL, label=label)
-
- def getMetaApprovedBy(self, label: str):
- return self.getMeta(key=self.APPROVED_BY, label=label)
-
- def getMetaEditTime(self, label: str):
- return self.getMeta(key=self.META_EDIT_TIME, label=label)
-
- def getMetaComment(self, label: str):
- return self.getMeta(key=self.META_COMMENT, label=label)
-
- def getInfoInLabels(self, label: str):
- return ["labels"] + [label] + ["info"]
diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/ImageData.py b/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/ImageData.py
deleted file mode 100644
index 895c396..0000000
--- a/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/ImageData.py
+++ /dev/null
@@ -1,422 +0,0 @@
-# Copyright (c) MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-import logging
-from datetime import datetime
-from typing import Dict, List
-
-from MONAILabelReviewerLib.MONAILabelReviewerEnum import SegStatus
-from MONAILabelReviewerLib.SegmentationMeta import SegmentationMeta
-
-
-class ImageData:
- """
- ImageData is a container for each segmentation/image.
- Such ImageData contains the meta data of corresponding segmentation/image (e.g. fileName, checkSum, comment, etc.)
- Each change (regarding the review process) will be monitored within ImageData.
- Once a user select the next segmentation during review the information in ImageData will be send to MONAI-Server in order
- to persist the data in datastore_v2.json file.
-
- """
-
- def __init__(self, name, fileName, nodeName, segmented, timeStamp, comment=""):
- self.name: str = name # equals imageId
- self.fileName: str = fileName
- self.nodeName: str = nodeName
- self.segmented: bool = segmented
- self.timeStamp: int = timeStamp
- self.comment: str = comment
-
- self.versionNames: List[str] = [] # equals to labelNames
- self.labelContent: dict = {}
- """
- example of 'labelContent'
- "label_info": [
- {
- "name": "Lung",
- "idx": 1
- },
- {
- "name": "Heart",
- "idx": 2
- },
- {
- "name": "Trachea",
- "idx": 3
- },
- {
- "name": "Mediastinum",
- "idx": 4
- },
- {
- "name": "Clavicle",
- "idx": 5
- }
- ],
- """
- self.segmentationMetaDict: Dict[str, SegmentationMeta] = {}
-
- self.STATUS = SegStatus()
-
- self.client_id: str = None
- self.segmentationFileName: str = None
- self.tempDirectory: str = None
- self.prefixVersion = "version_"
- self.FINAL = "final"
- self.ORIGIN = "origin"
-
- def setVersionNames(self, versionNames: List[str]):
- self.versionNames: List[str] = versionNames
-
- def setLabelContent(self, labelContent: dict):
- self.labelContent: dict = labelContent
-
- def setSegmentationMetaDict(self, segmentationMetaDict: Dict[str, SegmentationMeta]):
- self.segmentationMetaDict = segmentationMetaDict
-
- def getName(self) -> str:
- return self.name
-
- def getFileName(self) -> str:
- return self.fileName
-
- def getNodeName(self) -> str:
- return self.nodeName
-
- def getsegmentationMetaDict(self) -> dict:
- return self.segmentationMetaDict
-
- def getClientId(self, versionTag="final") -> str:
- return self.client_id
-
- def getTimeStamp(self) -> int:
- return self.timeStamp
-
- def formatTimeStamp(self, timeStamp) -> str:
- if type(timeStamp) == str:
- return timeStamp
- return str(datetime.fromtimestamp(timeStamp))
-
- def getTimeOfAnnotation(self) -> str:
- return self.formatTimeStamp(self.timeStamp)
-
- def getTimeOfEditing(self, versionTag="final"):
- if self.isSegemented() is False or self.hasSegmentationMeta(tag=versionTag) is False:
- return ""
-
- segmentationMeta = self.getSegmentationMetaByVersionTag(tag=versionTag)
- if segmentationMeta is None:
- return ""
-
- formattedTime = self.formatTimeStamp(segmentationMeta.getEditTime())
- return formattedTime
-
- def isSegemented(self) -> bool:
- return self.segmented
-
- def getLabelContent(self) -> dict:
- return self.labelContent
-
- def getComment(self, versionTag="final") -> str:
- if self.isSegemented() is False or self.hasSegmentationMeta(tag=versionTag) is False:
- return ""
-
- segmentationMeta = self.getSegmentationMetaByVersionTag(tag=versionTag)
- if segmentationMeta is None:
- return ""
-
- return segmentationMeta.getComment()
-
- def getSegmentationMetaDict(self) -> dict:
- return self.segmentationMetaDict
-
- def getStatus(self, versionTag="final") -> str:
- if self.isSegemented() is False:
- return self.STATUS.NOT_SEGMENTED
-
- segmentationMeta = self.getSegmentationMetaByVersionTag(tag=versionTag)
- if segmentationMeta is None:
- return ""
-
- return segmentationMeta.getStatus()
-
- def getApprovedBy(self, versionTag="final") -> str:
- if self.isSegemented() is False or self.hasSegmentationMeta(tag=versionTag) is False:
- return ""
-
- segmentationMeta = self.getSegmentationMetaByVersionTag(tag=versionTag)
- if segmentationMeta is None:
- return ""
-
- return segmentationMeta.getApprovedBy()
-
- def isApprovedVersion(self, versionTag="final") -> bool:
- if self.isSegemented() is False or self.hasSegmentationMeta(tag=versionTag) is False:
- return False
-
- segmentationMeta = self.getSegmentationMetaByVersionTag(tag=versionTag)
- if segmentationMeta is None:
- return False
-
- status = segmentationMeta.getStatus()
- if status == self.STATUS.APPROVED:
- return True
-
- return False
-
- def isApproved(self, versionTag="final") -> bool:
- if self.isSegemented() is False:
- return False
-
- for segmentationMeta in self.segmentationMetaDict.values():
- status = segmentationMeta.getStatus()
- if status == self.STATUS.APPROVED:
- return True
- return False
-
- def isFlagged(self, versionTag="final") -> bool:
- if self.isSegemented() is False or self.hasSegmentationMeta(tag=versionTag) is False:
- return False
-
- segmentationMeta = self.getSegmentationMetaByVersionTag(tag=versionTag)
- if segmentationMeta is None:
- return False
-
- status = segmentationMeta.getStatus()
- if status == self.STATUS.FLAGGED:
- return True
-
- return False
-
- def getLevel(self, versionTag="final") -> str:
- if self.isSegemented() is False or self.hasSegmentationMeta(tag=versionTag) is False:
- return ""
-
- segmentationMeta = self.getSegmentationMetaByVersionTag(tag=versionTag)
- if segmentationMeta is None:
- return ""
- return segmentationMeta.getLevel()
-
- def setSegmentationFileName(self, fileName: str):
- self.segmentationFileName = fileName
-
- def getSegmentationFileName(self) -> str:
- return self.segmentationFileName
-
- def setClientId(self, client_id: str):
- self.client_id = client_id
-
- def addNewSegmentationMeta(self, tag: str, status: str, level: str, approvedBy: str, comment: str):
- segmentationMeta = SegmentationMeta()
- segmentationMeta.build(status=status, level=level, approvedBy=approvedBy, comment=comment, editTime="")
- segmentationMeta.setVersionNumber(versionTag=tag)
- self.segmentationMetaDict[tag] = segmentationMeta
-
- def getSegmentationMetaByVersionTag(self, tag: str):
- if tag not in self.segmentationMetaDict:
- return None
- return self.segmentationMetaDict[tag]
-
- def isEqualSegmentationMeta(self, tag: str, status: str, level: str, approvedBy: str, comment: str) -> bool:
- segmentationMeta = self.getSegmentationMetaByVersionTag(tag)
- if (
- segmentationMeta is None
- and self.isBlank(status)
- and self.isBlank(level)
- and self.isBlank(approvedBy)
- and self.isBlank(comment)
- ):
- return True
-
- if segmentationMeta is None:
- self.addNewSegmentationMeta(tag, status, level, approvedBy, comment)
- return False
-
- return segmentationMeta.isEqual(status=status, level=level, approvedBy=approvedBy, comment=comment)
-
- def isBlank(self, string) -> bool:
- return not (string and string.strip())
-
- def getMetaByVersionTag(self, tag: str) -> dict:
- if tag not in self.segmentationMetaDict:
- return {}
- segmentationMeta = self.getSegmentationMetaByVersionTag(tag)
- return segmentationMeta.getMeta()
-
- def hasSegmentationMeta(self, tag="final") -> bool:
- segmentationMeta = self.getSegmentationMetaByVersionTag(tag=tag)
- if segmentationMeta is None:
- return False
- return True
-
- def addSegementationMetaByVersionTag(self, tag="", status="", level="", approvedBy="", comment=""):
- segmentationMeta = SegmentationMeta()
- segmentationMeta.build(status=status, level=level, approvedBy=approvedBy, comment=comment)
- segmentationMeta.setVersionNumber(versionTag=tag)
- self.segmentationMetaDict[tag] = segmentationMeta
-
- def getSegementationMetaByVersionTag(self, tag: str) -> SegmentationMeta:
- if self.isBlank(tag):
- return None
- if tag not in self.segmentationMetaDict.keys():
- return None
- return self.segmentationMetaDict[tag]
-
- def obtainUpdatedParams(self, tag: str) -> dict:
- params = self.labelContent.copy()
- segementationMeta = self.getSegementationMetaByVersionTag(tag=tag)
- if segementationMeta is None:
- return params
- segementationMeta.setEditTime()
- metaData = segementationMeta.getMeta()
- if len(metaData) > 0:
- params["segmentationMeta"] = metaData["segmentationMeta"]
- return params
-
- def updateSegmentationMetaByVerionTag(self, tag="", status="", level="", approvedBy="", comment="") -> bool:
- if self.isBlank(tag):
- return False
- segmentationMeta = self.getSegementationMetaByVersionTag(tag=tag)
- if segmentationMeta is None:
- segmentationMeta = SegmentationMeta()
- segmentationMeta.build(status=status, level=level, approvedBy=approvedBy, comment=comment)
- segmentationMeta.setVersionNumber(versionTag=tag)
- else:
- segmentationMeta.update(status=status, level=level, approvedBy=approvedBy, comment=comment)
- segmentationMeta.setEditTime()
- self.segmentationMetaDict[tag] = segmentationMeta
-
- return True
-
- def updateApprovedStatusOfOtherThanSubjectedVersion(
- self, subjectedTag: str, difficultyLevel: str
- ) -> Dict[str, dict]:
- tagToSegmentationMetaJson = {}
- for tag, segmentationMeta in self.segmentationMetaDict.items():
- if subjectedTag == tag:
- continue
-
- updated = False
- if segmentationMeta.getStatus() == self.STATUS.APPROVED:
- segmentationMeta.setStatus("")
- updated = True
-
- if segmentationMeta.getLevel != difficultyLevel:
- segmentationMeta.setLevel(difficultyLevel)
- updated = True
-
- if updated:
- self.segmentationMetaDict[tag] = segmentationMeta
- tagToSegmentationMetaJson[tag] = segmentationMeta.getMeta()
- return tagToSegmentationMetaJson
-
- def getApprovedVersionTagElseReturnLatestVersion(self) -> str:
- latest = 0
- latestVersion = ""
-
- if len(self.segmentationMetaDict) == 1:
- return [*self.segmentationMetaDict.keys()][0]
-
- for tag, segmentationMeta in self.segmentationMetaDict.items():
- if segmentationMeta.getStatus() == self.STATUS.APPROVED:
- return tag
-
- version = segmentationMeta.getVersionNumber()
-
- if latest < version:
- latest = version
- latestVersion = tag
-
- return latestVersion
-
- # methods dealing with versions
-
- def getLatestVersionTag(self) -> str:
- if len(self.versionNames) == 0:
- return ""
- return self.versionNames[len(self.versionNames) - 1]
-
- def getOldestVersion(self) -> str:
- if len(self.versionNames) == 0:
- return ""
- return self.versionNames[0]
-
- def getNewVersionName(self) -> str:
- subsequentIndex = self.obtainSubsequentIndexFromVersionName(self.versionNames)
- newVersionName = self.obtainNextVersionName(subsequentIndex)
- self.versionNames.append(newVersionName)
- return newVersionName
-
- def getNumberOfVersions(self) -> int:
- return len(self.versionNames)
-
- def getVersionName(self, version: int) -> str:
- if version >= len(self.versionNames):
- return ""
-
- return self.versionNames[version]
-
- def hasVersionTag(self, versionTag: str):
- return versionTag in self.versionNames
-
- def getVersionNames(self) -> List[str]:
- return self.versionNames
-
- def obtainNextVersionName(self, index: int) -> str:
- return self.prefixVersion + str(index)
-
- def deleteVersionName(self, versionTag: str):
- if versionTag not in self.versionNames:
- return
-
- self.versionNames.remove(versionTag)
-
- if versionTag in self.segmentationMetaDict.items():
- self.segmentationMetaDict.pop(versionTag)
-
- def obtainSubsequentIndexFromVersionName(self, versionNames) -> int:
- if len(versionNames) == 0:
- return 1
- lastVersionTag = versionNames[len(versionNames) - 1]
- if lastVersionTag == self.FINAL or lastVersionTag == self.ORIGIN:
- return 1
- try:
- indexOfDelimeter = lastVersionTag.index("_")
- except BaseException:
- exceptionIndex = len(versionNames) + 100
- logging.info(
- f"Version name is incorrect. Format should be like 'version_1' but was {lastVersionTag}. "
- f"Hence, following id will be used {exceptionIndex}."
- )
- return exceptionIndex
-
- lastCharIndex = len(lastVersionTag)
- versionTagIndex = lastVersionTag[indexOfDelimeter + 1 : lastCharIndex]
- return int(versionTagIndex) + 1
-
- def display(self):
- print("name: ", self.name)
- print("fileName: ", self.fileName)
- print("nodeName: ", self.nodeName)
- print("isSegmented: ", self.segmented)
- print("getTimeStamp: ", self.getTimeOfAnnotation())
- print("=== Version labels ====")
- for version in self.versionNames:
- print("version: ", version)
- if self.isSegemented():
- print("Client Id: ", self.client_id)
- print("segmentationFileName: ", self.segmentationFileName)
- print("=== Segmentation Meta ====")
-
- if self.hasSegmentationMeta():
- for k, segmentationMeta in self.segmentationMetaDict.items():
- print("version: ", k)
- segmentationMeta.display()
diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/ImageDataController.py b/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/ImageDataController.py
deleted file mode 100644
index a027fc5..0000000
--- a/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/ImageDataController.py
+++ /dev/null
@@ -1,247 +0,0 @@
-# Copyright (c) MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-import datetime
-import logging
-from typing import Dict, List
-
-import requests
-from MONAILabelReviewerLib.ImageData import ImageData
-from MONAILabelReviewerLib.ImageDataExtractor import ImageDataExtractor
-from MONAILabelReviewerLib.ImageDataStatistics import ImageDataStatistics
-from MONAILabelReviewerLib.JsonParser import JsonParser
-from MONAILabelReviewerLib.MonaiServerREST import MonaiServerREST
-
-
-class ImageDataController:
- """
- ImageDataController manages all data processing and data transactions via
-
- 1. MonaiServerREST (requests and peristency of meta data, image data, segmentation data from monai server)
- 2. ImageDataExtractor (handling of logical operations coming from set of imageData)
- 3. JsonParser (parsing information from datastore_v2.json)
- 4. ImageData (container which caches information of single image and corresponding segmenation information and meta data)
-
- content of meta data:
- 1. "status" (flagged or approved)
- 2. "approvedBy" (name of reviewer)
- 3. "level" (level of difficulty of segmentation: easy, medium, hard)
- 4. "comment" (any comment on image and segmenation)
- 5. "editTime"
-
- list of meta information can be extanded
-
- """
-
- def __init__(self):
- self.monaiServerREST: MonaiServerREST = None
- self.imageDataExtractor: ImageDataExtractor = None
- self.temp_dir = None
-
- def getCurrentTime(self) -> datetime:
- return datetime.datetime.now()
-
- # ImageDataExtractor methods
-
- def initMetaDataProcessing(self) -> bool:
- """
- Passes mapIdToImageData to ImageDataExtractor object in order to process the meta information
- for each imageData
-
- returns True if it was successful
- else False
- """
- mapIdToImageData = self.getMapIdToImageData()
- if mapIdToImageData is None:
- return False
- self.imageDataExtractor = ImageDataExtractor(mapIdToImageData)
- self.imageDataExtractor.init()
- return True
-
- # returns only client id of those images which are segemented
- def getClientIds(self) -> List[str]:
- return self.imageDataExtractor.getClientIds()
-
- def getReviewers(self) -> List[str]:
- return self.imageDataExtractor.getReviewers()
-
- def getStatistics(self) -> ImageDataStatistics:
- """
- returns a map which contains statistical values which are comming from ImageDataExtractor object
- """
- statistics = ImageDataStatistics()
-
- statistics.build(
- segmentationProgress=self.imageDataExtractor.getSegmentationProgessInPercentage(),
- idxTotalSegmented=self.imageDataExtractor.getSegmentationVsTotalStr(),
- idxTotalApproved=self.imageDataExtractor.getApprovalVsTotal(),
- progressPercentage=self.imageDataExtractor.getApprovalProgressInPercentage(),
- segmentationProgressAllPercentage=self.imageDataExtractor.getSegmentationProgessInPercentage(),
- approvalProgressPercentage=self.imageDataExtractor.getApprovalProgressInPercentage(),
- )
-
- return statistics
-
- # Section: Loading images
- def getAllImageData(self, segmented, isNotSegmented, isApproved, isFlagged) -> List[ImageData]:
- return self.imageDataExtractor.getAllImageData(
- segmented=segmented, notSegmented=isNotSegmented, approved=isApproved, flagged=isFlagged
- )
-
- def getImageDataByClientId(self, selectedClientId, isApproved, isFlagged) -> List[ImageData]:
- return self.imageDataExtractor.getImageDataByClientId(
- clientId=selectedClientId, approved=isApproved, flagged=isFlagged
- )
-
- def getPercentageApproved(self, selectedClientId):
- percentageApprovedOfClient, idxApprovedOfClient = self.imageDataExtractor.getPercentageApproved(
- selectedClientId
- )
- return percentageApprovedOfClient, idxApprovedOfClient
-
- def getPercentageSemgmentedByClient(self, selectedClientId):
- percentageSemgmentedByClient, idxSegmentedByClient = self.imageDataExtractor.getPercentageSemgmentedByClient(
- selectedClientId
- )
- return percentageSemgmentedByClient, idxSegmentedByClient
-
- # Section: Search Image
- def getMultImageDataByIds(self, imageIds) -> Dict[str, ImageData]:
- return self.imageDataExtractor.getMultImageDataByIds(imageIds)
-
- def searchByAnnotatorReviewer(
- self, selectedAnnotator: str, selectedReviewer: str, isApproved: bool, isFlagged: bool
- ) -> Dict[str, ImageData]:
- """
- returns set of imageData (imageId mapped to ImageData) according to given filter options
- """
- idToImageData: Dict[str, ImageData] = {}
- imageIdsOfAnnotator = None
- if selectedAnnotator == "All" and selectedReviewer != "All":
- imageIdsOfAnnotator = self.imageDataExtractor.getImageDataByReviewer(
- selectedReviewer, isApproved, isFlagged
- )
-
- if selectedAnnotator != "All" and selectedReviewer == "All":
- imageIdsOfAnnotator = self.imageDataExtractor.getImageDataByClientId(
- selectedAnnotator, isApproved, isFlagged
- )
-
- if selectedReviewer == "All" and selectedAnnotator == "All":
- imageIdsOfAnnotator = self.imageDataExtractor.getAllImageData(
- segmented=True, notSegmented=False, approved=isApproved, flagged=isFlagged
- )
-
- if selectedReviewer != "All" and selectedAnnotator != "All":
- imageIdsOfAnnotator = self.imageDataExtractor.getImageDataByClientAndReviewer(
- selectedAnnotator, selectedReviewer, isApproved, isFlagged
- )
-
- if imageIdsOfAnnotator is None:
- return idToImageData
-
- for imageData in imageIdsOfAnnotator:
- idToImageData[imageData.getName()] = imageData
-
- return idToImageData
-
- def getImageDataByLevel(self, isEasy: bool, isMedium: bool, isHard: bool) -> Dict[str, ImageData]:
- """
- returns set of imageData (imageId mapped to ImageData) according to given level of difficulty
- """
- imageIdsOfAnnotator = self.imageDataExtractor.getImageDataByLevel(
- isEasy=isEasy, isMedium=isMedium, isHard=isHard
- )
- return imageIdsOfAnnotator
-
- # MONAI server methods
-
- def getServerUrl(self) -> str:
- return self.monaiServerREST.getServerUrl()
-
- def setMonaiServer(self, serverUrl: str):
- self.monaiServerREST = MonaiServerREST(serverUrl)
-
- def connectToMonaiServer(self, serverUrl: str) -> bool:
- self.setMonaiServer(serverUrl)
- return self.monaiServerREST.checkServerConnection()
-
- def getMapIdToImageData(self) -> Dict[str, ImageData]:
- """
- Returns dictionary (Dict[str:ImageData]) which maps id to Imagedata-object
- """
- jsonObj = self.monaiServerREST.requestDataStoreInfo()
- if jsonObj is None:
- return None
-
- # Parse json file to ImageData object
- jsonParser = JsonParser(jsonObj)
- jsonParser.init()
- mapIdToImageData = jsonParser.getMapIdToImageData()
- return mapIdToImageData
-
- # Section: Dicom stream
- def updateLabelInfoOfAllVersionTags(
- self, imageData: ImageData, versionTag: str, level: str, updatedMetaJson: dict
- ) -> bool:
- imageId = imageData.getName()
- self.updateLabelInfo(imageId, versionTag, updatedMetaJson)
-
- tagToSegmentationMetaJson = imageData.updateApprovedStatusOfOtherThanSubjectedVersion(
- subjectedTag=versionTag, difficultyLevel=level
- )
- for tag, segmentationMetaJson in tagToSegmentationMetaJson.items():
- self.updateLabelInfo(imageId, tag, segmentationMetaJson)
-
- def updateLabelInfo(self, imageId, versionTag, updatedMetaJson) -> bool:
- """
- sends meta information via http request to monai server
- in order to perist the information in datastore_v2.json file
-
- returns True if successfully sent http request
- else False
- """
- repsonseCode = self.monaiServerREST.updateLabelInfo(image_id=imageId, tag=versionTag, params=updatedMetaJson)
- if repsonseCode == 200:
- logging.info(f"{self.getCurrentTime()}: Successfully persist meta data for image (id='{imageId}')")
- return True
- else:
- logging.info(
- "{}: Failed meta date persistence for image (id='{}', response code = '{}')".format(
- self.getCurrentTime(), imageId, repsonseCode
- )
- )
- return False
-
- def reuqestSegmentation(self, image_id: str, tag: str) -> requests.models.Response:
- """
- after sending request to monai server
- rerturns response body (img_blob) which contains the segmentation data
- """
- img_blob = self.monaiServerREST.requestSegmentation(image_id, tag)
- logging.info(
- "{}: Segmentation successfully requested from MONAIServer (image id: {})".format(
- self.getCurrentTime(), image_id
- )
- )
- return img_blob
-
- def getDicomDownloadUri(self, image_id: str) -> str:
- return self.monaiServerREST.getDicomDownloadUri(image_id)
-
- def saveLabelInMonaiServer(self, image_in: str, label_in: str, tag: str, params: Dict):
- self.monaiServerREST.saveLabel(image_in, label_in, tag, params)
-
- def deleteLabelByVersionTag(self, imageId: str, versionTag: str) -> bool:
- reponseCode = self.monaiServerREST.deleteLabelByVersionTag(imageId, versionTag)
- if reponseCode == 200:
- return True
- return False
diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/ImageDataExtractor.py b/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/ImageDataExtractor.py
deleted file mode 100644
index aae2d41..0000000
--- a/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/ImageDataExtractor.py
+++ /dev/null
@@ -1,378 +0,0 @@
-# Copyright (c) MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-import datetime
-import logging
-from typing import Dict, List
-
-from MONAILabelReviewerLib.ImageData import ImageData
-from MONAILabelReviewerLib.MONAILabelReviewerEnum import Level
-
-
-class ImageDataExtractor:
- """
- ImageDataExtractor gets dictionary (mapping from id to ImageData from JsonParser) and caches
- Mapping:
- - imageIds TO ImageData,
- - client TO list of imageIds
- List:
- - imageIds of all images which are not segemented yet
- - imageIds of all images which are approved
- - all reviewers
-
- Each modification during review process will be stored in corresponding ImageData
- ImageDataExtractor provides the meta data across all ImageData-Containers when the user selects the filter option
- """
-
- def __init__(self, nameToImageData: dict):
- self.LEVEL = Level()
- self.nameToImageData: Dict[str, ImageData] = nameToImageData
-
- self.clientToImageIds: Dict[str, list] = {}
- self.idsOfNotSegmented: List[str] = []
- self.idsOfApprovedSementations: List[str] = []
- self.reviewers: List[str] = []
-
- def init(self):
- self.groupImageDataByClientId()
- self.extractAllReviewers()
- self.extractNotSegmentedImageIds()
-
- def getCurrentTime(self) -> datetime:
- return datetime.datetime.now()
-
- def groupImageDataByClientId(self):
- for imageId, imageData in self.nameToImageData.items():
- if imageData.isSegemented():
- clientId = imageData.getClientId()
- if clientId:
- if clientId not in self.clientToImageIds:
- self.clientToImageIds[clientId] = []
- self.clientToImageIds[clientId].append(imageId)
-
- def extractAllReviewers(self):
- for imageData in self.nameToImageData.values():
- if imageData.isSegemented():
- reviewer = imageData.getApprovedBy()
- if reviewer not in self.reviewers and reviewer != "":
- self.reviewers.append(reviewer)
-
- def extractNotSegmentedImageIds(self):
- for imageId, imageData in self.nameToImageData.items():
- if imageData.isSegemented() is False:
- self.idsOfNotSegmented.append(imageId)
-
- def getTotalNumImages(self) -> int:
- return len(self.nameToImageData)
-
- def getImageDataIds(self) -> List[str]:
- return [*self.nameToImageData.keys()]
-
- def getClientIds(self) -> List[str]:
- return [*self.clientToImageIds.keys()]
-
- def getReviewers(self) -> List[str]:
- return self.reviewers
-
- def getImageDataNotsegmented(self) -> List[ImageData]:
- """
- returns list of ImageData of corresponingd image studies wich has not been segemeted
- """
- notSegmented = []
- for id in self.idsOfNotSegmented:
- imageData = self.nameToImageData[id]
- notSegmented.append(imageData)
- return notSegmented
-
- def getNumOfNotSegmented(self) -> int:
- return len(self.idsOfNotSegmented)
-
- def getNumOfSegmented(self) -> int:
- count = 0
- for idList in self.clientToImageIds.values():
- count += len(idList)
- return count
-
- def getSegmentationProgessInPercentage(self) -> int:
- """
- returns percentage of already segmented images out of all available images
- """
- segmentedCount = self.getNumOfSegmented()
- float_Num = segmentedCount / self.getTotalNumImages()
- return int(float_Num * 100)
-
- def getSegmentationVsTotalStr(self) -> str:
- """
- returns the index of subjected imageData within imageData data set
- """
- segmentedCount = self.getNumOfSegmented()
- idxTotalSegmented = f"{segmentedCount}/{self.getTotalNumImages()}"
- return idxTotalSegmented
-
- def getApprovalProgressInPercentage(self) -> int:
- """
- returns percentage of already approved imageData out of all available imageData
- """
- approvalCount = self.getNumApprovedSegmentation()
- fraction = approvalCount / self.getTotalNumImages()
- return int(fraction * 100)
-
- def getApprovalVsTotal(self) -> str:
- approvalCount = self.getNumApprovedSegmentation()
- idxTotalApproved = f"{approvalCount}/{self.getTotalNumImages()}"
- return idxTotalApproved
-
- def invalidFilterCombination(self, segmented: bool, notSegmented: bool, approved: bool, flagged: bool) -> bool:
- return (
- (notSegmented is True and segmented is True)
- or (approved is True and flagged is True)
- or (notSegmented is True and approved is True)
- or (notSegmented is True and flagged is True)
- )
-
- def getAllImageData(self, segmented=False, notSegmented=False, approved=False, flagged=False) -> List[ImageData]:
- """
- returns fitered list of imageData which are filtered according to input parameters
- """
- if self.invalidFilterCombination(segmented, notSegmented, approved, flagged):
- logging.warning(
- f"{self.getCurrentTime()}: Selected filter options are not valid: segmented='{segmented}' | "
- f"notSegmented='{notSegmented}' | approved='{approved}' | flagged='{flagged}')"
- )
- return None
-
- if notSegmented is False and segmented is False and approved is False and flagged is False:
- return [*self.nameToImageData.values()]
-
- selectedImageData = []
- for imagedata in self.nameToImageData.values():
- if notSegmented is True and segmented is False and imagedata.isSegemented() is False:
- selectedImageData.append(imagedata)
- continue
-
- if imagedata.isSegemented() is segmented and imagedata.isApproved() is True and approved is True:
- selectedImageData.append(imagedata)
- continue
-
- if (
- imagedata.isSegemented() is segmented
- # and imagedata.isApproved() is approved
- and imagedata.isFlagged() is True
- and flagged is True
- ):
- selectedImageData.append(imagedata)
- continue
-
- return selectedImageData
-
- def getImageDataByClientId(self, clientId: str, approved=False, flagged=False) -> List[ImageData]:
- """
- returns fitered list of imageData which are filtered according to client (=annotator) and parameters (approved, flagged)
- """
- if clientId == "":
- return None
- if approved and flagged:
- logging.warning(
- "{}: Selected filter options are not valid: approved='{}' and flagged='{}')".format(
- self.getCurrentTime(), approved, flagged
- )
- )
- return None
-
- imageIds = self.clientToImageIds[clientId]
-
- if approved is False and flagged is False:
- return self.extractImageDataByIds(imageIds)
- else:
- return self.extractImageDataByApprovedAndFlaggedStatus(clientId, approved, flagged, imageIds)
-
- def extractImageDataByIds(self, imageIds: List[str]) -> List[ImageData]:
- imageDataList = []
- for id in imageIds:
- imageData = self.nameToImageData[id]
- imageDataList.append(imageData)
- return imageDataList
-
- def extractImageDataByApprovedAndFlaggedStatus(
- self, clientId: str, approved: bool, flagged: bool, imageIds: List[str]
- ) -> List[ImageData]:
- imageDataList = []
- for id in imageIds:
- if id not in self.nameToImageData:
- logging.error(
- "{}: Image data [id = {}] not found for [clientId = {}] ".format(
- self.getCurrentTime(), id, clientId
- )
- )
- continue
- imageData = self.nameToImageData[id]
- if imageData.hasSegmentationMeta() is False:
- continue
- if approved and imageData.isApproved() is False:
- continue
- if flagged and imageData.isFlagged() is False:
- continue
-
- imageDataList.append(imageData)
- return imageDataList
-
- def getImageDataByClientAndReviewer(
- self, clientId: str, reviewerId: str, approved=False, flagged=False
- ) -> List[ImageData]:
- """
- returns fitered list of imageData which are filtered according to client (=annotator) and
- reviewer and parameters (approved, flagged)
- """
-
- imageDatas = self.getImageDataByClientId(clientId, approved, flagged)
- filteredByRewiewer = list(filter(lambda imageData: (imageData.getApprovedBy() == reviewerId), imageDatas))
- return filteredByRewiewer
-
- def getImageDataByReviewer(self, reviewerId: str, approved=False, flagged=False) -> List[ImageData]:
- if reviewerId == "":
- return None
- if approved and flagged:
- logging.warning(
- "{}: Selected filter options are not valid: approved='{}' and flagged='{}')".format(
- self.getCurrentTime(), approved, flagged
- )
- )
- return None
-
- filteredImageDataList = []
-
- for imageData in self.nameToImageData.values():
- if imageData.isSegemented() is False:
- continue
- if approved and imageData.isApproved() is False:
- continue
- if flagged and imageData.isFlagged() is False:
- continue
- if imageData.getApprovedBy() == reviewerId:
- filteredImageDataList.append(imageData)
-
- return filteredImageDataList
-
- def getImageDataByLevel(self, isEasy: bool, isMedium: bool, isHard: bool) -> Dict[str, ImageData]:
- """
- returns filtered list of imageData which are filtered according to level of difficulty
- (regarding segmentation): easy, medium, hard
- """
- filteredImageData = {}
- for id, imagedata in self.nameToImageData.items():
- if imagedata is None:
- continue
- if imagedata.isSegemented() is False:
- continue
- if isEasy and imagedata.getLevel() == self.LEVEL.EASY:
- filteredImageData[id] = imagedata
- continue
-
- if isMedium and imagedata.getLevel() == self.LEVEL.MEDIUM:
- filteredImageData[id] = imagedata
- continue
-
- if isHard and imagedata.getLevel() == self.LEVEL.HARD:
- filteredImageData[id] = imagedata
- return filteredImageData
-
- def getSingleImageDataById(self, imageId: str) -> ImageData:
- """
- returns imageData by given imageId
- """
- if self.isBlank(imageId):
- return None
- if imageId not in self.nameToImageData:
- logging.warning(f"{self.getCurrentTime()}: Image data for requested id [{imageId}] not found")
- return None
- return self.nameToImageData[imageId]
-
- def getMultImageDataByIds(self, ids: List[str]) -> Dict[str, ImageData]:
- """
- returns multiple imageData by given list of imageId
- """
- idToimageData: Dict[str, ImageData] = {}
- if len(ids) == 0:
- logging.warning(f"{self.getCurrentTime()}: Given id list is empty.")
- return {}
- for id in ids:
- imageData = self.getSingleImageDataById(id)
- if imageData is None:
- continue
- idToimageData[imageData.getName()] = imageData
- return idToimageData
-
- def getNumApprovedSegmentation(self) -> int:
- """
- returns total number of imageData which are approved
- """
- count = self.countApprovedSegmentation(self.nameToImageData.values())
- return count
-
- def countApprovedSegmentation(self, imageDatas: List[ImageData]) -> int:
- if imageDatas is None:
- return 0
- approvedCount = 0
- for imageData in imageDatas:
- if imageData is None:
- continue
- if imageData.isApproved():
- approvedCount += 1
- return approvedCount
-
- def getPercentageApproved(self, clientId: str):
- """
- returns the percentage of images that have already been approved by given client (=Annotator)
- and the value: (total number of images approved by given client (=Annotator))/(total number of imageData)
- """
- listImageData = self.getImageDataByClientId(clientId=clientId)
- approvedCount = self.countApprovedSegmentation(listImageData)
- if len(listImageData) == 0:
- logging.warning(f"{self.getCurrentTime()}: There are no images")
- return 0
- fraction = approvedCount / len(listImageData)
- precentage = int(fraction * 100)
- idxApprovedOfClient: str = f"{approvedCount}/{len(listImageData)}"
- return precentage, idxApprovedOfClient
-
- def getPercentageSemgmentedByClient(self, clientId: str):
- """
- returns the percentage of images that have already been segmented by given client (=Annotator)
- and the value: (total number of images segmented by given client (=Annotator))/(total number of imageData)
- """
- numSegementedByClient = len(self.clientToImageIds[clientId])
- fraction = numSegementedByClient / self.getTotalNumImages()
- precentage = int(fraction * 100)
- idxSegmentedByClient: str = f"{numSegementedByClient}/{self.getTotalNumImages()}"
- return precentage, idxSegmentedByClient
-
- def getApprovedSegmentationIds(self) -> List[str]:
- """
- returns list of ids of all approved imageData
- """
- idsOfApprovedSementations = []
- for imageId, imageData in self.nameToImageData.items():
- if imageData.isApproved():
- idsOfApprovedSementations.append(imageId)
- return idsOfApprovedSementations
-
- def getSegmentedImageIds(self) -> List[str]:
- """
- returns list of ids of all segmented imageData
- """
- idsOfSegmented = []
- for imageId, imageData in self.nameToImageData.items():
- if imageData.isSegemented():
- idsOfSegmented.append(imageId)
- return idsOfSegmented
-
- def isBlank(self, string) -> bool:
- return not (string and string.strip())
diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/ImageDataStatistics.py b/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/ImageDataStatistics.py
deleted file mode 100644
index 423584a..0000000
--- a/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/ImageDataStatistics.py
+++ /dev/null
@@ -1,55 +0,0 @@
-# Copyright (c) MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-
-class ImageDataStatistics:
- def __init__(self):
- self.segmentationProgress: int = 0
- self.idxTotalSegmented: str = ""
- self.idxTotalApproved: str = ""
- self.progressPercentage: int = 0
-
- self.segmentationProgressAllPercentage: int = 0
- self.approvalProgressPercentage: int = 0
-
- def build(
- self,
- segmentationProgress=0,
- idxTotalSegmented="",
- idxTotalApproved="",
- progressPercentage=0,
- segmentationProgressAllPercentage=0,
- approvalProgressPercentage=0,
- ):
- self.segmentationProgress = segmentationProgress
- self.idxTotalSegmented = idxTotalSegmented
- self.idxTotalApproved = idxTotalApproved
- self.progressPercentage = progressPercentage
- self.segmentationProgressAllPercentage = segmentationProgressAllPercentage
- self.approvalProgressPercentage = approvalProgressPercentage
-
- def getSegmentationProgress(self) -> int:
- return self.segmentationProgress
-
- def getIdxTotalSegmented(self) -> str:
- return self.idxTotalSegmented
-
- def getIdxTotalApproved(self) -> str:
- return self.idxTotalApproved
-
- def getProgressPercentage(self) -> int:
- return self.progressPercentage
-
- def getSegmentationProgressAllPercentage(self) -> int:
- return self.segmentationProgressAllPercentage
-
- def getApprovalProgressPercentage(self) -> int:
- return self.approvalProgressPercentage
diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/JsonParser.py b/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/JsonParser.py
deleted file mode 100644
index 4b4a976..0000000
--- a/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/JsonParser.py
+++ /dev/null
@@ -1,240 +0,0 @@
-# Copyright (c) MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-from typing import Dict, List
-
-from MONAILabelReviewerLib.DataStoreKeys import DataStoreKeys
-from MONAILabelReviewerLib.ImageData import ImageData
-from MONAILabelReviewerLib.MONAILabelReviewerEnum import Label
-from MONAILabelReviewerLib.SegmentationMeta import SegmentationMeta
-
-
-class JsonParser:
- """
- JsonParser parses the datastore.json file
- and caches the information in dictionary: Mapping from id to ImageData
- """
-
- def __init__(self, jsonObject: dict):
- self.LABEL = Label()
- self.dataStoreKeys = DataStoreKeys()
-
- self.jsonObject = jsonObject
- self.mapIdToImageData: Dict[str, ImageData] = {}
-
- def init(self):
- self.parseJsonToImageData()
-
- def getValueByKey(self, keyArr: List[str], jsonObj: dict):
- if len(keyArr) == 0:
- return ""
- for key in keyArr:
- if key not in jsonObj:
- return ""
- jsonObj = jsonObj[key]
- return jsonObj
-
- def getFileName(self, obj: dict) -> str:
- return self.getValueByKey(self.dataStoreKeys.FILENAME, obj)
-
- def getNodeName(self, obj: dict) -> str:
- return self.getValueByKey(self.dataStoreKeys.NODE_NAME, obj)
-
- def getTimeStamp(self, obj: dict) -> int:
- if self.hasKeyAnnotate(obj):
- return self.getValueByKey(self.dataStoreKeys.TIMESTAMP_ANNOTATE, obj)
- if self.hasKeyRandom(obj):
- return self.getValueByKey(self.dataStoreKeys.TIMESTAMP_RANDOM, obj)
- return self.getValueByKey(self.dataStoreKeys.TIMESTAMP, obj)
-
- def getInfo(self, obj: dict) -> str:
- return self.getValueByKey(self.dataStoreKeys.IMAGE_INFO, obj)
-
- def getInfoInLabels(self, label: str, obj: dict) -> Dict[str, str]:
- keys = self.dataStoreKeys.getInfoInLabels(label)
- return self.getValueByKey(keys, obj)
-
- def hasLabels(self, obj: dict) -> bool:
- lablesSection = self.getValueByKey(self.dataStoreKeys.LABELS, obj)
- if len(lablesSection) == 0:
- return False
- return True
-
- def hasSegemantatorsId(self, obj: dict) -> bool:
- labels = self.getValueByKey(self.dataStoreKeys.LABELS, obj)
-
- if len(labels) == 0:
- return False
-
- if self.dataStoreKeys.FINAL not in labels:
- return False
-
- final = self.getValueByKey(self.dataStoreKeys.LABELS_FINAL, obj)
- if self.dataStoreKeys.INFO not in final:
- return False
-
- info = self.getValueByKey(self.dataStoreKeys.LABELS_FINAL_INFO, obj)
- if self.dataStoreKeys.LABEL_INFO not in info:
- return False
-
- labelsInfo = self.getValueByKey(self.dataStoreKeys.LABELS_FINAL_INFO_LABELS_INFO, obj)
- if len(labelsInfo) == 0:
- return False
- return True
-
- def extractLabels(self, obj: dict) -> dict:
- return self.getValueByKey(self.dataStoreKeys.LABELS, obj)
-
- def extractLabelNames(self, labelsDict: dict) -> List[str]:
- return list(labelsDict.keys())
-
- def extractLabelContentByName(self, labels: dict, labelName="final") -> Dict[str, str]:
- if labelName not in labels:
- return {}
- content = labels[labelName][self.dataStoreKeys.INFO]
-
- if self.dataStoreKeys.LABEL_INFO not in content:
- return {}
-
- labelDict = {}
- labelDict[self.dataStoreKeys.LABEL_INFO] = content[self.dataStoreKeys.LABEL_INFO]
- return labelDict
-
- def extractSegmentationMetaOfVersion(self, labels: dict, labelName: str) -> dict:
- if labelName not in labels:
- return {}
- content = labels[labelName][self.dataStoreKeys.INFO]
-
- if self.dataStoreKeys.META not in content:
- return {}
- return content[self.dataStoreKeys.META]
-
- def getAllSegmentationMetaOfAllLabels(self, labels: dict, labelNames: List[str]) -> Dict[str, SegmentationMeta]:
- if len(labelNames) == 0:
- return {}
-
- allSegMetaOfLabels = {}
- for labelName in labelNames:
- segMetaSingle = self.extractSegmentationMetaOfVersion(labels, labelName)
- if len(segMetaSingle) == 0:
- continue
- segmentationMeta = self.produceSegementationData(segMetaSingle)
- segmentationMeta.setVersionNumber(versionTag=labelName)
- allSegMetaOfLabels[labelName] = segmentationMeta
- return allSegMetaOfLabels
-
- def produceSegementationData(self, segmenatationDict: dict) -> SegmentationMeta:
- segmentationMeta = SegmentationMeta()
- segmentationMeta.build(
- status=segmenatationDict[self.dataStoreKeys.META_STATUS],
- level=segmenatationDict[self.dataStoreKeys.META_LEVEL],
- approvedBy=segmenatationDict[self.dataStoreKeys.APPROVED_BY],
- comment=segmenatationDict[self.dataStoreKeys.META_COMMENT],
- editTime=segmenatationDict[self.dataStoreKeys.META_EDIT_TIME],
- )
-
- return segmentationMeta
-
- def isSegmented(self, obj: dict) -> bool:
- labels = self.getValueByKey(self.dataStoreKeys.LABELS, obj)
- if len(labels) == 0:
- return False
- if self.dataStoreKeys.FINAL not in labels:
- return False
- return True
-
- def hasKeyFinal(self, obj: dict) -> bool:
- labelsDict = self.getValueByKey(self.dataStoreKeys.LABELS, obj)
- return self.dataStoreKeys.FINAL in labelsDict
-
- def hasKeyOriginal(self, obj: dict) -> bool:
- labelsDict = self.getValueByKey(self.dataStoreKeys.LABELS, obj)
- return self.dataStoreKeys.ORIGINAL in labelsDict
-
- def getSegmentationName(self, obj: dict) -> dict:
- if self.hasKeyFinal(obj):
- return self.getValueByKey(self.dataStoreKeys.SEGMENTATION_NAME_BY_FINAL, obj)
- if self.hasKeyOriginal(obj):
- return self.getValueByKey(self.dataStoreKeys.SEGMENTATION_NAME_BY_ORIGINAL, obj)
-
- def hasKeyAnnotate(self, obj: dict) -> bool:
- strategyDict = self.getValueByKey(self.dataStoreKeys.STRATEGY, obj)
- return self.dataStoreKeys.ANNOTATE in strategyDict
-
- def hasKeyRandom(self, obj: dict) -> bool:
- strategyDict = self.getValueByKey(self.dataStoreKeys.STRATEGY, obj)
- return self.dataStoreKeys.RANDOM in strategyDict
-
- def getClientId(self, obj: dict) -> str:
- if self.hasKeyAnnotate(obj):
- return self.getValueByKey(self.dataStoreKeys.CLIENT_ID_BY_ANNOTATE, obj)
- if self.hasKeyRandom(obj):
- return self.getValueByKey(self.dataStoreKeys.CLIENT_ID_BY_RANDOM, obj)
- if self.hasSegemantatorsId(obj):
- return self.getValueByKey(self.dataStoreKeys.CLIENT_ID, obj)
- return "Segmented without annotator's id"
-
- def getMetaStatus(self, label: str, obj: dict) -> str:
- return self.getValueByKey(self.dataStoreKeys.getMetaStatus(label), obj)
-
- def getMetaLevel(self, label: str, obj: dict) -> str:
- return self.getValueByKey(self.dataStoreKeys.getMetaLevel(label), obj)
-
- def getMetaApprovedBy(self, label: str, obj: dict) -> str:
- return self.getValueByKey(self.dataStoreKeys.getMetaApprovedBy(label), obj)
-
- def getMetaEditTime(self, label: str, obj: dict) -> str:
- return self.getValueByKey(self.dataStoreKeys.getMetaEditTime(label), obj)
-
- def getMetaComment(self, label: str, obj: dict) -> str:
- return self.getValueByKey(self.dataStoreKeys.getMetaComment(label), obj)
-
- def parseJsonToImageData(self):
- objects = self.jsonObject[self.dataStoreKeys.OBJECT]
- for key, value in objects.items():
- imageData = self.jsonToImageData(key, value)
- self.mapIdToImageData[key] = imageData
-
- def jsonToImageData(self, key: str, value: dict) -> ImageData:
- imageData = ImageData(
- name=key,
- fileName=self.getFileName(value),
- nodeName=self.getNodeName(value),
- segmented=self.isSegmented(value),
- timeStamp=self.getTimeStamp(value),
- )
-
- if self.isSegmented(value):
- segName = self.getSegmentationName(value)
- imageData.setSegmentationFileName(segName)
-
- clientId = self.getClientId(value)
- imageData.setClientId(clientId)
-
- if self.hasLabels(value):
- labelsDict = self.extractLabels(value)
- labelNames = self.extractLabelNames(labelsDict)
- labelContent = self.extractLabelContentByName(labelsDict)
- labelSegmentationMeta: Dict[str, SegmentationMeta] = self.getAllSegmentationMetaOfAllLabels(
- labelsDict, labelNames
- )
-
- imageData.setVersionNames(labelNames)
- imageData.setLabelContent(labelContent)
- imageData.setSegmentationMetaDict(labelSegmentationMeta)
-
- return imageData
-
- def hasSegmentationMeta(self, info: dict) -> bool:
- return self.dataStoreKeys.META in info.keys()
-
- def getMapIdToImageData(self) -> Dict[str, ImageData]:
- return self.mapIdToImageData
diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/MONAILabelReviewerEnum.py b/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/MONAILabelReviewerEnum.py
deleted file mode 100644
index ce33c8d..0000000
--- a/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/MONAILabelReviewerEnum.py
+++ /dev/null
@@ -1,32 +0,0 @@
-# Copyright (c) MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-
-class SegStatus:
- def __init__(self):
- self.NOT_SEGMENTED = "not segmented"
- self.APPROVED = "approved"
- self.SEGMENTED = "segmented"
- self.FLAGGED = "flagged"
-
-
-class Level:
- def __init__(self):
- self.EASY = "easy"
- self.MEDIUM = "medium"
- self.HARD = "hard"
-
-
-class Label:
- def __init__(self):
- self.ORIGINAL = "original"
- self.FINAL = "final"
- self.VERSION = "version"
diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/MonaiServerREST.py b/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/MonaiServerREST.py
deleted file mode 100644
index 3527a95..0000000
--- a/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/MonaiServerREST.py
+++ /dev/null
@@ -1,199 +0,0 @@
-# Copyright (c) MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-import datetime
-import json
-import logging
-import os
-from urllib.parse import quote_plus
-
-import requests
-from requests.structures import CaseInsensitiveDict
-
-
-class MonaiServerREST:
- """
- MonaiServerREST provides the REST endpoints to the MONAIServer
- """
-
- def __init__(self, serverUrl: str):
- self.PARAMS_PREFIX_REST_REQUEST = "params"
- self.serverUrl = serverUrl
-
- def getServerUrl(self) -> str:
- return self.serverUrl
-
- def getCurrentTime(self) -> datetime:
- return datetime.datetime.now()
-
- def requestDataStoreInfo(self) -> dict:
- download_uri = f"{self.serverUrl}/datastore/?output=all"
-
- try:
- response = requests.get(download_uri, timeout=5)
- except Exception as exception:
- logging.warning(f"{self.getCurrentTime()}: Request for DataStoreInfo failed due to '{exception}'")
- return None
- if response.status_code != 200:
- logging.warning(
- "{}: Request for datastore-info failed (url: '{}'). Response code is {}".format(
- self.getCurrentTime(), download_uri, response.status_code
- )
- )
- return None
-
- return response.json()
-
- def getDicomDownloadUri(self, image_id: str) -> str:
- download_uri = f"{self.serverUrl}/datastore/image?image={quote_plus(image_id)}"
- logging.info(f"{self.getCurrentTime()}: REST: request dicom image '{download_uri}'")
- return download_uri
-
- def requestSegmentation(self, image_id: str, tag: str) -> requests.models.Response:
- if tag == "":
- tag = "final"
- download_uri = f"{self.serverUrl}/datastore/label?label={quote_plus(image_id)}&tag={quote_plus(tag)}"
- logging.info(f"{self.getCurrentTime()}: REST: request segmentation '{download_uri}'")
-
- try:
- response = requests.get(download_uri, timeout=5)
- except Exception as exception:
- logging.warning(
- "{}: Segmentation request (image id: '{}') failed due to '{}'".format(
- self.getCurrentTime(), image_id, exception
- )
- )
- return None
- if response.status_code != 200:
- logging.warn(
- "{}: Segmentation request (image id: '{}') failed due to response code: '{}'".format(
- self.getCurrentTime(), image_id, response.status_code
- )
- )
- return None
-
- return response
-
- def checkServerConnection(self) -> bool:
- if not self.serverUrl:
- self.serverUrl = "http://127.0.0.1:8000"
- url = self.serverUrl.rstrip("/")
-
- try:
- response = requests.get(url, timeout=5)
- except Exception as exception:
- logging.warning(f"{self.getCurrentTime()}: Connection to Monai Server failed due to '{exception}'")
- return False
- if response.status_code != 200:
- logging.warn(
- "{}: Server connection Failed. (response code = {}) ".format(
- self.getCurrentTime(), response.status_code
- )
- )
- return False
-
- logging.info(f"{self.getCurrentTime()}: Successfully connected to server (server url: '{url}').")
- return True
-
- def updateLabelInfo(self, image_id: str, tag: str, params: dict) -> int:
- """
- the image_id is the unique ID of an radiographic image
- If the image has a label/segmentation, its label/label_id corresponds to its image_id
- """
- embeddedParams = self.embeddedLabelContentInParams(params)
- logging.info(f"Sending updated label info: {embeddedParams}")
-
- url = f"{self.serverUrl}/datastore/updatelabelinfo?label={quote_plus(image_id)}&tag={quote_plus(tag)}"
- headers = CaseInsensitiveDict()
- headers["Content-Type"] = "application/x-www-form-urlencoded"
- headers["accept"] = "application/json"
-
- try:
- response = requests.put(url, headers=headers, data=embeddedParams)
- except Exception as exception:
- logging.warning(
- "{}: Update meta data (image id: '{}') failed due to '{}'".format(
- self.getCurrentTime(), image_id, exception
- )
- )
- return None
- if response.status_code != 200:
- logging.warn(
- "{}: Update meta data (image id: '{}') failed due to response code = {}) ".format(
- self.getCurrentTime(), image_id, response.status_code
- )
- )
- return response.status_code
-
- logging.info(f"{self.getCurrentTime()}: Meta data was updated successfully (image id: '{image_id}').")
- return response.status_code
-
- def embeddedLabelContentInParams(self, labelContent: dict) -> dict:
- params = {}
- params[self.PARAMS_PREFIX_REST_REQUEST] = json.dumps(labelContent)
- return params
-
- def saveLabel(self, imageId: str, labelDirectory: str, tag: str, params: dict):
- if params is not None:
- embeddedParams = self.embeddedLabelContentInParams(params)
- logging.info(f"{self.getCurrentTime()}: Label and Meta data (image id: '{imageId}'): '{embeddedParams}'")
-
- url = f"{self.serverUrl}/datastore/label?image={imageId}"
- if tag:
- url += f"&tag={tag}"
-
- try:
- with open(os.path.abspath(labelDirectory), "rb") as f:
- response = requests.put(url, data=embeddedParams, files={"label": (imageId + ".nrrd", f)})
-
- except Exception as exception:
- logging.error(
- "{}: Label and Meta data update failed (image id: '{}', meta data: '{}', due to '{}'".format(
- self.getCurrentTime(), imageId, embeddedParams, exception
- )
- )
-
- if response.status_code == 200:
- logging.info(
- f"{self.getCurrentTime()}: Label and Meta data was updated successfully (image id: '{imageId}')."
- )
- logging.warn(f"{self.getCurrentTime()}: Meta : '{embeddedParams}'")
- else:
- logging.warn(
- "{}: Update label (image id: '{}') failed due to response code = {}) ".format(
- self.getCurrentTime(), imageId, response.status_code
- )
- )
- return response.status_code
-
- def deleteLabelByVersionTag(self, imageId: str, versionTag: str) -> int:
- url = f"{self.serverUrl}/datastore/label?id={imageId}&tag={versionTag}"
- try:
- response = requests.delete(url)
- except Exception as exception:
- logging.error(
- "{}: Label and Meta data deletion failed (image id: '{}', version tag: '{}') due to '{}'".format(
- self.getCurrentTime(), imageId, versionTag, exception
- )
- )
-
- if response.status_code == 200:
- logging.info(
- f"{self.getCurrentTime()}: Label and Meta data was deleted successfully (image id: '{imageId}') "
- f"| tae: '{versionTag}'."
- )
- else:
- logging.warn(
- "{}: Deletion of label (image id: '{}') failed due to response code = {}) ".format(
- self.getCurrentTime(), imageId, response.status_code
- )
- )
- return response.status_code
diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/SegmentationMeta.py b/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/SegmentationMeta.py
deleted file mode 100644
index 87baebf..0000000
--- a/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/SegmentationMeta.py
+++ /dev/null
@@ -1,144 +0,0 @@
-# Copyright (c) MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-import logging
-import time
-
-from MONAILabelReviewerLib.MONAILabelReviewerEnum import Label
-
-
-class SegmentationMeta:
- """
- SegmentationMeta stores all the meta data of its corresponding ImageData
- The class returns a json string which will be send to MONAI-Server to persist the
- information in datastore.json
- """
-
- def __init__(self):
- self.preFix = "params="
- self.LABEL = Label()
-
- self.status: str = ""
- self.level: str = ""
- self.approvedBy: str = ""
- self.editTime: str = ""
- self.comment: str = ""
-
- self.versionNumber: int = 0
-
- def build(self, status="", level="", approvedBy="", comment="", editTime=""):
- self.setEditTime()
- self.status = status
- self.level = level
- self.approvedBy = approvedBy
- self.comment = comment
- self.editTime = editTime
-
- def setVersionNumber(self, versionTag: str):
- if versionTag == self.LABEL.FINAL or versionTag == self.LABEL.ORIGINAL:
- self.versionNumber = 0
- else:
- self.versionNumber = self.parsNumberFromVersionTagString(versionTag=versionTag)
-
- def parsNumberFromVersionTagString(self, versionTag: str) -> int:
- lastCharIndex = len(versionTag)
- indexOfDelimeter = versionTag.index("_")
- versionTagIndex = versionTag[indexOfDelimeter + 1 : lastCharIndex]
- return int(versionTagIndex)
-
- def getVersionNumber(self) -> int:
- return self.versionNumber
-
- def update(self, status="", level="", approvedBy="", comment="") -> bool:
- logging.warn("=============== HEER ==============")
- logging.warn(f"status={status}, level={level}, approvedBy={approvedBy}, comment={comment}")
- isChanged = False
- if self.isBlank(status) is False and status != self.status:
- self.status = status
- isChanged = True
-
- if self.isBlank(level) is False and level != self.level:
- self.level = level
- isChanged = True
-
- if self.isBlank(comment) is False and comment != self.comment:
- self.comment = comment
- isChanged = True
-
- if isChanged:
- if self.isBlank(approvedBy) is False and approvedBy != self.approvedBy:
- self.approvedBy = approvedBy
-
- return isChanged
-
- def setApprovedBy(self, approvedBy: str):
- self.approvedBy = approvedBy
-
- def setStatus(self, status: str):
- self.status = status
-
- def setLevel(self, level: str):
- self.level = level
-
- def setComment(self, comment: str):
- self.comment = comment
-
- def setEditTime(self):
- self.editTime = int(time.time())
-
- def getMeta(self) -> dict:
- metaJson = {
- "segmentationMeta": {
- "status": self.status,
- "approvedBy": self.approvedBy,
- "level": self.level,
- "comment": self.comment,
- "editTime": self.editTime,
- }
- }
- return metaJson
-
- def getStatus(self) -> str:
- return self.status
-
- def getLevel(self) -> str:
- return self.level
-
- def getApprovedBy(self) -> str:
- return self.approvedBy
-
- def getComment(self) -> str:
- return self.comment
-
- def getEditTime(self) -> str:
- return self.editTime
-
- def isEqual(self, status="", level="", approvedBy="", comment=""):
- if status != self.status:
- return False
- if approvedBy != self.approvedBy:
- return False
- if level != self.level:
- return False
- if comment != self.comment:
- return False
- return True
-
- def isBlank(self, string) -> bool:
- return not (string and string.strip())
-
- def display(self):
- print("versionNumber: ", self.getVersionNumber)
- print("status: ", self.status)
- print("level: ", self.level)
- print("approvedBy: ", self.approvedBy)
- print("editTime: ", self.editTime)
- print("comment: ", self.comment)
diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/__init__.py b/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/__init__.py
deleted file mode 100644
index 80d5f98..0000000
--- a/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/__init__.py
+++ /dev/null
@@ -1,19 +0,0 @@
-# Copyright (c) MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-from .DataStoreKeys import DataStoreKeys
-from .ImageData import ImageData
-from .ImageDataController import ImageDataController
-from .ImageDataExtractor import ImageDataExtractor
-from .JsonParser import JsonParser
-from .MONAILabelReviewerEnum import *
-from .MonaiServerREST import MonaiServerREST
-from .SegmentationMeta import SegmentationMeta
diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/README.md b/monailabel/plugins/slicer/MONAILabelReviewer/README.md
deleted file mode 100644
index 2774ce1..0000000
--- a/monailabel/plugins/slicer/MONAILabelReviewer/README.md
+++ /dev/null
@@ -1,130 +0,0 @@
-
-
-# Purpose
-Radiologists have different levels of experience reading X-ray images.
-Therefore, agreement of several radiologists on X-ray segmentations (especially in difficult cases) is required to increase the overall quality of a data set, which is then used to model a neural network.
-MONAILABELReviewer is a tool for research groups to check the quality of the segmentation of their data sets.
-
-![distributedWork](https://user-images.githubusercontent.com/30056369/158844144-94769304-cd4c-4630-ac6a-3dc124a9fc22.png)
-
-
-# Import MONAILABELReviewer into 3D Slicer
-1. Select "Edit"
-2. Select "Application Settings"
-3. Select "Modules"
-4. Select "Add"
-5. Within Browser select folder "MONAILabelReviewer"
-
-![ImportReviewerIntoSlicer](https://user-images.githubusercontent.com/30056369/158845199-1f723b8b-a64e-4bdc-8596-974e952569d9.png)
-
-# MonaiLabelReviewer UI
-MonaiLabelReviewer has two usage modes, "Reviewer Mode" and "Basic Mode". The latter can be enabled by checking the checkbox next to "Basic Mode".
-"Reviewer Mode" provides advanced features such as filer options and segmentation classification by difficulty (see subsection "UI in Reviewer Mode" for further description)
-
-# UI in basic mode
-1. If checkbox is selected, "basic mode" is activated (just for streaming through the segmentations)
-2. Progress bar displays how many images have already been segmented in total.
-3. Progress bar displays how many images have already been segmented by the selected annotator
-4. Combobox: Selection of annotator (if option "All" is selected, the dataset includes segmentations of all annotators)
-5. Slide bar: Displays currently index of image within the selected dataset
-6. Lines which displays the meta data: imageId, annotator's name, date
-7. Segmentation selection box: Hide/Show-option of segmentation layers
-
-![UiBasicMode](https://user-images.githubusercontent.com/30056369/158844598-cd6a0ea9-2e2f-4da6-b2e7-7900c8e00b83.png)
-
-
-#Required extensions in MonaiLabel
-
-In order to persist the information created by MonaiLabelReviewer during the review process, an additional rest endpoint needs to be introduced into MonaiLabel.
-In particular, the following methods (see below) need to be added in the datastore.py file.
-(We will apply these changes in the monai community, so the workflow in MonaiLabelReviewer will be available without any additional manual changes in MonaiLabel.)
-
-├── MONAILAIBEL
- ├── monailabel
- ├── endpoints
- ├── datastore.py
-
-```
-@router.put("/updatelabelinfo", summary="Update label info")
-async def api_update_label_info(label_id: str, label_tag : str, params: str = Form("{}")):
- return update_label_info(label_id, label_tag, params)
-
-def update_label_info(label_id: str, label_tag : str, params: str = Form("{}")):
- save_params: Dict[str, Any] = json.loads(params) if params else {}
- instance: MONAILabelApp = app_instance()
- instance.datastore().update_label_info(label_id=label_id, label_tag=label_tag, info=save_params)
- return {}
-```
-
-# UI in Reviewer mode
-1. If checkbox is not selected, "Reviewer Mode" is activated (the enables all feature for reviewing the segmentations)
-2. Selection of reviewer's name or add new reviewer
-3. Progress bar displays how many images have already been approved in total.
-4. Progress bar displays how many images of selected Annotator have already been approved
-5. Buttons (Easy, Medium, Hard) allows reviewer to classify the difficulty of segmentation to Easy, Medium, Hard
-6. "Approve" Button: After the reviewer approves the segmentation, it can be included in the neural network modelling dataset
-7. "Flag" Button allows the reviewer to mark a segmentation for later evaluation by another radiologist
-8. Comment field: Reviewer can add comment into that box regarding the segmentation. If commented review is flagged additionally, the annotator can improve the segmentation according to comment
-9. Filter options allows the reviewer to select a subset of image data set (not segmented, segmented, flagged, approved)
-
-![UiReviewerMode](https://user-images.githubusercontent.com/30056369/158844810-27848c54-29d5-4d74-b1f2-27e38e92b150.png)
-
-
-# Search by Image Id
-After entering a list of comma-separated image IDs in the left field, the right field displays a list of IDs of the corresponding found images.
-That data set can be reviewed using the "Next"-"Previous"-Button.
-
-![MonaiLabelReviewer SearchField](https://user-images.githubusercontent.com/30056369/159154537-0f97f004-0c61-4b63-947b-b7b55a3e61b1.png)
-
-# Editing/Improving segmentation & Version control
-1. After clicking the combo box, a list of segmentation version tags will appear.
-(The tag of the initial segmentation is "final". The tag of all subsequent improved/edited segmentations starts with "version_" (followed by a number).
-
-2. By clicking the "Start Label Editing" button, the user can start improving the subjected segmentation.
-
-
-
-3. Three new buttons appear:
- * 1. Overwrite this version (Warning: "final" segmentation, cannot be overwritten, however)
- * 2. Save as new version (Version_2 --> Version_3, ascending numbering)
- * 3. Delete this version (Warning: "final" segmentation, cannot be deleted)
-
-4. Editing tools appear on the left side of the Hide/Show toolbar.
-
-5. Also, all buttons (like "Easy", "Medium", "Hard", "Previous", "Next") are disabled
-during the editing process; except for the "Flagged" and "Approved" buttons.
-
-
-
-6. After finishing editing the segmentation (a cross is drawn on the image for demonstration purposes)
-
-7. The user has 3 options:
- * 1. Overwrite current version (Caution: "final" segmentation cannot be overwritten because it is the original segmentation)
- * 2. Save as new version (e.g. Version_2 --> Version_3, ascending numbering)
- * 3. Delete technical version (Caution: "final" segmentation cannot be deleted because it is the original segmentation)
-8. When one of the three options has been selected, the user must confirm their choice by clicking on the "Confirm:..." button.
-
-
-
-9. After confirming "Save as new version", the edited segmentation remains in the MONAIServer.
-In addition, the version (e.g. "version_1") now appears in the drop-down list.
-
-10. When you click the "Approve" button, the version tag (of the currently depicted segmentation) is marked as "Version_1 (approved)" in the drop-down list. Consequently, the previously approved segmentation is no longer approved.
-
-
-
-11. When you click the "Approve" button, the version tag (of the currently depicted segmentation) is marked as "Version_1 (approved)" in the drop-down list.
-12. The status "approved" is also displayed in the information field in green.
-
-
diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/ReadMeImages/MONAILabelReviewerEditorTools_1.png b/monailabel/plugins/slicer/MONAILabelReviewer/ReadMeImages/MONAILabelReviewerEditorTools_1.png
deleted file mode 100644
index 2513291..0000000
Binary files a/monailabel/plugins/slicer/MONAILabelReviewer/ReadMeImages/MONAILabelReviewerEditorTools_1.png and /dev/null differ
diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/ReadMeImages/MONAILabelReviewerEditorTools_2.png b/monailabel/plugins/slicer/MONAILabelReviewer/ReadMeImages/MONAILabelReviewerEditorTools_2.png
deleted file mode 100644
index 0824772..0000000
Binary files a/monailabel/plugins/slicer/MONAILabelReviewer/ReadMeImages/MONAILabelReviewerEditorTools_2.png and /dev/null differ
diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/ReadMeImages/MONAILabelReviewerEditorTools_3.png b/monailabel/plugins/slicer/MONAILabelReviewer/ReadMeImages/MONAILabelReviewerEditorTools_3.png
deleted file mode 100644
index 90d95ba..0000000
Binary files a/monailabel/plugins/slicer/MONAILabelReviewer/ReadMeImages/MONAILabelReviewerEditorTools_3.png and /dev/null differ
diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/ReadMeImages/MONAILabelReviewerEditorTools_4.png b/monailabel/plugins/slicer/MONAILabelReviewer/ReadMeImages/MONAILabelReviewerEditorTools_4.png
deleted file mode 100644
index b58ccb8..0000000
Binary files a/monailabel/plugins/slicer/MONAILabelReviewer/ReadMeImages/MONAILabelReviewerEditorTools_4.png and /dev/null differ
diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/ReadMeImages/MONAILabelReviewerEditorTools_5.png b/monailabel/plugins/slicer/MONAILabelReviewer/ReadMeImages/MONAILabelReviewerEditorTools_5.png
deleted file mode 100644
index 0c66e36..0000000
Binary files a/monailabel/plugins/slicer/MONAILabelReviewer/ReadMeImages/MONAILabelReviewerEditorTools_5.png and /dev/null differ
diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/Resources/Icons/MONAILabelReviewer.png b/monailabel/plugins/slicer/MONAILabelReviewer/Resources/Icons/MONAILabelReviewer.png
deleted file mode 100644
index 5d83ab4..0000000
Binary files a/monailabel/plugins/slicer/MONAILabelReviewer/Resources/Icons/MONAILabelReviewer.png and /dev/null differ
diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/Resources/UI/MONAILabelReviewer.ui b/monailabel/plugins/slicer/MONAILabelReviewer/Resources/UI/MONAILabelReviewer.ui
deleted file mode 100644
index b5d9429..0000000
--- a/monailabel/plugins/slicer/MONAILabelReviewer/Resources/UI/MONAILabelReviewer.ui
+++ /dev/null
@@ -1,884 +0,0 @@
-
-
- MONAILabelReviewer
-
-
-
- 0
- 0
- 555
- 752
-
-
-
- -
-
- -
-
-
- background-color: rgb(118, 214, 255);
-
-
- Basic mode
-
-
- true
-
-
- true
-
-
-
- -
-
-
- background-color: rgb(255, 126, 121);
-
-
- Reviewer's mode
-
-
- true
-
-
-
-
-
- -
-
-
- false
-
-
- Search Images
-
-
- true
-
-
- -
-
- -
-
-
- 0
-
-
-
-
- 252
- 0
-
-
-
- Ids
-
-
- -
-
-
- Image Ids
-
-
-
- -
-
-
- imageId_1, imageId2, ...
-
-
-
- -
-
-
- background-color: rgb(146, 146, 146);
-
-
- Search
-
-
-
-
-
-
-
- Annotator/Reviewer
-
-
- -
-
-
- Select annotator
-
-
-
- -
-
-
- -
-
-
- Select reviewer
-
-
-
- -
-
-
- -
-
-
- approved
-
-
-
- -
-
-
- flagged
-
-
-
- -
-
-
- Qt::Vertical
-
-
-
- 20
- 40
-
-
-
-
- -
-
-
- background-color: rgb(146, 146, 146);
-
-
- Search
-
-
-
-
-
-
-
- Quality
-
-
- -
-
-
- Select level of difficulty
-
-
-
- -
-
-
- Qt::Vertical
-
-
-
- 20
- 40
-
-
-
-
- -
-
-
- easy
-
-
-
- -
-
-
- medium
-
-
-
- -
-
-
- hard
-
-
-
- -
-
-
- Qt::Vertical
-
-
-
- 20
- 40
-
-
-
-
- -
-
-
- background-color: rgb(146, 146, 146);
-
-
- Search
-
-
-
-
-
-
-
-
-
- -
-
- -
-
-
- Result:
-
-
-
- -
-
-
- true
-
-
-
- Image Id
-
-
-
- 10
-
-
-
- AlignCenter
-
-
-
-
- found
-
-
-
- 10
-
-
-
- AlignCenter
-
-
-
-
- segmented
-
-
-
-
- -
-
-
- false
-
-
- Show
-
-
-
-
-
-
-
-
- -
-
-
- Server
-
-
- -
-
- -
-
-
- true
-
-
-
- -
-
-
-
-
-
- Qt::AlignCenter
-
-
-
- -
-
-
-
-
-
- Qt::AlignCenter
-
-
-
- -
-
-
- background-color: rgb(169, 169, 169)
-
-
- Connect
-
-
-
- -
-
-
- Segmented
-
-
-
- -
-
-
- selection-background-color: rgb(255, 147, 0);
-
-
- 0
-
-
-
- -
-
-
- Approved
-
-
-
- -
-
-
- 0
-
-
-
- -
-
-
- Server Url
-
-
-
- -
-
-
- true
-
-
- true
-
-
-
- -
-
-
- Reviewer
-
-
-
-
-
-
-
-
- -
-
-
- false
-
-
- Data Evaluation
-
-
- false
-
-
- -
-
- -
-
- -
-
-
- Level of difficulty
-
-
-
- -
-
- -
-
-
- background-color: rgb(0, 250, 146);
-
-
- Easy
-
-
-
- -
-
-
- background-color: rgba(255, 251, 0, 179);
-
-
- Medium
-
-
-
- -
-
-
- background-color: rgba(255, 38, 0, 179);
-
-
- Hard
-
-
-
-
-
-
-
- -
-
- -
-
-
- background-color: rgb(255, 147, 0);
-
-
- Previous
-
-
-
- -
-
-
- background-color: rgb(118, 214, 255);
-
-
- Next
-
-
-
- -
-
-
- Flag
-
-
-
- -
-
-
- Approve
-
-
-
-
-
- -
-
- -
-
-
- Image: x/y
-
-
-
- -
-
-
- false
-
-
- Qt::Horizontal
-
-
-
-
-
-
-
- -
-
- -
-
-
- Version of labels
-
-
-
- -
-
-
- Qt::Horizontal
-
-
-
-
- background-color: rgb(0, 150, 255);
-
-
- Start label edit
-
-
-
-
- -
-
-
- Qt::Horizontal
-
-
-
-
-
-
- Overwrite this version
-
-
-
-
-
-
-
- Save as new version
-
-
-
-
- Delete this version
-
-
-
-
- -
-
-
- background-color: rgb(115, 250, 121);
-
-
- Confirm
-
-
-
-
-
- -
-
- -
-
- -
-
- -
-
-
- Image Id:
-
-
-
- -
-
-
- Annotator:
-
-
-
- -
-
-
- Annotation Date:
-
-
-
- -
-
-
- Difficulty Level:
-
-
-
- -
-
-
- Status:
-
-
-
- -
-
-
- Editor:
-
-
-
- -
-
-
- Editing Date:
-
-
-
-
-
- -
-
- -
-
-
- false
-
-
-
- -
-
-
- false
-
-
-
- -
-
-
- false
-
-
-
- -
-
-
- false
-
-
-
- -
-
-
- false
-
-
-
- -
-
-
- -
-
-
-
-
-
-
- -
-
-
- Add Comment
-
-
-
-
-
-
-
-
- -
-
-
- false
-
-
- Data Set Explorer
-
-
- true
-
-
- -
-
- -
-
-
- Load
-
-
-
- -
-
-
- selection-background-color: rgba(255, 147, 0, 209);
-
-
- 0
-
-
-
- -
-
-
- -
-
-
- Approved
-
-
-
- -
-
-
- Segmented
-
-
-
- -
-
-
- Annotator
-
-
-
- -
-
-
- selection-background-color: rgba(78, 157, 246, 209);
-
-
- 0
-
-
- true
-
-
-
- -
-
-
- Filter
-
-
-
- -
-
- -
-
- -
-
-
- false
-
-
- not segmented
-
-
-
- -
-
-
- flagged
-
-
-
-
-
- -
-
- -
-
-
- segmented
-
-
-
- -
-
-
- approved
-
-
-
-
-
-
-
- -
-
-
-
-
-
- Qt::AlignCenter
-
-
-
- -
-
-
-
-
-
- Qt::AlignCenter
-
-
-
-
-
-
-
-
- -
-
-
- Qt::Vertical
-
-
-
- 20
- 40
-
-
-
-
-
-
-
-
- ctkCollapsibleButton
- QWidget
-
- 1
-
-
- qMRMLWidget
- QWidget
-
- 1
-
-
-
-
-
diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/Testing/CMakeLists.txt b/monailabel/plugins/slicer/MONAILabelReviewer/Testing/CMakeLists.txt
deleted file mode 100644
index b3dd1c9..0000000
--- a/monailabel/plugins/slicer/MONAILabelReviewer/Testing/CMakeLists.txt
+++ /dev/null
@@ -1,12 +0,0 @@
-# Copyright (c) MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-add_subdirectory(Python)
diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/Testing/Python/CMakeLists.txt b/monailabel/plugins/slicer/MONAILabelReviewer/Testing/Python/CMakeLists.txt
deleted file mode 100644
index d7649ab..0000000
--- a/monailabel/plugins/slicer/MONAILabelReviewer/Testing/Python/CMakeLists.txt
+++ /dev/null
@@ -1,13 +0,0 @@
-# Copyright (c) MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-
-#slicer_add_python_unittest(SCRIPT ${MODULE_NAME}ModuleTest.py)
diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/UnitTests/ImageDataControllerTest.py b/monailabel/plugins/slicer/MONAILabelReviewer/UnitTests/ImageDataControllerTest.py
deleted file mode 100644
index 3db960d..0000000
--- a/monailabel/plugins/slicer/MONAILabelReviewer/UnitTests/ImageDataControllerTest.py
+++ /dev/null
@@ -1,402 +0,0 @@
-# Copyright (c) MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-import json
-import os
-import sys
-import unittest
-from typing import Dict
-from unittest.mock import Mock, patch
-
-# sys.path.append("..")
-from MONAILabelReviewerLib.ImageData import ImageData
-from MONAILabelReviewerLib.ImageDataController import ImageDataController
-from MONAILabelReviewerLib.MONAILabelReviewerEnum import Level, SegStatus
-from MONAILabelReviewerLib.MonaiServerREST import MonaiServerREST
-
-
-class ImageDataControllerTest(unittest.TestCase):
- @classmethod
- def setUp(self):
- self.STATUS = SegStatus()
- self.LEVEL = Level()
- self.url = "http://127.0.0.1:8000"
- self.controller = ImageDataController()
-
- self.nameToImageData: Dict[str, ImageData] = {}
- self.createImageData()
- self.testDataStore_V2_json = ""
- self.loadJsonStr()
-
- @classmethod
- def loadJsonStr(self) -> str:
- with open(os.path.join(sys.path[0], "TestDataSet/test_json_datastore_v2.json")) as f:
- self.testDataStore_V2_json = json.dumps(json.load(f))
-
- @classmethod
- def createImageData(self):
- # is segmented
- imageDataTest_1 = ImageData(
- name="6667571",
- fileName="6667571.dcm",
- nodeName="6667571.dcm",
- checkSum="SHA256:2a454e9ab8a33dc74996784163a362a53e04adcee2fd73a8b6299bf0ce5060d3",
- segmented=True,
- timeStamp=1639985938,
- comment="",
- )
- imageDataTest_1.setClientId("Test-Radiolgist-Segmented")
- imageDataTest_1.setSegmentationFileName("6667571.seg.nrrd")
- imageDataTest_1.addNewSegmentationMeta(
- tag="final", status=self.STATUS.APPROVED, level=self.LEVEL.HARD, approvedBy="Test-Reviewer", comment=""
- )
-
- # is segmented
- imageDataTest_2 = ImageData(
- name="imageId_2",
- fileName="fileName_2",
- nodeName="nodeName_2",
- checkSum="checkSum_2",
- segmented=True,
- timeStamp=1640171961,
- comment="comment_2",
- )
- imageDataTest_2.setClientId("client_id_1")
- imageDataTest_2.setSegmentationFileName("testSegementation_2.nrrd")
- imageDataTest_2.addNewSegmentationMeta(
- tag="final",
- status=self.STATUS.FLAGGED,
- level=self.LEVEL.MEDIUM,
- approvedBy="theRadologist_2",
- comment="comment_2",
- )
-
- # is not segmented
- imageDataTest_3 = ImageData(
- name="6213798",
- fileName="6213798.dcm",
- nodeName="6213798.dcm",
- checkSum="SHA256:5ca275af76a8fe88939058f9c91ecb72ce96bd5f012198fc366e4ef0214849b9",
- segmented=False,
- timeStamp=1642170835,
- comment="",
- )
-
- self.nameToImageData["6667571"] = imageDataTest_1
- self.nameToImageData["imageId_2"] = imageDataTest_2
- self.nameToImageData["6213798"] = imageDataTest_3
-
- @classmethod
- def areEqual(self, imageData_1: ImageData, imageData_2: ImageData) -> bool:
- if (
- imageData_1.getClientId() == imageData_2.getClientId()
- and imageData_1.getName() == imageData_2.getName()
- and imageData_1.getFileName() == imageData_2.getFileName()
- and imageData_1.getNodeName() == imageData_2.getNodeName()
- and imageData_1.isSegemented() == imageData_2.isSegemented()
- ):
- if imageData_1.isSegemented() is False:
- return True
-
- if (
- imageData_1.getSegmentationFileName() == imageData_2.getSegmentationFileName()
- and imageData_1.isApproved() == imageData_2.isApproved()
- and imageData_1.isFlagged() == imageData_2.isFlagged()
- and imageData_1.getLevel() == imageData_2.getLevel()
- and imageData_1.getApprovedBy() == imageData_2.getApprovedBy()
- ):
- return True
-
- return False
-
- @patch.object(MonaiServerREST, "getServerUrl", return_value="http://127.0.0.1:8000")
- def test_returnedUrl(self, getServerUrl):
- self.controller.setMonaiServer(self.url)
- url = self.controller.getServerUrl()
- getServerUrl.assert_called_once()
- self.assertEqual(self.url, url)
-
- @patch.object(MonaiServerREST, "checkServerConnection", return_value=True)
- def test_connectToMonaiServer(self, checkServerConnection):
- isConnected = self.controller.connectToMonaiServer(self.url)
- checkServerConnection.assert_called_once()
- self.assertTrue(isConnected)
-
- def test_getMapIdToImageData(self):
- json_with_segmentation = json.loads(self.testDataStore_V2_json)
-
- self.controller.monaiServerREST = MonaiServerREST(self.url)
- mockObject = self.controller.monaiServerREST
- mockObject.requestDataStoreInfo = Mock(return_value=json_with_segmentation)
- returnedMap = self.controller.getMapIdToImageData()
-
- selectedImageData = returnedMap["6213798"]
- expectedImageData = self.nameToImageData["6213798"]
-
- self.assertTrue(self.areEqual(expectedImageData, selectedImageData))
-
- def test_initMetaDataProcessing(self):
- json_with_segmentation = json.loads(self.testDataStore_V2_json)
-
- self.controller.monaiServerREST = MonaiServerREST(self.url)
- mockObject = self.controller.monaiServerREST
- mockObject.requestDataStoreInfo = Mock(return_value=json_with_segmentation)
- success = self.controller.initMetaDataProcessing()
- self.assertTrue(success)
-
- def test_getStatistics(self):
- json_with_segmentation = json.loads(self.testDataStore_V2_json)
-
- self.controller.monaiServerREST = MonaiServerREST(self.url)
- mockObject = self.controller.monaiServerREST
- mockObject.requestDataStoreInfo = Mock(return_value=json_with_segmentation)
-
- success = self.controller.initMetaDataProcessing()
- self.assertTrue(success)
-
- statistics = self.controller.getStatistics()
-
- self.assertEqual(50, statistics["segmentationProgress"])
- self.assertEqual("2/4", statistics["idxTotalSegmented"])
- self.assertEqual("1/4", statistics["idxTotalApproved"])
- self.assertEqual(25, statistics["progressPercentage"])
- self.assertEqual(50, statistics["segmentationProgressAllPercentage"])
- self.assertEqual(25, statistics["approvalProgressPercentage"])
-
- def test_getClientIds(self):
- # Set up
- json_with_segmentation = json.loads(self.testDataStore_V2_json)
-
- self.controller.monaiServerREST = MonaiServerREST(self.url)
- mockObject = self.controller.monaiServerREST
- mockObject.requestDataStoreInfo = Mock(return_value=json_with_segmentation)
-
- success = self.controller.initMetaDataProcessing()
- self.assertTrue(success)
-
- # Test
- clientIds = self.controller.getClientIds()
-
- # Verify
- self.assertListEqual(clientIds, ["Test-Radiolgist-Segmented"])
-
- def test_getReviewers(self):
- # Set up
- json_with_segmentation = json.loads(self.testDataStore_V2_json)
-
- self.controller.monaiServerREST = MonaiServerREST(self.url)
- mockObject = self.controller.monaiServerREST
- mockObject.requestDataStoreInfo = Mock(return_value=json_with_segmentation)
-
- success = self.controller.initMetaDataProcessing()
- self.assertTrue(success)
-
- # Test
- clientIds = self.controller.getReviewers()
-
- # Verify
- self.assertListEqual(clientIds, ["Test-Reviewer"])
-
- def test_getAllImageData(self):
- # Set up
- json_with_segmentation = json.loads(self.testDataStore_V2_json)
-
- self.controller.monaiServerREST = MonaiServerREST(self.url)
- mockObject = self.controller.monaiServerREST
- mockObject.requestDataStoreInfo = Mock(return_value=json_with_segmentation)
-
- success = self.controller.initMetaDataProcessing()
- self.assertTrue(success)
-
- # Test
- imageDatas = self.controller.getAllImageData(
- segmented=True, isNotSegmented=False, isApproved=True, isFlagged=False
- )
-
- # Verify
- self.assertEqual(1, len(imageDatas))
- returnedImageData = imageDatas[0]
- expectedImageData = self.nameToImageData["6667571"]
- self.assertTrue(self.areEqual(expectedImageData, returnedImageData))
-
- def test_getImageDataByClientId(self):
- # Set up
- json_with_segmentation = json.loads(self.testDataStore_V2_json)
-
- self.controller.monaiServerREST = MonaiServerREST(self.url)
- mockObject = self.controller.monaiServerREST
- mockObject.requestDataStoreInfo = Mock(return_value=json_with_segmentation)
-
- success = self.controller.initMetaDataProcessing()
- self.assertTrue(success)
-
- # Test
- imageDatas = self.controller.getImageDataByClientId(
- selectedClientId="Test-Radiolgist-Segmented", isApproved=True, isFlagged=False
- )
-
- # Verify
- self.assertEqual(1, len(imageDatas))
- returnedImageData = imageDatas[0]
- expectedImageData = self.nameToImageData["6667571"]
- self.assertTrue(self.areEqual(expectedImageData, returnedImageData))
-
- def test_getPercentageApproved(self):
- # Set up
- json_with_segmentation = json.loads(self.testDataStore_V2_json)
-
- self.controller.monaiServerREST = MonaiServerREST(self.url)
- mockObject = self.controller.monaiServerREST
- mockObject.requestDataStoreInfo = Mock(return_value=json_with_segmentation)
-
- success = self.controller.initMetaDataProcessing()
- self.assertTrue(success)
-
- # Test
- percentageApprovedOfClient, idxApprovedOfClient = self.controller.getPercentageApproved(
- selectedClientId="Test-Radiolgist-Segmented"
- )
-
- # Verify
- self.assertEqual(50, percentageApprovedOfClient)
- self.assertEqual("1/2", idxApprovedOfClient)
-
- def test_getPercentageSemgmentedByClient(self):
- # Set up
- json_with_segmentation = json.loads(self.testDataStore_V2_json)
-
- self.controller.monaiServerREST = MonaiServerREST(self.url)
- mockObject = self.controller.monaiServerREST
- mockObject.requestDataStoreInfo = Mock(return_value=json_with_segmentation)
-
- success = self.controller.initMetaDataProcessing()
- self.assertTrue(success)
-
- # Test
- percentageSemgmentedByClient, idxSegmentedByClient = self.controller.getPercentageSemgmentedByClient(
- selectedClientId="Test-Radiolgist-Segmented"
- )
-
- # Verify
- self.assertEqual(50, percentageSemgmentedByClient)
- self.assertEqual("2/4", idxSegmentedByClient)
-
- def test_getMultImageDataByIds(self):
- # Set up
- json_with_segmentation = json.loads(self.testDataStore_V2_json)
-
- self.controller.monaiServerREST = MonaiServerREST(self.url)
- mockObject = self.controller.monaiServerREST
- mockObject.requestDataStoreInfo = Mock(return_value=json_with_segmentation)
-
- success = self.controller.initMetaDataProcessing()
- self.assertTrue(success)
-
- # Test
- imageIdDummy = "1234567"
- idToImage: Dict[str, ImageData] = self.controller.getMultImageDataByIds(
- imageIds=["6213798", "6667571", imageIdDummy]
- )
-
- # Verify
- self.assertTrue("6213798" in idToImage.keys())
- self.assertTrue("6667571" in idToImage.keys())
- self.assertTrue(imageIdDummy not in idToImage.keys())
-
- expectedImageData_1 = self.nameToImageData["6213798"]
- expectedImageData_2 = self.nameToImageData["6667571"]
-
- self.assertTrue(self.areEqual(expectedImageData_1, idToImage["6213798"]))
- self.assertTrue(self.areEqual(expectedImageData_2, idToImage["6667571"]))
-
- def test_searchByAnnotatorReviewer_selectedReviewer_is_all(self):
- # Set up
- json_with_segmentation = json.loads(self.testDataStore_V2_json)
-
- self.controller.monaiServerREST = MonaiServerREST(self.url)
- mockObject = self.controller.monaiServerREST
- mockObject.requestDataStoreInfo = Mock(return_value=json_with_segmentation)
-
- success = self.controller.initMetaDataProcessing()
- self.assertTrue(success)
-
- # Test
- idToImage: Dict[str, ImageData] = self.controller.searchByAnnotatorReviewer(
- selectedAnnotator="Test-Radiolgist-Segmented", selectedReviewer="All", isApproved=True, isFlagged=False
- )
-
- # Verify
- self.assertTrue("6667571" in idToImage.keys())
- expectedImageData = self.nameToImageData["6667571"]
- self.assertTrue(self.areEqual(expectedImageData, idToImage["6667571"]))
-
- def test_searchByAnnotatorReviewer_selectedReviewer_is_all_and_selectedReviewer_is_all(self):
- # Set up
- json_with_segmentation = json.loads(self.testDataStore_V2_json)
-
- self.controller.monaiServerREST = MonaiServerREST(self.url)
- mockObject = self.controller.monaiServerREST
- mockObject.requestDataStoreInfo = Mock(return_value=json_with_segmentation)
-
- success = self.controller.initMetaDataProcessing()
- self.assertTrue(success)
-
- # Test
- idToImage: Dict[str, ImageData] = self.controller.searchByAnnotatorReviewer(
- selectedAnnotator="All", selectedReviewer="All", isApproved=True, isFlagged=False
- )
-
- # Verify
- self.assertTrue("6667571" in idToImage.keys())
- expectedImageData = self.nameToImageData["6667571"]
- self.assertTrue(self.areEqual(expectedImageData, idToImage["6667571"]))
-
- def test_updateLabelInfo_successfully_update_label_info(self):
- # Set up
- json_with_segmentation = json.loads(self.testDataStore_V2_json)
-
- self.controller.monaiServerREST = MonaiServerREST(self.url)
- mockObject = self.controller.monaiServerREST
- mockObject.requestDataStoreInfo = Mock(return_value=json_with_segmentation)
-
- success = self.controller.initMetaDataProcessing()
- self.assertTrue(success)
-
- mockObject.updateLabelInfo = Mock(return_value=200)
-
- # Test
- successfullyUpdate = self.controller.updateLabelInfo(imageId="6667571", updatedMetaJson="")
-
- # Verify
- self.assertTrue(successfullyUpdate)
-
- def test_updateLabelInfo_failed_update_label_info(self):
- # Set up
- json_with_segmentation = json.loads(self.testDataStore_V2_json)
-
- self.controller.monaiServerREST = MonaiServerREST(self.url)
- mockObject = self.controller.monaiServerREST
- mockObject.requestDataStoreInfo = Mock(return_value=json_with_segmentation)
-
- success = self.controller.initMetaDataProcessing()
- self.assertTrue(success)
-
- mockObject.updateLabelInfo = Mock(return_value=400)
-
- # Test
- failedUpdate = self.controller.updateLabelInfo(imageId="6667571", updatedMetaJson="")
-
- # Verify
- self.assertFalse(failedUpdate)
-
-
-if __name__ == "__main__":
- unittest.main()
diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/UnitTests/ImageDataExtractorTest.py b/monailabel/plugins/slicer/MONAILabelReviewer/UnitTests/ImageDataExtractorTest.py
deleted file mode 100644
index c8836e7..0000000
--- a/monailabel/plugins/slicer/MONAILabelReviewer/UnitTests/ImageDataExtractorTest.py
+++ /dev/null
@@ -1,361 +0,0 @@
-# Copyright (c) MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-import sys
-import unittest
-from typing import Dict, List
-
-# sys.path.append("..")
-from MONAILabelReviewerLib.ImageData import ImageData
-from MONAILabelReviewerLib.ImageDataExtractor import ImageDataExtractor
-from MONAILabelReviewerLib.MONAILabelReviewerEnum import Level, SegStatus
-
-
-class ImageDataExtractorTest(unittest.TestCase):
- @classmethod
- def setUp(self):
- self.STATUS = SegStatus()
- self.LEVEL = Level()
- self.createImageData()
-
- @classmethod
- def createImageData(self):
- # is segmented
- imageDataTest_1 = ImageData(
- name="imageId_1",
- fileName="fileName_1",
- nodeName="nodeName_1",
- checkSum="checkSum_1",
- segmented=True,
- timeStamp=1640171961,
- comment="comment_1",
- )
- imageDataTest_1.setClientId("client_id_1")
- imageDataTest_1.setSegmentationFileName("testSegementation_1.nrrd")
- imageDataTest_1.addNewSegmentationMeta(
- tag="final",
- status=self.STATUS.APPROVED,
- level=self.LEVEL.HARD,
- approvedBy="theRadologist_1",
- comment="comment_1",
- )
-
- # is segmented
- imageDataTest_2 = ImageData(
- name="imageId_2",
- fileName="fileName_2",
- nodeName="nodeName_2",
- checkSum="checkSum_2",
- segmented=True,
- timeStamp=1640171961,
- comment="comment_2",
- )
- imageDataTest_2.setClientId("client_id_1")
- imageDataTest_2.setSegmentationFileName("testSegementation_2.nrrd")
- imageDataTest_2.addNewSegmentationMeta(
- tag="final",
- status=self.STATUS.FLAGGED,
- level=self.LEVEL.MEDIUM,
- approvedBy="theRadologist_2",
- comment="comment_2",
- )
-
- # is not segmented
- imageDataTest_3 = ImageData(
- name="imageId_3",
- fileName="fileName_3",
- nodeName="nodeName_3",
- checkSum="checkSum_3",
- segmented=False,
- timeStamp=1640171961,
- comment="comment_3",
- )
- imageDataTest_3.setClientId("client_id_3")
-
- self.nameToImageData: Dict[str, ImageData] = {}
- self.nameToImageData["imageId_1"] = imageDataTest_1
- self.nameToImageData["imageId_2"] = imageDataTest_2
- self.nameToImageData["imageId_3"] = imageDataTest_3
- self.imageDataExtractor = ImageDataExtractor(nameToImageData=self.nameToImageData)
- self.imageDataExtractor.init()
-
- @classmethod
- def areEqual(self, imageData_1: ImageData, imageData_2: ImageData) -> bool:
- if (
- imageData_1.getClientId() == imageData_2.getClientId()
- and imageData_1.getName() == imageData_2.getName()
- and imageData_1.getFileName() == imageData_2.getFileName()
- and imageData_1.getNodeName() == imageData_2.getNodeName()
- and imageData_1.isSegemented() == imageData_2.isSegemented()
- and imageData_1.getSegmentationFileName() == imageData_2.getSegmentationFileName()
- and imageData_1.isApproved() == imageData_2.isApproved()
- and imageData_1.isFlagged() == imageData_2.isFlagged()
- and imageData_1.getLevel() == imageData_2.getLevel()
- and imageData_1.getApprovedBy() == imageData_2.getApprovedBy()
- ):
- return True
- return False
-
- def test_getTotalNumImages(self):
- totalNumOfImages = self.imageDataExtractor.getTotalNumImages()
- print(totalNumOfImages)
- self.assertEqual(len(self.nameToImageData), totalNumOfImages)
-
- def test_getImageDataIds(self):
- ids = self.imageDataExtractor.getImageDataIds()
- expectedIds = [*self.nameToImageData.keys()]
- containsAll = all(id in ids for id in expectedIds)
- self.assertEqual(True, containsAll)
-
- def test_getClientIds(self):
- expectedClientIds = ["client_id_1"]
- clientIds = self.imageDataExtractor.getClientIds()
- self.assertEqual(len(expectedClientIds), len(clientIds))
- containsClients = all(id in clientIds for id in expectedClientIds)
- self.assertEqual(True, containsClients)
-
- def test_getReviewers(self):
- expectedReviewersIds = ["theRadologist_1", "theRadologist_2"]
- reviewerIds = self.imageDataExtractor.getReviewers()
- self.assertEqual(len(expectedReviewersIds), len(reviewerIds))
- containsReviewers = all(id in reviewerIds for id in expectedReviewersIds)
- self.assertEqual(True, containsReviewers)
-
- def test_getImageDataNotsegmented(self):
- notSegmentedImages: List[ImageData] = self.imageDataExtractor.getImageDataNotsegmented()
- self.assertEqual(1, len(notSegmentedImages))
- notSegementedImage = notSegmentedImages[0]
- self.assertEqual("client_id_3", notSegementedImage.getClientId())
- self.assertEqual(False, notSegementedImage.isSegemented())
-
- def test_getNumOfNotSegmented(self):
- numOfNotSegmented = self.imageDataExtractor.getNumOfNotSegmented()
- self.assertEqual(1, numOfNotSegmented)
-
- def test_getNumOfSegmented(self):
- numOfNotSegmented = self.imageDataExtractor.getNumOfSegmented()
- self.assertEqual(2, numOfNotSegmented)
-
- def test_getSegmentationProgessInPercentage(self):
- percentage = self.imageDataExtractor.getSegmentationProgessInPercentage()
- self.assertEqual(66, percentage)
-
- def test_getSegmentationProgessInPercentage_as_fraction(self):
- idxTotalSegmented = self.imageDataExtractor.getSegmentationVsTotalStr()
- self.assertEqual("2/3", idxTotalSegmented)
-
- def test_getApprovalProgressInPercentage(self):
- fraction = self.imageDataExtractor.getApprovalProgressInPercentage()
- self.assertEqual(33, fraction)
-
- def test_getApprovalVsTotal(self):
- idxTotalApproved = self.imageDataExtractor.getApprovalVsTotal()
- self.assertEqual("1/3", idxTotalApproved)
-
- def test_getAllImageData_segmented_is_true_approved_is_true(self):
- imageDatas = self.imageDataExtractor.getAllImageData(
- segmented=True, notSegmented=False, approved=True, flagged=False
- )
- self.assertEqual(1, len(imageDatas))
- expectedImageData = self.nameToImageData["imageId_1"]
- self.assertEqual(True, self.areEqual(expectedImageData, imageDatas[0]))
-
- def test_getAllImageData_segmented_is_true_flagges_is_true(self):
- imageDatas = self.imageDataExtractor.getAllImageData(
- segmented=True, notSegmented=False, approved=False, flagged=True
- )
- self.assertEqual(1, len(imageDatas))
- expectedImageData = self.nameToImageData["imageId_2"]
- self.assertEqual(True, self.areEqual(expectedImageData, imageDatas[0]))
-
- def test_getAllImageData_isNotSegmented_is_false_approved_is_false(self):
- imageDatas = self.imageDataExtractor.getAllImageData(
- segmented=False, notSegmented=True, approved=False, flagged=False
- )
- self.assertEqual(1, len(imageDatas))
- expectedImageData = self.nameToImageData["imageId_3"]
- self.assertEqual(True, self.areEqual(expectedImageData, imageDatas[0]))
-
- def test_getImageDataByClientId_approved_is_true(self):
- imageDataTest_4 = ImageData(
- name="imageId_4",
- fileName="fileName_4",
- nodeName="nodeName_4",
- checkSum="checkSum_4",
- segmented=True,
- timeStamp=1640171961,
- comment="comment_4",
- )
- imageDataTest_4.setClientId("client_id_1")
- imageDataTest_4.setSegmentationFileName("testSegementation_4.nrrd")
- imageDataTest_4.addNewSegmentationMeta(
- tag="final",
- status=self.STATUS.APPROVED,
- level=self.LEVEL.MEDIUM,
- approvedBy="theRadologist_4",
- comment="comment_4",
- )
- self.nameToImageData["imageId_4"] = imageDataTest_4
-
- imageDataExtractor = ImageDataExtractor(nameToImageData=self.nameToImageData)
- imageDataExtractor.init()
- returnedImageDatas = imageDataExtractor.getImageDataByClientId(
- clientId="client_id_1", approved=True, flagged=False
- )
- self.assertEqual(2, len(returnedImageDatas))
- returnedImageData_1 = list(filter(lambda image: (image.getName() == "imageId_1"), returnedImageDatas))
- returnedImageData_4 = list(filter(lambda image: (image.getName() == "imageId_4"), returnedImageDatas))
-
- self.assertEqual(True, self.areEqual(self.nameToImageData["imageId_1"], returnedImageData_1[0]))
- self.assertEqual(True, self.areEqual(self.nameToImageData["imageId_4"], returnedImageData_4[0]))
-
- def test_getImageDataByClientAndReviewer_approved_is_true(self):
- imageDataExtractor = ImageDataExtractor(nameToImageData=self.nameToImageData)
- imageDataExtractor.init()
- returnedImageDatas = imageDataExtractor.getImageDataByClientAndReviewer(
- clientId="client_id_1", reviewerId="theRadologist_1", approved=True, flagged=False
- )
- for imageData in returnedImageDatas:
- imageData.display()
-
- self.assertEqual(1, len(returnedImageDatas))
- imageData = returnedImageDatas[0]
- self.assertEqual(True, self.areEqual(self.nameToImageData["imageId_1"], imageData))
-
- def test_getImageDataByClientId_flagged_is_true(self):
- returnedImageDatas = self.imageDataExtractor.getImageDataByClientId(
- clientId="client_id_1", approved=False, flagged=True
- )
- self.assertEqual(1, len(returnedImageDatas))
- returnedImageData = returnedImageDatas[0]
- expectedImageData = self.nameToImageData["imageId_2"]
- self.assertEqual(True, self.areEqual(expectedImageData, returnedImageData))
-
- def test_getImageDataByReviewer_approved_is_true(self):
- returnedImageDatas = self.imageDataExtractor.getImageDataByReviewer(
- reviewerId="theRadologist_1", approved=True, flagged=False
- )
- self.assertEqual(1, len(returnedImageDatas))
- returnedImageData = returnedImageDatas[0]
- expectedImageData = self.nameToImageData["imageId_1"]
- self.assertEqual(True, self.areEqual(expectedImageData, returnedImageData))
-
- def test_getImageDataByReviewer_flagged_is_true(self):
- returnedImageDatas = self.imageDataExtractor.getImageDataByReviewer(
- reviewerId="theRadologist_2", approved=False, flagged=True
- )
- self.assertEqual(1, len(returnedImageDatas))
- returnedImageData = returnedImageDatas[0]
- expectedImageData = self.nameToImageData["imageId_2"]
- self.assertEqual(True, self.areEqual(expectedImageData, returnedImageData))
-
- def test_getImageDataByLevel_level_hard(self):
- returnedImageDatas = self.imageDataExtractor.getImageDataByLevel(isEasy=False, isMedium=False, isHard=True)
- self.assertEqual(1, len(returnedImageDatas))
- returnedImageData = returnedImageDatas["imageId_1"]
- expectedImageData = self.nameToImageData["imageId_1"]
- self.assertEqual(True, self.areEqual(expectedImageData, returnedImageData))
-
- def test_getSingleImageDataById_found_ImageData(self):
- returnedImageData = self.imageDataExtractor.getSingleImageDataById(imageId="imageId_1")
- expectedImageData = self.nameToImageData["imageId_1"]
- self.assertTrue(self.areEqual(expectedImageData, returnedImageData))
-
- def test_getSingleImageDataById_isBlank(self):
- returnedImageData = self.imageDataExtractor.getSingleImageDataById(imageId=" ")
- self.assertIsNone(returnedImageData)
-
- def test_getMultImageDataByIds(self):
- returnedImageDatas: Dict[str, ImageData] = self.imageDataExtractor.getMultImageDataByIds(
- ids=["imageId_1", "imageId_3", "dummy"]
- )
- self.assertEqual(2, len(returnedImageDatas))
-
- imageDataWithimageId_1 = returnedImageDatas["imageId_1"]
- imageDataWithimageId_3 = returnedImageDatas["imageId_3"]
- self.assertTrue(self.areEqual(self.nameToImageData["imageId_1"], imageDataWithimageId_1))
- self.assertTrue(self.areEqual(self.nameToImageData["imageId_3"], imageDataWithimageId_3))
-
- def test_getMultImageDataByIds_given_empty_idList(self):
- returnedImageDatas: Dict[str, ImageData] = self.imageDataExtractor.getMultImageDataByIds(ids=[])
- self.assertEqual(0, len(returnedImageDatas))
-
- def test_getNumApprovedSegmentation(self):
- numApprovedSegmentation = self.imageDataExtractor.getNumApprovedSegmentation()
- self.assertEqual(1, numApprovedSegmentation)
-
- def test_getPercentageApproved(self):
- imageDataTest_4 = ImageData(
- name="imageId_4",
- fileName="fileName_4",
- nodeName="nodeName_4",
- checkSum="checkSum_4",
- segmented=True,
- timeStamp=1640171961,
- comment="comment_4",
- )
- imageDataTest_4.setClientId("client_id_1")
- imageDataTest_4.setSegmentationFileName("testSegementation_4.nrrd")
- imageDataTest_4.addNewSegmentationMeta(
- tag="final",
- status=self.STATUS.APPROVED,
- level=self.LEVEL.MEDIUM,
- approvedBy="theRadologist_4",
- comment="comment_4",
- )
- self.nameToImageData["imageId_4"] = imageDataTest_4
-
- imageDataExtractor = ImageDataExtractor(nameToImageData=self.nameToImageData)
- imageDataExtractor.init()
-
- precentage, idxApprovedOfClient = imageDataExtractor.getPercentageApproved(clientId="client_id_1")
- self.assertEqual(66, precentage)
- self.assertEqual("2/3", idxApprovedOfClient)
-
- def test_getPercentageSemgmentedByClient(self):
- imageDataTest_4 = ImageData(
- name="imageId_4",
- fileName="fileName_4",
- nodeName="nodeName_4",
- checkSum="checkSum_4",
- segmented=True,
- timeStamp=1640171961,
- comment="comment_4",
- )
- imageDataTest_4.setClientId("client_id_1")
- imageDataTest_4.setSegmentationFileName("testSegementation_4.nrrd")
- imageDataTest_4.addNewSegmentationMeta(
- tag="final",
- status=self.STATUS.APPROVED,
- level=self.LEVEL.MEDIUM,
- approvedBy="theRadologist_4",
- comment="comment_4",
- )
- self.nameToImageData["imageId_4"] = imageDataTest_4
-
- imageDataExtractor = ImageDataExtractor(nameToImageData=self.nameToImageData)
- imageDataExtractor.init()
-
- precentage, idxSegmentedByClien = imageDataExtractor.getPercentageSemgmentedByClient(clientId="client_id_1")
- self.assertEqual(75, precentage)
- self.assertEqual("3/4", idxSegmentedByClien)
-
- def test_getApprovedSegmentationIds(self):
- idsOfApprovedSementations = self.imageDataExtractor.getApprovedSegmentationIds()
- self.assertEqual(1, len(idsOfApprovedSementations))
-
- def test_getSegmentedImageIds(self):
- idsOfSegmented = self.imageDataExtractor.getSegmentedImageIds()
- self.assertEqual(2, len(idsOfSegmented))
-
-
-if __name__ == "__main__":
- unittest.main()
diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/UnitTests/ImageDataTest.py b/monailabel/plugins/slicer/MONAILabelReviewer/UnitTests/ImageDataTest.py
deleted file mode 100644
index 4541a75..0000000
--- a/monailabel/plugins/slicer/MONAILabelReviewer/UnitTests/ImageDataTest.py
+++ /dev/null
@@ -1,267 +0,0 @@
-# Copyright (c) MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-import json
-import os
-import sys
-import unittest
-
-# sys.path.append("..")
-from MONAILabelReviewerLib.ImageData import ImageData
-from MONAILabelReviewerLib.JsonParser import JsonParser
-from MONAILabelReviewerLib.SegmentationMeta import SegmentationMeta
-
-
-class ImageDataTest(unittest.TestCase):
- @classmethod
- def setUp(self):
- self.jsonParser = JsonParser(None)
- self.imageData = self.createTestImageData()
-
- fileNameWithMultipleVersions = "test_datastore_v2_image_with_multiple_versions.json"
- self.parsedImageDataWithMultiVersions = self.parseJsonToImageData(
- path=fileNameWithMultipleVersions, fileName="lan.dcm"
- )
-
- fileNameWithSingleVersion = "test_datastore_v2_image_with_segmentation.json"
- self.parsedImageDataWithSingleVersions = self.parseJsonToImageData(
- path=fileNameWithSingleVersion, fileName="mai.dcm"
- )
-
- @classmethod
- def parseJsonToImageData(self, path: str, fileName: str) -> ImageData:
- path_str = self.loadJsonStr(path)
- json_str = json.loads(path_str)
- return self.jsonParser.jsonToImageData(fileName, json_str)
-
- @classmethod
- def loadJsonStr(self, fileName: str) -> str:
- with open(os.path.join(sys.path[0], "TestDataSet/" + fileName)) as f:
- data = json.dumps(json.load(f))
- return data
-
- @classmethod
- def createTestImageData(self) -> ImageData:
- name = "6667571"
- fileName = "6667571.dcm"
- nodeName = "6667571.dcm"
- checkSum = "SHA256:2a454e9ab8a33dc74996784163a362a53e04adcee2fd73a8b6299bf0ce5060d3"
- isSegmented = True
- timeStamp = 1639647550
- comment = "test-comment"
-
- imageData = ImageData(
- name=name,
- fileName=fileName,
- nodeName=nodeName,
- checkSum=checkSum,
- segmented=isSegmented,
- timeStamp=timeStamp,
- comment=comment,
- )
-
- # imageData.addNewSegmentationMeta(status="flagged", level="hard", approvedBy="Dr.Faust",
- # comment="Damit ich erkenne, was die Menchenwelt im Innerstern zusammenhaelt")
- imageData.setSegmentationFileName("6662775.seg.nrrd")
- imageData.setClientId("segmentator")
- imageData.setVersionNames(["final", "version_1", "version_2"])
-
- segMeta_final = self.createSegMeta(
- status="flagged",
- level="hard",
- approvedBy="annotator",
- comment="Errare humanum est",
- editTime="Thu Jan 13 12:21:01 2022",
- )
- segMeta_version1 = self.createSegMeta(
- status="flagged",
- level="medium",
- approvedBy="radiologist_1",
- comment="Irren ist menschlisch",
- editTime="Thu Jan 14 12:21:01 2022",
- )
- segMeta_version2 = self.createSegMeta(
- status="flagged",
- level="easy",
- approvedBy="radiologist_2",
- comment="Menschlische Gebrechen sühnet reine Menschlichkeit",
- editTime="Thu Jan 15 12:21:01 2022",
- )
-
- segmentationMetaDict = {}
- segmentationMetaDict["final"] = segMeta_final
- segmentationMetaDict["version_1"] = segMeta_version1
- segmentationMetaDict["version_2"] = segMeta_version2
-
- imageData.setSegmentationMetaDict(segmentationMetaDict)
-
- return imageData
-
- @classmethod
- def createSegMeta(self, status, level, approvedBy, comment, editTime) -> SegmentationMeta:
- segmentationMeta = SegmentationMeta()
- segmentationMeta.build(status=status, level=level, approvedBy=approvedBy, comment=comment, editTime=editTime)
- return segmentationMeta
-
- def test_getStatus(self):
- status = self.imageData.getStatus(versionTag="final")
- self.assertEqual(status, "flagged")
-
- def test_getLatestVersionTag(self):
- latestVersion = self.imageData.getLatestVersionTag()
- self.assertEqual(latestVersion, "version_2")
-
- def test_getLatestVersionTag_remove_last_version(self):
- self.imageData.deleteVersionName("version_2")
- versionNames = self.imageData.getVersionNames()
- self.assertListEqual(["final", "version_1"], versionNames)
-
- def test_getLatestVersionTag_remove_version_inbetween(self):
- self.imageData.deleteVersionName("version_1")
- versionNames = self.imageData.getVersionNames()
- self.assertListEqual(["final", "version_2"], versionNames)
-
- def test_getMetaByVersionTag(self):
- segMeta_version2 = self.imageData.getMetaByVersionTag("version_2")
-
- exspectMeta = {
- "segmentationMeta": {
- "status": "flagged",
- "approvedBy": "radiologist_2",
- "level": "easy",
- "comment": "Menschlische Gebrechen sühnet reine Menschlichkeit",
- "editTime": "Thu Jan 15 12:21:01 2022",
- }
- }
-
- self.assertDictEqual(exspectMeta, segMeta_version2)
-
- def test_obtainUpdatedParams(self):
- params = self.parsedImageDataWithMultiVersions.obtainUpdatedParams("version_3")
- exspectedParams = {
- "label_info": [
- {"name": "Lung", "idx": 1},
- {"name": "Heart", "idx": 2},
- {"name": "Trachea", "idx": 3},
- {"name": "Mediastinum", "idx": 4},
- {"name": "Clavicle", "idx": 5},
- ],
- "segmentationMeta": {
- "status": "self.status_3",
- "approvedBy": "self.approvedBy_3",
- "level": "self.level_3",
- "comment": "self.comment_3",
- },
- }
-
- self.assertEqual(exspectedParams["label_info"], params["label_info"])
- self.assertEqual(exspectedParams["segmentationMeta"]["status"], params["segmentationMeta"]["status"])
- self.assertEqual(exspectedParams["segmentationMeta"]["approvedBy"], params["segmentationMeta"]["approvedBy"])
- self.assertEqual(exspectedParams["segmentationMeta"]["level"], params["segmentationMeta"]["level"])
- self.assertEqual(exspectedParams["segmentationMeta"]["comment"], params["segmentationMeta"]["comment"])
-
- def test_isEqualSegmentationMeta(self):
- isEqual = self.parsedImageDataWithMultiVersions.isEqualSegmentationMeta(
- tag="version_3",
- status="self.status_3",
- level="self.level_3",
- approvedBy="self.approvedBy_3",
- comment="self.comment_3",
- )
- self.assertTrue(isEqual)
-
- def test_isEqualSegmentationMeta_when_segmentationmetadata_does_not_exit_add(self):
- isEqual = self.parsedImageDataWithMultiVersions.isEqualSegmentationMeta(
- tag="version_4",
- status="self.status_4",
- level="self.level_4",
- approvedBy="self.approvedBy_4",
- comment="self.comment_4",
- )
-
- self.assertFalse(isEqual)
- metas = self.parsedImageDataWithMultiVersions.getsegmentationMetaDict()
- self.assertTrue("version_4" in metas)
-
- def test_getClientId_when_request_init_segmentation(self):
- clientId = self.parsedImageDataWithMultiVersions.getClientId("final")
- self.assertEqual("user-xyz", clientId)
-
- def test_getClientId_when_request_edit_version(self):
- clientId = self.parsedImageDataWithMultiVersions.getClientId("version_3")
- self.assertEqual("user-xyz", clientId)
-
- def test_getComment_when_request_init_segmentation(self):
- comment = self.parsedImageDataWithMultiVersions.getComment("final")
- self.assertEqual("self.comment_final", comment)
-
- def test_getComment_when_request_edit_version(self):
- comment = self.parsedImageDataWithMultiVersions.getComment("version_3")
- self.assertEqual("self.comment_3", comment)
-
- def test_getApprovedBy_when_request_init_segmentation(self):
- approvedBy = self.parsedImageDataWithMultiVersions.getApprovedBy("final")
- self.assertEqual("self.approvedBy_final", approvedBy)
-
- def test_getApprovedBy_when_request_edit_version(self):
- approvedBy = self.parsedImageDataWithMultiVersions.getApprovedBy("version_3")
- self.assertEqual("self.approvedBy_3", approvedBy)
-
- def test_isFlagged_when_segmentation_is_not_flagged(self):
- isFlagged = self.parsedImageDataWithMultiVersions.isFlagged("version_3")
- self.assertFalse(isFlagged)
-
- def test_isFlagged_when_segmentation_is_flagged(self):
- isFlagged = self.imageData.isFlagged("version_1")
- self.assertTrue(isFlagged)
-
- def test_hasSegmentationMeta_when_has_segmentation(self):
- hasSegmentationMeta = self.imageData.hasSegmentationMeta("version_1")
- self.assertTrue(hasSegmentationMeta)
-
- def test_hasSegmentationMeta_when_version_does_not_exit(self):
- hasSegmentationMeta = self.imageData.hasSegmentationMeta("version_4")
- self.assertFalse(hasSegmentationMeta)
-
- def test_getTimeOfEditing(self):
- editTime = self.parsedImageDataWithMultiVersions.getTimeOfEditing("version_1")
- self.assertEqual("2022-06-27 08:43:00", editTime)
-
- def test_getSegmentationMetaByVersionTag(self):
- segmentationData: SegmentationMeta = self.parsedImageDataWithMultiVersions.getSegmentationMetaByVersionTag(
- "version_1"
- )
- self.assertEqual("self.status_1", segmentationData.getStatus())
- self.assertEqual("self.level_1", segmentationData.getLevel())
- self.assertEqual("self.approvedBy_1", segmentationData.getApprovedBy())
- self.assertEqual(1656312180, segmentationData.getEditTime())
- self.assertEqual("self.comment_1", segmentationData.getComment())
-
- def test_isApproved(self):
- isApproved = self.parsedImageDataWithMultiVersions.isApproved()
- self.assertTrue(isApproved)
-
- def test_getApprovedVersionTagElseReturnLatestVersion_imagedata_with_multiple_versions(self):
- self.parsedImageDataWithMultiVersions.getsegmentationMetaDict()
- latestVersion = self.parsedImageDataWithMultiVersions.getApprovedVersionTagElseReturnLatestVersion()
- self.assertEqual("version_4", latestVersion)
-
- def test_getApprovedVersionTagElseReturnLatestVersion_imagedata_with_single_version(self):
- metas = self.parsedImageDataWithSingleVersions.getsegmentationMetaDict()
- for k, v in metas.items():
- print("key: ", k)
- v.display()
- latestVersion = self.parsedImageDataWithSingleVersions.getApprovedVersionTagElseReturnLatestVersion()
- self.assertEqual("final", latestVersion)
-
-
-if __name__ == "__main__":
- unittest.main()
diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/UnitTests/JsonParserTest.py b/monailabel/plugins/slicer/MONAILabelReviewer/UnitTests/JsonParserTest.py
deleted file mode 100644
index 106e30a..0000000
--- a/monailabel/plugins/slicer/MONAILabelReviewer/UnitTests/JsonParserTest.py
+++ /dev/null
@@ -1,220 +0,0 @@
-# Copyright (c) MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-import json
-import os
-import sys
-import unittest
-
-# sys.path.append("..")
-from MONAILabelReviewerLib.ImageData import ImageData
-from MONAILabelReviewerLib.JsonParser import JsonParser
-
-
-class JsonParserTest(unittest.TestCase):
- @classmethod
- def setUp(self):
- self.jsonParser = JsonParser(None)
-
- fileNameWithOutSegmentation = "test_datastore_v2_image_without_segmentation.json"
- json_without_segmentation_str = self.loadJsonStr(fileNameWithOutSegmentation)
-
- self.json_without_segmentation = json.loads(json_without_segmentation_str)
-
- fileNameWithSegmentation = "test_datastore_v2_image_with_segmentation.json"
- json_with_segmentation_str = self.loadJsonStr(fileNameWithSegmentation)
- self.json_with_segmentation = json.loads(json_with_segmentation_str)
-
- fileNameWithMultipleVersions = "test_datastore_v2_image_with_multiple_versions.json"
- fileNameWithMultipleVersions_str = self.loadJsonStr(fileNameWithMultipleVersions)
- self.json_with_multiple_versions = json.loads(fileNameWithMultipleVersions_str)
-
- @classmethod
- def loadJsonStr(self, fileName: str) -> str:
- with open(os.path.join(sys.path[0], "TestDataSet/" + fileName)) as f:
- data = json.dumps(json.load(f))
- return data
-
- def test_getFileName(self):
- name = self.jsonParser.getFileName(self.json_without_segmentation)
- self.assertEqual(name, "6245968.dcm")
-
- def test_getNodeName(self):
- name = self.jsonParser.getNodeName(self.json_without_segmentation)
- self.assertEqual(name, "6245968.dcm")
-
- def test_getCheckSum(self):
- name = self.jsonParser.getCheckSum(self.json_without_segmentation)
- self.assertEqual(name, "SHA256:f1f8ef13433b1f0966e589818f3180750606eff69b3bc4a55e0181d7a9da8da1")
-
- def test_getTimeStamp(self):
- name = self.jsonParser.getTimeStamp(self.json_without_segmentation)
- self.assertEqual(name, 1642371057)
-
- def test_getInfo(self):
- name = self.jsonParser.getInfo(self.json_without_segmentation)
- info = (
- '{"ts": 1642170799,'
- '"checksum": "SHA256:f1f8ef13433b1f0966e589818f3180750606eff69b3bc4a55e0181d7a9da8da1",'
- '"name": "6245968.dcm", "strategy": {"Random": {"ts": 1642371057,'
- '"client_id": "Dr Radiologist"}}}'
- )
- infoDict = json.loads(info)
- self.assertEqual(name, infoDict)
-
- def test_isSegmented(self):
- name = self.jsonParser.isSegmented(self.json_without_segmentation)
- self.assertEqual(False, name)
-
- def test_getSegmentationName(self):
- name = self.jsonParser.getSegmentationName(self.json_without_segmentation)
- self.assertEqual(name, "6245968.seg.nrrd")
-
- def test_hasKeyAnnotate(self):
- result = self.jsonParser.hasKeyAnnotate(self.json_without_segmentation)
- self.assertEqual(result, False)
-
- def test_hasKeyRandom(self):
- result = self.jsonParser.hasKeyRandom(self.json_without_segmentation)
- self.assertEqual(result, True)
-
- def test_getClientId(self):
- result = self.jsonParser.getClientId(self.json_without_segmentation)
- self.assertEqual(result, "Dr Radiologist")
-
- def test_getMetaStatus(self):
- result = self.jsonParser.getMetaStatus("final", self.json_with_segmentation)
- self.assertEqual(result, "flagged")
-
- def test_getMetaLevel(self):
- result = self.jsonParser.getMetaLevel("final", self.json_with_segmentation)
- self.assertEqual(result, "easy")
-
- def test_getMetaApprovedBy(self):
- result = self.jsonParser.getMetaApprovedBy("final", self.json_with_segmentation)
- self.assertEqual(result, "Prof Radiogolist")
-
- def test_getMetaEditTime(self):
- result = self.jsonParser.getMetaEditTime("final", self.json_with_segmentation)
- self.assertEqual(result, "Thu Jan 13 12:21:01 2022")
-
- def test_getMetaComment(self):
- result = self.jsonParser.getMetaComment("final", self.json_with_segmentation)
- self.assertEqual(result, "Segementation was not easy")
-
- def test_jsonToImageData(self):
- imageData: ImageData = self.jsonParser.jsonToImageData("6662775.dcm", self.json_with_segmentation)
- self.assertEqual(imageData.getName(), "6662775.dcm")
- self.assertEqual(imageData.getFileName(), "6662775.dcm")
- self.assertEqual(
- imageData.getCheckSum(), "SHA256:1b474d23bda3de0c28f4287a7c0380d461e9f71d0dc468e64f336412cb575327"
- )
- self.assertEqual(imageData.isSegemented(), True)
- self.assertEqual(imageData.getClientId(), "Annotator")
- self.assertEqual(imageData.getStatus(), "flagged")
- self.assertEqual(imageData.getLevel(), "easy")
- self.assertEqual(imageData.getApprovedBy(), "Prof Radiogolist")
- self.assertEqual(imageData.getTimeOfAnnotation(), "2021-12-16 10:35:51")
-
- def test_extractLabelNames(self):
- labelsDict = self.jsonParser.extractLabels(self.json_with_multiple_versions)
- labelNames = self.jsonParser.extractLabelNames(labelsDict)
- self.assertListEqual(labelNames, ["final", "version_1", "version_2", "version_3", "version_4"])
-
- def test_jsonToImageData_with_multiple_versions(self):
- imageData: ImageData = self.jsonParser.jsonToImageData("lan.dcm", self.json_with_multiple_versions)
-
- self.assertEqual(imageData.getName(), "lan.dcm")
- self.assertEqual(imageData.getFileName(), "lan.dcm")
- self.assertEqual(
- imageData.getCheckSum(), "SHA256:a48c454592a36c1d2895322320e5ab5479eb5e93d9d4f3e16825625033875d6f"
- )
-
- self.assertEqual(imageData.isSegemented(), True)
- self.assertEqual(imageData.getClientId(), "user-xyz")
- self.assertEqual(imageData.getTimeOfAnnotation(), "2022-01-02 17:52:47")
- self.assertListEqual(imageData.getVersionNames(), ["final", "version_1", "version_2", "version_3", "version_4"])
- # dictMeta = imageData.getsegmentationMetaDict()
- # for k,v in dictMeta.items():
- # print("------- key: ", k)
- # v.display()
-
- def test_extractLabelContentByName(self):
- labelsDict = self.jsonParser.extractLabels(self.json_with_multiple_versions)
- labelContent = self.jsonParser.extractLabelContentByName(labelsDict)
- exspectedLabelContent = {
- "label_info": [
- {"name": "Lung", "idx": 1},
- {"name": "Heart", "idx": 2},
- {"name": "Trachea", "idx": 3},
- {"name": "Mediastinum", "idx": 4},
- {"name": "Clavicle", "idx": 5},
- ]
- }
- self.assertDictEqual(exspectedLabelContent, labelContent)
-
- def test_extractSegmentationMetaOfVersion(self):
- labelsDict = self.jsonParser.extractLabels(self.json_with_multiple_versions)
- labelContent = self.jsonParser.extractSegmentationMetaOfVersion(labelsDict, labelName="version_3")
- segmentationMeta = self.jsonParser.produceSegementationData(labelContent)
-
- self.assertEqual("self.status_3", segmentationMeta.getStatus())
- self.assertEqual("self.level_3", segmentationMeta.getLevel())
- self.assertEqual("self.approvedBy_3", segmentationMeta.getApprovedBy())
- self.assertEqual("self.comment_3", segmentationMeta.getComment())
- self.assertEqual(1656312200, segmentationMeta.getEditTime())
-
- def test_extractSegmentationMetaOfVersion_final_as_label(self):
- labelsDict = self.jsonParser.extractLabels(self.json_with_multiple_versions)
- labelContent = self.jsonParser.extractSegmentationMetaOfVersion(labelsDict, labelName="final")
- segmentationMeta = self.jsonParser.produceSegementationData(labelContent)
-
- self.assertEqual("self.status_final", segmentationMeta.getStatus())
- self.assertEqual("self.level_final", segmentationMeta.getLevel())
- self.assertEqual("self.approvedBy_final", segmentationMeta.getApprovedBy())
- self.assertEqual("self.comment_final", segmentationMeta.getComment())
- self.assertEqual(1656312100, segmentationMeta.getEditTime())
-
- def test_getAllSegmentationMetaOfAllLabels(self):
- labelsDict = self.jsonParser.extractLabels(self.json_with_multiple_versions)
- labelNames = self.jsonParser.extractLabelNames(labelsDict)
- segmentationMetaDict = self.jsonParser.getAllSegmentationMetaOfAllLabels(labelsDict, labelNames)
-
- self.assertNotIn("version_2", segmentationMetaDict)
- self.assertListEqual(list(segmentationMetaDict.keys()), ["final", "version_1", "version_3", "version_4"])
-
- self.assertEqual("self.status_final", segmentationMetaDict["final"].getStatus())
- self.assertEqual("self.level_final", segmentationMetaDict["final"].getLevel())
- self.assertEqual("self.approvedBy_final", segmentationMetaDict["final"].getApprovedBy())
- self.assertEqual("self.comment_final", segmentationMetaDict["final"].getComment())
- self.assertEqual(1656312100, segmentationMetaDict["final"].getEditTime())
-
- self.assertEqual("self.status_1", segmentationMetaDict["version_1"].getStatus())
- self.assertEqual("self.level_1", segmentationMetaDict["version_1"].getLevel())
- self.assertEqual("self.approvedBy_1", segmentationMetaDict["version_1"].getApprovedBy())
- self.assertEqual("self.comment_1", segmentationMetaDict["version_1"].getComment())
- self.assertEqual(1656312180, segmentationMetaDict["version_1"].getEditTime())
-
- self.assertEqual("self.status_3", segmentationMetaDict["version_3"].getStatus())
- self.assertEqual("self.level_3", segmentationMetaDict["version_3"].getLevel())
- self.assertEqual("self.approvedBy_3", segmentationMetaDict["version_3"].getApprovedBy())
- self.assertEqual("self.comment_3", segmentationMetaDict["version_3"].getComment())
- self.assertEqual(1656312200, segmentationMetaDict["version_3"].getEditTime())
-
- self.assertEqual("approved", segmentationMetaDict["version_4"].getStatus())
- self.assertEqual("self.level_4", segmentationMetaDict["version_4"].getLevel())
- self.assertEqual("self.approvedBy_4", segmentationMetaDict["version_4"].getApprovedBy())
- self.assertEqual("self.comment_4", segmentationMetaDict["version_4"].getComment())
- self.assertEqual(1656312200, segmentationMetaDict["version_4"].getEditTime())
-
-
-if __name__ == "__main__":
- unittest.main()
diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/UnitTests/MonaiServerRESTTest.py b/monailabel/plugins/slicer/MONAILabelReviewer/UnitTests/MonaiServerRESTTest.py
deleted file mode 100644
index 874d031..0000000
--- a/monailabel/plugins/slicer/MONAILabelReviewer/UnitTests/MonaiServerRESTTest.py
+++ /dev/null
@@ -1,257 +0,0 @@
-# Copyright (c) MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-
-import json
-import logging
-import os
-import sys
-import time
-import unittest
-
-import requests
-from mockserver_friendly import (
- MockServerFriendlyClient,
- json_equals,
- request,
- response,
- times,
-)
-
-# sys.path.append("..")
-from MONAILabelReviewerLib.MonaiServerREST import MonaiServerREST
-from python_on_whales import docker
-
-
-class MonaiServerRESTTest(unittest.TestCase):
- @classmethod
- def setUpClass(cls) -> None:
- logging.info("Start test sets of MonaiServerREST-Test-class")
- cls.MOCK_SERVER_URL = "http://localhost:1080"
- cls.strJson = cls.loadJsonStr("test_json_datastore_v2.json")
- cls.mockServerContainer = docker.run(
- "jamesdbloom/mockserver:mockserver-5.4.1", publish=[(1080, 1080)], detach=True
- )
- if cls.mockServerContainer.state.running is True:
- logging.info(f"Mock server started successfully. Listening on port {1080}")
- else:
- logging.info("Starting mockserver failed")
- time.sleep(8)
- return super().setUpClass()
-
- @classmethod
- def tearDownClass(cls) -> None:
- cls.mockServerContainer.stop()
- if cls.mockServerContainer.state.running is False:
- logging.info("Mock server terminated successfully")
- cls.mockServerContainer.remove()
- return super().tearDownClass()
-
- @classmethod
- def loadJsonStr(cls, fileName: str) -> str:
- with open(os.path.join(sys.path[0], "TestDataSet/" + fileName)) as f:
- data = json.dumps(json.load(f))
- return data
-
- def test_requestDataStoreInfo(cls):
- client = MockServerFriendlyClient(cls.MOCK_SERVER_URL)
- urlToBeTested = "http://localhost:1080/datastore?output=all"
- client.expect(
- request(method="GET", path="/datastore", querystring={"output": "all"}, body=json_equals(cls.strJson)),
- response(code=200),
- times(1),
- )
-
- result = requests.get(
- cls.MOCK_SERVER_URL + "/datastore",
- params={"output": "all"},
- json=cls.strJson,
- headers={"Content-Type": "application/json"},
- )
-
- cls.assertEqual(200, result.status_code)
- cls.assertEqual(urlToBeTested, result.url)
- client.reset()
-
- def test_request_for_image_with_segmentation_meta_data(cls):
- client = MockServerFriendlyClient(cls.MOCK_SERVER_URL)
-
- urlToBeTested = cls.MOCK_SERVER_URL + "/datastore/updatelabelinfo?label=6662775"
- body = {
- "segmentationMeta": {
- "status": "approved",
- "approvedBy": "",
- "level": "hard",
- "comment": "",
- "editTime": "Fri May 27 07:41:08 2022",
- }
- }
-
- client.expect(
- request(
- method="PUT",
- path="/datastore/updatelabelinfo",
- querystring={"label": "6662775"},
- headers={"content-Type": "application/json"},
- body=json_equals(body),
- ),
- response(code=200),
- times(1),
- )
-
- result = requests.put(
- cls.MOCK_SERVER_URL + "/datastore/updatelabelinfo",
- params={"label": "6662775"},
- json=body,
- headers={"content-Type": "application/json"},
- )
-
- cls.assertEqual(200, result.status_code)
- cls.assertEqual(urlToBeTested, result.url)
- client.reset()
-
- def test_updateLabelInfo(cls):
- client = MockServerFriendlyClient(cls.MOCK_SERVER_URL)
-
- urlToBeTested = "{}/datastore/updatelabelinfo?label={}&tag={}".format(
- cls.MOCK_SERVER_URL, str(6662775), "final"
- )
- body = {
- "segmentationMeta": {
- "status": "approved",
- "approvedBy": "",
- "level": "hard",
- "comment": "",
- "editTime": "Fri May 27 07:41:08 2022",
- }
- }
-
- client.expect(
- request(
- method="PUT",
- path="/datastore/updatelabelinfo",
- querystring={"label": "6662775", "tag": "final"},
- headers={"content-Type": "application/json"},
- body=json_equals(body),
- ),
- response(code=200),
- times(1),
- )
-
- result = requests.put(
- cls.MOCK_SERVER_URL + "/datastore/updatelabelinfo",
- params={"label": "6662775", "tag": "final"},
- json=body,
- headers={"content-Type": "application/json"},
- )
- cls.assertEqual(200, result.status_code)
-
- cls.assertEqual(urlToBeTested, result.url)
- client.reset()
-
- def test_saveLabel(cls):
- client = MockServerFriendlyClient(cls.MOCK_SERVER_URL)
- urlToBeTested = "{}/datastore/label?image={}&tag={}".format(cls.MOCK_SERVER_URL, 6662775, "version_1")
- body = {
- "params": {
- "label_info": [
- {"name": "Lung", "idx": 1},
- {"name": "Heart", "idx": 2},
- {"name": "Trachea", "idx": 3},
- {"name": "Mediastinum", "idx": 4},
- {"name": "Clavicle", "idx": 5},
- ],
- "segmentationMeta": {
- "status": "approved",
- "approvedBy": "Approver",
- "level": "hard",
- "comment": "the_comment",
- "editTime": 1660488836,
- },
- }
- }
-
- client.expect(
- request(
- method="PUT",
- path="/datastore/label",
- querystring={"image": "6662775", "tag": "version_1"},
- headers={"content-Type": "application/json"},
- body=json_equals(body),
- ),
- response(code=200),
- times(1),
- )
-
- result = requests.put(
- cls.MOCK_SERVER_URL + "/datastore/label",
- params={"image": "6662775", "tag": "version_1"},
- json=body,
- headers={"content-Type": "application/json"},
- )
-
- cls.assertEqual(200, result.status_code)
- cls.assertEqual(urlToBeTested, result.url)
- client.reset()
-
- def test_deleteLabelByVersionTag(cls):
- client = MockServerFriendlyClient(cls.MOCK_SERVER_URL)
-
- urlToBeTested = "{}/datastore/label?id={}&tag={}".format(cls.MOCK_SERVER_URL, "6662775", "final")
-
- client.expect(
- request(method="DELETE", path="/datastore/label", querystring={"id": "6662775", "tag": "final"}),
- response(code=200),
- times(1),
- )
-
- result = requests.delete(
- cls.MOCK_SERVER_URL + "/datastore/label",
- params={"id": "6662775", "tag": "final"},
- )
- cls.assertEqual(200, result.status_code)
-
- cls.assertEqual(urlToBeTested, result.url)
- client.reset()
-
- def test_checkServerConnection(cls):
- client = MockServerFriendlyClient(cls.MOCK_SERVER_URL)
- client.expect(request(method="GET"), response(code=200), times(1))
-
- result = requests.get(cls.MOCK_SERVER_URL)
-
- cls.assertEqual(200, result.status_code)
- cls.assertEqual(cls.MOCK_SERVER_URL + "/", result.url)
-
- def test_requestSegmentation(cls):
- urlToBeTested = cls.MOCK_SERVER_URL + "/datastore/label?label=6662775&tag=final"
- client = MockServerFriendlyClient(cls.MOCK_SERVER_URL)
-
- client.expect(
- request(method="GET", path="/datastore/label", querystring={"label": "6662775", "tag": "final"}),
- response(code=200),
- times(1),
- )
-
- result = requests.get(cls.MOCK_SERVER_URL + "/datastore/label", params={"label": "6662775", "tag": "final"})
-
- cls.assertEqual(200, result.status_code)
- cls.assertEqual(urlToBeTested, result.url)
-
- def test_getDicomDownloadUri(cls):
- monaiServerREST = MonaiServerREST(cls.MOCK_SERVER_URL)
- imageId = "6662775"
- url = monaiServerREST.getDicomDownloadUri(imageId)
- cls.assertEqual("http://localhost:1080/datastore/image?image=6662775", url)
-
-
-if __name__ == "__main__":
- unittest.main()
diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/UnitTests/TestDataSet/test_datastore_v2_image_with_multiple_versions.json b/monailabel/plugins/slicer/MONAILabelReviewer/UnitTests/TestDataSet/test_datastore_v2_image_with_multiple_versions.json
deleted file mode 100644
index 36ecec3..0000000
--- a/monailabel/plugins/slicer/MONAILabelReviewer/UnitTests/TestDataSet/test_datastore_v2_image_with_multiple_versions.json
+++ /dev/null
@@ -1,204 +0,0 @@
-{
- "image": {
- "ext": ".dcm",
- "info": {
- "ts": 1640005767,
- "checksum": "SHA256:a48c454592a36c1d2895322320e5ab5479eb5e93d9d4f3e16825625033875d6f",
- "name": "lan.dcm",
- "strategy": {
- "annotate": {
- "ts": 1641142367,
- "client_id": "user-xyz"
- }
- },
- "segmentationMeta": {
- "status": "approved",
- "approvedBy": "",
- "level": "medium",
- "comment": "",
- "editTime": 1641142567
- }
- }
- },
- "labels": {
- "final": {
- "ext": ".nrrd",
- "info": {
- "label_info": [
- {
- "name": "Lung",
- "idx": 1
- },
- {
- "name": "Heart",
- "idx": 2
- },
- {
- "name": "Trachea",
- "idx": 3
- },
- {
- "name": "Mediastinum",
- "idx": 4
- },
- {
- "name": "Clavicle",
- "idx": 5
- }
- ],
- "client_id": "user-xyz",
- "ts": 1641142448,
- "checksum": "SHA256:46f01fd17dbe3e812e03ca3495b0282e90c7224d02ec85e63e9b5b4da83ba5af",
- "name": "lan.nrrd",
- "segmentationMeta": {
- "status": "self.status_final",
- "approvedBy": "self.approvedBy_final",
- "level": "self.level_final",
- "comment": "self.comment_final",
- "editTime": 1656312100
- }
- }
- },
- "version_1": {
- "ext": ".nrrd",
- "info": {
- "label_info": [
- {
- "name": "Lung",
- "idx": 1
- },
- {
- "name": "Heart",
- "idx": 2
- },
- {
- "name": "Trachea",
- "idx": 3
- },
- {
- "name": "Mediastinum",
- "idx": 4
- },
- {
- "name": "Clavicle",
- "idx": 5
- }
- ],
- "segmentationMeta": {
- "status": "self.status_1",
- "approvedBy": "self.approvedBy_1",
- "level": "self.level_1",
- "comment": "self.comment_1",
- "editTime": 1656312180
- },
- "ts": 1656312180,
- "checksum": "SHA256:6abdbcacccd5dabaeaf1c933802b6964c4a021a04d56cbe1a342cc04d6049cb5",
- "name": "lan.nrrd"
- }
- },
- "version_2": {
- "ext": ".nrrd",
- "info": {
- "label_info": [
- {
- "name": "Lung",
- "idx": 1
- },
- {
- "name": "Heart",
- "idx": 2
- },
- {
- "name": "Trachea",
- "idx": 3
- },
- {
- "name": "Mediastinum",
- "idx": 4
- },
- {
- "name": "Clavicle",
- "idx": 5
- }
- ],
- "ts": 1656312196,
- "checksum": "SHA256:6abdbcacccd5dabaeaf1c933802b6964c4a021a04d56cbe1a342cc04d6049cb5",
- "name": "lan.nrrd"
- }
- },
- "version_3": {
- "ext": ".nrrd",
- "info": {
- "label_info": [
- {
- "name": "Lung",
- "idx": 1
- },
- {
- "name": "Heart",
- "idx": 2
- },
- {
- "name": "Trachea",
- "idx": 3
- },
- {
- "name": "Mediastinum",
- "idx": 4
- },
- {
- "name": "Clavicle",
- "idx": 5
- }
- ],
- "segmentationMeta": {
- "status": "self.status_3",
- "approvedBy": "self.approvedBy_3",
- "level": "self.level_3",
- "comment": "self.comment_3",
- "editTime": 1656312200
- },
- "ts": 1656312200,
- "checksum": "SHA256:6abdbcacccd5dabaeaf1c933802b6964c4a021a04d56cbe1a342cc04d6049cb5",
- "name": "lan.nrrd"
- }
- },
- "version_4": {
- "ext": ".nrrd",
- "info": {
- "label_info": [
- {
- "name": "Lung",
- "idx": 1
- },
- {
- "name": "Heart",
- "idx": 2
- },
- {
- "name": "Trachea",
- "idx": 3
- },
- {
- "name": "Mediastinum",
- "idx": 4
- },
- {
- "name": "Clavicle",
- "idx": 5
- }
- ],
- "segmentationMeta": {
- "status": "approved",
- "approvedBy": "self.approvedBy_4",
- "level": "self.level_4",
- "comment": "self.comment_4",
- "editTime": 1656312200
- },
- "ts": 1656312200,
- "checksum": "SHA256:6abdbcacccd5dabaeaf1c933802b6964c4a021a04d56cbe1a342cc04d6049cb5",
- "name": "lan.nrrd"
- }
- }
- }
-}
diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/UnitTests/TestDataSet/test_datastore_v2_image_with_segmentation.json b/monailabel/plugins/slicer/MONAILabelReviewer/UnitTests/TestDataSet/test_datastore_v2_image_with_segmentation.json
deleted file mode 100644
index 0d65231..0000000
--- a/monailabel/plugins/slicer/MONAILabelReviewer/UnitTests/TestDataSet/test_datastore_v2_image_with_segmentation.json
+++ /dev/null
@@ -1,56 +0,0 @@
-{
- "image": {
- "ext": ".dcm",
- "info": {
- "ts": 1639519453,
- "checksum": "SHA256:1b474d23bda3de0c28f4287a7c0380d461e9f71d0dc468e64f336412cb575327",
- "name": "6662775.dcm",
- "strategy": {
- "annotate": {
- "ts": 1639647351,
- "client_id": "Annotator"
- }
- }
- }
- },
- "labels": {
- "final": {
- "ext": ".seg.nrrd",
- "info": {
- "label_info": [
- {
- "name": "Lung",
- "idx": 1
- },
- {
- "name": "Heart",
- "idx": 2
- },
- {
- "name": "Trachea",
- "idx": 3
- },
- {
- "name": "Mediastinum",
- "idx": 4
- },
- {
- "name": "Clavicle",
- "idx": 5
- }
- ],
- "client_id": "Annotator",
- "ts": 1639647550,
- "checksum": "SHA256:7563c2dda16ac2db37fdcc0587f6bbf7c3c6646dcb5676891a264388cfb1c8ba",
- "name": "6662775.seg.nrrd",
- "segmentationMeta": {
- "status": "flagged",
- "approvedBy": "Prof Radiogolist",
- "level": "easy",
- "comment": "Segementation was not easy",
- "editTime": "Thu Jan 13 12:21:01 2022"
- }
- }
- }
- }
-}
diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/UnitTests/TestDataSet/test_datastore_v2_image_without_segmentation.json b/monailabel/plugins/slicer/MONAILabelReviewer/UnitTests/TestDataSet/test_datastore_v2_image_without_segmentation.json
deleted file mode 100644
index 25f1311..0000000
--- a/monailabel/plugins/slicer/MONAILabelReviewer/UnitTests/TestDataSet/test_datastore_v2_image_without_segmentation.json
+++ /dev/null
@@ -1,34 +0,0 @@
-{
- "image": {
- "ext": ".dcm",
- "info": {
- "ts": 1642170799,
- "checksum": "SHA256:f1f8ef13433b1f0966e589818f3180750606eff69b3bc4a55e0181d7a9da8da1",
- "name": "6245968.dcm",
- "strategy": {
- "Random": {
- "ts": 1642371057,
- "client_id": "Dr Radiologist"
- }
- }
- }
- },
- "labels": {
- "original": {
- "ext": ".seg.nrrd",
- "info": {
- "label_names": [
- "Background",
- "Mediastinum",
- "Lung",
- "Heart",
- "Trachea",
- "Clavicle"
- ],
- "ts": 1642371078,
- "checksum": "SHA256:18f67b39871c68c7d62292b0b8bbec97dafeee66c607cf823d67303b8a59c953",
- "name": "6245968.seg.nrrd"
- }
- }
- }
-}
diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/UnitTests/TestDataSet/test_json_datastore_v2.json b/monailabel/plugins/slicer/MONAILabelReviewer/UnitTests/TestDataSet/test_json_datastore_v2.json
deleted file mode 100644
index 2852485..0000000
--- a/monailabel/plugins/slicer/MONAILabelReviewer/UnitTests/TestDataSet/test_json_datastore_v2.json
+++ /dev/null
@@ -1,171 +0,0 @@
-{
- "name": "new-dataset",
- "description": "New Dataset",
- "images_dir": ".",
- "labels_dir": "labels",
- "objects": {
- "6213798": {
- "image": {
- "ext": ".dcm",
- "info": {
- "ts": 1642170799,
- "checksum": "SHA256:5ca275af76a8fe88939058f9c91ecb72ce96bd5f012198fc366e4ef0214849b9",
- "name": "6213798.dcm",
- "strategy": {
- "Random": {
- "ts": 1642170835,
- "client_id": "Test-Radiologist-not-segmented"
- }
- }
- }
- },
- "labels": {}
- },
- "6245968": {
- "image": {
- "ext": ".dcm",
- "info": {
- "ts": 1642170799,
- "checksum": "SHA256:f1f8ef13433b1f0966e589818f3180750606eff69b3bc4a55e0181d7a9da8da1",
- "name": "6245968.dcm",
- "strategy": {
- "Random": {
- "ts": 1642371057,
- "client_id": "Test-Radiologist"
- }
- }
- }
- },
- "labels": {
- "original": {
- "ext": ".seg.nrrd",
- "info": {
- "label_names": [
- "Background",
- "Mediastinum",
- "Lung",
- "Heart",
- "Trachea",
- "Clavicle"
- ],
- "ts": 1642371078,
- "checksum": "SHA256:18f67b39871c68c7d62292b0b8bbec97dafeee66c607cf823d67303b8a59c953",
- "name": "6245968.seg.nrrd"
- }
- }
- }
- },
- "6667571": {
- "image": {
- "ext": ".dcm",
- "info": {
- "ts": 1639519453,
- "checksum": "SHA256:2a454e9ab8a33dc74996784163a362a53e04adcee2fd73a8b6299bf0ce5060d3",
- "name": "6667571.dcm",
- "strategy": {
- "annotate": {
- "ts": 1639985938,
- "client_id": "Test-Radiolgist-Segmented"
- }
- }
- }
- },
- "labels": {
- "final": {
- "ext": ".seg.nrrd",
- "info": {
- "label_info": [
- {
- "name": "Lung",
- "idx": 1
- },
- {
- "name": "Heart",
- "idx": 2
- },
- {
- "name": "Trachea",
- "idx": 3
- },
- {
- "name": "Mediastinum",
- "idx": 4
- },
- {
- "name": "Clavicle",
- "idx": 5
- }
- ],
- "client_id": "Test-Radiolgist-Segmented",
- "ts": 1639986085,
- "checksum": "SHA256:d58542b4ac321b137dd33edc86cd69a84aa6c1fd1c2cb704a124756ef8788e79",
- "name": "6667571.seg.nrrd",
- "segmentationMeta": {
- "status": "approved",
- "approvedBy": "Test-Reviewer",
- "level": "hard",
- "comment": "",
- "editTime": "Thu Apr 28 16:56:36 2022"
- }
- }
- }
- }
- },
- "8887571": {
- "image": {
- "ext": ".dcm",
- "info": {
- "ts": 1639519453,
- "checksum": "SHA256:2a454e9ab8a33dc74996784163a362a53e04adcee2fd73a8b6299bf0ce5060d3",
- "name": "8887571.dcm",
- "strategy": {
- "annotate": {
- "ts": 1639985938,
- "client_id": "Test-Radiolgist-Segmented"
- }
- }
- }
- },
- "labels": {
- "final": {
- "ext": ".seg.nrrd",
- "info": {
- "label_info": [
- {
- "name": "Lung",
- "idx": 1
- },
- {
- "name": "Heart",
- "idx": 2
- },
- {
- "name": "Trachea",
- "idx": 3
- },
- {
- "name": "Mediastinum",
- "idx": 4
- },
- {
- "name": "Clavicle",
- "idx": 5
- }
- ],
- "client_id": "Test-Radiolgist-Segmented",
- "ts": 1639986085,
- "checksum": "SHA256:d58542b4ac321b137dd33edc86cd69a84aa6c1fd1c2cb704a124756ef8788e79",
- "name": "8887571.seg.nrrd",
- "segmentationMeta": {
- "status": "flagged",
- "approvedBy": "Test-Reviewer",
- "level": "hard",
- "comment": "",
- "editTime": "Thu Apr 28 16:56:36 2022"
- }
- }
- }
- }
- }
- }
-}
diff --git a/monailabel/plugins/slicer/README.md b/monailabel/plugins/slicer/README.md
deleted file mode 100644
index 404246e..0000000
--- a/monailabel/plugins/slicer/README.md
+++ /dev/null
@@ -1,54 +0,0 @@
-
-
-## MONAI Label Plugin for 3D Slicer
-
-3D Slicer is a free, open-source software for visualization, processing, segmentation, registration, and other 3D images and meshes. MONAI Label supports 3D Slicer with radiology and monaibundle applications. With its advanced features, 3D Slicer is a mature and well-tested viewer for radiology studies and algorithms.
-
-
-
-### Table of Contents
-- [Supported Applications](#supported-applications)
-- [Installing 3D Slicer](#installing-3d-slicer)
-- [Installing MONAI Label Plugin](#installing-monai-label-plugin)
-- [Plugin in Developer Mode](#plugin-in-developer-mode)
-- [Plugin Settings](#plugin-settings)
-
-### Supported Applications
-Users can find supported applications in the [sample-apps](../../sample-apps/radiology/) folder under the radiology section. They'll find models like DeepEdit, DeepGrow, Segmentation, and more. These applications can be used to create and refine labels for various medical imaging tasks.
-
-### Installing 3D Slicer
-To use MONAI Label with 3D Slicer, you'll need to download and install 3D Slicer. MONAI Label supports stable and preview versions of 3D Slicer, version 5.0 or higher. For more information on installing 3D Slicer, check out the [3D Slicer Documentation](https://slicer.readthedocs.io/en/latest/user_guide/getting_started.html#installing-3d-slicer)
-
-### Installing MONAI Label Plugin
-
-- Go to **View** -> **Extension Manager** -> **Active Learning** -> **MONAI Label**
-- Install MONAI Label plugin
-- _**Restart**_ 3D Slicer
-
-**Note:** To update the plugin to the latest version, you have to uninstall the existing 3D Slicer version and download and install the new preview version of 3D Slicer again
-
-### Plugin in Developer Mode
-
-- `git clone git@github.com:Project-MONAI/MONAILabel.git`
-- Open 3D Slicer: Go to **Edit** -> **Application Settings** -> **Modules** -> **Additional Module Paths**
-- Add New Module Path: __/plugins/slicer/MONAILabel
-- _**Restart**_ 3D Slicer
-
-### Plugin Settings
-You can change some default behaviors for the MONAI Label plugin by following these steps:
-
-1. Go to **Edit** -> **Application Settings** -> **MONAI Label**
-2. Customize the settings as per your requirement.
-
-
diff --git a/pyproject.toml b/pyproject.toml
deleted file mode 100644
index 84f836b..0000000
--- a/pyproject.toml
+++ /dev/null
@@ -1,32 +0,0 @@
-[tool.black]
-line-length = 120
-target-version = ['py38', 'py39', 'py310']
-include = '\.pyi?$'
-exclude = '''
-(
- /(
- # exclude a few common directories in the root of the project
- \.eggs
- | \.git
- | \.hg
- | \.mypy_cache
- | \.tox
- | \.venv
- | venv
- | \.pytype
- | _build
- | buck-out
- | build
- | dist
- )/
-)
-'''
-
-[tool.pycln]
-all = true
-exclude = "monai/bundle/__main__.py"
-
-[tool.ruff]
-line-length = 133
-ignore-init-module-imports = true
-ignore = ["F401", "E741", "F403", "F405"]
diff --git a/training/README.md b/training/README.md
deleted file mode 100644
index d682e67..0000000
--- a/training/README.md
+++ /dev/null
@@ -1,116 +0,0 @@
-# Model Overview
-![image](../assets/img.png)
-This repository contains the training code for MONAI VISTA 2.5D model. MONAI VISTA 2.5D is based on SAM [1] but we finetune
-the model (image encoder, prompt encoder, and mask decoder) on 3D medical data. MONAI VISTA introduces
-the class-label prompt and enables the fully automatic inference on known classes. It also shows the potential of
-generalizing to unknown class. In addition, MONAI VISTA takes 2.5D input, so our model can leverage the information
-from multiple slices.
-
-
-# Works in progress
-We are still actively developing this model. Features coming soon:
-1. **MONAI VISTA 3D Model**. It will support 3D volumetric inputs to enable a larger field of view and reduce user’s annotation efforts.
-2. **Text-based class-label prompt**. It will support encoding input text (e.g., “A computerized tomography of {Liver}”) as the class-label prompt.
-3. **Multiple Datasets Training**. We are working on supporting more pre-defined class labels for the fully automatic inference pipeline. Due to the nature of prompt-based segmentation, our model is compatible with the partial label training.
-
-
-# Installing Dependencies
-Dependencies can be installed using:
-``` bash
-pip install -r requirements.txt
-```
-
-# Models
-
-Please download the pre-trained weights from this
- link .
-
-# Data Preparation
-![image](../assets/img_1.png)
-Figure source from the TotalSegmentator [2].
-
-The training data is from the [TotalSegmentator](https://github.com/wasserth/TotalSegmentator) [2].
-
-- Target: 104 anatomical structures.
-- Task: Segmentation
-- Modality: CT
-- Size: 1204 3D volumes
-- Spacing: [1.5, 1.5, 1.5]
-
-More details about preprocessing this dataset can be found at
- link .
-
-The json file containing the data list that is used to train our models can be downloaded from
- link .
-
-
-Note that you need to provide the location of your dataset directory and json file by using ```--data_dir``` and ```--json_list```.
-
-# Training
-
-A MONAI VISTA 2.5D model (ViT-B base) with standard hyperparameters is defined as:
-
-```py
-_build_vista2pt5d(
- encoder_in_chans=27,
- encoder_embed_dim=768,
- encoder_depth=12,
- encoder_num_heads=12,
- encoder_global_attn_indexes=[2, 5, 8, 11],
- checkpoint=None,
- image_size=1024,
- clip_class_label_prompt=False,
- patch_embed_3d=False,
- )
-```
-
-Or, you may directly call:
-
-```py
-build_vista2pt5d_vit_b()
-```
-
-The above VISTA 2.5D model is used for CT images (9 slices 2.5D) with input spacing size ```(1.5, 1.5, 1.5)``` and for ```104``` class promptable segmentation.
-
-Using the default values for hyperparameters,
-the following command can be used to initiate training using PyTorch native AMP package:
-
-``` bash
-python main_2pt5d.py --max_epochs 100 --val_every 1 --optim_lr 0.000005 \
---num_patch 24 --num_prompt 32 \
---json_list ./totalsegmentator_104organs_folds_v2.json \
---data_dir /data/ \
---roi_z_iter 9 --save_checkpoint \
---sam_base_model vit_b \
---logdir finetune_ckpt_example --point_prompt --label_prompt --distributed --seed 12346 \
---iterative_training_warm_up_epoch 50 --reuse_img_embedding \
---label_prompt_warm_up_epoch 25 \
---checkpoint ./runs/9s_2dembed_model.pt
-```
-
-Above command will start the finetune training for the provided pre-trained weights
-(50 epochs single-step training and 50 epochs iterative training).
-
-# Evaluation
-
-To evaluate the `VISTA 2.5D model` using MONAI Label, please find the detailed instructions from
- here .
-
-
-# Reference
-
-```
-[1]: @article{kirillov2023segany,
- title={Segment Anything},
- author={Kirillov, Alexander and Mintun, Eric and Ravi, Nikhila and Mao, Hanzi and Rolland, Chloe and Gustafson, Laura and Xiao, Tete and Whitehead, Spencer and Berg, Alexander C. and Lo, Wan-Yen and Doll{\'a}r, Piotr and Girshick, Ross},
- journal={arXiv:2304.02643},
- year={2023}
- }
-
-[2]: @article{wasserthal2022totalsegmentator,
- title={TotalSegmentator: robust segmentation of 104 anatomical structures in CT images},
- author={Wasserthal, Jakob and Meyer, Manfred and Breit, Hanns-Christian and Cyriac, Joshy and Yang, Shan and Segeroth, Martin},
- journal={arXiv preprint arXiv:2208.05868},
- year={2022}
- }
-```
diff --git a/training/example_train_script.sh b/training/example_train_script.sh
deleted file mode 100644
index 4976c56..0000000
--- a/training/example_train_script.sh
+++ /dev/null
@@ -1,11 +0,0 @@
-#!/bin/bash
-python main_2pt5d.py --max_epochs 100 --val_every 1 --optim_lr 0.000005 \
---num_patch 24 --num_prompt 32 \
---json_list ./totalsegmentator_104organs_folds_v2.json \
---data_dir /data/ \
---roi_z_iter 9 --save_checkpoint \
---sam_base_model vit_b \
---logdir finetune_ckpt_example --point_prompt --label_prompt --distributed --seed 12346 \
---iterative_training_warm_up_epoch 50 --reuse_img_embedding \
---label_prompt_warm_up_epoch 25 \
---checkpoint ./runs/9s_2dembed_model.pt
diff --git a/training/main_2pt5d.py b/training/main_2pt5d.py
deleted file mode 100644
index 46f3637..0000000
--- a/training/main_2pt5d.py
+++ /dev/null
@@ -1,258 +0,0 @@
-# Copyright 2020 - 2022 MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-import argparse
-import sys
-import warnings
-from subprocess import Popen
-
-import numpy as np
-import torch
-import torch.distributed as dist
-import torch.multiprocessing as mp
-import torch.nn.parallel
-import torch.utils.data.distributed
-from monai.losses import DiceCELoss
-from monai.metrics import DiceMetric
-from monai.transforms import Activations, AsDiscrete, Compose
-from monai.utils import set_determinism
-from monai.utils.enums import MetricReduction
-from optimizers.lr_scheduler import LinearWarmupCosineAnnealingLR
-from trainer_2pt5d import run_training
-from utils.data_utils import get_loader
-from vista_2pt5d.model import sam_model_registry
-
-warnings.filterwarnings("ignore", category=UserWarning, module="monai")
-warnings.filterwarnings("ignore", category=UserWarning, module="torch")
-warnings.filterwarnings("ignore", category=UserWarning, module="nibabel")
-parser = argparse.ArgumentParser(description="Swin UNETR segmentation pipeline")
-parser.add_argument("--checkpoint", default=None, help="start training from saved checkpoint")
-parser.add_argument("--logdir", default="vista2pt5d", type=str, help="directory to save the tensorboard logs")
-parser.add_argument("--data_dir", default="/dataset/dataset0/", type=str, help="dataset directory")
-parser.add_argument("--json_list", default="dataset_0.json", type=str, help="dataset json file")
-parser.add_argument("--save_checkpoint", action="store_true", help="save checkpoint during training")
-parser.add_argument("--max_epochs", default=1600, type=int, help="max number of training epochs")
-parser.add_argument("--batch_size", default=1, type=int, help="number of batch size")
-parser.add_argument("--optim_lr", default=1e-4, type=float, help="optimization learning rate")
-parser.add_argument("--optim_name", default="adamw", type=str, help="optimization algorithm")
-parser.add_argument("--reg_weight", default=1e-5, type=float, help="regularization weight")
-parser.add_argument("--momentum", default=0.99, type=float, help="momentum")
-parser.add_argument("--noamp", action="store_true", help="do NOT use amp for training")
-parser.add_argument("--val_every", default=1, type=int, help="validation frequency")
-parser.add_argument("--distributed", action="store_true", help="start distributed training")
-parser.add_argument("--world_size", default=1, type=int, help="number of nodes for distributed training")
-parser.add_argument("--rank", default=0, type=int, help="node rank for distributed training")
-parser.add_argument("--dist-url", default="tcp://127.0.0.1:23456", type=str, help="distributed url")
-parser.add_argument("--dist-backend", default="nccl", type=str, help="distributed backend")
-parser.add_argument("--workers", default=8, type=int, help="number of workers")
-parser.add_argument("--use_normal_dataset", action="store_true", help="use monai Dataset class")
-parser.add_argument("--a_min", default=-1024, type=float, help="a_min in ScaleIntensityRanged")
-parser.add_argument("--a_max", default=1024, type=float, help="a_max in ScaleIntensityRanged")
-parser.add_argument("--b_min", default=0.0, type=float, help="b_min in ScaleIntensityRanged")
-parser.add_argument("--b_max", default=1.0, type=float, help="b_max in ScaleIntensityRanged")
-parser.add_argument("--fold", default=0, type=int, help="fold")
-parser.add_argument(
- "--splitval", default=0, type=float, help="if not zero, split the last portion to validation and validation to test"
-)
-parser.add_argument("--roi_z_iter", default=9, type=int, help="roi size in z direction")
-parser.add_argument("--roi_z_iter_dilation", default=0, type=int, help="dilation size in z direction")
-parser.add_argument("--lrschedule", default="No", type=str, help="type of learning rate scheduler")
-parser.add_argument("--warmup_epochs", default=50, type=int, help="number of warmup epochs")
-parser.add_argument("--resume_ckpt", action="store_true", help="resume training from pretrained checkpoint")
-parser.add_argument("--num_patch", default=4, type=int, help="number of patches in each volume")
-parser.add_argument("--num_patch_val", default=30, type=int, help="number of patches in each volume during validation")
-parser.add_argument("--num_prompt", default=8, type=int, help="number of prompts for each training instance")
-parser.add_argument("--clip", default=None, type=float, help="gradient clip")
-parser.add_argument("--seed", default=-1, type=int, help="seed")
-parser.add_argument("--sam_pretrain_ckpt", type=str, default=None, help="sam_pretrain_ckpt")
-parser.add_argument("--sam_base_model", type=str, default="vit_b", help="sam_pretrain_ckpt")
-parser.add_argument("--sam_image_size", type=int, default=1024, help="sam input res")
-parser.add_argument("--label_prompt", action="store_true", help="using class label prompt in training")
-parser.add_argument("--drop_label_prob", default=0.5, type=float, help="prob for dropping label prompt in training")
-parser.add_argument(
- "--label_prompt_warm_up_epoch",
- default=20,
- type=int,
- help="before this number of epoch, we will drop label prompt with low prob.",
-)
-parser.add_argument("--point_prompt", action="store_true", help="using point prompt in training")
-parser.add_argument("--drop_point_prob", default=0.5, type=float, help="prob for dropping point prompt in training")
-parser.add_argument(
- "--max_points",
- default=8,
- type=int,
- help="max number of point prompts in training for the first ponit prompt generation",
-)
-parser.add_argument("--points_val_pos", default=1, type=int, help="number of positive point prompts in evaluation")
-parser.add_argument("--points_val_neg", default=0, type=int, help="number of negative point prompts in evaluation")
-parser.add_argument("--num_iterative_step", default=5, type=int, help="number of iterative step in training")
-parser.add_argument("--reuse_img_embedding", action="store_true", help="reuse image embedding in iterative training")
-parser.add_argument(
- "--no_more_points_for_cp_only",
- action="store_true",
- help="if no point prompt at the first prompt generation we will not add "
- "more additional pointa during iterative training.",
-)
-parser.add_argument(
- "--iterative_training_warm_up_epoch",
- default=100,
- type=int,
- help="before this number of epoch, we will not start iterative_training_.",
-)
-parser.add_argument("--data_aug", action="store_true", help="using data augmentation in training")
-parser.add_argument("--pop_pos_embed", action="store_true", help="remove pos embedding when load checkpoint")
-parser.add_argument("--pop_point_embed", action="store_true", help="remove point embedding when load checkpoint")
-parser.add_argument("--skip_bk", action="store_true", help="skip background (0) during training")
-parser.add_argument("--patch_embed_3d", action="store_true", help="using 3d patch embedding layer")
-
-
-def start_tb(log_dir):
- cmd = ["tensorboard", "--logdir", log_dir]
- Popen(cmd, stderr=sys.stderr, stdout=sys.stdout, shell=False)
-
-
-def main():
- args = parser.parse_args()
- args.amp = not args.noamp
- args.logdir = "./runs/" + args.logdir
- # start_tb(args.logdir)
- if args.seed > -1:
- set_determinism(seed=args.seed)
- if args.distributed:
- args.ngpus_per_node = torch.cuda.device_count()
- print("Found total gpus", args.ngpus_per_node)
- args.world_size = args.ngpus_per_node * args.world_size
- mp.spawn(main_worker, nprocs=args.ngpus_per_node, args=(args,))
- else:
- main_worker(gpu=0, args=args)
-
-
-def main_worker(gpu, args):
- if args.distributed:
- torch.multiprocessing.set_start_method("fork", force=True)
- np.set_printoptions(formatter={"float": "{: 0.3f}".format}, suppress=True)
- args.gpu = gpu
- if args.distributed:
- args.rank = args.rank * args.ngpus_per_node + gpu
- dist.init_process_group(
- backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank
- )
- torch.cuda.set_device(args.gpu)
- torch.backends.cudnn.benchmark = True
- args.test_mode = False
- loader = get_loader(args)
- print(args.rank, " gpu", args.gpu)
- if args.rank == 0:
- print("Batch size is:", args.batch_size, "epochs", args.max_epochs)
-
- model = sam_model_registry[args.sam_base_model](
- args.sam_pretrain_ckpt,
- image_size=args.sam_image_size,
- encoder_in_chans=args.roi_z_iter * 3,
- patch_embed_3d=args.patch_embed_3d,
- )
-
- dice_loss = DiceCELoss(sigmoid=True)
-
- post_label = AsDiscrete(to_onehot=105)
- post_pred = Compose([Activations(sigmoid=True), AsDiscrete(threshold=0.5)])
- dice_acc = DiceMetric(include_background=False, reduction=MetricReduction.MEAN, get_not_nans=True)
-
- pytorch_total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
- print("Total trainable parameters count", pytorch_total_params * 1.0e-6, "M")
-
- best_acc = 0
- start_epoch = 0
- optimizer_state = None
-
- if args.checkpoint is not None:
- checkpoint = torch.load(args.checkpoint, map_location="cpu")
- from collections import OrderedDict
-
- new_state_dict = OrderedDict()
- for k, v in checkpoint["state_dict"].items():
- new_state_dict[k] = v
- if args.pop_pos_embed:
- print("pop_pos_embed")
- new_state_dict.pop("image_encoder.patch_embed.proj.weight")
- new_state_dict.pop("image_encoder.patch_embed.proj.bias")
- model.load_state_dict(new_state_dict, strict=False)
- elif args.pop_point_embed:
- print("pop_point_embed")
- new_state_dict.pop("prompt_encoder.point_embeddings.0.weight")
- new_state_dict.pop("prompt_encoder.point_embeddings.1.weight")
- new_state_dict.pop("prompt_encoder.point_embeddings.2.weight")
- new_state_dict.pop("prompt_encoder.point_embeddings.3.weight")
- model.load_state_dict(new_state_dict, strict=False)
- else:
- model.load_state_dict(new_state_dict, strict=True)
- if args.resume_ckpt:
- if "epoch" in checkpoint:
- start_epoch = checkpoint["epoch"]
- if "best_acc" in checkpoint:
- best_acc = checkpoint["best_acc"]
- if "optimizer" in checkpoint:
- optimizer_state = checkpoint["optimizer"]
- print("=> loaded checkpoint '{}' (epoch {}) (bestacc {})".format(args.checkpoint, start_epoch, best_acc))
-
- model.cuda(args.gpu)
-
- if args.distributed:
- torch.cuda.set_device(args.gpu)
- model.cuda(args.gpu)
- model = torch.nn.parallel.DistributedDataParallel(
- model, device_ids=[args.gpu], output_device=args.gpu, find_unused_parameters=True
- )
- if args.optim_name == "adam":
- optimizer = torch.optim.Adam(model.parameters(), lr=args.optim_lr, weight_decay=args.reg_weight)
- elif args.optim_name == "adamw":
- optimizer = torch.optim.AdamW(model.parameters(), lr=args.optim_lr, weight_decay=args.reg_weight)
- elif args.optim_name == "sgd":
- optimizer = torch.optim.SGD(
- model.parameters(), lr=args.optim_lr, momentum=args.momentum, nesterov=True, weight_decay=args.reg_weight
- )
- else:
- raise ValueError("Unsupported Optimization Procedure: " + str(args.optim_name))
-
- if optimizer_state is not None:
- optimizer.load_state_dict(optimizer_state)
- # override lr by the given value
- for param_group in optimizer.param_groups:
- param_group["lr"] = args.optim_lr
-
- if args.lrschedule == "warmup_cosine":
- scheduler = LinearWarmupCosineAnnealingLR(
- optimizer, warmup_epochs=args.warmup_epochs, max_epochs=args.max_epochs
- )
- elif args.lrschedule == "cosine_anneal":
- scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.max_epochs)
- if args.checkpoint is not None:
- scheduler.step(epoch=start_epoch)
- else:
- scheduler = None
- accuracy = run_training(
- model=model,
- train_loader=loader[0],
- val_loader=loader[1],
- optimizer=optimizer,
- loss_func=dice_loss,
- acc_func=dice_acc,
- args=args,
- scheduler=scheduler,
- start_epoch=start_epoch,
- post_label=post_label,
- post_pred=post_pred,
- )
- return accuracy
-
-
-if __name__ == "__main__":
- main()
diff --git a/training/optimizers/__init__.py b/training/optimizers/__init__.py
deleted file mode 100644
index e69de29..0000000
diff --git a/training/optimizers/lr_scheduler.py b/training/optimizers/lr_scheduler.py
deleted file mode 100644
index 0c35292..0000000
--- a/training/optimizers/lr_scheduler.py
+++ /dev/null
@@ -1,172 +0,0 @@
-# Copyright 2020 - 2021 MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-import math
-import warnings
-from typing import List
-
-from torch import nn as nn
-from torch.optim import Adam, Optimizer
-from torch.optim.lr_scheduler import LambdaLR, _LRScheduler
-
-__all__ = ["LinearLR", "ExponentialLR"]
-
-
-class _LRSchedulerMONAI(_LRScheduler):
- """Base class for increasing the learning rate between two boundaries over a number
- of iterations"""
-
- def __init__(self, optimizer: Optimizer, end_lr: float, num_iter: int, last_epoch: int = -1) -> None:
- """
- Args:
- optimizer: wrapped optimizer.
- end_lr: the final learning rate.
- num_iter: the number of iterations over which the test occurs.
- last_epoch: the index of last epoch.
- Returns:
- None
- """
- self.end_lr = end_lr
- self.num_iter = num_iter
- super(_LRSchedulerMONAI, self).__init__(optimizer, last_epoch)
-
-
-class LinearLR(_LRSchedulerMONAI):
- """Linearly increases the learning rate between two boundaries over a number of
- iterations.
- """
-
- def get_lr(self):
- r = self.last_epoch / (self.num_iter - 1)
- return [base_lr + r * (self.end_lr - base_lr) for base_lr in self.base_lrs]
-
-
-class ExponentialLR(_LRSchedulerMONAI):
- """Exponentially increases the learning rate between two boundaries over a number of
- iterations.
- """
-
- def get_lr(self):
- r = self.last_epoch / (self.num_iter - 1)
- return [base_lr * (self.end_lr / base_lr) ** r for base_lr in self.base_lrs]
-
-
-class WarmupCosineSchedule(LambdaLR):
- """Linear warmup and then cosine decay.
- Based on https://huggingface.co/ implementation.
- """
-
- def __init__(
- self, optimizer: Optimizer, warmup_steps: int, t_total: int, cycles: float = 0.5, last_epoch: int = -1
- ) -> None:
- """
- Args:
- optimizer: wrapped optimizer.
- warmup_steps: number of warmup iterations.
- t_total: total number of training iterations.
- cycles: cosine cycles parameter.
- last_epoch: the index of last epoch.
- Returns:
- None
- """
- self.warmup_steps = warmup_steps
- self.t_total = t_total
- self.cycles = cycles
- super(WarmupCosineSchedule, self).__init__(optimizer, self.lr_lambda, last_epoch)
-
- def lr_lambda(self, step):
- if step < self.warmup_steps:
- return float(step) / float(max(1.0, self.warmup_steps))
- progress = float(step - self.warmup_steps) / float(max(1, self.t_total - self.warmup_steps))
- return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(self.cycles) * 2.0 * progress)))
-
-
-class LinearWarmupCosineAnnealingLR(_LRScheduler):
- def __init__(
- self,
- optimizer: Optimizer,
- warmup_epochs: int,
- max_epochs: int,
- warmup_start_lr: float = 0.0,
- eta_min: float = 0.0,
- last_epoch: int = -1,
- ) -> None:
- """
- Args:
- optimizer (Optimizer): Wrapped optimizer.
- warmup_epochs (int): Maximum number of iterations for linear warmup
- max_epochs (int): Maximum number of iterations
- warmup_start_lr (float): Learning rate to start the linear warmup. Default: 0.
- eta_min (float): Minimum learning rate. Default: 0.
- last_epoch (int): The index of last epoch. Default: -1.
- """
- self.warmup_epochs = warmup_epochs
- self.max_epochs = max_epochs
- self.warmup_start_lr = warmup_start_lr
- self.eta_min = eta_min
-
- super(LinearWarmupCosineAnnealingLR, self).__init__(optimizer, last_epoch)
-
- def get_lr(self) -> List[float]:
- """
- Compute learning rate using chainable form of the scheduler
- """
- if not self._get_lr_called_within_step:
- warnings.warn(
- "To get the last learning rate computed by the scheduler, " "please use `get_last_lr()`.", UserWarning
- )
-
- if self.last_epoch == 0:
- return [self.warmup_start_lr] * len(self.base_lrs)
- elif self.last_epoch < self.warmup_epochs:
- return [
- group["lr"] + (base_lr - self.warmup_start_lr) / (self.warmup_epochs - 1)
- for base_lr, group in zip(self.base_lrs, self.optimizer.param_groups)
- ]
- elif self.last_epoch == self.warmup_epochs:
- return self.base_lrs
- elif (self.last_epoch - 1 - self.max_epochs) % (2 * (self.max_epochs - self.warmup_epochs)) == 0:
- return [
- group["lr"]
- + (base_lr - self.eta_min) * (1 - math.cos(math.pi / (self.max_epochs - self.warmup_epochs))) / 2
- for base_lr, group in zip(self.base_lrs, self.optimizer.param_groups)
- ]
-
- return [
- (1 + math.cos(math.pi * (self.last_epoch - self.warmup_epochs) / (self.max_epochs - self.warmup_epochs)))
- / (
- 1
- + math.cos(
- math.pi * (self.last_epoch - self.warmup_epochs - 1) / (self.max_epochs - self.warmup_epochs)
- )
- )
- * (group["lr"] - self.eta_min)
- + self.eta_min
- for group in self.optimizer.param_groups
- ]
-
- def _get_closed_form_lr(self) -> List[float]:
- """
- Called when epoch is passed as a param to the `step` function of the scheduler.
- """
- if self.last_epoch < self.warmup_epochs:
- return [
- self.warmup_start_lr + self.last_epoch * (base_lr - self.warmup_start_lr) / (self.warmup_epochs - 1)
- for base_lr in self.base_lrs
- ]
-
- return [
- self.eta_min
- + 0.5
- * (base_lr - self.eta_min)
- * (1 + math.cos(math.pi * (self.last_epoch - self.warmup_epochs) / (self.max_epochs - self.warmup_epochs)))
- for base_lr in self.base_lrs
- ]
diff --git a/training/requirements.txt b/training/requirements.txt
deleted file mode 100644
index 4666771..0000000
--- a/training/requirements.txt
+++ /dev/null
@@ -1,20 +0,0 @@
-monai>=1.2.0
-nibabel
-fvcore
-tqdm
-einops
-tensorboardX
-scipy
-positional-encodings[pytorch]
-SimpleITK
-tensorboard
-scipy
-scikit-learn
-scikit-image
-ptflops
-pillow
-timm
-nnunet
-h5py
-torch
-torchvision
diff --git a/training/segment_anything/__init__.py b/training/segment_anything/__init__.py
deleted file mode 100644
index 718fdc3..0000000
--- a/training/segment_anything/__init__.py
+++ /dev/null
@@ -1,15 +0,0 @@
-# Copyright (c) Meta Platforms, Inc. and affiliates.
-# All rights reserved.
-
-# This source code is licensed under the license found in the
-# LICENSE file in the root directory of this source tree.
-
-from .automatic_mask_generator import SamAutomaticMaskGenerator
-from .build_sam import (
- build_sam,
- build_sam_vit_b,
- build_sam_vit_h,
- build_sam_vit_l,
- sam_model_registry,
-)
-from .predictor import SamPredictor
diff --git a/training/segment_anything/automatic_mask_generator.py b/training/segment_anything/automatic_mask_generator.py
deleted file mode 100644
index 2cd252d..0000000
--- a/training/segment_anything/automatic_mask_generator.py
+++ /dev/null
@@ -1,368 +0,0 @@
-# Copyright (c) Meta Platforms, Inc. and affiliates.
-# All rights reserved.
-
-# This source code is licensed under the license found in the
-# LICENSE file in the root directory of this source tree.
-
-from typing import Any, Dict, List, Optional, Tuple
-
-import numpy as np
-import torch
-from torchvision.ops.boxes import batched_nms, box_area # type: ignore
-
-from .modeling import Sam
-from .predictor import SamPredictor
-from .utils.amg import (
- MaskData,
- area_from_rle,
- batch_iterator,
- batched_mask_to_box,
- box_xyxy_to_xywh,
- build_all_layer_point_grids,
- calculate_stability_score,
- coco_encode_rle,
- generate_crop_boxes,
- is_box_near_crop_edge,
- mask_to_rle_pytorch,
- remove_small_regions,
- rle_to_mask,
- uncrop_boxes_xyxy,
- uncrop_masks,
- uncrop_points,
-)
-
-
-class SamAutomaticMaskGenerator:
- def __init__(
- self,
- model: Sam,
- points_per_side: Optional[int] = 32,
- points_per_batch: int = 64,
- pred_iou_thresh: float = 0.88,
- stability_score_thresh: float = 0.95,
- stability_score_offset: float = 1.0,
- box_nms_thresh: float = 0.7,
- crop_n_layers: int = 0,
- crop_nms_thresh: float = 0.7,
- crop_overlap_ratio: float = 512 / 1500,
- crop_n_points_downscale_factor: int = 1,
- point_grids: Optional[List[np.ndarray]] = None,
- min_mask_region_area: int = 0,
- output_mode: str = "binary_mask",
- ) -> None:
- """
- Using a SAM model, generates masks for the entire image.
- Generates a grid of point prompts over the image, then filters
- low quality and duplicate masks. The default settings are chosen
- for SAM with a ViT-H backbone.
-
- Arguments:
- model (Sam): The SAM model to use for mask prediction.
- points_per_side (int or None): The number of points to be sampled
- along one side of the image. The total number of points is
- points_per_side**2. If None, 'point_grids' must provide explicit
- point sampling.
- points_per_batch (int): Sets the number of points run simultaneously
- by the model. Higher numbers may be faster but use more GPU memory.
- pred_iou_thresh (float): A filtering threshold in [0,1], using the
- model's predicted mask quality.
- stability_score_thresh (float): A filtering threshold in [0,1], using
- the stability of the mask under changes to the cutoff used to binarize
- the model's mask predictions.
- stability_score_offset (float): The amount to shift the cutoff when
- calculated the stability score.
- box_nms_thresh (float): The box IoU cutoff used by non-maximal
- suppression to filter duplicate masks.
- crops_n_layers (int): If >0, mask prediction will be run again on
- crops of the image. Sets the number of layers to run, where each
- layer has 2**i_layer number of image crops.
- crops_nms_thresh (float): The box IoU cutoff used by non-maximal
- suppression to filter duplicate masks between different crops.
- crop_overlap_ratio (float): Sets the degree to which crops overlap.
- In the first crop layer, crops will overlap by this fraction of
- the image length. Later layers with more crops scale down this overlap.
- crop_n_points_downscale_factor (int): The number of points-per-side
- sampled in layer n is scaled down by crop_n_points_downscale_factor**n.
- point_grids (list(np.ndarray) or None): A list over explicit grids
- of points used for sampling, normalized to [0,1]. The nth grid in the
- list is used in the nth crop layer. Exclusive with points_per_side.
- min_mask_region_area (int): If >0, postprocessing will be applied
- to remove disconnected regions and holes in masks with area smaller
- than min_mask_region_area. Requires opencv.
- output_mode (str): The form masks are returned in. Can be 'binary_mask',
- 'uncompressed_rle', or 'coco_rle'. 'coco_rle' requires pycocotools.
- For large resolutions, 'binary_mask' may consume large amounts of
- memory.
- """
-
- assert (points_per_side is None) != (
- point_grids is None
- ), "Exactly one of points_per_side or point_grid must be provided."
- if points_per_side is not None:
- self.point_grids = build_all_layer_point_grids(
- points_per_side,
- crop_n_layers,
- crop_n_points_downscale_factor,
- )
- elif point_grids is not None:
- self.point_grids = point_grids
- else:
- raise ValueError("Can't have both points_per_side and point_grid be None.")
-
- assert output_mode in [
- "binary_mask",
- "uncompressed_rle",
- "coco_rle",
- ], f"Unknown output_mode {output_mode}."
- if output_mode == "coco_rle":
- from pycocotools import mask as mask_utils # type: ignore # noqa: F401
-
- if min_mask_region_area > 0:
- import cv2 # type: ignore # noqa: F401
-
- self.predictor = SamPredictor(model)
- self.points_per_batch = points_per_batch
- self.pred_iou_thresh = pred_iou_thresh
- self.stability_score_thresh = stability_score_thresh
- self.stability_score_offset = stability_score_offset
- self.box_nms_thresh = box_nms_thresh
- self.crop_n_layers = crop_n_layers
- self.crop_nms_thresh = crop_nms_thresh
- self.crop_overlap_ratio = crop_overlap_ratio
- self.crop_n_points_downscale_factor = crop_n_points_downscale_factor
- self.min_mask_region_area = min_mask_region_area
- self.output_mode = output_mode
-
- @torch.no_grad()
- def generate(self, image: np.ndarray) -> List[Dict[str, Any]]:
- """
- Generates masks for the given image.
-
- Arguments:
- image (np.ndarray): The image to generate masks for, in HWC uint8 format.
-
- Returns:
- list(dict(str, any)): A list over records for masks. Each record is
- a dict containing the following keys:
- segmentation (dict(str, any) or np.ndarray): The mask. If
- output_mode='binary_mask', is an array of shape HW. Otherwise,
- is a dictionary containing the RLE.
- bbox (list(float)): The box around the mask, in XYWH format.
- area (int): The area in pixels of the mask.
- predicted_iou (float): The model's own prediction of the mask's
- quality. This is filtered by the pred_iou_thresh parameter.
- point_coords (list(list(float))): The point coordinates input
- to the model to generate this mask.
- stability_score (float): A measure of the mask's quality. This
- is filtered on using the stability_score_thresh parameter.
- crop_box (list(float)): The crop of the image used to generate
- the mask, given in XYWH format.
- """
-
- # Generate masks
- mask_data = self._generate_masks(image)
-
- # Filter small disconnected regions and holes in masks
- if self.min_mask_region_area > 0:
- mask_data = self.postprocess_small_regions(
- mask_data,
- self.min_mask_region_area,
- max(self.box_nms_thresh, self.crop_nms_thresh),
- )
-
- # Encode masks
- if self.output_mode == "coco_rle":
- mask_data["segmentations"] = [coco_encode_rle(rle) for rle in mask_data["rles"]]
- elif self.output_mode == "binary_mask":
- mask_data["segmentations"] = [rle_to_mask(rle) for rle in mask_data["rles"]]
- else:
- mask_data["segmentations"] = mask_data["rles"]
-
- # Write mask records
- curr_anns = []
- for idx in range(len(mask_data["segmentations"])):
- ann = {
- "segmentation": mask_data["segmentations"][idx],
- "area": area_from_rle(mask_data["rles"][idx]),
- "bbox": box_xyxy_to_xywh(mask_data["boxes"][idx]).tolist(),
- "predicted_iou": mask_data["iou_preds"][idx].item(),
- "point_coords": [mask_data["points"][idx].tolist()],
- "stability_score": mask_data["stability_score"][idx].item(),
- "crop_box": box_xyxy_to_xywh(mask_data["crop_boxes"][idx]).tolist(),
- }
- curr_anns.append(ann)
-
- return curr_anns
-
- def _generate_masks(self, image: np.ndarray) -> MaskData:
- orig_size = image.shape[:2]
- crop_boxes, layer_idxs = generate_crop_boxes(orig_size, self.crop_n_layers, self.crop_overlap_ratio)
-
- # Iterate over image crops
- data = MaskData()
- for crop_box, layer_idx in zip(crop_boxes, layer_idxs):
- crop_data = self._process_crop(image, crop_box, layer_idx, orig_size)
- data.cat(crop_data)
-
- # Remove duplicate masks between crops
- if len(crop_boxes) > 1:
- # Prefer masks from smaller crops
- scores = 1 / box_area(data["crop_boxes"])
- scores = scores.to(data["boxes"].device)
- keep_by_nms = batched_nms(
- data["boxes"].float(),
- scores,
- torch.zeros(len(data["boxes"])), # categories
- iou_threshold=self.crop_nms_thresh,
- )
- data.filter(keep_by_nms)
-
- data.to_numpy()
- return data
-
- def _process_crop(
- self,
- image: np.ndarray,
- crop_box: List[int],
- crop_layer_idx: int,
- orig_size: Tuple[int, ...],
- ) -> MaskData:
- # Crop the image and calculate embeddings
- x0, y0, x1, y1 = crop_box
- cropped_im = image[y0:y1, x0:x1, :]
- cropped_im_size = cropped_im.shape[:2]
- self.predictor.set_image(cropped_im)
-
- # Get points for this crop
- points_scale = np.array(cropped_im_size)[None, ::-1]
- points_for_image = self.point_grids[crop_layer_idx] * points_scale
-
- # Generate masks for this crop in batches
- data = MaskData()
- for (points,) in batch_iterator(self.points_per_batch, points_for_image):
- batch_data = self._process_batch(points, cropped_im_size, crop_box, orig_size)
- data.cat(batch_data)
- del batch_data
- self.predictor.reset_image()
-
- # Remove duplicates within this crop.
- keep_by_nms = batched_nms(
- data["boxes"].float(),
- data["iou_preds"],
- torch.zeros(len(data["boxes"])), # categories
- iou_threshold=self.box_nms_thresh,
- )
- data.filter(keep_by_nms)
-
- # Return to the original image frame
- data["boxes"] = uncrop_boxes_xyxy(data["boxes"], crop_box)
- data["points"] = uncrop_points(data["points"], crop_box)
- data["crop_boxes"] = torch.tensor([crop_box for _ in range(len(data["rles"]))])
-
- return data
-
- def _process_batch(
- self,
- points: np.ndarray,
- im_size: Tuple[int, ...],
- crop_box: List[int],
- orig_size: Tuple[int, ...],
- ) -> MaskData:
- orig_h, orig_w = orig_size
-
- # Run model on this batch
- transformed_points = self.predictor.transform.apply_coords(points, im_size)
- in_points = torch.as_tensor(transformed_points, device=self.predictor.device)
- in_labels = torch.ones(in_points.shape[0], dtype=torch.int, device=in_points.device)
- masks, iou_preds, _ = self.predictor.predict_torch(
- in_points[:, None, :],
- in_labels[:, None],
- multimask_output=True,
- return_logits=True,
- )
-
- # Serialize predictions and store in MaskData
- data = MaskData(
- masks=masks.flatten(0, 1),
- iou_preds=iou_preds.flatten(0, 1),
- points=torch.as_tensor(points.repeat(masks.shape[1], axis=0)),
- )
- del masks
-
- # Filter by predicted IoU
- if self.pred_iou_thresh > 0.0:
- keep_mask = data["iou_preds"] > self.pred_iou_thresh
- data.filter(keep_mask)
-
- # Calculate stability score
- data["stability_score"] = calculate_stability_score(
- data["masks"], self.predictor.model.mask_threshold, self.stability_score_offset
- )
- if self.stability_score_thresh > 0.0:
- keep_mask = data["stability_score"] >= self.stability_score_thresh
- data.filter(keep_mask)
-
- # Threshold masks and calculate boxes
- data["masks"] = data["masks"] > self.predictor.model.mask_threshold
- data["boxes"] = batched_mask_to_box(data["masks"])
-
- # Filter boxes that touch crop boundaries
- keep_mask = ~is_box_near_crop_edge(data["boxes"], crop_box, [0, 0, orig_w, orig_h])
- if not torch.all(keep_mask):
- data.filter(keep_mask)
-
- # Compress to RLE
- data["masks"] = uncrop_masks(data["masks"], crop_box, orig_h, orig_w)
- data["rles"] = mask_to_rle_pytorch(data["masks"])
- del data["masks"]
-
- return data
-
- @staticmethod
- def postprocess_small_regions(mask_data: MaskData, min_area: int, nms_thresh: float) -> MaskData:
- """
- Removes small disconnected regions and holes in masks, then reruns
- box NMS to remove any new duplicates.
-
- Edits mask_data in place.
-
- Requires open-cv as a dependency.
- """
- if len(mask_data["rles"]) == 0:
- return mask_data
-
- # Filter small disconnected regions and holes
- new_masks = []
- scores = []
- for rle in mask_data["rles"]:
- mask = rle_to_mask(rle)
-
- mask, changed = remove_small_regions(mask, min_area, mode="holes")
- unchanged = not changed
- mask, changed = remove_small_regions(mask, min_area, mode="islands")
- unchanged = unchanged and not changed
-
- new_masks.append(torch.as_tensor(mask).unsqueeze(0))
- # Give score=0 to changed masks and score=1 to unchanged masks
- # so NMS will prefer ones that didn't need postprocessing
- scores.append(float(unchanged))
-
- # Recalculate boxes and remove any new duplicates
- masks = torch.cat(new_masks, dim=0)
- boxes = batched_mask_to_box(masks)
- keep_by_nms = batched_nms(
- boxes.float(),
- torch.as_tensor(scores),
- torch.zeros(len(boxes)), # categories
- iou_threshold=nms_thresh,
- )
-
- # Only recalculate RLEs for masks that have changed
- for i_mask in keep_by_nms:
- if scores[i_mask] == 0.0:
- mask_torch = masks[i_mask].unsqueeze(0)
- mask_data["rles"][i_mask] = mask_to_rle_pytorch(mask_torch)[0]
- mask_data["boxes"][i_mask] = boxes[i_mask] # update res directly
- mask_data.filter(keep_by_nms)
-
- return mask_data
diff --git a/training/segment_anything/build_sam.py b/training/segment_anything/build_sam.py
deleted file mode 100644
index fef9980..0000000
--- a/training/segment_anything/build_sam.py
+++ /dev/null
@@ -1,113 +0,0 @@
-# Copyright (c) Meta Platforms, Inc. and affiliates.
-# All rights reserved.
-
-# This source code is licensed under the license found in the
-# LICENSE file in the root directory of this source tree.
-
-from functools import partial
-
-import torch
-
-from .modeling import (
- ImageEncoderViT,
- MaskDecoder,
- PromptEncoder,
- Sam,
- TwoWayTransformer,
-)
-
-
-def build_sam_vit_h(checkpoint=None):
- return _build_sam(
- encoder_embed_dim=1280,
- encoder_depth=32,
- encoder_num_heads=16,
- encoder_global_attn_indexes=[7, 15, 23, 31],
- checkpoint=checkpoint,
- )
-
-
-build_sam = build_sam_vit_h
-
-
-def build_sam_vit_l(checkpoint=None):
- return _build_sam(
- encoder_embed_dim=1024,
- encoder_depth=24,
- encoder_num_heads=16,
- encoder_global_attn_indexes=[5, 11, 17, 23],
- checkpoint=checkpoint,
- )
-
-
-def build_sam_vit_b(checkpoint=None):
- return _build_sam(
- encoder_embed_dim=768,
- encoder_depth=12,
- encoder_num_heads=12,
- encoder_global_attn_indexes=[2, 5, 8, 11],
- checkpoint=checkpoint,
- )
-
-
-sam_model_registry = {
- "default": build_sam,
- "vit_h": build_sam,
- "vit_l": build_sam_vit_l,
- "vit_b": build_sam_vit_b,
-}
-
-
-def _build_sam(
- encoder_embed_dim,
- encoder_depth,
- encoder_num_heads,
- encoder_global_attn_indexes,
- checkpoint=None,
-):
- prompt_embed_dim = 256
- image_size = 1024
- vit_patch_size = 16
- image_embedding_size = image_size // vit_patch_size
- sam = Sam(
- image_encoder=ImageEncoderViT(
- depth=encoder_depth,
- embed_dim=encoder_embed_dim,
- img_size=image_size,
- mlp_ratio=4,
- norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
- num_heads=encoder_num_heads,
- patch_size=vit_patch_size,
- qkv_bias=True,
- use_rel_pos=True,
- global_attn_indexes=encoder_global_attn_indexes,
- window_size=14,
- out_chans=prompt_embed_dim,
- ),
- prompt_encoder=PromptEncoder(
- embed_dim=prompt_embed_dim,
- image_embedding_size=(image_embedding_size, image_embedding_size),
- input_image_size=(image_size, image_size),
- mask_in_chans=16,
- ),
- mask_decoder=MaskDecoder(
- num_multimask_outputs=3,
- transformer=TwoWayTransformer(
- depth=2,
- embedding_dim=prompt_embed_dim,
- mlp_dim=2048,
- num_heads=8,
- ),
- transformer_dim=prompt_embed_dim,
- iou_head_depth=3,
- iou_head_hidden_dim=256,
- ),
- pixel_mean=[123.675, 116.28, 103.53],
- pixel_std=[58.395, 57.12, 57.375],
- )
- sam.eval()
- if checkpoint is not None:
- with open(checkpoint, "rb") as f:
- state_dict = torch.load(f)
- sam.load_state_dict(state_dict)
- return sam
diff --git a/training/segment_anything/modeling/__init__.py b/training/segment_anything/modeling/__init__.py
deleted file mode 100644
index 088af38..0000000
--- a/training/segment_anything/modeling/__init__.py
+++ /dev/null
@@ -1,11 +0,0 @@
-# Copyright (c) Meta Platforms, Inc. and affiliates.
-# All rights reserved.
-
-# This source code is licensed under the license found in the
-# LICENSE file in the root directory of this source tree.
-
-from .image_encoder import ImageEncoderViT
-from .mask_decoder import MaskDecoder
-from .prompt_encoder import PromptEncoder
-from .sam import Sam
-from .transformer import TwoWayTransformer
diff --git a/training/segment_anything/modeling/common.py b/training/segment_anything/modeling/common.py
deleted file mode 100644
index e872781..0000000
--- a/training/segment_anything/modeling/common.py
+++ /dev/null
@@ -1,43 +0,0 @@
-# Copyright (c) Meta Platforms, Inc. and affiliates.
-# All rights reserved.
-
-# This source code is licensed under the license found in the
-# LICENSE file in the root directory of this source tree.
-
-from typing import Type
-
-import torch
-import torch.nn as nn
-
-
-class MLPBlock(nn.Module):
- def __init__(
- self,
- embedding_dim: int,
- mlp_dim: int,
- act: Type[nn.Module] = nn.GELU,
- ) -> None:
- super().__init__()
- self.lin1 = nn.Linear(embedding_dim, mlp_dim)
- self.lin2 = nn.Linear(mlp_dim, embedding_dim)
- self.act = act()
-
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- return self.lin2(self.act(self.lin1(x)))
-
-
-# From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa
-# Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa
-class LayerNorm2d(nn.Module):
- def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
- super().__init__()
- self.weight = nn.Parameter(torch.ones(num_channels))
- self.bias = nn.Parameter(torch.zeros(num_channels))
- self.eps = eps
-
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- u = x.mean(1, keepdim=True)
- s = (x - u).pow(2).mean(1, keepdim=True)
- x = (x - u) / torch.sqrt(s + self.eps)
- x = self.weight[:, None, None] * x + self.bias[:, None, None]
- return x
diff --git a/training/segment_anything/modeling/image_encoder.py b/training/segment_anything/modeling/image_encoder.py
deleted file mode 100644
index 31360d3..0000000
--- a/training/segment_anything/modeling/image_encoder.py
+++ /dev/null
@@ -1,389 +0,0 @@
-# Copyright (c) Meta Platforms, Inc. and affiliates.
-# All rights reserved.
-
-# This source code is licensed under the license found in the
-# LICENSE file in the root directory of this source tree.
-
-from typing import Optional, Tuple, Type
-
-import torch
-import torch.nn as nn
-import torch.nn.functional as F
-
-from .common import LayerNorm2d, MLPBlock
-
-
-# This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py # noqa
-class ImageEncoderViT(nn.Module):
- def __init__(
- self,
- img_size: int = 1024,
- patch_size: int = 16,
- in_chans: int = 3,
- embed_dim: int = 768,
- depth: int = 12,
- num_heads: int = 12,
- mlp_ratio: float = 4.0,
- out_chans: int = 256,
- qkv_bias: bool = True,
- norm_layer: Type[nn.Module] = nn.LayerNorm,
- act_layer: Type[nn.Module] = nn.GELU,
- use_abs_pos: bool = True,
- use_rel_pos: bool = False,
- rel_pos_zero_init: bool = True,
- window_size: int = 0,
- global_attn_indexes: Tuple[int, ...] = (),
- ) -> None:
- """
- Args:
- img_size (int): Input image size.
- patch_size (int): Patch size.
- in_chans (int): Number of input image channels.
- embed_dim (int): Patch embedding dimension.
- depth (int): Depth of ViT.
- num_heads (int): Number of attention heads in each ViT block.
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
- qkv_bias (bool): If True, add a learnable bias to query, key, value.
- norm_layer (nn.Module): Normalization layer.
- act_layer (nn.Module): Activation layer.
- use_abs_pos (bool): If True, use absolute positional embeddings.
- use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
- rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
- window_size (int): Window size for window attention blocks.
- global_attn_indexes (list): Indexes for blocks using global attention.
- """
- super().__init__()
- self.img_size = img_size
-
- self.patch_embed = PatchEmbed(
- kernel_size=(patch_size, patch_size),
- stride=(patch_size, patch_size),
- in_chans=in_chans,
- embed_dim=embed_dim,
- )
-
- self.pos_embed: Optional[nn.Parameter] = None
- if use_abs_pos:
- # Initialize absolute positional embedding with pretrain image size.
- self.pos_embed = nn.Parameter(torch.zeros(1, img_size // patch_size, img_size // patch_size, embed_dim))
-
- self.blocks = nn.ModuleList()
- for i in range(depth):
- block = Block(
- dim=embed_dim,
- num_heads=num_heads,
- mlp_ratio=mlp_ratio,
- qkv_bias=qkv_bias,
- norm_layer=norm_layer,
- act_layer=act_layer,
- use_rel_pos=use_rel_pos,
- rel_pos_zero_init=rel_pos_zero_init,
- window_size=window_size if i not in global_attn_indexes else 0,
- input_size=(img_size // patch_size, img_size // patch_size),
- )
- self.blocks.append(block)
-
- self.neck = nn.Sequential(
- nn.Conv2d(
- embed_dim,
- out_chans,
- kernel_size=1,
- bias=False,
- ),
- LayerNorm2d(out_chans),
- nn.Conv2d(
- out_chans,
- out_chans,
- kernel_size=3,
- padding=1,
- bias=False,
- ),
- LayerNorm2d(out_chans),
- )
-
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- x = self.patch_embed(x)
- if self.pos_embed is not None:
- x = x + self.pos_embed
-
- for blk in self.blocks:
- x = blk(x)
-
- x = self.neck(x.permute(0, 3, 1, 2))
-
- return x
-
-
-class Block(nn.Module):
- """Transformer blocks with support of window attention and residual propagation blocks"""
-
- def __init__(
- self,
- dim: int,
- num_heads: int,
- mlp_ratio: float = 4.0,
- qkv_bias: bool = True,
- norm_layer: Type[nn.Module] = nn.LayerNorm,
- act_layer: Type[nn.Module] = nn.GELU,
- use_rel_pos: bool = False,
- rel_pos_zero_init: bool = True,
- window_size: int = 0,
- input_size: Optional[Tuple[int, int]] = None,
- ) -> None:
- """
- Args:
- dim (int): Number of input channels.
- num_heads (int): Number of attention heads in each ViT block.
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
- qkv_bias (bool): If True, add a learnable bias to query, key, value.
- norm_layer (nn.Module): Normalization layer.
- act_layer (nn.Module): Activation layer.
- use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
- rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
- window_size (int): Window size for window attention blocks. If it equals 0, then
- use global attention.
- input_size (tuple(int, int) or None): Input resolution for calculating the relative
- positional parameter size.
- """
- super().__init__()
- self.norm1 = norm_layer(dim)
- self.attn = Attention(
- dim,
- num_heads=num_heads,
- qkv_bias=qkv_bias,
- use_rel_pos=use_rel_pos,
- rel_pos_zero_init=rel_pos_zero_init,
- input_size=input_size if window_size == 0 else (window_size, window_size),
- )
-
- self.norm2 = norm_layer(dim)
- self.mlp = MLPBlock(embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer)
-
- self.window_size = window_size
-
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- shortcut = x
- x = self.norm1(x)
- # Window partition
- if self.window_size > 0:
- H, W = x.shape[1], x.shape[2]
- x, pad_hw = window_partition(x, self.window_size)
-
- x = self.attn(x)
- # Reverse window partition
- if self.window_size > 0:
- x = window_unpartition(x, self.window_size, pad_hw, (H, W))
-
- x = shortcut + x
- x = x + self.mlp(self.norm2(x))
-
- return x
-
-
-class Attention(nn.Module):
- """Multi-head Attention block with relative position embeddings."""
-
- def __init__(
- self,
- dim: int,
- num_heads: int = 8,
- qkv_bias: bool = True,
- use_rel_pos: bool = False,
- rel_pos_zero_init: bool = True,
- input_size: Optional[Tuple[int, int]] = None,
- ) -> None:
- """
- Args:
- dim (int): Number of input channels.
- num_heads (int): Number of attention heads.
- qkv_bias (bool): If True, add a learnable bias to query, key, value.
- rel_pos (bool): If True, add relative positional embeddings to the attention map.
- rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
- input_size (tuple(int, int) or None): Input resolution for calculating the relative
- positional parameter size.
- """
- super().__init__()
- self.num_heads = num_heads
- head_dim = dim // num_heads
- self.scale = head_dim**-0.5
-
- self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
- self.proj = nn.Linear(dim, dim)
-
- self.use_rel_pos = use_rel_pos
- if self.use_rel_pos:
- assert input_size is not None, "Input size must be provided if using relative positional encoding."
- # initialize relative positional embeddings
- self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
- self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
-
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- B, H, W, _ = x.shape
- # qkv with shape (3, B, nHead, H * W, C)
- qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
- # q, k, v with shape (B * nHead, H * W, C)
- q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)
-
- attn = (q * self.scale) @ k.transpose(-2, -1)
-
- if self.use_rel_pos:
- attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W))
-
- attn = attn.softmax(dim=-1)
- x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1)
- x = self.proj(x)
-
- return x
-
-
-def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]:
- """
- Partition into non-overlapping windows with padding if needed.
- Args:
- x (tensor): input tokens with [B, H, W, C].
- window_size (int): window size.
-
- Returns:
- windows: windows after partition with [B * num_windows, window_size, window_size, C].
- (Hp, Wp): padded height and width before partition
- """
- B, H, W, C = x.shape
-
- pad_h = (window_size - H % window_size) % window_size
- pad_w = (window_size - W % window_size) % window_size
- if pad_h > 0 or pad_w > 0:
- x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
- Hp, Wp = H + pad_h, W + pad_w
-
- x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
- windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
- return windows, (Hp, Wp)
-
-
-def window_unpartition(
- windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int], hw: Tuple[int, int]
-) -> torch.Tensor:
- """
- Window unpartition into original sequences and removing padding.
- Args:
- windows (tensor): input tokens with [B * num_windows, window_size, window_size, C].
- window_size (int): window size.
- pad_hw (Tuple): padded height and width (Hp, Wp).
- hw (Tuple): original height and width (H, W) before padding.
-
- Returns:
- x: unpartitioned sequences with [B, H, W, C].
- """
- Hp, Wp = pad_hw
- H, W = hw
- B = windows.shape[0] // (Hp * Wp // window_size // window_size)
- x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
- x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
-
- if Hp > H or Wp > W:
- x = x[:, :H, :W, :].contiguous()
- return x
-
-
-def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
- """
- Get relative positional embeddings according to the relative positions of
- query and key sizes.
- Args:
- q_size (int): size of query q.
- k_size (int): size of key k.
- rel_pos (Tensor): relative position embeddings (L, C).
-
- Returns:
- Extracted positional embeddings according to relative positions.
- """
- max_rel_dist = int(2 * max(q_size, k_size) - 1)
- # Interpolate rel pos if needed.
- if rel_pos.shape[0] != max_rel_dist:
- # Interpolate rel pos.
- rel_pos_resized = F.interpolate(
- rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
- size=max_rel_dist,
- mode="linear",
- )
- rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
- else:
- rel_pos_resized = rel_pos
-
- # Scale the coords with short length if shapes for q and k are different.
- q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
- k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
- relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
-
- return rel_pos_resized[relative_coords.long()]
-
-
-def add_decomposed_rel_pos(
- attn: torch.Tensor,
- q: torch.Tensor,
- rel_pos_h: torch.Tensor,
- rel_pos_w: torch.Tensor,
- q_size: Tuple[int, int],
- k_size: Tuple[int, int],
-) -> torch.Tensor:
- """
- Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
- https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950
- Args:
- attn (Tensor): attention map.
- q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).
- rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis.
- rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis.
- q_size (Tuple): spatial sequence size of query q with (q_h, q_w).
- k_size (Tuple): spatial sequence size of key k with (k_h, k_w).
-
- Returns:
- attn (Tensor): attention map with added relative positional embeddings.
- """
- q_h, q_w = q_size
- k_h, k_w = k_size
- Rh = get_rel_pos(q_h, k_h, rel_pos_h)
- Rw = get_rel_pos(q_w, k_w, rel_pos_w)
-
- B, _, dim = q.shape
- r_q = q.reshape(B, q_h, q_w, dim)
- rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
- rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)
-
- attn = (attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]).view(
- B, q_h * q_w, k_h * k_w
- )
-
- return attn
-
-
-class PatchEmbed(nn.Module):
- """
- Image to Patch Embedding.
- """
-
- def __init__(
- self,
- kernel_size: Tuple[int, int] = (16, 16),
- stride: Tuple[int, int] = (16, 16),
- padding: Tuple[int, int] = (0, 0),
- in_chans: int = 3,
- embed_dim: int = 768,
- ) -> None:
- """
- Args:
- kernel_size (Tuple): kernel size of the projection layer.
- stride (Tuple): stride of the projection layer.
- padding (Tuple): padding size of the projection layer.
- in_chans (int): Number of input image channels.
- embed_dim (int): Patch embedding dimension.
- """
- super().__init__()
-
- self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding)
-
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- x = self.proj(x)
- # B C H W -> B H W C
- x = x.permute(0, 2, 3, 1)
- return x
diff --git a/training/segment_anything/modeling/mask_decoder.py b/training/segment_anything/modeling/mask_decoder.py
deleted file mode 100644
index dfacfe5..0000000
--- a/training/segment_anything/modeling/mask_decoder.py
+++ /dev/null
@@ -1,170 +0,0 @@
-# Copyright (c) Meta Platforms, Inc. and affiliates.
-# All rights reserved.
-
-# This source code is licensed under the license found in the
-# LICENSE file in the root directory of this source tree.
-
-from typing import List, Tuple, Type
-
-import torch
-from torch import nn
-from torch.nn import functional as F
-
-from .common import LayerNorm2d
-
-
-class MaskDecoder(nn.Module):
- def __init__(
- self,
- *,
- transformer_dim: int,
- transformer: nn.Module,
- num_multimask_outputs: int = 3,
- activation: Type[nn.Module] = nn.GELU,
- iou_head_depth: int = 3,
- iou_head_hidden_dim: int = 256,
- ) -> None:
- """
- Predicts masks given an image and prompt embeddings, using a
- tranformer architecture.
-
- Arguments:
- transformer_dim (int): the channel dimension of the transformer
- transformer (nn.Module): the transformer used to predict masks
- num_multimask_outputs (int): the number of masks to predict
- when disambiguating masks
- activation (nn.Module): the type of activation to use when
- upscaling masks
- iou_head_depth (int): the depth of the MLP used to predict
- mask quality
- iou_head_hidden_dim (int): the hidden dimension of the MLP
- used to predict mask quality
- """
- super().__init__()
- self.transformer_dim = transformer_dim
- self.transformer = transformer
-
- self.num_multimask_outputs = num_multimask_outputs
-
- self.iou_token = nn.Embedding(1, transformer_dim)
- self.num_mask_tokens = num_multimask_outputs + 1
- self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
-
- self.output_upscaling = nn.Sequential(
- nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
- LayerNorm2d(transformer_dim // 4),
- activation(),
- nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
- activation(),
- )
- self.output_hypernetworks_mlps = nn.ModuleList(
- [MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) for i in range(self.num_mask_tokens)]
- )
-
- self.iou_prediction_head = MLP(transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth)
-
- def forward(
- self,
- image_embeddings: torch.Tensor,
- image_pe: torch.Tensor,
- sparse_prompt_embeddings: torch.Tensor,
- dense_prompt_embeddings: torch.Tensor,
- multimask_output: bool,
- ) -> Tuple[torch.Tensor, torch.Tensor]:
- """
- Predict masks given image and prompt embeddings.
-
- Arguments:
- image_embeddings (torch.Tensor): the embeddings from the image encoder
- image_pe (torch.Tensor): positional encoding with the shape of image_embeddings
- sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes
- dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs
- multimask_output (bool): Whether to return multiple masks or a single
- mask.
-
- Returns:
- torch.Tensor: batched predicted masks
- torch.Tensor: batched predictions of mask quality
- """
- masks, iou_pred = self.predict_masks(
- image_embeddings=image_embeddings,
- image_pe=image_pe,
- sparse_prompt_embeddings=sparse_prompt_embeddings,
- dense_prompt_embeddings=dense_prompt_embeddings,
- )
-
- # Select the correct mask or masks for output
- if multimask_output:
- mask_slice = slice(1, None)
- else:
- mask_slice = slice(0, 1)
- masks = masks[:, mask_slice, :, :]
- iou_pred = iou_pred[:, mask_slice]
-
- # Prepare output
- return masks, iou_pred
-
- def predict_masks(
- self,
- image_embeddings: torch.Tensor,
- image_pe: torch.Tensor,
- sparse_prompt_embeddings: torch.Tensor,
- dense_prompt_embeddings: torch.Tensor,
- ) -> Tuple[torch.Tensor, torch.Tensor]:
- """Predicts masks. See 'forward' for more details."""
- # Concatenate output tokens
- output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
- output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1)
- tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
-
- # Expand per-image data in batch direction to be per-mask
- src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
- src = src + dense_prompt_embeddings
- pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
- b, c, h, w = src.shape
-
- # Run the transformer
- hs, src = self.transformer(src, pos_src, tokens)
- iou_token_out = hs[:, 0, :]
- mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :]
-
- # Upscale mask embeddings and predict masks using the mask tokens
- src = src.transpose(1, 2).view(b, c, h, w)
- upscaled_embedding = self.output_upscaling(src)
- hyper_in_list: List[torch.Tensor] = []
- for i in range(self.num_mask_tokens):
- hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]))
- hyper_in = torch.stack(hyper_in_list, dim=1)
- b, c, h, w = upscaled_embedding.shape
-
- masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)
-
- # Generate mask quality predictions
- iou_pred = self.iou_prediction_head(iou_token_out)
-
- return masks, iou_pred
-
-
-# Lightly adapted from
-# https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa
-class MLP(nn.Module):
- def __init__(
- self,
- input_dim: int,
- hidden_dim: int,
- output_dim: int,
- num_layers: int,
- sigmoid_output: bool = False,
- ) -> None:
- super().__init__()
- self.num_layers = num_layers
- h = [hidden_dim] * (num_layers - 1)
- self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
- self.sigmoid_output = sigmoid_output
-
- def forward(self, x):
- for i, layer in enumerate(self.layers):
- x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
- if self.sigmoid_output:
- x = F.sigmoid(x)
- return x
diff --git a/training/segment_anything/modeling/prompt_encoder.py b/training/segment_anything/modeling/prompt_encoder.py
deleted file mode 100644
index 1887c8d..0000000
--- a/training/segment_anything/modeling/prompt_encoder.py
+++ /dev/null
@@ -1,212 +0,0 @@
-# Copyright (c) Meta Platforms, Inc. and affiliates.
-# All rights reserved.
-
-# This source code is licensed under the license found in the
-# LICENSE file in the root directory of this source tree.
-
-from typing import Any, Optional, Tuple, Type
-
-import numpy as np
-import torch
-from torch import nn
-
-from .common import LayerNorm2d
-
-
-class PromptEncoder(nn.Module):
- def __init__(
- self,
- embed_dim: int,
- image_embedding_size: Tuple[int, int],
- input_image_size: Tuple[int, int],
- mask_in_chans: int,
- activation: Type[nn.Module] = nn.GELU,
- ) -> None:
- """
- Encodes prompts for input to SAM's mask decoder.
-
- Arguments:
- embed_dim (int): The prompts' embedding dimension
- image_embedding_size (tuple(int, int)): The spatial size of the
- image embedding, as (H, W).
- input_image_size (int): The padded size of the image as input
- to the image encoder, as (H, W).
- mask_in_chans (int): The number of hidden channels used for
- encoding input masks.
- activation (nn.Module): The activation to use when encoding
- input masks.
- """
- super().__init__()
- self.embed_dim = embed_dim
- self.input_image_size = input_image_size
- self.image_embedding_size = image_embedding_size
- self.pe_layer = PositionEmbeddingRandom(embed_dim // 2)
-
- self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners
- point_embeddings = [nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings)]
- self.point_embeddings = nn.ModuleList(point_embeddings)
- self.not_a_point_embed = nn.Embedding(1, embed_dim)
-
- self.mask_input_size = (4 * image_embedding_size[0], 4 * image_embedding_size[1])
- self.mask_downscaling = nn.Sequential(
- nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2),
- LayerNorm2d(mask_in_chans // 4),
- activation(),
- nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2),
- LayerNorm2d(mask_in_chans),
- activation(),
- nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1),
- )
- self.no_mask_embed = nn.Embedding(1, embed_dim)
-
- def get_dense_pe(self) -> torch.Tensor:
- """
- Returns the positional encoding used to encode point prompts,
- applied to a dense set of points the shape of the image encoding.
-
- Returns:
- torch.Tensor: Positional encoding with shape
- 1x(embed_dim)x(embedding_h)x(embedding_w)
- """
- return self.pe_layer(self.image_embedding_size).unsqueeze(0)
-
- def _embed_points(
- self,
- points: torch.Tensor,
- labels: torch.Tensor,
- pad: bool,
- ) -> torch.Tensor:
- """Embeds point prompts."""
- points = points + 0.5 # Shift to center of pixel
- if pad:
- padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device)
- padding_label = -torch.ones((labels.shape[0], 1), device=labels.device)
- points = torch.cat([points, padding_point], dim=1)
- labels = torch.cat([labels, padding_label], dim=1)
- point_embedding = self.pe_layer.forward_with_coords(points, self.input_image_size)
- point_embedding[labels == -1] = 0.0
- point_embedding[labels == -1] += self.not_a_point_embed.weight
- point_embedding[labels == 0] += self.point_embeddings[0].weight
- point_embedding[labels == 1] += self.point_embeddings[1].weight
- return point_embedding
-
- def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor:
- """Embeds box prompts."""
- boxes = boxes + 0.5 # Shift to center of pixel
- coords = boxes.reshape(-1, 2, 2)
- corner_embedding = self.pe_layer.forward_with_coords(coords, self.input_image_size)
- corner_embedding[:, 0, :] += self.point_embeddings[2].weight
- corner_embedding[:, 1, :] += self.point_embeddings[3].weight
- return corner_embedding
-
- def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor:
- """Embeds mask inputs."""
- mask_embedding = self.mask_downscaling(masks)
- return mask_embedding
-
- def _get_batch_size(
- self,
- points: Optional[Tuple[torch.Tensor, torch.Tensor]],
- boxes: Optional[torch.Tensor],
- masks: Optional[torch.Tensor],
- ) -> int:
- """
- Gets the batch size of the output given the batch size of the input prompts.
- """
- if points is not None:
- return points[0].shape[0]
- elif boxes is not None:
- return boxes.shape[0]
- elif masks is not None:
- return masks.shape[0]
- else:
- return 1
-
- def _get_device(self) -> torch.device:
- return self.point_embeddings[0].weight.device
-
- def forward(
- self,
- points: Optional[Tuple[torch.Tensor, torch.Tensor]],
- boxes: Optional[torch.Tensor],
- masks: Optional[torch.Tensor],
- ) -> Tuple[torch.Tensor, torch.Tensor]:
- """
- Embeds different types of prompts, returning both sparse and dense
- embeddings.
-
- Arguments:
- points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates
- and labels to embed.
- boxes (torch.Tensor or none): boxes to embed
- masks (torch.Tensor or none): masks to embed
-
- Returns:
- torch.Tensor: sparse embeddings for the points and boxes, with shape
- BxNx(embed_dim), where N is determined by the number of input points
- and boxes.
- torch.Tensor: dense embeddings for the masks, in the shape
- Bx(embed_dim)x(embed_H)x(embed_W)
- """
- bs = self._get_batch_size(points, boxes, masks)
- sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self._get_device())
- if points is not None:
- coords, labels = points
- point_embeddings = self._embed_points(coords, labels, pad=(boxes is None))
- sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1)
- if boxes is not None:
- box_embeddings = self._embed_boxes(boxes)
- sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1)
-
- if masks is not None:
- dense_embeddings = self._embed_masks(masks)
- else:
- dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(
- bs, -1, self.image_embedding_size[0], self.image_embedding_size[1]
- )
-
- return sparse_embeddings, dense_embeddings
-
-
-class PositionEmbeddingRandom(nn.Module):
- """
- Positional encoding using random spatial frequencies.
- """
-
- def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None:
- super().__init__()
- if scale is None or scale <= 0.0:
- scale = 1.0
- self.register_buffer(
- "positional_encoding_gaussian_matrix",
- scale * torch.randn((2, num_pos_feats)),
- )
-
- def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
- """Positionally encode points that are normalized to [0,1]."""
- # assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
- coords = 2 * coords - 1
- coords = coords @ self.positional_encoding_gaussian_matrix
- coords = 2 * np.pi * coords
- # outputs d_1 x ... x d_n x C shape
- return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1)
-
- def forward(self, size: Tuple[int, int]) -> torch.Tensor:
- """Generate positional encoding for a grid of the specified size."""
- h, w = size
- device: Any = self.positional_encoding_gaussian_matrix.device
- grid = torch.ones((h, w), device=device, dtype=torch.float32)
- y_embed = grid.cumsum(dim=0) - 0.5
- x_embed = grid.cumsum(dim=1) - 0.5
- y_embed = y_embed / h
- x_embed = x_embed / w
-
- pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1))
- return pe.permute(2, 0, 1) # C x H x W
-
- def forward_with_coords(self, coords_input: torch.Tensor, image_size: Tuple[int, int]) -> torch.Tensor:
- """Positionally encode points that are not normalized to [0,1]."""
- coords = coords_input.clone()
- coords[:, :, 0] = coords[:, :, 0] / image_size[1]
- coords[:, :, 1] = coords[:, :, 1] / image_size[0]
- return self._pe_encoding(coords.to(torch.float)) # B x N x C
diff --git a/training/segment_anything/modeling/sam.py b/training/segment_anything/modeling/sam.py
deleted file mode 100644
index c1ce4ec..0000000
--- a/training/segment_anything/modeling/sam.py
+++ /dev/null
@@ -1,174 +0,0 @@
-# Copyright (c) Meta Platforms, Inc. and affiliates.
-# All rights reserved.
-
-# This source code is licensed under the license found in the
-# LICENSE file in the root directory of this source tree.
-
-from typing import Any, Dict, List, Tuple
-
-import torch
-from torch import nn
-from torch.nn import functional as F
-
-from .image_encoder import ImageEncoderViT
-from .mask_decoder import MaskDecoder
-from .prompt_encoder import PromptEncoder
-
-
-class Sam(nn.Module):
- mask_threshold: float = 0.0
- image_format: str = "RGB"
-
- def __init__(
- self,
- image_encoder: ImageEncoderViT,
- prompt_encoder: PromptEncoder,
- mask_decoder: MaskDecoder,
- pixel_mean: List[float] = [123.675, 116.28, 103.53],
- pixel_std: List[float] = [58.395, 57.12, 57.375],
- ) -> None:
- """
- SAM predicts object masks from an image and input prompts.
-
- Arguments:
- image_encoder (ImageEncoderViT): The backbone used to encode the
- image into image embeddings that allow for efficient mask prediction.
- prompt_encoder (PromptEncoder): Encodes various types of input prompts.
- mask_decoder (MaskDecoder): Predicts masks from the image embeddings
- and encoded prompts.
- pixel_mean (list(float)): Mean values for normalizing pixels in the input image.
- pixel_std (list(float)): Std values for normalizing pixels in the input image.
- """
- super().__init__()
- self.image_encoder = image_encoder
- self.prompt_encoder = prompt_encoder
- self.mask_decoder = mask_decoder
- self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False)
- self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False)
-
- @property
- def device(self) -> Any:
- return self.pixel_mean.device
-
- @torch.no_grad()
- def forward(
- self,
- batched_input: List[Dict[str, Any]],
- multimask_output: bool,
- ) -> List[Dict[str, torch.Tensor]]:
- """
- Predicts masks end-to-end from provided images and prompts.
- If prompts are not known in advance, using SamPredictor is
- recommended over calling the model directly.
-
- Arguments:
- batched_input (list(dict)): A list over input images, each a
- dictionary with the following keys. A prompt key can be
- excluded if it is not present.
- 'image': The image as a torch tensor in 3xHxW format,
- already transformed for input to the model.
- 'original_size': (tuple(int, int)) The original size of
- the image before transformation, as (H, W).
- 'point_coords': (torch.Tensor) Batched point prompts for
- this image, with shape BxNx2. Already transformed to the
- input frame of the model.
- 'point_labels': (torch.Tensor) Batched labels for point prompts,
- with shape BxN.
- 'boxes': (torch.Tensor) Batched box inputs, with shape Bx4.
- Already transformed to the input frame of the model.
- 'mask_inputs': (torch.Tensor) Batched mask inputs to the model,
- in the form Bx1xHxW.
- multimask_output (bool): Whether the model should predict multiple
- disambiguating masks, or return a single mask.
-
- Returns:
- (list(dict)): A list over input images, where each element is
- as dictionary with the following keys.
- 'masks': (torch.Tensor) Batched binary mask predictions,
- with shape BxCxHxW, where B is the number of input promts,
- C is determiend by multimask_output, and (H, W) is the
- original size of the image.
- 'iou_predictions': (torch.Tensor) The model's predictions
- of mask quality, in shape BxC.
- 'low_res_logits': (torch.Tensor) Low resolution logits with
- shape BxCxHxW, where H=W=256. Can be passed as mask input
- to subsequent iterations of prediction.
- """
- input_images = torch.stack([self.preprocess(x["image"]) for x in batched_input], dim=0)
- image_embeddings = self.image_encoder(input_images)
-
- outputs = []
- for image_record, curr_embedding in zip(batched_input, image_embeddings):
- if "point_coords" in image_record:
- points = (image_record["point_coords"], image_record["point_labels"])
- else:
- points = None
- sparse_embeddings, dense_embeddings = self.prompt_encoder(
- points=points,
- boxes=image_record.get("boxes", None),
- masks=image_record.get("mask_inputs", None),
- )
- low_res_masks, iou_predictions = self.mask_decoder(
- image_embeddings=curr_embedding.unsqueeze(0),
- image_pe=self.prompt_encoder.get_dense_pe(),
- sparse_prompt_embeddings=sparse_embeddings,
- dense_prompt_embeddings=dense_embeddings,
- multimask_output=multimask_output,
- )
- masks = self.postprocess_masks(
- low_res_masks,
- input_size=image_record["image"].shape[-2:],
- original_size=image_record["original_size"],
- )
- masks = masks > self.mask_threshold
- outputs.append(
- {
- "masks": masks,
- "iou_predictions": iou_predictions,
- "low_res_logits": low_res_masks,
- }
- )
- return outputs
-
- def postprocess_masks(
- self,
- masks: torch.Tensor,
- input_size: Tuple[int, ...],
- original_size: Tuple[int, ...],
- ) -> torch.Tensor:
- """
- Remove padding and upscale masks to the original image size.
-
- Arguments:
- masks (torch.Tensor): Batched masks from the mask_decoder,
- in BxCxHxW format.
- input_size (tuple(int, int)): The size of the image input to the
- model, in (H, W) format. Used to remove padding.
- original_size (tuple(int, int)): The original size of the image
- before resizing for input to the model, in (H, W) format.
-
- Returns:
- (torch.Tensor): Batched masks in BxCxHxW format, where (H, W)
- is given by original_size.
- """
- masks = F.interpolate(
- masks,
- (self.image_encoder.img_size, self.image_encoder.img_size),
- mode="bilinear",
- align_corners=False,
- )
- masks = masks[..., : input_size[0], : input_size[1]]
- masks = F.interpolate(masks, original_size, mode="bilinear", align_corners=False)
- return masks
-
- def preprocess(self, x: torch.Tensor) -> torch.Tensor:
- """Normalize pixel values and pad to a square input."""
- # Normalize colors
- x = (x - self.pixel_mean) / self.pixel_std
-
- # Pad
- h, w = x.shape[-2:]
- padh = self.image_encoder.img_size - h
- padw = self.image_encoder.img_size - w
- x = F.pad(x, (0, padw, 0, padh))
- return x
diff --git a/training/segment_anything/predictor.py b/training/segment_anything/predictor.py
deleted file mode 100644
index fb252a4..0000000
--- a/training/segment_anything/predictor.py
+++ /dev/null
@@ -1,264 +0,0 @@
-# Copyright (c) Meta Platforms, Inc. and affiliates.
-# All rights reserved.
-
-# This source code is licensed under the license found in the
-# LICENSE file in the root directory of this source tree.
-
-from typing import Optional, Tuple
-
-import numpy as np
-import torch
-from segment_anything.modeling import Sam
-
-from .utils.transforms import ResizeLongestSide
-
-
-class SamPredictor:
- def __init__(
- self,
- sam_model: Sam,
- ) -> None:
- """
- Uses SAM to calculate the image embedding for an image, and then
- allow repeated, efficient mask prediction given prompts.
-
- Arguments:
- sam_model (Sam): The model to use for mask prediction.
- """
- super().__init__()
- self.model = sam_model
- self.transform = ResizeLongestSide(sam_model.image_encoder.img_size)
- self.reset_image()
-
- def set_image(
- self,
- image: np.ndarray,
- image_format: str = "RGB",
- ) -> None:
- """
- Calculates the image embeddings for the provided image, allowing
- masks to be predicted with the 'predict' method.
-
- Arguments:
- image (np.ndarray): The image for calculating masks. Expects an
- image in HWC uint8 format, with pixel values in [0, 255].
- image_format (str): The color format of the image, in ['RGB', 'BGR'].
- """
- assert image_format in [
- "RGB",
- "BGR",
- ], f"image_format must be in ['RGB', 'BGR'], is {image_format}."
- if image_format != self.model.image_format:
- image = image[..., ::-1]
-
- # Transform the image to the form expected by the model
- input_image = self.transform.apply_image(image)
- input_image_torch = torch.as_tensor(input_image, device=self.device)
- input_image_torch = input_image_torch.permute(2, 0, 1).contiguous()[None, :, :, :]
-
- self.set_torch_image(input_image_torch, image.shape[:2])
-
- @torch.no_grad()
- def set_torch_image(
- self,
- transformed_image: torch.Tensor,
- original_image_size: Tuple[int, ...],
- ) -> None:
- """
- Calculates the image embeddings for the provided image, allowing
- masks to be predicted with the 'predict' method. Expects the input
- image to be already transformed to the format expected by the model.
-
- Arguments:
- transformed_image (torch.Tensor): The input image, with shape
- 1x3xHxW, which has been transformed with ResizeLongestSide.
- original_image_size (tuple(int, int)): The size of the image
- before transformation, in (H, W) format.
- """
- assert (
- len(transformed_image.shape) == 4
- and transformed_image.shape[1] == 3
- and max(*transformed_image.shape[2:]) == self.model.image_encoder.img_size
- ), f"set_torch_image input must be BCHW with long side {self.model.image_encoder.img_size}."
- self.reset_image()
-
- self.original_size = original_image_size
- self.input_size = tuple(transformed_image.shape[-2:])
- input_image = self.model.preprocess(transformed_image)
- self.features = self.model.image_encoder(input_image)
- self.is_image_set = True
-
- def predict(
- self,
- point_coords: Optional[np.ndarray] = None,
- point_labels: Optional[np.ndarray] = None,
- box: Optional[np.ndarray] = None,
- mask_input: Optional[np.ndarray] = None,
- multimask_output: bool = True,
- return_logits: bool = False,
- ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
- """
- Predict masks for the given input prompts, using the currently set image.
-
- Arguments:
- point_coords (np.ndarray or None): A Nx2 array of point prompts to the
- model. Each point is in (X,Y) in pixels.
- point_labels (np.ndarray or None): A length N array of labels for the
- point prompts. 1 indicates a foreground point and 0 indicates a
- background point.
- box (np.ndarray or None): A length 4 array given a box prompt to the
- model, in XYXY format.
- mask_input (np.ndarray): A low resolution mask input to the model, typically
- coming from a previous prediction iteration. Has form 1xHxW, where
- for SAM, H=W=256.
- multimask_output (bool): If true, the model will return three masks.
- For ambiguous input prompts (such as a single click), this will often
- produce better masks than a single prediction. If only a single
- mask is needed, the model's predicted quality score can be used
- to select the best mask. For non-ambiguous prompts, such as multiple
- input prompts, multimask_output=False can give better results.
- return_logits (bool): If true, returns un-thresholded masks logits
- instead of a binary mask.
-
- Returns:
- (np.ndarray): The output masks in CxHxW format, where C is the
- number of masks, and (H, W) is the original image size.
- (np.ndarray): An array of length C containing the model's
- predictions for the quality of each mask.
- (np.ndarray): An array of shape CxHxW, where C is the number
- of masks and H=W=256. These low resolution logits can be passed to
- a subsequent iteration as mask input.
- """
- if not self.is_image_set:
- raise RuntimeError("An image must be set with .set_image(...) before mask prediction.")
-
- # Transform input prompts
- coords_torch, labels_torch, box_torch, mask_input_torch = None, None, None, None
- if point_coords is not None:
- assert point_labels is not None, "point_labels must be supplied if point_coords is supplied."
- point_coords = self.transform.apply_coords(point_coords, self.original_size)
- coords_torch = torch.as_tensor(point_coords, dtype=torch.float, device=self.device)
- labels_torch = torch.as_tensor(point_labels, dtype=torch.int, device=self.device)
- coords_torch, labels_torch = coords_torch[None, :, :], labels_torch[None, :]
- if box is not None:
- box = self.transform.apply_boxes(box, self.original_size)
- box_torch = torch.as_tensor(box, dtype=torch.float, device=self.device)
- box_torch = box_torch[None, :]
- if mask_input is not None:
- mask_input_torch = torch.as_tensor(mask_input, dtype=torch.float, device=self.device)
- mask_input_torch = mask_input_torch[None, :, :, :]
-
- masks, iou_predictions, low_res_masks = self.predict_torch(
- coords_torch,
- labels_torch,
- box_torch,
- mask_input_torch,
- multimask_output,
- return_logits=return_logits,
- )
-
- masks = masks[0].detach().cpu().numpy()
- iou_predictions = iou_predictions[0].detach().cpu().numpy()
- low_res_masks = low_res_masks[0].detach().cpu().numpy()
- return masks, iou_predictions, low_res_masks
-
- @torch.no_grad()
- def predict_torch(
- self,
- point_coords: Optional[torch.Tensor],
- point_labels: Optional[torch.Tensor],
- boxes: Optional[torch.Tensor] = None,
- mask_input: Optional[torch.Tensor] = None,
- multimask_output: bool = True,
- return_logits: bool = False,
- ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
- """
- Predict masks for the given input prompts, using the currently set image.
- Input prompts are batched torch tensors and are expected to already be
- transformed to the input frame using ResizeLongestSide.
-
- Arguments:
- point_coords (torch.Tensor or None): A BxNx2 array of point prompts to the
- model. Each point is in (X,Y) in pixels.
- point_labels (torch.Tensor or None): A BxN array of labels for the
- point prompts. 1 indicates a foreground point and 0 indicates a
- background point.
- box (np.ndarray or None): A Bx4 array given a box prompt to the
- model, in XYXY format.
- mask_input (np.ndarray): A low resolution mask input to the model, typically
- coming from a previous prediction iteration. Has form Bx1xHxW, where
- for SAM, H=W=256. Masks returned by a previous iteration of the
- predict method do not need further transformation.
- multimask_output (bool): If true, the model will return three masks.
- For ambiguous input prompts (such as a single click), this will often
- produce better masks than a single prediction. If only a single
- mask is needed, the model's predicted quality score can be used
- to select the best mask. For non-ambiguous prompts, such as multiple
- input prompts, multimask_output=False can give better results.
- return_logits (bool): If true, returns un-thresholded masks logits
- instead of a binary mask.
-
- Returns:
- (torch.Tensor): The output masks in BxCxHxW format, where C is the
- number of masks, and (H, W) is the original image size.
- (torch.Tensor): An array of shape BxC containing the model's
- predictions for the quality of each mask.
- (torch.Tensor): An array of shape BxCxHxW, where C is the number
- of masks and H=W=256. These low res logits can be passed to
- a subsequent iteration as mask input.
- """
- if not self.is_image_set:
- raise RuntimeError("An image must be set with .set_image(...) before mask prediction.")
-
- if point_coords is not None:
- points = (point_coords, point_labels)
- else:
- points = None
-
- # Embed prompts
- sparse_embeddings, dense_embeddings = self.model.prompt_encoder(
- points=points,
- boxes=boxes,
- masks=mask_input,
- )
-
- # Predict masks
- low_res_masks, iou_predictions = self.model.mask_decoder(
- image_embeddings=self.features,
- image_pe=self.model.prompt_encoder.get_dense_pe(),
- sparse_prompt_embeddings=sparse_embeddings,
- dense_prompt_embeddings=dense_embeddings,
- multimask_output=multimask_output,
- )
-
- # Upscale the masks to the original image resolution
- masks = self.model.postprocess_masks(low_res_masks, self.input_size, self.original_size)
-
- if not return_logits:
- masks = masks > self.model.mask_threshold
-
- return masks, iou_predictions, low_res_masks
-
- def get_image_embedding(self) -> torch.Tensor:
- """
- Returns the image embeddings for the currently set image, with
- shape 1xCxHxW, where C is the embedding dimension and (H,W) are
- the embedding spatial dimension of SAM (typically C=256, H=W=64).
- """
- if not self.is_image_set:
- raise RuntimeError("An image must be set with .set_image(...) to generate an embedding.")
- assert self.features is not None, "Features must exist if an image has been set."
- return self.features
-
- @property
- def device(self) -> torch.device:
- return self.model.device
-
- def reset_image(self) -> None:
- """Resets the currently set image."""
- self.is_image_set = False
- self.features = None
- self.orig_h = None
- self.orig_w = None
- self.input_h = None
- self.input_w = None
diff --git a/training/segment_anything/utils/__init__.py b/training/segment_anything/utils/__init__.py
deleted file mode 100644
index 5277f46..0000000
--- a/training/segment_anything/utils/__init__.py
+++ /dev/null
@@ -1,5 +0,0 @@
-# Copyright (c) Meta Platforms, Inc. and affiliates.
-# All rights reserved.
-
-# This source code is licensed under the license found in the
-# LICENSE file in the root directory of this source tree.
diff --git a/training/segment_anything/utils/amg.py b/training/segment_anything/utils/amg.py
deleted file mode 100644
index 1c9c491..0000000
--- a/training/segment_anything/utils/amg.py
+++ /dev/null
@@ -1,330 +0,0 @@
-# Copyright (c) Meta Platforms, Inc. and affiliates.
-# All rights reserved.
-
-# This source code is licensed under the license found in the
-# LICENSE file in the root directory of this source tree.
-
-import math
-from copy import deepcopy
-from itertools import product
-from typing import Any, Dict, Generator, ItemsView, List, Tuple
-
-import numpy as np
-import torch
-
-
-class MaskData:
- """
- A structure for storing masks and their related data in batched format.
- Implements basic filtering and concatenation.
- """
-
- def __init__(self, **kwargs) -> None:
- for v in kwargs.values():
- assert isinstance(
- v, (list, np.ndarray, torch.Tensor)
- ), "MaskData only supports list, numpy arrays, and torch tensors."
- self._stats = dict(**kwargs)
-
- def __setitem__(self, key: str, item: Any) -> None:
- assert isinstance(
- item, (list, np.ndarray, torch.Tensor)
- ), "MaskData only supports list, numpy arrays, and torch tensors."
- self._stats[key] = item
-
- def __delitem__(self, key: str) -> None:
- del self._stats[key]
-
- def __getitem__(self, key: str) -> Any:
- return self._stats[key]
-
- def items(self) -> ItemsView[str, Any]:
- return self._stats.items()
-
- def filter(self, keep: torch.Tensor) -> None:
- for k, v in self._stats.items():
- if v is None:
- self._stats[k] = None
- elif isinstance(v, torch.Tensor):
- self._stats[k] = v[torch.as_tensor(keep, device=v.device)]
- elif isinstance(v, np.ndarray):
- self._stats[k] = v[keep.detach().cpu().numpy()]
- elif isinstance(v, list) and keep.dtype == torch.bool:
- self._stats[k] = [a for i, a in enumerate(v) if keep[i]]
- elif isinstance(v, list):
- self._stats[k] = [v[i] for i in keep]
- else:
- raise TypeError(f"MaskData key {k} has an unsupported type {type(v)}.")
-
- def cat(self, new_stats: "MaskData") -> None:
- for k, v in new_stats.items():
- if k not in self._stats or self._stats[k] is None:
- self._stats[k] = deepcopy(v)
- elif isinstance(v, torch.Tensor):
- self._stats[k] = torch.cat([self._stats[k], v], dim=0)
- elif isinstance(v, np.ndarray):
- self._stats[k] = np.concatenate([self._stats[k], v], axis=0)
- elif isinstance(v, list):
- self._stats[k] = self._stats[k] + deepcopy(v)
- else:
- raise TypeError(f"MaskData key {k} has an unsupported type {type(v)}.")
-
- def to_numpy(self) -> None:
- for k, v in self._stats.items():
- if isinstance(v, torch.Tensor):
- self._stats[k] = v.detach().cpu().numpy()
-
-
-def is_box_near_crop_edge(
- boxes: torch.Tensor, crop_box: List[int], orig_box: List[int], atol: float = 20.0
-) -> torch.Tensor:
- """Filter masks at the edge of a crop, but not at the edge of the original image."""
- crop_box_torch = torch.as_tensor(crop_box, dtype=torch.float, device=boxes.device)
- orig_box_torch = torch.as_tensor(orig_box, dtype=torch.float, device=boxes.device)
- boxes = uncrop_boxes_xyxy(boxes, crop_box).float()
- near_crop_edge = torch.isclose(boxes, crop_box_torch[None, :], atol=atol, rtol=0)
- near_image_edge = torch.isclose(boxes, orig_box_torch[None, :], atol=atol, rtol=0)
- near_crop_edge = torch.logical_and(near_crop_edge, ~near_image_edge)
- return torch.any(near_crop_edge, dim=1)
-
-
-def box_xyxy_to_xywh(box_xyxy: torch.Tensor) -> torch.Tensor:
- box_xywh = deepcopy(box_xyxy)
- box_xywh[2] = box_xywh[2] - box_xywh[0]
- box_xywh[3] = box_xywh[3] - box_xywh[1]
- return box_xywh
-
-
-def batch_iterator(batch_size: int, *args) -> Generator[List[Any], None, None]:
- assert len(args) > 0 and all(
- len(a) == len(args[0]) for a in args
- ), "Batched iteration must have inputs of all the same size."
- n_batches = len(args[0]) // batch_size + int(len(args[0]) % batch_size != 0)
- for b in range(n_batches):
- yield [arg[b * batch_size : (b + 1) * batch_size] for arg in args]
-
-
-def mask_to_rle_pytorch(tensor: torch.Tensor) -> List[Dict[str, Any]]:
- """
- Encodes masks to an uncompressed RLE, in the format expected by
- pycoco tools.
- """
- # Put in fortran order and flatten h,w
- b, h, w = tensor.shape
- tensor = tensor.permute(0, 2, 1).flatten(1)
-
- # Compute change indices
- diff = tensor[:, 1:] ^ tensor[:, :-1]
- change_indices = diff.nonzero()
-
- # Encode run length
- out = []
- for i in range(b):
- cur_idxs = change_indices[change_indices[:, 0] == i, 1]
- cur_idxs = torch.cat(
- [
- torch.tensor([0], dtype=cur_idxs.dtype, device=cur_idxs.device),
- cur_idxs + 1,
- torch.tensor([h * w], dtype=cur_idxs.dtype, device=cur_idxs.device),
- ]
- )
- btw_idxs = cur_idxs[1:] - cur_idxs[:-1]
- counts = [] if tensor[i, 0] == 0 else [0]
- counts.extend(btw_idxs.detach().cpu().tolist())
- out.append({"size": [h, w], "counts": counts})
- return out
-
-
-def rle_to_mask(rle: Dict[str, Any]) -> np.ndarray:
- """Compute a binary mask from an uncompressed RLE."""
- h, w = rle["size"]
- mask = np.empty(h * w, dtype=bool)
- idx = 0
- parity = False
- for count in rle["counts"]:
- mask[idx : idx + count] = parity
- idx += count
- parity ^= True
- mask = mask.reshape(w, h)
- return mask.transpose() # Put in C order
-
-
-def area_from_rle(rle: Dict[str, Any]) -> int:
- return sum(rle["counts"][1::2])
-
-
-def calculate_stability_score(masks: torch.Tensor, mask_threshold: float, threshold_offset: float) -> torch.Tensor:
- """
- Computes the stability score for a batch of masks. The stability
- score is the IoU between the binary masks obtained by thresholding
- the predicted mask logits at high and low values.
- """
- # One mask is always contained inside the other.
- # Save memory by preventing unnecesary cast to torch.int64
- intersections = (masks > (mask_threshold + threshold_offset)).sum(-1, dtype=torch.int16).sum(-1, dtype=torch.int32)
- unions = (masks > (mask_threshold - threshold_offset)).sum(-1, dtype=torch.int16).sum(-1, dtype=torch.int32)
- return intersections / unions
-
-
-def build_point_grid(n_per_side: int) -> np.ndarray:
- """Generates a 2D grid of points evenly spaced in [0,1]x[0,1]."""
- offset = 1 / (2 * n_per_side)
- points_one_side = np.linspace(offset, 1 - offset, n_per_side)
- points_x = np.tile(points_one_side[None, :], (n_per_side, 1))
- points_y = np.tile(points_one_side[:, None], (1, n_per_side))
- points = np.stack([points_x, points_y], axis=-1).reshape(-1, 2)
- return points
-
-
-def build_all_layer_point_grids(n_per_side: int, n_layers: int, scale_per_layer: int) -> List[np.ndarray]:
- """Generates point grids for all crop layers."""
- points_by_layer = []
- for i in range(n_layers + 1):
- n_points = int(n_per_side / (scale_per_layer**i))
- points_by_layer.append(build_point_grid(n_points))
- return points_by_layer
-
-
-def generate_crop_boxes(
- im_size: Tuple[int, ...], n_layers: int, overlap_ratio: float
-) -> Tuple[List[List[int]], List[int]]:
- """
- Generates a list of crop boxes of different sizes. Each layer
- has (2**i)**2 boxes for the ith layer.
- """
- crop_boxes, layer_idxs = [], []
- im_h, im_w = im_size
- short_side = min(im_h, im_w)
-
- # Original image
- crop_boxes.append([0, 0, im_w, im_h])
- layer_idxs.append(0)
-
- def crop_len(orig_len, n_crops, overlap):
- return int(math.ceil((overlap * (n_crops - 1) + orig_len) / n_crops))
-
- for i_layer in range(n_layers):
- n_crops_per_side = 2 ** (i_layer + 1)
- overlap = int(overlap_ratio * short_side * (2 / n_crops_per_side))
-
- crop_w = crop_len(im_w, n_crops_per_side, overlap)
- crop_h = crop_len(im_h, n_crops_per_side, overlap)
-
- crop_box_x0 = [int((crop_w - overlap) * i) for i in range(n_crops_per_side)]
- crop_box_y0 = [int((crop_h - overlap) * i) for i in range(n_crops_per_side)]
-
- # Crops in XYWH format
- for x0, y0 in product(crop_box_x0, crop_box_y0):
- box = [x0, y0, min(x0 + crop_w, im_w), min(y0 + crop_h, im_h)]
- crop_boxes.append(box)
- layer_idxs.append(i_layer + 1)
-
- return crop_boxes, layer_idxs
-
-
-def uncrop_boxes_xyxy(boxes: torch.Tensor, crop_box: List[int]) -> torch.Tensor:
- x0, y0, _, _ = crop_box
- offset = torch.tensor([[x0, y0, x0, y0]], device=boxes.device)
- # Check if boxes has a channel dimension
- if len(boxes.shape) == 3:
- offset = offset.unsqueeze(1)
- return boxes + offset
-
-
-def uncrop_points(points: torch.Tensor, crop_box: List[int]) -> torch.Tensor:
- x0, y0, _, _ = crop_box
- offset = torch.tensor([[x0, y0]], device=points.device)
- # Check if points has a channel dimension
- if len(points.shape) == 3:
- offset = offset.unsqueeze(1)
- return points + offset
-
-
-def uncrop_masks(masks: torch.Tensor, crop_box: List[int], orig_h: int, orig_w: int) -> torch.Tensor:
- x0, y0, x1, y1 = crop_box
- if x0 == 0 and y0 == 0 and x1 == orig_w and y1 == orig_h:
- return masks
- # Coordinate transform masks
- pad_x, pad_y = orig_w - (x1 - x0), orig_h - (y1 - y0)
- pad = (x0, pad_x - x0, y0, pad_y - y0)
- return torch.nn.functional.pad(masks, pad, value=0)
-
-
-def remove_small_regions(mask: np.ndarray, area_thresh: float, mode: str) -> Tuple[np.ndarray, bool]:
- """
- Removes small disconnected regions and holes in a mask. Returns the
- mask and an indicator of if the mask has been modified.
- """
- import cv2 # type: ignore
-
- assert mode in ["holes", "islands"]
- correct_holes = mode == "holes"
- working_mask = (correct_holes ^ mask).astype(np.uint8)
- n_labels, regions, stats, _ = cv2.connectedComponentsWithStats(working_mask, 8)
- sizes = stats[:, -1][1:] # Row 0 is background label
- small_regions = [i + 1 for i, s in enumerate(sizes) if s < area_thresh]
- if len(small_regions) == 0:
- return mask, False
- fill_labels = [0] + small_regions
- if not correct_holes:
- fill_labels = [i for i in range(n_labels) if i not in fill_labels]
- # If every region is below threshold, keep largest
- if len(fill_labels) == 0:
- fill_labels = [int(np.argmax(sizes)) + 1]
- mask = np.isin(regions, fill_labels)
- return mask, True
-
-
-def coco_encode_rle(uncompressed_rle: Dict[str, Any]) -> Dict[str, Any]:
- from pycocotools import mask as mask_utils # type: ignore
-
- h, w = uncompressed_rle["size"]
- rle = mask_utils.frPyObjects(uncompressed_rle, h, w)
- rle["counts"] = rle["counts"].decode("utf-8") # Necessary to serialize with json
- return rle
-
-
-def batched_mask_to_box(masks: torch.Tensor) -> torch.Tensor:
- """
- Calculates boxes in XYXY format around masks. Return [0,0,0,0] for
- an empty mask. For input shape C1xC2x...xHxW, the output shape is C1xC2x...x4.
- """
- # torch.max below raises an error on empty inputs, just skip in this case
- if torch.numel(masks) == 0:
- return torch.zeros(*masks.shape[:-2], 4, device=masks.device)
-
- # Normalize shape to CxHxW
- shape = masks.shape
- h, w = shape[-2:]
- if len(shape) > 2:
- masks = masks.flatten(0, -3)
- else:
- masks = masks.unsqueeze(0)
-
- # Get top and bottom edges
- in_height, _ = torch.max(masks, dim=-1)
- in_height_coords = in_height * torch.arange(h, device=in_height.device)[None, :]
- bottom_edges, _ = torch.max(in_height_coords, dim=-1)
- in_height_coords = in_height_coords + h * (~in_height)
- top_edges, _ = torch.min(in_height_coords, dim=-1)
-
- # Get left and right edges
- in_width, _ = torch.max(masks, dim=-2)
- in_width_coords = in_width * torch.arange(w, device=in_width.device)[None, :]
- right_edges, _ = torch.max(in_width_coords, dim=-1)
- in_width_coords = in_width_coords + w * (~in_width)
- left_edges, _ = torch.min(in_width_coords, dim=-1)
-
- # If the mask is empty the right edge will be to the left of the left edge.
- # Replace these boxes with [0, 0, 0, 0]
- empty_filter = (right_edges < left_edges) | (bottom_edges < top_edges)
- out = torch.stack([left_edges, top_edges, right_edges, bottom_edges], dim=-1)
- out = out * (~empty_filter).unsqueeze(-1)
-
- # Return to original shape
- if len(shape) > 2:
- out = out.reshape(*shape[:-2], 4)
- else:
- out = out[0]
-
- return out
diff --git a/training/segment_anything/utils/onnx.py b/training/segment_anything/utils/onnx.py
deleted file mode 100644
index 9cd17c7..0000000
--- a/training/segment_anything/utils/onnx.py
+++ /dev/null
@@ -1,138 +0,0 @@
-# Copyright (c) Meta Platforms, Inc. and affiliates.
-# All rights reserved.
-
-# This source code is licensed under the license found in the
-# LICENSE file in the root directory of this source tree.
-
-from typing import Tuple
-
-import torch
-import torch.nn as nn
-from torch.nn import functional as F
-
-from ..modeling import Sam
-from .amg import calculate_stability_score
-
-
-class SamOnnxModel(nn.Module):
- """
- This model should not be called directly, but is used in ONNX export.
- It combines the prompt encoder, mask decoder, and mask postprocessing of Sam,
- with some functions modified to enable model tracing. Also supports extra
- options controlling what information. See the ONNX export script for details.
- """
-
- def __init__(
- self,
- model: Sam,
- return_single_mask: bool,
- use_stability_score: bool = False,
- return_extra_metrics: bool = False,
- ) -> None:
- super().__init__()
- self.mask_decoder = model.mask_decoder
- self.model = model
- self.img_size = model.image_encoder.img_size
- self.return_single_mask = return_single_mask
- self.use_stability_score = use_stability_score
- self.stability_score_offset = 1.0
- self.return_extra_metrics = return_extra_metrics
-
- @staticmethod
- def resize_longest_image_size(input_image_size: torch.Tensor, longest_side: int) -> torch.Tensor:
- input_image_size = input_image_size.to(torch.float32)
- scale = longest_side / torch.max(input_image_size)
- transformed_size = scale * input_image_size
- transformed_size = torch.floor(transformed_size + 0.5).to(torch.int64)
- return transformed_size
-
- def _embed_points(self, point_coords: torch.Tensor, point_labels: torch.Tensor) -> torch.Tensor:
- point_coords = point_coords + 0.5
- point_coords = point_coords / self.img_size
- point_embedding = self.model.prompt_encoder.pe_layer._pe_encoding(point_coords)
- point_labels = point_labels.unsqueeze(-1).expand_as(point_embedding)
-
- point_embedding = point_embedding * (point_labels != -1)
- point_embedding = point_embedding + self.model.prompt_encoder.not_a_point_embed.weight * (point_labels == -1)
-
- for i in range(self.model.prompt_encoder.num_point_embeddings):
- point_embedding = point_embedding + self.model.prompt_encoder.point_embeddings[i].weight * (
- point_labels == i
- )
-
- return point_embedding
-
- def _embed_masks(self, input_mask: torch.Tensor, has_mask_input: torch.Tensor) -> torch.Tensor:
- mask_embedding = has_mask_input * self.model.prompt_encoder.mask_downscaling(input_mask)
- mask_embedding = mask_embedding + (1 - has_mask_input) * self.model.prompt_encoder.no_mask_embed.weight.reshape(
- 1, -1, 1, 1
- )
- return mask_embedding
-
- def mask_postprocessing(self, masks: torch.Tensor, orig_im_size: torch.Tensor) -> torch.Tensor:
- masks = F.interpolate(
- masks,
- size=(self.img_size, self.img_size),
- mode="bilinear",
- align_corners=False,
- )
-
- prepadded_size = self.resize_longest_image_size(orig_im_size, self.img_size)
- masks = masks[..., : int(prepadded_size[0]), : int(prepadded_size[1])]
-
- orig_im_size = orig_im_size.to(torch.int64)
- h, w = orig_im_size[0], orig_im_size[1]
- masks = F.interpolate(masks, size=(h, w), mode="bilinear", align_corners=False)
- return masks
-
- def select_masks(
- self, masks: torch.Tensor, iou_preds: torch.Tensor, num_points: int
- ) -> Tuple[torch.Tensor, torch.Tensor]:
- # Determine if we should return the multiclick mask or not from the number of points.
- # The reweighting is used to avoid control flow.
- score_reweight = torch.tensor([[1000] + [0] * (self.model.mask_decoder.num_mask_tokens - 1)]).to(
- iou_preds.device
- )
- score = iou_preds + (num_points - 2.5) * score_reweight
- best_idx = torch.argmax(score, dim=1)
- masks = masks[torch.arange(masks.shape[0]), best_idx, :, :].unsqueeze(1)
- iou_preds = iou_preds[torch.arange(masks.shape[0]), best_idx].unsqueeze(1)
-
- return masks, iou_preds
-
- @torch.no_grad()
- def forward(
- self,
- image_embeddings: torch.Tensor,
- point_coords: torch.Tensor,
- point_labels: torch.Tensor,
- mask_input: torch.Tensor,
- has_mask_input: torch.Tensor,
- orig_im_size: torch.Tensor,
- ):
- sparse_embedding = self._embed_points(point_coords, point_labels)
- dense_embedding = self._embed_masks(mask_input, has_mask_input)
-
- masks, scores = self.model.mask_decoder.predict_masks(
- image_embeddings=image_embeddings,
- image_pe=self.model.prompt_encoder.get_dense_pe(),
- sparse_prompt_embeddings=sparse_embedding,
- dense_prompt_embeddings=dense_embedding,
- )
-
- if self.use_stability_score:
- scores = calculate_stability_score(masks, self.model.mask_threshold, self.stability_score_offset)
-
- if self.return_single_mask:
- masks, scores = self.select_masks(masks, scores, point_coords.shape[1])
-
- upscaled_masks = self.mask_postprocessing(masks, orig_im_size)
-
- if self.return_extra_metrics:
- stability_scores = calculate_stability_score(
- upscaled_masks, self.model.mask_threshold, self.stability_score_offset
- )
- areas = (upscaled_masks > self.model.mask_threshold).sum(-1).sum(-1)
- return upscaled_masks, scores, stability_scores, areas, masks
-
- return upscaled_masks, scores, masks
diff --git a/training/segment_anything/utils/transforms.py b/training/segment_anything/utils/transforms.py
deleted file mode 100644
index 96a4ed6..0000000
--- a/training/segment_anything/utils/transforms.py
+++ /dev/null
@@ -1,92 +0,0 @@
-# Copyright (c) Meta Platforms, Inc. and affiliates.
-# All rights reserved.
-
-# This source code is licensed under the license found in the
-# LICENSE file in the root directory of this source tree.
-
-from copy import deepcopy
-from typing import Tuple
-
-import numpy as np
-import torch
-from torch.nn import functional as F
-from torchvision.transforms.functional import resize, to_pil_image # type: ignore
-
-
-class ResizeLongestSide:
- """
- Resizes images to longest side 'target_length', as well as provides
- methods for resizing coordinates and boxes. Provides methods for
- transforming both numpy array and batched torch tensors.
- """
-
- def __init__(self, target_length: int) -> None:
- self.target_length = target_length
-
- def apply_image(self, image: np.ndarray) -> np.ndarray:
- """
- Expects a numpy array with shape HxWxC in uint8 format.
- """
- target_size = self.get_preprocess_shape(image.shape[0], image.shape[1], self.target_length)
- return np.array(resize(to_pil_image(image), target_size))
-
- def apply_coords(self, coords: np.ndarray, original_size: Tuple[int, ...]) -> np.ndarray:
- """
- Expects a numpy array of length 2 in the final dimension. Requires the
- original image size in (H, W) format.
- """
- old_h, old_w = original_size
- new_h, new_w = self.get_preprocess_shape(original_size[0], original_size[1], self.target_length)
- coords = deepcopy(coords).astype(float)
- coords[..., 0] = coords[..., 0] * (new_w / old_w)
- coords[..., 1] = coords[..., 1] * (new_h / old_h)
- return coords
-
- def apply_boxes(self, boxes: np.ndarray, original_size: Tuple[int, ...]) -> np.ndarray:
- """
- Expects a numpy array shape Bx4. Requires the original image size
- in (H, W) format.
- """
- boxes = self.apply_coords(boxes.reshape(-1, 2, 2), original_size)
- return boxes.reshape(-1, 4)
-
- def apply_image_torch(self, image: torch.Tensor) -> torch.Tensor:
- """
- Expects batched images with shape BxCxHxW and float format. This
- transformation may not exactly match apply_image. apply_image is
- the transformation expected by the model.
- """
- # Expects an image in BCHW format. May not exactly match apply_image.
- target_size = self.get_preprocess_shape(image.shape[0], image.shape[1], self.target_length)
- return F.interpolate(image, target_size, mode="bilinear", align_corners=False, antialias=True)
-
- def apply_coords_torch(self, coords: torch.Tensor, original_size: Tuple[int, ...]) -> torch.Tensor:
- """
- Expects a torch tensor with length 2 in the last dimension. Requires the
- original image size in (H, W) format.
- """
- old_h, old_w = original_size
- new_h, new_w = self.get_preprocess_shape(original_size[0], original_size[1], self.target_length)
- coords = deepcopy(coords).to(torch.float)
- coords[..., 0] = coords[..., 0] * (new_w / old_w)
- coords[..., 1] = coords[..., 1] * (new_h / old_h)
- return coords
-
- def apply_boxes_torch(self, boxes: torch.Tensor, original_size: Tuple[int, ...]) -> torch.Tensor:
- """
- Expects a torch tensor with shape Bx4. Requires the original image
- size in (H, W) format.
- """
- boxes = self.apply_coords_torch(boxes.reshape(-1, 2, 2), original_size)
- return boxes.reshape(-1, 4)
-
- @staticmethod
- def get_preprocess_shape(oldh: int, oldw: int, long_side_length: int) -> Tuple[int, int]:
- """
- Compute the output size given input size and target long side length.
- """
- scale = long_side_length * 1.0 / max(oldh, oldw)
- newh, neww = oldh * scale, oldw * scale
- neww = int(neww + 0.5)
- newh = int(newh + 0.5)
- return (newh, neww)
diff --git a/training/trainer_2pt5d.py b/training/trainer_2pt5d.py
deleted file mode 100644
index 1d1e906..0000000
--- a/training/trainer_2pt5d.py
+++ /dev/null
@@ -1,654 +0,0 @@
-# Copyright 2020 - 2023 MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-import json
-import os
-import random
-import time
-from copy import deepcopy
-
-import numpy as np
-import torch
-import torch.nn.functional as F
-import torch.nn.parallel
-import torch.utils.data.distributed
-from monai.data import decollate_batch
-from monai.metrics import compute_dice
-from tensorboardX import SummaryWriter
-from torch.cuda.amp import GradScaler, autocast
-from utils.utils import AverageMeter, distributed_all_gather
-
-
-def apply_coords_torch(coords, original_size, sam_image_size) -> np.ndarray:
- """
- Expects a numpy array of length 2 in the final dimension. Requires the
- original image size in (H, W) format.
- """
- old = original_size
- new = sam_image_size
- coords = deepcopy(coords).float()
- # Here, we can apply a same scale factor to h and w, because we first pad the input to a square image along the
- # longest side then resize it to sam_image_size. In other words, the scale factor is determined by the longest side.
- coords[..., 0] = coords[..., 0] * (new / old)
- coords[..., 1] = coords[..., 1] * (new / old)
- return coords
-
-
-def sample_points(labelpoints, n_points):
- idx = torch.randperm(len(labelpoints), dtype=torch.long, device=labelpoints.device)[:n_points]
- return [labelpoints[idx]]
-
-
-def generate_point_prompt(batch_labels_, args, points_pos=None, points_neg=None, previous_pred=None):
- max_point = args.max_points
- Np = (
- points_pos
- if points_pos is not None
- else min(max_point, int(np.abs(random.gauss(mu=0, sigma=max_point // 2))) + 1)
- )
- Nn = points_neg if points_neg is not None else min(max_point, int(np.abs(random.gauss(mu=0, sigma=max_point // 2))))
- # To follow original SAM, with equal probability either a foreground point
- # is selected randomly for the target mask
- _point = []
- _point_label = []
- b, h, w = batch_labels_.shape
- device = batch_labels_.device
- for i in range(b):
- plabels = batch_labels_[i, ...]
- nlabels = (plabels == 0.0).float()
- if previous_pred is not None:
- ppred = previous_pred[i, 0, ...]
- npred = (previous_pred[i, 0, ...] == 0.0).float()
-
- # False positive mask (pixels that are predicted as positive but are actually negative)
- fp_mask = torch.logical_and(nlabels, ppred)
- # False negative mask (pixels that are predicted as negative but are actually positive)
- fn_mask = torch.logical_and(plabels, npred)
- # we sample positive points from false negative pred.
- # we sample negative points from false positive pred.
- plabelpoints = torch.nonzero(fn_mask)
- nlabelpoints = torch.nonzero(fp_mask)
-
- else:
- plabelpoints = torch.nonzero(plabels)
- nlabelpoints = torch.nonzero(nlabels)
- # 1 indicates a foreground point and 0 indicates a background point.
- # -1 indicates a dummy non-point as the placeholder.
- n_placeholder = Np + Nn - min(len(plabelpoints), Np) - min(len(nlabelpoints), Nn)
-
- # Use torch.randperm to generate indices on a GPU tensor
- _point.append(
- torch.cat(
- sample_points(plabelpoints, min(len(plabelpoints), Np))
- + sample_points(nlabelpoints, min(len(nlabelpoints), Nn))
- + [torch.zeros((1, 2), device=device)] * n_placeholder,
- dim=0,
- )
- )
- _point_label.append(
- torch.tensor([1] * min(len(plabelpoints), Np) + [0] * min(len(nlabelpoints), Nn) + [-1] * n_placeholder).to(
- device
- )
- )
-
- point = torch.stack(_point)
- point_label = torch.stack(_point_label)
- point_coords = apply_coords_torch(point, max(h, w), args.sam_image_size)
-
- return point_coords, point_label
-
-
-def prepare_sam_training_input(inputs, labels, args, model):
- unique_labels = torch.unique(labels).as_tensor().long()
-
- if args.skip_bk:
- unique_labels = unique_labels[1:]
-
- if len(unique_labels) == 0:
- prepared_input = [{"image": inputs, "original_size": tuple(labels.shape)}]
- batch_labels = torch.zeros(1, 1, args.sam_image_size // 4, args.sam_image_size // 4).cuda(args.rank)
- skip = True
- return prepared_input, batch_labels, None, skip
-
- # random sample args.num_prompt prompts, this will help to manage the GPU memory upper bound.
- if len(unique_labels) > args.num_prompt:
- idxs = random.sample(range(len(unique_labels)), args.num_prompt)
- idxs = torch.tensor(idxs)
- unique_labels = unique_labels[idxs]
- if len(unique_labels) < args.num_prompt:
- while len(unique_labels) < args.num_prompt:
- unique_labels = torch.cat([unique_labels, unique_labels], 0)
- unique_labels = unique_labels[: args.num_prompt]
-
- # add 4 background labels to every batch
- background_labels = list(set([i for i in range(1, 105)]) - set(unique_labels.cpu().numpy()))
- random.shuffle(background_labels)
- unique_labels = torch.cat([unique_labels, torch.tensor(background_labels[:4]).cuda(args.rank)])
-
- # preprocess make the size of label same as low_res_logit
- batch_labels_ = torch.stack([labels == unique_labels[i] for i in range(len(unique_labels))], dim=0).float()
-
- if args.distributed:
- batch_labels = model.module.preprocess(batch_labels_, is_input=False)
- else:
- batch_labels = model.preprocess(batch_labels_, is_input=False)
-
- # TODO: we currently only use class-label and points prompt.
-
- prepared_input = [{"image": inputs, "original_size": tuple(labels.shape)}]
- if args.label_prompt:
- labels_prompt = unique_labels.unsqueeze(-1)
- prepared_input[0].update({"labels": labels_prompt})
-
- if args.point_prompt:
- point_coords, point_labels = generate_point_prompt(batch_labels_, args)
- prepared_input[0].update({"point_coords": point_coords, "point_labels": point_labels})
-
- if args.label_prompt and args.point_prompt:
- # if we use both two kinds of prompts, then we randomly drop one kind.
- if random.uniform(0, 1) < args.drop_label_prob:
- prepared_input[0].pop("labels")
- else:
- if random.uniform(0, 1) < args.drop_point_prob:
- prepared_input[0].pop("point_coords")
- prepared_input[0].pop("point_labels")
-
- return prepared_input, batch_labels.unsqueeze(1).cuda(args.rank), batch_labels_, False
-
-
-def train_epoch(model, loader, optimizer, scaler, epoch, loss_func, args):
- model.train()
- start_time = time.time()
- run_loss = AverageMeter()
- # we need to make sure the number of 2.5D input is an odd number.
- assert args.roi_z_iter % 2 == 1
- for idx, batch_data in enumerate(loader):
- # only take 1 batch
- inputs_l = batch_data["image"]
- labels_l = batch_data["label"]
- # TODO: we only support batch_size = 1 for data loader.
- inputs_l = inputs_l.squeeze()
- labels_l = labels_l.squeeze()
- n_z_before_pad = labels_l.shape[-1]
-
- n_slice = args.roi_z_iter
- # pad the z direction, so we can easily extract 2.5D input and predict labels for the center slice
- pd = (n_slice // 2, n_slice // 2)
- inputs_l = F.pad(inputs_l, pd, "constant", 0)
- labels_l = F.pad(labels_l, pd, "constant", 0)
- _loss = torch.tensor(0.0).cuda(args.rank)
-
- for _k in range(args.num_patch):
- # Return random integers from `low` (inclusive) to `high` (exclusive).
- start_idx = int(np.random.randint(low=n_slice // 2, high=(n_slice // 2 + n_z_before_pad)))
-
- inputs = inputs_l[..., start_idx - n_slice // 2 : start_idx + n_slice // 2 + 1].permute(2, 0, 1)
-
- # we only need the label for the center slice
- labels = labels_l[..., start_idx - n_slice // 2 : start_idx + n_slice // 2 + 1][..., n_slice // 2]
-
- data, target, target_original, skip = prepare_sam_training_input(
- inputs.cuda(args.rank), labels.cuda(args.rank), args, model
- )
-
- for param in model.parameters():
- param.grad = None
-
- with autocast(enabled=args.amp):
- outputs = model(data, is_train=True)
- loss = loss_func(outputs[0]["low_res_logits"], target)
-
- if skip:
- loss = loss * 0.0
-
- if args.amp:
- scaler.scale(loss).backward()
- if args.clip is not None:
- scaler.unscale_(optimizer)
- torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
- scaler.step(optimizer)
- scaler.update()
- else:
- loss.backward()
- if args.clip is not None:
- torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
- optimizer.step()
-
- _loss += loss.detach()
- _loss /= min(args.num_patch, n_z_before_pad)
- if args.distributed:
- loss_list = distributed_all_gather(
- [_loss],
- out_numpy=True,
- )
- run_loss.update(
- np.mean(np.mean(np.stack(loss_list, axis=0), axis=0), axis=0), n=args.batch_size * args.world_size
- )
- else:
- run_loss.update(_loss.item(), n=args.num_patch)
- if args.rank == 0:
- print(
- "Epoch {}/{} {}/{}".format(epoch, args.max_epochs, idx, len(loader)),
- "loss: {:.4f}".format(run_loss.avg),
- "time {:.2f}s".format(time.time() - start_time),
- )
- start_time = time.time()
- for param in model.parameters():
- param.grad = None
- return run_loss.avg
-
-
-def train_epoch_iterative(model, loader, optimizer, scaler, epoch, loss_func, args):
- model.train()
- start_time = time.time()
- run_loss = AverageMeter()
- # we need to make sure the number of 2.5D input is an odd number.
- assert args.roi_z_iter % 2 == 1
- for idx, batch_data in enumerate(loader):
- # only take 1 batch
- inputs_l = batch_data["image"]
- labels_l = batch_data["label"]
- # TODO: we only support batch_size = 1 for data loader.
- inputs_l = inputs_l.squeeze()
- labels_l = labels_l.squeeze()
- n_z_before_pad = labels_l.shape[-1]
-
- n_slice = args.roi_z_iter
- # pad the z direction, so we can easily extract 2.5D input and predict labels for the center slice
- pd = (n_slice // 2, n_slice // 2)
- inputs_l = F.pad(inputs_l, pd, "constant", 0)
- labels_l = F.pad(labels_l, pd, "constant", 0)
- _loss = torch.tensor(0.0).cuda(args.rank)
- for _k in range(min(args.num_patch, n_z_before_pad)):
- # Return random integers from `low` (inclusive) to `high` (exclusive).
- start_idx = int(np.random.randint(low=n_slice // 2, high=(n_slice // 2 + n_z_before_pad)))
-
- inputs = inputs_l[..., start_idx - n_slice // 2 : start_idx + n_slice // 2 + 1].permute(2, 0, 1)
-
- # we only need the label for the center slice
- labels = labels_l[..., start_idx - n_slice // 2 : start_idx + n_slice // 2 + 1][..., n_slice // 2]
-
- data, target, target_original, skip = prepare_sam_training_input(
- inputs.cuda(args.rank), labels.cuda(args.rank), args, model
- )
- for param in model.parameters():
- param.grad = None
-
- with autocast(enabled=args.amp):
- if args.distributed:
- image_embeddings = model.module.get_image_embeddings(data)
- else:
- image_embeddings = model.get_image_embeddings(data)
-
- if skip:
- with autocast(enabled=args.amp):
- if args.distributed:
- outputs = model.module.get_mask_prediction(data, image_embeddings)
- else:
- outputs = model.get_mask_prediction(data, image_embeddings)
- loss = loss_func(outputs[0]["low_res_logits"], target) * 0.0
- else:
- # iterative training
- loss = 0
- drop_iter = random.randint(0, args.num_iterative_step - 2)
- for i in range(args.num_iterative_step):
- with autocast(enabled=args.amp):
- if args.distributed:
- outputs = model.module.get_mask_prediction(data, image_embeddings)
- else:
- outputs = model.get_mask_prediction(data, image_embeddings)
- loss += loss_func(outputs[0]["low_res_logits"], target)
- if i == args.num_iterative_step - 1:
- # no need to perform the following operations after the last step
- continue
- # we also supply the mask prediction from the previous iteration
- # as an additional prompt to our model (follow original SAM).
- data[0]["mask_inputs"] = outputs[0]["low_res_logits"].detach()
- if i == drop_iter:
- # for drop iter, no additional points are sampled (follow original SAM).
- continue
-
- previous_point_coords = data[0].get("point_coords", None)
- previous_point_labels = data[0].get("point_labels", None)
-
- if previous_point_coords is None and args.no_more_points_for_cp_only:
- # if no point prompt at the first prompt generation,
- # we will not add more additional pointa during iterative training.
- continue
-
- # sample one pos and on neg point based on previous prediction
- previous_pred = (F.sigmoid(outputs[0]["high_res_logits"].detach()) > 0.5).float()
- point_coords, point_labels = generate_point_prompt(
- target_original, args=args, points_pos=1, points_neg=1, previous_pred=previous_pred
- )
-
- if previous_point_coords is not None:
- data[0]["point_coords"] = torch.cat([previous_point_coords, point_coords], dim=1)
- data[0]["point_labels"] = torch.cat([previous_point_labels, point_labels], dim=1)
- else:
- data[0]["point_coords"] = point_coords
- data[0]["point_labels"] = point_labels
-
- if args.amp:
- scaler.scale(loss).backward()
- if args.clip is not None:
- scaler.unscale_(optimizer)
- torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
- scaler.step(optimizer)
- scaler.update()
- else:
- loss.backward()
- if args.clip is not None:
- torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
- optimizer.step()
-
- _loss += loss.detach() / args.num_iterative_step
- _loss /= min(args.num_patch, n_z_before_pad)
- if args.distributed:
- loss_list = distributed_all_gather(
- [_loss],
- out_numpy=True,
- )
- run_loss.update(
- np.mean(np.mean(np.stack(loss_list, axis=0), axis=0), axis=0), n=args.batch_size * args.world_size
- )
- else:
- run_loss.update(_loss.item(), n=args.num_patch)
- if args.rank == 0:
- print(
- "Epoch {}/{} {}/{}".format(epoch, args.max_epochs, idx, len(loader)),
- "loss: {:.4f}".format(run_loss.avg),
- "time {:.2f}s".format(time.time() - start_time),
- )
- start_time = time.time()
- for param in model.parameters():
- param.grad = None
- return run_loss.avg
-
-
-def prepare_sam_test_input(inputs, labels, args, previous_pred=None):
- unique_labels = torch.tensor([i for i in range(1, 105)]).cuda(args.rank)
-
- # preprocess make the size of lable same as high_res_logit
- batch_labels = torch.stack([labels == unique_labels[i] for i in range(len(unique_labels))], dim=0).float()
-
- prepared_input = [{"image": inputs, "original_size": tuple(labels.shape)}]
- if args.label_prompt:
- labels_prompt = unique_labels.unsqueeze(-1)
- prepared_input[0].update({"labels": labels_prompt})
-
- if args.point_prompt:
- point_coords, point_labels = generate_point_prompt(
- batch_labels,
- args,
- points_pos=args.points_val_pos,
- points_neg=args.points_val_neg,
- previous_pred=previous_pred,
- )
- prepared_input[0].update({"point_coords": point_coords, "point_labels": point_labels})
-
- return prepared_input, batch_labels.unsqueeze(1).cuda(args.rank), unique_labels
-
-
-def prepare_sam_val_input_cp_only(inputs, labels, args):
- # Don't exclude background in val but will ignore it in metric calculation
- unique_labels = torch.tensor([i for i in range(1, 105)]).cuda(args.rank)
-
- # preprocess make the size of lable same as high_res_logit
- batch_labels = torch.stack([labels == unique_labels[i] for i in range(len(unique_labels))], dim=0).float()
-
- prepared_input = [{"image": inputs, "original_size": tuple(labels.shape)}]
-
- labels_prompt = unique_labels.unsqueeze(-1)
- prepared_input[0].update({"labels": labels_prompt})
-
- return prepared_input, batch_labels.unsqueeze(1).cuda(args.rank), unique_labels
-
-
-def val_epoch(model, loader, epoch, acc_func, args, iterative=False, post_label=None, post_pred=None):
- model.eval()
- run_acc = AverageMeter()
- start_time = time.time()
- with torch.no_grad():
- for idx, batch_data in enumerate(loader):
- # only take 1 batch
- inputs_l = batch_data["image"]
- labels_l = batch_data["label"]
- labels_l.shape[-1]
- # assert n_z_before_pad >= args.num_patch_val + args.roi_z_iter
-
- # TODO: we only support batch_size = 1 for data loader.
- inputs_l = inputs_l.squeeze()
- labels_l = labels_l.squeeze()
-
- n_slice = args.roi_z_iter
- # pad the z direction, so we can easily extract 2.5D input and predict labels for the center slice
- pd = (n_slice // 2, n_slice // 2)
-
- inputs_l = F.pad(inputs_l, pd, "constant", 0)
- labels_l = F.pad(labels_l, pd, "constant", 0)
- n_z_after_pad = labels_l.shape[-1]
-
- acc_sum_total = 0.0
- not_nans_total = 0.0
- # We only loop the center args.num_patch_val slices to save val time
- for start_idx in range(
- n_z_after_pad // 2 - args.num_patch_val // 2, n_z_after_pad // 2 + args.num_patch_val // 2
- ):
- inputs = inputs_l[..., start_idx - n_slice // 2 : start_idx + n_slice // 2 + 1].permute(2, 0, 1)
-
- # we only need the label for the center slice
- labels = labels_l[..., start_idx - n_slice // 2 : start_idx + n_slice // 2 + 1][..., n_slice // 2]
-
- data, target, _ = prepare_sam_val_input_cp_only(inputs.cuda(args.rank), labels.cuda(args.rank), args)
-
- with autocast(enabled=args.amp):
- outputs = model(data)
- logit = outputs[0]["high_res_logits"]
-
- y_pred = torch.stack(post_pred(decollate_batch(logit)), 0)
-
- # TODO: we compute metric for each prompt for simplicity in validation.
- acc_batch = compute_dice(y_pred=y_pred, y=target)
- acc_sum, not_nans = (
- torch.nansum(acc_batch).item(),
- 104 - torch.sum(torch.isnan(acc_batch).float()).item(),
- )
- acc_sum_total += acc_sum
- not_nans_total += not_nans
-
- acc, not_nans = acc_sum_total / not_nans_total, not_nans_total
- f_name = batch_data["image"].meta["filename_or_obj"]
- print(f"Rank: {args.rank}, Case: {f_name}, Acc: {acc:.4f}, N_prompts: {int(not_nans)} ")
-
- acc = torch.tensor(acc).cuda(args.rank)
- not_nans = torch.tensor(not_nans).cuda(args.rank)
-
- if args.distributed:
- acc_list, not_nans_list = distributed_all_gather([acc, not_nans], out_numpy=True)
- for al, nl in zip(acc_list, not_nans_list):
- run_acc.update(al, n=nl)
-
- else:
- run_acc.update(acc.cpu().numpy(), n=not_nans.cpu().numpy())
-
- if args.rank == 0:
- avg_acc = np.mean(run_acc.avg)
- print(
- "Val {}/{} {}/{}".format(epoch, args.max_epochs, idx + 1, len(loader)),
- "acc",
- avg_acc,
- "time {:.2f}s".format(time.time() - start_time),
- )
- start_time = time.time()
- return run_acc.avg
-
-
-def save_checkpoint(model, epoch, args, filename="model.pt", best_acc=0, optimizer=None, scheduler=None):
- state_dict = model.state_dict() if not args.distributed else model.module.state_dict()
- save_dict = {"epoch": epoch, "best_acc": best_acc, "state_dict": state_dict}
- if optimizer is not None:
- save_dict["optimizer"] = optimizer.state_dict()
- if scheduler is not None:
- save_dict["scheduler"] = scheduler.state_dict()
- filename = os.path.join(args.logdir, filename)
- torch.save(save_dict, filename)
- print("Saving checkpoint", filename)
-
-
-def run_training(
- model,
- train_loader,
- val_loader,
- optimizer,
- loss_func,
- acc_func,
- args,
- scheduler=None,
- start_epoch=0,
- post_label=None,
- post_pred=None,
-):
- writer = None
- if args.logdir is not None and args.rank == 0:
- writer = SummaryWriter(log_dir=args.logdir)
- if args.rank == 0:
- print("Writing Tensorboard logs to ", args.logdir)
- scaler = None
- if args.amp:
- scaler = GradScaler()
- val_acc_max = 0.0
- best_epoch = -1
- val_MA = None
- best_log = {}
- for epoch in range(start_epoch, args.max_epochs):
- if args.distributed:
- torch.distributed.barrier()
- print(args.rank, time.ctime(), "Epoch:", epoch)
- epoch_time = time.time()
- if args.rank == 0:
- if scheduler is not None:
- print("Current lr:", scheduler.get_last_lr())
- else:
- print("Current lr:", optimizer.param_groups[0]["lr"])
-
- if args.label_prompt and args.point_prompt:
- if epoch < args.label_prompt_warm_up_epoch:
- # during warm up, we drop class label prompt embedding with less prob,
- # since class label prompt embedding layer is trained from scratch.
- args.drop_label_prob = 0.2
- args.drop_point_prob = 0.5
- else:
- # after warmp up, we evenly drop two kinds of prompts
- args.drop_label_prob = 0.5
- args.drop_point_prob = 0.5
- print(
- "rank:",
- args.rank,
- "label_prompt (train):",
- args.label_prompt,
- ", label_drop_prob:",
- args.drop_label_prob,
- "| point_prompt (train):",
- args.point_prompt,
- ", point_drop_prob:",
- args.drop_point_prob,
- )
-
- # we don't perform iterative training for the first args.iterative_training_warm_up_epoch epochs
- if epoch > args.iterative_training_warm_up_epoch:
- if args.reuse_img_embedding:
- if args.rank == 0:
- print("Iterative Training: Reuse image embedding!")
- train_loss = train_epoch_iterative(
- model, train_loader, optimizer, scaler=scaler, epoch=epoch, loss_func=loss_func, args=args
- )
- else:
- if args.rank == 0:
- print("Iterative Training: Don't reuse image embedding!")
- raise NotImplementedError
- else:
- print(f" Rank: {args.rank} Single-step Training")
- train_loss = train_epoch(
- model, train_loader, optimizer, scaler=scaler, epoch=epoch, loss_func=loss_func, args=args
- )
-
- if args.rank == 0:
- print(
- "Final training {}/{}".format(epoch, args.max_epochs - 1),
- "loss: {:.4f}".format(train_loss),
- "time {:.2f}s".format(time.time() - epoch_time),
- )
- if args.rank == 0 and writer is not None:
- writer.add_scalar("train_loss", train_loss, epoch)
-
- if (epoch + 1) % args.val_every == 0:
- if args.distributed:
- torch.distributed.barrier()
- if args.rank == 0:
- print("Start validation")
- print("label_prompt (val):", args.label_prompt, "point_prompt (val):", args.point_prompt)
- epoch_time = time.time()
- val_avg_acc = val_epoch(
- model,
- val_loader,
- iterative=False,
- epoch=epoch,
- acc_func=acc_func,
- args=args,
- post_label=post_label,
- post_pred=post_pred,
- )
-
- val_avg_acc = np.mean(val_avg_acc)
- if val_MA is None:
- val_MA = val_avg_acc
- else:
- val_MA = 0.9 * val_MA + 0.1 * val_avg_acc
- if args.rank == 0:
- print(
- "Final validation {}/{},".format(epoch, args.max_epochs - 1),
- f"Acc {val_avg_acc:.4f},",
- f"mv Acc {val_MA:.4f},",
- "Previous Best validation at epoch {} is {:.4f},".format(best_epoch, val_acc_max),
- "time {:.2f}s".format(time.time() - epoch_time),
- )
- if writer is not None:
- writer.add_scalar("val_acc", val_avg_acc, epoch)
- if val_avg_acc > val_acc_max:
- print("new best ({:.6f} --> {:.6f}). ".format(val_acc_max, val_avg_acc))
- val_acc_max = val_avg_acc
- best_log[epoch] = float(val_acc_max)
- best_epoch = epoch
- if args.rank == 0 and args.logdir is not None and args.save_checkpoint:
- save_checkpoint(
- model,
- epoch,
- args,
- best_acc=val_acc_max,
- filename="model_best.pt",
- optimizer=optimizer,
- scheduler=scheduler,
- )
- with open(os.path.join(args.logdir, "train.log"), "w") as f:
- json.dump(best_log, f)
- if args.rank == 0 and args.logdir is not None and args.save_checkpoint:
- save_checkpoint(model, epoch, args, best_acc=val_acc_max, filename="model_final.pt")
-
- if scheduler is not None:
- scheduler.step()
-
- if args.rank == 0 and writer is not None:
- writer.close()
-
- print("Training Finished !, Best Accuracy: ", val_acc_max, "at epoch", best_epoch)
-
- return val_acc_max
diff --git a/training/utils/__init__.py b/training/utils/__init__.py
deleted file mode 100644
index e69de29..0000000
diff --git a/training/utils/data_utils.py b/training/utils/data_utils.py
deleted file mode 100644
index 5d4064b..0000000
--- a/training/utils/data_utils.py
+++ /dev/null
@@ -1,251 +0,0 @@
-# Copyright 2020 - 2023 MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-import copy
-import math
-import os
-
-import numpy as np
-import torch
-from monai import data, transforms
-from monai.transforms import (
- EnsureChannelFirstd,
- LoadImaged,
- Orientationd,
- RandRotate90d,
- RandShiftIntensityd,
- ScaleIntensityRanged,
- Spacingd,
-)
-
-
-class Sampler(torch.utils.data.Sampler):
- def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True, make_even=True):
- if num_replicas is None:
- if not torch.distributed.is_available():
- raise RuntimeError("Requires distributed package to be available")
- num_replicas = torch.distributed.get_world_size()
- if rank is None:
- if not torch.distributed.is_available():
- raise RuntimeError("Requires distributed package to be available")
- rank = torch.distributed.get_rank()
- self.shuffle = shuffle
- self.make_even = make_even
- self.dataset = dataset
- self.num_replicas = num_replicas
- self.rank = rank
- self.epoch = 0
- self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas))
- self.total_size = self.num_samples * self.num_replicas
- indices = list(range(len(self.dataset)))
- self.valid_length = len(indices[self.rank : self.total_size : self.num_replicas])
-
- def __iter__(self):
- if self.shuffle:
- g = torch.Generator()
- g.manual_seed(self.epoch)
- indices = torch.randperm(len(self.dataset), generator=g).tolist()
- else:
- indices = list(range(len(self.dataset)))
- if self.make_even:
- if len(indices) < self.total_size:
- if self.total_size - len(indices) < len(indices):
- indices += indices[: (self.total_size - len(indices))]
- else:
- extra_ids = np.random.randint(low=0, high=len(indices), size=self.total_size - len(indices))
- indices += [indices[ids] for ids in extra_ids]
- assert len(indices) == self.total_size
- indices = indices[self.rank : self.total_size : self.num_replicas]
- self.num_samples = len(indices)
- return iter(indices)
-
- def __len__(self):
- return self.num_samples
-
- def set_epoch(self, epoch):
- self.epoch = epoch
-
-
-def get_loader(args):
- train_files, val_files, test_files = split_data(args)
-
- random_transforms = (
- [
- RandRotate90d(
- keys=["image", "label"],
- prob=0.10,
- max_k=3,
- ),
- RandShiftIntensityd(
- keys=["image"],
- offsets=0.10,
- prob=0.10,
- ),
- ]
- if args.data_aug
- else []
- )
-
- if args.data_aug:
- print("using data augmentation")
- else:
- print("No data augmentation")
-
- train_transform = transforms.Compose(
- [
- LoadImaged(keys=["image", "label"], image_only=True),
- EnsureChannelFirstd(keys=["image", "label"]),
- Orientationd(keys=["image", "label"], axcodes="RAS"),
- Spacingd(keys=["image", "label"], pixdim=(1.5, 1.5, 1.5), mode=("bilinear", "nearest")),
- ScaleIntensityRanged(
- keys=["image"], a_min=args.a_min, a_max=args.a_max, b_min=args.b_min, b_max=args.b_max, clip=True
- ),
- ]
- + random_transforms
- )
-
- val_transform = transforms.Compose(
- [
- LoadImaged(keys=["image", "label"], image_only=True),
- EnsureChannelFirstd(keys=["image", "label"]),
- Orientationd(keys=["image", "label"], axcodes="RAS"),
- Spacingd(keys=["image", "label"], pixdim=(1.5, 1.5, 1.5), mode=("bilinear", "nearest")),
- ScaleIntensityRanged(
- keys=["image"], a_min=args.a_min, a_max=args.a_max, b_min=args.b_min, b_max=args.b_max, clip=True
- ),
- ]
- )
-
- if args.test_mode:
- pass
- else:
- datalist = train_files
- if args.use_normal_dataset:
- train_ds = data.Dataset(data=datalist[:1], transform=train_transform)
- else:
- if args.distributed:
- datalist = data.partition_dataset(
- data=datalist,
- shuffle=True,
- num_partitions=args.world_size,
- even_divisible=True,
- )[args.rank]
-
- train_ds = data.CacheDataset(
- data=datalist,
- transform=train_transform,
- cache_rate=1.0,
- num_workers=args.workers,
- )
- train_sampler = None
-
- train_loader = data.DataLoader(
- train_ds,
- batch_size=args.batch_size,
- shuffle=(train_sampler is None),
- num_workers=args.workers,
- sampler=train_sampler,
- pin_memory=True,
- )
- val_files = val_files
- if args.distributed:
- val_files = data.partition_dataset(
- data=val_files,
- shuffle=False,
- num_partitions=args.world_size,
- even_divisible=False,
- )[args.rank]
- val_ds = data.CacheDataset(
- data=val_files,
- transform=val_transform,
- cache_rate=1.0,
- num_workers=args.workers,
- )
- val_sampler = None
- val_loader = data.DataLoader(
- val_ds, batch_size=1, shuffle=False, num_workers=args.workers, sampler=val_sampler, pin_memory=True
- )
- loader = [train_loader, val_loader]
-
- return loader
-
-
-def split_data(args):
- data_dir = args.data_dir
- import json
-
- with open(args.json_list, "r") as f:
- json_data = json.load(f)
-
- list_train = []
- list_valid = []
- if "validation" in json_data.keys():
- list_train = json_data["training"]
- list_valid = json_data["validation"]
- list_test = json_data["testing"]
- else:
- for item in json_data["training"]:
- if item["fold"] == args.fold:
- item.pop("fold", None)
- list_valid.append(item)
- else:
- item.pop("fold", None)
- list_train.append(item)
- if "testing" in json_data.keys() and "label" in json_data["testing"][0]:
- list_test = json_data["testing"]
- else:
- list_test = copy.deepcopy(list_valid)
- if args.splitval > 0:
- list_train = sorted(list_train, key=lambda x: x["image"])
- l = int((len(list_train) + len(list_valid)) * args.splitval)
- list_valid = list_train[-l:]
- list_train = list_train[:-l]
-
- if hasattr(args, "rank") and args.rank == 0:
- print("train files", len(list_train), [os.path.basename(_["image"]).split(".")[0] for _ in list_train])
- print("val files", len(list_valid), [os.path.basename(_["image"]).split(".")[0] for _ in list_valid])
- print("test files", len(list_test), [os.path.basename(_["image"]).split(".")[0] for _ in list_test])
-
- # training data
- files = []
- for _i in range(len(list_train)):
- str_img = os.path.join(data_dir, list_train[_i]["image"])
- str_seg = os.path.join(data_dir, list_train[_i]["label"])
-
- if (not os.path.exists(str_img)) or (not os.path.exists(str_seg)):
- continue
-
- files.append({"image": str_img, "label": str_seg})
-
- train_files = copy.deepcopy(files)
-
- files = []
- for _i in range(len(list_valid)):
- str_img = os.path.join(data_dir, list_valid[_i]["image"])
- str_seg = os.path.join(data_dir, list_valid[_i]["label"])
-
- if (not os.path.exists(str_img)) or (not os.path.exists(str_seg)):
- continue
-
- files.append({"image": str_img, "label": str_seg})
- val_files = copy.deepcopy(files)
-
- files = []
- for _i in range(len(list_test)):
- str_img = os.path.join(data_dir, list_test[_i]["image"])
- str_seg = os.path.join(data_dir, list_test[_i]["label"])
-
- if (not os.path.exists(str_img)) or (not os.path.exists(str_seg)):
- continue
-
- files.append({"image": str_img, "label": str_seg})
- test_files = copy.deepcopy(files)
- return train_files, val_files, test_files
diff --git a/training/utils/utils.py b/training/utils/utils.py
deleted file mode 100644
index 8ac31c6..0000000
--- a/training/utils/utils.py
+++ /dev/null
@@ -1,78 +0,0 @@
-# Copyright 2020 - 2022 MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-import numpy as np
-import scipy.ndimage as ndimage
-import torch
-
-
-def resample_3d(img, target_size):
- imx, imy, imz = img.shape
- tx, ty, tz = target_size
- zoom_ratio = (float(tx) / float(imx), float(ty) / float(imy), float(tz) / float(imz))
- img_resampled = ndimage.zoom(img, zoom_ratio, order=0, prefilter=False)
- return img_resampled
-
-
-def dice(x, y):
- intersect = np.sum(np.sum(np.sum(x * y)))
- y_sum = np.sum(np.sum(np.sum(y)))
- if y_sum == 0:
- return 0.0
- x_sum = np.sum(np.sum(np.sum(x)))
- return 2 * intersect / (x_sum + y_sum)
-
-
-class AverageMeter(object):
- def __init__(self):
- self.reset()
-
- def reset(self):
- self.val = 0
- self.avg = 0
- self.sum = 0
- self.count = 0
-
- def update(self, val, n=1):
- self.val = val
- self.sum += val * n
- self.count += n
- self.avg = np.where(self.count > 0, self.sum / self.count, self.sum)
-
-
-def distributed_all_gather(
- tensor_list, valid_batch_size=None, out_numpy=False, world_size=None, no_barrier=False, is_valid=None
-):
- if world_size is None:
- world_size = torch.distributed.get_world_size()
- if valid_batch_size is not None:
- valid_batch_size = min(valid_batch_size, world_size)
- elif is_valid is not None:
- is_valid = torch.tensor(bool(is_valid), dtype=torch.bool, device=tensor_list[0].device)
- if not no_barrier:
- torch.distributed.barrier()
- tensor_list_out = []
- with torch.no_grad():
- if is_valid is not None:
- is_valid_list = [torch.zeros_like(is_valid) for _ in range(world_size)]
- torch.distributed.all_gather(is_valid_list, is_valid)
- is_valid = [x.item() for x in is_valid_list]
- for tensor in tensor_list:
- gather_list = [torch.zeros_like(tensor) for _ in range(world_size)]
- torch.distributed.all_gather(gather_list, tensor)
- if valid_batch_size is not None:
- gather_list = gather_list[:valid_batch_size]
- elif is_valid is not None:
- gather_list = [g for g, v in zip(gather_list, is_valid_list) if v]
- if out_numpy:
- gather_list = [t.cpu().numpy() for t in gather_list]
- tensor_list_out.append(gather_list)
- return tensor_list_out
diff --git a/training/vista_2pt5d/__init__.py b/training/vista_2pt5d/__init__.py
deleted file mode 100644
index e69de29..0000000
diff --git a/training/vista_2pt5d/model.py b/training/vista_2pt5d/model.py
deleted file mode 100644
index 1df8097..0000000
--- a/training/vista_2pt5d/model.py
+++ /dev/null
@@ -1,441 +0,0 @@
-# Copyright (c) MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-# Copyright (c) Meta Platforms, Inc. and affiliates.
-# All rights reserved.
-
-# This source code is licensed under the license found in the
-# LICENSE file in the root directory of this source tree.
-
-from functools import partial
-from typing import Any, Dict, List, Tuple
-
-import monai
-import torch
-from segment_anything.modeling import TwoWayTransformer
-from segment_anything.modeling.mask_decoder import MaskDecoder
-from torch import nn
-from torch.nn import functional as F
-from vista_2pt5d.vista_image_encoder import VistaImageEncoderViT
-from vista_2pt5d.vista_prompt_encoder import VistaPromptEncoder
-
-
-class Vista2pt5D(nn.Module):
- mask_threshold: float = 0.5
- image_format: str = "RGB"
-
- def __init__(
- self,
- image_encoder: VistaImageEncoderViT,
- prompt_encoder: VistaPromptEncoder,
- mask_decoder: MaskDecoder,
- pixel_mean: List[float] = [123.675, 116.28, 103.53],
- pixel_std: List[float] = [58.395, 57.12, 57.375],
- ) -> None:
- """
- SAM predicts object masks from an image and input prompts.
-
- Arguments:
- image_encoder (ImageEncoderViT): The backbone used to encode the
- image into image embeddings that allow for efficient mask prediction.
- prompt_encoder (PromptEncoder): Encodes various types of input prompts.
- mask_decoder (MaskDecoder): Predicts masks from the image embeddings
- and encoded prompts.
- pixel_mean (list(float)): Mean values for normalizing pixels in the input image.
- pixel_std (list(float)): Std values for normalizing pixels in the input image.
- """
- super().__init__()
- self.image_encoder = image_encoder
- self.prompt_encoder = prompt_encoder
- self.mask_decoder = mask_decoder
- self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False)
- self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False)
-
- @property
- def device(self) -> Any:
- return self.pixel_mean.device
-
- def get_image_embeddings(
- self,
- batched_input: List[Dict[str, Any]],
- ):
- input_images = torch.stack([self.preprocess(x["image"]) for x in batched_input], dim=0)
- image_embeddings = self.image_encoder(input_images)
- return image_embeddings
-
- def get_mask_prediction(
- self, batched_input: List[Dict[str, Any]], image_embeddings, multimask_output: bool = False
- ):
- outputs = []
- for image_record, curr_embedding in zip(batched_input, image_embeddings):
- if "point_coords" in image_record:
- points = (image_record["point_coords"], image_record["point_labels"])
- # raise NotImplementedError
- else:
- points = None
- sparse_embeddings, dense_embeddings = self.prompt_encoder(
- points=points,
- boxes=image_record.get("boxes", None),
- masks=image_record.get("mask_inputs", None),
- class_labels=image_record.get("labels", None),
- )
- low_res_masks, iou_predictions = self.mask_decoder(
- image_embeddings=curr_embedding.unsqueeze(0),
- image_pe=self.prompt_encoder.get_dense_pe(),
- sparse_prompt_embeddings=sparse_embeddings,
- dense_prompt_embeddings=dense_embeddings,
- multimask_output=multimask_output,
- )
-
- high_res_masks = self.postprocess_masks(
- low_res_masks,
- # input_size=image_record["image"].shape[-2:],
- original_size=image_record["original_size"],
- )
- masks = high_res_masks > self.mask_threshold
- outputs.append(
- {
- "masks": masks,
- "iou_predictions": iou_predictions,
- "low_res_logits": low_res_masks,
- "high_res_logits": high_res_masks,
- }
- )
- return outputs
-
- def forward(
- self,
- batched_input: List[Dict[str, Any]],
- multimask_output: bool = False,
- is_train: bool = False,
- ) -> List[Dict[str, torch.Tensor]]:
- """
- Predicts masks end-to-end from provided images and prompts.
- If prompts are not known in advance, using SamPredictor is
- recommended over calling the model directly.
-
- Arguments:
- batched_input (list(dict)): A list over input images, each a
- dictionary with the following keys. A prompt key can be
- excluded if it is not present.
- 'image': The image as a torch tensor in 3xHxW format,
- already transformed for input to the model.
- 'original_size': (tuple(int, int)) The original size of
- the image before transformation, as (H, W).
- 'point_coords': (torch.Tensor) Batched point prompts for
- this image, with shape BxNx2. Already transformed to the
- input frame of the model.
- 'point_labels': (torch.Tensor) Batched labels for point prompts,
- with shape BxN.
- 'labels': (torch.Tensor) Batched labels for class-label prompt,
- with shape BxN.
- 'boxes': (torch.Tensor) Batched box inputs, with shape Bx4.
- Already transformed to the input frame of the model.
- 'mask_inputs': (torch.Tensor) Batched mask inputs to the model,
- in the form Bx1xHxW.
- multimask_output (bool): Whether the model should predict multiple
- disambiguating masks, or return a single mask.
-
- Returns:
- (list(dict)): A list over input images, where each element is
- as dictionary with the following keys.
- 'masks': (torch.Tensor) Batched binary mask predictions,
- with shape BxCxHxW, where B is the number of input promts,
- C is determiend by multimask_output, and (H, W) is the
- original size of the image.
- 'iou_predictions': (torch.Tensor) The model's predictions
- of mask quality, in shape BxC.
- 'low_res_logits': (torch.Tensor) Low resolution logits with
- shape BxCxHxW, where H=W=256. Can be passed as mask input
- to subsequent iterations of prediction.
- """
- input_images = torch.stack([self.preprocess(x["image"]) for x in batched_input], dim=0)
- image_embeddings = self.image_encoder(input_images)
-
- outputs = []
- for image_record, curr_embedding in zip(batched_input, image_embeddings):
- if "point_coords" in image_record:
- points = (image_record["point_coords"], image_record["point_labels"])
- # raise NotImplementedError
- else:
- points = None
- sparse_embeddings, dense_embeddings = self.prompt_encoder(
- points=points,
- boxes=image_record.get("boxes", None),
- masks=image_record.get("mask_inputs", None),
- class_labels=image_record.get("labels", None),
- )
- low_res_masks, iou_predictions = self.mask_decoder(
- image_embeddings=curr_embedding.unsqueeze(0),
- image_pe=self.prompt_encoder.get_dense_pe(),
- sparse_prompt_embeddings=sparse_embeddings,
- dense_prompt_embeddings=dense_embeddings,
- multimask_output=multimask_output,
- )
- if is_train:
- outputs.append(
- {
- "iou_predictions": iou_predictions,
- "low_res_logits": low_res_masks,
- }
- )
- else:
- high_res_masks = self.postprocess_masks(
- low_res_masks,
- # input_size=image_record["image"].shape[-2:],
- original_size=image_record["original_size"],
- )
- masks = high_res_masks > self.mask_threshold
- outputs.append(
- {
- "masks": masks,
- "iou_predictions": iou_predictions,
- "low_res_logits": low_res_masks,
- "high_res_logits": high_res_masks,
- }
- )
- return outputs
-
- def postprocess_masks(
- self,
- masks: torch.Tensor,
- # input_size: Tuple[int, ...],
- original_size: Tuple[int, ...],
- ) -> torch.Tensor:
- """
- Remove padding and upscale masks to the original image size.
-
- Arguments:
- masks (torch.Tensor): Batched masks from the mask_decoder,
- in BxCxHxW format.
- input_size (tuple(int, int)): The size of the image input to the
- model, in (H, W) format. Used to remove padding.
- original_size (tuple(int, int)): The original size of the image
- before resizing for input to the model, in (H, W) format.
-
- Returns:
- (torch.Tensor): Batched masks in BxCxHxW format, where (H, W)
- is given by original_size.
- """
- # make it high resolution
- masks = F.interpolate(
- masks,
- (self.image_encoder.img_size, self.image_encoder.img_size),
- mode="bilinear",
- align_corners=False,
- )
- # resize it back to the longest dim (square image)
- masks = F.interpolate(masks, max(original_size), mode="bilinear", align_corners=False)
- # remove padding
- masks = masks[..., : original_size[0], : original_size[1]]
- return masks
-
- def preprocess(self, x: torch.Tensor, is_input=True) -> torch.Tensor:
- """Normalize pixel values and pad to a square input."""
- if is_input:
- if x.shape[0] == 1:
- # Normalize colors map the values in [0,1] to [0,255] for input images and then using
- # original pixel_mean and pixel_std to do normalization
- x = (x * 255.0 - self.pixel_mean) / self.pixel_std
- else:
- # for other 2.5d data, we normalize each input slice
- x = torch.cat(
- [(x[i].unsqueeze(0) * 255.0 - self.pixel_mean) / self.pixel_std for i in range(x.shape[0])], dim=0
- )
-
- # Pad image and make it a square image
- h, w = x.shape[-2:]
- # find the longest dim
- target_length = max(h, w)
- padh = target_length - h
- padw = target_length - w
- x = F.pad(x, (0, padw, 0, padh))
- if is_input:
- # Resize it to self.image_encoder.img_size
- x = F.interpolate(
- x.unsqueeze(0),
- (self.image_encoder.img_size, self.image_encoder.img_size),
- mode="bilinear",
- align_corners=False,
- ).squeeze(0)
- else:
- # Resize it to self.image_encoder.img_size // 4 (for labels). the size is same as low-res logit
- x = F.interpolate(
- x.unsqueeze(0), (self.image_encoder.img_size // 4, self.image_encoder.img_size // 4), mode="nearest"
- ).squeeze(0)
- return x
-
-
-def _build_vista2pt5d(
- encoder_in_chans,
- encoder_embed_dim,
- encoder_depth,
- encoder_num_heads,
- encoder_global_attn_indexes,
- checkpoint=None,
- image_size=1024,
- clip_class_label_prompt=False,
- patch_embed_3d=False,
-):
- prompt_embed_dim = 256
- image_size = image_size # TODO: Shall we try to adapt model to 512x512 ?
- vit_patch_size = 16
- image_embedding_size = image_size // vit_patch_size
- sam = Vista2pt5D(
- image_encoder=VistaImageEncoderViT(
- in_chans=encoder_in_chans,
- depth=encoder_depth,
- embed_dim=encoder_embed_dim,
- img_size=image_size,
- mlp_ratio=4,
- norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
- num_heads=encoder_num_heads,
- patch_size=vit_patch_size,
- qkv_bias=True,
- use_rel_pos=True,
- global_attn_indexes=encoder_global_attn_indexes,
- window_size=14,
- out_chans=prompt_embed_dim,
- patch_embed_3d=patch_embed_3d,
- ),
- prompt_encoder=VistaPromptEncoder(
- embed_dim=prompt_embed_dim,
- image_embedding_size=(image_embedding_size, image_embedding_size),
- input_image_size=(image_size, image_size),
- mask_in_chans=16,
- clip_class_label_prompt=clip_class_label_prompt,
- ),
- mask_decoder=MaskDecoder(
- num_multimask_outputs=3, # TODO: only predict one binary mask
- transformer=TwoWayTransformer(
- depth=2,
- embedding_dim=prompt_embed_dim,
- mlp_dim=2048,
- num_heads=8,
- ),
- transformer_dim=prompt_embed_dim,
- iou_head_depth=3,
- iou_head_hidden_dim=256,
- ),
- pixel_mean=[123.675, 116.28, 103.53],
- pixel_std=[58.395, 57.12, 57.375],
- )
-
- if checkpoint is not None:
- with open(checkpoint, "rb") as f:
- state_dict = torch.load(f)
-
- if image_size == 1024:
- # we try to use all pretrained weights
- new_dict = state_dict
- else:
- new_dict = {}
- for k, v in state_dict.items():
- # skip weights in position embedding and learned relative positional embeddings
- # due to the change of input size
- if ("pos_embed" in k and k.startswith("image_encoder")) or (
- "attn.rel_pos" in k and k.startswith("image_encoder")
- ):
- continue
- else:
- new_dict[k] = v
-
- if encoder_in_chans != 3:
- new_dict.pop("image_encoder.patch_embed.proj.weight")
- new_dict.pop("image_encoder.patch_embed.proj.bias")
-
- sam.load_state_dict(new_dict, strict=False)
- print(f"Load {len(new_dict)} keys from checkpoint {checkpoint}, current model has {len(sam.state_dict())} keys")
-
- total_params = []
- image_encoder_params = []
- prompt_encoder_params = []
- mask_decoder_params = []
- for name, param in sam.named_parameters():
- n_param = param.numel()
- total_params.append(n_param)
- if name.startswith("image_encoder"):
- image_encoder_params.append(n_param)
- elif name.startswith("prompt_encoder"):
- prompt_encoder_params.append(n_param)
- elif name.startswith("mask_decoder"):
- mask_decoder_params.append(n_param)
-
- print(
- f"{sam.__class__.__name__} has {sum(total_params) * 1.e-6:.2f} M params, "
- f"{sum(image_encoder_params) * 1.e-6:.2f} M params in image encoder,"
- f"{sum(prompt_encoder_params) * 1.e-6:.2f} M params in prompt encoder,"
- f"{sum(mask_decoder_params) * 1.e-6:.2f} M params in mask decoder."
- )
-
- total_trainable_params = sum(p.numel() if p.requires_grad else 0 for p in sam.parameters())
- print(f"{sam.__class__.__name__} has {total_trainable_params * 1.e-6:.2f} M trainable params.")
- return sam
-
-
-def build_vista2pt5d_vit_h(
- checkpoint=None, image_size=1024, encoder_in_chans=3, clip_class_label_prompt=False, patch_embed_3d=False
-):
- return _build_vista2pt5d(
- encoder_in_chans=encoder_in_chans,
- encoder_embed_dim=1280,
- encoder_depth=32,
- encoder_num_heads=16,
- encoder_global_attn_indexes=[7, 15, 23, 31],
- checkpoint=checkpoint,
- image_size=image_size,
- clip_class_label_prompt=clip_class_label_prompt,
- patch_embed_3d=patch_embed_3d,
- )
-
-
-def build_vista2pt5d_vit_l(
- checkpoint=None, image_size=1024, encoder_in_chans=3, clip_class_label_prompt=False, patch_embed_3d=False
-):
- return _build_vista2pt5d(
- encoder_in_chans=encoder_in_chans,
- encoder_embed_dim=1024,
- encoder_depth=24,
- encoder_num_heads=16,
- encoder_global_attn_indexes=[5, 11, 17, 23],
- checkpoint=checkpoint,
- image_size=image_size,
- clip_class_label_prompt=clip_class_label_prompt,
- patch_embed_3d=patch_embed_3d,
- )
-
-
-def build_vista2pt5d_vit_b(
- checkpoint=None, image_size=1024, encoder_in_chans=3, clip_class_label_prompt=False, patch_embed_3d=False
-):
- return _build_vista2pt5d(
- encoder_in_chans=encoder_in_chans,
- encoder_embed_dim=768,
- encoder_depth=12,
- encoder_num_heads=12,
- encoder_global_attn_indexes=[2, 5, 8, 11],
- checkpoint=checkpoint,
- image_size=image_size,
- clip_class_label_prompt=clip_class_label_prompt,
- patch_embed_3d=patch_embed_3d,
- )
-
-
-sam_model_registry = {
- "default": build_vista2pt5d_vit_h,
- "vit_h": build_vista2pt5d_vit_h,
- "vit_l": build_vista2pt5d_vit_l,
- "vit_b": build_vista2pt5d_vit_b,
-}
-
-if __name__ == "__main__":
- model = build_vista2pt5d_vit_b()
- model.cuda()
diff --git a/training/vista_2pt5d/vista_image_encoder.py b/training/vista_2pt5d/vista_image_encoder.py
deleted file mode 100644
index 4382425..0000000
--- a/training/vista_2pt5d/vista_image_encoder.py
+++ /dev/null
@@ -1,138 +0,0 @@
-# Copyright (c) MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-# Copyright (c) Meta Platforms, Inc. and affiliates.
-# All rights reserved.
-
-# This source code is licensed under the license found in the
-# LICENSE file in the root directory of this source tree.
-
-from typing import Tuple, Type
-
-import torch
-import torch.nn as nn
-from segment_anything.modeling.image_encoder import ImageEncoderViT, PatchEmbed
-
-
-# This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py # noqa
-class VistaImageEncoderViT(ImageEncoderViT):
- def __init__(
- self,
- img_size: int = 1024,
- patch_size: int = 16,
- in_chans: int = 3,
- embed_dim: int = 768,
- depth: int = 12,
- num_heads: int = 12,
- mlp_ratio: float = 4.0,
- out_chans: int = 256,
- qkv_bias: bool = True,
- norm_layer: Type[nn.Module] = nn.LayerNorm,
- act_layer: Type[nn.Module] = nn.GELU,
- use_abs_pos: bool = True,
- use_rel_pos: bool = False,
- rel_pos_zero_init: bool = True,
- window_size: int = 0,
- global_attn_indexes: Tuple[int, ...] = (),
- patch_embed_3d: bool = False,
- ) -> None:
- """
- Args:
- img_size (int): Input image size.
- patch_size (int): Patch size.
- in_chans (int): Number of input image channels.
- embed_dim (int): Patch embedding dimension.
- depth (int): Depth of ViT.
- num_heads (int): Number of attention heads in each ViT block.
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
- qkv_bias (bool): If True, add a learnable bias to query, key, value.
- norm_layer (nn.Module): Normalization layer.
- act_layer (nn.Module): Activation layer.
- use_abs_pos (bool): If True, use absolute positional embeddings.
- use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
- rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
- window_size (int): Window size for window attention blocks.
- global_attn_indexes (list): Indexes for blocks using global attention.
- patch_embed_3d (bool): If True, use 3D Patch Embedding.
- """
- super().__init__(
- img_size,
- patch_size,
- in_chans,
- embed_dim,
- depth,
- num_heads,
- mlp_ratio,
- out_chans,
- qkv_bias,
- norm_layer,
- act_layer,
- use_abs_pos,
- use_rel_pos,
- rel_pos_zero_init,
- window_size,
- global_attn_indexes,
- )
-
- self.img_size = img_size
-
- if in_chans > 3 and patch_embed_3d:
- print("ImageEncoderViT: Using 3D PatchEmbed")
- self.patch_embed = PatchEmbed2pt5D(
- kernel_size=(patch_size, patch_size, in_chans // 3),
- stride=(patch_size, patch_size, in_chans // 3),
- in_chans=3,
- embed_dim=embed_dim,
- )
- else:
- self.patch_embed = PatchEmbed(
- kernel_size=(patch_size, patch_size),
- stride=(patch_size, patch_size),
- in_chans=in_chans,
- embed_dim=embed_dim,
- )
-
-
-class PatchEmbed2pt5D(nn.Module):
- """
- Image to Patch Embedding by 3D Conv.
- """
-
- def __init__(
- self,
- kernel_size: Tuple[int, int, int] = (16, 16, 1),
- stride: Tuple[int, int, int] = (16, 16, 1),
- padding: Tuple[int, int, int] = (0, 0, 0),
- in_chans: int = 3,
- embed_dim: int = 768,
- ) -> None:
- """
- Args:
- kernel_size (Tuple): kernel size of the projection layer.
- stride (Tuple): stride of the projection layer.
- padding (Tuple): padding size of the projection layer.
- in_chans (int): Number of input image channels.
- embed_dim (int): embed_dim (int): Patch embedding dimension.
- """
- super().__init__()
-
- self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding)
-
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- # got restore RGB channel dim and the depth dim
- c = x.shape[1]
- x = torch.stack(x.chunk(c // 3, dim=1), dim=-1)
- x = self.proj(x)
- # remove dummy depth dim to make it 2d
- x = x.squeeze(-1)
- # B C H W -> B H W C
- x = x.permute(0, 2, 3, 1)
- return x
diff --git a/training/vista_2pt5d/vista_prompt_encoder.py b/training/vista_2pt5d/vista_prompt_encoder.py
deleted file mode 100644
index 42568f8..0000000
--- a/training/vista_2pt5d/vista_prompt_encoder.py
+++ /dev/null
@@ -1,148 +0,0 @@
-# Copyright (c) MONAI Consortium
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-# Copyright (c) Meta Platforms, Inc. and affiliates.
-# All rights reserved.
-
-# This source code is licensed under the license found in the
-# LICENSE file in the root directory of this source tree.
-
-from typing import Any, Optional, Tuple, Type
-
-import numpy as np
-import torch
-from segment_anything.modeling.common import LayerNorm2d
-from segment_anything.modeling.prompt_encoder import PromptEncoder
-from torch import nn
-
-
-class VistaPromptEncoder(PromptEncoder):
- def __init__(
- self,
- embed_dim: int,
- image_embedding_size: Tuple[int, int],
- input_image_size: Tuple[int, int],
- mask_in_chans: int,
- activation: Type[nn.Module] = nn.GELU,
- n_classes: int = 512,
- clip_class_label_prompt: bool = False,
- ) -> None:
- """
- Encodes prompts for input to SAM's mask decoder.
-
- Arguments:
- embed_dim (int): The prompts' embedding dimension
- image_embedding_size (tuple(int, int)): The spatial size of the
- image embedding, as (H, W).
- input_image_size (int): The padded size of the image as input
- to the image encoder, as (H, W).
- mask_in_chans (int): The number of hidden channels used for
- encoding input masks.
- activation (nn.Module): The activation to use when encoding
- input masks.
- n_classes (int): The number of pre-defined classes.
- clip_class_label_prompt (bool): Using clip txt features
- as class label prompt.
- """
- super().__init__(embed_dim, image_embedding_size, input_image_size, mask_in_chans, activation)
-
- self.clip_class_label_prompt = clip_class_label_prompt
- # Add support for onehot vector embedding for pre-defined classes
- if self.clip_class_label_prompt:
- raise NotImplementedError
- else:
- self.label_embeddings = nn.Embedding(n_classes, embed_dim)
- self.no_label_embed = nn.Embedding(1, embed_dim)
-
- def _embed_labels(self, labels: torch.Tensor) -> torch.Tensor:
- """Embeds onehot vector inputs."""
- if self.clip_class_label_prompt:
- raise NotImplementedError
- else:
- # Add support for onehot vector embedding for pre-defined classes
- label_embedding = self.label_embeddings(labels)
- return label_embedding
-
- def _get_batch_size(
- self,
- points: Optional[Tuple[torch.Tensor, torch.Tensor]],
- boxes: Optional[torch.Tensor],
- masks: Optional[torch.Tensor],
- labels: Optional[torch.Tensor],
- ) -> int:
- """
- Gets the batch size of the output given the batch size of the input prompts.
- """
- if points is not None:
- return points[0].shape[0]
- elif boxes is not None:
- return boxes.shape[0]
- elif masks is not None:
- return masks.shape[0]
- elif labels is not None:
- return labels.shape[0]
- else:
- return 1
-
- def forward(
- self,
- points: Optional[Tuple[torch.Tensor, torch.Tensor]],
- boxes: Optional[torch.Tensor],
- masks: Optional[torch.Tensor],
- class_labels: Optional[torch.Tensor],
- ) -> Tuple[torch.Tensor, torch.Tensor]:
- """
- Embeds different types of prompts, returning both sparse and dense
- embeddings.
-
- Arguments:
- points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates
- and labels to embed.
- boxes (torch.Tensor or none): boxes to embed
- masks (torch.Tensor or none): masks to embed
- class_labels (torch.Tensor or none): labels to embed
-
- Returns:
- torch.Tensor: sparse embeddings for the points and boxes, with shape
- BxNx(embed_dim), where N is determined by the number of input points
- and boxes.
- torch.Tensor: dense embeddings for the masks, in the shape
- Bx(embed_dim)x(embed_H)x(embed_W)
- """
- bs = self._get_batch_size(points, boxes, masks, class_labels)
-
- # Add support for onehot vector embedding for pre-defined classes
- if class_labels is not None:
- label_embeddings = self._embed_labels(class_labels)
- else:
- label_embeddings = self.no_label_embed.weight.reshape(1, 1, -1).expand(bs, -1, -1)
-
- sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self._get_device())
-
- # Add support for onehot vector embedding for pre-defined classes
- sparse_embeddings = torch.cat([sparse_embeddings, label_embeddings], dim=1)
-
- if points is not None:
- coords, labels = points
- point_embeddings = self._embed_points(coords, labels, pad=(boxes is None))
- sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1)
- if boxes is not None:
- box_embeddings = self._embed_boxes(boxes)
- sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1)
-
- if masks is not None:
- dense_embeddings = self._embed_masks(masks)
- else:
- dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(
- bs, -1, self.image_embedding_size[0], self.image_embedding_size[1]
- )
-
- return sparse_embeddings, dense_embeddings
diff --git a/LICENSE b/vista3d/LICENSE
similarity index 100%
rename from LICENSE
rename to vista3d/LICENSE
diff --git a/vista3d/README.md b/vista3d/README.md
new file mode 100644
index 0000000..1ac5bc9
--- /dev/null
+++ b/vista3d/README.md
@@ -0,0 +1,146 @@
+
+
+# MONAI **V**ersatile **I**maging **S**egmen**T**ation and **A**nnotation
+[[`Paper`](https://arxiv.org/pdf/2406.05285)] [[`Demo`](https://build.nvidia.com/nvidia/vista-3d)] [[`Container`](https://docs.nvidia.com/ai-enterprise/nim-medical-imaging/latest/vista-3d.html)]
+## Overview
+
+The **VISTA3D** is a foundation model trained systematically on 11,454 volumes encompassing 127 types of human anatomical structures and various lesions. It provides accurate out-of-the-box segmentation that matches state-of-the-art supervised models which are trained on each dataset. The model also achieves state-of-the-art zero-shot interactive segmentation in 3D, representing a promising step toward developing a versatile medical image foundation model.
+
+
+### Out-of box automatic segmentation
+For supported 127 classes, the model can perform highly accurate out-of-box segmentation. The fully automated process adopts a patch-based sliding-window inference and only requires a class prompt.
+Compared to supervised segmentation models trained on each dataset separately, VISTA3D showed comparable out-of-box performances and strong generalizability ('VISTA3D auto' in Table.1).
+
+
+
+
+ NIM Demo supports "Segment Everything"
+
+
+
+
+
+### Interactive editing
+The interactive segmentation is based on user-provided clicks. Each click point will impact a local 3D patch. User can either effectively refine the automatic results with clicks ('VISTA3D auto+point' in Table.1) or simply provide a click without specifying the target class ('VISTA3D point' in Table.1) .
+
+
+
+
+ Specify a supported class and edit the automatic results
+
+
+
+
+
+ Interactive supported class segmentation without specifying class
+
+
+
+### Zero-shot interactive segmentation
+VISTA3D is built to produce visually plausible segmentations on previously unseen classes.
+This capability makes the model even more flexible and accelerates practical segmentation data curation processes.
+
+
+
+ Add a new unseen class and do annotation
+
+
+
+### Fine-tuning
+VISTA3D checkpoint showed improvements when finetuning in few-shot settings. Once a few annotated examples are provided, user can start finetune with the VISTA3D checkpoint.
+
+
+## Usage
+
+### Installation
+The code requires `monai>=1.3`. Download the [model checkpoint](xxxx) and save it at ./models/model.pt.
+```
+docker pull projectmonai/monai:1.3.2
+```
+
+
+### Inference
+We provide two ways to use the model for inference.
+1. We recommend users to use the optimized and standardized [MONAI bundle]() model. The bundle provides a unified API for inference.
+The [VISTA3D NVIDIA Inference Microservices (NIM)]() deploys the bundle with an interactive front-end.
+2. For quick debugging and model development purposes, we also provide the `infer.py` script and its light-weight front-end `debugger.py`. `python -m scripts.debugger run`. Note we will prioritize [NIM]() and [monai bundle]() developments and those functions will be deprecated in the future.
+```
+export CUDA_VISIBLE_DEVICES=0; python -m scripts.infer --config_file 'configs/infer.yaml' - infer --image_file 'example-1.nii.gz' --label_prompt [1] --save_mask true
+export CUDA_VISIBLE_DEVICES=0; python -m scripts.infer --config_file 'configs/infer.yaml' - infer_everything --image_file 'example-1.nii.gz'
+```
+
+### Training
+#### Dataset and SuperVoxel Curation
+All dataset must contain a json data list file. We provide the json lists for all our training data in `data/jsons`. More details can be found [here](./data/README.md). For datasets used in VISTA3D training, we already included the json splits and registered their data specific label index to the global index as [label_mapping](./data/jsons/label_mappings.json) and their data path coded in `./data/datasets.py`. The supported global class index is defined in [label_dict](./data/jsons/label_dict.json). To generate supervoxels, refer to the [instruction](./data/README.md).
+#### Execute training
+VISTA3D has four stages training. The configurations represents the training procedure but may not fully reproduce the weights of VISTA3D since each stage has multiple rounds with slightly varying configuration changes.
+```
+export CUDA_VISIBLE_DEVICES=0; python -m scripts.train run --config_file "['configs/train/hyper_parameters_stage1.yaml']"
+```
+
+Execute multi-GPU model training (the codebase also supports multi-node training):
+
+```
+export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7;torchrun --nnodes=1 --nproc_per_node=8 -m scripts.train run --config_file "['configs/train/hyper_parameters_stage1.yaml']"
+```
+### Evaluation
+We provide code for supported class fully automatic dice score evaluation (val_multigpu_point_patch), point click only (val_multigpu_point_patch), and auto + point (val_multigpu_autopoint_patch).
+
+```
+export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7;torchrun --nnodes=1 --nproc_per_node=8 -m scripts.validation.val_multigpu_point_patch run --config_file "['configs/supported_eval/infer_patch_auto.yaml']" --dataset_name 'xxxx'
+
+export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7;torchrun --nnodes=1 --nproc_per_node=8 -m scripts.validation.val_multigpu_point_patch run --config_file "['configs/supported_eval/infer_patch_point.yaml']" --dataset_name 'xxxx'
+
+export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7;torchrun --nnodes=1 --nproc_per_node=8 -m scripts.validation.val_multigpu_autopoint_patch run --config_file "['configs/supported_eval/infer_patch_autopoint.yaml']" --dataset_name 'xxxx'
+```
+For zero-shot, we perform iterative point sampling. To create a new zero-shot evaluation dataset, user only need to change `label_set` in the json config to match the class indexes in the original groundtruth.
+```
+export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7;torchrun --nnodes=1 --nproc_per_node=8 -m scripts.validation.val_multigpu_point_iterative run --config_file "['configs/zeroshot_eval/infer_iter_point_hcc.yaml']"
+```
+### Finetune
+For finetuning, user need to change `label_set` and `mapped_label_set` in the json config, where `label_set` matches the index values in the groundtruth files. The `mapped_label_set` can be random selected but we recommend pick the most related global index defined in [label_dict](./data/jsons/label_dict.json). User should modify the transforms, resolutions, patch sizes e.t.c regarding to their dataset for optimal finetuning performances, we recommend using configs generated by auto3dseg. The learning rate 5e-5 should be good enough for finetuning purposes.
+```
+export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7;torchrun --nnodes=1 --nproc_per_node=8 -m scripts.train_finetune run --config_file "['configs/finetune/train_finetune_word.yaml']"
+```
+
+
+## Community
+
+Join the conversation on Twitter [@ProjectMONAI](https://twitter.com/ProjectMONAI) or join
+our [Slack channel](https://projectmonai.slack.com/archives/C031QRE0M1C).
+
+Ask and answer questions on [MONAI VISTA's GitHub discussions tab](https://github.com/Project-MONAI/VISTA/discussions).
+
+## License
+
+The codebase is under Apache 2.0 Licence. The model weight is under special NVIDIA license.
+
+## Reference
+
+```
+@article{he2024vista3d,
+ title={VISTA3D: Versatile Imaging SegmenTation and Annotation model for 3D Computed Tomography},
+ author={He, Yufan and Guo, Pengfei and Tang, Yucheng and Myronenko, Andriy and Nath, Vishwesh and Xu, Ziyue and Yang, Dong and Zhao, Can and Simon, Benjamin and Belue, Mason and others},
+ journal={arXiv preprint arXiv:2406.05285},
+ year={2024}
+}
+```
+
+## Acknowledgement
+- [segment-anything](https://github.com/facebookresearch/segment-anything)
+- [TotalSegmentator](https://github.com/wasserth/TotalSegmentator)
diff --git a/assets/imgs/demo_gif.gif b/vista3d/assets/imgs/demo_gif.gif
similarity index 100%
rename from assets/imgs/demo_gif.gif
rename to vista3d/assets/imgs/demo_gif.gif
diff --git a/vista3d/assets/imgs/everything.gif b/vista3d/assets/imgs/everything.gif
new file mode 100644
index 0000000..b6373d4
Binary files /dev/null and b/vista3d/assets/imgs/everything.gif differ
diff --git a/vista3d/assets/imgs/finetune.png b/vista3d/assets/imgs/finetune.png
new file mode 100644
index 0000000..c18081f
Binary files /dev/null and b/vista3d/assets/imgs/finetune.png differ
diff --git a/vista3d/assets/imgs/liver.gif b/vista3d/assets/imgs/liver.gif
new file mode 100644
index 0000000..903a63e
Binary files /dev/null and b/vista3d/assets/imgs/liver.gif differ
diff --git a/vista3d/assets/imgs/model.png b/vista3d/assets/imgs/model.png
new file mode 100644
index 0000000..0c129b3
Binary files /dev/null and b/vista3d/assets/imgs/model.png differ
diff --git a/assets/imgs/montage.png b/vista3d/assets/imgs/montage.png
similarity index 100%
rename from assets/imgs/montage.png
rename to vista3d/assets/imgs/montage.png
diff --git a/vista3d/assets/imgs/scores.png b/vista3d/assets/imgs/scores.png
new file mode 100644
index 0000000..9ea520c
Binary files /dev/null and b/vista3d/assets/imgs/scores.png differ
diff --git a/vista3d/assets/imgs/unspecified.gif b/vista3d/assets/imgs/unspecified.gif
new file mode 100644
index 0000000..5f66cbc
Binary files /dev/null and b/vista3d/assets/imgs/unspecified.gif differ
diff --git a/assets/imgs/wholeBody.png b/vista3d/assets/imgs/wholeBody.png
similarity index 100%
rename from assets/imgs/wholeBody.png
rename to vista3d/assets/imgs/wholeBody.png
diff --git a/vista3d/assets/imgs/zeroshot.gif b/vista3d/assets/imgs/zeroshot.gif
new file mode 100644
index 0000000..f93dcb3
Binary files /dev/null and b/vista3d/assets/imgs/zeroshot.gif differ
diff --git a/vista3d/configs/finetune/infer_patch_auto_murine.yaml b/vista3d/configs/finetune/infer_patch_auto_murine.yaml
new file mode 100644
index 0000000..965dbf0
--- /dev/null
+++ b/vista3d/configs/finetune/infer_patch_auto_murine.yaml
@@ -0,0 +1,43 @@
+amp: true
+output_path: "$'/workspace/vista3d/work_dir_finetune_murine_' + str(@train_number)"
+ckpt: "$@output_path + '/model_fold0/best_metric_model.pt'"
+dataset_name: "murine"
+label_set: [0,1,2,3,4]
+mapped_label_set: [0,115,121,30,28]
+val_auto: true
+overlap: 0.625
+data_file_base_dir: '/data/micro-ct-murine/1_nativeCTdata_nifti/'
+data_list_file_path: './data/external/micro-ct-murine-native_5_folds.json'
+log_output_file: "$@output_path + '/test_set.log'"
+list_key: 'testing'
+five_fold: true
+fold: 0
+train_number: 89
+argmax_first: false
+input_channels: 1
+image_key: image
+label_key: label
+pixdim: [1,1,1]
+patch_size: [128, 128, 128]
+transforms_infer:
+ _target_: Compose
+ transforms:
+ - _target_: LoadImaged
+ ensure_channel_first: true
+ image_only: true
+ keys: ['@image_key','@label_key']
+ - _target_: CopyItemsd
+ names: 'label_gt'
+ keys: '@label_key'
+ - {_target_: ScaleIntensityRanged, a_max: 1053.678477684517, a_min: -963.8247715525971,
+ b_max: 1.0, b_min: 0.0, clip: true, keys: '@image_key'}
+ - _target_: Orientationd
+ axcodes: RAS
+ keys: ['@image_key','@label_key']
+ - _target_: CastToTyped
+ dtype: [$torch.float32, $torch.uint8]
+ keys: ['@image_key','@label_key']
+ - _target_: EnsureTyped
+ keys: ['@image_key','@label_key']
+ track_meta: true
+model: "vista3d_segresnet_d"
diff --git a/vista3d/configs/finetune/infer_patch_auto_word.yaml b/vista3d/configs/finetune/infer_patch_auto_word.yaml
new file mode 100644
index 0000000..2db3cb9
--- /dev/null
+++ b/vista3d/configs/finetune/infer_patch_auto_word.yaml
@@ -0,0 +1,48 @@
+amp: true
+output_path: "$'/workspace/vista3d/work_dir_finetune_word_' + str(@train_number)"
+ckpt: "$@output_path + '/model_fold0/best_metric_model.pt'"
+dataset_name: "WORD"
+label_set: [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
+mapped_label_set: [0,1,3,14,5,12,10,11,4,13,62,19,8,18,15,93,94]
+val_auto: true
+overlap: 0.625
+data_file_base_dir: '/data/WORD'
+data_list_file_path: './data/external/WORD.json'
+log_output_file: "$@output_path + '/test_set.log'"
+list_key: 'testing'
+five_fold: false
+fold: 0
+train_number: 100
+argmax_first: false
+input_channels: 1
+image_key: image
+label_key: label
+pixdim: [1,1,1]
+patch_size: [224, 224, 144]
+transforms_infer:
+ _target_: Compose
+ transforms:
+ - _target_: LoadImaged
+ ensure_channel_first: true
+ image_only: true
+ keys: ['@image_key','@label_key']
+ - _target_: CopyItemsd
+ names: 'label_gt'
+ keys: '@label_key'
+ - _target_: Spacingd
+ keys: ["@image_key",'@label_key']
+ pixdim: '@pixdim'
+ mode: [bilinear,nearest]
+ align_corners: [true, true]
+ - {_target_: ScaleIntensityRanged, a_max: 1053.678477684517, a_min: -963.8247715525971,
+ b_max: 1.0, b_min: 0.0, clip: true, keys: '@image_key'}
+ - _target_: Orientationd
+ axcodes: RAS
+ keys: ['@image_key','@label_key']
+ - _target_: CastToTyped
+ dtype: [$torch.float32, $torch.uint8]
+ keys: ['@image_key','@label_key']
+ - _target_: EnsureTyped
+ keys: ['@image_key','@label_key']
+ track_meta: true
+model: "vista3d_segresnet_d"
diff --git a/vista3d/configs/finetune/train_finetune_murine.yaml b/vista3d/configs/finetune/train_finetune_murine.yaml
new file mode 100644
index 0000000..3aa68ed
--- /dev/null
+++ b/vista3d/configs/finetune/train_finetune_murine.yaml
@@ -0,0 +1,163 @@
+amp: true
+train_number: 89
+comment: 'finetune on murine datasets.'
+bundle_root: $'./work_dir_ft_final_finetune_murine_' + str(@train_number)
+label_set: [0,1,2,3,4]
+mapped_label_set: [0,115,121,30,28]
+model: "vista3d_segresnet_d"
+use_folds: true
+data_file_base_dir: '/data/micro-ct-murine/1_nativeCTdata_nifti/'
+data_list_file_path: './data/external/micro-ct-murine-native_5_folds.json'
+ckpt_path: $@bundle_root + '/model_fold' + str(@fold)
+drop_label_prob: 0
+drop_point_prob: 1
+finetune: {activate: true, exclude_vars: null, pretrained_ckpt_name: $'/workspace/vista3d/models/model.pt'}
+fold: 0
+image_key: image
+input_channels: 1
+iter_num: 5
+label_key: label
+learning_rate: 0.00005
+log_output_file: $@bundle_root + '/model_fold' + str(@fold) + '/finetune_word.log'
+loss: {_target_: DiceCELoss, include_background: false, sigmoid: true, smooth_dr: 1.0e-05, smooth_nr: 0, softmax: false, squared_pred: true,
+ to_onehot_y: false}
+lr_scheduler: {_target_: monai.optimizers.WarmupCosineSchedule, optimizer: $@optimizer,
+ t_total: $@num_epochs+1, warmup_multiplier: 0.1, warmup_steps: 0}
+max_backprompt: null
+max_foreprompt: null
+ignore_labelset: false
+max_point: 3
+max_prompt: null
+num_epochs: 200
+freeze_epoch: 0
+freeze_head: 'point'
+save_last: false
+save_all: false
+num_epochs_per_validation: 5
+num_images_per_batch: 1
+num_patches_per_image: 2
+num_patches_per_iter: 1
+optimizer: {_target_: torch.optim.AdamW, lr: '@learning_rate', weight_decay: 1.0e-05}
+output_classes: 133
+overlap_ratio: 0.625
+patch_size: [224, 224, 144]
+random_seed: 0
+skip_iter_prob: 1
+transforms_train:
+ _target_: Compose
+ transforms:
+ - _target_: LoadImaged
+ ensure_channel_first: true
+ image_only: true
+ keys: ['@image_key', '@label_key']
+ allow_missing_keys: true
+ - _target_: CropForegroundd
+ allow_smaller: true
+ end_coord_key: null
+ keys: ['@image_key', '@label_key']
+ margin: 10
+ source_key: '@image_key'
+ start_coord_key: null
+ allow_missing_keys: true
+ - {_target_: ScaleIntensityRanged, a_max: 1053.678477684517, a_min: -963.8247715525971,
+ b_max: 1.0, b_min: 0.0, clip: true, keys: '@image_key'}
+ - _target_: Orientationd
+ axcodes: RAS
+ keys: ['@image_key', '@label_key']
+ allow_missing_keys: true
+ - _target_: EnsureTyped
+ keys: ['@image_key', '@label_key']
+ allow_missing_keys: true
+ track_meta: false
+ - _target_: SpatialPadd
+ keys: ['@image_key', '@label_key']
+ allow_missing_keys: true
+ mode: [constant, constant]
+ spatial_size: '@patch_size'
+ - _target_: RandCropByLabelClassesd
+ keys:
+ - '@image_key'
+ - '@label_key'
+ label_key: '@label_key'
+ num_classes: 5
+ num_samples: '@num_patches_per_image'
+ spatial_size: '@patch_size'
+ ratios: $tuple(float(i >= 0) for i in range(5))
+ warn: false
+ allow_missing_keys: true
+ - _target_: RandZoomd
+ keys:
+ - '@image_key'
+ - '@label_key'
+ min_zoom: 0.8
+ max_zoom: 1.2
+ mode:
+ - trilinear
+ - nearest
+ prob: 0.2
+ allow_missing_keys: true
+ - _target_: RandSimulateLowResolutiond
+ keys:
+ - '@image_key'
+ zoom_range:
+ - 0.3
+ - 1
+ prob: 0.2
+ allow_missing_keys: true
+ - _target_: RandGaussianSmoothd
+ keys:
+ - '@image_key'
+ prob: 0.2
+ sigma_x:
+ - 0.5
+ - 1
+ sigma_y:
+ - 0.5
+ - 1
+ sigma_z:
+ - 0.5
+ - 1
+ - _target_: RandScaleIntensityd
+ keys:
+ - '@image_key'
+ factors: 0.1
+ prob: 0.2
+ - _target_: RandShiftIntensityd
+ keys:
+ - '@image_key'
+ offsets: 0.1
+ prob: 0.2
+ - _target_: RandGaussianNoised
+ keys:
+ - '@image_key'
+ prob: 0.2
+ mean: 0
+ std: 0.2
+ - _target_: CastToTyped
+ dtype: [$torch.float32, $torch.int32]
+ keys: ['@image_key', '@label_key']
+ allow_missing_keys: true
+
+transforms_validate:
+ _target_: Compose
+ transforms:
+ - _target_: LoadImaged
+ ensure_channel_first: true
+ image_only: true
+ keys: ['@image_key', '@label_key']
+ - _target_: CopyItemsd
+ names: 'label_gt'
+ keys: '@label_key'
+ - {_target_: ScaleIntensityRanged, a_max: 1053.678477684517, a_min: -963.8247715525971,
+ b_max: 1.0, b_min: 0.0, clip: true, keys: '@image_key'}
+ - _target_: Orientationd
+ axcodes: RAS
+ keys: ['@image_key', '@label_key']
+ - _target_: CastToTyped
+ dtype: [$torch.float32, $torch.uint8]
+ keys: ['@image_key', '@label_key']
+ - _target_: EnsureTyped
+ keys: ['@image_key', '@label_key']
+ track_meta: true
+
+transforms_infer: $@transforms_validate
diff --git a/vista3d/configs/finetune/train_finetune_word.yaml b/vista3d/configs/finetune/train_finetune_word.yaml
new file mode 100644
index 0000000..b4a11b0
--- /dev/null
+++ b/vista3d/configs/finetune/train_finetune_word.yaml
@@ -0,0 +1,173 @@
+amp: true
+train_number: 100
+bundle_root: $'./work_dir_finetune_word_' + str(@train_number)
+comment: 'finetune on WORD datasets.'
+label_set: [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
+mapped_label_set: [0,1,3,14,5,12,10,11,4,13,62,19,8,18,15,93,94]
+model: "vista3d_segresnet_d"
+data_file_base_dir: '/data/WORD'
+data_list_file_path: './data/external/WORD.json'
+ckpt_path: $@bundle_root + '/model_fold' + str(@fold)
+drop_label_prob: 0
+drop_point_prob: 1
+finetune: {activate: true, exclude_vars: null, pretrained_ckpt_name: $'/workspace/vista3d/models/model.pt'}
+fold: 0
+image_key: image
+input_channels: 1
+iter_num: 5
+label_key: label
+learning_rate: 0.00005
+log_output_file: $@bundle_root + '/model_fold' + str(@fold) + '/finetune_word.log'
+loss: {_target_: DiceCELoss, include_background: false, sigmoid: true, smooth_dr: 1.0e-05, smooth_nr: 0, softmax: false, squared_pred: true,
+ to_onehot_y: false}
+lr_scheduler: {_target_: monai.optimizers.WarmupCosineSchedule, optimizer: $@optimizer,
+ t_total: $@num_epochs+1, warmup_multiplier: 0.1, warmup_steps: 0}
+max_backprompt: null
+max_foreprompt: null
+ignore_labelset: false
+max_point: 3
+max_prompt: null
+num_epochs: 200
+freeze_epoch: 0
+freeze_head: 'point'
+save_last: false
+save_all: false
+num_epochs_per_validation: 1
+num_images_per_batch: 1
+num_patches_per_image: 2
+num_patches_per_iter: 1
+optimizer: {_target_: torch.optim.AdamW, lr: '@learning_rate', weight_decay: 1.0e-05}
+output_classes: 133
+overlap_ratio: 0.625
+patch_size: [224, 224, 144]
+random_seed: 0
+resample_to_spacing: [1., 1., 1.]
+skip_iter_prob: 1
+transforms_train:
+ _target_: Compose
+ transforms:
+ - _target_: LoadImaged
+ ensure_channel_first: true
+ image_only: true
+ keys: ['@image_key', '@label_key']
+ allow_missing_keys: true
+ - _target_: CropForegroundd
+ allow_smaller: true
+ end_coord_key: null
+ keys: ['@image_key', '@label_key']
+ margin: 10
+ source_key: '@image_key'
+ start_coord_key: null
+ allow_missing_keys: true
+ - _target_: Spacingd
+ keys: ["@image_key", "@label_key"]
+ pixdim: '@resample_to_spacing'
+ mode: [bilinear, nearest]
+ align_corners: [true, true]
+ allow_missing_keys: true
+ - {_target_: ScaleIntensityRanged, a_max: 1053.678477684517, a_min: -963.8247715525971,
+ b_max: 1.0, b_min: 0.0, clip: true, keys: '@image_key'}
+ - _target_: Orientationd
+ axcodes: RAS
+ keys: ['@image_key', '@label_key']
+ allow_missing_keys: true
+ - _target_: EnsureTyped
+ keys: ['@image_key', '@label_key']
+ allow_missing_keys: true
+ track_meta: false
+ - _target_: SpatialPadd
+ keys: ['@image_key', '@label_key']
+ allow_missing_keys: true
+ mode: [constant, constant]
+ spatial_size: '@patch_size'
+ - _target_: RandCropByLabelClassesd
+ keys:
+ - '@image_key'
+ - '@label_key'
+ label_key: '@label_key'
+ num_classes: 133
+ num_samples: '@num_patches_per_image'
+ spatial_size: '@patch_size'
+ ratios: $tuple(float(i >= 0) for i in range(133))
+ warn: false
+ allow_missing_keys: true
+ - _target_: RandZoomd
+ keys:
+ - '@image_key'
+ - '@label_key'
+ min_zoom: 0.8
+ max_zoom: 1.2
+ mode:
+ - trilinear
+ - nearest
+ prob: 0.2
+ allow_missing_keys: true
+ - _target_: RandSimulateLowResolutiond
+ keys:
+ - '@image_key'
+ zoom_range:
+ - 0.3
+ - 1
+ prob: 0.2
+ allow_missing_keys: true
+ - _target_: RandGaussianSmoothd
+ keys:
+ - '@image_key'
+ prob: 0.2
+ sigma_x:
+ - 0.5
+ - 1
+ sigma_y:
+ - 0.5
+ - 1
+ sigma_z:
+ - 0.5
+ - 1
+ - _target_: RandScaleIntensityd
+ keys:
+ - '@image_key'
+ factors: 0.1
+ prob: 0.2
+ - _target_: RandShiftIntensityd
+ keys:
+ - '@image_key'
+ offsets: 0.1
+ prob: 0.2
+ - _target_: RandGaussianNoised
+ keys:
+ - '@image_key'
+ prob: 0.2
+ mean: 0
+ std: 0.2
+ - _target_: CastToTyped
+ dtype: [$torch.float32, $torch.int32]
+ keys: ['@image_key', '@label_key']
+ allow_missing_keys: true
+
+transforms_validate:
+ _target_: Compose
+ transforms:
+ - _target_: LoadImaged
+ ensure_channel_first: true
+ image_only: true
+ keys: ['@image_key', '@label_key']
+ - _target_: CopyItemsd
+ names: 'label_gt'
+ keys: '@label_key'
+ - _target_: Spacingd
+ keys: ["@image_key", "@label_key"]
+ pixdim: '@resample_to_spacing'
+ mode: [bilinear, nearest]
+ align_corners: [true, true]
+ - {_target_: ScaleIntensityRanged, a_max: 1053.678477684517, a_min: -963.8247715525971,
+ b_max: 1.0, b_min: 0.0, clip: true, keys: '@image_key'}
+ - _target_: Orientationd
+ axcodes: RAS
+ keys: ['@image_key', '@label_key']
+ - _target_: CastToTyped
+ dtype: [$torch.float32, $torch.uint8]
+ keys: ['@image_key', '@label_key']
+ - _target_: EnsureTyped
+ keys: ['@image_key', '@label_key']
+ track_meta: true
+transforms_infer: $@transforms_validate
diff --git a/vista3d/configs/infer.yaml b/vista3d/configs/infer.yaml
new file mode 100644
index 0000000..89d018b
--- /dev/null
+++ b/vista3d/configs/infer.yaml
@@ -0,0 +1,37 @@
+amp: true
+input_channels: 1
+patch_size: [128, 128, 128]
+bundle_root: './models'
+fold: 0
+infer: {ckpt_name: $@bundle_root + '/model.pt',
+ output_path: $@bundle_root + '/prediction',
+ log_output_file: $@bundle_root + '/inference.log'}
+resample_to_spacing: [1.5, 1.5, 1.5]
+model: "vista3d_segresnet_d"
+image_key: "image"
+transforms_infer:
+ _target_: Compose
+ transforms:
+ - _target_: LoadImaged
+ keys: "@image_key"
+ image_only: True
+ - _target_: EnsureChannelFirstd
+ keys: "@image_key"
+ - _target_: ScaleIntensityRanged
+ a_max: 1053.678477684517
+ a_min: -963.8247715525971
+ b_max: 1.0
+ b_min: 0.0
+ clip: true
+ keys: '@image_key'
+ - _target_: Orientationd
+ keys: "@image_key"
+ axcodes: RAS
+ - _target_: Spacingd
+ keys: ["@image_key"]
+ pixdim: "@resample_to_spacing"
+ mode: [bilinear]
+ align_corners: [true]
+ - _target_: CastToTyped
+ keys: "@image_key"
+ dtype: "$torch.float32"
diff --git a/vista3d/configs/supported_eval/infer_patch_auto.yaml b/vista3d/configs/supported_eval/infer_patch_auto.yaml
new file mode 100644
index 0000000..5b36dfc
--- /dev/null
+++ b/vista3d/configs/supported_eval/infer_patch_auto.yaml
@@ -0,0 +1,51 @@
+amp: true
+exps: models
+output_path: "$'/workspace/vista3d/' + @exps"
+ckpt: "$@output_path + '/model.pt'"
+dataset_name: "TotalSegmentatorV2"
+label_set: null
+overlap: 0.625
+json_name: "$@dataset_name + '_5_folds.json'"
+data_file_base_dir: "$'/data/' + @dataset_name"
+data_list_file_path: "$'./data/jsons/' + @json_name"
+log_output_file: "$@output_path + '/validation_auto_' + @dataset_name + '.log'"
+list_key: 'testing'
+val_auto: true
+argmax_first: false
+fold: 0
+input_channels: 1
+image_key: image
+label_key: label
+patch_size: [128, 128, 128]
+transforms_infer:
+ _target_: Compose
+ transforms:
+ - _target_: LoadImaged
+ ensure_channel_first: true
+ image_only: true
+ keys: ['@image_key','@label_key']
+ - _target_: CopyItemsd
+ names: 'label_gt'
+ keys: '@label_key'
+ - _target_: CropForegroundd
+ allow_smaller: true
+ keys: ['@image_key', '@label_key']
+ margin: 10
+ source_key: '@image_key'
+ - _target_: Spacingd
+ keys: ["@image_key",'@label_key']
+ pixdim: [1.5, 1.5, 1.5]
+ mode: [bilinear,nearest]
+ align_corners: [true, true]
+ - {_target_: ScaleIntensityRanged, a_max: 1053.678477684517, a_min: -963.8247715525971,
+ b_max: 1.0, b_min: 0.0, clip: true, keys: '@image_key'}
+ - _target_: Orientationd
+ axcodes: RAS
+ keys: ['@image_key','@label_key']
+ - _target_: CastToTyped
+ dtype: [$torch.float32, $torch.uint8]
+ keys: ['@image_key','@label_key']
+ - _target_: EnsureTyped
+ keys: ['@image_key','@label_key']
+ track_meta: true
+model: "vista3d_segresnet_d"
diff --git a/vista3d/configs/supported_eval/infer_patch_autopoint.yaml b/vista3d/configs/supported_eval/infer_patch_autopoint.yaml
new file mode 100644
index 0000000..35ab27b
--- /dev/null
+++ b/vista3d/configs/supported_eval/infer_patch_autopoint.yaml
@@ -0,0 +1,52 @@
+amp: true
+exps: models
+output_path: "$'/workspace/vista3d/' + @exps"
+ckpt: "$@output_path + '/model.pt'"
+dataset_name: "TotalSegmentatorV2"
+label_set: null
+overlap: 0.625
+json_name: "$@dataset_name + '_5_folds.json'"
+data_file_base_dir: "$'/data/' + @dataset_name"
+data_list_file_path: "$'./data/jsons/' + @json_name"
+log_output_file: "$@output_path + '/validation_autopoint_patch_' + @dataset_name + '.log'"
+list_key: 'testing'
+save_metric: false
+argmax_first: false
+val_auto: false
+fold: 0
+input_channels: 1
+image_key: image
+label_key: label
+patch_size: [128, 128, 128]
+transforms_infer:
+ _target_: Compose
+ transforms:
+ - _target_: LoadImaged
+ ensure_channel_first: true
+ image_only: true
+ keys: ['@image_key','@label_key']
+ - _target_: CopyItemsd
+ names: 'label_gt'
+ keys: '@label_key'
+ - _target_: CropForegroundd
+ allow_smaller: true
+ keys: ['@image_key', '@label_key']
+ margin: 10
+ source_key: '@image_key'
+ - _target_: Spacingd
+ keys: ["@image_key",'@label_key']
+ pixdim: [1.5, 1.5, 1.5]
+ mode: [bilinear,nearest]
+ align_corners: [true, true]
+ - {_target_: ScaleIntensityRanged, a_max: 1053.678477684517, a_min: -963.8247715525971,
+ b_max: 1.0, b_min: 0.0, clip: true, keys: '@image_key'}
+ - _target_: Orientationd
+ axcodes: RAS
+ keys: ['@image_key','@label_key']
+ - _target_: CastToTyped
+ dtype: [$torch.float32, $torch.uint8]
+ keys: ['@image_key','@label_key']
+ - _target_: EnsureTyped
+ keys: ['@image_key','@label_key']
+ track_meta: true
+model: "vista3d_segresnet_d"
diff --git a/vista3d/configs/supported_eval/infer_patch_point.yaml b/vista3d/configs/supported_eval/infer_patch_point.yaml
new file mode 100644
index 0000000..22ef399
--- /dev/null
+++ b/vista3d/configs/supported_eval/infer_patch_point.yaml
@@ -0,0 +1,52 @@
+amp: true
+exps: models
+output_path: "$'/workspace/vista3d/' + @exps"
+ckpt: "$@output_path + '/model.pt'"
+dataset_name: "TotalSegmentatorV2"
+label_set: null
+overlap: 0.625
+json_name: "$@dataset_name + '_5_folds.json'"
+data_file_base_dir: "$'/data/' + @dataset_name"
+data_list_file_path: "$'./data/jsons/' + @json_name"
+log_output_file: "$@output_path + '/validation_1point_' + @dataset_name + '.log'"
+list_key: 'testing'
+save_metric: false
+argmax_first: false
+val_auto: false
+fold: 0
+input_channels: 1
+image_key: image
+label_key: label
+patch_size: [128, 128, 128]
+transforms_infer:
+ _target_: Compose
+ transforms:
+ - _target_: LoadImaged
+ ensure_channel_first: true
+ image_only: true
+ keys: ['@image_key','@label_key']
+ - _target_: CopyItemsd
+ names: 'label_gt'
+ keys: '@label_key'
+ - _target_: CropForegroundd
+ allow_smaller: true
+ keys: ['@image_key', '@label_key']
+ margin: 10
+ source_key: '@image_key'
+ - _target_: Spacingd
+ keys: ["@image_key",'@label_key']
+ pixdim: [1.5, 1.5, 1.5]
+ mode: [bilinear,nearest]
+ align_corners: [true, true]
+ - {_target_: ScaleIntensityRanged, a_max: 1053.678477684517, a_min: -963.8247715525971,
+ b_max: 1.0, b_min: 0.0, clip: true, keys: '@image_key'}
+ - _target_: Orientationd
+ axcodes: RAS
+ keys: ['@image_key','@label_key']
+ - _target_: CastToTyped
+ dtype: [$torch.float32, $torch.uint8]
+ keys: ['@image_key','@label_key']
+ - _target_: EnsureTyped
+ keys: ['@image_key','@label_key']
+ track_meta: true
+model: "vista3d_segresnet_d"
diff --git a/vista3d/configs/train/hyper_parameters_stage1.yaml b/vista3d/configs/train/hyper_parameters_stage1.yaml
new file mode 100644
index 0000000..1c4e0a0
--- /dev/null
+++ b/vista3d/configs/train/hyper_parameters_stage1.yaml
@@ -0,0 +1,119 @@
+amp: true
+bundle_root: ./work_dir_stage1
+comments: "After training for several epoch, remove the unlabeled dataset from train_datasets."
+json_dir: ./data/jsons
+ckpt_path: $@bundle_root + '/model_fold' + str(@fold)
+model: "vista3d_segresnet_d"
+weighted_sampling: false
+drop_label_prob: 1
+drop_point_prob: 0
+finetune: {activate: true, exclude_vars: null, pretrained_ckpt_name: $'/workspace/vista3d/models/model.pt'}
+fold: 0
+image_key: image
+input_channels: 1
+iter_num: 5
+label_key: label
+label_sv_key: label_sv
+pseudo_label_key: pseudo_label
+learning_rate: 0.00002
+log_output_file: $@bundle_root + '/model_fold' + str(@fold) + '/training.log'
+loss: {_target_: DiceCELoss, include_background: false, sigmoid: true, smooth_dr: 1.0e-05, smooth_nr: 0, softmax: false, squared_pred: true,
+ to_onehot_y: false}
+lr_scheduler: {_target_: monai.optimizers.WarmupCosineSchedule, optimizer: $@optimizer,
+ t_total: $@num_epochs+1, warmup_multiplier: 0.1, warmup_steps: 0}
+max_backprompt: 0
+max_foreprompt: 4
+max_point: 3
+max_prompt: null
+num_epochs: 300
+freeze_epoch: 0
+freeze_head: 'auto'
+save_last: true
+save_all: false
+num_epochs_per_validation: 1
+num_images_per_batch: 1
+num_patches_per_image: 2
+num_patches_per_iter: 1
+optimizer: {_target_: torch.optim.AdamW, lr: '@learning_rate', weight_decay: 1.0e-05}
+output_classes: 133
+overlap_ratio: 0.5
+patch_size: [128, 128, 128]
+random_seed: 0
+resample_to_spacing: [1.5, 1.5, 1.5]
+skip_iter_prob: 0
+train_datasets: [CTPelvic1K-CLINIC, AbdomenCT-1K, AeroPath, AMOS22,
+ BTCV-Abdomen, BTCV-Cervix, CT-ORG, FLARE22, Multi-organ-Abdominal-CT-btcv,
+ Multi-organ-Abdominal-CT-tcia, Pancreas-CT, Task03, Task06, Task07,
+ Task08, Task09, Task10, VerSe, CRLM-CT, TotalSegmentatorV2, NLST, LIDC, StonyBrook-CT, TCIA_Colon, Covid19]
+val_datasets: [TotalSegmentatorV2]
+transforms_train:
+ _target_: Compose
+ transforms:
+ - _target_: LoadImaged
+ ensure_channel_first: true
+ image_only: true
+ keys: ['@image_key', '@label_key', '@label_sv_key', '@pseudo_label_key']
+ allow_missing_keys: true
+ - _target_: CropForegroundd
+ allow_smaller: true
+ end_coord_key: null
+ keys: ['@image_key', '@label_key', '@label_sv_key', '@pseudo_label_key']
+ margin: 10
+ source_key: '@image_key'
+ start_coord_key: null
+ allow_missing_keys: true
+ - _target_: Spacingd
+ keys: ["@image_key", "@label_key", '@label_sv_key', '@pseudo_label_key']
+ pixdim: [1.5, 1.5, 1.5]
+ mode: [bilinear, nearest, nearest, nearest]
+ align_corners: [true, true, true, true]
+ allow_missing_keys: true
+ - {_target_: ScaleIntensityRanged, a_max: 1053.678477684517, a_min: -963.8247715525971,
+ b_max: 1.0, b_min: 0.0, clip: true, keys: '@image_key'}
+ - _target_: Orientationd
+ axcodes: RAS
+ keys: ['@image_key', '@label_key', '@label_sv_key', '@pseudo_label_key']
+ allow_missing_keys: true
+ - _target_: EnsureTyped
+ keys: ['@image_key', '@label_key', '@label_sv_key', '@pseudo_label_key']
+ allow_missing_keys: true
+ track_meta: false
+ - _target_: SpatialPadd
+ keys: ['@image_key', '@label_key', '@label_sv_key', '@pseudo_label_key']
+ allow_missing_keys: true
+ mode: [constant, constant, constant, constant]
+ spatial_size: '@patch_size'
+ - "Placeholder for dataset-specific transform"
+ - _target_: CastToTyped
+ dtype: [$torch.float32, $torch.int32, $torch.int32, $torch.int32]
+ keys: ['@image_key', '@label_key', '@label_sv_key', '@pseudo_label_key']
+ allow_missing_keys: true
+transforms_validate:
+ _target_: Compose
+ transforms:
+ - _target_: LoadImaged
+ ensure_channel_first: true
+ image_only: true
+ keys: ['@image_key', '@label_key']
+ - _target_: CropForegroundd
+ allow_smaller: true
+ keys: ['@image_key', '@label_key']
+ margin: 10
+ source_key: '@image_key'
+ - _target_: Spacingd
+ keys: ["@image_key", "@label_key"]
+ pixdim: [1.5, 1.5, 1.5]
+ mode: [bilinear, nearest]
+ align_corners: [true, true]
+ - {_target_: ScaleIntensityRanged, a_max: 1053.678477684517, a_min: -963.8247715525971,
+ b_max: 1.0, b_min: 0.0, clip: true, keys: '@image_key'}
+ - _target_: Orientationd
+ axcodes: RAS
+ keys: ['@image_key', '@label_key']
+ - _target_: CastToTyped
+ dtype: [$torch.float32, $torch.uint8]
+ keys: ['@image_key', '@label_key']
+ - _target_: EnsureTyped
+ keys: ['@image_key', '@label_key']
+ track_meta: true
+ - "Placeholder for dataset-specific transform"
diff --git a/vista3d/configs/train/hyper_parameters_stage2.yaml b/vista3d/configs/train/hyper_parameters_stage2.yaml
new file mode 100644
index 0000000..abd566b
--- /dev/null
+++ b/vista3d/configs/train/hyper_parameters_stage2.yaml
@@ -0,0 +1,118 @@
+amp: true
+bundle_root: ./work_dir_stage2
+json_dir: ./data/jsons
+ckpt_path: $@bundle_root + '/model_fold' + str(@fold)
+model: "vista3d_segresnet_d"
+weighted_sampling: false
+drop_label_prob: 1
+drop_point_prob: 0
+finetune: {activate: true, exclude_vars: null, pretrained_ckpt_name: $'/workspace/vista3d/models/model.pt'}
+fold: 0
+image_key: image
+input_channels: 1
+iter_num: 5
+label_key: label
+label_sv_key: label_sv
+pseudo_label_key: pseudo_label
+learning_rate: 0.00002
+log_output_file: $@bundle_root + '/model_fold' + str(@fold) + '/training.log'
+loss: {_target_: DiceCELoss, include_background: false, sigmoid: true, smooth_dr: 1.0e-05, smooth_nr: 0, softmax: false, squared_pred: true,
+ to_onehot_y: false}
+lr_scheduler: {_target_: monai.optimizers.WarmupCosineSchedule, optimizer: $@optimizer,
+ t_total: $@num_epochs+1, warmup_multiplier: 0.1, warmup_steps: 0}
+max_backprompt: 0
+max_foreprompt: 4
+max_point: 3
+max_prompt: null
+num_epochs: 300
+freeze_epoch: 0
+freeze_head: 'auto'
+save_last: true
+save_all: true
+num_epochs_per_validation: 1
+num_images_per_batch: 1
+num_patches_per_image: 2
+num_patches_per_iter: 1
+optimizer: {_target_: torch.optim.AdamW, lr: '@learning_rate', weight_decay: 1.0e-05}
+output_classes: 133
+overlap_ratio: 0.5
+patch_size: [128, 128, 128]
+random_seed: 0
+resample_to_spacing: [1.5, 1.5, 1.5]
+skip_iter_prob: 0
+train_datasets: [CTPelvic1K-CLINIC, AbdomenCT-1K, AeroPath, AMOS22, BTCV-Abdomen,
+ BTCV-Cervix, CT-ORG, FLARE22, Multi-organ-Abdominal-CT-btcv, Multi-organ-Abdominal-CT-tcia,
+ Pancreas-CT, Task03, Task06, Task07, Task08, Task09, Task10, VerSe, CRLM-CT,
+ TotalSegmentatorV2]
+val_datasets: ['CRLM-CT', 'AeroPath', 'Task03','Task06','Task07','Task08','Task10']
+transforms_train:
+ _target_: Compose
+ transforms:
+ - _target_: LoadImaged
+ ensure_channel_first: true
+ image_only: true
+ keys: ['@image_key', '@label_key', '@label_sv_key', '@pseudo_label_key']
+ allow_missing_keys: true
+ - _target_: CropForegroundd
+ allow_smaller: true
+ end_coord_key: null
+ keys: ['@image_key', '@label_key', '@label_sv_key', '@pseudo_label_key']
+ margin: 10
+ source_key: '@image_key'
+ start_coord_key: null
+ allow_missing_keys: true
+ - _target_: Spacingd
+ keys: ["@image_key", "@label_key", '@label_sv_key', '@pseudo_label_key']
+ pixdim: [1.5, 1.5, 1.5]
+ mode: [bilinear, nearest, nearest, nearest]
+ align_corners: [true, true, true, true]
+ allow_missing_keys: true
+ - {_target_: ScaleIntensityRanged, a_max: 1053.678477684517, a_min: -963.8247715525971,
+ b_max: 1.0, b_min: 0.0, clip: true, keys: '@image_key'}
+ - _target_: Orientationd
+ axcodes: RAS
+ keys: ['@image_key', '@label_key', '@label_sv_key', '@pseudo_label_key']
+ allow_missing_keys: true
+ - _target_: EnsureTyped
+ keys: ['@image_key', '@label_key', '@label_sv_key', '@pseudo_label_key']
+ allow_missing_keys: true
+ track_meta: false
+ - _target_: SpatialPadd
+ keys: ['@image_key', '@label_key', '@label_sv_key', '@pseudo_label_key']
+ allow_missing_keys: true
+ mode: [constant, constant, constant, constant]
+ spatial_size: '@patch_size'
+ - "Placeholder for dataset-specific transform"
+ - _target_: CastToTyped
+ dtype: [$torch.float32, $torch.int32, $torch.int32, $torch.int32]
+ keys: ['@image_key', '@label_key', '@label_sv_key', '@pseudo_label_key']
+ allow_missing_keys: true
+transforms_validate:
+ _target_: Compose
+ transforms:
+ - _target_: LoadImaged
+ ensure_channel_first: true
+ image_only: true
+ keys: ['@image_key', '@label_key']
+ - _target_: CropForegroundd
+ allow_smaller: true
+ keys: ['@image_key', '@label_key']
+ margin: 10
+ source_key: '@image_key'
+ - _target_: Spacingd
+ keys: ["@image_key", "@label_key"]
+ pixdim: [1.5, 1.5, 1.5]
+ mode: [bilinear, nearest]
+ align_corners: [true, true]
+ - {_target_: ScaleIntensityRanged, a_max: 1053.678477684517, a_min: -963.8247715525971,
+ b_max: 1.0, b_min: 0.0, clip: true, keys: '@image_key'}
+ - _target_: Orientationd
+ axcodes: RAS
+ keys: ['@image_key', '@label_key']
+ - _target_: CastToTyped
+ dtype: [$torch.float32, $torch.uint8]
+ keys: ['@image_key', '@label_key']
+ - _target_: EnsureTyped
+ keys: ['@image_key', '@label_key']
+ track_meta: true
+ - "Placeholder for dataset-specific transform"
diff --git a/vista3d/configs/train/hyper_parameters_stage3.yaml b/vista3d/configs/train/hyper_parameters_stage3.yaml
new file mode 100644
index 0000000..b7d7e69
--- /dev/null
+++ b/vista3d/configs/train/hyper_parameters_stage3.yaml
@@ -0,0 +1,121 @@
+amp: true
+bundle_root: ./work_dir_stage3
+comments: "After training for several epoch, remove the unlabeled dataset from train_datasets."
+json_dir: ./data/jsons
+ckpt_path: $@bundle_root + '/model_fold' + str(@fold)
+model: "vista3d_segresnet_d"
+weighted_sampling: false
+drop_label_prob: 0
+drop_point_prob: 1
+finetune: {activate: true, exclude_vars: null, pretrained_ckpt_name: $'/workspace/vista3d/models/model.pt'}
+fold: 0
+image_key: image
+input_channels: 1
+iter_num: 5
+label_key: label
+label_sv_key: label_sv
+pseudo_label_key: pseudo_label
+learning_rate: 0.00002
+log_output_file: $@bundle_root + '/model_fold' + str(@fold) + '/training.log'
+loss: {_target_: DiceCELoss, include_background: false, sigmoid: true, smooth_dr: 1.0e-05, smooth_nr: 0, softmax: false, squared_pred: true,
+ to_onehot_y: false}
+lr_scheduler: {_target_: monai.optimizers.WarmupCosineSchedule, optimizer: $@optimizer,
+ t_total: $@num_epochs+1, warmup_multiplier: 0.1, warmup_steps: 0}
+max_backprompt: 4
+max_foreprompt: 32
+max_point: 3
+max_prompt: null
+num_epochs: 200
+freeze_epoch: 1000
+freeze_head: 'point'
+save_last: false
+save_all: false
+num_epochs_per_validation: 5
+num_images_per_batch: 1
+num_patches_per_image: 2
+num_patches_per_iter: 1
+optimizer: {_target_: torch.optim.AdamW, lr: '@learning_rate', weight_decay: 1.0e-05}
+output_classes: 133
+overlap_ratio: 0.5
+patch_size: [128, 128, 128]
+random_seed: 0
+resample_to_spacing: [1.5, 1.5, 1.5]
+skip_iter_prob: 1
+train_datasets: [CTPelvic1K-CLINIC, AbdomenCT-1K, AeroPath, AMOS22, BTCV-Abdomen,
+ BTCV-Cervix, CT-ORG, FLARE22, Multi-organ-Abdominal-CT-btcv, Multi-organ-Abdominal-CT-tcia,
+ Pancreas-CT, Task03, Task06, Task07, Task08, Task09, Task10, VerSe, CRLM-CT,
+ TotalSegmentatorV2, NLST, LIDC, StonyBrook-CT, TCIA_Colon]
+val_datasets: ['TotalSegmentatorV2']
+transforms_train:
+ _target_: Compose
+ transforms:
+ - _target_: LoadImaged
+ ensure_channel_first: true
+ image_only: true
+ keys: ['@image_key', '@label_key', '@pseudo_label_key']
+ allow_missing_keys: true
+ - _target_: DeleteItemsd
+ keys: ['@label_sv_key']
+ - _target_: CropForegroundd
+ allow_smaller: true
+ end_coord_key: null
+ keys: ['@image_key', '@label_key', '@pseudo_label_key']
+ margin: 10
+ source_key: '@image_key'
+ start_coord_key: null
+ allow_missing_keys: true
+ - _target_: Spacingd
+ keys: ["@image_key", "@label_key", '@pseudo_label_key']
+ pixdim: [1.5, 1.5, 1.5]
+ mode: [bilinear, nearest, nearest]
+ align_corners: [true, true, true]
+ allow_missing_keys: true
+ - {_target_: ScaleIntensityRanged, a_max: 1053.678477684517, a_min: -963.8247715525971,
+ b_max: 1.0, b_min: 0.0, clip: true, keys: '@image_key'}
+ - _target_: Orientationd
+ axcodes: RAS
+ keys: ['@image_key', '@label_key', '@pseudo_label_key']
+ allow_missing_keys: true
+ - _target_: EnsureTyped
+ keys: ['@image_key', '@label_key', '@pseudo_label_key']
+ allow_missing_keys: true
+ track_meta: false
+ - _target_: SpatialPadd
+ keys: ['@image_key', '@label_key', '@pseudo_label_key']
+ allow_missing_keys: true
+ mode: [constant, constant, constant]
+ spatial_size: '@patch_size'
+ - "Placeholder for dataset-specific transform"
+ - _target_: CastToTyped
+ dtype: [$torch.float32, $torch.int32, $torch.int32]
+ keys: ['@image_key', '@label_key', '@pseudo_label_key']
+ allow_missing_keys: true
+transforms_validate:
+ _target_: Compose
+ transforms:
+ - _target_: LoadImaged
+ ensure_channel_first: true
+ image_only: true
+ keys: ['@image_key', '@label_key']
+ - _target_: CropForegroundd
+ allow_smaller: true
+ keys: ['@image_key', '@label_key']
+ margin: 10
+ source_key: '@image_key'
+ - _target_: Spacingd
+ keys: ["@image_key", "@label_key"]
+ pixdim: [1.5, 1.5, 1.5]
+ mode: [bilinear, nearest]
+ align_corners: [true, true]
+ - {_target_: ScaleIntensityRanged, a_max: 1053.678477684517, a_min: -963.8247715525971,
+ b_max: 1.0, b_min: 0.0, clip: true, keys: '@image_key'}
+ - _target_: Orientationd
+ axcodes: RAS
+ keys: ['@image_key', '@label_key']
+ - _target_: CastToTyped
+ dtype: [$torch.float32, $torch.uint8]
+ keys: ['@image_key', '@label_key']
+ - _target_: EnsureTyped
+ keys: ['@image_key', '@label_key']
+ track_meta: true
+ - "Placeholder for dataset-specific transform"
diff --git a/vista3d/configs/train/hyper_parameters_stage4.yaml b/vista3d/configs/train/hyper_parameters_stage4.yaml
new file mode 100644
index 0000000..1b8a127
--- /dev/null
+++ b/vista3d/configs/train/hyper_parameters_stage4.yaml
@@ -0,0 +1,121 @@
+amp: true
+bundle_root: ./work_dir_stage4
+json_dir: ./data/jsons
+balance_gt: true
+ckpt_path: $@bundle_root + '/model_fold' + str(@fold)
+model: "vista3d_segresnet_d"
+weighted_sampling: false
+drop_label_prob: 0
+drop_point_prob: 1
+finetune: {activate: true, exclude_vars: null, pretrained_ckpt_name: $'/workspace/vista3d/models/model.pt'}
+fold: 0
+image_key: image
+input_channels: 1
+iter_num: 5
+label_key: label
+label_sv_key: label_sv
+pseudo_label_key: pseudo_label
+learning_rate: 0.00002
+log_output_file: $@bundle_root + '/model_fold' + str(@fold) + '/training.log'
+loss: {_target_: DiceCELoss, include_background: false, sigmoid: true, smooth_dr: 1.0e-05, smooth_nr: 0, softmax: false, squared_pred: true,
+ to_onehot_y: false}
+lr_scheduler: {_target_: monai.optimizers.WarmupCosineSchedule, optimizer: $@optimizer,
+ t_total: $@num_epochs+1, warmup_multiplier: 0.1, warmup_steps: 0}
+max_backprompt: 4
+max_foreprompt: 32
+max_point: 3
+max_prompt: null
+num_epochs: 200
+freeze_epoch: 1000
+freeze_head: 'point'
+save_last: true
+save_all: true
+num_epochs_per_validation: 1
+num_images_per_batch: 1
+num_patches_per_image: 2
+num_patches_per_iter: 1
+optimizer: {_target_: torch.optim.AdamW, lr: '@learning_rate', weight_decay: 1.0e-05}
+output_classes: 133
+overlap_ratio: 0.5
+patch_size: [128, 128, 128]
+random_seed: 0
+resample_to_spacing: [1.5, 1.5, 1.5]
+skip_iter_prob: 1
+train_datasets: [CTPelvic1K-CLINIC, AbdomenCT-1K, AeroPath, AMOS22, BTCV-Abdomen,
+ BTCV-Cervix, CT-ORG, FLARE22, Multi-organ-Abdominal-CT-btcv, Multi-organ-Abdominal-CT-tcia,
+ Pancreas-CT, Task03, Task06, Task07, Task08, Task09, Task10, VerSe, CRLM-CT,
+ TotalSegmentatorV2]
+val_datasets: ['CRLM-CT', 'AeroPath', 'Task03','Task06','Task07','Task08','Task10','Bone-NIH']
+transforms_train:
+ _target_: Compose
+ transforms:
+ - _target_: LoadImaged
+ ensure_channel_first: true
+ image_only: true
+ keys: ['@image_key', '@label_key', '@pseudo_label_key']
+ allow_missing_keys: true
+ - _target_: DeleteItemsd
+ keys: ['@label_sv_key']
+ - _target_: CropForegroundd
+ allow_smaller: true
+ end_coord_key: null
+ keys: ['@image_key', '@label_key', '@pseudo_label_key']
+ margin: 10
+ source_key: '@image_key'
+ start_coord_key: null
+ allow_missing_keys: true
+ - _target_: Spacingd
+ keys: ["@image_key", "@label_key", '@pseudo_label_key']
+ pixdim: [1.5, 1.5, 1.5]
+ mode: [bilinear, nearest, nearest]
+ align_corners: [true, true, true]
+ allow_missing_keys: true
+ - {_target_: ScaleIntensityRanged, a_max: 1053.678477684517, a_min: -963.8247715525971,
+ b_max: 1.0, b_min: 0.0, clip: true, keys: '@image_key'}
+ - _target_: Orientationd
+ axcodes: RAS
+ keys: ['@image_key', '@label_key', '@pseudo_label_key']
+ allow_missing_keys: true
+ - _target_: EnsureTyped
+ keys: ['@image_key', '@label_key', '@pseudo_label_key']
+ allow_missing_keys: true
+ track_meta: false
+ - _target_: SpatialPadd
+ keys: ['@image_key', '@label_key', '@pseudo_label_key']
+ allow_missing_keys: true
+ mode: [constant, constant, constant]
+ spatial_size: '@patch_size'
+ - "Placeholder for dataset-specific transform"
+ - _target_: CastToTyped
+ dtype: [$torch.float32, $torch.int32, $torch.int32]
+ keys: ['@image_key', '@label_key', '@pseudo_label_key']
+ allow_missing_keys: true
+transforms_validate:
+ _target_: Compose
+ transforms:
+ - _target_: LoadImaged
+ ensure_channel_first: true
+ image_only: true
+ keys: ['@image_key', '@label_key']
+ - _target_: CropForegroundd
+ allow_smaller: true
+ keys: ['@image_key', '@label_key']
+ margin: 10
+ source_key: '@image_key'
+ - _target_: Spacingd
+ keys: ["@image_key", "@label_key"]
+ pixdim: [1.5, 1.5, 1.5]
+ mode: [bilinear, nearest]
+ align_corners: [true, true]
+ - {_target_: ScaleIntensityRanged, a_max: 1053.678477684517, a_min: -963.8247715525971,
+ b_max: 1.0, b_min: 0.0, clip: true, keys: '@image_key'}
+ - _target_: Orientationd
+ axcodes: RAS
+ keys: ['@image_key', '@label_key']
+ - _target_: CastToTyped
+ dtype: [$torch.float32, $torch.uint8]
+ keys: ['@image_key', '@label_key']
+ - _target_: EnsureTyped
+ keys: ['@image_key', '@label_key']
+ track_meta: true
+ - "Placeholder for dataset-specific transform"
diff --git a/vista3d/configs/zeroshot_eval/infer_iter_point_adrenal.yaml b/vista3d/configs/zeroshot_eval/infer_iter_point_adrenal.yaml
new file mode 100644
index 0000000..91ac868
--- /dev/null
+++ b/vista3d/configs/zeroshot_eval/infer_iter_point_adrenal.yaml
@@ -0,0 +1,45 @@
+amp: true
+exps: models
+output_path: "$'/workspace/vista3d/' + @exps"
+ckpt: "$@output_path + '/model.pt'"
+dataset_name: "Adrenal_Ki67"
+label_set: [0,1]
+max_iter: 80
+overlap: 0.625
+json_name: "$@dataset_name + '_5_folds.json'"
+data_file_base_dir: "$'/data/' + @dataset_name"
+data_list_file_path: "$'./data/external/' + @json_name"
+log_output_file: $@output_path + '/inference_adrenal.log'
+list_key: 'all'
+fold: 0
+input_channels: 1
+image_key: image
+label_key: label
+patch_size: [128, 128, 128]
+transforms_infer:
+ _target_: Compose
+ transforms:
+ - _target_: LoadImaged
+ ensure_channel_first: true
+ image_only: true
+ keys: ['@image_key','@label_key']
+ - _target_: CopyItemsd
+ names: 'label_gt'
+ keys: '@label_key'
+ - _target_: Spacingd
+ keys: ["@image_key",'@label_key']
+ pixdim: [1.5, 1.5, 1.5]
+ mode: [bilinear,nearest]
+ align_corners: [true, true]
+ - {_target_: ScaleIntensityRanged, a_max: 1053.678477684517, a_min: -963.8247715525971,
+ b_max: 1.0, b_min: 0.0, clip: true, keys: '@image_key'}
+ - _target_: Orientationd
+ axcodes: RAS
+ keys: ['@image_key','@label_key']
+ - _target_: CastToTyped
+ dtype: [$torch.float32, $torch.uint8]
+ keys: ['@image_key','@label_key']
+ - _target_: EnsureTyped
+ keys: ['@image_key','@label_key']
+ track_meta: true
+model: "vista3d_segresnet_d"
diff --git a/vista3d/configs/zeroshot_eval/infer_iter_point_hcc.yaml b/vista3d/configs/zeroshot_eval/infer_iter_point_hcc.yaml
new file mode 100644
index 0000000..a168df7
--- /dev/null
+++ b/vista3d/configs/zeroshot_eval/infer_iter_point_hcc.yaml
@@ -0,0 +1,45 @@
+amp: true
+exps: models
+output_path: "$'/workspace/vista3d/' + @exps"
+ckpt: "$@output_path + '/model.pt'"
+dataset_name: "HCC-TACE-Seg"
+label_set: [0,2]
+max_iter: 80
+overlap: 0.625
+json_name: "$@dataset_name + '_5_folds.json'"
+data_file_base_dir: "$'/data/' + @dataset_name"
+data_list_file_path: "$'./data/external/' + @json_name"
+log_output_file: $@output_path + '/inference_hcc.log'
+list_key: 'all'
+fold: 0
+input_channels: 1
+image_key: image
+label_key: label
+patch_size: [128, 128, 128]
+transforms_infer:
+ _target_: Compose
+ transforms:
+ - _target_: LoadImaged
+ ensure_channel_first: true
+ image_only: true
+ keys: ['@image_key','@label_key']
+ - _target_: CopyItemsd
+ names: 'label_gt'
+ keys: '@label_key'
+ - _target_: Spacingd
+ keys: ["@image_key",'@label_key']
+ pixdim: [1.5, 1.5, 1.5]
+ mode: [bilinear,nearest]
+ align_corners: [true, true]
+ - {_target_: ScaleIntensityRanged, a_max: 1053.678477684517, a_min: -963.8247715525971,
+ b_max: 1.0, b_min: 0.0, clip: true, keys: '@image_key'}
+ - _target_: Orientationd
+ axcodes: RAS
+ keys: ['@image_key','@label_key']
+ - _target_: CastToTyped
+ dtype: [$torch.float32, $torch.uint8]
+ keys: ['@image_key','@label_key']
+ - _target_: EnsureTyped
+ keys: ['@image_key','@label_key']
+ track_meta: true
+model: "vista3d_segresnet_d"
diff --git a/vista3d/configs/zeroshot_eval/infer_iter_point_kits.yaml b/vista3d/configs/zeroshot_eval/infer_iter_point_kits.yaml
new file mode 100644
index 0000000..f59b076
--- /dev/null
+++ b/vista3d/configs/zeroshot_eval/infer_iter_point_kits.yaml
@@ -0,0 +1,45 @@
+amp: true
+exps: models
+output_path: "$'/workspace/vista3d/' + @exps"
+ckpt: "$@output_path + '/model.pt'"
+dataset_name: "C4KC-KiTS"
+label_set: [0,2]
+max_iter: 80
+overlap: 0.625
+json_name: "$@dataset_name + '_5_folds.json'"
+data_file_base_dir: "$'/data/' + @dataset_name + '/nifti'"
+data_list_file_path: "$'./data/external/' + @json_name"
+log_output_file: $@output_path + '/inference_kits.log'
+list_key: 'all'
+fold: 0
+input_channels: 1
+image_key: image
+label_key: label
+patch_size: [128, 128, 128]
+transforms_infer:
+ _target_: Compose
+ transforms:
+ - _target_: LoadImaged
+ ensure_channel_first: true
+ image_only: true
+ keys: ['@image_key','@label_key']
+ - _target_: CopyItemsd
+ names: 'label_gt'
+ keys: '@label_key'
+ - _target_: Spacingd
+ keys: ["@image_key",'@label_key']
+ pixdim: [1., 1., 1.]
+ mode: [bilinear,nearest]
+ align_corners: [true, true]
+ - {_target_: ScaleIntensityRanged, a_max: 1053.678477684517, a_min: -963.8247715525971,
+ b_max: 1.0, b_min: 0.0, clip: true, keys: '@image_key'}
+ - _target_: Orientationd
+ axcodes: RAS
+ keys: ['@image_key','@label_key']
+ - _target_: CastToTyped
+ dtype: [$torch.float32, $torch.uint8]
+ keys: ['@image_key','@label_key']
+ - _target_: EnsureTyped
+ keys: ['@image_key','@label_key']
+ track_meta: true
+model: "vista3d_segresnet_d"
diff --git a/vista3d/configs/zeroshot_eval/infer_iter_point_murine.yaml b/vista3d/configs/zeroshot_eval/infer_iter_point_murine.yaml
new file mode 100644
index 0000000..de3ae1d
--- /dev/null
+++ b/vista3d/configs/zeroshot_eval/infer_iter_point_murine.yaml
@@ -0,0 +1,40 @@
+amp: true
+exps: models
+output_path: "$'/workspace/vista3d/' + @exps"
+ckpt: "$@output_path + '/model.pt'"
+dataset_name: "micro-ct-murine-native"
+label_set: [0,1,2,3,4]
+max_iter: 80
+overlap: 0.625
+json_name: "$@dataset_name + '_5_folds.json'"
+data_file_base_dir: '/data/micro-ct-murine/1_nativeCTdata_nifti'
+data_list_file_path: "$'./data/external/' + @json_name"
+log_output_file: $@output_path + '/inference_murine.log'
+list_key: 'all'
+fold: 0
+input_channels: 1
+image_key: image
+label_key: label
+patch_size: [128, 128, 128]
+transforms_infer:
+ _target_: Compose
+ transforms:
+ - _target_: LoadImaged
+ ensure_channel_first: true
+ image_only: true
+ keys: ['@image_key','@label_key']
+ - _target_: CopyItemsd
+ names: 'label_gt'
+ keys: '@label_key'
+ - {_target_: ScaleIntensityRanged, a_max: 1053.678477684517, a_min: -963.8247715525971,
+ b_max: 1.0, b_min: 0.0, clip: true, keys: '@image_key'}
+ - _target_: Orientationd
+ axcodes: RAS
+ keys: ['@image_key','@label_key']
+ - _target_: CastToTyped
+ dtype: [$torch.float32, $torch.uint8]
+ keys: ['@image_key','@label_key']
+ - _target_: EnsureTyped
+ keys: ['@image_key','@label_key']
+ track_meta: true
+model: "vista3d_segresnet_d"
diff --git a/vista3d/data/README.md b/vista3d/data/README.md
new file mode 100644
index 0000000..03354c3
--- /dev/null
+++ b/vista3d/data/README.md
@@ -0,0 +1,123 @@
+#### Aggregating multiple datasets
+
+The training workflow requires one or multiple dataset JSON files to specifiy the image and segmentation pairs as well as dataset preprocessing transformations.
+Example files are located in the `data/jsons` folder.
+
+The JSON file has the following structure:
+```python
+{
+ "training": [
+ {
+ "image": "img1.nii.gz", # relative path to the primary image file
+ "label": "label1.nii.gz", # optional relative path to the primary label file
+ "pseudo_label": "p_label1.nii.gz", # optional relative path to the pseudo label file
+ "pseudo_label_reliability": 1 # optional reliability score for pseudo label
+ "label_sv": "label_sv1.nii.gz", # optional relative path to the supervoxel label file
+ "fold": 0 # optional fold index for cross validation, fold 0 is used for training
+ },
+
+ ...
+ ],
+ "training_transform": [
+ # a set of monai transform configuration for dataset-specific loading
+ ],
+ "original_label_dict": {"1": "liver", ...},
+ "label_dict": {"1": "liver", ...}
+}
+```
+
+During training, the JSON files will be consumed along with additional configurations, for example:
+```py
+from data.datasets import get_datalist_with_dataset_name_and_transform
+
+train_files, _, dataset_specific_transforms, dataset_specific_transforms_val = \
+ get_datalist_with_dataset_name_and_transform(
+ datasets=train_datasets,
+ fold_idx=fold,
+ image_key=image_key,
+ label_key=label_key,
+ label_sv_key=label_sv_key,
+ pseudo_label_key=pseudo_label_key,
+ num_patches_per_image=parser.get_parsed_content("num_patches_per_image"),
+ patch_size=parser.get_parsed_content("patch_size"),
+ json_dir=json_dir)
+```
+
+The following steps are necessary for creating a multi-dataset data loader for model training.
+Step 1 and 2 generate persistent JSON files based on the original dataset (the `image` and `label` pairs; without the additional pseudo label or supervoxel-based label), and only need to be run once when the JSON files don't exist.
+
+##### 1. Generate data list JSON file
+```
+python -m data.make_datalists
+```
+
+This script reads image and label folders, lists all the nii.gz files,
+creates a JSON file in a format:
+
+```json
+{
+ "training": [
+ {"image": "img0001.nii.gz", "label": "label0001.nii.gz", "fold": 0},
+ {"image": "img0002.nii.gz", "label": "label0002.nii.gz", "fold": 2},
+ ...
+ ],
+ "testing": [
+ {"image": "img0003.nii.gz", "label": "label0003.nii.gz"},
+ {"image": "img0004.nii.gz", "label": "label0004.nii.gz"},
+ ...
+ ]
+ "original_label_dict": {"1": "liver", ...},
+ "label_dict": {"1": "liver", ...}
+}
+```
+
+This step includes a 5-fold cross validation splitting and
+some logic for 80-20 training/testing splitting. User need to modify the code in make_datalists.py for their own dataset. Meanwhile, the "training_transform" should manually added for each dataset.
+
+The `original_label_dict` corresponds to the original dataset label definitions.
+The `label_dict` modifies `original_label_dict` by simply rephrasing the terms.
+For example in Task06, `cancer` is renamed to `lung tumor`.
+The output of this step is multiple JSON files, each file corresponds
+to one dataset.
+
+##### 2. Add label_dict.json and label_mapping.json
+Add new class indexes to `label_dict.json` and the local to global mapping to `label_mapping.json`.
+
+## SupverVoxel Generation
+1. Download the segment anything repo and download the ViT-H weights
+```
+git clone https://github.com/facebookresearch/segment-anything.git
+mv segment-anything/segment_anything/ segment_anything/
+wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth
+```
+2. Modify the code for supervoxel generation
+- Add this function to `predictor.py/SamPredictor`
+```python
+@torch.no_grad()
+def get_feature_upsampled(self, input_image=None):
+ if input_image is None:
+ image_embeddings = self.model.mask_decoder.predict_masks_noprompt(self.features)
+ else:
+ image_embeddings = self.model.mask_decoder.predict_masks_noprompt(self.model.image_encoder(input_image))
+ return image_embeddings
+```
+- Add this function to `modeling/mask_decoder.py/MaskDecoder`
+```python
+def predict_masks_noprompt(
+ self,
+ image_embeddings: torch.Tensor,
+) -> Tuple[torch.Tensor, torch.Tensor]:
+ """Predicts masks. See 'forward' for more details."""
+ # Concatenate output tokens
+
+ # Expand per-image data in batch direction to be per-mask
+ src = image_embeddings
+ # Upscale mask embeddings and predict masks using the mask tokens
+ upscaled_embedding = self.output_upscaling(src)
+
+ return upscaled_embedding
+```
+3. Run the supervoxel generation script. The processsing time is over 10 minutes, use `batch_infer` and multi-gpu for speed up.
+```
+python -m scripts.slic_process_sam infer --image_file xxxx
+```
diff --git a/monailabel/monaivista/__init__.py b/vista3d/data/__init__.py
similarity index 100%
rename from monailabel/monaivista/__init__.py
rename to vista3d/data/__init__.py
diff --git a/vista3d/data/dataset_weights.yaml b/vista3d/data/dataset_weights.yaml
new file mode 100644
index 0000000..7a67ecf
--- /dev/null
+++ b/vista3d/data/dataset_weights.yaml
@@ -0,0 +1,24 @@
+# This is the weights for weighted sampling in stage2 and stage4
+{
+ "CTPelvic1K-CLINIC": 1.3333333333333333,
+ "AbdomenCT-1K": 0.15625,
+ "AeroPath": 5.882352941176471,
+ "AMOS22": 0.5208333333333334,
+ "BTCV-Abdomen": 5.2631578947368425,
+ "BTCV-Cervix": 5.2631578947368425,
+ "CT-ORG": 1.1494252873563218,
+ "FLARE22": 3.125,
+ "Multi-organ-Abdominal-CT-btcv": 3.3333333333333335,
+ "Multi-organ-Abdominal-CT-tcia": 3.7037037037037037,
+ "Pancreas-CT": 1.9607843137254901,
+ "Task03": 1.1904761904761905,
+ "Task06": 2.5,
+ "Task07": 0.5555555555555556,
+ "Task08": 0.5181347150259067,
+ "Task09": 3.8461538461538463,
+ "Task10": 1.25,
+ "VerSe": 0.41841004184100417,
+ "Bone-NIH": 0.5291005291005291,
+ "CRLM-CT": 0.7936507936507936,
+ "TotalSegmentatorV2": 0.12755102040816327
+}
diff --git a/vista3d/data/datasets.py b/vista3d/data/datasets.py
new file mode 100644
index 0000000..8d793d1
--- /dev/null
+++ b/vista3d/data/datasets.py
@@ -0,0 +1,268 @@
+# Copyright (c) MONAI Consortium
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+# http://www.apache.org/licenses/LICENSE-2.0
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import os
+from pprint import pformat
+
+from monai import transforms
+from monai.apps import get_logger
+from monai.auto3dseg.utils import datafold_read
+from monai.bundle import ConfigParser
+from monai.utils import ensure_tuple, look_up_option
+
+# Define the root path to the orignal manual label files, supervoxels, and pseudolabels.
+all_base_dirs = {
+ "AbdomenCT-1K": "/data/AbdomenCT-1K",
+ "FLARE22": "/data/AbdomenCT-1K/FLARE22Train",
+ "AMOS22": "/data/AMOS22",
+ "BTCV-Abdomen": "/data/BTCV/Abdomen",
+ "BTCV-Cervix": "/data/BTCV/Cervix",
+ "CT-ORG": "/data/CT-ORG",
+ "Multi-organ-Abdominal-CT-btcv": "/data/Multi-organ-Abdominal-CT/res_1.0mm_relabeled2",
+ "Multi-organ-Abdominal-CT-tcia": "/data/Multi-organ-Abdominal-CT/res_1.0mm_relabeled2",
+ "Pancreas-CT": "/data/Pancreas-CT",
+ "Task06": "/data/Task06",
+ "Task07": "/data/Task07",
+ "Task08": "/data/Task08",
+ "Task09": "/data/Task09",
+ "Task10": "/data/Task10",
+ "TotalSegmentator": "/data/TotalSegmentator",
+ "TotalSegmentatorV2": "/data/TotalSegmentatorV2",
+ "Task03": "/data/Task03",
+ "Bone-NIH": "/data/Bone-NIH",
+ "CRLM-CT": "/data/CRLM-CT/nifti",
+ "VerSe": "/data/VerSe/",
+ "AeroPath": "/data/AeroPath/",
+ "CTPelvic1K-CLINIC": "/data/CTPelvic1K-CLINIC",
+ "NLST": "/data/NLST",
+ "LIDC": "/data/LIDC",
+ "Covid19": "/data/Covid19",
+ "TCIA_Colon": "/data/TCIA_Colon",
+ "StonyBrook-CT": "/data/StonyBrook-CT",
+}
+# Notice the root path to supervoxel and pseudolabel has the same sub-folder structure as all_base_dirs
+# The path is generated by replacing json_base with supervoxel_base/pl_base in get_datalist_with_dataset_name
+json_base = "/data/"
+supervoxel_base = "/workspace_infer/supervoxel_sam/"
+pl_base = "/workspace_infer/V2_pseudo_12Feb2024/"
+
+
+cur_json_dir = os.path.join(os.path.dirname(__file__), "jsons")
+logger = get_logger(__name__)
+
+
+def get_json_files_k_folds(json_dir=None, base_dirs=None, k=5):
+ """the json files are generated by data/make_datalists.py, stored at `json_dir`"""
+ if json_dir is None:
+ json_dir = cur_json_dir
+ if base_dirs is None:
+ base_dirs = all_base_dirs
+ output_dict = {
+ item: os.path.join(json_dir, f"{item}_{k}_folds.json") for item in base_dirs
+ }
+ logger.debug(pformat(output_dict))
+ return output_dict
+
+
+def get_class_names(json_dir=None):
+ """
+ the list of class names, background is at 0
+ """
+ parser = ConfigParser.load_config_file(os.path.join(json_dir, "label_dict.json"))
+ label_dict = dict(parser)
+ label_dict["unspecified region"] = 0
+ inv_label_dict = {v: k for k, v in label_dict.items()}
+ label_list = []
+ for i in range(len(label_dict)):
+ label_list.append(inv_label_dict[i])
+ return label_list
+
+
+def get_datalist_with_dataset_name(
+ datasets=None, fold_idx=-1, key="training", json_dir=None, base_dirs=None
+):
+ """
+ when `datasets` is None, it returns a list of all data from all datasets.
+ when `datasets` is a list of dataset names, it returns a list of all data from the specified datasets.
+
+ train_list's item format::
+
+ {"image": image_file_path, "label": label_file_path, "dataset_name": dataset_name, "fold": fold_id}
+
+ """
+ if base_dirs is None:
+ base_dirs = all_base_dirs # all_base_dirs is the broader set
+ # get the list of training/validation files (absolute path)
+ json_files = get_json_files_k_folds(json_dir=json_dir, base_dirs=base_dirs)
+ if datasets is None:
+ loading_dict = json_files.copy()
+ else:
+ loading_dict = {
+ k: look_up_option(k, json_files) for k in ensure_tuple(datasets)
+ }
+ train_list, val_list = [], []
+ for k, j in loading_dict.items():
+ t, v = datafold_read(j, basedir=all_base_dirs[k], fold=fold_idx, key=key)
+ for item in t:
+ item["dataset_name"] = k
+ if "label_sv" in item.keys():
+ item["label_sv"] = item["label_sv"].replace(
+ json_base, supervoxel_base, 1
+ )
+ if "pseudo_label" in item.keys():
+ item["pseudo_label"] = item["pseudo_label"].replace(
+ json_base, pl_base, 1
+ )
+ train_list += t
+ for item in v:
+ item["dataset_name"] = k
+ if "label_sv" in item.keys():
+ item["label_sv"] = item["label_sv"].replace(
+ json_base, supervoxel_base, 1
+ )
+ if "pseudo_label" in item.keys():
+ item["pseudo_label"] = item["pseudo_label"].replace(
+ json_base, pl_base, 1
+ )
+
+ val_list += v
+ logger.warning(
+ f"data list from datasets={datasets} fold={fold_idx}: train={len(train_list)}, val={len(val_list)}"
+ )
+ return ensure_tuple(train_list), ensure_tuple(val_list)
+
+
+def get_datalist_with_dataset_name_and_transform(
+ image_key,
+ label_key,
+ label_sv_key,
+ pseudo_label_key,
+ num_patches_per_image,
+ patch_size,
+ datasets=None,
+ fold_idx=-1,
+ key="training",
+ json_dir=None,
+ base_dirs=None,
+):
+ """
+ when `datasets` is None, it returns a list of all data from all datasets.
+ when `datasets` is a list of dataset names, it returns a list of all data from the specified datasets.
+ Return file lists and specific transforms for each dataset.
+
+ """
+ if base_dirs is None:
+ base_dirs = all_base_dirs # all_base_dirs is the broader set
+ train_list, val_list = get_datalist_with_dataset_name(
+ datasets=datasets,
+ fold_idx=fold_idx,
+ key=key,
+ json_dir=json_dir,
+ base_dirs=base_dirs,
+ )
+ # get the list of training/validation files (absolute path)
+ json_files = get_json_files_k_folds(json_dir=json_dir, base_dirs=base_dirs)
+ if datasets is None:
+ loading_dict = json_files.copy()
+ else:
+ loading_dict = {
+ k: look_up_option(k, json_files) for k in ensure_tuple(datasets)
+ }
+
+ dataset_transforms = {}
+ dataset_transforms_val = {}
+ for k, j in loading_dict.items():
+ parser = ConfigParser()
+ parser.read_config(j)
+ # those parameters are required to initiate the transforms
+ parser.update(
+ pairs={
+ "image_key": image_key,
+ "label_key": label_key,
+ "label_sv_key": label_sv_key,
+ "pseudo_label_key": pseudo_label_key,
+ "num_patches_per_image": num_patches_per_image,
+ "patch_size": patch_size,
+ }
+ )
+ transform = parser.get_parsed_content("training_transform")
+ dataset_transforms[k] = transforms.Compose(transform)
+ transform_val = parser.get_parsed_content("validation_transform", default=None)
+ dataset_transforms_val[k] = (
+ transforms.Compose(transform_val) if transform_val is not None else None
+ )
+ return (
+ ensure_tuple(train_list),
+ ensure_tuple(val_list),
+ dataset_transforms,
+ dataset_transforms_val,
+ )
+
+
+def compute_dataset_weights(datalist, weight_path="./data/dataset_weights.yaml"):
+ """based on class-wise weight, assign a weight to each training sample"""
+ cfg = ConfigParser.load_config_file(weight_path)
+ w = []
+ for item in datalist:
+ fg_w = cfg[item["dataset_name"]]
+ w.append(fg_w)
+ item["w"] = fg_w
+ return w
+
+
+def calculate_dataset_weights(datalist):
+ dataset_name = []
+ dataset_counts = {}
+ for item in datalist:
+ dn = item["dataset_name"]
+ if dn in dataset_name:
+ dataset_counts[dn] += 1
+ else:
+ dataset_name.append(dn)
+ dataset_counts[dn] = 1
+ dataset_weights = {}
+ non_tumor_count = 0
+ tumor_count = 0
+ for item in dataset_name:
+ if item not in ["Task03", "Task06", "Task07", "Task08", "Task10", "Bone-NIH"]:
+ non_tumor_count += dataset_counts[item]
+ else:
+ tumor_count += dataset_counts[item]
+
+ for item in dataset_name:
+ if item not in ["Task03", "Task06", "Task07", "Task08", "Task10", "Bone-NIH"]:
+ dataset_weights[item] = 100 / dataset_counts[item] # non_tumor_count
+ else:
+ dataset_weights[item] = 100 / dataset_counts[item] # tumor_count
+
+ dataset_prob = {}
+ total_prob = 0
+ for item in dataset_name:
+ dataset_prob[item] = dataset_weights[item] * dataset_counts[item]
+ total_prob += dataset_prob[item]
+ for item in dataset_name:
+ dataset_prob[item] /= total_prob
+
+ import json
+
+ with open("./dataset_counts.yaml", "w") as f:
+ json.dump(dataset_counts, f, indent=4)
+ with open("./dataset_weights.yaml", "w") as f:
+ json.dump(dataset_weights, f, indent=4)
+ with open("./dataset_prob.yaml", "w") as f:
+ json.dump(dataset_prob, f, indent=4)
+
+
+if __name__ == "__main__":
+ from monai.utils import optional_import
+
+ fire, _ = optional_import("fire")
+ fire.Fire()
diff --git a/vista3d/data/external/Adrenal_Ki67_5_folds.json b/vista3d/data/external/Adrenal_Ki67_5_folds.json
new file mode 100644
index 0000000..30f5b86
--- /dev/null
+++ b/vista3d/data/external/Adrenal_Ki67_5_folds.json
@@ -0,0 +1,266 @@
+{
+ "training": [
+ {
+ "image": "Adrenal_Ki67_Seg_026-Adrenal_Ki67_Seg_026/8-_OMNIPAQUE_350_VL100_FC12_ORG_8.nii.gz",
+ "label": "Adrenal_Ki67_Seg_026-Adrenal_Ki67_Seg_026/seg-1__fix.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "Adrenal_Ki67_Seg_007-Adrenal_Ki67_Seg_007/2-AX_W_2.nii.gz",
+ "label": "Adrenal_Ki67_Seg_007-Adrenal_Ki67_Seg_007/seg-1__fix.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "Adrenal_Ki67_Seg_027-Adrenal_Ki67_Seg_027/14-No_series_description_14.nii.gz",
+ "label": "Adrenal_Ki67_Seg_027-Adrenal_Ki67_Seg_027/seg-1__fix.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "Adrenal_Ki67_Seg_017-Adrenal_Ki67_Seg_017/5-ABD_(2.5MM_SOFT)_5.nii.gz",
+ "label": "Adrenal_Ki67_Seg_017-Adrenal_Ki67_Seg_017/seg-1__fix.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "Adrenal_Ki67_Seg_042-Adrenal_Ki67_Seg_042/10-No_series_description_10.nii.gz",
+ "label": "Adrenal_Ki67_Seg_042-Adrenal_Ki67_Seg_042/seg-1__fix.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "Adrenal_Ki67_Seg_037-Adrenal_Ki67_Seg_037/2-ABD_PEL_W_2.nii.gz",
+ "label": "Adrenal_Ki67_Seg_037-Adrenal_Ki67_Seg_037/seg-1__fix.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "Adrenal_Ki67_Seg_039-Adrenal_Ki67_Seg_039/5-3_AX_VENOUS_5.nii.gz",
+ "label": "Adrenal_Ki67_Seg_039-Adrenal_Ki67_Seg_039/seg-1__fix.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "Adrenal_Ki67_Seg_004-Adrenal_Ki67_Seg_004/6-Venous_3.0_B31f_6.nii.gz",
+ "label": "Adrenal_Ki67_Seg_004-Adrenal_Ki67_Seg_004/seg-1__fix.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "Adrenal_Ki67_Seg_034-Adrenal_Ki67_Seg_034/930-CAP_W_5mm_(SafeCT)_930.nii.gz",
+ "label": "Adrenal_Ki67_Seg_034-Adrenal_Ki67_Seg_034/seg-1__fix.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "Adrenal_Ki67_Seg_031-Adrenal_Ki67_Seg_031/5-Abd_Pel_with_5.0_B30f_ST_5.nii.gz",
+ "label": "Adrenal_Ki67_Seg_031-Adrenal_Ki67_Seg_031/seg-1__fix.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "Adrenal_Ki67_Seg_020-Adrenal_Ki67_Seg_020/5-Recon_2_ABD_PLVS_W_CONTRAST_5.nii.gz",
+ "label": "Adrenal_Ki67_Seg_020-Adrenal_Ki67_Seg_020/seg-1__fix.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "Adrenal_Ki67_Seg_052-Adrenal_Ki67_Seg_052/10-No_series_description_10.nii.gz",
+ "label": "Adrenal_Ki67_Seg_052-Adrenal_Ki67_Seg_052/seg-1__fix.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "Adrenal_Ki67_Seg_049-Adrenal_Ki67_Seg_049/3-CAP_W_O_5.0_I30f_3_3.nii.gz",
+ "label": "Adrenal_Ki67_Seg_049-Adrenal_Ki67_Seg_049/seg-1__fix.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "Adrenal_Ki67_Seg_019-Adrenal_Ki67_Seg_019/13-No_series_description_13.nii.gz",
+ "label": "Adrenal_Ki67_Seg_019-Adrenal_Ki67_Seg_019/seg-1__fix.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "Adrenal_Ki67_Seg_033-Adrenal_Ki67_Seg_033/7-CAP_AX_VENOUS_7.nii.gz",
+ "label": "Adrenal_Ki67_Seg_033-Adrenal_Ki67_Seg_033/seg-1__fix.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "Adrenal_Ki67_Seg_015-Adrenal_Ki67_Seg_015/3-ABDOMEN_WITH_CONTRAST_3.nii.gz",
+ "label": "Adrenal_Ki67_Seg_015-Adrenal_Ki67_Seg_015/seg-1__fix.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "Adrenal_Ki67_Seg_053-Adrenal_Ki67_Seg_053/7-ABD_AX_3_PV_7.nii.gz",
+ "label": "Adrenal_Ki67_Seg_053-Adrenal_Ki67_Seg_053/seg-1__fix.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "Adrenal_Ki67_Seg_051-Adrenal_Ki67_Seg_051/401-ABD_AX_ART_iDose_(4)_401.nii.gz",
+ "label": "Adrenal_Ki67_Seg_051-Adrenal_Ki67_Seg_051/seg-1__fix.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "Adrenal_Ki67_Seg_003-Adrenal_Ki67_Seg_003/2_2.nii.gz",
+ "label": "Adrenal_Ki67_Seg_003-Adrenal_Ki67_Seg_003/seg-1__fix.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "Adrenal_Ki67_Seg_001-Adrenal_Ki67_Seg_001/5-Abd_Venous_5.0_B40f_5.nii.gz",
+ "label": "Adrenal_Ki67_Seg_001-Adrenal_Ki67_Seg_001/seg-1__fix.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "Adrenal_Ki67_Seg_040-Adrenal_Ki67_Seg_040/3-No_series_description_3.nii.gz",
+ "label": "Adrenal_Ki67_Seg_040-Adrenal_Ki67_Seg_040/seg-1__fix.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "Adrenal_Ki67_Seg_005-Adrenal_Ki67_Seg_005/5-No_series_description_5.nii.gz",
+ "label": "Adrenal_Ki67_Seg_005-Adrenal_Ki67_Seg_005/seg-1__fix.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "Adrenal_Ki67_Seg_035-Adrenal_Ki67_Seg_035/7-Venous_7.nii.gz",
+ "label": "Adrenal_Ki67_Seg_035-Adrenal_Ki67_Seg_035/seg-1__fix.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "Adrenal_Ki67_Seg_050-Adrenal_Ki67_Seg_050/201-ABDOMEN_PELVIS_W_iDose_(3)_201.nii.gz",
+ "label": "Adrenal_Ki67_Seg_050-Adrenal_Ki67_Seg_050/seg-1__fix.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "Adrenal_Ki67_Seg_036-Adrenal_Ki67_Seg_036/5-No_series_description_5.nii.gz",
+ "label": "Adrenal_Ki67_Seg_036-Adrenal_Ki67_Seg_036/seg-1__fix.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "Adrenal_Ki67_Seg_009-Adrenal_Ki67_Seg_009/4-Abd_Pelvis_4.nii.gz",
+ "label": "Adrenal_Ki67_Seg_009-Adrenal_Ki67_Seg_009/seg-1__fix.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "Adrenal_Ki67_Seg_014-Adrenal_Ki67_Seg_014/3-Abd_Only_5.0_B31f_ABDOMEN_ONLY_WO_20061104105641_3.nii.gz",
+ "label": "Adrenal_Ki67_Seg_014-Adrenal_Ki67_Seg_014/seg-1__fix.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "Adrenal_Ki67_Seg_029-Adrenal_Ki67_Seg_029/2-Abdomen_3mm_2.nii.gz",
+ "label": "Adrenal_Ki67_Seg_029-Adrenal_Ki67_Seg_029/seg-1__fix.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "Adrenal_Ki67_Seg_030-Adrenal_Ki67_Seg_030/14-No_series_description_14.nii.gz",
+ "label": "Adrenal_Ki67_Seg_030-Adrenal_Ki67_Seg_030/seg-1__fix.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "Adrenal_Ki67_Seg_013-Adrenal_Ki67_Seg_013/3-WITH_CONTRAST_3.nii.gz",
+ "label": "Adrenal_Ki67_Seg_013-Adrenal_Ki67_Seg_013/seg-1__fix.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "Adrenal_Ki67_Seg_006-Adrenal_Ki67_Seg_006/4-_CE_FC01_4.nii.gz",
+ "label": "Adrenal_Ki67_Seg_006-Adrenal_Ki67_Seg_006/seg-1__fix.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "Adrenal_Ki67_Seg_025-Adrenal_Ki67_Seg_025/103-ABD_PEL-W_103.nii.gz",
+ "label": "Adrenal_Ki67_Seg_025-Adrenal_Ki67_Seg_025/seg-1__fix.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "Adrenal_Ki67_Seg_048-Adrenal_Ki67_Seg_048/2_2.nii.gz",
+ "label": "Adrenal_Ki67_Seg_048-Adrenal_Ki67_Seg_048/seg-1__fix.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "Adrenal_Ki67_Seg_008-Adrenal_Ki67_Seg_008/103-THINS_103.nii.gz",
+ "label": "Adrenal_Ki67_Seg_008-Adrenal_Ki67_Seg_008/seg-1__fix.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "Adrenal_Ki67_Seg_010-Adrenal_Ki67_Seg_010/12-180_SEC_120_OMNI_12.nii.gz",
+ "label": "Adrenal_Ki67_Seg_010-Adrenal_Ki67_Seg_010/seg-1__fix.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "Adrenal_Ki67_Seg_002-Adrenal_Ki67_Seg_002/6-POST_FC12_ORG_6.nii.gz",
+ "label": "Adrenal_Ki67_Seg_002-Adrenal_Ki67_Seg_002/seg-1__fix.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "Adrenal_Ki67_Seg_021-Adrenal_Ki67_Seg_021/3-VENOUS_3.nii.gz",
+ "label": "Adrenal_Ki67_Seg_021-Adrenal_Ki67_Seg_021/seg-1__fix.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "Adrenal_Ki67_Seg_016-Adrenal_Ki67_Seg_016/2770-ABDPL_2770.nii.gz",
+ "label": "Adrenal_Ki67_Seg_016-Adrenal_Ki67_Seg_016/seg-1__fix.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "Adrenal_Ki67_Seg_038-Adrenal_Ki67_Seg_038/3_3.nii.gz",
+ "label": "Adrenal_Ki67_Seg_038-Adrenal_Ki67_Seg_038/seg-1__fix.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "Adrenal_Ki67_Seg_041-Adrenal_Ki67_Seg_041/2-ABD_PELVIS_2.nii.gz",
+ "label": "Adrenal_Ki67_Seg_041-Adrenal_Ki67_Seg_041/seg-1__fix.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "Adrenal_Ki67_Seg_024-Adrenal_Ki67_Seg_024/4-ABD_PEL_W_5.0_B31s_4.nii.gz",
+ "label": "Adrenal_Ki67_Seg_024-Adrenal_Ki67_Seg_024/seg-1__fix.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "Adrenal_Ki67_Seg_012-Adrenal_Ki67_Seg_012/5-VENOGRAM_5.nii.gz",
+ "label": "Adrenal_Ki67_Seg_012-Adrenal_Ki67_Seg_012/seg-1__fix.nii.gz",
+ "fold": 4
+ }
+ ],
+ "testing": [
+ {
+ "image": "Adrenal_Ki67_Seg_011-Adrenal_Ki67_Seg_011/2-ABDOMEN_AXIAL_2.nii.gz",
+ "label": "Adrenal_Ki67_Seg_011-Adrenal_Ki67_Seg_011/seg-1__fix.nii.gz"
+ },
+ {
+ "image": "Adrenal_Ki67_Seg_045-Adrenal_Ki67_Seg_045/2-CHEST_ABD_WITH_2.nii.gz",
+ "label": "Adrenal_Ki67_Seg_045-Adrenal_Ki67_Seg_045/seg-1__fix.nii.gz"
+ },
+ {
+ "image": "Adrenal_Ki67_Seg_018-Adrenal_Ki67_Seg_018/13-No_series_description_13.nii.gz",
+ "label": "Adrenal_Ki67_Seg_018-Adrenal_Ki67_Seg_018/seg-1__fix.nii.gz"
+ },
+ {
+ "image": "Adrenal_Ki67_Seg_023-Adrenal_Ki67_Seg_023/2-AXIALS_2.nii.gz",
+ "label": "Adrenal_Ki67_Seg_023-Adrenal_Ki67_Seg_023/seg-1__fix.nii.gz"
+ },
+ {
+ "image": "Adrenal_Ki67_Seg_043-Adrenal_Ki67_Seg_043/10-No_series_description_10.nii.gz",
+ "label": "Adrenal_Ki67_Seg_043-Adrenal_Ki67_Seg_043/seg-1__fix.nii.gz"
+ },
+ {
+ "image": "Adrenal_Ki67_Seg_028-Adrenal_Ki67_Seg_028/3-UROGRAM_WITH_3.nii.gz",
+ "label": "Adrenal_Ki67_Seg_028-Adrenal_Ki67_Seg_028/seg-1__fix.nii.gz"
+ },
+ {
+ "image": "Adrenal_Ki67_Seg_044-Adrenal_Ki67_Seg_044/3-Recon_2_AXIAL_3.nii.gz",
+ "label": "Adrenal_Ki67_Seg_044-Adrenal_Ki67_Seg_044/seg-1__fix.nii.gz"
+ },
+ {
+ "image": "Adrenal_Ki67_Seg_047-Adrenal_Ki67_Seg_047/2-ABD_PELV_SFT_TISSUE_3X3_2.nii.gz",
+ "label": "Adrenal_Ki67_Seg_047-Adrenal_Ki67_Seg_047/seg-1__fix.nii.gz"
+ },
+ {
+ "image": "Adrenal_Ki67_Seg_046-Adrenal_Ki67_Seg_046/4-No_series_description_4.nii.gz",
+ "label": "Adrenal_Ki67_Seg_046-Adrenal_Ki67_Seg_046/seg-1__fix.nii.gz"
+ },
+ {
+ "image": "Adrenal_Ki67_Seg_032-Adrenal_Ki67_Seg_032/3-ST_3.nii.gz",
+ "label": "Adrenal_Ki67_Seg_032-Adrenal_Ki67_Seg_032/seg-1__fix.nii.gz"
+ },
+ {
+ "image": "Adrenal_Ki67_Seg_022-Adrenal_Ki67_Seg_022/2_2.nii.gz",
+ "label": "Adrenal_Ki67_Seg_022-Adrenal_Ki67_Seg_022/seg-1__fix.nii.gz"
+ }
+ ],
+ "label_dict": {
+ "1": "adrenocortical tumor"
+ },
+ "original_label_dict": {
+ "1": "adrenocortical tumor"
+ }
+}
diff --git a/vista3d/data/external/C4KC-KiTS_5_folds.json b/vista3d/data/external/C4KC-KiTS_5_folds.json
new file mode 100644
index 0000000..043db03
--- /dev/null
+++ b/vista3d/data/external/C4KC-KiTS_5_folds.json
@@ -0,0 +1,1022 @@
+{
+ "training": [
+ {
+ "image": "KiTS-00186/2_arterial.nii.gz",
+ "label": "KiTS-00186/mask.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "KiTS-00066/3_arterial.nii.gz",
+ "label": "KiTS-00066/mask.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "KiTS-00012/2_arterial.nii.gz",
+ "label": "KiTS-00012/mask.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "KiTS-00055/2_arterial.nii.gz",
+ "label": "KiTS-00055/mask.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "KiTS-00193/100_arterial.nii.gz",
+ "label": "KiTS-00193/mask.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "KiTS-00142/7_arterial.nii.gz",
+ "label": "KiTS-00142/mask.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "KiTS-00069/3_arterial.nii.gz",
+ "label": "KiTS-00069/mask.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "KiTS-00124/2_arterial.nii.gz",
+ "label": "KiTS-00124/mask.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "KiTS-00208/2_arterial.nii.gz",
+ "label": "KiTS-00208/mask.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "KiTS-00116/9_arterial.nii.gz",
+ "label": "KiTS-00116/mask.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "KiTS-00156/9_arterial.nii.gz",
+ "label": "KiTS-00156/mask.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "KiTS-00048/2_arterial.nii.gz",
+ "label": "KiTS-00048/mask.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "KiTS-00085/5_arterial.nii.gz",
+ "label": "KiTS-00085/mask.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "KiTS-00080/3_arterial.nii.gz",
+ "label": "KiTS-00080/mask.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "KiTS-00001/5_arterial.nii.gz",
+ "label": "KiTS-00001/mask.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "KiTS-00026/9_arterial.nii.gz",
+ "label": "KiTS-00026/mask.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "KiTS-00031/3_arterial.nii.gz",
+ "label": "KiTS-00031/mask.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "KiTS-00007/5_arterial.nii.gz",
+ "label": "KiTS-00007/mask.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "KiTS-00016/2_arterial.nii.gz",
+ "label": "KiTS-00016/mask.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "KiTS-00042/7_arterial.nii.gz",
+ "label": "KiTS-00042/mask.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "KiTS-00140/6_arterial.nii.gz",
+ "label": "KiTS-00140/mask.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "KiTS-00008/3_arterial.nii.gz",
+ "label": "KiTS-00008/mask.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "KiTS-00024/2_arterial.nii.gz",
+ "label": "KiTS-00024/mask.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "KiTS-00067/2_arterial.nii.gz",
+ "label": "KiTS-00067/mask.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "KiTS-00092/6_arterial.nii.gz",
+ "label": "KiTS-00092/mask.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "KiTS-00047/4_arterial.nii.gz",
+ "label": "KiTS-00047/mask.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "KiTS-00165/3_arterial.nii.gz",
+ "label": "KiTS-00165/mask.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "KiTS-00051/4_arterial.nii.gz",
+ "label": "KiTS-00051/mask.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "KiTS-00006/4_arterial.nii.gz",
+ "label": "KiTS-00006/mask.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "KiTS-00192/2_arterial.nii.gz",
+ "label": "KiTS-00192/mask.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "KiTS-00044/2_arterial.nii.gz",
+ "label": "KiTS-00044/mask.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "KiTS-00005/6_arterial.nii.gz",
+ "label": "KiTS-00005/mask.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "KiTS-00177/2_arterial.nii.gz",
+ "label": "KiTS-00177/mask.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "KiTS-00157/9_arterial.nii.gz",
+ "label": "KiTS-00157/mask.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "KiTS-00061/4_arterial.nii.gz",
+ "label": "KiTS-00061/mask.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "KiTS-00040/3_arterial.nii.gz",
+ "label": "KiTS-00040/mask.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "KiTS-00068/7_arterial.nii.gz",
+ "label": "KiTS-00068/mask.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "KiTS-00036/2_arterial.nii.gz",
+ "label": "KiTS-00036/mask.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "KiTS-00153/8_arterial.nii.gz",
+ "label": "KiTS-00153/mask.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "KiTS-00189/2_arterial.nii.gz",
+ "label": "KiTS-00189/mask.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "KiTS-00091/7_arterial.nii.gz",
+ "label": "KiTS-00091/mask.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "KiTS-00110/3_arterial.nii.gz",
+ "label": "KiTS-00110/mask.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "KiTS-00046/2_arterial.nii.gz",
+ "label": "KiTS-00046/mask.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "KiTS-00178/3_arterial.nii.gz",
+ "label": "KiTS-00178/mask.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "KiTS-00075/2_arterial.nii.gz",
+ "label": "KiTS-00075/mask.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "KiTS-00037/6_arterial.nii.gz",
+ "label": "KiTS-00037/mask.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "KiTS-00130/9_arterial.nii.gz",
+ "label": "KiTS-00130/mask.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "KiTS-00063/6_arterial.nii.gz",
+ "label": "KiTS-00063/mask.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "KiTS-00205/4_arterial.nii.gz",
+ "label": "KiTS-00205/mask.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "KiTS-00167/2_arterial.nii.gz",
+ "label": "KiTS-00167/mask.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "KiTS-00059/8_arterial.nii.gz",
+ "label": "KiTS-00059/mask.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "KiTS-00172/3_arterial.nii.gz",
+ "label": "KiTS-00172/mask.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "KiTS-00093/7_arterial.nii.gz",
+ "label": "KiTS-00093/mask.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "KiTS-00197/2_arterial.nii.gz",
+ "label": "KiTS-00197/mask.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "KiTS-00081/5_arterial.nii.gz",
+ "label": "KiTS-00081/mask.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "KiTS-00203/3_arterial.nii.gz",
+ "label": "KiTS-00203/mask.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "KiTS-00089/9_arterial.nii.gz",
+ "label": "KiTS-00089/mask.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "KiTS-00198/4_arterial.nii.gz",
+ "label": "KiTS-00198/mask.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "KiTS-00187/2_arterial.nii.gz",
+ "label": "KiTS-00187/mask.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "KiTS-00064/5_arterial.nii.gz",
+ "label": "KiTS-00064/mask.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "KiTS-00191/3_arterial.nii.gz",
+ "label": "KiTS-00191/mask.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "KiTS-00078/5_arterial.nii.gz",
+ "label": "KiTS-00078/mask.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "KiTS-00179/2_arterial.nii.gz",
+ "label": "KiTS-00179/mask.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "KiTS-00022/7_arterial.nii.gz",
+ "label": "KiTS-00022/mask.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "KiTS-00196/6_arterial.nii.gz",
+ "label": "KiTS-00196/mask.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "KiTS-00175/2_arterial.nii.gz",
+ "label": "KiTS-00175/mask.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "KiTS-00131/5_arterial.nii.gz",
+ "label": "KiTS-00131/mask.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "KiTS-00149/4_arterial.nii.gz",
+ "label": "KiTS-00149/mask.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "KiTS-00088/2_arterial.nii.gz",
+ "label": "KiTS-00088/mask.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "KiTS-00202/3_arterial.nii.gz",
+ "label": "KiTS-00202/mask.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "KiTS-00087/4_arterial.nii.gz",
+ "label": "KiTS-00087/mask.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "KiTS-00035/2_arterial.nii.gz",
+ "label": "KiTS-00035/mask.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "KiTS-00019/2_arterial.nii.gz",
+ "label": "KiTS-00019/mask.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "KiTS-00166/6_arterial.nii.gz",
+ "label": "KiTS-00166/mask.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "KiTS-00206/5_arterial.nii.gz",
+ "label": "KiTS-00206/mask.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "KiTS-00152/3_arterial.nii.gz",
+ "label": "KiTS-00152/mask.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "KiTS-00168/3_arterial.nii.gz",
+ "label": "KiTS-00168/mask.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "KiTS-00011/3_arterial.nii.gz",
+ "label": "KiTS-00011/mask.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "KiTS-00071/9_arterial.nii.gz",
+ "label": "KiTS-00071/mask.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "KiTS-00123/3_arterial.nii.gz",
+ "label": "KiTS-00123/mask.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "KiTS-00103/8_arterial.nii.gz",
+ "label": "KiTS-00103/mask.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "KiTS-00000/7_arterial.nii.gz",
+ "label": "KiTS-00000/mask.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "KiTS-00151/7_arterial.nii.gz",
+ "label": "KiTS-00151/mask.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "KiTS-00018/5_arterial.nii.gz",
+ "label": "KiTS-00018/mask.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "KiTS-00070/2_arterial.nii.gz",
+ "label": "KiTS-00070/mask.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "KiTS-00134/3_arterial.nii.gz",
+ "label": "KiTS-00134/mask.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "KiTS-00129/3_arterial.nii.gz",
+ "label": "KiTS-00129/mask.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "KiTS-00122/5_arterial.nii.gz",
+ "label": "KiTS-00122/mask.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "KiTS-00045/6_arterial.nii.gz",
+ "label": "KiTS-00045/mask.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "KiTS-00132/7_arterial.nii.gz",
+ "label": "KiTS-00132/mask.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "KiTS-00104/4_arterial.nii.gz",
+ "label": "KiTS-00104/mask.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "KiTS-00015/5_arterial.nii.gz",
+ "label": "KiTS-00015/mask.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "KiTS-00194/2_arterial.nii.gz",
+ "label": "KiTS-00194/mask.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "KiTS-00041/3_arterial.nii.gz",
+ "label": "KiTS-00041/mask.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "KiTS-00029/2_arterial.nii.gz",
+ "label": "KiTS-00029/mask.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "KiTS-00023/4_arterial.nii.gz",
+ "label": "KiTS-00023/mask.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "KiTS-00079/3_arterial.nii.gz",
+ "label": "KiTS-00079/mask.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "KiTS-00060/2_arterial.nii.gz",
+ "label": "KiTS-00060/mask.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "KiTS-00094/4_arterial.nii.gz",
+ "label": "KiTS-00094/mask.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "KiTS-00077/2_arterial.nii.gz",
+ "label": "KiTS-00077/mask.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "KiTS-00053/7_arterial.nii.gz",
+ "label": "KiTS-00053/mask.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "KiTS-00115/14_arterial.nii.gz",
+ "label": "KiTS-00115/mask.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "KiTS-00148/4_arterial.nii.gz",
+ "label": "KiTS-00148/mask.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "KiTS-00098/7_arterial.nii.gz",
+ "label": "KiTS-00098/mask.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "KiTS-00010/4_arterial.nii.gz",
+ "label": "KiTS-00010/mask.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "KiTS-00057/5_arterial.nii.gz",
+ "label": "KiTS-00057/mask.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "KiTS-00160/12_arterial.nii.gz",
+ "label": "KiTS-00160/mask.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "KiTS-00099/2_arterial.nii.gz",
+ "label": "KiTS-00099/mask.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "KiTS-00127/5_arterial.nii.gz",
+ "label": "KiTS-00127/mask.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "KiTS-00188/2_arterial.nii.gz",
+ "label": "KiTS-00188/mask.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "KiTS-00195/2_arterial.nii.gz",
+ "label": "KiTS-00195/mask.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "KiTS-00128/3_arterial.nii.gz",
+ "label": "KiTS-00128/mask.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "KiTS-00204/5_arterial.nii.gz",
+ "label": "KiTS-00204/mask.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "KiTS-00154/9_arterial.nii.gz",
+ "label": "KiTS-00154/mask.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "KiTS-00118/6_arterial.nii.gz",
+ "label": "KiTS-00118/mask.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "KiTS-00032/2_arterial.nii.gz",
+ "label": "KiTS-00032/mask.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "KiTS-00083/2_arterial.nii.gz",
+ "label": "KiTS-00083/mask.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "KiTS-00073/2_arterial.nii.gz",
+ "label": "KiTS-00073/mask.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "KiTS-00049/6_arterial.nii.gz",
+ "label": "KiTS-00049/mask.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "KiTS-00141/7_arterial.nii.gz",
+ "label": "KiTS-00141/mask.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "KiTS-00164/2_arterial.nii.gz",
+ "label": "KiTS-00164/mask.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "KiTS-00200/4_arterial.nii.gz",
+ "label": "KiTS-00200/mask.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "KiTS-00121/2_arterial.nii.gz",
+ "label": "KiTS-00121/mask.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "KiTS-00139/2_arterial.nii.gz",
+ "label": "KiTS-00139/mask.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "KiTS-00084/6_arterial.nii.gz",
+ "label": "KiTS-00084/mask.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "KiTS-00137/5_arterial.nii.gz",
+ "label": "KiTS-00137/mask.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "KiTS-00150/3_arterial.nii.gz",
+ "label": "KiTS-00150/mask.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "KiTS-00074/3_arterial.nii.gz",
+ "label": "KiTS-00074/mask.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "KiTS-00039/2_arterial.nii.gz",
+ "label": "KiTS-00039/mask.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "KiTS-00020/2_arterial.nii.gz",
+ "label": "KiTS-00020/mask.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "KiTS-00108/8_arterial.nii.gz",
+ "label": "KiTS-00108/mask.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "KiTS-00038/2_arterial.nii.gz",
+ "label": "KiTS-00038/mask.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "KiTS-00117/4_arterial.nii.gz",
+ "label": "KiTS-00117/mask.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "KiTS-00004/7_arterial.nii.gz",
+ "label": "KiTS-00004/mask.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "KiTS-00030/4_arterial.nii.gz",
+ "label": "KiTS-00030/mask.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "KiTS-00100/6_arterial.nii.gz",
+ "label": "KiTS-00100/mask.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "KiTS-00113/2_arterial.nii.gz",
+ "label": "KiTS-00113/mask.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "KiTS-00114/11_arterial.nii.gz",
+ "label": "KiTS-00114/mask.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "KiTS-00105/9_arterial.nii.gz",
+ "label": "KiTS-00105/mask.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "KiTS-00050/3_arterial.nii.gz",
+ "label": "KiTS-00050/mask.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "KiTS-00159/7_arterial.nii.gz",
+ "label": "KiTS-00159/mask.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "KiTS-00097/2_arterial.nii.gz",
+ "label": "KiTS-00097/mask.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "KiTS-00013/2_arterial.nii.gz",
+ "label": "KiTS-00013/mask.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "KiTS-00155/7_arterial.nii.gz",
+ "label": "KiTS-00155/mask.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "KiTS-00120/7_arterial.nii.gz",
+ "label": "KiTS-00120/mask.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "KiTS-00207/2_arterial.nii.gz",
+ "label": "KiTS-00207/mask.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "KiTS-00125/2_arterial.nii.gz",
+ "label": "KiTS-00125/mask.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "KiTS-00033/3_arterial.nii.gz",
+ "label": "KiTS-00033/mask.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "KiTS-00112/3_arterial.nii.gz",
+ "label": "KiTS-00112/mask.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "KiTS-00181/2_arterial.nii.gz",
+ "label": "KiTS-00181/mask.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "KiTS-00056/2_arterial.nii.gz",
+ "label": "KiTS-00056/mask.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "KiTS-00111/2_arterial.nii.gz",
+ "label": "KiTS-00111/mask.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "KiTS-00162/3_arterial.nii.gz",
+ "label": "KiTS-00162/mask.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "KiTS-00144/2_arterial.nii.gz",
+ "label": "KiTS-00144/mask.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "KiTS-00043/3_arterial.nii.gz",
+ "label": "KiTS-00043/mask.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "KiTS-00096/7_arterial.nii.gz",
+ "label": "KiTS-00096/mask.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "KiTS-00076/6_arterial.nii.gz",
+ "label": "KiTS-00076/mask.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "KiTS-00185/6_arterial.nii.gz",
+ "label": "KiTS-00185/mask.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "KiTS-00065/5_arterial.nii.gz",
+ "label": "KiTS-00065/mask.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "KiTS-00062/2_arterial.nii.gz",
+ "label": "KiTS-00062/mask.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "KiTS-00163/3_arterial.nii.gz",
+ "label": "KiTS-00163/mask.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "KiTS-00176/3_arterial.nii.gz",
+ "label": "KiTS-00176/mask.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "KiTS-00161/5_arterial.nii.gz",
+ "label": "KiTS-00161/mask.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "KiTS-00101/6_arterial.nii.gz",
+ "label": "KiTS-00101/mask.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "KiTS-00028/2_arterial.nii.gz",
+ "label": "KiTS-00028/mask.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "KiTS-00009/5_arterial.nii.gz",
+ "label": "KiTS-00009/mask.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "KiTS-00199/2_arterial.nii.gz",
+ "label": "KiTS-00199/mask.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "KiTS-00143/2_arterial.nii.gz",
+ "label": "KiTS-00143/mask.nii.gz",
+ "fold": 4
+ }
+ ],
+ "testing": [
+ {
+ "image": "KiTS-00002/10_arterial.nii.gz",
+ "label": "KiTS-00002/mask.nii.gz"
+ },
+ {
+ "image": "KiTS-00003/7_arterial.nii.gz",
+ "label": "KiTS-00003/mask.nii.gz"
+ },
+ {
+ "image": "KiTS-00133/2_arterial.nii.gz",
+ "label": "KiTS-00133/mask.nii.gz"
+ },
+ {
+ "image": "KiTS-00052/7_arterial.nii.gz",
+ "label": "KiTS-00052/mask.nii.gz"
+ },
+ {
+ "image": "KiTS-00136/8_arterial.nii.gz",
+ "label": "KiTS-00136/mask.nii.gz"
+ },
+ {
+ "image": "KiTS-00180/5_arterial.nii.gz",
+ "label": "KiTS-00180/mask.nii.gz"
+ },
+ {
+ "image": "KiTS-00126/2_arterial.nii.gz",
+ "label": "KiTS-00126/mask.nii.gz"
+ },
+ {
+ "image": "KiTS-00102/7_arterial.nii.gz",
+ "label": "KiTS-00102/mask.nii.gz"
+ },
+ {
+ "image": "KiTS-00072/2_arterial.nii.gz",
+ "label": "KiTS-00072/mask.nii.gz"
+ },
+ {
+ "image": "KiTS-00138/301_arterial.nii.gz",
+ "label": "KiTS-00138/mask.nii.gz"
+ },
+ {
+ "image": "KiTS-00090/5_arterial.nii.gz",
+ "label": "KiTS-00090/mask.nii.gz"
+ },
+ {
+ "image": "KiTS-00147/6_arterial.nii.gz",
+ "label": "KiTS-00147/mask.nii.gz"
+ },
+ {
+ "image": "KiTS-00135/8_arterial.nii.gz",
+ "label": "KiTS-00135/mask.nii.gz"
+ },
+ {
+ "image": "KiTS-00109/3_arterial.nii.gz",
+ "label": "KiTS-00109/mask.nii.gz"
+ },
+ {
+ "image": "KiTS-00190/2_arterial.nii.gz",
+ "label": "KiTS-00190/mask.nii.gz"
+ },
+ {
+ "image": "KiTS-00183/8_arterial.nii.gz",
+ "label": "KiTS-00183/mask.nii.gz"
+ },
+ {
+ "image": "KiTS-00107/2_arterial.nii.gz",
+ "label": "KiTS-00107/mask.nii.gz"
+ },
+ {
+ "image": "KiTS-00082/2_arterial.nii.gz",
+ "label": "KiTS-00082/mask.nii.gz"
+ },
+ {
+ "image": "KiTS-00014/3_arterial.nii.gz",
+ "label": "KiTS-00014/mask.nii.gz"
+ },
+ {
+ "image": "KiTS-00146/6_arterial.nii.gz",
+ "label": "KiTS-00146/mask.nii.gz"
+ },
+ {
+ "image": "KiTS-00034/3_arterial.nii.gz",
+ "label": "KiTS-00034/mask.nii.gz"
+ },
+ {
+ "image": "KiTS-00158/6_arterial.nii.gz",
+ "label": "KiTS-00158/mask.nii.gz"
+ },
+ {
+ "image": "KiTS-00209/2_arterial.nii.gz",
+ "label": "KiTS-00209/mask.nii.gz"
+ },
+ {
+ "image": "KiTS-00058/2_arterial.nii.gz",
+ "label": "KiTS-00058/mask.nii.gz"
+ },
+ {
+ "image": "KiTS-00054/2_arterial.nii.gz",
+ "label": "KiTS-00054/mask.nii.gz"
+ },
+ {
+ "image": "KiTS-00106/2_arterial.nii.gz",
+ "label": "KiTS-00106/mask.nii.gz"
+ },
+ {
+ "image": "KiTS-00169/4_arterial.nii.gz",
+ "label": "KiTS-00169/mask.nii.gz"
+ },
+ {
+ "image": "KiTS-00184/2_arterial.nii.gz",
+ "label": "KiTS-00184/mask.nii.gz"
+ },
+ {
+ "image": "KiTS-00025/3_arterial.nii.gz",
+ "label": "KiTS-00025/mask.nii.gz"
+ },
+ {
+ "image": "KiTS-00201/3_arterial.nii.gz",
+ "label": "KiTS-00201/mask.nii.gz"
+ },
+ {
+ "image": "KiTS-00145/4_arterial_soft.nii.gz",
+ "label": "KiTS-00145/mask.nii.gz"
+ },
+ {
+ "image": "KiTS-00017/2_arterial.nii.gz",
+ "label": "KiTS-00017/mask.nii.gz"
+ },
+ {
+ "image": "KiTS-00086/4_arterial.nii.gz",
+ "label": "KiTS-00086/mask.nii.gz"
+ },
+ {
+ "image": "KiTS-00182/2_arterial.nii.gz",
+ "label": "KiTS-00182/mask.nii.gz"
+ },
+ {
+ "image": "KiTS-00170/4_arterial.nii.gz",
+ "label": "KiTS-00170/mask.nii.gz"
+ },
+ {
+ "image": "KiTS-00027/8_arterial.nii.gz",
+ "label": "KiTS-00027/mask.nii.gz"
+ },
+ {
+ "image": "KiTS-00119/2_arterial.nii.gz",
+ "label": "KiTS-00119/mask.nii.gz"
+ },
+ {
+ "image": "KiTS-00171/2_arterial.nii.gz",
+ "label": "KiTS-00171/mask.nii.gz"
+ },
+ {
+ "image": "KiTS-00174/5_arterial.nii.gz",
+ "label": "KiTS-00174/mask.nii.gz"
+ },
+ {
+ "image": "KiTS-00173/2_arterial.nii.gz",
+ "label": "KiTS-00173/mask.nii.gz"
+ },
+ {
+ "image": "KiTS-00095/6_arterial.nii.gz",
+ "label": "KiTS-00095/mask.nii.gz"
+ },
+ {
+ "image": "KiTS-00021/6_arterial.nii.gz",
+ "label": "KiTS-00021/mask.nii.gz"
+ }
+ ],
+ "label_dict": {
+ "1": "kidney",
+ "2": "kidney mass"
+ },
+ "original_label_dict": {
+ "1": "Kidney",
+ "2": "Mass"
+ }
+}
diff --git a/vista3d/data/external/HCC-TACE-Seg_5_folds.json b/vista3d/data/external/HCC-TACE-Seg_5_folds.json
new file mode 100644
index 0000000..73e65c4
--- /dev/null
+++ b/vista3d/data/external/HCC-TACE-Seg_5_folds.json
@@ -0,0 +1,516 @@
+{
+ "training": [
+ {
+ "image": "HCC_076-HCC_076/6-Recon_3_LIVER_2_PHASE_(C_A_P)_6.nii.gz",
+ "label": "HCC_076-HCC_076/seg__fix.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "HCC_020-HCC_020/5-Recon_3_LIVER_3_PHASE_(C_A_P)_5.nii.gz",
+ "label": "HCC_020-HCC_020/seg__fix.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "HCC_041-HCC_041/6-Recon_3_LIVER_3_PHASE_(C_A_P)_6.nii.gz",
+ "label": "HCC_041-HCC_041/seg__fix.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "HCC_003-HCC_003/0_img.nii.gz",
+ "label": "HCC_003-HCC_003/seg__fix.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "HCC_069-HCC_069/7-Recon_3_LIVER_2_PHASE_(C_A_P)_7.nii.gz",
+ "label": "HCC_069-HCC_069/seg__fix.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "HCC_039-HCC_039/5-Recon_2_3_PHASE_LIVER_(ABD)_5.nii.gz",
+ "label": "HCC_039-HCC_039/seg__fix.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "HCC_092-HCC_092/0_img.nii.gz",
+ "label": "HCC_092-HCC_092/seg__fix.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "HCC_083-HCC_083/6-Recon_3_LIVER_2_PHASE_(C_A_P)_6.nii.gz",
+ "label": "HCC_083-HCC_083/seg__fix.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "HCC_021-HCC_021/103-LIVER_3_PHASE_(AP)_103.nii.gz",
+ "label": "HCC_021-HCC_021/seg__fix.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "HCC_017-HCC_017/5-Recon_3_3_PHASE_LIVER_(ABD)_5.nii.gz",
+ "label": "HCC_017-HCC_017/seg__fix.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "HCC_034-HCC_034/5-Recon_3_LIVER_3_PHASE_(AP)_5.nii.gz",
+ "label": "HCC_034-HCC_034/seg__fix.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "HCC_014-HCC_014/103-LIVER_3_PHASE_(AP)_103.nii.gz",
+ "label": "HCC_014-HCC_014/seg__fix.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "HCC_015-HCC_015/4-Recon_2_LIVER_3_PHASE_(AP)_4.nii.gz",
+ "label": "HCC_015-HCC_015/seg__fix.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "HCC_088-HCC_088/6-Recon_3_LIVER_2_PHASE_(C_A_P)_6.nii.gz",
+ "label": "HCC_088-HCC_088/seg__fix.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "HCC_072-HCC_072/6-Recon_3_LIVER_2PHASE_CAP_6.nii.gz",
+ "label": "HCC_072-HCC_072/seg__fix.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "HCC_097-HCC_097/5-2.5_STANDARD_5_Eq_1.nii.gz",
+ "label": "HCC_097-HCC_097/seg__fix.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "HCC_010-HCC_010/0_img.nii.gz",
+ "label": "HCC_010-HCC_010/seg__fix.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "HCC_001-HCC_001/3-C-A-P_3_Eq_1.nii.gz",
+ "label": "HCC_001-HCC_001/seg__fix.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "HCC_084-HCC_084/6-Recon_3_LIVER_2PHASE_CAP_6.nii.gz",
+ "label": "HCC_084-HCC_084/seg__fix.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "HCC_011-HCC_011/4_Recon.nii.gz",
+ "label": "HCC_011-HCC_011/seg__fix.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "HCC_051-HCC_051/6-Recon_3_LIVER_2PHASE_WITH_CON_6.nii.gz",
+ "label": "HCC_051-HCC_051/seg__fix.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "HCC_019-HCC_019/103-LIVER_3_PHASE_(AP)_103.nii.gz",
+ "label": "HCC_019-HCC_019/seg__fix.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "HCC_048-HCC_048/6-Recon_3_LIVER_2_PHASE_(C_A_P)_6.nii.gz",
+ "label": "HCC_048-HCC_048/seg__fix.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "HCC_090-HCC_090/6-Recon_3_LIVER_2_PHASE_(C_A_P)_6.nii.gz",
+ "label": "HCC_090-HCC_090/seg__fix.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "HCC_013-HCC_013/5-Recon_3_LIVER_3_PHASE_(AP)_5.nii.gz",
+ "label": "HCC_013-HCC_013/seg__fix.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "HCC_070-HCC_070/6-Recon_3_LIVER_2_PHASE_(C_A_P)_6.nii.gz",
+ "label": "HCC_070-HCC_070/seg__fix.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "HCC_009-HCC_009/4-Recon_2_LIVER_3_PHASE_(C_A_P)_4.nii.gz",
+ "label": "HCC_009-HCC_009/seg__fix.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "HCC_025-HCC_025/5-Recon_3_LIVER_3_PHASE_(AP)_5.nii.gz",
+ "label": "HCC_025-HCC_025/seg__fix.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "HCC_079-HCC_079/6-Recon_3_LIVER_2_PHASE_(C_A_P)_6.nii.gz",
+ "label": "HCC_079-HCC_079/seg__fix.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "HCC_040-HCC_040/5-Recon_3_LIVER_3_PHASE_(C_A_P)_5.nii.gz",
+ "label": "HCC_040-HCC_040/seg__fix.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "HCC_071-HCC_071/6-Recon_3_LIVER_2PHASE_CAP_6.nii.gz",
+ "label": "HCC_071-HCC_071/seg__fix.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "HCC_068-HCC_068/6-2.5_SOFT_6_Eq_1.nii.gz",
+ "label": "HCC_068-HCC_068/seg__fix.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "HCC_101-HCC_101/6-2.5_STANDARD_6_Eq_1.nii.gz",
+ "label": "HCC_101-HCC_101/seg__fix.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "HCC_066-HCC_066/6-Recon_3_LIVER_2PHASE_CAP_6.nii.gz",
+ "label": "HCC_066-HCC_066/seg__fix.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "HCC_077-HCC_077/6-Recon_3_LIVER_2PHASE_CAP_6.nii.gz",
+ "label": "HCC_077-HCC_077/seg__fix.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "HCC_037-HCC_037/6-Recon_3_LIVER_3_PHASE_(C_A_P)_6.nii.gz",
+ "label": "HCC_037-HCC_037/seg__fix.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "HCC_063-HCC_063/6-Recon_3_LIVER_2_PHASE_(C_A_P)_6.nii.gz",
+ "label": "HCC_063-HCC_063/seg__fix.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "HCC_036-HCC_036/5-Recon_3_LIVER_3_PHASE_(C_A_P)_5.nii.gz",
+ "label": "HCC_036-HCC_036/seg__fix.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "HCC_073-HCC_073/6-Recon_3_LIVER_2_PHASE_(C_A_P)_6.nii.gz",
+ "label": "HCC_073-HCC_073/seg__fix.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "HCC_033-HCC_033/5-Recon_3_LIVER_3_PHASE_(C_A_P)_5.nii.gz",
+ "label": "HCC_033-HCC_033/seg__fix.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "HCC_007-HCC_007/0_img.nii.gz",
+ "label": "HCC_007-HCC_007/seg__fix.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "HCC_061-HCC_061/6-Recon_3_LIVER_2PHASE_CAP_6.nii.gz",
+ "label": "HCC_061-HCC_061/seg__fix.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "HCC_099-HCC_099/6-2.5_STANDARD_6_Eq_1.nii.gz",
+ "label": "HCC_099-HCC_099/seg__fix.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "HCC_089-HCC_089/6-Recon_3_LIVER_2PHASE_CAP_6.nii.gz",
+ "label": "HCC_089-HCC_089/seg__fix.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "HCC_074-HCC_074/6-Recon_3_LIVER_2PHASE_CAP_6.nii.gz",
+ "label": "HCC_074-HCC_074/seg__fix.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "HCC_006-HCC_006/4-Recon_2_LIVER_3_PHASE_(AP)_4.nii.gz",
+ "label": "HCC_006-HCC_006/seg__fix.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "HCC_038-HCC_038/6-Recon_3_LIVER_3_PHASE_(C_A_P)_6.nii.gz",
+ "label": "HCC_038-HCC_038/seg__fix.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "HCC_012-HCC_012/5-Recon_2_LIVER_3_PHASE_(C_A_P)_5.nii.gz",
+ "label": "HCC_012-HCC_012/seg__fix.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "HCC_016-HCC_016/4-Recon_2_LIVER_3_PHASE_(AP)_4.nii.gz",
+ "label": "HCC_016-HCC_016/seg__fix.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "HCC_054-HCC_054/11-C-A-P_11.nii.gz",
+ "label": "HCC_054-HCC_054/seg__fix.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "HCC_030-HCC_030/0_img.nii.gz",
+ "label": "HCC_030-HCC_030/seg__fix.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "HCC_078-HCC_078/6-Recon_3_LIVER_2PHASE_CAP_6.nii.gz",
+ "label": "HCC_078-HCC_078/seg__fix.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "HCC_045-HCC_045/6-Recon_3_LIVER_2_PHASE_(C_A_P)_6.nii.gz",
+ "label": "HCC_045-HCC_045/seg__fix.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "HCC_085-HCC_085/6-Recon_3_LIVER_2PHASE_CAP_6_Eq_1.nii.gz",
+ "label": "HCC_085-HCC_085/seg__fix.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "HCC_004-HCC_004/4-Recon_2_LIVER_3_PHASE_(AP)_4.nii.gz",
+ "label": "HCC_004-HCC_004/seg__fix.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "HCC_093-HCC_093/0_img.nii.gz",
+ "label": "HCC_093-HCC_093/seg__fix.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "HCC_049-HCC_049/6-Recon_3_LIVER_2_PHASE_(C_A_P)_6.nii.gz",
+ "label": "HCC_049-HCC_049/seg__fix.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "HCC_002-HCC_002/0_img.nii.gz",
+ "label": "HCC_002-HCC_002/seg__fix.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "HCC_024-HCC_024/103-LIVER_3_PHASE_(AP)_103.nii.gz",
+ "label": "HCC_024-HCC_024/seg__fix.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "HCC_052-HCC_052/6-Recon_3_LIVER_3_PHASE_(AP)_6.nii.gz",
+ "label": "HCC_052-HCC_052/seg__fix.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "HCC_027-HCC_027/100_100.nii.gz",
+ "label": "HCC_027-HCC_027/seg__fix.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "HCC_086-HCC_086/6-Recon_3_LIVER_2_PHASE_(C_A_P)_6.nii.gz",
+ "label": "HCC_086-HCC_086/seg__fix.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "HCC_081-HCC_081/6-Recon_3_LIVER_2_PHASE_(C_A_P)_6.nii.gz",
+ "label": "HCC_081-HCC_081/seg__fix.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "HCC_065-HCC_065/7-VENOUS_7.nii.gz",
+ "label": "HCC_065-HCC_065/seg__fix.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "HCC_035-HCC_035/6-Recon_3_LIVER_2_PHASE_(C_A_P)_6.nii.gz",
+ "label": "HCC_035-HCC_035/seg__fix.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "HCC_060-HCC_060/6-Recon_3_LIVER_2PHASE_CAP_6.nii.gz",
+ "label": "HCC_060-HCC_060/seg__fix.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "HCC_062-HCC_062/6-Recon_3_LIVER_2_PHASE_(C_A_P)_6.nii.gz",
+ "label": "HCC_062-HCC_062/seg__fix.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "HCC_067-HCC_067/6-Recon_3_LIVER_2_PHASE_(C_A_P)_6.nii.gz",
+ "label": "HCC_067-HCC_067/seg__fix.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "HCC_080-HCC_080/6-Recon_3_LIVER_2PHASE_CAP_6.nii.gz",
+ "label": "HCC_080-HCC_080/seg__fix.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "HCC_008-HCC_008/103_3_PHASE_LIVER.nii.gz",
+ "label": "HCC_008-HCC_008/seg__fix.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "HCC_023-HCC_023/6-Recon_3_LIVER_3_PHASE_(C_A_P)_6.nii.gz",
+ "label": "HCC_023-HCC_023/seg__fix.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "HCC_058-HCC_058/6-Recon_3_LIVER_3_PHASE_(AP)_6.nii.gz",
+ "label": "HCC_058-HCC_058/seg__fix.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "HCC_005-HCC_005/4-Recon_2_LIVER_3_PHASE_(AP)_4.nii.gz",
+ "label": "HCC_005-HCC_005/seg__fix.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "HCC_095-HCC_095/3-2.5_SOFT_3.nii.gz",
+ "label": "HCC_095-HCC_095/seg__fix.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "HCC_103-HCC_103/6-2.5_STANDARD_6_Eq_1.nii.gz",
+ "label": "HCC_103-HCC_103/seg__fix.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "HCC_064-HCC_064/6-Recon_3_LIVER_2_PHASE_(C_A_P)_6.nii.gz",
+ "label": "HCC_064-HCC_064/seg__fix.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "HCC_050-HCC_050/6-Recon_3_LIVER_2PHASE_CAP_6.nii.gz",
+ "label": "HCC_050-HCC_050/seg__fix.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "HCC_029-HCC_029/5-Recon_3_LIVER_3_PHASE_(C_A_P)_5.nii.gz",
+ "label": "HCC_029-HCC_029/seg__fix.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "HCC_053-HCC_053/6-Recon_3_LIVER_2_PHASE_(C_A_P)_6.nii.gz",
+ "label": "HCC_053-HCC_053/seg__fix.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "HCC_032-HCC_032/5-Recon_3_LIVER_3_PHASE_(C_A_P)_5.nii.gz",
+ "label": "HCC_032-HCC_032/seg__fix.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "HCC_100-HCC_100/0_img.nii.gz",
+ "label": "HCC_100-HCC_100/seg__fix.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "HCC_091-HCC_091/7-2.5_STANDARD_7_Eq_1.nii.gz",
+ "label": "HCC_091-HCC_091/seg__fix.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "HCC_056-HCC_056/6-Recon_3_LIVER_3_PHASE_(AP)_6.nii.gz",
+ "label": "HCC_056-HCC_056/seg__fix.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "HCC_102-HCC_102/0_img.nii.gz",
+ "label": "HCC_102-HCC_102/seg__fix.nii.gz",
+ "fold": 4
+ }
+ ],
+ "testing": [
+ {
+ "image": "HCC_082-HCC_082/6-Recon_3_LIVER_2_PHASE_(C_A_P)_6_Eq_1.nii.gz",
+ "label": "HCC_082-HCC_082/seg__fix.nii.gz"
+ },
+ {
+ "image": "HCC_031-HCC_031/5-Recon_3_LIVER_3_PHASE_(AP)_5.nii.gz",
+ "label": "HCC_031-HCC_031/seg__fix.nii.gz"
+ },
+ {
+ "image": "HCC_105-HCC_105/0_img.nii.gz",
+ "label": "HCC_105-HCC_105/seg__fix.nii.gz"
+ },
+ {
+ "image": "HCC_059-HCC_059/6-Recon_3_LIVER_2PHASE_CAP_6.nii.gz",
+ "label": "HCC_059-HCC_059/seg__fix.nii.gz"
+ },
+ {
+ "image": "HCC_094-HCC_094/5-2.5_STANDARD_5_Eq_1.nii.gz",
+ "label": "HCC_094-HCC_094/seg__fix.nii.gz"
+ },
+ {
+ "image": "HCC_042-HCC_042/7-Recon_3_LIVER_3_PHASE_(AP)_7.nii.gz",
+ "label": "HCC_042-HCC_042/seg__fix.nii.gz"
+ },
+ {
+ "image": "HCC_057-HCC_057/6-Recon_3_LIVER_2PHASE_WITH_CON_6.nii.gz",
+ "label": "HCC_057-HCC_057/seg__fix.nii.gz"
+ },
+ {
+ "image": "HCC_026-HCC_026/6-Recon_3_LIVER_3_PHASE_(C_A_P)_6.nii.gz",
+ "label": "HCC_026-HCC_026/seg__fix.nii.gz"
+ },
+ {
+ "image": "HCC_075-HCC_075/6-Recon_3_LIVER_2_PHASE_(C_A_P)_6.nii.gz",
+ "label": "HCC_075-HCC_075/seg__fix.nii.gz"
+ },
+ {
+ "image": "HCC_098-HCC_098/7-Recon_3_LIVER_2PHASE_CAP_7.nii.gz",
+ "label": "HCC_098-HCC_098/seg__fix.nii.gz"
+ },
+ {
+ "image": "HCC_104-HCC_104/0_img.nii.gz",
+ "label": "HCC_104-HCC_104/seg__fix.nii.gz"
+ },
+ {
+ "image": "HCC_018-HCC_018/3-LIVER_3_PHASE_(C_A_P)_3.nii.gz",
+ "label": "HCC_018-HCC_018/seg__fix.nii.gz"
+ },
+ {
+ "image": "HCC_087-HCC_087/6-Recon_3_LIVER_2_PHASE_(C_A_P)_6.nii.gz",
+ "label": "HCC_087-HCC_087/seg__fix.nii.gz"
+ },
+ {
+ "image": "HCC_055-HCC_055/6-Recon_3_LIVER_2PHASE_CAP_6.nii.gz",
+ "label": "HCC_055-HCC_055/seg__fix.nii.gz"
+ },
+ {
+ "image": "HCC_043-HCC_043/6-Recon_3_LIVER_3_PHASE_(AP)_6.nii.gz",
+ "label": "HCC_043-HCC_043/seg__fix.nii.gz"
+ },
+ {
+ "image": "HCC_028-HCC_028/6-Recon_3_LIVER_3_PHASE_(AP)_6.nii.gz",
+ "label": "HCC_028-HCC_028/seg__fix.nii.gz"
+ },
+ {
+ "image": "HCC_044-HCC_044/6-Recon_3_LIVER_3_PHASE_(C_A_P)_6.nii.gz",
+ "label": "HCC_044-HCC_044/seg__fix.nii.gz"
+ },
+ {
+ "image": "HCC_047-HCC_047/6-Recon_3_LIVER_2PHASE_CAP_6.nii.gz",
+ "label": "HCC_047-HCC_047/seg__fix.nii.gz"
+ },
+ {
+ "image": "HCC_046-HCC_046/6-Recon_3_LIVER_2_PHASE_(C_A_P)_6.nii.gz",
+ "label": "HCC_046-HCC_046/seg__fix.nii.gz"
+ },
+ {
+ "image": "HCC_096-HCC_096/0_img.nii.gz",
+ "label": "HCC_096-HCC_096/seg__fix.nii.gz"
+ },
+ {
+ "image": "HCC_022-HCC_022/5-Recon_3_LIVER_3_PHASE_(C_A_P)_5.nii.gz",
+ "label": "HCC_022-HCC_022/seg__fix.nii.gz"
+ }
+ ],
+ "label_dict": {
+ "2": "hepatic tumor"
+ },
+ "original_label_dict": {
+ "2": "hepatic tumor"
+ }
+}
diff --git a/vista3d/data/external/WORD.json b/vista3d/data/external/WORD.json
new file mode 100644
index 0000000..a475765
--- /dev/null
+++ b/vista3d/data/external/WORD.json
@@ -0,0 +1,725 @@
+{
+ "name": "WORD-V0.1.0",
+ "description": "Whole abdomen ORgan segmentation Dataset (WORD), just for research use !!!",
+ "reference": "WORD: Revisiting Organs Segmentation in the Whole Abdominal Region, link:https://arxiv.org/pdf/2111.02403.pdf, https://github.com/HiLab-git/WORD",
+ "licence": "GNU General Public License v3.0",
+ "release": "v0.1.0 10/11/2021",
+ "tensorImageSize": "3D",
+ "modality": {
+ "0": "CT"
+ },
+ "labels": {
+ "0": "background",
+ "1": "liver",
+ "2": "spleen",
+ "3": "left_kidney",
+ "4": "right_kidney",
+ "5": "stomach",
+ "6": "gallbladder",
+ "7": "esophagus",
+ "8": "pancreas",
+ "9": "duodenum",
+ "10": "colon",
+ "11": "intestine",
+ "12": "adrenal",
+ "13": "rectum",
+ "14": "bladder",
+ "15": "Head_of_femur_L",
+ "16": "Head_of_femur_R"
+ },
+ "numTraining": 100,
+ "numValidation": 20,
+ "numTest": 30,
+ "training": [
+ {
+ "image": "./imagesTr/word_0096.nii.gz",
+ "label": "./labelsTr/word_0096.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0010.nii.gz",
+ "label": "./labelsTr/word_0010.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0078.nii.gz",
+ "label": "./labelsTr/word_0078.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0109.nii.gz",
+ "label": "./labelsTr/word_0109.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0051.nii.gz",
+ "label": "./labelsTr/word_0051.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0067.nii.gz",
+ "label": "./labelsTr/word_0067.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0107.nii.gz",
+ "label": "./labelsTr/word_0107.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0105.nii.gz",
+ "label": "./labelsTr/word_0105.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0065.nii.gz",
+ "label": "./labelsTr/word_0065.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0144.nii.gz",
+ "label": "./labelsTr/word_0144.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0118.nii.gz",
+ "label": "./labelsTr/word_0118.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0140.nii.gz",
+ "label": "./labelsTr/word_0140.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0002.nii.gz",
+ "label": "./labelsTr/word_0002.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0091.nii.gz",
+ "label": "./labelsTr/word_0091.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0009.nii.gz",
+ "label": "./labelsTr/word_0009.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0100.nii.gz",
+ "label": "./labelsTr/word_0100.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0032.nii.gz",
+ "label": "./labelsTr/word_0032.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0040.nii.gz",
+ "label": "./labelsTr/word_0040.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0130.nii.gz",
+ "label": "./labelsTr/word_0130.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0101.nii.gz",
+ "label": "./labelsTr/word_0101.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0018.nii.gz",
+ "label": "./labelsTr/word_0018.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0090.nii.gz",
+ "label": "./labelsTr/word_0090.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0071.nii.gz",
+ "label": "./labelsTr/word_0071.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0042.nii.gz",
+ "label": "./labelsTr/word_0042.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0126.nii.gz",
+ "label": "./labelsTr/word_0126.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0135.nii.gz",
+ "label": "./labelsTr/word_0135.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0138.nii.gz",
+ "label": "./labelsTr/word_0138.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0116.nii.gz",
+ "label": "./labelsTr/word_0116.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0070.nii.gz",
+ "label": "./labelsTr/word_0070.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0084.nii.gz",
+ "label": "./labelsTr/word_0084.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0056.nii.gz",
+ "label": "./labelsTr/word_0056.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0148.nii.gz",
+ "label": "./labelsTr/word_0148.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0132.nii.gz",
+ "label": "./labelsTr/word_0132.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0102.nii.gz",
+ "label": "./labelsTr/word_0102.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0082.nii.gz",
+ "label": "./labelsTr/word_0082.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0062.nii.gz",
+ "label": "./labelsTr/word_0062.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0073.nii.gz",
+ "label": "./labelsTr/word_0073.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0046.nii.gz",
+ "label": "./labelsTr/word_0046.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0146.nii.gz",
+ "label": "./labelsTr/word_0146.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0113.nii.gz",
+ "label": "./labelsTr/word_0113.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0006.nii.gz",
+ "label": "./labelsTr/word_0006.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0127.nii.gz",
+ "label": "./labelsTr/word_0127.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0095.nii.gz",
+ "label": "./labelsTr/word_0095.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0058.nii.gz",
+ "label": "./labelsTr/word_0058.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0128.nii.gz",
+ "label": "./labelsTr/word_0128.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0111.nii.gz",
+ "label": "./labelsTr/word_0111.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0049.nii.gz",
+ "label": "./labelsTr/word_0049.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0029.nii.gz",
+ "label": "./labelsTr/word_0029.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0086.nii.gz",
+ "label": "./labelsTr/word_0086.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0123.nii.gz",
+ "label": "./labelsTr/word_0123.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0011.nii.gz",
+ "label": "./labelsTr/word_0011.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0005.nii.gz",
+ "label": "./labelsTr/word_0005.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0036.nii.gz",
+ "label": "./labelsTr/word_0036.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0114.nii.gz",
+ "label": "./labelsTr/word_0114.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0145.nii.gz",
+ "label": "./labelsTr/word_0145.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0136.nii.gz",
+ "label": "./labelsTr/word_0136.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0055.nii.gz",
+ "label": "./labelsTr/word_0055.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0047.nii.gz",
+ "label": "./labelsTr/word_0047.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0093.nii.gz",
+ "label": "./labelsTr/word_0093.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0026.nii.gz",
+ "label": "./labelsTr/word_0026.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0044.nii.gz",
+ "label": "./labelsTr/word_0044.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0061.nii.gz",
+ "label": "./labelsTr/word_0061.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0125.nii.gz",
+ "label": "./labelsTr/word_0125.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0064.nii.gz",
+ "label": "./labelsTr/word_0064.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0087.nii.gz",
+ "label": "./labelsTr/word_0087.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0013.nii.gz",
+ "label": "./labelsTr/word_0013.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0104.nii.gz",
+ "label": "./labelsTr/word_0104.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0008.nii.gz",
+ "label": "./labelsTr/word_0008.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0079.nii.gz",
+ "label": "./labelsTr/word_0079.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0030.nii.gz",
+ "label": "./labelsTr/word_0030.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0094.nii.gz",
+ "label": "./labelsTr/word_0094.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0022.nii.gz",
+ "label": "./labelsTr/word_0022.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0134.nii.gz",
+ "label": "./labelsTr/word_0134.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0063.nii.gz",
+ "label": "./labelsTr/word_0063.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0117.nii.gz",
+ "label": "./labelsTr/word_0117.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0142.nii.gz",
+ "label": "./labelsTr/word_0142.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0081.nii.gz",
+ "label": "./labelsTr/word_0081.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0053.nii.gz",
+ "label": "./labelsTr/word_0053.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0106.nii.gz",
+ "label": "./labelsTr/word_0106.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0003.nii.gz",
+ "label": "./labelsTr/word_0003.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0072.nii.gz",
+ "label": "./labelsTr/word_0072.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0119.nii.gz",
+ "label": "./labelsTr/word_0119.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0068.nii.gz",
+ "label": "./labelsTr/word_0068.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0027.nii.gz",
+ "label": "./labelsTr/word_0027.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0121.nii.gz",
+ "label": "./labelsTr/word_0121.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0147.nii.gz",
+ "label": "./labelsTr/word_0147.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0020.nii.gz",
+ "label": "./labelsTr/word_0020.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0133.nii.gz",
+ "label": "./labelsTr/word_0133.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0108.nii.gz",
+ "label": "./labelsTr/word_0108.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0004.nii.gz",
+ "label": "./labelsTr/word_0004.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0038.nii.gz",
+ "label": "./labelsTr/word_0038.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0089.nii.gz",
+ "label": "./labelsTr/word_0089.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0059.nii.gz",
+ "label": "./labelsTr/word_0059.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0041.nii.gz",
+ "label": "./labelsTr/word_0041.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0150.nii.gz",
+ "label": "./labelsTr/word_0150.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0122.nii.gz",
+ "label": "./labelsTr/word_0122.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0012.nii.gz",
+ "label": "./labelsTr/word_0012.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0115.nii.gz",
+ "label": "./labelsTr/word_0115.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0143.nii.gz",
+ "label": "./labelsTr/word_0143.nii.gz"
+ },
+ {
+ "image": "./imagesTr/word_0028.nii.gz",
+ "label": "./labelsTr/word_0028.nii.gz"
+ }
+ ],
+ "validation": [
+ {
+ "image": "imagesVal/word_0001.nii.gz",
+ "label": "labelsVal/word_0001.nii.gz"
+ },
+ {
+ "image": "imagesVal/word_0007.nii.gz",
+ "label": "labelsVal/word_0007.nii.gz"
+ },
+ {
+ "image": "imagesVal/word_0015.nii.gz",
+ "label": "labelsVal/word_0015.nii.gz"
+ },
+ {
+ "image": "imagesVal/word_0025.nii.gz",
+ "label": "labelsVal/word_0025.nii.gz"
+ },
+ {
+ "image": "imagesVal/word_0031.nii.gz",
+ "label": "labelsVal/word_0031.nii.gz"
+ },
+ {
+ "image": "imagesVal/word_0035.nii.gz",
+ "label": "labelsVal/word_0035.nii.gz"
+ },
+ {
+ "image": "imagesVal/word_0039.nii.gz",
+ "label": "labelsVal/word_0039.nii.gz"
+ },
+ {
+ "image": "imagesVal/word_0045.nii.gz",
+ "label": "labelsVal/word_0045.nii.gz"
+ },
+ {
+ "image": "imagesVal/word_0048.nii.gz",
+ "label": "labelsVal/word_0048.nii.gz"
+ },
+ {
+ "image": "imagesVal/word_0066.nii.gz",
+ "label": "labelsVal/word_0066.nii.gz"
+ },
+ {
+ "image": "imagesVal/word_0075.nii.gz",
+ "label": "labelsVal/word_0075.nii.gz"
+ },
+ {
+ "image": "imagesVal/word_0080.nii.gz",
+ "label": "labelsVal/word_0080.nii.gz"
+ },
+ {
+ "image": "imagesVal/word_0083.nii.gz",
+ "label": "labelsVal/word_0083.nii.gz"
+ },
+ {
+ "image": "imagesVal/word_0085.nii.gz",
+ "label": "labelsVal/word_0085.nii.gz"
+ },
+ {
+ "image": "imagesVal/word_0098.nii.gz",
+ "label": "labelsVal/word_0098.nii.gz"
+ },
+ {
+ "image": "imagesVal/word_0112.nii.gz",
+ "label": "labelsVal/word_0112.nii.gz"
+ },
+ {
+ "image": "imagesVal/word_0137.nii.gz",
+ "label": "labelsVal/word_0137.nii.gz"
+ },
+ {
+ "image": "imagesVal/word_0139.nii.gz",
+ "label": "labelsVal/word_0139.nii.gz"
+ },
+ {
+ "image": "imagesVal/word_0141.nii.gz",
+ "label": "labelsVal/word_0141.nii.gz"
+ },
+ {
+ "image": "imagesVal/word_0149.nii.gz",
+ "label": "labelsVal/word_0149.nii.gz"
+ }
+ ],
+ "testing": [
+ {
+ "image": "imagesTs/word_0014.nii.gz",
+ "label": "labelsTs/word_0014.nii.gz"
+ },
+ {
+ "image": "imagesTs/word_0016.nii.gz",
+ "label": "labelsTs/word_0016.nii.gz"
+ },
+ {
+ "image": "imagesTs/word_0017.nii.gz",
+ "label": "labelsTs/word_0017.nii.gz"
+ },
+ {
+ "image": "imagesTs/word_0019.nii.gz",
+ "label": "labelsTs/word_0019.nii.gz"
+ },
+ {
+ "image": "imagesTs/word_0021.nii.gz",
+ "label": "labelsTs/word_0021.nii.gz"
+ },
+ {
+ "image": "imagesTs/word_0023.nii.gz",
+ "label": "labelsTs/word_0023.nii.gz"
+ },
+ {
+ "image": "imagesTs/word_0024.nii.gz",
+ "label": "labelsTs/word_0024.nii.gz"
+ },
+ {
+ "image": "imagesTs/word_0033.nii.gz",
+ "label": "labelsTs/word_0033.nii.gz"
+ },
+ {
+ "image": "imagesTs/word_0034.nii.gz",
+ "label": "labelsTs/word_0034.nii.gz"
+ },
+ {
+ "image": "imagesTs/word_0037.nii.gz",
+ "label": "labelsTs/word_0037.nii.gz"
+ },
+ {
+ "image": "imagesTs/word_0043.nii.gz",
+ "label": "labelsTs/word_0043.nii.gz"
+ },
+ {
+ "image": "imagesTs/word_0050.nii.gz",
+ "label": "labelsTs/word_0050.nii.gz"
+ },
+ {
+ "image": "imagesTs/word_0052.nii.gz",
+ "label": "labelsTs/word_0052.nii.gz"
+ },
+ {
+ "image": "imagesTs/word_0054.nii.gz",
+ "label": "labelsTs/word_0054.nii.gz"
+ },
+ {
+ "image": "imagesTs/word_0057.nii.gz",
+ "label": "labelsTs/word_0057.nii.gz"
+ },
+ {
+ "image": "imagesTs/word_0060.nii.gz",
+ "label": "labelsTs/word_0060.nii.gz"
+ },
+ {
+ "image": "imagesTs/word_0069.nii.gz",
+ "label": "labelsTs/word_0069.nii.gz"
+ },
+ {
+ "image": "imagesTs/word_0074.nii.gz",
+ "label": "labelsTs/word_0074.nii.gz"
+ },
+ {
+ "image": "imagesTs/word_0076.nii.gz",
+ "label": "labelsTs/word_0076.nii.gz"
+ },
+ {
+ "image": "imagesTs/word_0077.nii.gz",
+ "label": "labelsTs/word_0077.nii.gz"
+ },
+ {
+ "image": "imagesTs/word_0088.nii.gz",
+ "label": "labelsTs/word_0088.nii.gz"
+ },
+ {
+ "image": "imagesTs/word_0092.nii.gz",
+ "label": "labelsTs/word_0092.nii.gz"
+ },
+ {
+ "image": "imagesTs/word_0097.nii.gz",
+ "label": "labelsTs/word_0097.nii.gz"
+ },
+ {
+ "image": "imagesTs/word_0099.nii.gz",
+ "label": "labelsTs/word_0099.nii.gz"
+ },
+ {
+ "image": "imagesTs/word_0103.nii.gz",
+ "label": "labelsTs/word_0103.nii.gz"
+ },
+ {
+ "image": "imagesTs/word_0110.nii.gz",
+ "label": "labelsTs/word_0110.nii.gz"
+ },
+ {
+ "image": "imagesTs/word_0120.nii.gz",
+ "label": "labelsTs/word_0120.nii.gz"
+ },
+ {
+ "image": "imagesTs/word_0124.nii.gz",
+ "label": "labelsTs/word_0124.nii.gz"
+ },
+ {
+ "image": "imagesTs/word_0129.nii.gz",
+ "label": "labelsTs/word_0129.nii.gz"
+ },
+ {
+ "image": "imagesTs/word_0131.nii.gz",
+ "label": "labelsTs/word_0131.nii.gz"
+ }
+ ],
+ "addition_validation_from_LiTS": [
+ "addition_validation_from_LiTS/imagesTs",
+ "addition_validation_from_LiTS/labelsTs"
+ ],
+ "lits_testing": [
+ {
+ "image": "addition_validation_from_LiTS/imagesTs/liver_10_word_image.nii.gz",
+ "label": "addition_validation_from_LiTS/labelsTs/liver_10_word_label.nii.gz"
+ },
+ {
+ "image": "addition_validation_from_LiTS/imagesTs/liver_11_word_image.nii.gz",
+ "label": "addition_validation_from_LiTS/labelsTs/liver_11_word_label.nii.gz"
+ },
+ {
+ "image": "addition_validation_from_LiTS/imagesTs/liver_12_word_image.nii.gz",
+ "label": "addition_validation_from_LiTS/labelsTs/liver_12_word_label.nii.gz"
+ },
+ {
+ "image": "addition_validation_from_LiTS/imagesTs/liver_17_word_image.nii.gz",
+ "label": "addition_validation_from_LiTS/labelsTs/liver_17_word_label.nii.gz"
+ },
+ {
+ "image": "addition_validation_from_LiTS/imagesTs/liver_19_word_image.nii.gz",
+ "label": "addition_validation_from_LiTS/labelsTs/liver_19_word_label.nii.gz"
+ },
+ {
+ "image": "addition_validation_from_LiTS/imagesTs/liver_20_word_image.nii.gz",
+ "label": "addition_validation_from_LiTS/labelsTs/liver_20_word_label.nii.gz"
+ },
+ {
+ "image": "addition_validation_from_LiTS/imagesTs/liver_21_word_image.nii.gz",
+ "label": "addition_validation_from_LiTS/labelsTs/liver_21_word_label.nii.gz"
+ },
+ {
+ "image": "addition_validation_from_LiTS/imagesTs/liver_23_word_image.nii.gz",
+ "label": "addition_validation_from_LiTS/labelsTs/liver_23_word_label.nii.gz"
+ },
+ {
+ "image": "addition_validation_from_LiTS/imagesTs/liver_24_word_image.nii.gz",
+ "label": "addition_validation_from_LiTS/labelsTs/liver_24_word_label.nii.gz"
+ },
+ {
+ "image": "addition_validation_from_LiTS/imagesTs/liver_25_word_image.nii.gz",
+ "label": "addition_validation_from_LiTS/labelsTs/liver_25_word_label.nii.gz"
+ },
+ {
+ "image": "addition_validation_from_LiTS/imagesTs/liver_2_word_image.nii.gz",
+ "label": "addition_validation_from_LiTS/labelsTs/liver_2_word_label.nii.gz"
+ },
+ {
+ "image": "addition_validation_from_LiTS/imagesTs/liver_3_word_image.nii.gz",
+ "label": "addition_validation_from_LiTS/labelsTs/liver_3_word_label.nii.gz"
+ },
+ {
+ "image": "addition_validation_from_LiTS/imagesTs/liver_4_word_image.nii.gz",
+ "label": "addition_validation_from_LiTS/labelsTs/liver_4_word_label.nii.gz"
+ },
+ {
+ "image": "addition_validation_from_LiTS/imagesTs/liver_57_word_image.nii.gz",
+ "label": "addition_validation_from_LiTS/labelsTs/liver_57_word_label.nii.gz"
+ },
+ {
+ "image": "addition_validation_from_LiTS/imagesTs/liver_6_word_image.nii.gz",
+ "label": "addition_validation_from_LiTS/labelsTs/liver_6_word_label.nii.gz"
+ },
+ {
+ "image": "addition_validation_from_LiTS/imagesTs/liver_70_word_image.nii.gz",
+ "label": "addition_validation_from_LiTS/labelsTs/liver_70_word_label.nii.gz"
+ },
+ {
+ "image": "addition_validation_from_LiTS/imagesTs/liver_7_word_image.nii.gz",
+ "label": "addition_validation_from_LiTS/labelsTs/liver_7_word_label.nii.gz"
+ },
+ {
+ "image": "addition_validation_from_LiTS/imagesTs/liver_81_word_image.nii.gz",
+ "label": "addition_validation_from_LiTS/labelsTs/liver_81_word_label.nii.gz"
+ },
+ {
+ "image": "addition_validation_from_LiTS/imagesTs/liver_8_word_image.nii.gz",
+ "label": "addition_validation_from_LiTS/labelsTs/liver_8_word_label.nii.gz"
+ },
+ {
+ "image": "addition_validation_from_LiTS/imagesTs/liver_9_word_image.nii.gz",
+ "label": "addition_validation_from_LiTS/labelsTs/liver_9_word_label.nii.gz"
+ }
+ ]
+}
diff --git a/vista3d/data/external/micro-ct-murine-native_5_folds.json b/vista3d/data/external/micro-ct-murine-native_5_folds.json
new file mode 100644
index 0000000..e6feba2
--- /dev/null
+++ b/vista3d/data/external/micro-ct-murine-native_5_folds.json
@@ -0,0 +1,690 @@
+{
+ "training": [
+ {
+ "image": "M09_008h/CT140.nii.gz",
+ "label": "M09_008h/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "M13_048h/CT140.nii.gz",
+ "label": "M13_048h/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "M16_072h/CT140.nii.gz",
+ "label": "M16_072h/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "M07_004h/CT140.nii.gz",
+ "label": "M07_004h/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "M20_048h/CT140.nii.gz",
+ "label": "M20_048h/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "M03_072h/CT140.nii.gz",
+ "label": "M03_072h/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "M20_004h/CT140.nii.gz",
+ "label": "M20_004h/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "M18_072h/CT140.nii.gz",
+ "label": "M18_072h/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "M05_048h/CT140.nii.gz",
+ "label": "M05_048h/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "M10_024h/CT140.nii.gz",
+ "label": "M10_024h/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "M10_072h/CT140.nii.gz",
+ "label": "M10_072h/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "M20_0.25h/CT140.nii.gz",
+ "label": "M20_0.25h/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "M01_008h/CT140.nii.gz",
+ "label": "M01_008h/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "M01_024h/CT140.nii.gz",
+ "label": "M01_024h/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "M10_048h/CT140.nii.gz",
+ "label": "M10_048h/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "M07_024h/CT140.nii.gz",
+ "label": "M07_024h/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "M05_008h/CT140.nii.gz",
+ "label": "M05_008h/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "M07_002h/CT140.nii.gz",
+ "label": "M07_002h/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "M05_002h/CT140.nii.gz",
+ "label": "M05_002h/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "M08_002h/CT140.nii.gz",
+ "label": "M08_002h/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "M01_048h/CT140.nii.gz",
+ "label": "M01_048h/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "M20_008h/CT140.nii.gz",
+ "label": "M20_008h/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "M15_0.25h/CT140.nii.gz",
+ "label": "M15_0.25h/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "M12_024h/CT140.nii.gz",
+ "label": "M12_024h/seg.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "M06_024h/CT140.nii.gz",
+ "label": "M06_024h/seg.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "M02_004h/CT140.nii.gz",
+ "label": "M02_004h/seg.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "M08_024h/CT140.nii.gz",
+ "label": "M08_024h/seg.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "M02_002h/CT140.nii.gz",
+ "label": "M02_002h/seg.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "M13_0.25h/CT140.nii.gz",
+ "label": "M13_0.25h/seg.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "M06_0.25h/CT140.nii.gz",
+ "label": "M06_0.25h/seg.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "M04_008h/CT140.nii.gz",
+ "label": "M04_008h/seg.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "M12_0.25h/CT140.nii.gz",
+ "label": "M12_0.25h/seg.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "M17_0.25h/CT140.nii.gz",
+ "label": "M17_0.25h/seg.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "M15_072h/CT140.nii.gz",
+ "label": "M15_072h/seg.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "M06_002h/CT140.nii.gz",
+ "label": "M06_002h/seg.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "M09_072h/CT140.nii.gz",
+ "label": "M09_072h/seg.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "M11_024h/CT140.nii.gz",
+ "label": "M11_024h/seg.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "M09_0.25h/CT140.nii.gz",
+ "label": "M09_0.25h/seg.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "M14_004h/CT140.nii.gz",
+ "label": "M14_004h/seg.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "M03_002h/CT140.nii.gz",
+ "label": "M03_002h/seg.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "M20_024h/CT140.nii.gz",
+ "label": "M20_024h/seg.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "M02_072h/CT140.nii.gz",
+ "label": "M02_072h/seg.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "M04_004h/CT140.nii.gz",
+ "label": "M04_004h/seg.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "M01_004h/CT140.nii.gz",
+ "label": "M01_004h/seg.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "M12_008h/CT140.nii.gz",
+ "label": "M12_008h/seg.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "M11_072h/CT140.nii.gz",
+ "label": "M11_072h/seg.nii.gz",
+ "fold": 1
+ },
+ {
+ "image": "M11_048h/CT140.nii.gz",
+ "label": "M11_048h/seg.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "M18_008h/CT140.nii.gz",
+ "label": "M18_008h/seg.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "M19_072h/CT140.nii.gz",
+ "label": "M19_072h/seg.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "M07_048h/CT140.nii.gz",
+ "label": "M07_048h/seg.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "M17_072h/CT140.nii.gz",
+ "label": "M17_072h/seg.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "M20_002h/CT140.nii.gz",
+ "label": "M20_002h/seg.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "M17_024h/CT140.nii.gz",
+ "label": "M17_024h/seg.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "M10_004h/CT140.nii.gz",
+ "label": "M10_004h/seg.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "M18_048h/CT140.nii.gz",
+ "label": "M18_048h/seg.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "M19_0.25h/CT140.nii.gz",
+ "label": "M19_0.25h/seg.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "M05_0.25h/CT140.nii.gz",
+ "label": "M05_0.25h/seg.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "M19_004h/CT140.nii.gz",
+ "label": "M19_004h/seg.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "M05_024h/CT140.nii.gz",
+ "label": "M05_024h/seg.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "M01_002h/CT140.nii.gz",
+ "label": "M01_002h/seg.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "M14_008h/CT140.nii.gz",
+ "label": "M14_008h/seg.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "M02_048h/CT140.nii.gz",
+ "label": "M02_048h/seg.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "M17_002h/CT140.nii.gz",
+ "label": "M17_002h/seg.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "M13_024h/CT140.nii.gz",
+ "label": "M13_024h/seg.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "M02_008h/CT140.nii.gz",
+ "label": "M02_008h/seg.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "M19_024h/CT140.nii.gz",
+ "label": "M19_024h/seg.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "M02_024h/CT140.nii.gz",
+ "label": "M02_024h/seg.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "M07_072h/CT140.nii.gz",
+ "label": "M07_072h/seg.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "M06_048h/CT140.nii.gz",
+ "label": "M06_048h/seg.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "M07_0.25h/CT140.nii.gz",
+ "label": "M07_0.25h/seg.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "M09_048h/CT140.nii.gz",
+ "label": "M09_048h/seg.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "M06_004h/CT140.nii.gz",
+ "label": "M06_004h/seg.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "M12_004h/CT140.nii.gz",
+ "label": "M12_004h/seg.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "M17_048h/CT140.nii.gz",
+ "label": "M17_048h/seg.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "M07_008h/CT140.nii.gz",
+ "label": "M07_008h/seg.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "M15_048h/CT140.nii.gz",
+ "label": "M15_048h/seg.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "M18_004h/CT140.nii.gz",
+ "label": "M18_004h/seg.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "M15_024h/CT140.nii.gz",
+ "label": "M15_024h/seg.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "M05_004h/CT140.nii.gz",
+ "label": "M05_004h/seg.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "M16_048h/CT140.nii.gz",
+ "label": "M16_048h/seg.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "M01_072h/CT140.nii.gz",
+ "label": "M01_072h/seg.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "M06_008h/CT140.nii.gz",
+ "label": "M06_008h/seg.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "M14_002h/CT140.nii.gz",
+ "label": "M14_002h/seg.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "M10_0.25h/CT140.nii.gz",
+ "label": "M10_0.25h/seg.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "M03_004h/CT140.nii.gz",
+ "label": "M03_004h/seg.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "M09_024h/CT140.nii.gz",
+ "label": "M09_024h/seg.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "M04_002h/CT140.nii.gz",
+ "label": "M04_002h/seg.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "M10_008h/CT140.nii.gz",
+ "label": "M10_008h/seg.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "M19_048h/CT140.nii.gz",
+ "label": "M19_048h/seg.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "M01_0.25h/CT140.nii.gz",
+ "label": "M01_0.25h/seg.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "M19_002h/CT140.nii.gz",
+ "label": "M19_002h/seg.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "M16_0.25h/CT140.nii.gz",
+ "label": "M16_0.25h/seg.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "M13_008h/CT140.nii.gz",
+ "label": "M13_008h/seg.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "M08_0.25h/CT140.nii.gz",
+ "label": "M08_0.25h/seg.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "M11_0.25h/CT140.nii.gz",
+ "label": "M11_0.25h/seg.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "M09_002h/CT140.nii.gz",
+ "label": "M09_002h/seg.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "M08_008h/CT140.nii.gz",
+ "label": "M08_008h/seg.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "M14_072h/CT140.nii.gz",
+ "label": "M14_072h/seg.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "M17_004h/CT140.nii.gz",
+ "label": "M17_004h/seg.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "M12_072h/CT140.nii.gz",
+ "label": "M12_072h/seg.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "M11_004h/CT140.nii.gz",
+ "label": "M11_004h/seg.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "M18_002h/CT140.nii.gz",
+ "label": "M18_002h/seg.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "M04_048h/CT140.nii.gz",
+ "label": "M04_048h/seg.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "M13_002h/CT140.nii.gz",
+ "label": "M13_002h/seg.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "M17_008h/CT140.nii.gz",
+ "label": "M17_008h/seg.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "M14_048h/CT140.nii.gz",
+ "label": "M14_048h/seg.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "M15_008h/CT140.nii.gz",
+ "label": "M15_008h/seg.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "M11_008h/CT140.nii.gz",
+ "label": "M11_008h/seg.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "M15_004h/CT140.nii.gz",
+ "label": "M15_004h/seg.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "M08_004h/CT140.nii.gz",
+ "label": "M08_004h/seg.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "M15_002h/CT140.nii.gz",
+ "label": "M15_002h/seg.nii.gz",
+ "fold": 4
+ },
+ {
+ "image": "M06_072h/CT140.nii.gz",
+ "label": "M06_072h/seg.nii.gz",
+ "fold": 4
+ }
+ ],
+ "testing": [
+ {
+ "image": "M13_072h/CT140.nii.gz",
+ "label": "M13_072h/seg.nii.gz"
+ },
+ {
+ "image": "M16_008h/CT140.nii.gz",
+ "label": "M16_008h/seg.nii.gz"
+ },
+ {
+ "image": "M03_048h/CT140.nii.gz",
+ "label": "M03_048h/seg.nii.gz"
+ },
+ {
+ "image": "M11_002h/CT140.nii.gz",
+ "label": "M11_002h/seg.nii.gz"
+ },
+ {
+ "image": "M02_0.25h/CT140.nii.gz",
+ "label": "M02_0.25h/seg.nii.gz"
+ },
+ {
+ "image": "M16_024h/CT140.nii.gz",
+ "label": "M16_024h/seg.nii.gz"
+ },
+ {
+ "image": "M19_008h/CT140.nii.gz",
+ "label": "M19_008h/seg.nii.gz"
+ },
+ {
+ "image": "M08_072h/CT140.nii.gz",
+ "label": "M08_072h/seg.nii.gz"
+ },
+ {
+ "image": "M18_024h/CT140.nii.gz",
+ "label": "M18_024h/seg.nii.gz"
+ },
+ {
+ "image": "M16_004h/CT140.nii.gz",
+ "label": "M16_004h/seg.nii.gz"
+ },
+ {
+ "image": "M12_048h/CT140.nii.gz",
+ "label": "M12_048h/seg.nii.gz"
+ },
+ {
+ "image": "M10_002h/CT140.nii.gz",
+ "label": "M10_002h/seg.nii.gz"
+ },
+ {
+ "image": "M14_0.25h/CT140.nii.gz",
+ "label": "M14_0.25h/seg.nii.gz"
+ },
+ {
+ "image": "M03_0.25h/CT140.nii.gz",
+ "label": "M03_0.25h/seg.nii.gz"
+ },
+ {
+ "image": "M03_024h/CT140.nii.gz",
+ "label": "M03_024h/seg.nii.gz"
+ },
+ {
+ "image": "M12_002h/CT140.nii.gz",
+ "label": "M12_002h/seg.nii.gz"
+ },
+ {
+ "image": "M05_072h/CT140.nii.gz",
+ "label": "M05_072h/seg.nii.gz"
+ },
+ {
+ "image": "M20_072h/CT140.nii.gz",
+ "label": "M20_072h/seg.nii.gz"
+ },
+ {
+ "image": "M09_004h/CT140.nii.gz",
+ "label": "M09_004h/seg.nii.gz"
+ },
+ {
+ "image": "M08_048h/CT140.nii.gz",
+ "label": "M08_048h/seg.nii.gz"
+ },
+ {
+ "image": "M16_002h/CT140.nii.gz",
+ "label": "M16_002h/seg.nii.gz"
+ },
+ {
+ "image": "M04_024h/CT140.nii.gz",
+ "label": "M04_024h/seg.nii.gz"
+ },
+ {
+ "image": "M03_008h/CT140.nii.gz",
+ "label": "M03_008h/seg.nii.gz"
+ },
+ {
+ "image": "M13_004h/CT140.nii.gz",
+ "label": "M13_004h/seg.nii.gz"
+ },
+ {
+ "image": "M04_072h/CT140.nii.gz",
+ "label": "M04_072h/seg.nii.gz"
+ },
+ {
+ "image": "M18_0.25h/CT140.nii.gz",
+ "label": "M18_0.25h/seg.nii.gz"
+ },
+ {
+ "image": "M14_024h/CT140.nii.gz",
+ "label": "M14_024h/seg.nii.gz"
+ },
+ {
+ "image": "M04_0.25h/CT140.nii.gz",
+ "label": "M04_0.25h/seg.nii.gz"
+ }
+ ],
+ "label_dict": {
+ "1": "heart",
+ "2": "spinal cord",
+ "3": "right lung",
+ "4": "left lung"
+ },
+ "original_label_dict": {
+ "1": "heart",
+ "2": "spinal cord",
+ "3": "right lung",
+ "4": "left lung"
+ }
+}
diff --git a/vista3d/data/jsons/AMOS22_5_folds.json b/vista3d/data/jsons/AMOS22_5_folds.json
new file mode 100644
index 0000000..626d90d
--- /dev/null
+++ b/vista3d/data/jsons/AMOS22_5_folds.json
@@ -0,0 +1,2245 @@
+{
+ "training": [
+ {
+ "image": "imagesTr/amos_0060.nii.gz",
+ "pseudo_label": "imagesTr/amos_0060.nii.gz",
+ "label": "labelsTr/amos_0060.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/amos_0348.nii.gz",
+ "pseudo_label": "imagesTr/amos_0348.nii.gz",
+ "label": "labelsTr/amos_0348.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "imagesVa/amos_0244.nii.gz",
+ "pseudo_label": "imagesVa/amos_0244.nii.gz",
+ "label": "labelsVa/amos_0244.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "imagesVa/amos_0310.nii.gz",
+ "pseudo_label": "imagesVa/amos_0310.nii.gz",
+ "label": "labelsVa/amos_0310.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "imagesVa/amos_0120.nii.gz",
+ "pseudo_label": "imagesVa/amos_0120.nii.gz",
+ "label": "labelsVa/amos_0120.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/amos_0027.nii.gz",
+ "pseudo_label": "imagesTr/amos_0027.nii.gz",
+ "label": "labelsTr/amos_0027.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/amos_0268.nii.gz",
+ "pseudo_label": "imagesTr/amos_0268.nii.gz",
+ "label": "labelsTr/amos_0268.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/amos_0079.nii.gz",
+ "pseudo_label": "imagesTr/amos_0079.nii.gz",
+ "label": "labelsTr/amos_0079.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesVa/amos_0250.nii.gz",
+ "pseudo_label": "imagesVa/amos_0250.nii.gz",
+ "label": "labelsVa/amos_0250.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/amos_0160.nii.gz",
+ "pseudo_label": "imagesTr/amos_0160.nii.gz",
+ "label": "labelsTr/amos_0160.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesVa/amos_0278.nii.gz",
+ "pseudo_label": "imagesVa/amos_0278.nii.gz",
+ "label": "labelsVa/amos_0278.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/amos_0057.nii.gz",
+ "pseudo_label": "imagesTr/amos_0057.nii.gz",
+ "label": "labelsTr/amos_0057.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/amos_0124.nii.gz",
+ "pseudo_label": "imagesTr/amos_0124.nii.gz",
+ "label": "labelsTr/amos_0124.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/amos_0237.nii.gz",
+ "pseudo_label": "imagesTr/amos_0237.nii.gz",
+ "label": "labelsTr/amos_0237.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/amos_0133.nii.gz",
+ "pseudo_label": "imagesTr/amos_0133.nii.gz",
+ "label": "labelsTr/amos_0133.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesVa/amos_0032.nii.gz",
+ "pseudo_label": "imagesVa/amos_0032.nii.gz",
+ "label": "labelsVa/amos_0032.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/amos_0170.nii.gz",
+ "pseudo_label": "imagesTr/amos_0170.nii.gz",
+ "label": "labelsTr/amos_0170.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/amos_0321.nii.gz",
+ "pseudo_label": "imagesTr/amos_0321.nii.gz",
+ "label": "labelsTr/amos_0321.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/amos_0099.nii.gz",
+ "pseudo_label": "imagesTr/amos_0099.nii.gz",
+ "label": "labelsTr/amos_0099.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "imagesTr/amos_0405.nii.gz",
+ "pseudo_label": "imagesTr/amos_0405.nii.gz",
+ "label": "labelsTr/amos_0405.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesVa/amos_0022.nii.gz",
+ "pseudo_label": "imagesVa/amos_0022.nii.gz",
+ "label": "labelsVa/amos_0022.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/amos_0376.nii.gz",
+ "pseudo_label": "imagesTr/amos_0376.nii.gz",
+ "label": "labelsTr/amos_0376.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/amos_0231.nii.gz",
+ "pseudo_label": "imagesTr/amos_0231.nii.gz",
+ "label": "labelsTr/amos_0231.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/amos_0188.nii.gz",
+ "pseudo_label": "imagesTr/amos_0188.nii.gz",
+ "label": "labelsTr/amos_0188.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/amos_0374.nii.gz",
+ "pseudo_label": "imagesTr/amos_0374.nii.gz",
+ "label": "labelsTr/amos_0374.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesVa/amos_0150.nii.gz",
+ "pseudo_label": "imagesVa/amos_0150.nii.gz",
+ "label": "labelsVa/amos_0150.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/amos_0159.nii.gz",
+ "pseudo_label": "imagesTr/amos_0159.nii.gz",
+ "label": "labelsTr/amos_0159.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/amos_0235.nii.gz",
+ "pseudo_label": "imagesTr/amos_0235.nii.gz",
+ "label": "labelsTr/amos_0235.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/amos_0396.nii.gz",
+ "pseudo_label": "imagesTr/amos_0396.nii.gz",
+ "label": "labelsTr/amos_0396.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/amos_0225.nii.gz",
+ "pseudo_label": "imagesTr/amos_0225.nii.gz",
+ "label": "labelsTr/amos_0225.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "imagesTr/amos_0362.nii.gz",
+ "pseudo_label": "imagesTr/amos_0362.nii.gz",
+ "label": "labelsTr/amos_0362.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesVa/amos_0286.nii.gz",
+ "pseudo_label": "imagesVa/amos_0286.nii.gz",
+ "label": "labelsVa/amos_0286.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesVa/amos_0333.nii.gz",
+ "pseudo_label": "imagesVa/amos_0333.nii.gz",
+ "label": "labelsVa/amos_0333.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesVa/amos_0365.nii.gz",
+ "pseudo_label": "imagesVa/amos_0365.nii.gz",
+ "label": "labelsVa/amos_0365.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/amos_0121.nii.gz",
+ "pseudo_label": "imagesTr/amos_0121.nii.gz",
+ "label": "labelsTr/amos_0121.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/amos_0353.nii.gz",
+ "pseudo_label": "imagesTr/amos_0353.nii.gz",
+ "label": "labelsTr/amos_0353.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "imagesVa/amos_0207.nii.gz",
+ "pseudo_label": "imagesVa/amos_0207.nii.gz",
+ "label": "labelsVa/amos_0207.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/amos_0273.nii.gz",
+ "pseudo_label": "imagesTr/amos_0273.nii.gz",
+ "label": "labelsTr/amos_0273.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/amos_0153.nii.gz",
+ "pseudo_label": "imagesTr/amos_0153.nii.gz",
+ "label": "labelsTr/amos_0153.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "imagesTr/amos_0317.nii.gz",
+ "pseudo_label": "imagesTr/amos_0317.nii.gz",
+ "label": "labelsTr/amos_0317.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesVa/amos_0352.nii.gz",
+ "pseudo_label": "imagesVa/amos_0352.nii.gz",
+ "label": "labelsVa/amos_0352.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/amos_0043.nii.gz",
+ "pseudo_label": "imagesTr/amos_0043.nii.gz",
+ "label": "labelsTr/amos_0043.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesVa/amos_0238.nii.gz",
+ "pseudo_label": "imagesVa/amos_0238.nii.gz",
+ "label": "labelsVa/amos_0238.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/amos_0341.nii.gz",
+ "pseudo_label": "imagesTr/amos_0341.nii.gz",
+ "label": "labelsTr/amos_0341.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "imagesTr/amos_0390.nii.gz",
+ "pseudo_label": "imagesTr/amos_0390.nii.gz",
+ "label": "labelsTr/amos_0390.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/amos_0195.nii.gz",
+ "pseudo_label": "imagesTr/amos_0195.nii.gz",
+ "label": "labelsTr/amos_0195.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/amos_0395.nii.gz",
+ "pseudo_label": "imagesTr/amos_0395.nii.gz",
+ "label": "labelsTr/amos_0395.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesVa/amos_0346.nii.gz",
+ "pseudo_label": "imagesVa/amos_0346.nii.gz",
+ "label": "labelsVa/amos_0346.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "imagesVa/amos_0013.nii.gz",
+ "pseudo_label": "imagesVa/amos_0013.nii.gz",
+ "label": "labelsVa/amos_0013.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0013/amos_0013_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0158.nii.gz",
+ "pseudo_label": "imagesTr/amos_0158.nii.gz",
+ "label": "labelsTr/amos_0158.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0158/amos_0158_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0048.nii.gz",
+ "pseudo_label": "imagesTr/amos_0048.nii.gz",
+ "label": "labelsTr/amos_0048.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0048/amos_0048_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0194.nii.gz",
+ "pseudo_label": "imagesVa/amos_0194.nii.gz",
+ "label": "labelsVa/amos_0194.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0194/amos_0194_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0113.nii.gz",
+ "pseudo_label": "imagesTr/amos_0113.nii.gz",
+ "label": "labelsTr/amos_0113.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0113/amos_0113_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0051.nii.gz",
+ "pseudo_label": "imagesVa/amos_0051.nii.gz",
+ "label": "labelsVa/amos_0051.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0051/amos_0051_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0176.nii.gz",
+ "pseudo_label": "imagesVa/amos_0176.nii.gz",
+ "label": "labelsVa/amos_0176.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0176/amos_0176_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0007.nii.gz",
+ "pseudo_label": "imagesTr/amos_0007.nii.gz",
+ "label": "labelsTr/amos_0007.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0007/amos_0007_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0217.nii.gz",
+ "pseudo_label": "imagesTr/amos_0217.nii.gz",
+ "label": "labelsTr/amos_0217.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0217/amos_0217_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0064.nii.gz",
+ "pseudo_label": "imagesTr/amos_0064.nii.gz",
+ "label": "labelsTr/amos_0064.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0064/amos_0064_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0016.nii.gz",
+ "pseudo_label": "imagesTr/amos_0016.nii.gz",
+ "label": "labelsTr/amos_0016.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0016/amos_0016_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0311.nii.gz",
+ "pseudo_label": "imagesVa/amos_0311.nii.gz",
+ "label": "labelsVa/amos_0311.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0311/amos_0311_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0409.nii.gz",
+ "pseudo_label": "imagesVa/amos_0409.nii.gz",
+ "label": "labelsVa/amos_0409.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0409/amos_0409_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0116.nii.gz",
+ "pseudo_label": "imagesTr/amos_0116.nii.gz",
+ "label": "labelsTr/amos_0116.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0116/amos_0116_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0172.nii.gz",
+ "pseudo_label": "imagesTr/amos_0172.nii.gz",
+ "label": "labelsTr/amos_0172.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0172/amos_0172_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0339.nii.gz",
+ "pseudo_label": "imagesVa/amos_0339.nii.gz",
+ "label": "labelsVa/amos_0339.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0339/amos_0339_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0198.nii.gz",
+ "pseudo_label": "imagesTr/amos_0198.nii.gz",
+ "label": "labelsTr/amos_0198.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0198/amos_0198_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0157.nii.gz",
+ "pseudo_label": "imagesVa/amos_0157.nii.gz",
+ "label": "labelsVa/amos_0157.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0157/amos_0157_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0014.nii.gz",
+ "pseudo_label": "imagesTr/amos_0014.nii.gz",
+ "label": "labelsTr/amos_0014.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0014/amos_0014_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0334.nii.gz",
+ "pseudo_label": "imagesVa/amos_0334.nii.gz",
+ "label": "labelsVa/amos_0334.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0334/amos_0334_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0381.nii.gz",
+ "pseudo_label": "imagesTr/amos_0381.nii.gz",
+ "label": "labelsTr/amos_0381.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0381/amos_0381_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0143.nii.gz",
+ "pseudo_label": "imagesTr/amos_0143.nii.gz",
+ "label": "labelsTr/amos_0143.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0143/amos_0143_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0125.nii.gz",
+ "pseudo_label": "imagesTr/amos_0125.nii.gz",
+ "label": "labelsTr/amos_0125.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0125/amos_0125_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0202.nii.gz",
+ "pseudo_label": "imagesVa/amos_0202.nii.gz",
+ "label": "labelsVa/amos_0202.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0202/amos_0202_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0134.nii.gz",
+ "pseudo_label": "imagesTr/amos_0134.nii.gz",
+ "label": "labelsTr/amos_0134.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0134/amos_0134_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0402.nii.gz",
+ "pseudo_label": "imagesTr/amos_0402.nii.gz",
+ "label": "labelsTr/amos_0402.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0402/amos_0402_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0115.nii.gz",
+ "pseudo_label": "imagesTr/amos_0115.nii.gz",
+ "label": "labelsTr/amos_0115.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0115/amos_0115_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0063.nii.gz",
+ "pseudo_label": "imagesVa/amos_0063.nii.gz",
+ "label": "labelsVa/amos_0063.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0063/amos_0063_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0004.nii.gz",
+ "pseudo_label": "imagesTr/amos_0004.nii.gz",
+ "label": "labelsTr/amos_0004.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0004/amos_0004_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0372.nii.gz",
+ "pseudo_label": "imagesVa/amos_0372.nii.gz",
+ "label": "labelsVa/amos_0372.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0372/amos_0372_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0336.nii.gz",
+ "pseudo_label": "imagesTr/amos_0336.nii.gz",
+ "label": "labelsTr/amos_0336.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0336/amos_0336_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0368.nii.gz",
+ "pseudo_label": "imagesVa/amos_0368.nii.gz",
+ "label": "labelsVa/amos_0368.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0368/amos_0368_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0129.nii.gz",
+ "pseudo_label": "imagesTr/amos_0129.nii.gz",
+ "label": "labelsTr/amos_0129.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0129/amos_0129_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0177.nii.gz",
+ "pseudo_label": "imagesTr/amos_0177.nii.gz",
+ "label": "labelsTr/amos_0177.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0177/amos_0177_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0350.nii.gz",
+ "pseudo_label": "imagesTr/amos_0350.nii.gz",
+ "label": "labelsTr/amos_0350.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0350/amos_0350_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0380.nii.gz",
+ "pseudo_label": "imagesTr/amos_0380.nii.gz",
+ "label": "labelsTr/amos_0380.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0380/amos_0380_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0083.nii.gz",
+ "pseudo_label": "imagesTr/amos_0083.nii.gz",
+ "label": "labelsTr/amos_0083.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0083/amos_0083_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0071.nii.gz",
+ "pseudo_label": "imagesTr/amos_0071.nii.gz",
+ "label": "labelsTr/amos_0071.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0071/amos_0071_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0218.nii.gz",
+ "pseudo_label": "imagesVa/amos_0218.nii.gz",
+ "label": "labelsVa/amos_0218.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0218/amos_0218_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0001.nii.gz",
+ "pseudo_label": "imagesTr/amos_0001.nii.gz",
+ "label": "labelsTr/amos_0001.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0001/amos_0001_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0280.nii.gz",
+ "pseudo_label": "imagesVa/amos_0280.nii.gz",
+ "label": "labelsVa/amos_0280.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0280/amos_0280_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0206.nii.gz",
+ "pseudo_label": "imagesVa/amos_0206.nii.gz",
+ "label": "labelsVa/amos_0206.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0206/amos_0206_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0132.nii.gz",
+ "pseudo_label": "imagesVa/amos_0132.nii.gz",
+ "label": "labelsVa/amos_0132.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0132/amos_0132_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0196.nii.gz",
+ "pseudo_label": "imagesTr/amos_0196.nii.gz",
+ "label": "labelsTr/amos_0196.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0196/amos_0196_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0308.nii.gz",
+ "pseudo_label": "imagesVa/amos_0308.nii.gz",
+ "label": "labelsVa/amos_0308.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0308/amos_0308_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0045.nii.gz",
+ "pseudo_label": "imagesTr/amos_0045.nii.gz",
+ "label": "labelsTr/amos_0045.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0045/amos_0045_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0008.nii.gz",
+ "pseudo_label": "imagesVa/amos_0008.nii.gz",
+ "label": "labelsVa/amos_0008.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0008/amos_0008_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0370.nii.gz",
+ "pseudo_label": "imagesTr/amos_0370.nii.gz",
+ "label": "labelsTr/amos_0370.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0370/amos_0370_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0344.nii.gz",
+ "pseudo_label": "imagesVa/amos_0344.nii.gz",
+ "label": "labelsVa/amos_0344.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0344/amos_0344_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0072.nii.gz",
+ "pseudo_label": "imagesTr/amos_0072.nii.gz",
+ "label": "labelsTr/amos_0072.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0072/amos_0072_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0287.nii.gz",
+ "pseudo_label": "imagesVa/amos_0287.nii.gz",
+ "label": "labelsVa/amos_0287.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0287/amos_0287_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0307.nii.gz",
+ "pseudo_label": "imagesTr/amos_0307.nii.gz",
+ "label": "labelsTr/amos_0307.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0307/amos_0307_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0392.nii.gz",
+ "pseudo_label": "imagesTr/amos_0392.nii.gz",
+ "label": "labelsTr/amos_0392.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0392/amos_0392_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0299.nii.gz",
+ "pseudo_label": "imagesTr/amos_0299.nii.gz",
+ "label": "labelsTr/amos_0299.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0299/amos_0299_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0111.nii.gz",
+ "pseudo_label": "imagesTr/amos_0111.nii.gz",
+ "label": "labelsTr/amos_0111.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0111/amos_0111_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0061.nii.gz",
+ "pseudo_label": "imagesVa/amos_0061.nii.gz",
+ "label": "labelsVa/amos_0061.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0061/amos_0061_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0316.nii.gz",
+ "pseudo_label": "imagesVa/amos_0316.nii.gz",
+ "label": "labelsVa/amos_0316.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0316/amos_0316_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0197.nii.gz",
+ "pseudo_label": "imagesTr/amos_0197.nii.gz",
+ "label": "labelsTr/amos_0197.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0197/amos_0197_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0304.nii.gz",
+ "pseudo_label": "imagesVa/amos_0304.nii.gz",
+ "label": "labelsVa/amos_0304.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0304/amos_0304_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0398.nii.gz",
+ "pseudo_label": "imagesTr/amos_0398.nii.gz",
+ "label": "labelsTr/amos_0398.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0398/amos_0398_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0258.nii.gz",
+ "pseudo_label": "imagesVa/amos_0258.nii.gz",
+ "label": "labelsVa/amos_0258.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0258/amos_0258_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0233.nii.gz",
+ "pseudo_label": "imagesVa/amos_0233.nii.gz",
+ "label": "labelsVa/amos_0233.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0233/amos_0233_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0087.nii.gz",
+ "pseudo_label": "imagesVa/amos_0087.nii.gz",
+ "label": "labelsVa/amos_0087.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0087/amos_0087_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0075.nii.gz",
+ "pseudo_label": "imagesTr/amos_0075.nii.gz",
+ "label": "labelsTr/amos_0075.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0075/amos_0075_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0131.nii.gz",
+ "pseudo_label": "imagesTr/amos_0131.nii.gz",
+ "label": "labelsTr/amos_0131.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0131/amos_0131_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0223.nii.gz",
+ "pseudo_label": "imagesVa/amos_0223.nii.gz",
+ "label": "labelsVa/amos_0223.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0223/amos_0223_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0141.nii.gz",
+ "pseudo_label": "imagesTr/amos_0141.nii.gz",
+ "label": "labelsTr/amos_0141.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0141/amos_0141_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0245.nii.gz",
+ "pseudo_label": "imagesTr/amos_0245.nii.gz",
+ "label": "labelsTr/amos_0245.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0245/amos_0245_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0110.nii.gz",
+ "pseudo_label": "imagesTr/amos_0110.nii.gz",
+ "label": "labelsTr/amos_0110.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0110/amos_0110_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0401.nii.gz",
+ "pseudo_label": "imagesTr/amos_0401.nii.gz",
+ "label": "labelsTr/amos_0401.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0401/amos_0401_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0085.nii.gz",
+ "pseudo_label": "imagesVa/amos_0085.nii.gz",
+ "label": "labelsVa/amos_0085.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0085/amos_0085_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0263.nii.gz",
+ "pseudo_label": "imagesTr/amos_0263.nii.gz",
+ "label": "labelsTr/amos_0263.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0263/amos_0263_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0297.nii.gz",
+ "pseudo_label": "imagesTr/amos_0297.nii.gz",
+ "label": "labelsTr/amos_0297.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0297/amos_0297_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0162.nii.gz",
+ "pseudo_label": "imagesTr/amos_0162.nii.gz",
+ "label": "labelsTr/amos_0162.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0162/amos_0162_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0391.nii.gz",
+ "pseudo_label": "imagesTr/amos_0391.nii.gz",
+ "label": "labelsTr/amos_0391.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0391/amos_0391_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0357.nii.gz",
+ "pseudo_label": "imagesVa/amos_0357.nii.gz",
+ "label": "labelsVa/amos_0357.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0357/amos_0357_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0190.nii.gz",
+ "pseudo_label": "imagesTr/amos_0190.nii.gz",
+ "label": "labelsTr/amos_0190.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0190/amos_0190_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0149.nii.gz",
+ "pseudo_label": "imagesTr/amos_0149.nii.gz",
+ "label": "labelsTr/amos_0149.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0149/amos_0149_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0081.nii.gz",
+ "pseudo_label": "imagesTr/amos_0081.nii.gz",
+ "label": "labelsTr/amos_0081.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0081/amos_0081_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0056.nii.gz",
+ "pseudo_label": "imagesVa/amos_0056.nii.gz",
+ "label": "labelsVa/amos_0056.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0056/amos_0056_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0332.nii.gz",
+ "pseudo_label": "imagesTr/amos_0332.nii.gz",
+ "label": "labelsTr/amos_0332.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0332/amos_0332_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0105.nii.gz",
+ "pseudo_label": "imagesTr/amos_0105.nii.gz",
+ "label": "labelsTr/amos_0105.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0105/amos_0105_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0364.nii.gz",
+ "pseudo_label": "imagesVa/amos_0364.nii.gz",
+ "label": "labelsVa/amos_0364.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0364/amos_0364_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0257.nii.gz",
+ "pseudo_label": "imagesVa/amos_0257.nii.gz",
+ "label": "labelsVa/amos_0257.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0257/amos_0257_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0106.nii.gz",
+ "pseudo_label": "imagesVa/amos_0106.nii.gz",
+ "label": "labelsVa/amos_0106.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0106/amos_0106_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0077.nii.gz",
+ "pseudo_label": "imagesTr/amos_0077.nii.gz",
+ "label": "labelsTr/amos_0077.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0077/amos_0077_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0215.nii.gz",
+ "pseudo_label": "imagesTr/amos_0215.nii.gz",
+ "label": "labelsTr/amos_0215.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0215/amos_0215_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0351.nii.gz",
+ "pseudo_label": "imagesTr/amos_0351.nii.gz",
+ "label": "labelsTr/amos_0351.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0351/amos_0351_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0255.nii.gz",
+ "pseudo_label": "imagesVa/amos_0255.nii.gz",
+ "label": "labelsVa/amos_0255.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0255/amos_0255_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0318.nii.gz",
+ "pseudo_label": "imagesVa/amos_0318.nii.gz",
+ "label": "labelsVa/amos_0318.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0318/amos_0318_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0264.nii.gz",
+ "pseudo_label": "imagesTr/amos_0264.nii.gz",
+ "label": "labelsTr/amos_0264.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0264/amos_0264_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0128.nii.gz",
+ "pseudo_label": "imagesVa/amos_0128.nii.gz",
+ "label": "labelsVa/amos_0128.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0128/amos_0128_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0041.nii.gz",
+ "pseudo_label": "imagesVa/amos_0041.nii.gz",
+ "label": "labelsVa/amos_0041.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0041/amos_0041_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0069.nii.gz",
+ "pseudo_label": "imagesTr/amos_0069.nii.gz",
+ "label": "labelsTr/amos_0069.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0069/amos_0069_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0283.nii.gz",
+ "pseudo_label": "imagesVa/amos_0283.nii.gz",
+ "label": "labelsVa/amos_0283.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0283/amos_0283_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0104.nii.gz",
+ "pseudo_label": "imagesTr/amos_0104.nii.gz",
+ "label": "labelsTr/amos_0104.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0104/amos_0104_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0066.nii.gz",
+ "pseudo_label": "imagesTr/amos_0066.nii.gz",
+ "label": "labelsTr/amos_0066.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0066/amos_0066_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0326.nii.gz",
+ "pseudo_label": "imagesVa/amos_0326.nii.gz",
+ "label": "labelsVa/amos_0326.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0326/amos_0326_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0152.nii.gz",
+ "pseudo_label": "imagesTr/amos_0152.nii.gz",
+ "label": "labelsTr/amos_0152.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0152/amos_0152_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0147.nii.gz",
+ "pseudo_label": "imagesTr/amos_0147.nii.gz",
+ "label": "labelsTr/amos_0147.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0147/amos_0147_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0009.nii.gz",
+ "pseudo_label": "imagesTr/amos_0009.nii.gz",
+ "label": "labelsTr/amos_0009.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0009/amos_0009_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0078.nii.gz",
+ "pseudo_label": "imagesTr/amos_0078.nii.gz",
+ "label": "labelsTr/amos_0078.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0078/amos_0078_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0052.nii.gz",
+ "pseudo_label": "imagesTr/amos_0052.nii.gz",
+ "label": "labelsTr/amos_0052.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0052/amos_0052_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0070.nii.gz",
+ "pseudo_label": "imagesVa/amos_0070.nii.gz",
+ "label": "labelsVa/amos_0070.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0070/amos_0070_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0406.nii.gz",
+ "pseudo_label": "imagesTr/amos_0406.nii.gz",
+ "label": "labelsTr/amos_0406.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0406/amos_0406_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0017.nii.gz",
+ "pseudo_label": "imagesTr/amos_0017.nii.gz",
+ "label": "labelsTr/amos_0017.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0017/amos_0017_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0403.nii.gz",
+ "pseudo_label": "imagesTr/amos_0403.nii.gz",
+ "label": "labelsTr/amos_0403.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0403/amos_0403_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0038.nii.gz",
+ "pseudo_label": "imagesTr/amos_0038.nii.gz",
+ "label": "labelsTr/amos_0038.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0038/amos_0038_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0200.nii.gz",
+ "pseudo_label": "imagesVa/amos_0200.nii.gz",
+ "label": "labelsVa/amos_0200.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0200/amos_0200_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0302.nii.gz",
+ "pseudo_label": "imagesTr/amos_0302.nii.gz",
+ "label": "labelsTr/amos_0302.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0302/amos_0302_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0029.nii.gz",
+ "pseudo_label": "imagesVa/amos_0029.nii.gz",
+ "label": "labelsVa/amos_0029.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0029/amos_0029_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0397.nii.gz",
+ "pseudo_label": "imagesVa/amos_0397.nii.gz",
+ "label": "labelsVa/amos_0397.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0397/amos_0397_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0179.nii.gz",
+ "pseudo_label": "imagesTr/amos_0179.nii.gz",
+ "label": "labelsTr/amos_0179.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0179/amos_0179_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0378.nii.gz",
+ "pseudo_label": "imagesTr/amos_0378.nii.gz",
+ "label": "labelsTr/amos_0378.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0378/amos_0378_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0059.nii.gz",
+ "pseudo_label": "imagesTr/amos_0059.nii.gz",
+ "label": "labelsTr/amos_0059.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0059/amos_0059_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0228.nii.gz",
+ "pseudo_label": "imagesVa/amos_0228.nii.gz",
+ "label": "labelsVa/amos_0228.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0228/amos_0228_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0021.nii.gz",
+ "pseudo_label": "imagesTr/amos_0021.nii.gz",
+ "label": "labelsTr/amos_0021.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0021/amos_0021_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0294.nii.gz",
+ "pseudo_label": "imagesTr/amos_0294.nii.gz",
+ "label": "labelsTr/amos_0294.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0294/amos_0294_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0088.nii.gz",
+ "pseudo_label": "imagesTr/amos_0088.nii.gz",
+ "label": "labelsTr/amos_0088.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0088/amos_0088_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0214.nii.gz",
+ "pseudo_label": "imagesTr/amos_0214.nii.gz",
+ "label": "labelsTr/amos_0214.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0214/amos_0214_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0284.nii.gz",
+ "pseudo_label": "imagesVa/amos_0284.nii.gz",
+ "label": "labelsVa/amos_0284.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0284/amos_0284_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0239.nii.gz",
+ "pseudo_label": "imagesTr/amos_0239.nii.gz",
+ "label": "labelsTr/amos_0239.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0239/amos_0239_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0361.nii.gz",
+ "pseudo_label": "imagesTr/amos_0361.nii.gz",
+ "label": "labelsTr/amos_0361.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0361/amos_0361_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0010.nii.gz",
+ "pseudo_label": "imagesTr/amos_0010.nii.gz",
+ "label": "labelsTr/amos_0010.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0010/amos_0010_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0290.nii.gz",
+ "pseudo_label": "imagesVa/amos_0290.nii.gz",
+ "label": "labelsVa/amos_0290.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0290/amos_0290_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0086.nii.gz",
+ "pseudo_label": "imagesTr/amos_0086.nii.gz",
+ "label": "labelsTr/amos_0086.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0086/amos_0086_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0296.nii.gz",
+ "pseudo_label": "imagesTr/amos_0296.nii.gz",
+ "label": "labelsTr/amos_0296.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0296/amos_0296_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0408.nii.gz",
+ "pseudo_label": "imagesTr/amos_0408.nii.gz",
+ "label": "labelsTr/amos_0408.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0408/amos_0408_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0127.nii.gz",
+ "pseudo_label": "imagesTr/amos_0127.nii.gz",
+ "label": "labelsTr/amos_0127.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0127/amos_0127_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0119.nii.gz",
+ "pseudo_label": "imagesTr/amos_0119.nii.gz",
+ "label": "labelsTr/amos_0119.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0119/amos_0119_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0400.nii.gz",
+ "pseudo_label": "imagesTr/amos_0400.nii.gz",
+ "label": "labelsTr/amos_0400.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0400/amos_0400_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0248.nii.gz",
+ "pseudo_label": "imagesTr/amos_0248.nii.gz",
+ "label": "labelsTr/amos_0248.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0248/amos_0248_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0193.nii.gz",
+ "pseudo_label": "imagesTr/amos_0193.nii.gz",
+ "label": "labelsTr/amos_0193.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0193/amos_0193_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0293.nii.gz",
+ "pseudo_label": "imagesVa/amos_0293.nii.gz",
+ "label": "labelsVa/amos_0293.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0293/amos_0293_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0011.nii.gz",
+ "pseudo_label": "imagesTr/amos_0011.nii.gz",
+ "label": "labelsTr/amos_0011.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0011/amos_0011_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0123.nii.gz",
+ "pseudo_label": "imagesVa/amos_0123.nii.gz",
+ "label": "labelsVa/amos_0123.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0123/amos_0123_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0204.nii.gz",
+ "pseudo_label": "imagesVa/amos_0204.nii.gz",
+ "label": "labelsVa/amos_0204.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0204/amos_0204_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0212.nii.gz",
+ "pseudo_label": "imagesTr/amos_0212.nii.gz",
+ "label": "labelsTr/amos_0212.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0212/amos_0212_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0137.nii.gz",
+ "pseudo_label": "imagesTr/amos_0137.nii.gz",
+ "label": "labelsTr/amos_0137.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0137/amos_0137_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0189.nii.gz",
+ "pseudo_label": "imagesVa/amos_0189.nii.gz",
+ "label": "labelsVa/amos_0189.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0189/amos_0189_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0373.nii.gz",
+ "pseudo_label": "imagesVa/amos_0373.nii.gz",
+ "label": "labelsVa/amos_0373.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0373/amos_0373_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0328.nii.gz",
+ "pseudo_label": "imagesVa/amos_0328.nii.gz",
+ "label": "labelsVa/amos_0328.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0328/amos_0328_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0404.nii.gz",
+ "pseudo_label": "imagesTr/amos_0404.nii.gz",
+ "label": "labelsTr/amos_0404.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0404/amos_0404_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0112.nii.gz",
+ "pseudo_label": "imagesVa/amos_0112.nii.gz",
+ "label": "labelsVa/amos_0112.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0112/amos_0112_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0226.nii.gz",
+ "pseudo_label": "imagesTr/amos_0226.nii.gz",
+ "label": "labelsTr/amos_0226.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0226/amos_0226_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0098.nii.gz",
+ "pseudo_label": "imagesTr/amos_0098.nii.gz",
+ "label": "labelsTr/amos_0098.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0098/amos_0098_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0089.nii.gz",
+ "pseudo_label": "imagesTr/amos_0089.nii.gz",
+ "label": "labelsTr/amos_0089.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0089/amos_0089_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0136.nii.gz",
+ "pseudo_label": "imagesVa/amos_0136.nii.gz",
+ "label": "labelsVa/amos_0136.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0136/amos_0136_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0301.nii.gz",
+ "pseudo_label": "imagesTr/amos_0301.nii.gz",
+ "label": "labelsTr/amos_0301.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0301/amos_0301_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0363.nii.gz",
+ "pseudo_label": "imagesVa/amos_0363.nii.gz",
+ "label": "labelsVa/amos_0363.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0363/amos_0363_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0171.nii.gz",
+ "pseudo_label": "imagesTr/amos_0171.nii.gz",
+ "label": "labelsTr/amos_0171.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0171/amos_0171_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0156.nii.gz",
+ "pseudo_label": "imagesTr/amos_0156.nii.gz",
+ "label": "labelsTr/amos_0156.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0156/amos_0156_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0173.nii.gz",
+ "pseudo_label": "imagesTr/amos_0173.nii.gz",
+ "label": "labelsTr/amos_0173.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0173/amos_0173_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0323.nii.gz",
+ "pseudo_label": "imagesVa/amos_0323.nii.gz",
+ "label": "labelsVa/amos_0323.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0323/amos_0323_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0272.nii.gz",
+ "pseudo_label": "imagesTr/amos_0272.nii.gz",
+ "label": "labelsTr/amos_0272.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0272/amos_0272_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0050.nii.gz",
+ "pseudo_label": "imagesTr/amos_0050.nii.gz",
+ "label": "labelsTr/amos_0050.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0050/amos_0050_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0385.nii.gz",
+ "pseudo_label": "imagesVa/amos_0385.nii.gz",
+ "label": "labelsVa/amos_0385.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0385/amos_0385_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0135.nii.gz",
+ "pseudo_label": "imagesTr/amos_0135.nii.gz",
+ "label": "labelsTr/amos_0135.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0135/amos_0135_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0185.nii.gz",
+ "pseudo_label": "imagesTr/amos_0185.nii.gz",
+ "label": "labelsTr/amos_0185.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0185/amos_0185_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0090.nii.gz",
+ "pseudo_label": "imagesVa/amos_0090.nii.gz",
+ "label": "labelsVa/amos_0090.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0090/amos_0090_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0117.nii.gz",
+ "pseudo_label": "imagesVa/amos_0117.nii.gz",
+ "label": "labelsVa/amos_0117.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0117/amos_0117_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0018.nii.gz",
+ "pseudo_label": "imagesVa/amos_0018.nii.gz",
+ "label": "labelsVa/amos_0018.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0018/amos_0018_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0019.nii.gz",
+ "pseudo_label": "imagesTr/amos_0019.nii.gz",
+ "label": "labelsTr/amos_0019.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0019/amos_0019_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0379.nii.gz",
+ "pseudo_label": "imagesTr/amos_0379.nii.gz",
+ "label": "labelsTr/amos_0379.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0379/amos_0379_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0126.nii.gz",
+ "pseudo_label": "imagesTr/amos_0126.nii.gz",
+ "label": "labelsTr/amos_0126.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0126/amos_0126_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0208.nii.gz",
+ "pseudo_label": "imagesVa/amos_0208.nii.gz",
+ "label": "labelsVa/amos_0208.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0208/amos_0208_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0219.nii.gz",
+ "pseudo_label": "imagesVa/amos_0219.nii.gz",
+ "label": "labelsVa/amos_0219.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0219/amos_0219_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0142.nii.gz",
+ "pseudo_label": "imagesTr/amos_0142.nii.gz",
+ "label": "labelsTr/amos_0142.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0142/amos_0142_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0166.nii.gz",
+ "pseudo_label": "imagesTr/amos_0166.nii.gz",
+ "label": "labelsTr/amos_0166.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0166/amos_0166_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0274.nii.gz",
+ "pseudo_label": "imagesTr/amos_0274.nii.gz",
+ "label": "labelsTr/amos_0274.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0274/amos_0274_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0247.nii.gz",
+ "pseudo_label": "imagesVa/amos_0247.nii.gz",
+ "label": "labelsVa/amos_0247.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0247/amos_0247_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0094.nii.gz",
+ "pseudo_label": "imagesTr/amos_0094.nii.gz",
+ "label": "labelsTr/amos_0094.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0094/amos_0094_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0167.nii.gz",
+ "pseudo_label": "imagesVa/amos_0167.nii.gz",
+ "label": "labelsVa/amos_0167.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0167/amos_0167_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0118.nii.gz",
+ "pseudo_label": "imagesTr/amos_0118.nii.gz",
+ "label": "labelsTr/amos_0118.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0118/amos_0118_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0192.nii.gz",
+ "pseudo_label": "imagesTr/amos_0192.nii.gz",
+ "label": "labelsTr/amos_0192.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0192/amos_0192_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0035.nii.gz",
+ "pseudo_label": "imagesTr/amos_0035.nii.gz",
+ "label": "labelsTr/amos_0035.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0035/amos_0035_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0387.nii.gz",
+ "pseudo_label": "imagesTr/amos_0387.nii.gz",
+ "label": "labelsTr/amos_0387.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0387/amos_0387_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0047.nii.gz",
+ "pseudo_label": "imagesTr/amos_0047.nii.gz",
+ "label": "labelsTr/amos_0047.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0047/amos_0047_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0203.nii.gz",
+ "pseudo_label": "imagesVa/amos_0203.nii.gz",
+ "label": "labelsVa/amos_0203.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0203/amos_0203_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0337.nii.gz",
+ "pseudo_label": "imagesTr/amos_0337.nii.gz",
+ "label": "labelsTr/amos_0337.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0337/amos_0337_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0097.nii.gz",
+ "pseudo_label": "imagesTr/amos_0097.nii.gz",
+ "label": "labelsTr/amos_0097.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0097/amos_0097_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0242.nii.gz",
+ "pseudo_label": "imagesTr/amos_0242.nii.gz",
+ "label": "labelsTr/amos_0242.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0242/amos_0242_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0023.nii.gz",
+ "pseudo_label": "imagesTr/amos_0023.nii.gz",
+ "label": "labelsTr/amos_0023.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0023/amos_0023_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0042.nii.gz",
+ "pseudo_label": "imagesTr/amos_0042.nii.gz",
+ "label": "labelsTr/amos_0042.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0042/amos_0042_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0320.nii.gz",
+ "pseudo_label": "imagesTr/amos_0320.nii.gz",
+ "label": "labelsTr/amos_0320.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0320/amos_0320_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0040.nii.gz",
+ "pseudo_label": "imagesVa/amos_0040.nii.gz",
+ "label": "labelsVa/amos_0040.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0040/amos_0040_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0033.nii.gz",
+ "pseudo_label": "imagesTr/amos_0033.nii.gz",
+ "label": "labelsTr/amos_0033.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0033/amos_0033_seg.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0155.nii.gz",
+ "pseudo_label": "imagesVa/amos_0155.nii.gz",
+ "label": "labelsVa/amos_0155.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0155/amos_0155_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0109.nii.gz",
+ "pseudo_label": "imagesTr/amos_0109.nii.gz",
+ "label": "labelsTr/amos_0109.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0109/amos_0109_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0276.nii.gz",
+ "pseudo_label": "imagesTr/amos_0276.nii.gz",
+ "label": "labelsTr/amos_0276.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0276/amos_0276_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0199.nii.gz",
+ "pseudo_label": "imagesTr/amos_0199.nii.gz",
+ "label": "labelsTr/amos_0199.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0199/amos_0199_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0025.nii.gz",
+ "pseudo_label": "imagesTr/amos_0025.nii.gz",
+ "label": "labelsTr/amos_0025.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0025/amos_0025_seg.nii.gz"
+ }
+ ],
+ "training_transform": [
+ {
+ "_target_": "RandCropByLabelClassesd",
+ "keys": [
+ "@image_key",
+ "@label_key",
+ "@pseudo_label_key",
+ "@label_sv_key"
+ ],
+ "label_key": "@pseudo_label_key",
+ "num_classes": 133,
+ "num_samples": "@num_patches_per_image",
+ "spatial_size": "@patch_size",
+ "ratios": "$tuple(float(i >= 0) for i in range(133))",
+ "warn": false,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandZoomd",
+ "keys": [
+ "@image_key",
+ "@label_key",
+ "@pseudo_label_key",
+ "@label_sv_key"
+ ],
+ "min_zoom": 0.8,
+ "max_zoom": 1.2,
+ "mode": [
+ "trilinear",
+ "nearest",
+ "nearest",
+ "nearest"
+ ],
+ "prob": 0.2,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandSimulateLowResolutiond",
+ "keys": [
+ "@image_key"
+ ],
+ "zoom_range": [
+ 0.3,
+ 1
+ ],
+ "prob": 0.2,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandGaussianSmoothd",
+ "keys": [
+ "@image_key"
+ ],
+ "prob": 0.2,
+ "sigma_x": [
+ 0.5,
+ 1.0
+ ],
+ "sigma_y": [
+ 0.5,
+ 1.0
+ ],
+ "sigma_z": [
+ 0.5,
+ 1.0
+ ]
+ },
+ {
+ "_target_": "RandScaleIntensityd",
+ "keys": [
+ "@image_key"
+ ],
+ "factors": 0.1,
+ "prob": 0.2
+ },
+ {
+ "_target_": "RandShiftIntensityd",
+ "keys": [
+ "@image_key"
+ ],
+ "offsets": 0.1,
+ "prob": 0.2
+ },
+ {
+ "_target_": "RandGaussianNoised",
+ "keys": [
+ "@image_key"
+ ],
+ "prob": 0.2,
+ "mean": 0.0,
+ "std": 0.2
+ }
+ ],
+ "label_dict": {
+ "1": "spleen",
+ "2": "right kidney",
+ "3": "left kidney",
+ "4": "gallbladder",
+ "5": "esophagus",
+ "6": "liver",
+ "7": "stomach",
+ "8": "aorta",
+ "9": "inferior vena cava",
+ "10": "pancreas",
+ "11": "right adrenal gland",
+ "12": "left adrenal gland",
+ "13": "duodenum",
+ "14": "bladder",
+ "15": "prostate or uterus"
+ },
+ "original_label_dict": {
+ "1": "spleen",
+ "2": "right kidney",
+ "3": "left kidney",
+ "4": "gallbladder",
+ "5": "esophagus",
+ "6": "liver",
+ "7": "stomach",
+ "8": "aorta",
+ "9": "postcava",
+ "10": "pancreas",
+ "11": "right adrenal gland",
+ "12": "left adrenal gland",
+ "13": "duodenum",
+ "14": "bladder",
+ "15": "prostate or uterus"
+ },
+ "testing": [
+ {
+ "image": "imagesTr/amos_0015.nii.gz",
+ "label": "labelsTr/amos_0015.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0103.nii.gz",
+ "label": "labelsTr/amos_0103.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0288.nii.gz",
+ "label": "labelsTr/amos_0288.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0371.nii.gz",
+ "label": "labelsTr/amos_0371.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0049.nii.gz",
+ "label": "labelsTr/amos_0049.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0292.nii.gz",
+ "label": "labelsVa/amos_0292.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0367.nii.gz",
+ "label": "labelsTr/amos_0367.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0102.nii.gz",
+ "label": "labelsTr/amos_0102.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0175.nii.gz",
+ "label": "labelsTr/amos_0175.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0279.nii.gz",
+ "label": "labelsTr/amos_0279.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0377.nii.gz",
+ "label": "labelsVa/amos_0377.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0349.nii.gz",
+ "label": "labelsTr/amos_0349.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0224.nii.gz",
+ "label": "labelsTr/amos_0224.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0030.nii.gz",
+ "label": "labelsTr/amos_0030.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0076.nii.gz",
+ "label": "labelsTr/amos_0076.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0180.nii.gz",
+ "label": "labelsTr/amos_0180.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0383.nii.gz",
+ "label": "labelsTr/amos_0383.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0024.nii.gz",
+ "label": "labelsTr/amos_0024.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0174.nii.gz",
+ "label": "labelsVa/amos_0174.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0358.nii.gz",
+ "label": "labelsTr/amos_0358.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0084.nii.gz",
+ "label": "labelsTr/amos_0084.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0289.nii.gz",
+ "label": "labelsVa/amos_0289.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0054.nii.gz",
+ "label": "labelsTr/amos_0054.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0249.nii.gz",
+ "label": "labelsTr/amos_0249.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0399.nii.gz",
+ "label": "labelsVa/amos_0399.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0144.nii.gz",
+ "label": "labelsVa/amos_0144.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0067.nii.gz",
+ "label": "labelsTr/amos_0067.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0005.nii.gz",
+ "label": "labelsTr/amos_0005.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0006.nii.gz",
+ "label": "labelsTr/amos_0006.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0259.nii.gz",
+ "label": "labelsTr/amos_0259.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0230.nii.gz",
+ "label": "labelsTr/amos_0230.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0073.nii.gz",
+ "label": "labelsVa/amos_0073.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0154.nii.gz",
+ "label": "labelsTr/amos_0154.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0216.nii.gz",
+ "label": "labelsVa/amos_0216.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0191.nii.gz",
+ "label": "labelsVa/amos_0191.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0410.nii.gz",
+ "label": "labelsTr/amos_0410.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0254.nii.gz",
+ "label": "labelsTr/amos_0254.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0186.nii.gz",
+ "label": "labelsTr/amos_0186.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0356.nii.gz",
+ "label": "labelsVa/amos_0356.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0184.nii.gz",
+ "label": "labelsTr/amos_0184.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0138.nii.gz",
+ "label": "labelsTr/amos_0138.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0108.nii.gz",
+ "label": "labelsVa/amos_0108.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0309.nii.gz",
+ "label": "labelsVa/amos_0309.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0282.nii.gz",
+ "label": "labelsTr/amos_0282.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0034.nii.gz",
+ "label": "labelsVa/amos_0034.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0058.nii.gz",
+ "label": "labelsTr/amos_0058.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0330.nii.gz",
+ "label": "labelsTr/amos_0330.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0036.nii.gz",
+ "label": "labelsTr/amos_0036.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0092.nii.gz",
+ "label": "labelsTr/amos_0092.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0181.nii.gz",
+ "label": "labelsTr/amos_0181.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0388.nii.gz",
+ "label": "labelsTr/amos_0388.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0044.nii.gz",
+ "label": "labelsTr/amos_0044.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0140.nii.gz",
+ "label": "labelsVa/amos_0140.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0281.nii.gz",
+ "label": "labelsTr/amos_0281.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0313.nii.gz",
+ "label": "labelsVa/amos_0313.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0384.nii.gz",
+ "label": "labelsTr/amos_0384.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0342.nii.gz",
+ "label": "labelsVa/amos_0342.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0366.nii.gz",
+ "label": "labelsTr/amos_0366.nii.gz"
+ },
+ {
+ "image": "imagesTr/amos_0161.nii.gz",
+ "label": "labelsTr/amos_0161.nii.gz"
+ },
+ {
+ "image": "imagesVa/amos_0325.nii.gz",
+ "label": "labelsVa/amos_0325.nii.gz"
+ }
+ ]
+}
diff --git a/vista3d/data/jsons/AbdomenCT-1K_5_folds.json b/vista3d/data/jsons/AbdomenCT-1K_5_folds.json
new file mode 100644
index 0000000..85e8ff3
--- /dev/null
+++ b/vista3d/data/jsons/AbdomenCT-1K_5_folds.json
@@ -0,0 +1,7151 @@
+{
+ "training": [
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00815_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00815_0000.nii.gz",
+ "label": "Mask/Case_00815.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00474_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00474_0000.nii.gz",
+ "label": "Mask/Case_00474.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00931_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00931_0000.nii.gz",
+ "label": "Mask/Case_00931.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00903_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00903_0000.nii.gz",
+ "label": "Mask/Case_00903.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00620_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00620_0000.nii.gz",
+ "label": "Mask/Case_00620.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00136_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00136_0000.nii.gz",
+ "label": "Mask/Case_00136.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00410_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00410_0000.nii.gz",
+ "label": "Mask/Case_00410.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00086_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00086_0000.nii.gz",
+ "label": "Mask/Case_00086.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00194_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00194_0000.nii.gz",
+ "label": "Mask/Case_00194.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00809_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00809_0000.nii.gz",
+ "label": "Mask/Case_00809.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00229_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00229_0000.nii.gz",
+ "label": "Mask/Case_00229.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00839_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00839_0000.nii.gz",
+ "label": "Mask/Case_00839.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00394_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00394_0000.nii.gz",
+ "label": "Mask/Case_00394.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00457_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00457_0000.nii.gz",
+ "label": "Mask/Case_00457.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00418_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00418_0000.nii.gz",
+ "label": "Mask/Case_00418.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00840_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00840_0000.nii.gz",
+ "label": "Mask/Case_00840.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00377_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00377_0000.nii.gz",
+ "label": "Mask/Case_00377.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00823_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00823_0000.nii.gz",
+ "label": "Mask/Case_00823.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00854_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00854_0000.nii.gz",
+ "label": "Mask/Case_00854.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01051_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01051_0000.nii.gz",
+ "label": "Mask/Case_01051.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00040_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00040_0000.nii.gz",
+ "label": "Mask/Case_00040.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00304_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00304_0000.nii.gz",
+ "label": "Mask/Case_00304.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00757_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00757_0000.nii.gz",
+ "label": "Mask/Case_00757.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00639_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00639_0000.nii.gz",
+ "label": "Mask/Case_00639.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00265_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00265_0000.nii.gz",
+ "label": "Mask/Case_00265.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01026_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01026_0000.nii.gz",
+ "label": "Mask/Case_01026.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00954_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00954_0000.nii.gz",
+ "label": "Mask/Case_00954.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00902_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00902_0000.nii.gz",
+ "label": "Mask/Case_00902.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00880_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00880_0000.nii.gz",
+ "label": "Mask/Case_00880.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00230_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00230_0000.nii.gz",
+ "label": "Mask/Case_00230.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00469_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00469_0000.nii.gz",
+ "label": "Mask/Case_00469.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00509_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00509_0000.nii.gz",
+ "label": "Mask/Case_00509.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00776_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00776_0000.nii.gz",
+ "label": "Mask/Case_00776.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00940_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00940_0000.nii.gz",
+ "label": "Mask/Case_00940.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00765_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00765_0000.nii.gz",
+ "label": "Mask/Case_00765.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00551_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00551_0000.nii.gz",
+ "label": "Mask/Case_00551.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00354_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00354_0000.nii.gz",
+ "label": "Mask/Case_00354.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00910_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00910_0000.nii.gz",
+ "label": "Mask/Case_00910.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00795_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00795_0000.nii.gz",
+ "label": "Mask/Case_00795.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00638_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00638_0000.nii.gz",
+ "label": "Mask/Case_00638.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00855_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00855_0000.nii.gz",
+ "label": "Mask/Case_00855.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00759_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00759_0000.nii.gz",
+ "label": "Mask/Case_00759.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00250_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00250_0000.nii.gz",
+ "label": "Mask/Case_00250.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00761_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00761_0000.nii.gz",
+ "label": "Mask/Case_00761.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00549_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00549_0000.nii.gz",
+ "label": "Mask/Case_00549.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00199_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00199_0000.nii.gz",
+ "label": "Mask/Case_00199.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00590_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00590_0000.nii.gz",
+ "label": "Mask/Case_00590.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00374_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00374_0000.nii.gz",
+ "label": "Mask/Case_00374.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00764_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00764_0000.nii.gz",
+ "label": "Mask/Case_00764.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00700_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00700_0000.nii.gz",
+ "label": "Mask/Case_00700.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00142_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00142_0000.nii.gz",
+ "label": "Mask/Case_00142.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00844_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00844_0000.nii.gz",
+ "label": "Mask/Case_00844.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00794_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00794_0000.nii.gz",
+ "label": "Mask/Case_00794.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00634_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00634_0000.nii.gz",
+ "label": "Mask/Case_00634.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00832_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00832_0000.nii.gz",
+ "label": "Mask/Case_00832.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01000_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01000_0000.nii.gz",
+ "label": "Mask/Case_01000.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00268_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00268_0000.nii.gz",
+ "label": "Mask/Case_00268.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00296_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00296_0000.nii.gz",
+ "label": "Mask/Case_00296.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00911_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00911_0000.nii.gz",
+ "label": "Mask/Case_00911.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00407_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00407_0000.nii.gz",
+ "label": "Mask/Case_00407.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00476_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00476_0000.nii.gz",
+ "label": "Mask/Case_00476.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00690_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00690_0000.nii.gz",
+ "label": "Mask/Case_00690.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00053_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00053_0000.nii.gz",
+ "label": "Mask/Case_00053.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00323_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00323_0000.nii.gz",
+ "label": "Mask/Case_00323.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00200_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00200_0000.nii.gz",
+ "label": "Mask/Case_00200.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00452_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00452_0000.nii.gz",
+ "label": "Mask/Case_00452.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00557_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00557_0000.nii.gz",
+ "label": "Mask/Case_00557.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00574_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00574_0000.nii.gz",
+ "label": "Mask/Case_00574.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00294_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00294_0000.nii.gz",
+ "label": "Mask/Case_00294.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01025_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01025_0000.nii.gz",
+ "label": "Mask/Case_01025.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00486_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00486_0000.nii.gz",
+ "label": "Mask/Case_00486.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00270_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00270_0000.nii.gz",
+ "label": "Mask/Case_00270.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01010_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01010_0000.nii.gz",
+ "label": "Mask/Case_01010.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00093_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00093_0000.nii.gz",
+ "label": "Mask/Case_00093.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00395_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00395_0000.nii.gz",
+ "label": "Mask/Case_00395.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00327_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00327_0000.nii.gz",
+ "label": "Mask/Case_00327.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00500_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00500_0000.nii.gz",
+ "label": "Mask/Case_00500.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00790_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00790_0000.nii.gz",
+ "label": "Mask/Case_00790.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00987_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00987_0000.nii.gz",
+ "label": "Mask/Case_00987.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00939_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00939_0000.nii.gz",
+ "label": "Mask/Case_00939.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01034_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01034_0000.nii.gz",
+ "label": "Mask/Case_01034.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00556_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00556_0000.nii.gz",
+ "label": "Mask/Case_00556.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00442_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00442_0000.nii.gz",
+ "label": "Mask/Case_00442.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00201_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00201_0000.nii.gz",
+ "label": "Mask/Case_00201.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00953_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00953_0000.nii.gz",
+ "label": "Mask/Case_00953.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00884_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00884_0000.nii.gz",
+ "label": "Mask/Case_00884.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00143_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00143_0000.nii.gz",
+ "label": "Mask/Case_00143.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00609_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00609_0000.nii.gz",
+ "label": "Mask/Case_00609.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00516_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00516_0000.nii.gz",
+ "label": "Mask/Case_00516.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00181_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00181_0000.nii.gz",
+ "label": "Mask/Case_00181.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00720_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00720_0000.nii.gz",
+ "label": "Mask/Case_00720.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00976_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00976_0000.nii.gz",
+ "label": "Mask/Case_00976.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00499_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00499_0000.nii.gz",
+ "label": "Mask/Case_00499.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00148_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00148_0000.nii.gz",
+ "label": "Mask/Case_00148.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00471_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00471_0000.nii.gz",
+ "label": "Mask/Case_00471.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00371_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00371_0000.nii.gz",
+ "label": "Mask/Case_00371.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00998_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00998_0000.nii.gz",
+ "label": "Mask/Case_00998.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00862_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00862_0000.nii.gz",
+ "label": "Mask/Case_00862.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00337_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00337_0000.nii.gz",
+ "label": "Mask/Case_00337.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00047_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00047_0000.nii.gz",
+ "label": "Mask/Case_00047.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00751_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00751_0000.nii.gz",
+ "label": "Mask/Case_00751.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00878_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00878_0000.nii.gz",
+ "label": "Mask/Case_00878.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00586_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00586_0000.nii.gz",
+ "label": "Mask/Case_00586.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00658_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00658_0000.nii.gz",
+ "label": "Mask/Case_00658.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00427_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00427_0000.nii.gz",
+ "label": "Mask/Case_00427.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00428_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00428_0000.nii.gz",
+ "label": "Mask/Case_00428.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00967_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00967_0000.nii.gz",
+ "label": "Mask/Case_00967.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00666_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00666_0000.nii.gz",
+ "label": "Mask/Case_00666.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00719_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00719_0000.nii.gz",
+ "label": "Mask/Case_00719.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00973_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00973_0000.nii.gz",
+ "label": "Mask/Case_00973.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00172_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00172_0000.nii.gz",
+ "label": "Mask/Case_00172.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00949_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00949_0000.nii.gz",
+ "label": "Mask/Case_00949.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00411_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00411_0000.nii.gz",
+ "label": "Mask/Case_00411.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00366_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00366_0000.nii.gz",
+ "label": "Mask/Case_00366.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00914_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00914_0000.nii.gz",
+ "label": "Mask/Case_00914.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00400_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00400_0000.nii.gz",
+ "label": "Mask/Case_00400.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00223_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00223_0000.nii.gz",
+ "label": "Mask/Case_00223.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00673_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00673_0000.nii.gz",
+ "label": "Mask/Case_00673.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00406_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00406_0000.nii.gz",
+ "label": "Mask/Case_00406.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00401_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00401_0000.nii.gz",
+ "label": "Mask/Case_00401.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00702_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00702_0000.nii.gz",
+ "label": "Mask/Case_00702.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00293_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00293_0000.nii.gz",
+ "label": "Mask/Case_00293.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00591_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00591_0000.nii.gz",
+ "label": "Mask/Case_00591.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00986_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00986_0000.nii.gz",
+ "label": "Mask/Case_00986.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00946_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00946_0000.nii.gz",
+ "label": "Mask/Case_00946.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00069_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00069_0000.nii.gz",
+ "label": "Mask/Case_00069.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00536_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00536_0000.nii.gz",
+ "label": "Mask/Case_00536.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00508_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00508_0000.nii.gz",
+ "label": "Mask/Case_00508.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00174_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00174_0000.nii.gz",
+ "label": "Mask/Case_00174.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00056_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00056_0000.nii.gz",
+ "label": "Mask/Case_00056.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00798_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00798_0000.nii.gz",
+ "label": "Mask/Case_00798.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00695_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00695_0000.nii.gz",
+ "label": "Mask/Case_00695.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00385_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00385_0000.nii.gz",
+ "label": "Mask/Case_00385.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00843_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00843_0000.nii.gz",
+ "label": "Mask/Case_00843.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00359_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00359_0000.nii.gz",
+ "label": "Mask/Case_00359.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00338_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00338_0000.nii.gz",
+ "label": "Mask/Case_00338.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00868_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00868_0000.nii.gz",
+ "label": "Mask/Case_00868.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00571_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00571_0000.nii.gz",
+ "label": "Mask/Case_00571.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00333_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00333_0000.nii.gz",
+ "label": "Mask/Case_00333.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00511_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00511_0000.nii.gz",
+ "label": "Mask/Case_00511.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00126_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00126_0000.nii.gz",
+ "label": "Mask/Case_00126.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00466_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00466_0000.nii.gz",
+ "label": "Mask/Case_00466.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00793_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00793_0000.nii.gz",
+ "label": "Mask/Case_00793.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00772_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00772_0000.nii.gz",
+ "label": "Mask/Case_00772.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00928_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00928_0000.nii.gz",
+ "label": "Mask/Case_00928.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00254_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00254_0000.nii.gz",
+ "label": "Mask/Case_00254.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00612_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00612_0000.nii.gz",
+ "label": "Mask/Case_00612.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00024_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00024_0000.nii.gz",
+ "label": "Mask/Case_00024.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00930_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00930_0000.nii.gz",
+ "label": "Mask/Case_00930.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00882_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00882_0000.nii.gz",
+ "label": "Mask/Case_00882.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00981_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00981_0000.nii.gz",
+ "label": "Mask/Case_00981.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00951_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00951_0000.nii.gz",
+ "label": "Mask/Case_00951.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00829_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00829_0000.nii.gz",
+ "label": "Mask/Case_00829.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00068_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00068_0000.nii.gz",
+ "label": "Mask/Case_00068.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00116_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00116_0000.nii.gz",
+ "label": "Mask/Case_00116.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00905_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00905_0000.nii.gz",
+ "label": "Mask/Case_00905.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00261_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00261_0000.nii.gz",
+ "label": "Mask/Case_00261.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00568_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00568_0000.nii.gz",
+ "label": "Mask/Case_00568.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00728_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00728_0000.nii.gz",
+ "label": "Mask/Case_00728.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00314_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00314_0000.nii.gz",
+ "label": "Mask/Case_00314.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00403_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00403_0000.nii.gz",
+ "label": "Mask/Case_00403.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00403_0000/Case_00403_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00290_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00290_0000.nii.gz",
+ "label": "Mask/Case_00290.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00290_0000/Case_00290_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00140_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00140_0000.nii.gz",
+ "label": "Mask/Case_00140.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00140_0000/Case_00140_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00198_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00198_0000.nii.gz",
+ "label": "Mask/Case_00198.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00198_0000/Case_00198_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00470_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00470_0000.nii.gz",
+ "label": "Mask/Case_00470.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00470_0000/Case_00470_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00713_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00713_0000.nii.gz",
+ "label": "Mask/Case_00713.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00713_0000/Case_00713_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01002_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01002_0000.nii.gz",
+ "label": "Mask/Case_01002.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01002_0000/Case_01002_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00894_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00894_0000.nii.gz",
+ "label": "Mask/Case_00894.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00894_0000/Case_00894_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00167_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00167_0000.nii.gz",
+ "label": "Mask/Case_00167.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00167_0000/Case_00167_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00679_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00679_0000.nii.gz",
+ "label": "Mask/Case_00679.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00679_0000/Case_00679_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00164_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00164_0000.nii.gz",
+ "label": "Mask/Case_00164.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00164_0000/Case_00164_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00995_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00995_0000.nii.gz",
+ "label": "Mask/Case_00995.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00995_0000/Case_00995_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00520_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00520_0000.nii.gz",
+ "label": "Mask/Case_00520.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00520_0000/Case_00520_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00770_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00770_0000.nii.gz",
+ "label": "Mask/Case_00770.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00770_0000/Case_00770_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00787_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00787_0000.nii.gz",
+ "label": "Mask/Case_00787.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00787_0000/Case_00787_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00686_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00686_0000.nii.gz",
+ "label": "Mask/Case_00686.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00686_0000/Case_00686_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00613_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00613_0000.nii.gz",
+ "label": "Mask/Case_00613.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00613_0000/Case_00613_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00021_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00021_0000.nii.gz",
+ "label": "Mask/Case_00021.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00021_0000/Case_00021_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00259_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00259_0000.nii.gz",
+ "label": "Mask/Case_00259.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00259_0000/Case_00259_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00836_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00836_0000.nii.gz",
+ "label": "Mask/Case_00836.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00836_0000/Case_00836_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00493_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00493_0000.nii.gz",
+ "label": "Mask/Case_00493.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00493_0000/Case_00493_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00621_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00621_0000.nii.gz",
+ "label": "Mask/Case_00621.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00621_0000/Case_00621_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00984_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00984_0000.nii.gz",
+ "label": "Mask/Case_00984.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00984_0000/Case_00984_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00436_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00436_0000.nii.gz",
+ "label": "Mask/Case_00436.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00436_0000/Case_00436_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00180_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00180_0000.nii.gz",
+ "label": "Mask/Case_00180.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00180_0000/Case_00180_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00929_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00929_0000.nii.gz",
+ "label": "Mask/Case_00929.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00929_0000/Case_00929_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00190_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00190_0000.nii.gz",
+ "label": "Mask/Case_00190.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00190_0000/Case_00190_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00623_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00623_0000.nii.gz",
+ "label": "Mask/Case_00623.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00623_0000/Case_00623_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00419_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00419_0000.nii.gz",
+ "label": "Mask/Case_00419.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00419_0000/Case_00419_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00582_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00582_0000.nii.gz",
+ "label": "Mask/Case_00582.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00582_0000/Case_00582_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00245_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00245_0000.nii.gz",
+ "label": "Mask/Case_00245.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00245_0000/Case_00245_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00216_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00216_0000.nii.gz",
+ "label": "Mask/Case_00216.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00216_0000/Case_00216_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00993_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00993_0000.nii.gz",
+ "label": "Mask/Case_00993.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00993_0000/Case_00993_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00298_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00298_0000.nii.gz",
+ "label": "Mask/Case_00298.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00298_0000/Case_00298_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00441_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00441_0000.nii.gz",
+ "label": "Mask/Case_00441.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00441_0000/Case_00441_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00153_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00153_0000.nii.gz",
+ "label": "Mask/Case_00153.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00153_0000/Case_00153_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00213_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00213_0000.nii.gz",
+ "label": "Mask/Case_00213.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00213_0000/Case_00213_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00950_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00950_0000.nii.gz",
+ "label": "Mask/Case_00950.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00950_0000/Case_00950_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00355_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00355_0000.nii.gz",
+ "label": "Mask/Case_00355.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00355_0000/Case_00355_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00900_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00900_0000.nii.gz",
+ "label": "Mask/Case_00900.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00900_0000/Case_00900_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00388_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00388_0000.nii.gz",
+ "label": "Mask/Case_00388.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00388_0000/Case_00388_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00248_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00248_0000.nii.gz",
+ "label": "Mask/Case_00248.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00248_0000/Case_00248_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00036_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00036_0000.nii.gz",
+ "label": "Mask/Case_00036.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00036_0000/Case_00036_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00092_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00092_0000.nii.gz",
+ "label": "Mask/Case_00092.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00092_0000/Case_00092_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00206_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00206_0000.nii.gz",
+ "label": "Mask/Case_00206.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00206_0000/Case_00206_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00413_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00413_0000.nii.gz",
+ "label": "Mask/Case_00413.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00413_0000/Case_00413_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00852_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00852_0000.nii.gz",
+ "label": "Mask/Case_00852.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00852_0000/Case_00852_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00575_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00575_0000.nii.gz",
+ "label": "Mask/Case_00575.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00575_0000/Case_00575_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00184_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00184_0000.nii.gz",
+ "label": "Mask/Case_00184.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00184_0000/Case_00184_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00055_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00055_0000.nii.gz",
+ "label": "Mask/Case_00055.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00055_0000/Case_00055_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00108_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00108_0000.nii.gz",
+ "label": "Mask/Case_00108.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00108_0000/Case_00108_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00207_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00207_0000.nii.gz",
+ "label": "Mask/Case_00207.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00207_0000/Case_00207_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00015_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00015_0000.nii.gz",
+ "label": "Mask/Case_00015.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00015_0000/Case_00015_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00870_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00870_0000.nii.gz",
+ "label": "Mask/Case_00870.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00870_0000/Case_00870_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01044_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01044_0000.nii.gz",
+ "label": "Mask/Case_01044.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01044_0000/Case_01044_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00186_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00186_0000.nii.gz",
+ "label": "Mask/Case_00186.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00186_0000/Case_00186_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00525_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00525_0000.nii.gz",
+ "label": "Mask/Case_00525.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00525_0000/Case_00525_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00166_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00166_0000.nii.gz",
+ "label": "Mask/Case_00166.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00166_0000/Case_00166_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00796_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00796_0000.nii.gz",
+ "label": "Mask/Case_00796.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00796_0000/Case_00796_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00054_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00054_0000.nii.gz",
+ "label": "Mask/Case_00054.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00054_0000/Case_00054_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00871_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00871_0000.nii.gz",
+ "label": "Mask/Case_00871.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00871_0000/Case_00871_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00569_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00569_0000.nii.gz",
+ "label": "Mask/Case_00569.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00569_0000/Case_00569_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00225_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00225_0000.nii.gz",
+ "label": "Mask/Case_00225.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00225_0000/Case_00225_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00232_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00232_0000.nii.gz",
+ "label": "Mask/Case_00232.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00232_0000/Case_00232_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00831_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00831_0000.nii.gz",
+ "label": "Mask/Case_00831.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00831_0000/Case_00831_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00714_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00714_0000.nii.gz",
+ "label": "Mask/Case_00714.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00714_0000/Case_00714_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00382_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00382_0000.nii.gz",
+ "label": "Mask/Case_00382.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00382_0000/Case_00382_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00771_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00771_0000.nii.gz",
+ "label": "Mask/Case_00771.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00771_0000/Case_00771_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01058_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01058_0000.nii.gz",
+ "label": "Mask/Case_01058.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01058_0000/Case_01058_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00432_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00432_0000.nii.gz",
+ "label": "Mask/Case_00432.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00432_0000/Case_00432_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00994_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00994_0000.nii.gz",
+ "label": "Mask/Case_00994.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00994_0000/Case_00994_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00683_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00683_0000.nii.gz",
+ "label": "Mask/Case_00683.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00683_0000/Case_00683_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00849_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00849_0000.nii.gz",
+ "label": "Mask/Case_00849.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00849_0000/Case_00849_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00753_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00753_0000.nii.gz",
+ "label": "Mask/Case_00753.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00753_0000/Case_00753_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00482_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00482_0000.nii.gz",
+ "label": "Mask/Case_00482.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00482_0000/Case_00482_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00343_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00343_0000.nii.gz",
+ "label": "Mask/Case_00343.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00343_0000/Case_00343_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00018_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00018_0000.nii.gz",
+ "label": "Mask/Case_00018.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00018_0000/Case_00018_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00440_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00440_0000.nii.gz",
+ "label": "Mask/Case_00440.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00440_0000/Case_00440_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00097_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00097_0000.nii.gz",
+ "label": "Mask/Case_00097.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00097_0000/Case_00097_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00307_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00307_0000.nii.gz",
+ "label": "Mask/Case_00307.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00307_0000/Case_00307_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00266_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00266_0000.nii.gz",
+ "label": "Mask/Case_00266.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00266_0000/Case_00266_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00280_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00280_0000.nii.gz",
+ "label": "Mask/Case_00280.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00280_0000/Case_00280_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00926_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00926_0000.nii.gz",
+ "label": "Mask/Case_00926.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00926_0000/Case_00926_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00238_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00238_0000.nii.gz",
+ "label": "Mask/Case_00238.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00238_0000/Case_00238_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00835_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00835_0000.nii.gz",
+ "label": "Mask/Case_00835.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00835_0000/Case_00835_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00278_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00278_0000.nii.gz",
+ "label": "Mask/Case_00278.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00278_0000/Case_00278_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00941_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00941_0000.nii.gz",
+ "label": "Mask/Case_00941.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00941_0000/Case_00941_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00768_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00768_0000.nii.gz",
+ "label": "Mask/Case_00768.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00768_0000/Case_00768_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00599_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00599_0000.nii.gz",
+ "label": "Mask/Case_00599.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00599_0000/Case_00599_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00063_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00063_0000.nii.gz",
+ "label": "Mask/Case_00063.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00063_0000/Case_00063_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00074_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00074_0000.nii.gz",
+ "label": "Mask/Case_00074.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00074_0000/Case_00074_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00550_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00550_0000.nii.gz",
+ "label": "Mask/Case_00550.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00550_0000/Case_00550_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00279_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00279_0000.nii.gz",
+ "label": "Mask/Case_00279.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00279_0000/Case_00279_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00906_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00906_0000.nii.gz",
+ "label": "Mask/Case_00906.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00906_0000/Case_00906_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00824_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00824_0000.nii.gz",
+ "label": "Mask/Case_00824.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00824_0000/Case_00824_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00389_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00389_0000.nii.gz",
+ "label": "Mask/Case_00389.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00389_0000/Case_00389_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00602_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00602_0000.nii.gz",
+ "label": "Mask/Case_00602.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00602_0000/Case_00602_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00501_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00501_0000.nii.gz",
+ "label": "Mask/Case_00501.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00501_0000/Case_00501_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00426_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00426_0000.nii.gz",
+ "label": "Mask/Case_00426.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00426_0000/Case_00426_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00039_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00039_0000.nii.gz",
+ "label": "Mask/Case_00039.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00039_0000/Case_00039_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00546_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00546_0000.nii.gz",
+ "label": "Mask/Case_00546.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00546_0000/Case_00546_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01011_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01011_0000.nii.gz",
+ "label": "Mask/Case_01011.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01011_0000/Case_01011_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01048_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01048_0000.nii.gz",
+ "label": "Mask/Case_01048.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01048_0000/Case_01048_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01024_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01024_0000.nii.gz",
+ "label": "Mask/Case_01024.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01024_0000/Case_01024_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00539_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00539_0000.nii.gz",
+ "label": "Mask/Case_00539.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00539_0000/Case_00539_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00247_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00247_0000.nii.gz",
+ "label": "Mask/Case_00247.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00247_0000/Case_00247_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00646_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00646_0000.nii.gz",
+ "label": "Mask/Case_00646.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00646_0000/Case_00646_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00362_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00362_0000.nii.gz",
+ "label": "Mask/Case_00362.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00362_0000/Case_00362_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01057_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01057_0000.nii.gz",
+ "label": "Mask/Case_01057.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01057_0000/Case_01057_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00083_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00083_0000.nii.gz",
+ "label": "Mask/Case_00083.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00083_0000/Case_00083_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00813_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00813_0000.nii.gz",
+ "label": "Mask/Case_00813.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00813_0000/Case_00813_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00283_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00283_0000.nii.gz",
+ "label": "Mask/Case_00283.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00283_0000/Case_00283_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00958_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00958_0000.nii.gz",
+ "label": "Mask/Case_00958.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00958_0000/Case_00958_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00368_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00368_0000.nii.gz",
+ "label": "Mask/Case_00368.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00368_0000/Case_00368_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00827_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00827_0000.nii.gz",
+ "label": "Mask/Case_00827.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00827_0000/Case_00827_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00026_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00026_0000.nii.gz",
+ "label": "Mask/Case_00026.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00026_0000/Case_00026_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00632_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00632_0000.nii.gz",
+ "label": "Mask/Case_00632.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00632_0000/Case_00632_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00449_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00449_0000.nii.gz",
+ "label": "Mask/Case_00449.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00449_0000/Case_00449_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01008_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01008_0000.nii.gz",
+ "label": "Mask/Case_01008.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01008_0000/Case_01008_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00680_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00680_0000.nii.gz",
+ "label": "Mask/Case_00680.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00680_0000/Case_00680_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00435_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00435_0000.nii.gz",
+ "label": "Mask/Case_00435.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00435_0000/Case_00435_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00085_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00085_0000.nii.gz",
+ "label": "Mask/Case_00085.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00085_0000/Case_00085_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00583_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00583_0000.nii.gz",
+ "label": "Mask/Case_00583.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00583_0000/Case_00583_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00423_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00423_0000.nii.gz",
+ "label": "Mask/Case_00423.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00423_0000/Case_00423_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00895_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00895_0000.nii.gz",
+ "label": "Mask/Case_00895.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00895_0000/Case_00895_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00178_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00178_0000.nii.gz",
+ "label": "Mask/Case_00178.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00178_0000/Case_00178_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00699_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00699_0000.nii.gz",
+ "label": "Mask/Case_00699.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00699_0000/Case_00699_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00008_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00008_0000.nii.gz",
+ "label": "Mask/Case_00008.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00008_0000/Case_00008_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00019_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00019_0000.nii.gz",
+ "label": "Mask/Case_00019.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00019_0000/Case_00019_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01003_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01003_0000.nii.gz",
+ "label": "Mask/Case_01003.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01003_0000/Case_01003_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00738_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00738_0000.nii.gz",
+ "label": "Mask/Case_00738.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00738_0000/Case_00738_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00168_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00168_0000.nii.gz",
+ "label": "Mask/Case_00168.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00168_0000/Case_00168_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00532_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00532_0000.nii.gz",
+ "label": "Mask/Case_00532.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00532_0000/Case_00532_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00065_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00065_0000.nii.gz",
+ "label": "Mask/Case_00065.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00065_0000/Case_00065_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00045_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00045_0000.nii.gz",
+ "label": "Mask/Case_00045.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00045_0000/Case_00045_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00348_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00348_0000.nii.gz",
+ "label": "Mask/Case_00348.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00348_0000/Case_00348_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00887_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00887_0000.nii.gz",
+ "label": "Mask/Case_00887.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00887_0000/Case_00887_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00129_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00129_0000.nii.gz",
+ "label": "Mask/Case_00129.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00129_0000/Case_00129_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00163_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00163_0000.nii.gz",
+ "label": "Mask/Case_00163.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00163_0000/Case_00163_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00121_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00121_0000.nii.gz",
+ "label": "Mask/Case_00121.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00121_0000/Case_00121_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00012_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00012_0000.nii.gz",
+ "label": "Mask/Case_00012.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00012_0000/Case_00012_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00999_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00999_0000.nii.gz",
+ "label": "Mask/Case_00999.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00999_0000/Case_00999_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00221_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00221_0000.nii.gz",
+ "label": "Mask/Case_00221.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00221_0000/Case_00221_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00883_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00883_0000.nii.gz",
+ "label": "Mask/Case_00883.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00883_0000/Case_00883_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01043_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01043_0000.nii.gz",
+ "label": "Mask/Case_01043.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01043_0000/Case_01043_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00094_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00094_0000.nii.gz",
+ "label": "Mask/Case_00094.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00094_0000/Case_00094_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00311_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00311_0000.nii.gz",
+ "label": "Mask/Case_00311.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00311_0000/Case_00311_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00587_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00587_0000.nii.gz",
+ "label": "Mask/Case_00587.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00587_0000/Case_00587_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01005_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01005_0000.nii.gz",
+ "label": "Mask/Case_01005.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01005_0000/Case_01005_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00154_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00154_0000.nii.gz",
+ "label": "Mask/Case_00154.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00154_0000/Case_00154_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00523_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00523_0000.nii.gz",
+ "label": "Mask/Case_00523.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00523_0000/Case_00523_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00147_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00147_0000.nii.gz",
+ "label": "Mask/Case_00147.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00147_0000/Case_00147_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00766_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00766_0000.nii.gz",
+ "label": "Mask/Case_00766.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00766_0000/Case_00766_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00712_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00712_0000.nii.gz",
+ "label": "Mask/Case_00712.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00712_0000/Case_00712_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00340_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00340_0000.nii.gz",
+ "label": "Mask/Case_00340.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00340_0000/Case_00340_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00465_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00465_0000.nii.gz",
+ "label": "Mask/Case_00465.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00465_0000/Case_00465_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00521_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00521_0000.nii.gz",
+ "label": "Mask/Case_00521.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00521_0000/Case_00521_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00077_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00077_0000.nii.gz",
+ "label": "Mask/Case_00077.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00077_0000/Case_00077_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00923_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00923_0000.nii.gz",
+ "label": "Mask/Case_00923.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00923_0000/Case_00923_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00879_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00879_0000.nii.gz",
+ "label": "Mask/Case_00879.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00879_0000/Case_00879_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00315_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00315_0000.nii.gz",
+ "label": "Mask/Case_00315.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00315_0000/Case_00315_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00139_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00139_0000.nii.gz",
+ "label": "Mask/Case_00139.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00139_0000/Case_00139_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00503_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00503_0000.nii.gz",
+ "label": "Mask/Case_00503.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00503_0000/Case_00503_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01060_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01060_0000.nii.gz",
+ "label": "Mask/Case_01060.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01060_0000/Case_01060_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00773_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00773_0000.nii.gz",
+ "label": "Mask/Case_00773.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00773_0000/Case_00773_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00369_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00369_0000.nii.gz",
+ "label": "Mask/Case_00369.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00369_0000/Case_00369_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00059_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00059_0000.nii.gz",
+ "label": "Mask/Case_00059.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00059_0000/Case_00059_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00652_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00652_0000.nii.gz",
+ "label": "Mask/Case_00652.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00652_0000/Case_00652_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00170_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00170_0000.nii.gz",
+ "label": "Mask/Case_00170.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00170_0000/Case_00170_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00202_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00202_0000.nii.gz",
+ "label": "Mask/Case_00202.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00202_0000/Case_00202_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00974_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00974_0000.nii.gz",
+ "label": "Mask/Case_00974.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00974_0000/Case_00974_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00622_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00622_0000.nii.gz",
+ "label": "Mask/Case_00622.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00622_0000/Case_00622_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00988_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00988_0000.nii.gz",
+ "label": "Mask/Case_00988.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00988_0000/Case_00988_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00431_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00431_0000.nii.gz",
+ "label": "Mask/Case_00431.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00431_0000/Case_00431_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00717_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00717_0000.nii.gz",
+ "label": "Mask/Case_00717.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00717_0000/Case_00717_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00162_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00162_0000.nii.gz",
+ "label": "Mask/Case_00162.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00162_0000/Case_00162_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00919_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00919_0000.nii.gz",
+ "label": "Mask/Case_00919.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00919_0000/Case_00919_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00671_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00671_0000.nii.gz",
+ "label": "Mask/Case_00671.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00671_0000/Case_00671_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00297_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00297_0000.nii.gz",
+ "label": "Mask/Case_00297.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00297_0000/Case_00297_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00802_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00802_0000.nii.gz",
+ "label": "Mask/Case_00802.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00802_0000/Case_00802_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00661_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00661_0000.nii.gz",
+ "label": "Mask/Case_00661.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00661_0000/Case_00661_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00504_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00504_0000.nii.gz",
+ "label": "Mask/Case_00504.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00504_0000/Case_00504_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00072_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00072_0000.nii.gz",
+ "label": "Mask/Case_00072.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00072_0000/Case_00072_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00171_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00171_0000.nii.gz",
+ "label": "Mask/Case_00171.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00171_0000/Case_00171_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01036_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01036_0000.nii.gz",
+ "label": "Mask/Case_01036.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01036_0000/Case_01036_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00079_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00079_0000.nii.gz",
+ "label": "Mask/Case_00079.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00079_0000/Case_00079_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00242_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00242_0000.nii.gz",
+ "label": "Mask/Case_00242.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00242_0000/Case_00242_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00080_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00080_0000.nii.gz",
+ "label": "Mask/Case_00080.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00080_0000/Case_00080_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00034_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00034_0000.nii.gz",
+ "label": "Mask/Case_00034.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00034_0000/Case_00034_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00300_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00300_0000.nii.gz",
+ "label": "Mask/Case_00300.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00300_0000/Case_00300_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00420_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00420_0000.nii.gz",
+ "label": "Mask/Case_00420.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00420_0000/Case_00420_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01062_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01062_0000.nii.gz",
+ "label": "Mask/Case_01062.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01062_0000/Case_01062_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00826_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00826_0000.nii.gz",
+ "label": "Mask/Case_00826.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00826_0000/Case_00826_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00367_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00367_0000.nii.gz",
+ "label": "Mask/Case_00367.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00367_0000/Case_00367_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01056_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01056_0000.nii.gz",
+ "label": "Mask/Case_01056.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01056_0000/Case_01056_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00312_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00312_0000.nii.gz",
+ "label": "Mask/Case_00312.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00312_0000/Case_00312_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00992_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00992_0000.nii.gz",
+ "label": "Mask/Case_00992.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00992_0000/Case_00992_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00212_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00212_0000.nii.gz",
+ "label": "Mask/Case_00212.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00212_0000/Case_00212_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01031_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01031_0000.nii.gz",
+ "label": "Mask/Case_01031.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01031_0000/Case_01031_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00580_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00580_0000.nii.gz",
+ "label": "Mask/Case_00580.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00580_0000/Case_00580_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00341_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00341_0000.nii.gz",
+ "label": "Mask/Case_00341.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00341_0000/Case_00341_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00726_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00726_0000.nii.gz",
+ "label": "Mask/Case_00726.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00726_0000/Case_00726_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00519_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00519_0000.nii.gz",
+ "label": "Mask/Case_00519.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00519_0000/Case_00519_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00942_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00942_0000.nii.gz",
+ "label": "Mask/Case_00942.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00942_0000/Case_00942_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00342_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00342_0000.nii.gz",
+ "label": "Mask/Case_00342.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00342_0000/Case_00342_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00347_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00347_0000.nii.gz",
+ "label": "Mask/Case_00347.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00347_0000/Case_00347_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00005_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00005_0000.nii.gz",
+ "label": "Mask/Case_00005.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00005_0000/Case_00005_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00070_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00070_0000.nii.gz",
+ "label": "Mask/Case_00070.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00070_0000/Case_00070_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00138_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00138_0000.nii.gz",
+ "label": "Mask/Case_00138.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00138_0000/Case_00138_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00462_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00462_0000.nii.gz",
+ "label": "Mask/Case_00462.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00462_0000/Case_00462_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00692_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00692_0000.nii.gz",
+ "label": "Mask/Case_00692.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00692_0000/Case_00692_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01055_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01055_0000.nii.gz",
+ "label": "Mask/Case_01055.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01055_0000/Case_01055_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00904_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00904_0000.nii.gz",
+ "label": "Mask/Case_00904.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00904_0000/Case_00904_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00244_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00244_0000.nii.gz",
+ "label": "Mask/Case_00244.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00244_0000/Case_00244_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00349_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00349_0000.nii.gz",
+ "label": "Mask/Case_00349.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00349_0000/Case_00349_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00322_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00322_0000.nii.gz",
+ "label": "Mask/Case_00322.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00322_0000/Case_00322_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00577_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00577_0000.nii.gz",
+ "label": "Mask/Case_00577.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00577_0000/Case_00577_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00445_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00445_0000.nii.gz",
+ "label": "Mask/Case_00445.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00445_0000/Case_00445_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00522_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00522_0000.nii.gz",
+ "label": "Mask/Case_00522.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00522_0000/Case_00522_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00860_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00860_0000.nii.gz",
+ "label": "Mask/Case_00860.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00860_0000/Case_00860_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00081_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00081_0000.nii.gz",
+ "label": "Mask/Case_00081.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00081_0000/Case_00081_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00203_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00203_0000.nii.gz",
+ "label": "Mask/Case_00203.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00203_0000/Case_00203_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01014_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01014_0000.nii.gz",
+ "label": "Mask/Case_01014.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01014_0000/Case_01014_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00780_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00780_0000.nii.gz",
+ "label": "Mask/Case_00780.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00780_0000/Case_00780_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00454_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00454_0000.nii.gz",
+ "label": "Mask/Case_00454.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00454_0000/Case_00454_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00396_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00396_0000.nii.gz",
+ "label": "Mask/Case_00396.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00396_0000/Case_00396_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00594_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00594_0000.nii.gz",
+ "label": "Mask/Case_00594.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00594_0000/Case_00594_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00060_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00060_0000.nii.gz",
+ "label": "Mask/Case_00060.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00060_0000/Case_00060_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00589_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00589_0000.nii.gz",
+ "label": "Mask/Case_00589.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00589_0000/Case_00589_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00709_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00709_0000.nii.gz",
+ "label": "Mask/Case_00709.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00709_0000/Case_00709_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00945_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00945_0000.nii.gz",
+ "label": "Mask/Case_00945.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00945_0000/Case_00945_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00286_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00286_0000.nii.gz",
+ "label": "Mask/Case_00286.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00286_0000/Case_00286_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00618_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00618_0000.nii.gz",
+ "label": "Mask/Case_00618.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00618_0000/Case_00618_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00197_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00197_0000.nii.gz",
+ "label": "Mask/Case_00197.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00197_0000/Case_00197_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00876_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00876_0000.nii.gz",
+ "label": "Mask/Case_00876.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00876_0000/Case_00876_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01009_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01009_0000.nii.gz",
+ "label": "Mask/Case_01009.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01009_0000/Case_01009_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00041_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00041_0000.nii.gz",
+ "label": "Mask/Case_00041.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00041_0000/Case_00041_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00144_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00144_0000.nii.gz",
+ "label": "Mask/Case_00144.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00144_0000/Case_00144_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00818_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00818_0000.nii.gz",
+ "label": "Mask/Case_00818.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00818_0000/Case_00818_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00302_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00302_0000.nii.gz",
+ "label": "Mask/Case_00302.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00302_0000/Case_00302_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00989_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00989_0000.nii.gz",
+ "label": "Mask/Case_00989.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00989_0000/Case_00989_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00023_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00023_0000.nii.gz",
+ "label": "Mask/Case_00023.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00023_0000/Case_00023_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00430_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00430_0000.nii.gz",
+ "label": "Mask/Case_00430.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00430_0000/Case_00430_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00215_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00215_0000.nii.gz",
+ "label": "Mask/Case_00215.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00215_0000/Case_00215_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00808_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00808_0000.nii.gz",
+ "label": "Mask/Case_00808.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00808_0000/Case_00808_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00331_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00331_0000.nii.gz",
+ "label": "Mask/Case_00331.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00331_0000/Case_00331_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00562_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00562_0000.nii.gz",
+ "label": "Mask/Case_00562.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00562_0000/Case_00562_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00979_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00979_0000.nii.gz",
+ "label": "Mask/Case_00979.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00979_0000/Case_00979_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00329_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00329_0000.nii.gz",
+ "label": "Mask/Case_00329.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00329_0000/Case_00329_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00786_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00786_0000.nii.gz",
+ "label": "Mask/Case_00786.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00786_0000/Case_00786_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00112_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00112_0000.nii.gz",
+ "label": "Mask/Case_00112.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00112_0000/Case_00112_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00319_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00319_0000.nii.gz",
+ "label": "Mask/Case_00319.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00319_0000/Case_00319_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00952_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00952_0000.nii.gz",
+ "label": "Mask/Case_00952.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00952_0000/Case_00952_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00263_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00263_0000.nii.gz",
+ "label": "Mask/Case_00263.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00263_0000/Case_00263_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00715_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00715_0000.nii.gz",
+ "label": "Mask/Case_00715.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00715_0000/Case_00715_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00284_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00284_0000.nii.gz",
+ "label": "Mask/Case_00284.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00284_0000/Case_00284_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00804_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00804_0000.nii.gz",
+ "label": "Mask/Case_00804.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00804_0000/Case_00804_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00997_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00997_0000.nii.gz",
+ "label": "Mask/Case_00997.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00997_0000/Case_00997_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00150_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00150_0000.nii.gz",
+ "label": "Mask/Case_00150.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00150_0000/Case_00150_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00103_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00103_0000.nii.gz",
+ "label": "Mask/Case_00103.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00103_0000/Case_00103_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00970_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00970_0000.nii.gz",
+ "label": "Mask/Case_00970.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00970_0000/Case_00970_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01029_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01029_0000.nii.gz",
+ "label": "Mask/Case_01029.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01029_0000/Case_01029_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00596_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00596_0000.nii.gz",
+ "label": "Mask/Case_00596.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00596_0000/Case_00596_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01027_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01027_0000.nii.gz",
+ "label": "Mask/Case_01027.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01027_0000/Case_01027_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00512_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00512_0000.nii.gz",
+ "label": "Mask/Case_00512.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00512_0000/Case_00512_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00743_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00743_0000.nii.gz",
+ "label": "Mask/Case_00743.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00743_0000/Case_00743_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00811_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00811_0000.nii.gz",
+ "label": "Mask/Case_00811.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00811_0000/Case_00811_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00921_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00921_0000.nii.gz",
+ "label": "Mask/Case_00921.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00921_0000/Case_00921_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00306_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00306_0000.nii.gz",
+ "label": "Mask/Case_00306.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00306_0000/Case_00306_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00603_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00603_0000.nii.gz",
+ "label": "Mask/Case_00603.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00603_0000/Case_00603_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00912_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00912_0000.nii.gz",
+ "label": "Mask/Case_00912.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00912_0000/Case_00912_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00451_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00451_0000.nii.gz",
+ "label": "Mask/Case_00451.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00451_0000/Case_00451_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00526_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00526_0000.nii.gz",
+ "label": "Mask/Case_00526.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00526_0000/Case_00526_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00165_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00165_0000.nii.gz",
+ "label": "Mask/Case_00165.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00165_0000/Case_00165_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00980_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00980_0000.nii.gz",
+ "label": "Mask/Case_00980.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00980_0000/Case_00980_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00799_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00799_0000.nii.gz",
+ "label": "Mask/Case_00799.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00799_0000/Case_00799_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00151_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00151_0000.nii.gz",
+ "label": "Mask/Case_00151.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00151_0000/Case_00151_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00982_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00982_0000.nii.gz",
+ "label": "Mask/Case_00982.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00982_0000/Case_00982_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00477_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00477_0000.nii.gz",
+ "label": "Mask/Case_00477.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00477_0000/Case_00477_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00191_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00191_0000.nii.gz",
+ "label": "Mask/Case_00191.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00191_0000/Case_00191_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00125_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00125_0000.nii.gz",
+ "label": "Mask/Case_00125.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00125_0000/Case_00125_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00810_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00810_0000.nii.gz",
+ "label": "Mask/Case_00810.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00810_0000/Case_00810_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00561_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00561_0000.nii.gz",
+ "label": "Mask/Case_00561.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00561_0000/Case_00561_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00729_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00729_0000.nii.gz",
+ "label": "Mask/Case_00729.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00729_0000/Case_00729_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00497_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00497_0000.nii.gz",
+ "label": "Mask/Case_00497.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00497_0000/Case_00497_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00363_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00363_0000.nii.gz",
+ "label": "Mask/Case_00363.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00363_0000/Case_00363_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00446_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00446_0000.nii.gz",
+ "label": "Mask/Case_00446.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00446_0000/Case_00446_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00570_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00570_0000.nii.gz",
+ "label": "Mask/Case_00570.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00570_0000/Case_00570_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00402_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00402_0000.nii.gz",
+ "label": "Mask/Case_00402.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00402_0000/Case_00402_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00450_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00450_0000.nii.gz",
+ "label": "Mask/Case_00450.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00450_0000/Case_00450_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00160_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00160_0000.nii.gz",
+ "label": "Mask/Case_00160.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00160_0000/Case_00160_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00159_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00159_0000.nii.gz",
+ "label": "Mask/Case_00159.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00159_0000/Case_00159_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00710_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00710_0000.nii.gz",
+ "label": "Mask/Case_00710.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00710_0000/Case_00710_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00335_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00335_0000.nii.gz",
+ "label": "Mask/Case_00335.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00335_0000/Case_00335_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00708_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00708_0000.nii.gz",
+ "label": "Mask/Case_00708.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00708_0000/Case_00708_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00624_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00624_0000.nii.gz",
+ "label": "Mask/Case_00624.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00624_0000/Case_00624_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00364_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00364_0000.nii.gz",
+ "label": "Mask/Case_00364.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00364_0000/Case_00364_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01013_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01013_0000.nii.gz",
+ "label": "Mask/Case_01013.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01013_0000/Case_01013_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00405_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00405_0000.nii.gz",
+ "label": "Mask/Case_00405.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00405_0000/Case_00405_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00626_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00626_0000.nii.gz",
+ "label": "Mask/Case_00626.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00626_0000/Case_00626_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00417_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00417_0000.nii.gz",
+ "label": "Mask/Case_00417.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00417_0000/Case_00417_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00464_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00464_0000.nii.gz",
+ "label": "Mask/Case_00464.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00464_0000/Case_00464_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01033_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01033_0000.nii.gz",
+ "label": "Mask/Case_01033.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01033_0000/Case_01033_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00357_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00357_0000.nii.gz",
+ "label": "Mask/Case_00357.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00357_0000/Case_00357_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00052_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00052_0000.nii.gz",
+ "label": "Mask/Case_00052.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00052_0000/Case_00052_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00604_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00604_0000.nii.gz",
+ "label": "Mask/Case_00604.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00604_0000/Case_00604_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00628_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00628_0000.nii.gz",
+ "label": "Mask/Case_00628.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00628_0000/Case_00628_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00433_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00433_0000.nii.gz",
+ "label": "Mask/Case_00433.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00433_0000/Case_00433_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00285_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00285_0000.nii.gz",
+ "label": "Mask/Case_00285.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00285_0000/Case_00285_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00985_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00985_0000.nii.gz",
+ "label": "Mask/Case_00985.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00985_0000/Case_00985_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00927_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00927_0000.nii.gz",
+ "label": "Mask/Case_00927.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00927_0000/Case_00927_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00344_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00344_0000.nii.gz",
+ "label": "Mask/Case_00344.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00344_0000/Case_00344_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00009_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00009_0000.nii.gz",
+ "label": "Mask/Case_00009.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00009_0000/Case_00009_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00351_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00351_0000.nii.gz",
+ "label": "Mask/Case_00351.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00351_0000/Case_00351_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00114_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00114_0000.nii.gz",
+ "label": "Mask/Case_00114.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00114_0000/Case_00114_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00584_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00584_0000.nii.gz",
+ "label": "Mask/Case_00584.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00584_0000/Case_00584_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00920_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00920_0000.nii.gz",
+ "label": "Mask/Case_00920.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00920_0000/Case_00920_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00617_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00617_0000.nii.gz",
+ "label": "Mask/Case_00617.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00617_0000/Case_00617_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00803_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00803_0000.nii.gz",
+ "label": "Mask/Case_00803.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00803_0000/Case_00803_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00817_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00817_0000.nii.gz",
+ "label": "Mask/Case_00817.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00817_0000/Case_00817_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00857_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00857_0000.nii.gz",
+ "label": "Mask/Case_00857.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00857_0000/Case_00857_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00541_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00541_0000.nii.gz",
+ "label": "Mask/Case_00541.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00541_0000/Case_00541_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00345_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00345_0000.nii.gz",
+ "label": "Mask/Case_00345.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00345_0000/Case_00345_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00897_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00897_0000.nii.gz",
+ "label": "Mask/Case_00897.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00897_0000/Case_00897_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00020_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00020_0000.nii.gz",
+ "label": "Mask/Case_00020.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00020_0000/Case_00020_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00544_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00544_0000.nii.gz",
+ "label": "Mask/Case_00544.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00544_0000/Case_00544_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00619_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00619_0000.nii.gz",
+ "label": "Mask/Case_00619.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00619_0000/Case_00619_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00188_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00188_0000.nii.gz",
+ "label": "Mask/Case_00188.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00188_0000/Case_00188_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00088_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00088_0000.nii.gz",
+ "label": "Mask/Case_00088.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00088_0000/Case_00088_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00035_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00035_0000.nii.gz",
+ "label": "Mask/Case_00035.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00035_0000/Case_00035_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00990_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00990_0000.nii.gz",
+ "label": "Mask/Case_00990.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00990_0000/Case_00990_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01028_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01028_0000.nii.gz",
+ "label": "Mask/Case_01028.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01028_0000/Case_01028_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00615_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00615_0000.nii.gz",
+ "label": "Mask/Case_00615.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00615_0000/Case_00615_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00249_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00249_0000.nii.gz",
+ "label": "Mask/Case_00249.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00249_0000/Case_00249_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00648_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00648_0000.nii.gz",
+ "label": "Mask/Case_00648.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00648_0000/Case_00648_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00118_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00118_0000.nii.gz",
+ "label": "Mask/Case_00118.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00118_0000/Case_00118_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00874_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00874_0000.nii.gz",
+ "label": "Mask/Case_00874.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00874_0000/Case_00874_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00350_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00350_0000.nii.gz",
+ "label": "Mask/Case_00350.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00350_0000/Case_00350_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00001_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00001_0000.nii.gz",
+ "label": "Mask/Case_00001.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00001_0000/Case_00001_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00678_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00678_0000.nii.gz",
+ "label": "Mask/Case_00678.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00678_0000/Case_00678_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01015_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01015_0000.nii.gz",
+ "label": "Mask/Case_01015.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01015_0000/Case_01015_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00899_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00899_0000.nii.gz",
+ "label": "Mask/Case_00899.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00899_0000/Case_00899_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01047_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01047_0000.nii.gz",
+ "label": "Mask/Case_01047.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01047_0000/Case_01047_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00540_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00540_0000.nii.gz",
+ "label": "Mask/Case_00540.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00540_0000/Case_00540_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00339_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00339_0000.nii.gz",
+ "label": "Mask/Case_00339.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00339_0000/Case_00339_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00564_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00564_0000.nii.gz",
+ "label": "Mask/Case_00564.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00564_0000/Case_00564_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00267_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00267_0000.nii.gz",
+ "label": "Mask/Case_00267.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00267_0000/Case_00267_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00675_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00675_0000.nii.gz",
+ "label": "Mask/Case_00675.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00675_0000/Case_00675_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01050_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01050_0000.nii.gz",
+ "label": "Mask/Case_01050.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01050_0000/Case_01050_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00075_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00075_0000.nii.gz",
+ "label": "Mask/Case_00075.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00075_0000/Case_00075_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00124_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00124_0000.nii.gz",
+ "label": "Mask/Case_00124.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00124_0000/Case_00124_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00908_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00908_0000.nii.gz",
+ "label": "Mask/Case_00908.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00908_0000/Case_00908_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00530_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00530_0000.nii.gz",
+ "label": "Mask/Case_00530.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00530_0000/Case_00530_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00107_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00107_0000.nii.gz",
+ "label": "Mask/Case_00107.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00107_0000/Case_00107_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00537_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00537_0000.nii.gz",
+ "label": "Mask/Case_00537.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00537_0000/Case_00537_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00006_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00006_0000.nii.gz",
+ "label": "Mask/Case_00006.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00006_0000/Case_00006_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00479_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00479_0000.nii.gz",
+ "label": "Mask/Case_00479.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00479_0000/Case_00479_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00412_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00412_0000.nii.gz",
+ "label": "Mask/Case_00412.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00412_0000/Case_00412_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00205_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00205_0000.nii.gz",
+ "label": "Mask/Case_00205.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00205_0000/Case_00205_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00959_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00959_0000.nii.gz",
+ "label": "Mask/Case_00959.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00959_0000/Case_00959_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00295_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00295_0000.nii.gz",
+ "label": "Mask/Case_00295.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00295_0000/Case_00295_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00662_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00662_0000.nii.gz",
+ "label": "Mask/Case_00662.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00662_0000/Case_00662_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00220_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00220_0000.nii.gz",
+ "label": "Mask/Case_00220.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00220_0000/Case_00220_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00127_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00127_0000.nii.gz",
+ "label": "Mask/Case_00127.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00127_0000/Case_00127_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00067_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00067_0000.nii.gz",
+ "label": "Mask/Case_00067.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00067_0000/Case_00067_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00635_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00635_0000.nii.gz",
+ "label": "Mask/Case_00635.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00635_0000/Case_00635_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00936_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00936_0000.nii.gz",
+ "label": "Mask/Case_00936.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00936_0000/Case_00936_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00746_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00746_0000.nii.gz",
+ "label": "Mask/Case_00746.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00746_0000/Case_00746_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00597_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00597_0000.nii.gz",
+ "label": "Mask/Case_00597.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00597_0000/Case_00597_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00885_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00885_0000.nii.gz",
+ "label": "Mask/Case_00885.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00885_0000/Case_00885_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00234_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00234_0000.nii.gz",
+ "label": "Mask/Case_00234.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00234_0000/Case_00234_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01035_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01035_0000.nii.gz",
+ "label": "Mask/Case_01035.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01035_0000/Case_01035_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01059_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01059_0000.nii.gz",
+ "label": "Mask/Case_01059.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01059_0000/Case_01059_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00219_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00219_0000.nii.gz",
+ "label": "Mask/Case_00219.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00219_0000/Case_00219_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00179_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00179_0000.nii.gz",
+ "label": "Mask/Case_00179.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00179_0000/Case_00179_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00115_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00115_0000.nii.gz",
+ "label": "Mask/Case_00115.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00115_0000/Case_00115_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00889_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00889_0000.nii.gz",
+ "label": "Mask/Case_00889.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00889_0000/Case_00889_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00128_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00128_0000.nii.gz",
+ "label": "Mask/Case_00128.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00128_0000/Case_00128_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00051_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00051_0000.nii.gz",
+ "label": "Mask/Case_00051.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00051_0000/Case_00051_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00185_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00185_0000.nii.gz",
+ "label": "Mask/Case_00185.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00185_0000/Case_00185_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00816_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00816_0000.nii.gz",
+ "label": "Mask/Case_00816.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00816_0000/Case_00816_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00858_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00858_0000.nii.gz",
+ "label": "Mask/Case_00858.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00858_0000/Case_00858_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01037_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01037_0000.nii.gz",
+ "label": "Mask/Case_01037.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01037_0000/Case_01037_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00066_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00066_0000.nii.gz",
+ "label": "Mask/Case_00066.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00066_0000/Case_00066_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00252_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00252_0000.nii.gz",
+ "label": "Mask/Case_00252.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00252_0000/Case_00252_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00864_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00864_0000.nii.gz",
+ "label": "Mask/Case_00864.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00864_0000/Case_00864_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00134_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00134_0000.nii.gz",
+ "label": "Mask/Case_00134.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00134_0000/Case_00134_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00593_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00593_0000.nii.gz",
+ "label": "Mask/Case_00593.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00593_0000/Case_00593_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00841_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00841_0000.nii.gz",
+ "label": "Mask/Case_00841.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00841_0000/Case_00841_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00372_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00372_0000.nii.gz",
+ "label": "Mask/Case_00372.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00372_0000/Case_00372_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00752_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00752_0000.nii.gz",
+ "label": "Mask/Case_00752.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00752_0000/Case_00752_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00943_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00943_0000.nii.gz",
+ "label": "Mask/Case_00943.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00943_0000/Case_00943_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00062_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00062_0000.nii.gz",
+ "label": "Mask/Case_00062.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00062_0000/Case_00062_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00421_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00421_0000.nii.gz",
+ "label": "Mask/Case_00421.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00421_0000/Case_00421_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00518_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00518_0000.nii.gz",
+ "label": "Mask/Case_00518.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00518_0000/Case_00518_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00002_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00002_0000.nii.gz",
+ "label": "Mask/Case_00002.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00002_0000/Case_00002_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00527_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00527_0000.nii.gz",
+ "label": "Mask/Case_00527.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00527_0000/Case_00527_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00484_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00484_0000.nii.gz",
+ "label": "Mask/Case_00484.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00484_0000/Case_00484_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00865_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00865_0000.nii.gz",
+ "label": "Mask/Case_00865.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00865_0000/Case_00865_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00631_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00631_0000.nii.gz",
+ "label": "Mask/Case_00631.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00631_0000/Case_00631_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00275_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00275_0000.nii.gz",
+ "label": "Mask/Case_00275.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00275_0000/Case_00275_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00886_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00886_0000.nii.gz",
+ "label": "Mask/Case_00886.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00886_0000/Case_00886_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00264_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00264_0000.nii.gz",
+ "label": "Mask/Case_00264.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00264_0000/Case_00264_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00334_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00334_0000.nii.gz",
+ "label": "Mask/Case_00334.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00334_0000/Case_00334_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00505_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00505_0000.nii.gz",
+ "label": "Mask/Case_00505.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00505_0000/Case_00505_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00096_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00096_0000.nii.gz",
+ "label": "Mask/Case_00096.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00096_0000/Case_00096_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01022_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01022_0000.nii.gz",
+ "label": "Mask/Case_01022.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01022_0000/Case_01022_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00842_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00842_0000.nii.gz",
+ "label": "Mask/Case_00842.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00842_0000/Case_00842_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00592_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00592_0000.nii.gz",
+ "label": "Mask/Case_00592.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00592_0000/Case_00592_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00226_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00226_0000.nii.gz",
+ "label": "Mask/Case_00226.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00226_0000/Case_00226_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00257_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00257_0000.nii.gz",
+ "label": "Mask/Case_00257.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00257_0000/Case_00257_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00317_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00317_0000.nii.gz",
+ "label": "Mask/Case_00317.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00317_0000/Case_00317_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00269_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00269_0000.nii.gz",
+ "label": "Mask/Case_00269.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00269_0000/Case_00269_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00141_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00141_0000.nii.gz",
+ "label": "Mask/Case_00141.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00141_0000/Case_00141_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00605_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00605_0000.nii.gz",
+ "label": "Mask/Case_00605.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00605_0000/Case_00605_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00643_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00643_0000.nii.gz",
+ "label": "Mask/Case_00643.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00643_0000/Case_00643_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00716_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00716_0000.nii.gz",
+ "label": "Mask/Case_00716.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00716_0000/Case_00716_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00853_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00853_0000.nii.gz",
+ "label": "Mask/Case_00853.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00853_0000/Case_00853_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00273_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00273_0000.nii.gz",
+ "label": "Mask/Case_00273.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00273_0000/Case_00273_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00425_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00425_0000.nii.gz",
+ "label": "Mask/Case_00425.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00425_0000/Case_00425_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00581_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00581_0000.nii.gz",
+ "label": "Mask/Case_00581.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00581_0000/Case_00581_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00983_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00983_0000.nii.gz",
+ "label": "Mask/Case_00983.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00983_0000/Case_00983_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00896_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00896_0000.nii.gz",
+ "label": "Mask/Case_00896.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00896_0000/Case_00896_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00682_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00682_0000.nii.gz",
+ "label": "Mask/Case_00682.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00682_0000/Case_00682_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00490_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00490_0000.nii.gz",
+ "label": "Mask/Case_00490.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00490_0000/Case_00490_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00448_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00448_0000.nii.gz",
+ "label": "Mask/Case_00448.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00448_0000/Case_00448_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00747_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00747_0000.nii.gz",
+ "label": "Mask/Case_00747.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00747_0000/Case_00747_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00325_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00325_0000.nii.gz",
+ "label": "Mask/Case_00325.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00325_0000/Case_00325_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00645_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00645_0000.nii.gz",
+ "label": "Mask/Case_00645.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00645_0000/Case_00645_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00110_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00110_0000.nii.gz",
+ "label": "Mask/Case_00110.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00110_0000/Case_00110_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00473_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00473_0000.nii.gz",
+ "label": "Mask/Case_00473.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00473_0000/Case_00473_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00579_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00579_0000.nii.gz",
+ "label": "Mask/Case_00579.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00579_0000/Case_00579_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01006_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01006_0000.nii.gz",
+ "label": "Mask/Case_01006.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01006_0000/Case_01006_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00847_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00847_0000.nii.gz",
+ "label": "Mask/Case_00847.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00847_0000/Case_00847_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00048_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00048_0000.nii.gz",
+ "label": "Mask/Case_00048.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00048_0000/Case_00048_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00089_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00089_0000.nii.gz",
+ "label": "Mask/Case_00089.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00089_0000/Case_00089_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00924_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00924_0000.nii.gz",
+ "label": "Mask/Case_00924.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00924_0000/Case_00924_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00073_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00073_0000.nii.gz",
+ "label": "Mask/Case_00073.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00073_0000/Case_00073_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00356_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00356_0000.nii.gz",
+ "label": "Mask/Case_00356.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00356_0000/Case_00356_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00211_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00211_0000.nii.gz",
+ "label": "Mask/Case_00211.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00211_0000/Case_00211_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00437_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00437_0000.nii.gz",
+ "label": "Mask/Case_00437.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00437_0000/Case_00437_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00722_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00722_0000.nii.gz",
+ "label": "Mask/Case_00722.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00722_0000/Case_00722_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00934_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00934_0000.nii.gz",
+ "label": "Mask/Case_00934.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00934_0000/Case_00934_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00392_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00392_0000.nii.gz",
+ "label": "Mask/Case_00392.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00392_0000/Case_00392_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00595_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00595_0000.nii.gz",
+ "label": "Mask/Case_00595.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00595_0000/Case_00595_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00100_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00100_0000.nii.gz",
+ "label": "Mask/Case_00100.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00100_0000/Case_00100_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00098_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00098_0000.nii.gz",
+ "label": "Mask/Case_00098.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00098_0000/Case_00098_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00778_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00778_0000.nii.gz",
+ "label": "Mask/Case_00778.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00778_0000/Case_00778_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00099_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00099_0000.nii.gz",
+ "label": "Mask/Case_00099.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00099_0000/Case_00099_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00076_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00076_0000.nii.gz",
+ "label": "Mask/Case_00076.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00076_0000/Case_00076_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00922_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00922_0000.nii.gz",
+ "label": "Mask/Case_00922.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00922_0000/Case_00922_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01018_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01018_0000.nii.gz",
+ "label": "Mask/Case_01018.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01018_0000/Case_01018_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00933_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00933_0000.nii.gz",
+ "label": "Mask/Case_00933.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00933_0000/Case_00933_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00859_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00859_0000.nii.gz",
+ "label": "Mask/Case_00859.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00859_0000/Case_00859_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00535_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00535_0000.nii.gz",
+ "label": "Mask/Case_00535.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00535_0000/Case_00535_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00123_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00123_0000.nii.gz",
+ "label": "Mask/Case_00123.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00123_0000/Case_00123_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00113_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00113_0000.nii.gz",
+ "label": "Mask/Case_00113.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00113_0000/Case_00113_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00472_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00472_0000.nii.gz",
+ "label": "Mask/Case_00472.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00472_0000/Case_00472_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00272_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00272_0000.nii.gz",
+ "label": "Mask/Case_00272.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00272_0000/Case_00272_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00977_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00977_0000.nii.gz",
+ "label": "Mask/Case_00977.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00977_0000/Case_00977_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00877_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00877_0000.nii.gz",
+ "label": "Mask/Case_00877.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00877_0000/Case_00877_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00845_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00845_0000.nii.gz",
+ "label": "Mask/Case_00845.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00845_0000/Case_00845_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00558_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00558_0000.nii.gz",
+ "label": "Mask/Case_00558.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00558_0000/Case_00558_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00132_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00132_0000.nii.gz",
+ "label": "Mask/Case_00132.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00132_0000/Case_00132_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00346_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00346_0000.nii.gz",
+ "label": "Mask/Case_00346.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00346_0000/Case_00346_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00390_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00390_0000.nii.gz",
+ "label": "Mask/Case_00390.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00390_0000/Case_00390_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00271_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00271_0000.nii.gz",
+ "label": "Mask/Case_00271.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00271_0000/Case_00271_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00665_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00665_0000.nii.gz",
+ "label": "Mask/Case_00665.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00665_0000/Case_00665_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00301_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00301_0000.nii.gz",
+ "label": "Mask/Case_00301.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00301_0000/Case_00301_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00957_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00957_0000.nii.gz",
+ "label": "Mask/Case_00957.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00957_0000/Case_00957_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00455_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00455_0000.nii.gz",
+ "label": "Mask/Case_00455.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00455_0000/Case_00455_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01012_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01012_0000.nii.gz",
+ "label": "Mask/Case_01012.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01012_0000/Case_01012_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01049_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01049_0000.nii.gz",
+ "label": "Mask/Case_01049.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01049_0000/Case_01049_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00805_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00805_0000.nii.gz",
+ "label": "Mask/Case_00805.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00805_0000/Case_00805_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00381_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00381_0000.nii.gz",
+ "label": "Mask/Case_00381.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00381_0000/Case_00381_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00674_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00674_0000.nii.gz",
+ "label": "Mask/Case_00674.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00674_0000/Case_00674_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00489_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00489_0000.nii.gz",
+ "label": "Mask/Case_00489.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00489_0000/Case_00489_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00664_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00664_0000.nii.gz",
+ "label": "Mask/Case_00664.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00664_0000/Case_00664_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00791_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00791_0000.nii.gz",
+ "label": "Mask/Case_00791.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00791_0000/Case_00791_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01017_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01017_0000.nii.gz",
+ "label": "Mask/Case_01017.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01017_0000/Case_01017_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00663_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00663_0000.nii.gz",
+ "label": "Mask/Case_00663.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00663_0000/Case_00663_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00260_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00260_0000.nii.gz",
+ "label": "Mask/Case_00260.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00260_0000/Case_00260_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00657_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00657_0000.nii.gz",
+ "label": "Mask/Case_00657.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00657_0000/Case_00657_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00559_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00559_0000.nii.gz",
+ "label": "Mask/Case_00559.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00559_0000/Case_00559_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00641_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00641_0000.nii.gz",
+ "label": "Mask/Case_00641.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00641_0000/Case_00641_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00187_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00187_0000.nii.gz",
+ "label": "Mask/Case_00187.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00187_0000/Case_00187_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00237_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00237_0000.nii.gz",
+ "label": "Mask/Case_00237.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00237_0000/Case_00237_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00104_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00104_0000.nii.gz",
+ "label": "Mask/Case_00104.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00104_0000/Case_00104_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00117_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00117_0000.nii.gz",
+ "label": "Mask/Case_00117.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00117_0000/Case_00117_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00964_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00964_0000.nii.gz",
+ "label": "Mask/Case_00964.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00964_0000/Case_00964_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00948_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00948_0000.nii.gz",
+ "label": "Mask/Case_00948.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00948_0000/Case_00948_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00775_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00775_0000.nii.gz",
+ "label": "Mask/Case_00775.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00775_0000/Case_00775_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00195_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00195_0000.nii.gz",
+ "label": "Mask/Case_00195.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00195_0000/Case_00195_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00119_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00119_0000.nii.gz",
+ "label": "Mask/Case_00119.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00119_0000/Case_00119_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00105_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00105_0000.nii.gz",
+ "label": "Mask/Case_00105.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00105_0000/Case_00105_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00287_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00287_0000.nii.gz",
+ "label": "Mask/Case_00287.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00287_0000/Case_00287_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00972_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00972_0000.nii.gz",
+ "label": "Mask/Case_00972.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00972_0000/Case_00972_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00636_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00636_0000.nii.gz",
+ "label": "Mask/Case_00636.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00636_0000/Case_00636_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00547_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00547_0000.nii.gz",
+ "label": "Mask/Case_00547.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00547_0000/Case_00547_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00814_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00814_0000.nii.gz",
+ "label": "Mask/Case_00814.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00814_0000/Case_00814_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00762_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00762_0000.nii.gz",
+ "label": "Mask/Case_00762.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00762_0000/Case_00762_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00321_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00321_0000.nii.gz",
+ "label": "Mask/Case_00321.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00321_0000/Case_00321_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00258_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00258_0000.nii.gz",
+ "label": "Mask/Case_00258.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00258_0000/Case_00258_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00542_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00542_0000.nii.gz",
+ "label": "Mask/Case_00542.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00542_0000/Case_00542_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00630_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00630_0000.nii.gz",
+ "label": "Mask/Case_00630.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00630_0000/Case_00630_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00792_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00792_0000.nii.gz",
+ "label": "Mask/Case_00792.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00792_0000/Case_00792_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01007_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01007_0000.nii.gz",
+ "label": "Mask/Case_01007.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01007_0000/Case_01007_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00510_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00510_0000.nii.gz",
+ "label": "Mask/Case_00510.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00510_0000/Case_00510_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00756_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00756_0000.nii.gz",
+ "label": "Mask/Case_00756.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00756_0000/Case_00756_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00659_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00659_0000.nii.gz",
+ "label": "Mask/Case_00659.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00659_0000/Case_00659_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00513_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00513_0000.nii.gz",
+ "label": "Mask/Case_00513.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00513_0000/Case_00513_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00893_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00893_0000.nii.gz",
+ "label": "Mask/Case_00893.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00893_0000/Case_00893_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00463_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00463_0000.nii.gz",
+ "label": "Mask/Case_00463.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00463_0000/Case_00463_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00095_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00095_0000.nii.gz",
+ "label": "Mask/Case_00095.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00095_0000/Case_00095_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00647_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00647_0000.nii.gz",
+ "label": "Mask/Case_00647.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00647_0000/Case_00647_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01021_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01021_0000.nii.gz",
+ "label": "Mask/Case_01021.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01021_0000/Case_01021_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00548_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00548_0000.nii.gz",
+ "label": "Mask/Case_00548.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00548_0000/Case_00548_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00937_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00937_0000.nii.gz",
+ "label": "Mask/Case_00937.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00937_0000/Case_00937_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00833_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00833_0000.nii.gz",
+ "label": "Mask/Case_00833.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00833_0000/Case_00833_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00869_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00869_0000.nii.gz",
+ "label": "Mask/Case_00869.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00869_0000/Case_00869_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00460_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00460_0000.nii.gz",
+ "label": "Mask/Case_00460.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00460_0000/Case_00460_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00789_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00789_0000.nii.gz",
+ "label": "Mask/Case_00789.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00789_0000/Case_00789_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00769_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00769_0000.nii.gz",
+ "label": "Mask/Case_00769.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00769_0000/Case_00769_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00741_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00741_0000.nii.gz",
+ "label": "Mask/Case_00741.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00741_0000/Case_00741_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00640_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00640_0000.nii.gz",
+ "label": "Mask/Case_00640.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00640_0000/Case_00640_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00821_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00821_0000.nii.gz",
+ "label": "Mask/Case_00821.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00821_0000/Case_00821_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00677_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00677_0000.nii.gz",
+ "label": "Mask/Case_00677.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00677_0000/Case_00677_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00373_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00373_0000.nii.gz",
+ "label": "Mask/Case_00373.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00373_0000/Case_00373_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00819_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00819_0000.nii.gz",
+ "label": "Mask/Case_00819.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00819_0000/Case_00819_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00353_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00353_0000.nii.gz",
+ "label": "Mask/Case_00353.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00353_0000/Case_00353_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00812_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00812_0000.nii.gz",
+ "label": "Mask/Case_00812.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00812_0000/Case_00812_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00082_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00082_0000.nii.gz",
+ "label": "Mask/Case_00082.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00082_0000/Case_00082_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00320_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00320_0000.nii.gz",
+ "label": "Mask/Case_00320.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00320_0000/Case_00320_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00064_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00064_0000.nii.gz",
+ "label": "Mask/Case_00064.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00064_0000/Case_00064_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00822_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00822_0000.nii.gz",
+ "label": "Mask/Case_00822.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00822_0000/Case_00822_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00784_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00784_0000.nii.gz",
+ "label": "Mask/Case_00784.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00784_0000/Case_00784_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00495_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00495_0000.nii.gz",
+ "label": "Mask/Case_00495.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00495_0000/Case_00495_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00644_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00644_0000.nii.gz",
+ "label": "Mask/Case_00644.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00644_0000/Case_00644_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00825_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00825_0000.nii.gz",
+ "label": "Mask/Case_00825.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00825_0000/Case_00825_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00276_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00276_0000.nii.gz",
+ "label": "Mask/Case_00276.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00276_0000/Case_00276_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00891_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00891_0000.nii.gz",
+ "label": "Mask/Case_00891.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00891_0000/Case_00891_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01019_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01019_0000.nii.gz",
+ "label": "Mask/Case_01019.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01019_0000/Case_01019_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00696_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00696_0000.nii.gz",
+ "label": "Mask/Case_00696.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00696_0000/Case_00696_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00281_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00281_0000.nii.gz",
+ "label": "Mask/Case_00281.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00281_0000/Case_00281_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00866_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00866_0000.nii.gz",
+ "label": "Mask/Case_00866.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00866_0000/Case_00866_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00830_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00830_0000.nii.gz",
+ "label": "Mask/Case_00830.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00830_0000/Case_00830_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00255_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00255_0000.nii.gz",
+ "label": "Mask/Case_00255.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00255_0000/Case_00255_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00387_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00387_0000.nii.gz",
+ "label": "Mask/Case_00387.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00387_0000/Case_00387_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00721_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00721_0000.nii.gz",
+ "label": "Mask/Case_00721.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00721_0000/Case_00721_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00330_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00330_0000.nii.gz",
+ "label": "Mask/Case_00330.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00330_0000/Case_00330_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00133_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00133_0000.nii.gz",
+ "label": "Mask/Case_00133.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00133_0000/Case_00133_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00475_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00475_0000.nii.gz",
+ "label": "Mask/Case_00475.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00475_0000/Case_00475_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00029_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00029_0000.nii.gz",
+ "label": "Mask/Case_00029.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00029_0000/Case_00029_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00506_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00506_0000.nii.gz",
+ "label": "Mask/Case_00506.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00506_0000/Case_00506_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01041_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01041_0000.nii.gz",
+ "label": "Mask/Case_01041.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01041_0000/Case_01041_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00176_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00176_0000.nii.gz",
+ "label": "Mask/Case_00176.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00176_0000/Case_00176_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00514_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00514_0000.nii.gz",
+ "label": "Mask/Case_00514.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00514_0000/Case_00514_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00131_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00131_0000.nii.gz",
+ "label": "Mask/Case_00131.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00131_0000/Case_00131_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00316_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00316_0000.nii.gz",
+ "label": "Mask/Case_00316.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00316_0000/Case_00316_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00991_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00991_0000.nii.gz",
+ "label": "Mask/Case_00991.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00991_0000/Case_00991_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00391_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00391_0000.nii.gz",
+ "label": "Mask/Case_00391.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00391_0000/Case_00391_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00744_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00744_0000.nii.gz",
+ "label": "Mask/Case_00744.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00744_0000/Case_00744_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00496_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00496_0000.nii.gz",
+ "label": "Mask/Case_00496.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00496_0000/Case_00496_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00326_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00326_0000.nii.gz",
+ "label": "Mask/Case_00326.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00326_0000/Case_00326_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00783_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00783_0000.nii.gz",
+ "label": "Mask/Case_00783.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00783_0000/Case_00783_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00947_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00947_0000.nii.gz",
+ "label": "Mask/Case_00947.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00947_0000/Case_00947_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00399_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00399_0000.nii.gz",
+ "label": "Mask/Case_00399.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00399_0000/Case_00399_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01042_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01042_0000.nii.gz",
+ "label": "Mask/Case_01042.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01042_0000/Case_01042_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00309_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00309_0000.nii.gz",
+ "label": "Mask/Case_00309.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00309_0000/Case_00309_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00600_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00600_0000.nii.gz",
+ "label": "Mask/Case_00600.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00600_0000/Case_00600_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00739_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00739_0000.nii.gz",
+ "label": "Mask/Case_00739.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00739_0000/Case_00739_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00873_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00873_0000.nii.gz",
+ "label": "Mask/Case_00873.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00873_0000/Case_00873_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00918_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00918_0000.nii.gz",
+ "label": "Mask/Case_00918.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00918_0000/Case_00918_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00834_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00834_0000.nii.gz",
+ "label": "Mask/Case_00834.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00834_0000/Case_00834_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00155_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00155_0000.nii.gz",
+ "label": "Mask/Case_00155.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00155_0000/Case_00155_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00909_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00909_0000.nii.gz",
+ "label": "Mask/Case_00909.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00909_0000/Case_00909_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00668_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00668_0000.nii.gz",
+ "label": "Mask/Case_00668.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00668_0000/Case_00668_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00689_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00689_0000.nii.gz",
+ "label": "Mask/Case_00689.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00689_0000/Case_00689_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00774_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00774_0000.nii.gz",
+ "label": "Mask/Case_00774.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00774_0000/Case_00774_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00650_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00650_0000.nii.gz",
+ "label": "Mask/Case_00650.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00650_0000/Case_00650_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00616_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00616_0000.nii.gz",
+ "label": "Mask/Case_00616.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00616_0000/Case_00616_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00017_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00017_0000.nii.gz",
+ "label": "Mask/Case_00017.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00017_0000/Case_00017_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00606_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00606_0000.nii.gz",
+ "label": "Mask/Case_00606.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00606_0000/Case_00606_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01039_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01039_0000.nii.gz",
+ "label": "Mask/Case_01039.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01039_0000/Case_01039_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00724_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00724_0000.nii.gz",
+ "label": "Mask/Case_00724.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00724_0000/Case_00724_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00851_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00851_0000.nii.gz",
+ "label": "Mask/Case_00851.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00851_0000/Case_00851_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00370_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00370_0000.nii.gz",
+ "label": "Mask/Case_00370.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00370_0000/Case_00370_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01053_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01053_0000.nii.gz",
+ "label": "Mask/Case_01053.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01053_0000/Case_01053_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00277_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00277_0000.nii.gz",
+ "label": "Mask/Case_00277.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00277_0000/Case_00277_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00209_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00209_0000.nii.gz",
+ "label": "Mask/Case_00209.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00209_0000/Case_00209_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00960_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00960_0000.nii.gz",
+ "label": "Mask/Case_00960.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00960_0000/Case_00960_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00742_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00742_0000.nii.gz",
+ "label": "Mask/Case_00742.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00742_0000/Case_00742_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01045_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01045_0000.nii.gz",
+ "label": "Mask/Case_01045.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01045_0000/Case_01045_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00282_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00282_0000.nii.gz",
+ "label": "Mask/Case_00282.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00282_0000/Case_00282_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00538_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00538_0000.nii.gz",
+ "label": "Mask/Case_00538.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00538_0000/Case_00538_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00434_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00434_0000.nii.gz",
+ "label": "Mask/Case_00434.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00434_0000/Case_00434_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00173_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00173_0000.nii.gz",
+ "label": "Mask/Case_00173.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00173_0000/Case_00173_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00498_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00498_0000.nii.gz",
+ "label": "Mask/Case_00498.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00498_0000/Case_00498_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00084_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00084_0000.nii.gz",
+ "label": "Mask/Case_00084.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00084_0000/Case_00084_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00965_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00965_0000.nii.gz",
+ "label": "Mask/Case_00965.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00965_0000/Case_00965_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00014_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00014_0000.nii.gz",
+ "label": "Mask/Case_00014.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00014_0000/Case_00014_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00681_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00681_0000.nii.gz",
+ "label": "Mask/Case_00681.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00681_0000/Case_00681_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00670_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00670_0000.nii.gz",
+ "label": "Mask/Case_00670.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00670_0000/Case_00670_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00704_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00704_0000.nii.gz",
+ "label": "Mask/Case_00704.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00704_0000/Case_00704_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01038_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01038_0000.nii.gz",
+ "label": "Mask/Case_01038.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01038_0000/Case_01038_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00797_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00797_0000.nii.gz",
+ "label": "Mask/Case_00797.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00797_0000/Case_00797_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01054_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01054_0000.nii.gz",
+ "label": "Mask/Case_01054.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01054_0000/Case_01054_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00767_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00767_0000.nii.gz",
+ "label": "Mask/Case_00767.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00767_0000/Case_00767_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00961_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00961_0000.nii.gz",
+ "label": "Mask/Case_00961.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00961_0000/Case_00961_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00182_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00182_0000.nii.gz",
+ "label": "Mask/Case_00182.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00182_0000/Case_00182_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00861_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00861_0000.nii.gz",
+ "label": "Mask/Case_00861.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00861_0000/Case_00861_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00365_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00365_0000.nii.gz",
+ "label": "Mask/Case_00365.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00365_0000/Case_00365_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00916_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00916_0000.nii.gz",
+ "label": "Mask/Case_00916.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00916_0000/Case_00916_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00785_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00785_0000.nii.gz",
+ "label": "Mask/Case_00785.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00785_0000/Case_00785_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00531_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00531_0000.nii.gz",
+ "label": "Mask/Case_00531.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00531_0000/Case_00531_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00672_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00672_0000.nii.gz",
+ "label": "Mask/Case_00672.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00672_0000/Case_00672_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00907_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00907_0000.nii.gz",
+ "label": "Mask/Case_00907.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00907_0000/Case_00907_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00087_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00087_0000.nii.gz",
+ "label": "Mask/Case_00087.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00087_0000/Case_00087_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00458_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00458_0000.nii.gz",
+ "label": "Mask/Case_00458.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00458_0000/Case_00458_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00109_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00109_0000.nii.gz",
+ "label": "Mask/Case_00109.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00109_0000/Case_00109_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00398_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00398_0000.nii.gz",
+ "label": "Mask/Case_00398.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00398_0000/Case_00398_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00111_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00111_0000.nii.gz",
+ "label": "Mask/Case_00111.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00111_0000/Case_00111_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00944_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00944_0000.nii.gz",
+ "label": "Mask/Case_00944.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00944_0000/Case_00944_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00352_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00352_0000.nii.gz",
+ "label": "Mask/Case_00352.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00352_0000/Case_00352_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00971_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00971_0000.nii.gz",
+ "label": "Mask/Case_00971.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00971_0000/Case_00971_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00863_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00863_0000.nii.gz",
+ "label": "Mask/Case_00863.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00863_0000/Case_00863_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00204_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00204_0000.nii.gz",
+ "label": "Mask/Case_00204.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00204_0000/Case_00204_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00380_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00380_0000.nii.gz",
+ "label": "Mask/Case_00380.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00380_0000/Case_00380_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00800_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00800_0000.nii.gz",
+ "label": "Mask/Case_00800.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00800_0000/Case_00800_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00379_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00379_0000.nii.gz",
+ "label": "Mask/Case_00379.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00379_0000/Case_00379_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00336_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00336_0000.nii.gz",
+ "label": "Mask/Case_00336.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00336_0000/Case_00336_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00488_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00488_0000.nii.gz",
+ "label": "Mask/Case_00488.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00488_0000/Case_00488_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00361_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00361_0000.nii.gz",
+ "label": "Mask/Case_00361.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00361_0000/Case_00361_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00251_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00251_0000.nii.gz",
+ "label": "Mask/Case_00251.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00251_0000/Case_00251_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00828_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00828_0000.nii.gz",
+ "label": "Mask/Case_00828.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00828_0000/Case_00828_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01020_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01020_0000.nii.gz",
+ "label": "Mask/Case_01020.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01020_0000/Case_01020_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00660_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00660_0000.nii.gz",
+ "label": "Mask/Case_00660.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00660_0000/Case_00660_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00554_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00554_0000.nii.gz",
+ "label": "Mask/Case_00554.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00554_0000/Case_00554_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00890_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00890_0000.nii.gz",
+ "label": "Mask/Case_00890.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00890_0000/Case_00890_0000_seg.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00375_0000.nii.gz",
+ "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00375_0000.nii.gz",
+ "label": "Mask/Case_00375.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00375_0000/Case_00375_0000_seg.nii.gz"
+ }
+ ],
+ "training_transform": [
+ {
+ "_target_": "RandCropByLabelClassesd",
+ "keys": [
+ "@image_key",
+ "@label_key",
+ "@pseudo_label_key",
+ "@label_sv_key"
+ ],
+ "label_key": "@pseudo_label_key",
+ "num_classes": 133,
+ "num_samples": "@num_patches_per_image",
+ "spatial_size": "@patch_size",
+ "ratios": "$tuple(float(i >= 0) for i in range(133))",
+ "warn": false,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandZoomd",
+ "keys": [
+ "@image_key",
+ "@label_key",
+ "@pseudo_label_key",
+ "@label_sv_key"
+ ],
+ "min_zoom": 0.8,
+ "max_zoom": 1.2,
+ "mode": [
+ "trilinear",
+ "nearest",
+ "nearest",
+ "nearest"
+ ],
+ "prob": 0.2,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandSimulateLowResolutiond",
+ "keys": [
+ "@image_key"
+ ],
+ "zoom_range": [
+ 0.3,
+ 1
+ ],
+ "prob": 0.2,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandGaussianSmoothd",
+ "keys": [
+ "@image_key"
+ ],
+ "prob": 0.2,
+ "sigma_x": [
+ 0.5,
+ 1.0
+ ],
+ "sigma_y": [
+ 0.5,
+ 1.0
+ ],
+ "sigma_z": [
+ 0.5,
+ 1.0
+ ]
+ },
+ {
+ "_target_": "RandScaleIntensityd",
+ "keys": [
+ "@image_key"
+ ],
+ "factors": 0.1,
+ "prob": 0.2
+ },
+ {
+ "_target_": "RandShiftIntensityd",
+ "keys": [
+ "@image_key"
+ ],
+ "offsets": 0.1,
+ "prob": 0.2
+ },
+ {
+ "_target_": "RandGaussianNoised",
+ "keys": [
+ "@image_key"
+ ],
+ "prob": 0.2,
+ "mean": 0.0,
+ "std": 0.2
+ }
+ ],
+ "label_dict": {
+ "1": "liver",
+ "2": "kidney",
+ "3": "spleen",
+ "4": "pancreas"
+ },
+ "original_label_dict": {
+ "1": "liver",
+ "2": "kidney",
+ "3": "spleen",
+ "4": "pancreas"
+ },
+ "testing": [
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00697_0000.nii.gz",
+ "label": "Mask/Case_00697.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00030_0000.nii.gz",
+ "label": "Mask/Case_00030.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00543_0000.nii.gz",
+ "label": "Mask/Case_00543.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01030_0000.nii.gz",
+ "label": "Mask/Case_01030.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00256_0000.nii.gz",
+ "label": "Mask/Case_00256.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00443_0000.nii.gz",
+ "label": "Mask/Case_00443.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00303_0000.nii.gz",
+ "label": "Mask/Case_00303.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00078_0000.nii.gz",
+ "label": "Mask/Case_00078.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01052_0000.nii.gz",
+ "label": "Mask/Case_01052.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00231_0000.nii.gz",
+ "label": "Mask/Case_00231.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00289_0000.nii.gz",
+ "label": "Mask/Case_00289.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00563_0000.nii.gz",
+ "label": "Mask/Case_00563.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00517_0000.nii.gz",
+ "label": "Mask/Case_00517.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00848_0000.nii.gz",
+ "label": "Mask/Case_00848.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00071_0000.nii.gz",
+ "label": "Mask/Case_00071.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00414_0000.nii.gz",
+ "label": "Mask/Case_00414.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00655_0000.nii.gz",
+ "label": "Mask/Case_00655.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00625_0000.nii.gz",
+ "label": "Mask/Case_00625.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00667_0000.nii.gz",
+ "label": "Mask/Case_00667.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00239_0000.nii.gz",
+ "label": "Mask/Case_00239.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00310_0000.nii.gz",
+ "label": "Mask/Case_00310.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00152_0000.nii.gz",
+ "label": "Mask/Case_00152.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00135_0000.nii.gz",
+ "label": "Mask/Case_00135.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00222_0000.nii.gz",
+ "label": "Mask/Case_00222.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00305_0000.nii.gz",
+ "label": "Mask/Case_00305.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00358_0000.nii.gz",
+ "label": "Mask/Case_00358.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01040_0000.nii.gz",
+ "label": "Mask/Case_01040.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00777_0000.nii.gz",
+ "label": "Mask/Case_00777.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00502_0000.nii.gz",
+ "label": "Mask/Case_00502.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00485_0000.nii.gz",
+ "label": "Mask/Case_00485.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00042_0000.nii.gz",
+ "label": "Mask/Case_00042.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00480_0000.nii.gz",
+ "label": "Mask/Case_00480.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00687_0000.nii.gz",
+ "label": "Mask/Case_00687.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00161_0000.nii.gz",
+ "label": "Mask/Case_00161.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00627_0000.nii.gz",
+ "label": "Mask/Case_00627.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00046_0000.nii.gz",
+ "label": "Mask/Case_00046.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00196_0000.nii.gz",
+ "label": "Mask/Case_00196.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00120_0000.nii.gz",
+ "label": "Mask/Case_00120.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00022_0000.nii.gz",
+ "label": "Mask/Case_00022.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00360_0000.nii.gz",
+ "label": "Mask/Case_00360.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00049_0000.nii.gz",
+ "label": "Mask/Case_00049.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00483_0000.nii.gz",
+ "label": "Mask/Case_00483.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00324_0000.nii.gz",
+ "label": "Mask/Case_00324.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00308_0000.nii.gz",
+ "label": "Mask/Case_00308.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00610_0000.nii.gz",
+ "label": "Mask/Case_00610.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00608_0000.nii.gz",
+ "label": "Mask/Case_00608.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00735_0000.nii.gz",
+ "label": "Mask/Case_00735.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00214_0000.nii.gz",
+ "label": "Mask/Case_00214.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00102_0000.nii.gz",
+ "label": "Mask/Case_00102.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00576_0000.nii.gz",
+ "label": "Mask/Case_00576.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00189_0000.nii.gz",
+ "label": "Mask/Case_00189.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00637_0000.nii.gz",
+ "label": "Mask/Case_00637.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00968_0000.nii.gz",
+ "label": "Mask/Case_00968.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00533_0000.nii.gz",
+ "label": "Mask/Case_00533.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00091_0000.nii.gz",
+ "label": "Mask/Case_00091.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00956_0000.nii.gz",
+ "label": "Mask/Case_00956.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00740_0000.nii.gz",
+ "label": "Mask/Case_00740.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01046_0000.nii.gz",
+ "label": "Mask/Case_01046.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00820_0000.nii.gz",
+ "label": "Mask/Case_00820.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00938_0000.nii.gz",
+ "label": "Mask/Case_00938.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00130_0000.nii.gz",
+ "label": "Mask/Case_00130.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00892_0000.nii.gz",
+ "label": "Mask/Case_00892.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00438_0000.nii.gz",
+ "label": "Mask/Case_00438.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00524_0000.nii.gz",
+ "label": "Mask/Case_00524.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00384_0000.nii.gz",
+ "label": "Mask/Case_00384.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00723_0000.nii.gz",
+ "label": "Mask/Case_00723.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00011_0000.nii.gz",
+ "label": "Mask/Case_00011.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00149_0000.nii.gz",
+ "label": "Mask/Case_00149.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00875_0000.nii.gz",
+ "label": "Mask/Case_00875.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00693_0000.nii.gz",
+ "label": "Mask/Case_00693.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00529_0000.nii.gz",
+ "label": "Mask/Case_00529.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00057_0000.nii.gz",
+ "label": "Mask/Case_00057.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00291_0000.nii.gz",
+ "label": "Mask/Case_00291.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00299_0000.nii.gz",
+ "label": "Mask/Case_00299.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00555_0000.nii.gz",
+ "label": "Mask/Case_00555.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00779_0000.nii.gz",
+ "label": "Mask/Case_00779.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00461_0000.nii.gz",
+ "label": "Mask/Case_00461.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00651_0000.nii.gz",
+ "label": "Mask/Case_00651.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00572_0000.nii.gz",
+ "label": "Mask/Case_00572.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00788_0000.nii.gz",
+ "label": "Mask/Case_00788.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00573_0000.nii.gz",
+ "label": "Mask/Case_00573.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00734_0000.nii.gz",
+ "label": "Mask/Case_00734.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00177_0000.nii.gz",
+ "label": "Mask/Case_00177.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00996_0000.nii.gz",
+ "label": "Mask/Case_00996.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00611_0000.nii.gz",
+ "label": "Mask/Case_00611.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00090_0000.nii.gz",
+ "label": "Mask/Case_00090.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00963_0000.nii.gz",
+ "label": "Mask/Case_00963.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00240_0000.nii.gz",
+ "label": "Mask/Case_00240.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00481_0000.nii.gz",
+ "label": "Mask/Case_00481.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00492_0000.nii.gz",
+ "label": "Mask/Case_00492.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00872_0000.nii.gz",
+ "label": "Mask/Case_00872.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00649_0000.nii.gz",
+ "label": "Mask/Case_00649.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00545_0000.nii.gz",
+ "label": "Mask/Case_00545.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00706_0000.nii.gz",
+ "label": "Mask/Case_00706.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00898_0000.nii.gz",
+ "label": "Mask/Case_00898.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00633_0000.nii.gz",
+ "label": "Mask/Case_00633.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00917_0000.nii.gz",
+ "label": "Mask/Case_00917.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00566_0000.nii.gz",
+ "label": "Mask/Case_00566.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00378_0000.nii.gz",
+ "label": "Mask/Case_00378.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00807_0000.nii.gz",
+ "label": "Mask/Case_00807.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00867_0000.nii.gz",
+ "label": "Mask/Case_00867.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00007_0000.nii.gz",
+ "label": "Mask/Case_00007.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00837_0000.nii.gz",
+ "label": "Mask/Case_00837.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00208_0000.nii.gz",
+ "label": "Mask/Case_00208.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00328_0000.nii.gz",
+ "label": "Mask/Case_00328.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00718_0000.nii.gz",
+ "label": "Mask/Case_00718.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00050_0000.nii.gz",
+ "label": "Mask/Case_00050.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00235_0000.nii.gz",
+ "label": "Mask/Case_00235.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00122_0000.nii.gz",
+ "label": "Mask/Case_00122.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00614_0000.nii.gz",
+ "label": "Mask/Case_00614.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00913_0000.nii.gz",
+ "label": "Mask/Case_00913.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00598_0000.nii.gz",
+ "label": "Mask/Case_00598.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00146_0000.nii.gz",
+ "label": "Mask/Case_00146.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00962_0000.nii.gz",
+ "label": "Mask/Case_00962.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00515_0000.nii.gz",
+ "label": "Mask/Case_00515.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00838_0000.nii.gz",
+ "label": "Mask/Case_00838.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00607_0000.nii.gz",
+ "label": "Mask/Case_00607.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00158_0000.nii.gz",
+ "label": "Mask/Case_00158.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00736_0000.nii.gz",
+ "label": "Mask/Case_00736.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00037_0000.nii.gz",
+ "label": "Mask/Case_00037.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00313_0000.nii.gz",
+ "label": "Mask/Case_00313.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00183_0000.nii.gz",
+ "label": "Mask/Case_00183.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00888_0000.nii.gz",
+ "label": "Mask/Case_00888.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01016_0000.nii.gz",
+ "label": "Mask/Case_01016.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00975_0000.nii.gz",
+ "label": "Mask/Case_00975.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00175_0000.nii.gz",
+ "label": "Mask/Case_00175.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00397_0000.nii.gz",
+ "label": "Mask/Case_00397.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00292_0000.nii.gz",
+ "label": "Mask/Case_00292.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00318_0000.nii.gz",
+ "label": "Mask/Case_00318.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00935_0000.nii.gz",
+ "label": "Mask/Case_00935.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00192_0000.nii.gz",
+ "label": "Mask/Case_00192.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00491_0000.nii.gz",
+ "label": "Mask/Case_00491.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00560_0000.nii.gz",
+ "label": "Mask/Case_00560.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00806_0000.nii.gz",
+ "label": "Mask/Case_00806.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00727_0000.nii.gz",
+ "label": "Mask/Case_00727.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00061_0000.nii.gz",
+ "label": "Mask/Case_00061.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00386_0000.nii.gz",
+ "label": "Mask/Case_00386.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00642_0000.nii.gz",
+ "label": "Mask/Case_00642.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00578_0000.nii.gz",
+ "label": "Mask/Case_00578.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00145_0000.nii.gz",
+ "label": "Mask/Case_00145.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00383_0000.nii.gz",
+ "label": "Mask/Case_00383.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01061_0000.nii.gz",
+ "label": "Mask/Case_01061.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00478_0000.nii.gz",
+ "label": "Mask/Case_00478.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00801_0000.nii.gz",
+ "label": "Mask/Case_00801.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00585_0000.nii.gz",
+ "label": "Mask/Case_00585.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00376_0000.nii.gz",
+ "label": "Mask/Case_00376.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00003_0000.nii.gz",
+ "label": "Mask/Case_00003.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00004_0000.nii.gz",
+ "label": "Mask/Case_00004.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00409_0000.nii.gz",
+ "label": "Mask/Case_00409.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00881_0000.nii.gz",
+ "label": "Mask/Case_00881.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00685_0000.nii.gz",
+ "label": "Mask/Case_00685.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00966_0000.nii.gz",
+ "label": "Mask/Case_00966.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00137_0000.nii.gz",
+ "label": "Mask/Case_00137.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00932_0000.nii.gz",
+ "label": "Mask/Case_00932.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00227_0000.nii.gz",
+ "label": "Mask/Case_00227.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00901_0000.nii.gz",
+ "label": "Mask/Case_00901.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00969_0000.nii.gz",
+ "label": "Mask/Case_00969.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00101_0000.nii.gz",
+ "label": "Mask/Case_00101.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00262_0000.nii.gz",
+ "label": "Mask/Case_00262.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00253_0000.nii.gz",
+ "label": "Mask/Case_00253.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00978_0000.nii.gz",
+ "label": "Mask/Case_00978.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00210_0000.nii.gz",
+ "label": "Mask/Case_00210.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00684_0000.nii.gz",
+ "label": "Mask/Case_00684.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00656_0000.nii.gz",
+ "label": "Mask/Case_00656.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00567_0000.nii.gz",
+ "label": "Mask/Case_00567.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00468_0000.nii.gz",
+ "label": "Mask/Case_00468.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01032_0000.nii.gz",
+ "label": "Mask/Case_01032.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00654_0000.nii.gz",
+ "label": "Mask/Case_00654.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00629_0000.nii.gz",
+ "label": "Mask/Case_00629.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01023_0000.nii.gz",
+ "label": "Mask/Case_01023.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00233_0000.nii.gz",
+ "label": "Mask/Case_00233.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00288_0000.nii.gz",
+ "label": "Mask/Case_00288.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00157_0000.nii.gz",
+ "label": "Mask/Case_00157.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00217_0000.nii.gz",
+ "label": "Mask/Case_00217.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00044_0000.nii.gz",
+ "label": "Mask/Case_00044.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00494_0000.nii.gz",
+ "label": "Mask/Case_00494.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00169_0000.nii.gz",
+ "label": "Mask/Case_00169.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00025_0000.nii.gz",
+ "label": "Mask/Case_00025.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00332_0000.nii.gz",
+ "label": "Mask/Case_00332.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00601_0000.nii.gz",
+ "label": "Mask/Case_00601.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00507_0000.nii.gz",
+ "label": "Mask/Case_00507.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00653_0000.nii.gz",
+ "label": "Mask/Case_00653.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00453_0000.nii.gz",
+ "label": "Mask/Case_00453.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00749_0000.nii.gz",
+ "label": "Mask/Case_00749.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00031_0000.nii.gz",
+ "label": "Mask/Case_00031.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00243_0000.nii.gz",
+ "label": "Mask/Case_00243.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00487_0000.nii.gz",
+ "label": "Mask/Case_00487.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00467_0000.nii.gz",
+ "label": "Mask/Case_00467.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00156_0000.nii.gz",
+ "label": "Mask/Case_00156.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00846_0000.nii.gz",
+ "label": "Mask/Case_00846.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00915_0000.nii.gz",
+ "label": "Mask/Case_00915.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00193_0000.nii.gz",
+ "label": "Mask/Case_00193.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01001_0000.nii.gz",
+ "label": "Mask/Case_01001.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00856_0000.nii.gz",
+ "label": "Mask/Case_00856.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00393_0000.nii.gz",
+ "label": "Mask/Case_00393.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00732_0000.nii.gz",
+ "label": "Mask/Case_00732.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart2/Case_00459_0000.nii.gz",
+ "label": "Mask/Case_00459.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_01004_0000.nii.gz",
+ "label": "Mask/Case_01004.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart1/Case_00106_0000.nii.gz",
+ "label": "Mask/Case_00106.nii.gz"
+ },
+ {
+ "image": "AbdomenCT-1K-ImagePart3/Case_00850_0000.nii.gz",
+ "label": "Mask/Case_00850.nii.gz"
+ }
+ ]
+}
diff --git a/vista3d/data/jsons/AeroPath_5_folds.json b/vista3d/data/jsons/AeroPath_5_folds.json
new file mode 100644
index 0000000..26f9c47
--- /dev/null
+++ b/vista3d/data/jsons/AeroPath_5_folds.json
@@ -0,0 +1,297 @@
+{
+ "training": [
+ {
+ "image": "8/8_CT_HR.nii.gz",
+ "pseudo_label": "8/8_CT_HR.nii.gz",
+ "label": "8/8_CT_HR_label.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "6/6_CT_HR.nii.gz",
+ "pseudo_label": "6/6_CT_HR.nii.gz",
+ "label": "6/6_CT_HR_label.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "14/14_CT_HR.nii.gz",
+ "pseudo_label": "14/14_CT_HR.nii.gz",
+ "label": "14/14_CT_HR_label.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "16/16_CT_HR.nii.gz",
+ "pseudo_label": "16/16_CT_HR.nii.gz",
+ "label": "16/16_CT_HR_label.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "15/15_CT_HR.nii.gz",
+ "pseudo_label": "15/15_CT_HR.nii.gz",
+ "label": "15/15_CT_HR_label.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "27/27_CT_HR.nii.gz",
+ "pseudo_label": "27/27_CT_HR.nii.gz",
+ "label": "27/27_CT_HR_label.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AeroPath_100/27_CT_HR/27_CT_HR_seg.nii.gz"
+ },
+ {
+ "image": "20/20_CT_HR.nii.gz",
+ "pseudo_label": "20/20_CT_HR.nii.gz",
+ "label": "20/20_CT_HR_label.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AeroPath_100/20_CT_HR/20_CT_HR_seg.nii.gz"
+ },
+ {
+ "image": "1/1_CT_HR.nii.gz",
+ "pseudo_label": "1/1_CT_HR.nii.gz",
+ "label": "1/1_CT_HR_label.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AeroPath_100/1_CT_HR/1_CT_HR_seg.nii.gz"
+ },
+ {
+ "image": "18/18_CT_HR.nii.gz",
+ "pseudo_label": "18/18_CT_HR.nii.gz",
+ "label": "18/18_CT_HR_label.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AeroPath_100/18_CT_HR/18_CT_HR_seg.nii.gz"
+ },
+ {
+ "image": "25/25_CT_HR.nii.gz",
+ "pseudo_label": "25/25_CT_HR.nii.gz",
+ "label": "25/25_CT_HR_label.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AeroPath_100/25_CT_HR/25_CT_HR_seg.nii.gz"
+ },
+ {
+ "image": "13/13_CT_HR.nii.gz",
+ "pseudo_label": "13/13_CT_HR.nii.gz",
+ "label": "13/13_CT_HR_label.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AeroPath_100/13_CT_HR/13_CT_HR_seg.nii.gz"
+ },
+ {
+ "image": "23/23_CT_HR.nii.gz",
+ "pseudo_label": "23/23_CT_HR.nii.gz",
+ "label": "23/23_CT_HR_label.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AeroPath_100/23_CT_HR/23_CT_HR_seg.nii.gz"
+ },
+ {
+ "image": "5/5_CT_HR.nii.gz",
+ "pseudo_label": "5/5_CT_HR.nii.gz",
+ "label": "5/5_CT_HR_label.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AeroPath_100/5_CT_HR/5_CT_HR_seg.nii.gz"
+ },
+ {
+ "image": "10/10_CT_HR.nii.gz",
+ "pseudo_label": "10/10_CT_HR.nii.gz",
+ "label": "10/10_CT_HR_label.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AeroPath_100/10_CT_HR/10_CT_HR_seg.nii.gz"
+ },
+ {
+ "image": "17/17_CT_HR.nii.gz",
+ "pseudo_label": "17/17_CT_HR.nii.gz",
+ "label": "17/17_CT_HR_label.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AeroPath_100/17_CT_HR/17_CT_HR_seg.nii.gz"
+ },
+ {
+ "image": "12/12_CT_HR.nii.gz",
+ "pseudo_label": "12/12_CT_HR.nii.gz",
+ "label": "12/12_CT_HR_label.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AeroPath_100/12_CT_HR/12_CT_HR_seg.nii.gz"
+ },
+ {
+ "image": "3/3_CT_HR.nii.gz",
+ "pseudo_label": "3/3_CT_HR.nii.gz",
+ "label": "3/3_CT_HR_label.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AeroPath_100/3_CT_HR/3_CT_HR_seg.nii.gz"
+ },
+ {
+ "image": "24/24_CT_HR.nii.gz",
+ "pseudo_label": "24/24_CT_HR.nii.gz",
+ "label": "24/24_CT_HR_label.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AeroPath_100/24_CT_HR/24_CT_HR_seg.nii.gz"
+ },
+ {
+ "image": "9/9_CT_HR.nii.gz",
+ "pseudo_label": "9/9_CT_HR.nii.gz",
+ "label": "9/9_CT_HR_label.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/AeroPath_100/9_CT_HR/9_CT_HR_seg.nii.gz"
+ },
+ {
+ "image": "26/26_CT_HR.nii.gz",
+ "pseudo_label": "26/26_CT_HR.nii.gz",
+ "label": "26/26_CT_HR_label.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AeroPath_100/26_CT_HR/26_CT_HR_seg.nii.gz"
+ },
+ {
+ "image": "11/11_CT_HR.nii.gz",
+ "pseudo_label": "11/11_CT_HR.nii.gz",
+ "label": "11/11_CT_HR_label.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AeroPath_100/11_CT_HR/11_CT_HR_seg.nii.gz"
+ },
+ {
+ "image": "7/7_CT_HR.nii.gz",
+ "pseudo_label": "7/7_CT_HR.nii.gz",
+ "label": "7/7_CT_HR_label.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/AeroPath_100/7_CT_HR/7_CT_HR_seg.nii.gz"
+ }
+ ],
+ "training_transform": [
+ {
+ "_target_": "RandCropByLabelClassesd",
+ "keys": [
+ "@image_key",
+ "@label_key",
+ "@pseudo_label_key",
+ "@label_sv_key"
+ ],
+ "label_key": "@pseudo_label_key",
+ "num_classes": 133,
+ "num_samples": "@num_patches_per_image",
+ "spatial_size": "@patch_size",
+ "ratios": "$tuple(float(i >= 0) for i in range(133))",
+ "warn": false,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandZoomd",
+ "keys": [
+ "@image_key",
+ "@label_key",
+ "@pseudo_label_key",
+ "@label_sv_key"
+ ],
+ "min_zoom": 0.8,
+ "max_zoom": 1.2,
+ "mode": [
+ "trilinear",
+ "nearest",
+ "nearest",
+ "nearest"
+ ],
+ "prob": 0.2,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandSimulateLowResolutiond",
+ "keys": [
+ "@image_key"
+ ],
+ "zoom_range": [
+ 0.3,
+ 1
+ ],
+ "prob": 0.2,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandGaussianSmoothd",
+ "keys": [
+ "@image_key"
+ ],
+ "prob": 0.2,
+ "sigma_x": [
+ 0.5,
+ 1.0
+ ],
+ "sigma_y": [
+ 0.5,
+ 1.0
+ ],
+ "sigma_z": [
+ 0.5,
+ 1.0
+ ]
+ },
+ {
+ "_target_": "RandScaleIntensityd",
+ "keys": [
+ "@image_key"
+ ],
+ "factors": 0.1,
+ "prob": 0.2
+ },
+ {
+ "_target_": "RandShiftIntensityd",
+ "keys": [
+ "@image_key"
+ ],
+ "offsets": 0.1,
+ "prob": 0.2
+ },
+ {
+ "_target_": "RandGaussianNoised",
+ "keys": [
+ "@image_key"
+ ],
+ "prob": 0.2,
+ "mean": 0.0,
+ "std": 0.2
+ }
+ ],
+ "label_dict": {
+ "2": "airway"
+ },
+ "original_label_dict": {
+ "1": "lung",
+ "2": "airway"
+ },
+ "testing": [
+ {
+ "image": "19/19_CT_HR.nii.gz",
+ "label": "19/19_CT_HR_label.nii.gz"
+ },
+ {
+ "image": "2/2_CT_HR.nii.gz",
+ "label": "2/2_CT_HR_label.nii.gz"
+ },
+ {
+ "image": "22/22_CT_HR.nii.gz",
+ "label": "22/22_CT_HR_label.nii.gz"
+ },
+ {
+ "image": "21/21_CT_HR.nii.gz",
+ "label": "21/21_CT_HR_label.nii.gz"
+ },
+ {
+ "image": "4/4_CT_HR.nii.gz",
+ "label": "4/4_CT_HR_label.nii.gz"
+ }
+ ]
+}
diff --git a/vista3d/data/jsons/BTCV-Abdomen_5_folds.json b/vista3d/data/jsons/BTCV-Abdomen_5_folds.json
new file mode 100644
index 0000000..55b1067
--- /dev/null
+++ b/vista3d/data/jsons/BTCV-Abdomen_5_folds.json
@@ -0,0 +1,340 @@
+{
+ "training": [
+ {
+ "image": "RawData/Training/img/img0039.nii.gz",
+ "pseudo_label": "RawData/Training/img/img0039.nii.gz",
+ "label": "RawData/Training/label/label0039.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "RawData/Training/img/img0037.nii.gz",
+ "pseudo_label": "RawData/Training/img/img0037.nii.gz",
+ "label": "RawData/Training/label/label0037.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "RawData/Training/img/img0006.nii.gz",
+ "pseudo_label": "RawData/Training/img/img0006.nii.gz",
+ "label": "RawData/Training/label/label0006.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "RawData/Training/img/img0008.nii.gz",
+ "pseudo_label": "RawData/Training/img/img0008.nii.gz",
+ "label": "RawData/Training/label/label0008.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "RawData/Training/img/img0027.nii.gz",
+ "pseudo_label": "RawData/Training/img/img0027.nii.gz",
+ "label": "RawData/Training/label/label0027.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "RawData/Training/img/img0030.nii.gz",
+ "pseudo_label": "RawData/Training/img/img0030.nii.gz",
+ "label": "RawData/Training/label/label0030.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Abdomen_100/img0030/img0030_seg.nii.gz"
+ },
+ {
+ "image": "RawData/Training/img/img0023.nii.gz",
+ "pseudo_label": "RawData/Training/img/img0023.nii.gz",
+ "label": "RawData/Training/label/label0023.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Abdomen_100/img0023/img0023_seg.nii.gz"
+ },
+ {
+ "image": "RawData/Training/img/img0001.nii.gz",
+ "pseudo_label": "RawData/Training/img/img0001.nii.gz",
+ "label": "RawData/Training/label/label0001.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Abdomen_100/img0001/img0001_seg.nii.gz"
+ },
+ {
+ "image": "RawData/Training/img/img0035.nii.gz",
+ "pseudo_label": "RawData/Training/img/img0035.nii.gz",
+ "label": "RawData/Training/label/label0035.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Abdomen_100/img0035/img0035_seg.nii.gz"
+ },
+ {
+ "image": "RawData/Training/img/img0038.nii.gz",
+ "pseudo_label": "RawData/Training/img/img0038.nii.gz",
+ "label": "RawData/Training/label/label0038.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Abdomen_100/img0038/img0038_seg.nii.gz"
+ },
+ {
+ "image": "RawData/Training/img/img0005.nii.gz",
+ "pseudo_label": "RawData/Training/img/img0005.nii.gz",
+ "label": "RawData/Training/label/label0005.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Abdomen_100/img0005/img0005_seg.nii.gz"
+ },
+ {
+ "image": "RawData/Training/img/img0026.nii.gz",
+ "pseudo_label": "RawData/Training/img/img0026.nii.gz",
+ "label": "RawData/Training/label/label0026.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Abdomen_100/img0026/img0026_seg.nii.gz"
+ },
+ {
+ "image": "RawData/Training/img/img0033.nii.gz",
+ "pseudo_label": "RawData/Training/img/img0033.nii.gz",
+ "label": "RawData/Training/label/label0033.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Abdomen_100/img0033/img0033_seg.nii.gz"
+ },
+ {
+ "image": "RawData/Training/img/img0004.nii.gz",
+ "pseudo_label": "RawData/Training/img/img0004.nii.gz",
+ "label": "RawData/Training/label/label0004.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Abdomen_100/img0004/img0004_seg.nii.gz"
+ },
+ {
+ "image": "RawData/Training/img/img0007.nii.gz",
+ "pseudo_label": "RawData/Training/img/img0007.nii.gz",
+ "label": "RawData/Training/label/label0007.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Abdomen_100/img0007/img0007_seg.nii.gz"
+ },
+ {
+ "image": "RawData/Training/img/img0009.nii.gz",
+ "pseudo_label": "RawData/Training/img/img0009.nii.gz",
+ "label": "RawData/Training/label/label0009.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Abdomen_100/img0009/img0009_seg.nii.gz"
+ },
+ {
+ "image": "RawData/Training/img/img0040.nii.gz",
+ "pseudo_label": "RawData/Training/img/img0040.nii.gz",
+ "label": "RawData/Training/label/label0040.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Abdomen_100/img0040/img0040_seg.nii.gz"
+ },
+ {
+ "image": "RawData/Training/img/img0031.nii.gz",
+ "pseudo_label": "RawData/Training/img/img0031.nii.gz",
+ "label": "RawData/Training/label/label0031.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Abdomen_100/img0031/img0031_seg.nii.gz"
+ },
+ {
+ "image": "RawData/Training/img/img0010.nii.gz",
+ "pseudo_label": "RawData/Training/img/img0010.nii.gz",
+ "label": "RawData/Training/label/label0010.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Abdomen_100/img0010/img0010_seg.nii.gz"
+ },
+ {
+ "image": "RawData/Training/img/img0028.nii.gz",
+ "pseudo_label": "RawData/Training/img/img0028.nii.gz",
+ "label": "RawData/Training/label/label0028.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Abdomen_100/img0028/img0028_seg.nii.gz"
+ },
+ {
+ "image": "RawData/Training/img/img0036.nii.gz",
+ "pseudo_label": "RawData/Training/img/img0036.nii.gz",
+ "label": "RawData/Training/label/label0036.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Abdomen_100/img0036/img0036_seg.nii.gz"
+ },
+ {
+ "image": "RawData/Training/img/img0029.nii.gz",
+ "pseudo_label": "RawData/Training/img/img0029.nii.gz",
+ "label": "RawData/Training/label/label0029.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Abdomen_100/img0029/img0029_seg.nii.gz"
+ },
+ {
+ "image": "RawData/Training/img/img0003.nii.gz",
+ "pseudo_label": "RawData/Training/img/img0003.nii.gz",
+ "label": "RawData/Training/label/label0003.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Abdomen_100/img0003/img0003_seg.nii.gz"
+ },
+ {
+ "image": "RawData/Training/img/img0002.nii.gz",
+ "pseudo_label": "RawData/Training/img/img0002.nii.gz",
+ "label": "RawData/Training/label/label0002.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Abdomen_100/img0002/img0002_seg.nii.gz"
+ }
+ ],
+ "training_transform": [
+ {
+ "_target_": "RandCropByLabelClassesd",
+ "keys": [
+ "@image_key",
+ "@label_key",
+ "@pseudo_label_key",
+ "@label_sv_key"
+ ],
+ "label_key": "@pseudo_label_key",
+ "num_classes": 133,
+ "num_samples": "@num_patches_per_image",
+ "spatial_size": "@patch_size",
+ "ratios": "$tuple(float(i >= 0) for i in range(133))",
+ "warn": false,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandZoomd",
+ "keys": [
+ "@image_key",
+ "@label_key",
+ "@pseudo_label_key",
+ "@label_sv_key"
+ ],
+ "min_zoom": 0.8,
+ "max_zoom": 1.2,
+ "mode": [
+ "trilinear",
+ "nearest",
+ "nearest",
+ "nearest"
+ ],
+ "prob": 0.2,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandSimulateLowResolutiond",
+ "keys": [
+ "@image_key"
+ ],
+ "zoom_range": [
+ 0.3,
+ 1
+ ],
+ "prob": 0.2,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandGaussianSmoothd",
+ "keys": [
+ "@image_key"
+ ],
+ "prob": 0.2,
+ "sigma_x": [
+ 0.5,
+ 1.0
+ ],
+ "sigma_y": [
+ 0.5,
+ 1.0
+ ],
+ "sigma_z": [
+ 0.5,
+ 1.0
+ ]
+ },
+ {
+ "_target_": "RandScaleIntensityd",
+ "keys": [
+ "@image_key"
+ ],
+ "factors": 0.1,
+ "prob": 0.2
+ },
+ {
+ "_target_": "RandShiftIntensityd",
+ "keys": [
+ "@image_key"
+ ],
+ "offsets": 0.1,
+ "prob": 0.2
+ },
+ {
+ "_target_": "RandGaussianNoised",
+ "keys": [
+ "@image_key"
+ ],
+ "prob": 0.2,
+ "mean": 0.0,
+ "std": 0.2
+ }
+ ],
+ "label_dict": {
+ "1": "spleen",
+ "2": "right kidney",
+ "3": "left kidney",
+ "4": "gallbladder",
+ "5": "esophagus",
+ "6": "liver",
+ "7": "stomach",
+ "8": "aorta",
+ "9": "inferior vena cava",
+ "10": "portal vein and splenic vein",
+ "11": "pancreas",
+ "12": "right adrenal gland",
+ "13": "left adrenal gland"
+ },
+ "original_label_dict": {
+ "1": "spleen",
+ "2": "right kidney",
+ "3": "left kidney",
+ "4": "gallbladder",
+ "5": "esophagus",
+ "6": "liver",
+ "7": "stomach",
+ "8": "aorta",
+ "9": "inferior vena cava",
+ "10": "portal vein and splenic vein",
+ "11": "pancreas",
+ "12": "right adrenal gland",
+ "13": "left adrenal gland"
+ },
+ "testing": [
+ {
+ "image": "RawData/Training/img/img0021.nii.gz",
+ "label": "RawData/Training/label/label0021.nii.gz"
+ },
+ {
+ "image": "RawData/Training/img/img0034.nii.gz",
+ "label": "RawData/Training/label/label0034.nii.gz"
+ },
+ {
+ "image": "RawData/Training/img/img0022.nii.gz",
+ "label": "RawData/Training/label/label0022.nii.gz"
+ },
+ {
+ "image": "RawData/Training/img/img0025.nii.gz",
+ "label": "RawData/Training/label/label0025.nii.gz"
+ },
+ {
+ "image": "RawData/Training/img/img0024.nii.gz",
+ "label": "RawData/Training/label/label0024.nii.gz"
+ },
+ {
+ "image": "RawData/Training/img/img0032.nii.gz",
+ "label": "RawData/Training/label/label0032.nii.gz"
+ }
+ ]
+}
diff --git a/vista3d/data/jsons/BTCV-Cervix_5_folds.json b/vista3d/data/jsons/BTCV-Cervix_5_folds.json
new file mode 100644
index 0000000..5bfd9a7
--- /dev/null
+++ b/vista3d/data/jsons/BTCV-Cervix_5_folds.json
@@ -0,0 +1,318 @@
+{
+ "training": [
+ {
+ "image": "FixedData/Training/img/8745574-Image.nii.gz",
+ "pseudo_label": "FixedData/Training/img/8745574-Image.nii.gz",
+ "label": "FixedDataV2/Training/label/8745574-Mask.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "FixedData/Training/img/7657884-Image.nii.gz",
+ "pseudo_label": "FixedData/Training/img/7657884-Image.nii.gz",
+ "label": "FixedDataV2/Training/label/7657884-Mask.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "FixedData/Training/img/1565722-Image.nii.gz",
+ "pseudo_label": "FixedData/Training/img/1565722-Image.nii.gz",
+ "label": "FixedDataV2/Training/label/1565722-Mask.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "FixedData/Training/img/1578068-Image.nii.gz",
+ "pseudo_label": "FixedData/Training/img/1578068-Image.nii.gz",
+ "label": "FixedDataV2/Training/label/1578068-Mask.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "FixedData/Training/img/3744998-Image.nii.gz",
+ "pseudo_label": "FixedData/Training/img/3744998-Image.nii.gz",
+ "label": "FixedDataV2/Training/label/3744998-Mask.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "FixedData/Training/img/5458334-Image.nii.gz",
+ "pseudo_label": "FixedData/Training/img/5458334-Image.nii.gz",
+ "label": "FixedDataV2/Training/label/5458334-Mask.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Cervix_100/5458334-Image/5458334-Image_seg.nii.gz"
+ },
+ {
+ "image": "FixedData/Training/img/2780380-Image.nii.gz",
+ "pseudo_label": "FixedData/Training/img/2780380-Image.nii.gz",
+ "label": "FixedDataV2/Training/label/2780380-Mask.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "FixedData/Training/img/0507688-Image.nii.gz",
+ "pseudo_label": "FixedData/Training/img/0507688-Image.nii.gz",
+ "label": "FixedDataV2/Training/label/0507688-Mask.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Cervix_100/0507688-Image/0507688-Image_seg.nii.gz"
+ },
+ {
+ "image": "FixedData/Training/img/6682806-Image.nii.gz",
+ "pseudo_label": "FixedData/Training/img/6682806-Image.nii.gz",
+ "label": "FixedDataV2/Training/label/6682806-Mask.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Cervix_100/6682806-Image/6682806-Image_seg.nii.gz"
+ },
+ {
+ "image": "FixedData/Training/img/7742556-Image.nii.gz",
+ "pseudo_label": "FixedData/Training/img/7742556-Image.nii.gz",
+ "label": "FixedDataV2/Training/label/7742556-Mask.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "FixedData/Training/img/1411226-Image.nii.gz",
+ "pseudo_label": "FixedData/Training/img/1411226-Image.nii.gz",
+ "label": "FixedDataV2/Training/label/1411226-Mask.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Cervix_100/1411226-Image/1411226-Image_seg.nii.gz"
+ },
+ {
+ "image": "FixedData/Training/img/3463338-Image.nii.gz",
+ "pseudo_label": "FixedData/Training/img/3463338-Image.nii.gz",
+ "label": "FixedDataV2/Training/label/3463338-Mask.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "FixedData/Training/img/6171298-Image.nii.gz",
+ "pseudo_label": "FixedData/Training/img/6171298-Image.nii.gz",
+ "label": "FixedDataV2/Training/label/6171298-Mask.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Cervix_100/6171298-Image/6171298-Image_seg.nii.gz"
+ },
+ {
+ "image": "FixedData/Training/img/0773652-Image.nii.gz",
+ "pseudo_label": "FixedData/Training/img/0773652-Image.nii.gz",
+ "label": "FixedDataV2/Training/label/0773652-Mask.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Cervix_100/0773652-Image/0773652-Image_seg.nii.gz"
+ },
+ {
+ "image": "FixedData/Training/img/1577656-Image.nii.gz",
+ "pseudo_label": "FixedData/Training/img/1577656-Image.nii.gz",
+ "label": "FixedDataV2/Training/label/1577656-Mask.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Cervix_100/1577656-Image/1577656-Image_seg.nii.gz"
+ },
+ {
+ "image": "FixedData/Training/img/2088692-Image.nii.gz",
+ "pseudo_label": "FixedData/Training/img/2088692-Image.nii.gz",
+ "label": "FixedDataV2/Training/label/2088692-Mask.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Cervix_100/2088692-Image/2088692-Image_seg.nii.gz"
+ },
+ {
+ "image": "FixedData/Training/img/9570942-Image.nii.gz",
+ "pseudo_label": "FixedData/Training/img/9570942-Image.nii.gz",
+ "label": "FixedDataV2/Training/label/9570942-Mask.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Cervix_100/9570942-Image/9570942-Image_seg.nii.gz"
+ },
+ {
+ "image": "FixedData/Training/img/5502532-Image.nii.gz",
+ "pseudo_label": "FixedData/Training/img/5502532-Image.nii.gz",
+ "label": "FixedDataV2/Training/label/5502532-Mask.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Cervix_100/5502532-Image/5502532-Image_seg.nii.gz"
+ },
+ {
+ "image": "FixedData/Training/img/2469782-Image.nii.gz",
+ "pseudo_label": "FixedData/Training/img/2469782-Image.nii.gz",
+ "label": "FixedDataV2/Training/label/2469782-Mask.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "FixedData/Training/img/4526856-Image.nii.gz",
+ "pseudo_label": "FixedData/Training/img/4526856-Image.nii.gz",
+ "label": "FixedDataV2/Training/label/4526856-Mask.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Cervix_100/4526856-Image/4526856-Image_seg.nii.gz"
+ },
+ {
+ "image": "FixedData/Training/img/6798630-Image.nii.gz",
+ "pseudo_label": "FixedData/Training/img/6798630-Image.nii.gz",
+ "label": "FixedDataV2/Training/label/6798630-Mask.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Cervix_100/6798630-Image/6798630-Image_seg.nii.gz"
+ },
+ {
+ "image": "FixedData/Training/img/5176452-Image.nii.gz",
+ "pseudo_label": "FixedData/Training/img/5176452-Image.nii.gz",
+ "label": "FixedDataV2/Training/label/5176452-Mask.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Cervix_100/5176452-Image/5176452-Image_seg.nii.gz"
+ },
+ {
+ "image": "FixedData/Training/img/0763890-Image.nii.gz",
+ "pseudo_label": "FixedData/Training/img/0763890-Image.nii.gz",
+ "label": "FixedDataV2/Training/label/0763890-Mask.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Cervix_100/0763890-Image/0763890-Image_seg.nii.gz"
+ },
+ {
+ "image": "FixedData/Training/img/0759564-Image.nii.gz",
+ "pseudo_label": "FixedData/Training/img/0759564-Image.nii.gz",
+ "label": "FixedDataV2/Training/label/0759564-Mask.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Cervix_100/0759564-Image/0759564-Image_seg.nii.gz"
+ }
+ ],
+ "training_transform": [
+ {
+ "_target_": "RandCropByLabelClassesd",
+ "keys": [
+ "@image_key",
+ "@label_key",
+ "@pseudo_label_key",
+ "@label_sv_key"
+ ],
+ "label_key": "@pseudo_label_key",
+ "num_classes": 133,
+ "num_samples": "@num_patches_per_image",
+ "spatial_size": "@patch_size",
+ "ratios": "$tuple(float(i >= 0) for i in range(133))",
+ "warn": false,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandZoomd",
+ "keys": [
+ "@image_key",
+ "@label_key",
+ "@pseudo_label_key",
+ "@label_sv_key"
+ ],
+ "min_zoom": 0.8,
+ "max_zoom": 1.2,
+ "mode": [
+ "trilinear",
+ "nearest",
+ "nearest",
+ "nearest"
+ ],
+ "prob": 0.2,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandSimulateLowResolutiond",
+ "keys": [
+ "@image_key"
+ ],
+ "zoom_range": [
+ 0.3,
+ 1
+ ],
+ "prob": 0.2,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandGaussianSmoothd",
+ "keys": [
+ "@image_key"
+ ],
+ "prob": 0.2,
+ "sigma_x": [
+ 0.5,
+ 1.0
+ ],
+ "sigma_y": [
+ 0.5,
+ 1.0
+ ],
+ "sigma_z": [
+ 0.5,
+ 1.0
+ ]
+ },
+ {
+ "_target_": "RandScaleIntensityd",
+ "keys": [
+ "@image_key"
+ ],
+ "factors": 0.1,
+ "prob": 0.2
+ },
+ {
+ "_target_": "RandShiftIntensityd",
+ "keys": [
+ "@image_key"
+ ],
+ "offsets": 0.1,
+ "prob": 0.2
+ },
+ {
+ "_target_": "RandGaussianNoised",
+ "keys": [
+ "@image_key"
+ ],
+ "prob": 0.2,
+ "mean": 0.0,
+ "std": 0.2
+ }
+ ],
+ "label_dict": {
+ "1": "bladder",
+ "2": "prostate or uterus",
+ "3": "rectum",
+ "4": "small bowel"
+ },
+ "original_label_dict": {
+ "1": "bladder",
+ "2": "uterus",
+ "3": "rectum",
+ "4": "small bowel"
+ },
+ "testing": [
+ {
+ "image": "FixedData/Training/img/2477092-Image.nii.gz",
+ "label": "FixedDataV2/Training/label/2477092-Mask.nii.gz"
+ },
+ {
+ "image": "FixedData/Training/img/6339208-Image.nii.gz",
+ "label": "FixedDataV2/Training/label/6339208-Mask.nii.gz"
+ },
+ {
+ "image": "FixedData/Training/img/2609008-Image.nii.gz",
+ "label": "FixedDataV2/Training/label/2609008-Mask.nii.gz"
+ },
+ {
+ "image": "FixedData/Training/img/3388252-Image.nii.gz",
+ "label": "FixedDataV2/Training/label/3388252-Mask.nii.gz"
+ },
+ {
+ "image": "FixedData/Training/img/3089528-Image.nii.gz",
+ "label": "FixedDataV2/Training/label/3089528-Mask.nii.gz"
+ },
+ {
+ "image": "FixedData/Training/img/5664630-Image.nii.gz",
+ "label": "FixedDataV2/Training/label/5664630-Mask.nii.gz"
+ }
+ ]
+}
diff --git a/vista3d/data/jsons/CRLM-CT_5_folds.json b/vista3d/data/jsons/CRLM-CT_5_folds.json
new file mode 100644
index 0000000..a28223d
--- /dev/null
+++ b/vista3d/data/jsons/CRLM-CT_5_folds.json
@@ -0,0 +1,1491 @@
+{
+ "training": [
+ {
+ "image": "CRLM-CT-1028/2_ct_cap_wcontrast.nii.gz",
+ "pseudo_label": "CRLM-CT-1028/2_ct_cap_wcontrast.nii.gz",
+ "label": "CRLM-CT-1028/mask.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "CRLM-CT-1154/101_bind217624271512.nii.gz",
+ "pseudo_label": "CRLM-CT-1154/101_bind217624271512.nii.gz",
+ "label": "CRLM-CT-1154/mask.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "CRLM-CT-1185/2_ct_chabpel.nii.gz",
+ "pseudo_label": "CRLM-CT-1185/2_ct_chabpel.nii.gz",
+ "label": "CRLM-CT-1185/mask.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "CRLM-CT-1017/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1017/101_.nii.gz",
+ "label": "CRLM-CT-1017/mask.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "CRLM-CT-1093/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1093/101_.nii.gz",
+ "label": "CRLM-CT-1093/mask.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "CRLM-CT-1061/101_bind57214233483.nii.gz",
+ "pseudo_label": "CRLM-CT-1061/101_bind57214233483.nii.gz",
+ "label": "CRLM-CT-1061/mask.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "CRLM-CT-1089/2_abdomen.nii.gz",
+ "pseudo_label": "CRLM-CT-1089/2_abdomen.nii.gz",
+ "label": "CRLM-CT-1089/mask.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "CRLM-CT-1194/2_.nii.gz",
+ "pseudo_label": "CRLM-CT-1194/2_.nii.gz",
+ "label": "CRLM-CT-1194/mask.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "CRLM-CT-1032/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1032/101_.nii.gz",
+ "label": "CRLM-CT-1032/mask.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "CRLM-CT-1045/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1045/101_.nii.gz",
+ "label": "CRLM-CT-1045/mask.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "CRLM-CT-1165/2_.nii.gz",
+ "pseudo_label": "CRLM-CT-1165/2_.nii.gz",
+ "label": "CRLM-CT-1165/mask.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "CRLM-CT-1150/2_ct_abpel.nii.gz",
+ "pseudo_label": "CRLM-CT-1150/2_ct_abpel.nii.gz",
+ "label": "CRLM-CT-1150/mask.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "CRLM-CT-1030/101_bind183835190403.nii.gz",
+ "pseudo_label": "CRLM-CT-1030/101_bind183835190403.nii.gz",
+ "label": "CRLM-CT-1030/mask.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "CRLM-CT-1136/2_.nii.gz",
+ "pseudo_label": "CRLM-CT-1136/2_.nii.gz",
+ "label": "CRLM-CT-1136/mask.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "CRLM-CT-1105/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1105/101_.nii.gz",
+ "label": "CRLM-CT-1105/mask.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "CRLM-CT-1079/2_chestabdomenpelvis.nii.gz",
+ "pseudo_label": "CRLM-CT-1079/2_chestabdomenpelvis.nii.gz",
+ "label": "CRLM-CT-1079/mask.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "CRLM-CT-1191/2_ct_chabpel.nii.gz",
+ "pseudo_label": "CRLM-CT-1191/2_ct_chabpel.nii.gz",
+ "label": "CRLM-CT-1191/mask.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "CRLM-CT-1117/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1117/101_.nii.gz",
+ "label": "CRLM-CT-1117/mask.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "CRLM-CT-1037/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1037/101_.nii.gz",
+ "label": "CRLM-CT-1037/mask.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "CRLM-CT-1188/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1188/101_.nii.gz",
+ "label": "CRLM-CT-1188/mask.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "CRLM-CT-1069/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1069/101_.nii.gz",
+ "label": "CRLM-CT-1069/mask.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "CRLM-CT-1001/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1001/101_.nii.gz",
+ "label": "CRLM-CT-1001/mask.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "CRLM-CT-1057/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1057/101_.nii.gz",
+ "label": "CRLM-CT-1057/mask.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "CRLM-CT-1041/2_chestabdomenpelvis.nii.gz",
+ "pseudo_label": "CRLM-CT-1041/2_chestabdomenpelvis.nii.gz",
+ "label": "CRLM-CT-1041/mask.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "CRLM-CT-1090/2_ct_abdomen.nii.gz",
+ "pseudo_label": "CRLM-CT-1090/2_ct_abdomen.nii.gz",
+ "label": "CRLM-CT-1090/mask.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "CRLM-CT-1087/2_.nii.gz",
+ "pseudo_label": "CRLM-CT-1087/2_.nii.gz",
+ "label": "CRLM-CT-1087/mask.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "CRLM-CT-1133/101_bind206963277526.nii.gz",
+ "pseudo_label": "CRLM-CT-1133/101_bind206963277526.nii.gz",
+ "label": "CRLM-CT-1133/mask.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "CRLM-CT-1007/2_ct_chabpel.nii.gz",
+ "pseudo_label": "CRLM-CT-1007/2_ct_chabpel.nii.gz",
+ "label": "CRLM-CT-1007/mask.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "CRLM-CT-1099/102_.nii.gz",
+ "pseudo_label": "CRLM-CT-1099/102_.nii.gz",
+ "label": "CRLM-CT-1099/mask.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "CRLM-CT-1196/103_.nii.gz",
+ "pseudo_label": "CRLM-CT-1196/103_.nii.gz",
+ "label": "CRLM-CT-1196/mask.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "CRLM-CT-1080/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1080/101_.nii.gz",
+ "label": "CRLM-CT-1080/mask.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "CRLM-CT-1073/2_chabdpel_5x5.nii.gz",
+ "pseudo_label": "CRLM-CT-1073/2_chabdpel_5x5.nii.gz",
+ "label": "CRLM-CT-1073/mask.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "CRLM-CT-1114/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1114/101_.nii.gz",
+ "label": "CRLM-CT-1114/mask.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1114/101_/101__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1131/2_.nii.gz",
+ "pseudo_label": "CRLM-CT-1131/2_.nii.gz",
+ "label": "CRLM-CT-1131/mask.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1131/2_/2__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1110/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1110/101_.nii.gz",
+ "label": "CRLM-CT-1110/mask.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1110/101_/101__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1010/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1010/101_.nii.gz",
+ "label": "CRLM-CT-1010/mask.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1010/101_/101__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1183/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1183/101_.nii.gz",
+ "label": "CRLM-CT-1183/mask.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "CRLM-CT-1122/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1122/101_.nii.gz",
+ "label": "CRLM-CT-1122/mask.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1122/101_/101__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1127/2_ct_chabpel.nii.gz",
+ "pseudo_label": "CRLM-CT-1127/2_ct_chabpel.nii.gz",
+ "label": "CRLM-CT-1127/mask.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1127/2_ct_chabpel/2_ct_chabpel_seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1016/2_ct_chabpel.nii.gz",
+ "pseudo_label": "CRLM-CT-1016/2_ct_chabpel.nii.gz",
+ "label": "CRLM-CT-1016/mask.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1016/2_ct_chabpel/2_ct_chabpel_seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1101/2_.nii.gz",
+ "pseudo_label": "CRLM-CT-1101/2_.nii.gz",
+ "label": "CRLM-CT-1101/mask.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1101/2_/2__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1070/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1070/101_.nii.gz",
+ "label": "CRLM-CT-1070/mask.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1070/101_/101__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1159/2_ct_chabpel.nii.gz",
+ "pseudo_label": "CRLM-CT-1159/2_ct_chabpel.nii.gz",
+ "label": "CRLM-CT-1159/mask.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1159/2_ct_chabpel/2_ct_chabpel_seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1179/2_ct_chabpel.nii.gz",
+ "pseudo_label": "CRLM-CT-1179/2_ct_chabpel.nii.gz",
+ "label": "CRLM-CT-1179/mask.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1179/2_ct_chabpel/2_ct_chabpel_seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1178/102_.nii.gz",
+ "pseudo_label": "CRLM-CT-1178/102_.nii.gz",
+ "label": "CRLM-CT-1178/mask.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1178/102_/102__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1156/2_.nii.gz",
+ "pseudo_label": "CRLM-CT-1156/2_.nii.gz",
+ "label": "CRLM-CT-1156/mask.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1156/2_/2__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1197/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1197/101_.nii.gz",
+ "label": "CRLM-CT-1197/mask.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1197/101_/101__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1039/2_post_con.nii.gz",
+ "pseudo_label": "CRLM-CT-1039/2_post_con.nii.gz",
+ "label": "CRLM-CT-1039/mask.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1039/2_post_con/2_post_con_seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1113/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1113/101_.nii.gz",
+ "label": "CRLM-CT-1113/mask.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1113/101_/101__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1193/2_ct_chabpel.nii.gz",
+ "pseudo_label": "CRLM-CT-1193/2_ct_chabpel.nii.gz",
+ "label": "CRLM-CT-1193/mask.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1193/2_ct_chabpel/2_ct_chabpel_seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1077/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1077/101_.nii.gz",
+ "label": "CRLM-CT-1077/mask.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1077/101_/101__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1146/2_ct_abdomenpelvis.nii.gz",
+ "pseudo_label": "CRLM-CT-1146/2_ct_abdomenpelvis.nii.gz",
+ "label": "CRLM-CT-1146/mask.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1146/2_ct_abdomenpelvis/2_ct_abdomenpelvis_seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1098/104_.nii.gz",
+ "pseudo_label": "CRLM-CT-1098/104_.nii.gz",
+ "label": "CRLM-CT-1098/mask.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1098/104_/104__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1182/102_.nii.gz",
+ "pseudo_label": "CRLM-CT-1182/102_.nii.gz",
+ "label": "CRLM-CT-1182/mask.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1182/102_/102__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1052/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1052/101_.nii.gz",
+ "label": "CRLM-CT-1052/mask.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1052/101_/101__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1033/102_.nii.gz",
+ "pseudo_label": "CRLM-CT-1033/102_.nii.gz",
+ "label": "CRLM-CT-1033/mask.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1033/102_/102__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1119/2_ct_chabpel.nii.gz",
+ "pseudo_label": "CRLM-CT-1119/2_ct_chabpel.nii.gz",
+ "label": "CRLM-CT-1119/mask.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1119/2_ct_chabpel/2_ct_chabpel_seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1174/2_ct_chabpel.nii.gz",
+ "pseudo_label": "CRLM-CT-1174/2_ct_chabpel.nii.gz",
+ "label": "CRLM-CT-1174/mask.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1174/2_ct_chabpel/2_ct_chabpel_seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1055/101_bind24514171390.nii.gz",
+ "pseudo_label": "CRLM-CT-1055/101_bind24514171390.nii.gz",
+ "label": "CRLM-CT-1055/mask.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1055/101_bind24514171390/101_bind24514171390_seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1187/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1187/101_.nii.gz",
+ "label": "CRLM-CT-1187/mask.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1187/101_/101__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1107/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1107/101_.nii.gz",
+ "label": "CRLM-CT-1107/mask.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1107/101_/101__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1003/105_.nii.gz",
+ "pseudo_label": "CRLM-CT-1003/105_.nii.gz",
+ "label": "CRLM-CT-1003/mask.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1003/105_/105__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1046/2_ct_chabpel.nii.gz",
+ "pseudo_label": "CRLM-CT-1046/2_ct_chabpel.nii.gz",
+ "label": "CRLM-CT-1046/mask.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1046/2_ct_chabpel/2_ct_chabpel_seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1011/2_ct_chabpel.nii.gz",
+ "pseudo_label": "CRLM-CT-1011/2_ct_chabpel.nii.gz",
+ "label": "CRLM-CT-1011/mask.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1011/2_ct_chabpel/2_ct_chabpel_seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1038/2_ct_chabpel.nii.gz",
+ "pseudo_label": "CRLM-CT-1038/2_ct_chabpel.nii.gz",
+ "label": "CRLM-CT-1038/mask.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1038/2_ct_chabpel/2_ct_chabpel_seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1020/2_ct_chabpel.nii.gz",
+ "pseudo_label": "CRLM-CT-1020/2_ct_chabpel.nii.gz",
+ "label": "CRLM-CT-1020/mask.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1020/2_ct_chabpel/2_ct_chabpel_seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1189/4_.nii.gz",
+ "pseudo_label": "CRLM-CT-1189/4_.nii.gz",
+ "label": "CRLM-CT-1189/mask.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1189/4_/4__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1049/101_bind24615277520.nii.gz",
+ "pseudo_label": "CRLM-CT-1049/101_bind24615277520.nii.gz",
+ "label": "CRLM-CT-1049/mask.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1049/101_bind24615277520/101_bind24615277520_seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1065/102_.nii.gz",
+ "pseudo_label": "CRLM-CT-1065/102_.nii.gz",
+ "label": "CRLM-CT-1065/mask.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1065/102_/102__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1059/2_ct_chabpel.nii.gz",
+ "pseudo_label": "CRLM-CT-1059/2_ct_chabpel.nii.gz",
+ "label": "CRLM-CT-1059/mask.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1059/2_ct_chabpel/2_ct_chabpel_seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1195/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1195/101_.nii.gz",
+ "label": "CRLM-CT-1195/mask.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1195/101_/101__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1126/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1126/101_.nii.gz",
+ "label": "CRLM-CT-1126/mask.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1126/101_/101__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1082/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1082/101_.nii.gz",
+ "label": "CRLM-CT-1082/mask.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1082/101_/101__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1125/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1125/101_.nii.gz",
+ "label": "CRLM-CT-1125/mask.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1125/101_/101__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1163/2_.nii.gz",
+ "pseudo_label": "CRLM-CT-1163/2_.nii.gz",
+ "label": "CRLM-CT-1163/mask.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1163/2_/2__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1044/2_ct_chabpel.nii.gz",
+ "pseudo_label": "CRLM-CT-1044/2_ct_chabpel.nii.gz",
+ "label": "CRLM-CT-1044/mask.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1044/2_ct_chabpel/2_ct_chabpel_seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1152/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1152/101_.nii.gz",
+ "label": "CRLM-CT-1152/mask.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1152/101_/101__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1085/2_.nii.gz",
+ "pseudo_label": "CRLM-CT-1085/2_.nii.gz",
+ "label": "CRLM-CT-1085/mask.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1085/2_/2__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1158/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1158/101_.nii.gz",
+ "label": "CRLM-CT-1158/mask.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1158/101_/101__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1142/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1142/101_.nii.gz",
+ "label": "CRLM-CT-1142/mask.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1142/101_/101__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1064/3_.nii.gz",
+ "pseudo_label": "CRLM-CT-1064/3_.nii.gz",
+ "label": "CRLM-CT-1064/mask.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1064/3_/3__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1181/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1181/101_.nii.gz",
+ "label": "CRLM-CT-1181/mask.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1181/101_/101__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1139/101_bind21866441131.nii.gz",
+ "pseudo_label": "CRLM-CT-1139/101_bind21866441131.nii.gz",
+ "label": "CRLM-CT-1139/mask.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1139/101_bind21866441131/101_bind21866441131_seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1123/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1123/101_.nii.gz",
+ "label": "CRLM-CT-1123/mask.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1123/101_/101__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1035/2_post_con.nii.gz",
+ "pseudo_label": "CRLM-CT-1035/2_post_con.nii.gz",
+ "label": "CRLM-CT-1035/mask.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1035/2_post_con/2_post_con_seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1144/2_ct_abpel.nii.gz",
+ "pseudo_label": "CRLM-CT-1144/2_ct_abpel.nii.gz",
+ "label": "CRLM-CT-1144/mask.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1144/2_ct_abpel/2_ct_abpel_seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1005/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1005/101_.nii.gz",
+ "label": "CRLM-CT-1005/mask.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1005/101_/101__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1051/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1051/101_.nii.gz",
+ "label": "CRLM-CT-1051/mask.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1051/101_/101__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1134/2_.nii.gz",
+ "pseudo_label": "CRLM-CT-1134/2_.nii.gz",
+ "label": "CRLM-CT-1134/mask.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1134/2_/2__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1157/2_.nii.gz",
+ "pseudo_label": "CRLM-CT-1157/2_.nii.gz",
+ "label": "CRLM-CT-1157/mask.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1157/2_/2__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1103/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1103/101_.nii.gz",
+ "label": "CRLM-CT-1103/mask.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1103/101_/101__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1063/2_.nii.gz",
+ "pseudo_label": "CRLM-CT-1063/2_.nii.gz",
+ "label": "CRLM-CT-1063/mask.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1063/2_/2__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1151/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1151/101_.nii.gz",
+ "label": "CRLM-CT-1151/mask.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1151/101_/101__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1096/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1096/101_.nii.gz",
+ "label": "CRLM-CT-1096/mask.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1096/101_/101__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1143/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1143/101_.nii.gz",
+ "label": "CRLM-CT-1143/mask.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1143/101_/101__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1008/101_bind170954277465.nii.gz",
+ "pseudo_label": "CRLM-CT-1008/101_bind170954277465.nii.gz",
+ "label": "CRLM-CT-1008/mask.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1008/101_bind170954277465/101_bind170954277465_seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1112/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1112/101_.nii.gz",
+ "label": "CRLM-CT-1112/mask.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1112/101_/101__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1091/102_.nii.gz",
+ "pseudo_label": "CRLM-CT-1091/102_.nii.gz",
+ "label": "CRLM-CT-1091/mask.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1091/102_/102__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1132/2_.nii.gz",
+ "pseudo_label": "CRLM-CT-1132/2_.nii.gz",
+ "label": "CRLM-CT-1132/mask.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1132/2_/2__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1075/5_abdomen_50_b40s.nii.gz",
+ "pseudo_label": "CRLM-CT-1075/5_abdomen_50_b40s.nii.gz",
+ "label": "CRLM-CT-1075/mask.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1075/5_abdomen_50_b40s/5_abdomen_50_b40s_seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1169/102_bind195715159254.nii.gz",
+ "pseudo_label": "CRLM-CT-1169/102_bind195715159254.nii.gz",
+ "label": "CRLM-CT-1169/mask.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1169/102_bind195715159254/102_bind195715159254_seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1062/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1062/101_.nii.gz",
+ "label": "CRLM-CT-1062/mask.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1062/101_/101__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1047/2_.nii.gz",
+ "pseudo_label": "CRLM-CT-1047/2_.nii.gz",
+ "label": "CRLM-CT-1047/mask.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1047/2_/2__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1161/2_.nii.gz",
+ "pseudo_label": "CRLM-CT-1161/2_.nii.gz",
+ "label": "CRLM-CT-1161/mask.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1161/2_/2__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1012/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1012/101_.nii.gz",
+ "label": "CRLM-CT-1012/mask.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1012/101_/101__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1155/2_.nii.gz",
+ "pseudo_label": "CRLM-CT-1155/2_.nii.gz",
+ "label": "CRLM-CT-1155/mask.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1155/2_/2__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1145/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1145/101_.nii.gz",
+ "label": "CRLM-CT-1145/mask.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1145/101_/101__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1095/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1095/101_.nii.gz",
+ "label": "CRLM-CT-1095/mask.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1095/101_/101__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1050/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1050/101_.nii.gz",
+ "label": "CRLM-CT-1050/mask.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1050/101_/101__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1026/101_bind28954246509.nii.gz",
+ "pseudo_label": "CRLM-CT-1026/101_bind28954246509.nii.gz",
+ "label": "CRLM-CT-1026/mask.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "CRLM-CT-1153/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1153/101_.nii.gz",
+ "label": "CRLM-CT-1153/mask.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "CRLM-CT-1192/2_.nii.gz",
+ "pseudo_label": "CRLM-CT-1192/2_.nii.gz",
+ "label": "CRLM-CT-1192/mask.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1192/2_/2__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1129/2_ct_chabpel.nii.gz",
+ "pseudo_label": "CRLM-CT-1129/2_ct_chabpel.nii.gz",
+ "label": "CRLM-CT-1129/mask.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1129/2_ct_chabpel/2_ct_chabpel_seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1031/2_ct_chabpel.nii.gz",
+ "pseudo_label": "CRLM-CT-1031/2_ct_chabpel.nii.gz",
+ "label": "CRLM-CT-1031/mask.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1031/2_ct_chabpel/2_ct_chabpel_seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1040/2_ct_chabpel.nii.gz",
+ "pseudo_label": "CRLM-CT-1040/2_ct_chabpel.nii.gz",
+ "label": "CRLM-CT-1040/mask.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1040/2_ct_chabpel/2_ct_chabpel_seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1072/100_.nii.gz",
+ "pseudo_label": "CRLM-CT-1072/100_.nii.gz",
+ "label": "CRLM-CT-1072/mask.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "CRLM-CT-1115/2_abdomenpelvis.nii.gz",
+ "pseudo_label": "CRLM-CT-1115/2_abdomenpelvis.nii.gz",
+ "label": "CRLM-CT-1115/mask.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1115/2_abdomenpelvis/2_abdomenpelvis_seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1130/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1130/101_.nii.gz",
+ "label": "CRLM-CT-1130/mask.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1130/101_/101__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1006/100_.nii.gz",
+ "pseudo_label": "CRLM-CT-1006/100_.nii.gz",
+ "label": "CRLM-CT-1006/mask.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1006/100_/100__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1043/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1043/101_.nii.gz",
+ "label": "CRLM-CT-1043/mask.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1043/101_/101__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1081/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1081/101_.nii.gz",
+ "label": "CRLM-CT-1081/mask.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1081/101_/101__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1166/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1166/101_.nii.gz",
+ "label": "CRLM-CT-1166/mask.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "CRLM-CT-1086/103_.nii.gz",
+ "pseudo_label": "CRLM-CT-1086/103_.nii.gz",
+ "label": "CRLM-CT-1086/mask.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1086/103_/103__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1048/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1048/101_.nii.gz",
+ "label": "CRLM-CT-1048/mask.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1048/101_/101__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1141/2_ct_chabpel.nii.gz",
+ "pseudo_label": "CRLM-CT-1141/2_ct_chabpel.nii.gz",
+ "label": "CRLM-CT-1141/mask.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1141/2_ct_chabpel/2_ct_chabpel_seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1076/2_ct_chabpel.nii.gz",
+ "pseudo_label": "CRLM-CT-1076/2_ct_chabpel.nii.gz",
+ "label": "CRLM-CT-1076/mask.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1076/2_ct_chabpel/2_ct_chabpel_seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1014/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1014/101_.nii.gz",
+ "label": "CRLM-CT-1014/mask.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1014/101_/101__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1106/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1106/101_.nii.gz",
+ "label": "CRLM-CT-1106/mask.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1106/101_/101__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1168/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1168/101_.nii.gz",
+ "label": "CRLM-CT-1168/mask.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1168/101_/101__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1068/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1068/101_.nii.gz",
+ "label": "CRLM-CT-1068/mask.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "CRLM-CT-1100/102_.nii.gz",
+ "pseudo_label": "CRLM-CT-1100/102_.nii.gz",
+ "label": "CRLM-CT-1100/mask.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "CRLM-CT-1023/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1023/101_.nii.gz",
+ "label": "CRLM-CT-1023/mask.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1023/101_/101__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1002/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1002/101_.nii.gz",
+ "label": "CRLM-CT-1002/mask.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "CRLM-CT-1118/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1118/101_.nii.gz",
+ "label": "CRLM-CT-1118/mask.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1118/101_/101__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1053/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1053/101_.nii.gz",
+ "label": "CRLM-CT-1053/mask.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1053/101_/101__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1124/103_.nii.gz",
+ "pseudo_label": "CRLM-CT-1124/103_.nii.gz",
+ "label": "CRLM-CT-1124/mask.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1124/103_/103__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1120/2_ct_chabpel.nii.gz",
+ "pseudo_label": "CRLM-CT-1120/2_ct_chabpel.nii.gz",
+ "label": "CRLM-CT-1120/mask.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1120/2_ct_chabpel/2_ct_chabpel_seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1025/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1025/101_.nii.gz",
+ "label": "CRLM-CT-1025/mask.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1025/101_/101__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1071/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1071/101_.nii.gz",
+ "label": "CRLM-CT-1071/mask.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1071/101_/101__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1162/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1162/101_.nii.gz",
+ "label": "CRLM-CT-1162/mask.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1162/101_/101__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1167/101_bind188214252475.nii.gz",
+ "pseudo_label": "CRLM-CT-1167/101_bind188214252475.nii.gz",
+ "label": "CRLM-CT-1167/mask.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1167/101_bind188214252475/101_bind188214252475_seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1034/3_ct_chabpel.nii.gz",
+ "pseudo_label": "CRLM-CT-1034/3_ct_chabpel.nii.gz",
+ "label": "CRLM-CT-1034/mask.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1034/3_ct_chabpel/3_ct_chabpel_seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1058/2_ct_chabpel.nii.gz",
+ "pseudo_label": "CRLM-CT-1058/2_ct_chabpel.nii.gz",
+ "label": "CRLM-CT-1058/mask.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1058/2_ct_chabpel/2_ct_chabpel_seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1083/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1083/101_.nii.gz",
+ "label": "CRLM-CT-1083/mask.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1083/101_/101__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1019/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1019/101_.nii.gz",
+ "label": "CRLM-CT-1019/mask.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1019/101_/101__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1021/2_ct_chabpel.nii.gz",
+ "pseudo_label": "CRLM-CT-1021/2_ct_chabpel.nii.gz",
+ "label": "CRLM-CT-1021/mask.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1021/2_ct_chabpel/2_ct_chabpel_seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1094/2_chestabdomenpelvis.nii.gz",
+ "pseudo_label": "CRLM-CT-1094/2_chestabdomenpelvis.nii.gz",
+ "label": "CRLM-CT-1094/mask.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1094/2_chestabdomenpelvis/2_chestabdomenpelvis_seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1078/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1078/101_.nii.gz",
+ "label": "CRLM-CT-1078/mask.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1078/101_/101__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1042/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1042/101_.nii.gz",
+ "label": "CRLM-CT-1042/mask.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1042/101_/101__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1116/2_ct_chabpel.nii.gz",
+ "pseudo_label": "CRLM-CT-1116/2_ct_chabpel.nii.gz",
+ "label": "CRLM-CT-1116/mask.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1116/2_ct_chabpel/2_ct_chabpel_seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1177/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1177/101_.nii.gz",
+ "label": "CRLM-CT-1177/mask.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1177/101_/101__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1009/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1009/101_.nii.gz",
+ "label": "CRLM-CT-1009/mask.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1009/101_/101__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1170/101_bind24644277514.nii.gz",
+ "pseudo_label": "CRLM-CT-1170/101_bind24644277514.nii.gz",
+ "label": "CRLM-CT-1170/mask.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1170/101_bind24644277514/101_bind24644277514_seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1067/2_ct_chabpel.nii.gz",
+ "pseudo_label": "CRLM-CT-1067/2_ct_chabpel.nii.gz",
+ "label": "CRLM-CT-1067/mask.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1067/2_ct_chabpel/2_ct_chabpel_seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1164/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1164/101_.nii.gz",
+ "label": "CRLM-CT-1164/mask.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1164/101_/101__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1013/101_.nii.gz",
+ "pseudo_label": "CRLM-CT-1013/101_.nii.gz",
+ "label": "CRLM-CT-1013/mask.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1013/101_/101__seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1066/2_abdomen_5755.nii.gz",
+ "pseudo_label": "CRLM-CT-1066/2_abdomen_5755.nii.gz",
+ "label": "CRLM-CT-1066/mask.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1066/2_abdomen_5755/2_abdomen_5755_seg.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1102/101_bind192104130266.nii.gz",
+ "pseudo_label": "CRLM-CT-1102/101_bind192104130266.nii.gz",
+ "label": "CRLM-CT-1102/mask.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1102/101_bind192104130266/101_bind192104130266_seg.nii.gz"
+ }
+ ],
+ "training_transform": [
+ {
+ "_target_": "RandCropByLabelClassesd",
+ "keys": [
+ "@image_key",
+ "@label_key",
+ "@pseudo_label_key",
+ "@label_sv_key"
+ ],
+ "label_key": "@pseudo_label_key",
+ "num_classes": 133,
+ "num_samples": "@num_patches_per_image",
+ "spatial_size": "@patch_size",
+ "ratios": "$tuple(float(i >= 0) for i in range(133))",
+ "warn": false,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandZoomd",
+ "keys": [
+ "@image_key",
+ "@label_key",
+ "@pseudo_label_key",
+ "@label_sv_key"
+ ],
+ "min_zoom": 0.8,
+ "max_zoom": 1.2,
+ "mode": [
+ "trilinear",
+ "nearest",
+ "nearest",
+ "nearest"
+ ],
+ "prob": 0.2,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandSimulateLowResolutiond",
+ "keys": [
+ "@image_key"
+ ],
+ "zoom_range": [
+ 0.3,
+ 1
+ ],
+ "prob": 0.2,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandGaussianSmoothd",
+ "keys": [
+ "@image_key"
+ ],
+ "prob": 0.2,
+ "sigma_x": [
+ 0.5,
+ 1.0
+ ],
+ "sigma_y": [
+ 0.5,
+ 1.0
+ ],
+ "sigma_z": [
+ 0.5,
+ 1.0
+ ]
+ },
+ {
+ "_target_": "RandScaleIntensityd",
+ "keys": [
+ "@image_key"
+ ],
+ "factors": 0.1,
+ "prob": 0.2
+ },
+ {
+ "_target_": "RandShiftIntensityd",
+ "keys": [
+ "@image_key"
+ ],
+ "offsets": 0.1,
+ "prob": 0.2
+ },
+ {
+ "_target_": "RandGaussianNoised",
+ "keys": [
+ "@image_key"
+ ],
+ "prob": 0.2,
+ "mean": 0.0,
+ "std": 0.2
+ }
+ ],
+ "label_dict": {
+ "3": "hepatic vessel",
+ "4": "portal vein and splenic vein",
+ "5": "liver tumor"
+ },
+ "original_label_dict": {
+ "1": "Liver",
+ "2": "Liver Remnant",
+ "3": "Hepatic Vein",
+ "4": "Portal Vein",
+ "5": "Tumor"
+ },
+ "testing": [
+ {
+ "image": "CRLM-CT-1004/2_ct_chabpel.nii.gz",
+ "label": "CRLM-CT-1004/mask.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1135/101_.nii.gz",
+ "label": "CRLM-CT-1135/mask.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1054/2_ct_chabpel.nii.gz",
+ "label": "CRLM-CT-1054/mask.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1138/101_.nii.gz",
+ "label": "CRLM-CT-1138/mask.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1186/101_.nii.gz",
+ "label": "CRLM-CT-1186/mask.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1128/102_bind22865296561.nii.gz",
+ "label": "CRLM-CT-1128/mask.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1104/2_.nii.gz",
+ "label": "CRLM-CT-1104/mask.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1074/102_.nii.gz",
+ "label": "CRLM-CT-1074/mask.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1140/2_chestabdomenpelvis.nii.gz",
+ "label": "CRLM-CT-1140/mask.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1092/2_ct_chabpel.nii.gz",
+ "label": "CRLM-CT-1092/mask.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1149/101_.nii.gz",
+ "label": "CRLM-CT-1149/mask.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1137/101_.nii.gz",
+ "label": "CRLM-CT-1137/mask.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1111/101_.nii.gz",
+ "label": "CRLM-CT-1111/mask.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1180/2_.nii.gz",
+ "label": "CRLM-CT-1180/mask.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1109/101_.nii.gz",
+ "label": "CRLM-CT-1109/mask.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1084/2_chabdpel_5x5.nii.gz",
+ "label": "CRLM-CT-1084/mask.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1015/7_.nii.gz",
+ "label": "CRLM-CT-1015/mask.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1148/101_.nii.gz",
+ "label": "CRLM-CT-1148/mask.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1036/2_.nii.gz",
+ "label": "CRLM-CT-1036/mask.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1160/2_.nii.gz",
+ "label": "CRLM-CT-1160/mask.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1198/101_.nii.gz",
+ "label": "CRLM-CT-1198/mask.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1060/2_ct_abdomenpelvis.nii.gz",
+ "label": "CRLM-CT-1060/mask.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1056/101_.nii.gz",
+ "label": "CRLM-CT-1056/mask.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1108/102_.nii.gz",
+ "label": "CRLM-CT-1108/mask.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1171/2_ct_chabpel.nii.gz",
+ "label": "CRLM-CT-1171/mask.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1027/2_.nii.gz",
+ "label": "CRLM-CT-1027/mask.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1190/109_.nii.gz",
+ "label": "CRLM-CT-1190/mask.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1147/101_.nii.gz",
+ "label": "CRLM-CT-1147/mask.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1018/101_.nii.gz",
+ "label": "CRLM-CT-1018/mask.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1088/104_.nii.gz",
+ "label": "CRLM-CT-1088/mask.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1184/2_ct_chabpel.nii.gz",
+ "label": "CRLM-CT-1184/mask.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1172/2_ct_chestabd.nii.gz",
+ "label": "CRLM-CT-1172/mask.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1029/101_.nii.gz",
+ "label": "CRLM-CT-1029/mask.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1121/101_bind41264314545.nii.gz",
+ "label": "CRLM-CT-1121/mask.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1173/2_.nii.gz",
+ "label": "CRLM-CT-1173/mask.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1176/2_.nii.gz",
+ "label": "CRLM-CT-1176/mask.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1175/101_bind56834214434.nii.gz",
+ "label": "CRLM-CT-1175/mask.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1097/101_.nii.gz",
+ "label": "CRLM-CT-1097/mask.nii.gz"
+ },
+ {
+ "image": "CRLM-CT-1022/2_.nii.gz",
+ "label": "CRLM-CT-1022/mask.nii.gz"
+ }
+ ]
+}
diff --git a/vista3d/data/jsons/CT-ORG_5_folds.json b/vista3d/data/jsons/CT-ORG_5_folds.json
new file mode 100644
index 0000000..b5e6817
--- /dev/null
+++ b/vista3d/data/jsons/CT-ORG_5_folds.json
@@ -0,0 +1,1059 @@
+{
+ "training": [
+ {
+ "image": "OrganSegmentations/volume-128.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-128.nii.gz",
+ "label": "OrganSegmentations/labels-128.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "OrganSegmentations/volume-14.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-14.nii.gz",
+ "label": "OrganSegmentations/labels-14.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "fixed_affine/volume-28.nii.gz",
+ "pseudo_label": "fixed_affine/volume-28.nii.gz",
+ "label": "fixed_affine/labels-28.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "OrganSegmentations/volume-126.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-126.nii.gz",
+ "label": "OrganSegmentations/labels-126.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "OrganSegmentations/volume-88.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-88.nii.gz",
+ "label": "OrganSegmentations/labels-88.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "OrganSegmentations/volume-94.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-94.nii.gz",
+ "label": "OrganSegmentations/labels-94.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "OrganSegmentations/volume-127.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-127.nii.gz",
+ "label": "OrganSegmentations/labels-127.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "OrganSegmentations/volume-10.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-10.nii.gz",
+ "label": "OrganSegmentations/labels-10.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "OrganSegmentations/volume-15.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-15.nii.gz",
+ "label": "OrganSegmentations/labels-15.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "OrganSegmentations/volume-8.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-8.nii.gz",
+ "label": "OrganSegmentations/labels-8.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "OrganSegmentations/volume-108.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-108.nii.gz",
+ "label": "OrganSegmentations/labels-108.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "OrganSegmentations/volume-60.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-60.nii.gz",
+ "label": "OrganSegmentations/labels-60.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "OrganSegmentations/volume-96.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-96.nii.gz",
+ "label": "OrganSegmentations/labels-96.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "OrganSegmentations/volume-5.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-5.nii.gz",
+ "label": "OrganSegmentations/labels-5.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "OrganSegmentations/volume-1.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-1.nii.gz",
+ "label": "OrganSegmentations/labels-1.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "OrganSegmentations/volume-25.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-25.nii.gz",
+ "label": "OrganSegmentations/labels-25.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "OrganSegmentations/volume-62.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-62.nii.gz",
+ "label": "OrganSegmentations/labels-62.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "OrganSegmentations/volume-77.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-77.nii.gz",
+ "label": "OrganSegmentations/labels-77.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "fixed_affine/volume-38.nii.gz",
+ "pseudo_label": "fixed_affine/volume-38.nii.gz",
+ "label": "fixed_affine/labels-38.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "fixed_affine/volume-139.nii.gz",
+ "pseudo_label": "fixed_affine/volume-139.nii.gz",
+ "label": "fixed_affine/labels-139.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "fixed_affine/volume-138.nii.gz",
+ "pseudo_label": "fixed_affine/volume-138.nii.gz",
+ "label": "fixed_affine/labels-138.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "OrganSegmentations/volume-63.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-63.nii.gz",
+ "label": "OrganSegmentations/labels-63.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "OrganSegmentations/volume-52.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-52.nii.gz",
+ "label": "OrganSegmentations/labels-52.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-52/volume-52_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-98.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-98.nii.gz",
+ "label": "OrganSegmentations/labels-98.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-98/volume-98_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-111.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-111.nii.gz",
+ "label": "OrganSegmentations/labels-111.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-111/volume-111_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-95.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-95.nii.gz",
+ "label": "OrganSegmentations/labels-95.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-95/volume-95_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-16.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-16.nii.gz",
+ "label": "OrganSegmentations/labels-16.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-16/volume-16_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-57.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-57.nii.gz",
+ "label": "OrganSegmentations/labels-57.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-57/volume-57_seg.nii.gz"
+ },
+ {
+ "image": "fixed_affine/volume-46.nii.gz",
+ "pseudo_label": "fixed_affine/volume-46.nii.gz",
+ "label": "fixed_affine/labels-46.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-46/volume-46_seg.nii.gz"
+ },
+ {
+ "image": "fixed_affine/volume-34.nii.gz",
+ "pseudo_label": "fixed_affine/volume-34.nii.gz",
+ "label": "fixed_affine/labels-34.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-34/volume-34_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-61.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-61.nii.gz",
+ "label": "OrganSegmentations/labels-61.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-61/volume-61_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-17.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-17.nii.gz",
+ "label": "OrganSegmentations/labels-17.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-17/volume-17_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-123.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-123.nii.gz",
+ "label": "OrganSegmentations/labels-123.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-123/volume-123_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-130.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-130.nii.gz",
+ "label": "OrganSegmentations/labels-130.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-130/volume-130_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-54.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-54.nii.gz",
+ "label": "OrganSegmentations/labels-54.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-54/volume-54_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-83.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-83.nii.gz",
+ "label": "OrganSegmentations/labels-83.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-83/volume-83_seg.nii.gz"
+ },
+ {
+ "image": "fixed_affine/volume-30.nii.gz",
+ "pseudo_label": "fixed_affine/volume-30.nii.gz",
+ "label": "fixed_affine/labels-30.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-30/volume-30_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-4.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-4.nii.gz",
+ "label": "OrganSegmentations/labels-4.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-4/volume-4_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-90.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-90.nii.gz",
+ "label": "OrganSegmentations/labels-90.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-90/volume-90_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-124.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-124.nii.gz",
+ "label": "OrganSegmentations/labels-124.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-124/volume-124_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-12.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-12.nii.gz",
+ "label": "OrganSegmentations/labels-12.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-12/volume-12_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-106.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-106.nii.gz",
+ "label": "OrganSegmentations/labels-106.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-106/volume-106_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-24.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-24.nii.gz",
+ "label": "OrganSegmentations/labels-24.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-24/volume-24_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-82.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-82.nii.gz",
+ "label": "OrganSegmentations/labels-82.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-82/volume-82_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-78.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-78.nii.gz",
+ "label": "OrganSegmentations/labels-78.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-78/volume-78_seg.nii.gz"
+ },
+ {
+ "image": "fixed_affine/volume-136.nii.gz",
+ "pseudo_label": "fixed_affine/volume-136.nii.gz",
+ "label": "fixed_affine/labels-136.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-136/volume-136_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-132.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-132.nii.gz",
+ "label": "OrganSegmentations/labels-132.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-132/volume-132_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-53.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-53.nii.gz",
+ "label": "OrganSegmentations/labels-53.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-53/volume-53_seg.nii.gz"
+ },
+ {
+ "image": "fixed_affine/volume-137.nii.gz",
+ "pseudo_label": "fixed_affine/volume-137.nii.gz",
+ "label": "fixed_affine/labels-137.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-137/volume-137_seg.nii.gz"
+ },
+ {
+ "image": "fixed_affine/volume-39.nii.gz",
+ "pseudo_label": "fixed_affine/volume-39.nii.gz",
+ "label": "fixed_affine/labels-39.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-39/volume-39_seg.nii.gz"
+ },
+ {
+ "image": "fixed_affine/volume-36.nii.gz",
+ "pseudo_label": "fixed_affine/volume-36.nii.gz",
+ "label": "fixed_affine/labels-36.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-36/volume-36_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-85.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-85.nii.gz",
+ "label": "OrganSegmentations/labels-85.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-85/volume-85_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-92.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-92.nii.gz",
+ "label": "OrganSegmentations/labels-92.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-92/volume-92_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-49.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-49.nii.gz",
+ "label": "OrganSegmentations/labels-49.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-49/volume-49_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-97.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-97.nii.gz",
+ "label": "OrganSegmentations/labels-97.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-97/volume-97_seg.nii.gz"
+ },
+ {
+ "image": "fixed_affine/volume-41.nii.gz",
+ "pseudo_label": "fixed_affine/volume-41.nii.gz",
+ "label": "fixed_affine/labels-41.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-41/volume-41_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-101.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-101.nii.gz",
+ "label": "OrganSegmentations/labels-101.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-101/volume-101_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-119.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-119.nii.gz",
+ "label": "OrganSegmentations/labels-119.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-119/volume-119_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-109.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-109.nii.gz",
+ "label": "OrganSegmentations/labels-109.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-109/volume-109_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-2.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-2.nii.gz",
+ "label": "OrganSegmentations/labels-2.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-2/volume-2_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-112.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-112.nii.gz",
+ "label": "OrganSegmentations/labels-112.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-112/volume-112_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-93.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-93.nii.gz",
+ "label": "OrganSegmentations/labels-93.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-93/volume-93_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-100.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-100.nii.gz",
+ "label": "OrganSegmentations/labels-100.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-100/volume-100_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-75.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-75.nii.gz",
+ "label": "OrganSegmentations/labels-75.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-75/volume-75_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-86.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-86.nii.gz",
+ "label": "OrganSegmentations/labels-86.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-86/volume-86_seg.nii.gz"
+ },
+ {
+ "image": "fixed_affine/volume-133.nii.gz",
+ "pseudo_label": "fixed_affine/volume-133.nii.gz",
+ "label": "fixed_affine/labels-133.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-133/volume-133_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-21.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-21.nii.gz",
+ "label": "OrganSegmentations/labels-21.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-21/volume-21_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-102.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-102.nii.gz",
+ "label": "OrganSegmentations/labels-102.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-102/volume-102_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-72.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-72.nii.gz",
+ "label": "OrganSegmentations/labels-72.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-72/volume-72_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-87.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-87.nii.gz",
+ "label": "OrganSegmentations/labels-87.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-87/volume-87_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-68.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-68.nii.gz",
+ "label": "OrganSegmentations/labels-68.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-68/volume-68_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-3.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-3.nii.gz",
+ "label": "OrganSegmentations/labels-3.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-3/volume-3_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-64.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-64.nii.gz",
+ "label": "OrganSegmentations/labels-64.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-64/volume-64_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-107.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-107.nii.gz",
+ "label": "OrganSegmentations/labels-107.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-107/volume-107_seg.nii.gz"
+ },
+ {
+ "image": "fixed_affine/volume-40.nii.gz",
+ "pseudo_label": "fixed_affine/volume-40.nii.gz",
+ "label": "fixed_affine/labels-40.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-40/volume-40_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-67.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-67.nii.gz",
+ "label": "OrganSegmentations/labels-67.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-67/volume-67_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-0.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-0.nii.gz",
+ "label": "OrganSegmentations/labels-0.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-0/volume-0_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-103.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-103.nii.gz",
+ "label": "OrganSegmentations/labels-103.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-103/volume-103_seg.nii.gz"
+ },
+ {
+ "image": "fixed_affine/volume-35.nii.gz",
+ "pseudo_label": "fixed_affine/volume-35.nii.gz",
+ "label": "fixed_affine/labels-35.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-35/volume-35_seg.nii.gz"
+ },
+ {
+ "image": "fixed_affine/volume-42.nii.gz",
+ "pseudo_label": "fixed_affine/volume-42.nii.gz",
+ "label": "fixed_affine/labels-42.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-42/volume-42_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-105.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-105.nii.gz",
+ "label": "OrganSegmentations/labels-105.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "fixed_affine/volume-33.nii.gz",
+ "pseudo_label": "fixed_affine/volume-33.nii.gz",
+ "label": "fixed_affine/labels-33.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-33/volume-33_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-58.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-58.nii.gz",
+ "label": "OrganSegmentations/labels-58.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-58/volume-58_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-27.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-27.nii.gz",
+ "label": "OrganSegmentations/labels-27.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "fixed_affine/volume-43.nii.gz",
+ "pseudo_label": "fixed_affine/volume-43.nii.gz",
+ "label": "fixed_affine/labels-43.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-43/volume-43_seg.nii.gz"
+ },
+ {
+ "image": "fixed_affine/volume-20.nii.gz",
+ "pseudo_label": "fixed_affine/volume-20.nii.gz",
+ "label": "fixed_affine/labels-20.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-20/volume-20_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-11.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-11.nii.gz",
+ "label": "OrganSegmentations/labels-11.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-11/volume-11_seg.nii.gz"
+ },
+ {
+ "image": "fixed_affine/volume-131.nii.gz",
+ "pseudo_label": "fixed_affine/volume-131.nii.gz",
+ "label": "fixed_affine/labels-131.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-131/volume-131_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-80.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-80.nii.gz",
+ "label": "OrganSegmentations/labels-80.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "OrganSegmentations/volume-69.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-69.nii.gz",
+ "label": "OrganSegmentations/labels-69.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-69/volume-69_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-55.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-55.nii.gz",
+ "label": "OrganSegmentations/labels-55.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-55/volume-55_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-115.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-115.nii.gz",
+ "label": "OrganSegmentations/labels-115.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "fixed_affine/volume-37.nii.gz",
+ "pseudo_label": "fixed_affine/volume-37.nii.gz",
+ "label": "fixed_affine/labels-37.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-37/volume-37_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-79.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-79.nii.gz",
+ "label": "OrganSegmentations/labels-79.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "OrganSegmentations/volume-116.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-116.nii.gz",
+ "label": "OrganSegmentations/labels-116.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "OrganSegmentations/volume-66.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-66.nii.gz",
+ "label": "OrganSegmentations/labels-66.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-66/volume-66_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-50.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-50.nii.gz",
+ "label": "OrganSegmentations/labels-50.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "OrganSegmentations/volume-121.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-121.nii.gz",
+ "label": "OrganSegmentations/labels-121.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "OrganSegmentations/volume-18.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-18.nii.gz",
+ "label": "OrganSegmentations/labels-18.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-18/volume-18_seg.nii.gz"
+ },
+ {
+ "image": "fixed_affine/volume-32.nii.gz",
+ "pseudo_label": "fixed_affine/volume-32.nii.gz",
+ "label": "fixed_affine/labels-32.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "OrganSegmentations/volume-91.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-91.nii.gz",
+ "label": "OrganSegmentations/labels-91.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-91/volume-91_seg.nii.gz"
+ },
+ {
+ "image": "fixed_affine/volume-45.nii.gz",
+ "pseudo_label": "fixed_affine/volume-45.nii.gz",
+ "label": "fixed_affine/labels-45.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "OrganSegmentations/volume-65.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-65.nii.gz",
+ "label": "OrganSegmentations/labels-65.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "OrganSegmentations/volume-134.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-134.nii.gz",
+ "label": "OrganSegmentations/labels-134.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-134/volume-134_seg.nii.gz"
+ },
+ {
+ "image": "fixed_affine/volume-29.nii.gz",
+ "pseudo_label": "fixed_affine/volume-29.nii.gz",
+ "label": "fixed_affine/labels-29.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "OrganSegmentations/volume-13.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-13.nii.gz",
+ "label": "OrganSegmentations/labels-13.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "OrganSegmentations/volume-118.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-118.nii.gz",
+ "label": "OrganSegmentations/labels-118.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-118/volume-118_seg.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-9.nii.gz",
+ "pseudo_label": "OrganSegmentations/volume-9.nii.gz",
+ "label": "OrganSegmentations/labels-9.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "fixed_affine/volume-135.nii.gz",
+ "pseudo_label": "fixed_affine/volume-135.nii.gz",
+ "label": "fixed_affine/labels-135.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-135/volume-135_seg.nii.gz"
+ }
+ ],
+ "training_transform": [
+ {
+ "_target_": "RandCropByLabelClassesd",
+ "keys": [
+ "@image_key",
+ "@label_key",
+ "@pseudo_label_key",
+ "@label_sv_key"
+ ],
+ "label_key": "@pseudo_label_key",
+ "num_classes": 133,
+ "num_samples": "@num_patches_per_image",
+ "spatial_size": "@patch_size",
+ "ratios": "$tuple(float(i >= 0) for i in range(133))",
+ "warn": false,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandZoomd",
+ "keys": [
+ "@image_key",
+ "@label_key",
+ "@pseudo_label_key",
+ "@label_sv_key"
+ ],
+ "min_zoom": 0.8,
+ "max_zoom": 1.2,
+ "mode": [
+ "trilinear",
+ "nearest",
+ "nearest",
+ "nearest"
+ ],
+ "prob": 0.2,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandSimulateLowResolutiond",
+ "keys": [
+ "@image_key"
+ ],
+ "zoom_range": [
+ 0.3,
+ 1
+ ],
+ "prob": 0.2,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandGaussianSmoothd",
+ "keys": [
+ "@image_key"
+ ],
+ "prob": 0.2,
+ "sigma_x": [
+ 0.5,
+ 1.0
+ ],
+ "sigma_y": [
+ 0.5,
+ 1.0
+ ],
+ "sigma_z": [
+ 0.5,
+ 1.0
+ ]
+ },
+ {
+ "_target_": "RandScaleIntensityd",
+ "keys": [
+ "@image_key"
+ ],
+ "factors": 0.1,
+ "prob": 0.2
+ },
+ {
+ "_target_": "RandShiftIntensityd",
+ "keys": [
+ "@image_key"
+ ],
+ "offsets": 0.1,
+ "prob": 0.2
+ },
+ {
+ "_target_": "RandGaussianNoised",
+ "keys": [
+ "@image_key"
+ ],
+ "prob": 0.2,
+ "mean": 0.0,
+ "std": 0.2
+ }
+ ],
+ "label_dict": {
+ "1": "liver",
+ "2": "bladder",
+ "3": "lung",
+ "4": "kidney",
+ "5": "bone",
+ "6": "brain"
+ },
+ "original_label_dict": {
+ "1": "liver",
+ "2": "bladder",
+ "3": "lungs",
+ "4": "kidneys",
+ "5": "bone",
+ "6": "brain"
+ },
+ "testing": [
+ {
+ "image": "OrganSegmentations/volume-104.nii.gz",
+ "label": "OrganSegmentations/labels-104.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-73.nii.gz",
+ "label": "OrganSegmentations/labels-73.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-89.nii.gz",
+ "label": "OrganSegmentations/labels-89.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-23.nii.gz",
+ "label": "OrganSegmentations/labels-23.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-81.nii.gz",
+ "label": "OrganSegmentations/labels-81.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-71.nii.gz",
+ "label": "OrganSegmentations/labels-71.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-48.nii.gz",
+ "label": "OrganSegmentations/labels-48.nii.gz"
+ },
+ {
+ "image": "fixed_affine/volume-31.nii.gz",
+ "label": "fixed_affine/labels-31.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-56.nii.gz",
+ "label": "OrganSegmentations/labels-56.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-110.nii.gz",
+ "label": "OrganSegmentations/labels-110.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-114.nii.gz",
+ "label": "OrganSegmentations/labels-114.nii.gz"
+ },
+ {
+ "image": "fixed_affine/volume-44.nii.gz",
+ "label": "fixed_affine/labels-44.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-129.nii.gz",
+ "label": "OrganSegmentations/labels-129.nii.gz"
+ },
+ {
+ "image": "fixed_affine/volume-47.nii.gz",
+ "label": "fixed_affine/labels-47.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-125.nii.gz",
+ "label": "OrganSegmentations/labels-125.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-99.nii.gz",
+ "label": "OrganSegmentations/labels-99.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-26.nii.gz",
+ "label": "OrganSegmentations/labels-26.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-22.nii.gz",
+ "label": "OrganSegmentations/labels-22.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-59.nii.gz",
+ "label": "OrganSegmentations/labels-59.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-7.nii.gz",
+ "label": "OrganSegmentations/labels-7.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-120.nii.gz",
+ "label": "OrganSegmentations/labels-120.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-113.nii.gz",
+ "label": "OrganSegmentations/labels-113.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-51.nii.gz",
+ "label": "OrganSegmentations/labels-51.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-122.nii.gz",
+ "label": "OrganSegmentations/labels-122.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-84.nii.gz",
+ "label": "OrganSegmentations/labels-84.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-6.nii.gz",
+ "label": "OrganSegmentations/labels-6.nii.gz"
+ },
+ {
+ "image": "OrganSegmentations/volume-117.nii.gz",
+ "label": "OrganSegmentations/labels-117.nii.gz"
+ }
+ ]
+}
diff --git a/vista3d/data/jsons/CTPelvic1K-CLINIC_5_folds.json b/vista3d/data/jsons/CTPelvic1K-CLINIC_5_folds.json
new file mode 100644
index 0000000..b759eb2
--- /dev/null
+++ b/vista3d/data/jsons/CTPelvic1K-CLINIC_5_folds.json
@@ -0,0 +1,928 @@
+{
+ "training": [
+ {
+ "image": "CTPelvic1K_dataset7_data/dataset7_CLINIC_metal_0005_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset7_data/dataset7_CLINIC_metal_0005_data.nii.gz",
+ "label": "CTPelvic1K_dataset7_mask/CLINIC_metal_0005_mask_4label.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0076_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0076_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0076_mask_4label.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0080_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0080_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0080_mask_4label.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0065_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0065_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0065_mask_4label.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0045_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0045_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0045_mask_4label.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0004_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0004_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0004_mask_4label.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0021_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0021_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0021_mask_4label.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0017_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0017_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0017_mask_4label.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0053_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0053_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0053_mask_4label.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0066_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0066_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0066_mask_4label.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0009_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0009_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0009_mask_4label.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0038_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0038_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0038_mask_4label.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0086_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0086_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0086_mask_4label.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0101_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0101_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0101_mask_4label.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0007_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0007_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0007_mask_4label.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0012_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0012_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0012_mask_4label.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0030_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0030_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0030_mask_4label.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0061_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0061_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0061_mask_4label.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0077_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0077_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0077_mask_4label.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0015_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0015_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0015_mask_4label.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0015_data/dataset6_CLINIC_0015_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0027_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0027_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0027_mask_4label.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0027_data/dataset6_CLINIC_0027_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0051_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0051_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0051_mask_4label.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0051_data/dataset6_CLINIC_0051_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0039_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0039_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0039_mask_4label.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0049_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0049_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0049_mask_4label.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0049_data/dataset6_CLINIC_0049_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0099_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0099_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0099_mask_4label.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0099_data/dataset6_CLINIC_0099_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0019_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0019_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0019_mask_4label.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0019_data/dataset6_CLINIC_0019_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0014_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0014_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0014_mask_4label.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0014_data/dataset6_CLINIC_0014_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset7_data/dataset7_CLINIC_metal_0003_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset7_data/dataset7_CLINIC_metal_0003_data.nii.gz",
+ "label": "CTPelvic1K_dataset7_mask/CLINIC_metal_0003_mask_4label.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset7_CLINIC_metal_0003_data/dataset7_CLINIC_metal_0003_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0062_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0062_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0062_mask_4label.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "CTPelvic1K_dataset7_data/dataset7_CLINIC_metal_0001_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset7_data/dataset7_CLINIC_metal_0001_data.nii.gz",
+ "label": "CTPelvic1K_dataset7_mask/CLINIC_metal_0001_mask_4label.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset7_CLINIC_metal_0001_data/dataset7_CLINIC_metal_0001_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0070_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0070_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0070_mask_4label.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0070_data/dataset6_CLINIC_0070_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0024_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0024_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0024_mask_4label.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0024_data/dataset6_CLINIC_0024_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0013_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0013_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0013_mask_4label.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0013_data/dataset6_CLINIC_0013_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0092_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0092_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0092_mask_4label.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0035_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0035_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0035_mask_4label.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0035_data/dataset6_CLINIC_0035_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0032_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0032_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0032_mask_4label.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0032_data/dataset6_CLINIC_0032_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0056_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0056_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0056_mask_4label.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0056_data/dataset6_CLINIC_0056_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0102_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0102_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0102_mask_4label.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0102_data/dataset6_CLINIC_0102_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0008_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0008_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0008_mask_4label.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0036_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0036_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0036_mask_4label.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "CTPelvic1K_dataset7_data/dataset7_CLINIC_metal_0008_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset7_data/dataset7_CLINIC_metal_0008_data.nii.gz",
+ "label": "CTPelvic1K_dataset7_mask/CLINIC_metal_0008_mask_4label.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset7_CLINIC_metal_0008_data/dataset7_CLINIC_metal_0008_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0002_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0002_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0002_mask_4label.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0002_data/dataset6_CLINIC_0002_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0001_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0001_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0001_mask_4label.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0001_data/dataset6_CLINIC_0001_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0029_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0029_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0029_mask_4label.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0029_data/dataset6_CLINIC_0029_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0023_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0023_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0023_mask_4label.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0023_data/dataset6_CLINIC_0023_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0054_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0054_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0054_mask_4label.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0054_data/dataset6_CLINIC_0054_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0073_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0073_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0073_mask_4label.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0073_data/dataset6_CLINIC_0073_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0085_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0085_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0085_mask_4label.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0085_data/dataset6_CLINIC_0085_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0058_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0058_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0058_mask_4label.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0058_data/dataset6_CLINIC_0058_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0078_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0078_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0078_mask_4label.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0078_data/dataset6_CLINIC_0078_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0064_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0064_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0064_mask_4label.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0064_data/dataset6_CLINIC_0064_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0088_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0088_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0088_mask_4label.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0088_data/dataset6_CLINIC_0088_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset7_data/dataset7_CLINIC_metal_0000_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset7_data/dataset7_CLINIC_metal_0000_data.nii.gz",
+ "label": "CTPelvic1K_dataset7_mask/CLINIC_metal_0000_mask_4label.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset7_CLINIC_metal_0000_data/dataset7_CLINIC_metal_0000_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0081_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0081_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0081_mask_4label.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0081_data/dataset6_CLINIC_0081_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0003_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0003_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0003_mask_4label.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0003_data/dataset6_CLINIC_0003_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0089_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0089_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0089_mask_4label.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0089_data/dataset6_CLINIC_0089_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0069_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0069_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0069_mask_4label.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0069_data/dataset6_CLINIC_0069_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0034_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0034_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0034_mask_4label.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0034_data/dataset6_CLINIC_0034_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0071_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0071_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0071_mask_4label.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0071_data/dataset6_CLINIC_0071_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0083_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0083_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0083_mask_4label.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0083_data/dataset6_CLINIC_0083_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0020_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0020_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0020_mask_4label.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0020_data/dataset6_CLINIC_0020_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0037_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0037_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0037_mask_4label.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0037_data/dataset6_CLINIC_0037_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0063_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0063_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0063_mask_4label.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0063_data/dataset6_CLINIC_0063_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0103_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0103_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0103_mask_4label.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0068_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0068_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0068_mask_4label.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0040_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0040_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0040_mask_4label.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0040_data/dataset6_CLINIC_0040_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0084_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0084_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0084_mask_4label.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0084_data/dataset6_CLINIC_0084_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0079_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0079_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0079_mask_4label.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0079_data/dataset6_CLINIC_0079_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0050_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0050_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0050_mask_4label.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0050_data/dataset6_CLINIC_0050_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0094_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0094_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0094_mask_4label.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0006_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0006_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0006_mask_4label.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0006_data/dataset6_CLINIC_0006_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset7_data/dataset7_CLINIC_metal_0007_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset7_data/dataset7_CLINIC_metal_0007_data.nii.gz",
+ "label": "CTPelvic1K_dataset7_mask/CLINIC_metal_0007_mask_4label.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset7_CLINIC_metal_0007_data/dataset7_CLINIC_metal_0007_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0072_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0072_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0072_mask_4label.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0072_data/dataset6_CLINIC_0072_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0090_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0090_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0090_mask_4label.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0090_data/dataset6_CLINIC_0090_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0093_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0093_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0093_mask_4label.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0093_data/dataset6_CLINIC_0093_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0098_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0098_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0098_mask_4label.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0098_data/dataset6_CLINIC_0098_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0025_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0025_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0025_mask_4label.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0025_data/dataset6_CLINIC_0025_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0067_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0067_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0067_mask_4label.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0067_data/dataset6_CLINIC_0067_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0041_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0041_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0041_mask_4label.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0041_data/dataset6_CLINIC_0041_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0011_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0011_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0011_mask_4label.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0011_data/dataset6_CLINIC_0011_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0010_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0010_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0010_mask_4label.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0010_data/dataset6_CLINIC_0010_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0060_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0060_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0060_mask_4label.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0060_data/dataset6_CLINIC_0060_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0033_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0033_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0033_mask_4label.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0033_data/dataset6_CLINIC_0033_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0074_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0074_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0074_mask_4label.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0074_data/dataset6_CLINIC_0074_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0048_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0048_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0048_mask_4label.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0048_data/dataset6_CLINIC_0048_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0052_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0052_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0052_mask_4label.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0052_data/dataset6_CLINIC_0052_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset7_data/dataset7_CLINIC_metal_0011_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset7_data/dataset7_CLINIC_metal_0011_data.nii.gz",
+ "label": "CTPelvic1K_dataset7_mask/CLINIC_metal_0011_mask_4label.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset7_CLINIC_metal_0011_data/dataset7_CLINIC_metal_0011_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset7_data/dataset7_CLINIC_metal_0012_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset7_data/dataset7_CLINIC_metal_0012_data.nii.gz",
+ "label": "CTPelvic1K_dataset7_mask/CLINIC_metal_0012_mask_4label.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset7_CLINIC_metal_0012_data/dataset7_CLINIC_metal_0012_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0016_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0016_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0016_mask_4label.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0016_data/dataset6_CLINIC_0016_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset7_data/dataset7_CLINIC_metal_0010_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset7_data/dataset7_CLINIC_metal_0010_data.nii.gz",
+ "label": "CTPelvic1K_dataset7_mask/CLINIC_metal_0010_mask_4label.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset7_CLINIC_metal_0010_data/dataset7_CLINIC_metal_0010_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset7_data/dataset7_CLINIC_metal_0009_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset7_data/dataset7_CLINIC_metal_0009_data.nii.gz",
+ "label": "CTPelvic1K_dataset7_mask/CLINIC_metal_0009_mask_4label.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset7_CLINIC_metal_0009_data/dataset7_CLINIC_metal_0009_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0091_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0091_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0091_mask_4label.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0091_data/dataset6_CLINIC_0091_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0097_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0097_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0097_mask_4label.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0097_data/dataset6_CLINIC_0097_data_seg.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0005_data.nii.gz",
+ "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0005_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0005_mask_4label.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0005_data/dataset6_CLINIC_0005_data_seg.nii.gz"
+ }
+ ],
+ "training_transform": [
+ {
+ "_target_": "RandCropByLabelClassesd",
+ "keys": [
+ "@image_key",
+ "@label_key",
+ "@pseudo_label_key",
+ "@label_sv_key"
+ ],
+ "label_key": "@pseudo_label_key",
+ "num_classes": 133,
+ "num_samples": "@num_patches_per_image",
+ "spatial_size": "@patch_size",
+ "ratios": "$tuple(float(i >= 0) for i in range(133))",
+ "warn": false,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandZoomd",
+ "keys": [
+ "@image_key",
+ "@label_key",
+ "@pseudo_label_key",
+ "@label_sv_key"
+ ],
+ "min_zoom": 0.8,
+ "max_zoom": 1.2,
+ "mode": [
+ "trilinear",
+ "nearest",
+ "nearest",
+ "nearest"
+ ],
+ "prob": 0.2,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandSimulateLowResolutiond",
+ "keys": [
+ "@image_key"
+ ],
+ "zoom_range": [
+ 0.3,
+ 1
+ ],
+ "prob": 0.2,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandGaussianSmoothd",
+ "keys": [
+ "@image_key"
+ ],
+ "prob": 0.2,
+ "sigma_x": [
+ 0.5,
+ 1.0
+ ],
+ "sigma_y": [
+ 0.5,
+ 1.0
+ ],
+ "sigma_z": [
+ 0.5,
+ 1.0
+ ]
+ },
+ {
+ "_target_": "RandScaleIntensityd",
+ "keys": [
+ "@image_key"
+ ],
+ "factors": 0.1,
+ "prob": 0.2
+ },
+ {
+ "_target_": "RandShiftIntensityd",
+ "keys": [
+ "@image_key"
+ ],
+ "offsets": 0.1,
+ "prob": 0.2
+ },
+ {
+ "_target_": "RandGaussianNoised",
+ "keys": [
+ "@image_key"
+ ],
+ "prob": 0.2,
+ "mean": 0.0,
+ "std": 0.2
+ }
+ ],
+ "label_dict": {
+ "1": "sacrum",
+ "2": "left hip",
+ "3": "right hip",
+ "4": "lumbar spine"
+ },
+ "original_label_dict": {
+ "1": "sacrum",
+ "2": "left hip",
+ "3": "right hip",
+ "4": "lumbar spine"
+ },
+ "testing": [
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0082_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0082_mask_4label.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0031_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0031_mask_4label.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset7_data/dataset7_CLINIC_metal_0013_data.nii.gz",
+ "label": "CTPelvic1K_dataset7_mask/CLINIC_metal_0013_mask_4label.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0059_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0059_mask_4label.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset7_data/dataset7_CLINIC_metal_0002_data.nii.gz",
+ "label": "CTPelvic1K_dataset7_mask/CLINIC_metal_0002_mask_4label.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0095_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0095_mask_4label.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0042_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0042_mask_4label.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0057_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0057_mask_4label.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0026_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0026_mask_4label.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0100_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0100_mask_4label.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0075_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0075_mask_4label.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset7_data/dataset7_CLINIC_metal_0006_data.nii.gz",
+ "label": "CTPelvic1K_dataset7_mask/CLINIC_metal_0006_mask_4label.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset7_data/dataset7_CLINIC_metal_0004_data.nii.gz",
+ "label": "CTPelvic1K_dataset7_mask/CLINIC_metal_0004_mask_4label.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0018_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0018_mask_4label.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0087_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0087_mask_4label.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0055_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0055_mask_4label.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0043_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0043_mask_4label.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0028_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0028_mask_4label.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0044_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0044_mask_4label.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0047_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0047_mask_4label.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0046_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0046_mask_4label.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0096_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0096_mask_4label.nii.gz"
+ },
+ {
+ "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0022_data.nii.gz",
+ "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0022_mask_4label.nii.gz"
+ }
+ ]
+}
diff --git a/vista3d/data/jsons/Covid19_5_folds.json b/vista3d/data/jsons/Covid19_5_folds.json
new file mode 100644
index 0000000..a664250
--- /dev/null
+++ b/vista3d/data/jsons/Covid19_5_folds.json
@@ -0,0 +1,3765 @@
+{
+ "training": [
+ {
+ "image": "data/volume-covid19-A-0706_day011.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0706_day011.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0706_day011/volume-covid19-A-0706_day011_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0723_day000.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0723_day000.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0723_day000/volume-covid19-A-0723_day000_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0462.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0462.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0462/volume-covid19-A-0462_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0387.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0387.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0387/volume-covid19-A-0387_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0054.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0054.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0054/volume-covid19-A-0054_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0560.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0560.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0560/volume-covid19-A-0560_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0702_day011.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0702_day011.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0702_day011/volume-covid19-A-0702_day011_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0074_1.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0074_1.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0074_1/volume-covid19-A-0074_1_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0648.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0648.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0648/volume-covid19-A-0648_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0287_0.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0287_0.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0287_0/volume-covid19-A-0287_0_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0518.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0518.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0518/volume-covid19-A-0518_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0090.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0090.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0090/volume-covid19-A-0090_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0153.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0153.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0153/volume-covid19-A-0153_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0461.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0461.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0461/volume-covid19-A-0461_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0376.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0376.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0376/volume-covid19-A-0376_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0303_0.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0303_0.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0303_0/volume-covid19-A-0303_0_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0397.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0397.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0397/volume-covid19-A-0397_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0705_day004.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0705_day004.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0705_day004/volume-covid19-A-0705_day004_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0550.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0550.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0550/volume-covid19-A-0550_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0151.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0151.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0151/volume-covid19-A-0151_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0734_day012.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0734_day012.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0734_day012/volume-covid19-A-0734_day012_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0396.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0396.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0396/volume-covid19-A-0396_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0328.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0328.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0328/volume-covid19-A-0328_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0365.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0365.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0365/volume-covid19-A-0365_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0526.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0526.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0526/volume-covid19-A-0526_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0570.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0570.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0570/volume-covid19-A-0570_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0665.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0665.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0665/volume-covid19-A-0665_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0582.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0582.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0582/volume-covid19-A-0582_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0199.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0199.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0199/volume-covid19-A-0199_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0522.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0522.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0522/volume-covid19-A-0522_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0491.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0491.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0491/volume-covid19-A-0491_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0528.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0528.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0528/volume-covid19-A-0528_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0256_1.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0256_1.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0256_1/volume-covid19-A-0256_1_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0031.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0031.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0031/volume-covid19-A-0031_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0734_day005.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0734_day005.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0734_day005/volume-covid19-A-0734_day005_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0544.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0544.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0544/volume-covid19-A-0544_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0598.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0598.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0598/volume-covid19-A-0598_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0048.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0048.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0048/volume-covid19-A-0048_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0260.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0260.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0260/volume-covid19-A-0260_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0719_day000.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0719_day000.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0719_day000/volume-covid19-A-0719_day000_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0629.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0629.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0629/volume-covid19-A-0629_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0423.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0423.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0423/volume-covid19-A-0423_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0714_day051.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0714_day051.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0714_day051/volume-covid19-A-0714_day051_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0147.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0147.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0147/volume-covid19-A-0147_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0393.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0393.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0393/volume-covid19-A-0393_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0026.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0026.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0026/volume-covid19-A-0026_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0189_1.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0189_1.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0189_1/volume-covid19-A-0189_1_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0314.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0314.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0314/volume-covid19-A-0314_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0287_1.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0287_1.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0287_1/volume-covid19-A-0287_1_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0412.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0412.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0412/volume-covid19-A-0412_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0382.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0382.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0382/volume-covid19-A-0382_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0585.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0585.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0585/volume-covid19-A-0585_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0685.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0685.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0685/volume-covid19-A-0685_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0218.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0218.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0218/volume-covid19-A-0218_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0736_day007.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0736_day007.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0736_day007/volume-covid19-A-0736_day007_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0650.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0650.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0650/volume-covid19-A-0650_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0673.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0673.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0673/volume-covid19-A-0673_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0700_day007.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0700_day007.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0700_day007/volume-covid19-A-0700_day007_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0702_day025.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0702_day025.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0702_day025/volume-covid19-A-0702_day025_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0169.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0169.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0169/volume-covid19-A-0169_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0383_0.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0383_0.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0383_0/volume-covid19-A-0383_0_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0667.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0667.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0667/volume-covid19-A-0667_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0319.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0319.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0319/volume-covid19-A-0319_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0291_0.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0291_0.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0291_0/volume-covid19-A-0291_0_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0349.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0349.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0349/volume-covid19-A-0349_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0186.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0186.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0186/volume-covid19-A-0186_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0715_day007.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0715_day007.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0715_day007/volume-covid19-A-0715_day007_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0668.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0668.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0668/volume-covid19-A-0668_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0233.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0233.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0233/volume-covid19-A-0233_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0347.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0347.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0347/volume-covid19-A-0347_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0346.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0346.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0346/volume-covid19-A-0346_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0340.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0340.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0340/volume-covid19-A-0340_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0023.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0023.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0023/volume-covid19-A-0023_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0212_0.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0212_0.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0212_0/volume-covid19-A-0212_0_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0140.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0140.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0140/volume-covid19-A-0140_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0557.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0557.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0557/volume-covid19-A-0557_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0213.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0213.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0213/volume-covid19-A-0213_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0262.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0262.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0262/volume-covid19-A-0262_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0564.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0564.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0564/volume-covid19-A-0564_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0717_day005.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0717_day005.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0717_day005/volume-covid19-A-0717_day005_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0464.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0464.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0464/volume-covid19-A-0464_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0706_day049.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0706_day049.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0706_day049/volume-covid19-A-0706_day049_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0578.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0578.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0578/volume-covid19-A-0578_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0264.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0264.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0264/volume-covid19-A-0264_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0687.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0687.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0687/volume-covid19-A-0687_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0571.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0571.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0571/volume-covid19-A-0571_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0378.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0378.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0378/volume-covid19-A-0378_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0158.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0158.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0158/volume-covid19-A-0158_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0069.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0069.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0069/volume-covid19-A-0069_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0267.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0267.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0267/volume-covid19-A-0267_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0107.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0107.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0107/volume-covid19-A-0107_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0244.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0244.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0244/volume-covid19-A-0244_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0152.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0152.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0152/volume-covid19-A-0152_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0438.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0438.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0438/volume-covid19-A-0438_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0294.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0294.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0294/volume-covid19-A-0294_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0606.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0606.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0606/volume-covid19-A-0606_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0420.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0420.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0420/volume-covid19-A-0420_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0255.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0255.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0255/volume-covid19-A-0255_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0523.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0523.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0523/volume-covid19-A-0523_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0263.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0263.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0263/volume-covid19-A-0263_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0692.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0692.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0692/volume-covid19-A-0692_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0386.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0386.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0386/volume-covid19-A-0386_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0717_day000.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0717_day000.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0717_day000/volume-covid19-A-0717_day000_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0184_0.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0184_0.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0184_0/volume-covid19-A-0184_0_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0681.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0681.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0681/volume-covid19-A-0681_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0307.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0307.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0307/volume-covid19-A-0307_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0302.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0302.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0302/volume-covid19-A-0302_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0202_0.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0202_0.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0202_0/volume-covid19-A-0202_0_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0385.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0385.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0385/volume-covid19-A-0385_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0188.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0188.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0188/volume-covid19-A-0188_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0245.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0245.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0245/volume-covid19-A-0245_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0736_day010.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0736_day010.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0736_day010/volume-covid19-A-0736_day010_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0600.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0600.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0600/volume-covid19-A-0600_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0304.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0304.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0304/volume-covid19-A-0304_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0684.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0684.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0684/volume-covid19-A-0684_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0296.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0296.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0296/volume-covid19-A-0296_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0414.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0414.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0414/volume-covid19-A-0414_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0736_day000.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0736_day000.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0736_day000/volume-covid19-A-0736_day000_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0256_0.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0256_0.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0256_0/volume-covid19-A-0256_0_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0626.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0626.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0626/volume-covid19-A-0626_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0201.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0201.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0201/volume-covid19-A-0201_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0356.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0356.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0356/volume-covid19-A-0356_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0495.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0495.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0495/volume-covid19-A-0495_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0091.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0091.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0091/volume-covid19-A-0091_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0362.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0362.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0362/volume-covid19-A-0362_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0696.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0696.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0696/volume-covid19-A-0696_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0690.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0690.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0690/volume-covid19-A-0690_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0576.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0576.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0576/volume-covid19-A-0576_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0404.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0404.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0404/volume-covid19-A-0404_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0722_day003.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0722_day003.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0722_day003/volume-covid19-A-0722_day003_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0463.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0463.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0463/volume-covid19-A-0463_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0454.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0454.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0454/volume-covid19-A-0454_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0722_day047.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0722_day047.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0722_day047/volume-covid19-A-0722_day047_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0469.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0469.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0469/volume-covid19-A-0469_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0039.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0039.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0039/volume-covid19-A-0039_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0710_day000.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0710_day000.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0710_day000/volume-covid19-A-0710_day000_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0651.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0651.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0651/volume-covid19-A-0651_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0225.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0225.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0225/volume-covid19-A-0225_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0470.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0470.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0470/volume-covid19-A-0470_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0161.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0161.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0161/volume-covid19-A-0161_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0324.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0324.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0324/volume-covid19-A-0324_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0511.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0511.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0511/volume-covid19-A-0511_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0081.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0081.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0081/volume-covid19-A-0081_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0282.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0282.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0282/volume-covid19-A-0282_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0670.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0670.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0670/volume-covid19-A-0670_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0612.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0612.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0612/volume-covid19-A-0612_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0290.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0290.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0290/volume-covid19-A-0290_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0450.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0450.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0450/volume-covid19-A-0450_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0498.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0498.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0498/volume-covid19-A-0498_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0700_day056.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0700_day056.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0700_day056/volume-covid19-A-0700_day056_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0067.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0067.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0067/volume-covid19-A-0067_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0734_day020.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0734_day020.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0734_day020/volume-covid19-A-0734_day020_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0573.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0573.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0573/volume-covid19-A-0573_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0086.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0086.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0086/volume-covid19-A-0086_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0569.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0569.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0569/volume-covid19-A-0569_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0547.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0547.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0547/volume-covid19-A-0547_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0350.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0350.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0350/volume-covid19-A-0350_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0203.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0203.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0203/volume-covid19-A-0203_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0540.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0540.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0540/volume-covid19-A-0540_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0568.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0568.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0568/volume-covid19-A-0568_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0074_0.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0074_0.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0074_0/volume-covid19-A-0074_0_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0558.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0558.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0558/volume-covid19-A-0558_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0437.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0437.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0437/volume-covid19-A-0437_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0381_1.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0381_1.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0381_1/volume-covid19-A-0381_1_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0735_day000.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0735_day000.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0735_day000/volume-covid19-A-0735_day000_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0429.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0429.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0429/volume-covid19-A-0429_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0446.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0446.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0446/volume-covid19-A-0446_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0490.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0490.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0490/volume-covid19-A-0490_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0272.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0272.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0272/volume-covid19-A-0272_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0154.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0154.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0154/volume-covid19-A-0154_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0710_day002.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0710_day002.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0710_day002/volume-covid19-A-0710_day002_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0187.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0187.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0187/volume-covid19-A-0187_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0616.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0616.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0616/volume-covid19-A-0616_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0228.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0228.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0228/volume-covid19-A-0228_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0064.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0064.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0064/volume-covid19-A-0064_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0716_day000.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0716_day000.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0716_day000/volume-covid19-A-0716_day000_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0298.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0298.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0298/volume-covid19-A-0298_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0713_day012.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0713_day012.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0713_day012/volume-covid19-A-0713_day012_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0666.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0666.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0666/volume-covid19-A-0666_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0718_day054.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0718_day054.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0718_day054/volume-covid19-A-0718_day054_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0737_day003.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0737_day003.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0737_day003/volume-covid19-A-0737_day003_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0098.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0098.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0098/volume-covid19-A-0098_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0170.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0170.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0170/volume-covid19-A-0170_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0329.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0329.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0329/volume-covid19-A-0329_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0702_day050.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0702_day050.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0702_day050/volume-covid19-A-0702_day050_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0099.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0099.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0099/volume-covid19-A-0099_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0125.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0125.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0125/volume-covid19-A-0125_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0040.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0040.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0040/volume-covid19-A-0040_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0676.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0676.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0676/volume-covid19-A-0676_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0237.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0237.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0237/volume-covid19-A-0237_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0734_day000.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0734_day000.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0734_day000/volume-covid19-A-0734_day000_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0028_1.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0028_1.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0028_1/volume-covid19-A-0028_1_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0215.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0215.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0215/volume-covid19-A-0215_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0261_1.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0261_1.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0261_1/volume-covid19-A-0261_1_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0722_day011.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0722_day011.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0722_day011/volume-covid19-A-0722_day011_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0434.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0434.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0434/volume-covid19-A-0434_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0037.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0037.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0037/volume-covid19-A-0037_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0240.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0240.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0240/volume-covid19-A-0240_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0504.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0504.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0504/volume-covid19-A-0504_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0369_0.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0369_0.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0369_0/volume-covid19-A-0369_0_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0295.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0295.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0295/volume-covid19-A-0295_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0360.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0360.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0360/volume-covid19-A-0360_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0541.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0541.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0541/volume-covid19-A-0541_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0562.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0562.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0562/volume-covid19-A-0562_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0706_day000.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0706_day000.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0706_day000/volume-covid19-A-0706_day000_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0236.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0236.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0236/volume-covid19-A-0236_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0130.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0130.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0130/volume-covid19-A-0130_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0481.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0481.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0481/volume-covid19-A-0481_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0707_day002.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0707_day002.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0707_day002/volume-covid19-A-0707_day002_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0377.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0377.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0377/volume-covid19-A-0377_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0674.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0674.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0674/volume-covid19-A-0674_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0441.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0441.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0441/volume-covid19-A-0441_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0548.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0548.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0548/volume-covid19-A-0548_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0275.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0275.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0275/volume-covid19-A-0275_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0529.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0529.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0529/volume-covid19-A-0529_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0552.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0552.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0552/volume-covid19-A-0552_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0066.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0066.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0066/volume-covid19-A-0066_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0027_1.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0027_1.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0027_1/volume-covid19-A-0027_1_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0623.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0623.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0623/volume-covid19-A-0623_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0567.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0567.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0567/volume-covid19-A-0567_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0531.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0531.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0531/volume-covid19-A-0531_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0428.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0428.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0428/volume-covid19-A-0428_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0535.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0535.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0535/volume-covid19-A-0535_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0597.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0597.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0597/volume-covid19-A-0597_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0452.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0452.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0452/volume-covid19-A-0452_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0029.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0029.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0029/volume-covid19-A-0029_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0338.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0338.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0338/volume-covid19-A-0338_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0546.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0546.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0546/volume-covid19-A-0546_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0179.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0179.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0179/volume-covid19-A-0179_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0435.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0435.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0435/volume-covid19-A-0435_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0614.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0614.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0614/volume-covid19-A-0614_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0482.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0482.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0482/volume-covid19-A-0482_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0374.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0374.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0374/volume-covid19-A-0374_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0734_day008.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0734_day008.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0734_day008/volume-covid19-A-0734_day008_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0254.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0254.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0254/volume-covid19-A-0254_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0703_day016.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0703_day016.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0703_day016/volume-covid19-A-0703_day016_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0458.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0458.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0458/volume-covid19-A-0458_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0551.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0551.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0551/volume-covid19-A-0551_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0675.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0675.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0675/volume-covid19-A-0675_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0293.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0293.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0293/volume-covid19-A-0293_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0512.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0512.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0512/volume-covid19-A-0512_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0268.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0268.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0268/volume-covid19-A-0268_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0561.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0561.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0561/volume-covid19-A-0561_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0615.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0615.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0615/volume-covid19-A-0615_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0682.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0682.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0682/volume-covid19-A-0682_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0640.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0640.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0640/volume-covid19-A-0640_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0702_day062.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0702_day062.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0702_day062/volume-covid19-A-0702_day062_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0055.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0055.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0055/volume-covid19-A-0055_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0164.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0164.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0164/volume-covid19-A-0164_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0737_day044.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0737_day044.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0737_day044/volume-covid19-A-0737_day044_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0539.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0539.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0539/volume-covid19-A-0539_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0320.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0320.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0320/volume-covid19-A-0320_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0493.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0493.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0493/volume-covid19-A-0493_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0700_day015.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0700_day015.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0700_day015/volume-covid19-A-0700_day015_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0415.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0415.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0415/volume-covid19-A-0415_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0701_day055.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0701_day055.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0701_day055/volume-covid19-A-0701_day055_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0473.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0473.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0473/volume-covid19-A-0473_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0679.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0679.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0679/volume-covid19-A-0679_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0718_day000.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0718_day000.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0718_day000/volume-covid19-A-0718_day000_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0694.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0694.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0694/volume-covid19-A-0694_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0477.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0477.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0477/volume-covid19-A-0477_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0436.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0436.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0436/volume-covid19-A-0436_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0596.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0596.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0596/volume-covid19-A-0596_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0662.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0662.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0662/volume-covid19-A-0662_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0344.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0344.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0344/volume-covid19-A-0344_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0499.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0499.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0499/volume-covid19-A-0499_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0373.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0373.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0373/volume-covid19-A-0373_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0510.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0510.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0510/volume-covid19-A-0510_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0189_0.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0189_0.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0189_0/volume-covid19-A-0189_0_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0261_0.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0261_0.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0261_0/volume-covid19-A-0261_0_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0380.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0380.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0380/volume-covid19-A-0380_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0175.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0175.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0175/volume-covid19-A-0175_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0112.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0112.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0112/volume-covid19-A-0112_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0289.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0289.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0289/volume-covid19-A-0289_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0202_1.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0202_1.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0202_1/volume-covid19-A-0202_1_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0173.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0173.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0173/volume-covid19-A-0173_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0509.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0509.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0509/volume-covid19-A-0509_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0722_day008.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0722_day008.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0722_day008/volume-covid19-A-0722_day008_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0214.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0214.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0214/volume-covid19-A-0214_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0330.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0330.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0330/volume-covid19-A-0330_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0559.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0559.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0559/volume-covid19-A-0559_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0704_day000.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0704_day000.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0704_day000/volume-covid19-A-0704_day000_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0144.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0144.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0144/volume-covid19-A-0144_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0216.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0216.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0216/volume-covid19-A-0216_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0146.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0146.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0146/volume-covid19-A-0146_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0266.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0266.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0266/volume-covid19-A-0266_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0580.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0580.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0580/volume-covid19-A-0580_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0538.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0538.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0538/volume-covid19-A-0538_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0628.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0628.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0628/volume-covid19-A-0628_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0622.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0622.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0622/volume-covid19-A-0622_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0715_day000.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0715_day000.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0715_day000/volume-covid19-A-0715_day000_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0375.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0375.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0375/volume-covid19-A-0375_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0242.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0242.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0242/volume-covid19-A-0242_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0695.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0695.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0695/volume-covid19-A-0695_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0131.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0131.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0131/volume-covid19-A-0131_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0514.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0514.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0514/volume-covid19-A-0514_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0713_day008.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0713_day008.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0713_day008/volume-covid19-A-0713_day008_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0718_day017.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0718_day017.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0718_day017/volume-covid19-A-0718_day017_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0033.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0033.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0033/volume-covid19-A-0033_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0476.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0476.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0476/volume-covid19-A-0476_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0318_0.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0318_0.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0318_0/volume-covid19-A-0318_0_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0028_0.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0028_0.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0028_0/volume-covid19-A-0028_0_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0533.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0533.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0533/volume-covid19-A-0533_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0198.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0198.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0198/volume-covid19-A-0198_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0308.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0308.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0308/volume-covid19-A-0308_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0713_day050.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0713_day050.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0713_day050/volume-covid19-A-0713_day050_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0424.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0424.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0424/volume-covid19-A-0424_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0341.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0341.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0341/volume-covid19-A-0341_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0181.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0181.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0181/volume-covid19-A-0181_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0013.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0013.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0013/volume-covid19-A-0013_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0072.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0072.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0072/volume-covid19-A-0072_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0722_day000.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0722_day000.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0722_day000/volume-covid19-A-0722_day000_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0174.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0174.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0174/volume-covid19-A-0174_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0274.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0274.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0274/volume-covid19-A-0274_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0683.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0683.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0683/volume-covid19-A-0683_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0553.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0553.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0553/volume-covid19-A-0553_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0363.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0363.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0363/volume-covid19-A-0363_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0659.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0659.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0659/volume-covid19-A-0659_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0577.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0577.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0577/volume-covid19-A-0577_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0657.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0657.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0657/volume-covid19-A-0657_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0618.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0618.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0618/volume-covid19-A-0618_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0738_day000.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0738_day000.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0738_day000/volume-covid19-A-0738_day000_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0224.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0224.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0224/volume-covid19-A-0224_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0660.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0660.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0660/volume-covid19-A-0660_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0371.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0371.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0371/volume-covid19-A-0371_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0479.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0479.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0479/volume-covid19-A-0479_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0271.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0271.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0271/volume-covid19-A-0271_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0142.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0142.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0142/volume-covid19-A-0142_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0460.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0460.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0460/volume-covid19-A-0460_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0488.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0488.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0488/volume-covid19-A-0488_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0643.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0643.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0643/volume-covid19-A-0643_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0301.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0301.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0301/volume-covid19-A-0301_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0143.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0143.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0143/volume-covid19-A-0143_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0590.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0590.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0590/volume-covid19-A-0590_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0367.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0367.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0367/volume-covid19-A-0367_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0156.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0156.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0156/volume-covid19-A-0156_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0351.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0351.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0351/volume-covid19-A-0351_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0234.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0234.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0234/volume-covid19-A-0234_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0655.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0655.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0655/volume-covid19-A-0655_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0325.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0325.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0325/volume-covid19-A-0325_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0413.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0413.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0413/volume-covid19-A-0413_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0594.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0594.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0594/volume-covid19-A-0594_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0300.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0300.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0300/volume-covid19-A-0300_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0120.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0120.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0120/volume-covid19-A-0120_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0167_1.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0167_1.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0167_1/volume-covid19-A-0167_1_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0693.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0693.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0693/volume-covid19-A-0693_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0447.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0447.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0447/volume-covid19-A-0447_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0603.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0603.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0603/volume-covid19-A-0603_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0717_day052.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0717_day052.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0717_day052/volume-covid19-A-0717_day052_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0607.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0607.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0607/volume-covid19-A-0607_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0524.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0524.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0524/volume-covid19-A-0524_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0343.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0343.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0343/volume-covid19-A-0343_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0712_day005.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0712_day005.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0712_day005/volume-covid19-A-0712_day005_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0575.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0575.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0575/volume-covid19-A-0575_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0595.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0595.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0595/volume-covid19-A-0595_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0608.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0608.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0608/volume-covid19-A-0608_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0246.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0246.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0246/volume-covid19-A-0246_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0221.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0221.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0221/volume-covid19-A-0221_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0733_day069.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0733_day069.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0733_day069/volume-covid19-A-0733_day069_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0689.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0689.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0689/volume-covid19-A-0689_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0652.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0652.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0652/volume-covid19-A-0652_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0070.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0070.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0070/volume-covid19-A-0070_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0707_day060.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0707_day060.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0707_day060/volume-covid19-A-0707_day060_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0359.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0359.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0359/volume-covid19-A-0359_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0336.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0336.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0336/volume-covid19-A-0336_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0443.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0443.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0443/volume-covid19-A-0443_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0355.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0355.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0355/volume-covid19-A-0355_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0149.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0149.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0149/volume-covid19-A-0149_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0408.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0408.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0408/volume-covid19-A-0408_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0111.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0111.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0111/volume-covid19-A-0111_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0722_day018.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0722_day018.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0722_day018/volume-covid19-A-0722_day018_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0252.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0252.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0252/volume-covid19-A-0252_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0705_day043.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0705_day043.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0705_day043/volume-covid19-A-0705_day043_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0701_day006.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0701_day006.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0701_day006/volume-covid19-A-0701_day006_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0737_day006.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0737_day006.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0737_day006/volume-covid19-A-0737_day006_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0372.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0372.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0372/volume-covid19-A-0372_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0088.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0088.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0088/volume-covid19-A-0088_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0686.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0686.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0686/volume-covid19-A-0686_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0180_1.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0180_1.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0180_1/volume-covid19-A-0180_1_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0710_day007.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0710_day007.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0710_day007/volume-covid19-A-0710_day007_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0430.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0430.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0430/volume-covid19-A-0430_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0353.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0353.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0353/volume-covid19-A-0353_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0114.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0114.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0114/volume-covid19-A-0114_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0193.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0193.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0193/volume-covid19-A-0193_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0719_day002.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0719_day002.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0719_day002/volume-covid19-A-0719_day002_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0157.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0157.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0157/volume-covid19-A-0157_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0309.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0309.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0309/volume-covid19-A-0309_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0063.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0063.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0063/volume-covid19-A-0063_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0698.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0698.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0698/volume-covid19-A-0698_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0407.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0407.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0407/volume-covid19-A-0407_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0035.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0035.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0035/volume-covid19-A-0035_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0219.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0219.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0219/volume-covid19-A-0219_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0096.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0096.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0096/volume-covid19-A-0096_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0180_0.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0180_0.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0180_0/volume-covid19-A-0180_0_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0735_day052.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0735_day052.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0735_day052/volume-covid19-A-0735_day052_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0273.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0273.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0273/volume-covid19-A-0273_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0381_0.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0381_0.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0381_0/volume-covid19-A-0381_0_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0071.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0071.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0071/volume-covid19-A-0071_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0738_day052.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0738_day052.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0738_day052/volume-covid19-A-0738_day052_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0195.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0195.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0195/volume-covid19-A-0195_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0229.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0229.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0229/volume-covid19-A-0229_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0500.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0500.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0500/volume-covid19-A-0500_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0521.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0521.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0521/volume-covid19-A-0521_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0735_day004.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0735_day004.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0735_day004/volume-covid19-A-0735_day004_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0123.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0123.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0123/volume-covid19-A-0123_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0718_day002.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0718_day002.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0718_day002/volume-covid19-A-0718_day002_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0705_day000.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0705_day000.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0705_day000/volume-covid19-A-0705_day000_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0605.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0605.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0605/volume-covid19-A-0605_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0082.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0082.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0082/volume-covid19-A-0082_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0184_1.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0184_1.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0184_1/volume-covid19-A-0184_1_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0276.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0276.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0276/volume-covid19-A-0276_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0121.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0121.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0121/volume-covid19-A-0121_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0392.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0392.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0392/volume-covid19-A-0392_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0633.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0633.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0633/volume-covid19-A-0633_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0277.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0277.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0277/volume-covid19-A-0277_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0068.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0068.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0068/volume-covid19-A-0068_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0630.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0630.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0630/volume-covid19-A-0630_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0723_day004.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0723_day004.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0723_day004/volume-covid19-A-0723_day004_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0357.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0357.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0357/volume-covid19-A-0357_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0046.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0046.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0046/volume-covid19-A-0046_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0715_day019.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0715_day019.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0715_day019/volume-covid19-A-0715_day019_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0422.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0422.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0422/volume-covid19-A-0422_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0194.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0194.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0194/volume-covid19-A-0194_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0554.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0554.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0554/volume-covid19-A-0554_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0527.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0527.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0527/volume-covid19-A-0527_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0348.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0348.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0348/volume-covid19-A-0348_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0432.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0432.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0432/volume-covid19-A-0432_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0708_day008.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0708_day008.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0708_day008/volume-covid19-A-0708_day008_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0448.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0448.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0448/volume-covid19-A-0448_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0305.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0305.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0305/volume-covid19-A-0305_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0269.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0269.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0269/volume-covid19-A-0269_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0421.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0421.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0421/volume-covid19-A-0421_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0710_day013.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0710_day013.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0710_day013/volume-covid19-A-0710_day013_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0206.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0206.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0206/volume-covid19-A-0206_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0713_day000.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0713_day000.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0713_day000/volume-covid19-A-0713_day000_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0124.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0124.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0124/volume-covid19-A-0124_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0405.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0405.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0405/volume-covid19-A-0405_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0259.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0259.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0259/volume-covid19-A-0259_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0089.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0089.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0089/volume-covid19-A-0089_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0484.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0484.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0484/volume-covid19-A-0484_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0654.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0654.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0654/volume-covid19-A-0654_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0110.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0110.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0110/volume-covid19-A-0110_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0661.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0661.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0661/volume-covid19-A-0661_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0137.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0137.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0137/volume-covid19-A-0137_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0106.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0106.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0106/volume-covid19-A-0106_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0525.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0525.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0525/volume-covid19-A-0525_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0134.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0134.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0134/volume-covid19-A-0134_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0733_day004.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0733_day004.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0733_day004/volume-covid19-A-0733_day004_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0136.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0136.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0136/volume-covid19-A-0136_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0734_day002.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0734_day002.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0734_day002/volume-covid19-A-0734_day002_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0671.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0671.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0671/volume-covid19-A-0671_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0632.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0632.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0632/volume-covid19-A-0632_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0474.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0474.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0474/volume-covid19-A-0474_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0678.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0678.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0678/volume-covid19-A-0678_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0076.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0076.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0076/volume-covid19-A-0076_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0449.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0449.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0449/volume-covid19-A-0449_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0736_day050.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0736_day050.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0736_day050/volume-covid19-A-0736_day050_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0708_day000.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0708_day000.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0708_day000/volume-covid19-A-0708_day000_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0516.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0516.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0516/volume-covid19-A-0516_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0663.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0663.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0663/volume-covid19-A-0663_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0318_1.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0318_1.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0318_1/volume-covid19-A-0318_1_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0638.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0638.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0638/volume-covid19-A-0638_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0401.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0401.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0401/volume-covid19-A-0401_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0669.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0669.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0669/volume-covid19-A-0669_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0736_day014.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0736_day014.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0736_day014/volume-covid19-A-0736_day014_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0517.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0517.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0517/volume-covid19-A-0517_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0702_day000.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0702_day000.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0702_day000/volume-covid19-A-0702_day000_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0593.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0593.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0593/volume-covid19-A-0593_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0166.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0166.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0166/volume-covid19-A-0166_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0543.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0543.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0543/volume-covid19-A-0543_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0253.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0253.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0253/volume-covid19-A-0253_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0611.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0611.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0611/volume-covid19-A-0611_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0672.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0672.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0672/volume-covid19-A-0672_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0388.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0388.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0388/volume-covid19-A-0388_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0178.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0178.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0178/volume-covid19-A-0178_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0227.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0227.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0227/volume-covid19-A-0227_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0101.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0101.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0101/volume-covid19-A-0101_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0502.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0502.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0502/volume-covid19-A-0502_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0286.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0286.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0286/volume-covid19-A-0286_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0095.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0095.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0095/volume-covid19-A-0095_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0715_day012.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0715_day012.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0715_day012/volume-covid19-A-0715_day012_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0487.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0487.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0487/volume-covid19-A-0487_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0708_day003.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0708_day003.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0708_day003/volume-covid19-A-0708_day003_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0041.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0041.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0041/volume-covid19-A-0041_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0556.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0556.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0556/volume-covid19-A-0556_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0636.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0636.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0636/volume-covid19-A-0636_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0702_day021.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0702_day021.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0702_day021/volume-covid19-A-0702_day021_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0494.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0494.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0494/volume-covid19-A-0494_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0047_0.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0047_0.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0047_0/volume-covid19-A-0047_0_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0431.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0431.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0431/volume-covid19-A-0431_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0735_day021.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0735_day021.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0735_day021/volume-covid19-A-0735_day021_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0613.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0613.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0613/volume-covid19-A-0613_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0639.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0639.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0639/volume-covid19-A-0639_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0715_day052.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0715_day052.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0715_day052/volume-covid19-A-0715_day052_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0720_day002.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0720_day002.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0720_day002/volume-covid19-A-0720_day002_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0102.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0102.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0102/volume-covid19-A-0102_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0126.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0126.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0126/volume-covid19-A-0126_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0513.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0513.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0513/volume-covid19-A-0513_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0249.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0249.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0249/volume-covid19-A-0249_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0403.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0403.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0403/volume-covid19-A-0403_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0150.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0150.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0150/volume-covid19-A-0150_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0196_0.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0196_0.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0196_0/volume-covid19-A-0196_0_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0047_1.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0047_1.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0047_1/volume-covid19-A-0047_1_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0709_day000.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0709_day000.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0709_day000/volume-covid19-A-0709_day000_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0737_day000.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0737_day000.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0737_day000/volume-covid19-A-0737_day000_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0697.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0697.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0697/volume-covid19-A-0697_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0467.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0467.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0467/volume-covid19-A-0467_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0483.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0483.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0483/volume-covid19-A-0483_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0505.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0505.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0505/volume-covid19-A-0505_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0468.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0468.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0468/volume-covid19-A-0468_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0204.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0204.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0204/volume-covid19-A-0204_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0587.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0587.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0587/volume-covid19-A-0587_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0710_day024.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0710_day024.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0710_day024/volume-covid19-A-0710_day024_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0416.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0416.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0416/volume-covid19-A-0416_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0503.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0503.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0503/volume-covid19-A-0503_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0078.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0078.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0078/volume-covid19-A-0078_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0310.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0310.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0310/volume-covid19-A-0310_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0451.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0451.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0451/volume-covid19-A-0451_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0579.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0579.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0579/volume-covid19-A-0579_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0358.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0358.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0358/volume-covid19-A-0358_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0653.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0653.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0653/volume-covid19-A-0653_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0455.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0455.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0455/volume-covid19-A-0455_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0222.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0222.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0222/volume-covid19-A-0222_seg.nii.gz"
+ },
+ {
+ "image": "data/volume-covid19-A-0212_1.nii.gz",
+ "pseudo_label": "data/volume-covid19-A-0212_1.nii.gz",
+ "dataset": "/data/Covid19/tcia_covid19",
+ "region": "/data/Covid19/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0212_1/volume-covid19-A-0212_1_seg.nii.gz"
+ }
+ ],
+ "training_transform": [
+ {
+ "_target_": "RandCropByLabelClassesd",
+ "keys": [
+ "@image_key",
+ "@label_key",
+ "@pseudo_label_key",
+ "@label_sv_key"
+ ],
+ "label_key": "@pseudo_label_key",
+ "num_classes": 133,
+ "num_samples": "@num_patches_per_image",
+ "spatial_size": "@patch_size",
+ "ratios": "$tuple(float(i >= 0) for i in range(133))",
+ "warn": false,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandZoomd",
+ "keys": [
+ "@image_key",
+ "@label_key",
+ "@pseudo_label_key",
+ "@label_sv_key"
+ ],
+ "min_zoom": 0.8,
+ "max_zoom": 1.2,
+ "mode": [
+ "trilinear",
+ "nearest",
+ "nearest",
+ "nearest"
+ ],
+ "prob": 0.2,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandSimulateLowResolutiond",
+ "keys": [
+ "@image_key"
+ ],
+ "zoom_range": [
+ 0.3,
+ 1
+ ],
+ "prob": 0.2,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandGaussianSmoothd",
+ "keys": [
+ "@image_key"
+ ],
+ "prob": 0.2,
+ "sigma_x": [
+ 0.5,
+ 1.0
+ ],
+ "sigma_y": [
+ 0.5,
+ 1.0
+ ],
+ "sigma_z": [
+ 0.5,
+ 1.0
+ ]
+ },
+ {
+ "_target_": "RandScaleIntensityd",
+ "keys": [
+ "@image_key"
+ ],
+ "factors": 0.1,
+ "prob": 0.2
+ },
+ {
+ "_target_": "RandShiftIntensityd",
+ "keys": [
+ "@image_key"
+ ],
+ "offsets": 0.1,
+ "prob": 0.2
+ },
+ {
+ "_target_": "RandGaussianNoised",
+ "keys": [
+ "@image_key"
+ ],
+ "prob": 0.2,
+ "mean": 0.0,
+ "std": 0.2
+ }
+ ]
+}
diff --git a/vista3d/data/jsons/FLARE22_5_folds.json b/vista3d/data/jsons/FLARE22_5_folds.json
new file mode 100644
index 0000000..8c2a45a
--- /dev/null
+++ b/vista3d/data/jsons/FLARE22_5_folds.json
@@ -0,0 +1,480 @@
+{
+ "training": [
+ {
+ "image": "images/FLARE22_Tr_0001_0000.nii.gz",
+ "pseudo_label": "images/FLARE22_Tr_0001_0000.nii.gz",
+ "label": "labels/FLARE22_Tr_0001.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "images/FLARE22_Tr_0009_0000.nii.gz",
+ "pseudo_label": "images/FLARE22_Tr_0009_0000.nii.gz",
+ "label": "labels/FLARE22_Tr_0009.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "images/FLARE22_Tr_0010_0000.nii.gz",
+ "pseudo_label": "images/FLARE22_Tr_0010_0000.nii.gz",
+ "label": "labels/FLARE22_Tr_0010.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "images/FLARE22_Tr_0035_0000.nii.gz",
+ "pseudo_label": "images/FLARE22_Tr_0035_0000.nii.gz",
+ "label": "labels/FLARE22_Tr_0035.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "images/FLARE22_Tr_0026_0000.nii.gz",
+ "pseudo_label": "images/FLARE22_Tr_0026_0000.nii.gz",
+ "label": "labels/FLARE22_Tr_0026.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "images/FLARE22_Tr_0011_0000.nii.gz",
+ "pseudo_label": "images/FLARE22_Tr_0011_0000.nii.gz",
+ "label": "labels/FLARE22_Tr_0011.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "images/FLARE22_Tr_0004_0000.nii.gz",
+ "pseudo_label": "images/FLARE22_Tr_0004_0000.nii.gz",
+ "label": "labels/FLARE22_Tr_0004.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "images/FLARE22_Tr_0040_0000.nii.gz",
+ "pseudo_label": "images/FLARE22_Tr_0040_0000.nii.gz",
+ "label": "labels/FLARE22_Tr_0040.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "images/FLARE22_Tr_0033_0000.nii.gz",
+ "pseudo_label": "images/FLARE22_Tr_0033_0000.nii.gz",
+ "label": "labels/FLARE22_Tr_0033.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0033_0000/FLARE22_Tr_0033_0000_seg.nii.gz"
+ },
+ {
+ "image": "images/FLARE22_Tr_0036_0000.nii.gz",
+ "pseudo_label": "images/FLARE22_Tr_0036_0000.nii.gz",
+ "label": "labels/FLARE22_Tr_0036.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0036_0000/FLARE22_Tr_0036_0000_seg.nii.gz"
+ },
+ {
+ "image": "images/FLARE22_Tr_0017_0000.nii.gz",
+ "pseudo_label": "images/FLARE22_Tr_0017_0000.nii.gz",
+ "label": "labels/FLARE22_Tr_0017.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0017_0000/FLARE22_Tr_0017_0000_seg.nii.gz"
+ },
+ {
+ "image": "images/FLARE22_Tr_0020_0000.nii.gz",
+ "pseudo_label": "images/FLARE22_Tr_0020_0000.nii.gz",
+ "label": "labels/FLARE22_Tr_0020.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0020_0000/FLARE22_Tr_0020_0000_seg.nii.gz"
+ },
+ {
+ "image": "images/FLARE22_Tr_0013_0000.nii.gz",
+ "pseudo_label": "images/FLARE22_Tr_0013_0000.nii.gz",
+ "label": "labels/FLARE22_Tr_0013.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0013_0000/FLARE22_Tr_0013_0000_seg.nii.gz"
+ },
+ {
+ "image": "images/FLARE22_Tr_0012_0000.nii.gz",
+ "pseudo_label": "images/FLARE22_Tr_0012_0000.nii.gz",
+ "label": "labels/FLARE22_Tr_0012.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0012_0000/FLARE22_Tr_0012_0000_seg.nii.gz"
+ },
+ {
+ "image": "images/FLARE22_Tr_0024_0000.nii.gz",
+ "pseudo_label": "images/FLARE22_Tr_0024_0000.nii.gz",
+ "label": "labels/FLARE22_Tr_0024.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0024_0000/FLARE22_Tr_0024_0000_seg.nii.gz"
+ },
+ {
+ "image": "images/FLARE22_Tr_0014_0000.nii.gz",
+ "pseudo_label": "images/FLARE22_Tr_0014_0000.nii.gz",
+ "label": "labels/FLARE22_Tr_0014.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0014_0000/FLARE22_Tr_0014_0000_seg.nii.gz"
+ },
+ {
+ "image": "images/FLARE22_Tr_0039_0000.nii.gz",
+ "pseudo_label": "images/FLARE22_Tr_0039_0000.nii.gz",
+ "label": "labels/FLARE22_Tr_0039.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0039_0000/FLARE22_Tr_0039_0000_seg.nii.gz"
+ },
+ {
+ "image": "images/FLARE22_Tr_0027_0000.nii.gz",
+ "pseudo_label": "images/FLARE22_Tr_0027_0000.nii.gz",
+ "label": "labels/FLARE22_Tr_0027.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0027_0000/FLARE22_Tr_0027_0000_seg.nii.gz"
+ },
+ {
+ "image": "images/FLARE22_Tr_0007_0000.nii.gz",
+ "pseudo_label": "images/FLARE22_Tr_0007_0000.nii.gz",
+ "label": "labels/FLARE22_Tr_0007.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0007_0000/FLARE22_Tr_0007_0000_seg.nii.gz"
+ },
+ {
+ "image": "images/FLARE22_Tr_0005_0000.nii.gz",
+ "pseudo_label": "images/FLARE22_Tr_0005_0000.nii.gz",
+ "label": "labels/FLARE22_Tr_0005.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0005_0000/FLARE22_Tr_0005_0000_seg.nii.gz"
+ },
+ {
+ "image": "images/FLARE22_Tr_0016_0000.nii.gz",
+ "pseudo_label": "images/FLARE22_Tr_0016_0000.nii.gz",
+ "label": "labels/FLARE22_Tr_0016.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0016_0000/FLARE22_Tr_0016_0000_seg.nii.gz"
+ },
+ {
+ "image": "images/FLARE22_Tr_0031_0000.nii.gz",
+ "pseudo_label": "images/FLARE22_Tr_0031_0000.nii.gz",
+ "label": "labels/FLARE22_Tr_0031.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0031_0000/FLARE22_Tr_0031_0000_seg.nii.gz"
+ },
+ {
+ "image": "images/FLARE22_Tr_0029_0000.nii.gz",
+ "pseudo_label": "images/FLARE22_Tr_0029_0000.nii.gz",
+ "label": "labels/FLARE22_Tr_0029.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0029_0000/FLARE22_Tr_0029_0000_seg.nii.gz"
+ },
+ {
+ "image": "images/FLARE22_Tr_0049_0000.nii.gz",
+ "pseudo_label": "images/FLARE22_Tr_0049_0000.nii.gz",
+ "label": "labels/FLARE22_Tr_0049.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0049_0000/FLARE22_Tr_0049_0000_seg.nii.gz"
+ },
+ {
+ "image": "images/FLARE22_Tr_0030_0000.nii.gz",
+ "pseudo_label": "images/FLARE22_Tr_0030_0000.nii.gz",
+ "label": "labels/FLARE22_Tr_0030.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0030_0000/FLARE22_Tr_0030_0000_seg.nii.gz"
+ },
+ {
+ "image": "images/FLARE22_Tr_0003_0000.nii.gz",
+ "pseudo_label": "images/FLARE22_Tr_0003_0000.nii.gz",
+ "label": "labels/FLARE22_Tr_0003.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0003_0000/FLARE22_Tr_0003_0000_seg.nii.gz"
+ },
+ {
+ "image": "images/FLARE22_Tr_0021_0000.nii.gz",
+ "pseudo_label": "images/FLARE22_Tr_0021_0000.nii.gz",
+ "label": "labels/FLARE22_Tr_0021.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0021_0000/FLARE22_Tr_0021_0000_seg.nii.gz"
+ },
+ {
+ "image": "images/FLARE22_Tr_0015_0000.nii.gz",
+ "pseudo_label": "images/FLARE22_Tr_0015_0000.nii.gz",
+ "label": "labels/FLARE22_Tr_0015.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0015_0000/FLARE22_Tr_0015_0000_seg.nii.gz"
+ },
+ {
+ "image": "images/FLARE22_Tr_0048_0000.nii.gz",
+ "pseudo_label": "images/FLARE22_Tr_0048_0000.nii.gz",
+ "label": "labels/FLARE22_Tr_0048.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0048_0000/FLARE22_Tr_0048_0000_seg.nii.gz"
+ },
+ {
+ "image": "images/FLARE22_Tr_0041_0000.nii.gz",
+ "pseudo_label": "images/FLARE22_Tr_0041_0000.nii.gz",
+ "label": "labels/FLARE22_Tr_0041.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0041_0000/FLARE22_Tr_0041_0000_seg.nii.gz"
+ },
+ {
+ "image": "images/FLARE22_Tr_0006_0000.nii.gz",
+ "pseudo_label": "images/FLARE22_Tr_0006_0000.nii.gz",
+ "label": "labels/FLARE22_Tr_0006.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "images/FLARE22_Tr_0019_0000.nii.gz",
+ "pseudo_label": "images/FLARE22_Tr_0019_0000.nii.gz",
+ "label": "labels/FLARE22_Tr_0019.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0019_0000/FLARE22_Tr_0019_0000_seg.nii.gz"
+ },
+ {
+ "image": "images/FLARE22_Tr_0038_0000.nii.gz",
+ "pseudo_label": "images/FLARE22_Tr_0038_0000.nii.gz",
+ "label": "labels/FLARE22_Tr_0038.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0038_0000/FLARE22_Tr_0038_0000_seg.nii.gz"
+ },
+ {
+ "image": "images/FLARE22_Tr_0025_0000.nii.gz",
+ "pseudo_label": "images/FLARE22_Tr_0025_0000.nii.gz",
+ "label": "labels/FLARE22_Tr_0025.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0025_0000/FLARE22_Tr_0025_0000_seg.nii.gz"
+ },
+ {
+ "image": "images/FLARE22_Tr_0045_0000.nii.gz",
+ "pseudo_label": "images/FLARE22_Tr_0045_0000.nii.gz",
+ "label": "labels/FLARE22_Tr_0045.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0045_0000/FLARE22_Tr_0045_0000_seg.nii.gz"
+ },
+ {
+ "image": "images/FLARE22_Tr_0034_0000.nii.gz",
+ "pseudo_label": "images/FLARE22_Tr_0034_0000.nii.gz",
+ "label": "labels/FLARE22_Tr_0034.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0034_0000/FLARE22_Tr_0034_0000_seg.nii.gz"
+ },
+ {
+ "image": "images/FLARE22_Tr_0037_0000.nii.gz",
+ "pseudo_label": "images/FLARE22_Tr_0037_0000.nii.gz",
+ "label": "labels/FLARE22_Tr_0037.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0037_0000/FLARE22_Tr_0037_0000_seg.nii.gz"
+ },
+ {
+ "image": "images/FLARE22_Tr_0002_0000.nii.gz",
+ "pseudo_label": "images/FLARE22_Tr_0002_0000.nii.gz",
+ "label": "labels/FLARE22_Tr_0002.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0002_0000/FLARE22_Tr_0002_0000_seg.nii.gz"
+ },
+ {
+ "image": "images/FLARE22_Tr_0050_0000.nii.gz",
+ "pseudo_label": "images/FLARE22_Tr_0050_0000.nii.gz",
+ "label": "labels/FLARE22_Tr_0050.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0050_0000/FLARE22_Tr_0050_0000_seg.nii.gz"
+ },
+ {
+ "image": "images/FLARE22_Tr_0008_0000.nii.gz",
+ "pseudo_label": "images/FLARE22_Tr_0008_0000.nii.gz",
+ "label": "labels/FLARE22_Tr_0008.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0008_0000/FLARE22_Tr_0008_0000_seg.nii.gz"
+ }
+ ],
+ "training_transform": [
+ {
+ "_target_": "RandCropByLabelClassesd",
+ "keys": [
+ "@image_key",
+ "@label_key",
+ "@pseudo_label_key",
+ "@label_sv_key"
+ ],
+ "label_key": "@pseudo_label_key",
+ "num_classes": 133,
+ "num_samples": "@num_patches_per_image",
+ "spatial_size": "@patch_size",
+ "ratios": "$tuple(float(i >= 0) for i in range(133))",
+ "warn": false,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandZoomd",
+ "keys": [
+ "@image_key",
+ "@label_key",
+ "@pseudo_label_key",
+ "@label_sv_key"
+ ],
+ "min_zoom": 0.8,
+ "max_zoom": 1.2,
+ "mode": [
+ "trilinear",
+ "nearest",
+ "nearest",
+ "nearest"
+ ],
+ "prob": 0.2,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandSimulateLowResolutiond",
+ "keys": [
+ "@image_key"
+ ],
+ "zoom_range": [
+ 0.3,
+ 1
+ ],
+ "prob": 0.2,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandGaussianSmoothd",
+ "keys": [
+ "@image_key"
+ ],
+ "prob": 0.2,
+ "sigma_x": [
+ 0.5,
+ 1.0
+ ],
+ "sigma_y": [
+ 0.5,
+ 1.0
+ ],
+ "sigma_z": [
+ 0.5,
+ 1.0
+ ]
+ },
+ {
+ "_target_": "RandScaleIntensityd",
+ "keys": [
+ "@image_key"
+ ],
+ "factors": 0.1,
+ "prob": 0.2
+ },
+ {
+ "_target_": "RandShiftIntensityd",
+ "keys": [
+ "@image_key"
+ ],
+ "offsets": 0.1,
+ "prob": 0.2
+ },
+ {
+ "_target_": "RandGaussianNoised",
+ "keys": [
+ "@image_key"
+ ],
+ "prob": 0.2,
+ "mean": 0.0,
+ "std": 0.2
+ }
+ ],
+ "label_dict": {
+ "1": "liver",
+ "2": "right kidney",
+ "3": "spleen",
+ "4": "pancreas",
+ "5": "aorta",
+ "6": "inferior vena cava",
+ "7": "right adrenal gland",
+ "8": "left adrenal gland",
+ "9": "gallbladder",
+ "10": "esophagus",
+ "11": "stomach",
+ "12": "duodenum",
+ "13": "left kidney"
+ },
+ "original_label_dict": {
+ "1": "liver",
+ "2": "right kidney",
+ "3": "spleen",
+ "4": "pancreas",
+ "5": "aorta",
+ "6": "inferior vena cava",
+ "7": "right adrenal gland",
+ "8": "left adrenal gland",
+ "9": "gallbladder",
+ "10": "esophagus",
+ "11": "stomach",
+ "12": "duodenum",
+ "13": "left kidney"
+ },
+ "testing": [
+ {
+ "image": "images/FLARE22_Tr_0042_0000.nii.gz",
+ "label": "labels/FLARE22_Tr_0042.nii.gz"
+ },
+ {
+ "image": "images/FLARE22_Tr_0018_0000.nii.gz",
+ "label": "labels/FLARE22_Tr_0018.nii.gz"
+ },
+ {
+ "image": "images/FLARE22_Tr_0023_0000.nii.gz",
+ "label": "labels/FLARE22_Tr_0023.nii.gz"
+ },
+ {
+ "image": "images/FLARE22_Tr_0043_0000.nii.gz",
+ "label": "labels/FLARE22_Tr_0043.nii.gz"
+ },
+ {
+ "image": "images/FLARE22_Tr_0028_0000.nii.gz",
+ "label": "labels/FLARE22_Tr_0028.nii.gz"
+ },
+ {
+ "image": "images/FLARE22_Tr_0044_0000.nii.gz",
+ "label": "labels/FLARE22_Tr_0044.nii.gz"
+ },
+ {
+ "image": "images/FLARE22_Tr_0047_0000.nii.gz",
+ "label": "labels/FLARE22_Tr_0047.nii.gz"
+ },
+ {
+ "image": "images/FLARE22_Tr_0046_0000.nii.gz",
+ "label": "labels/FLARE22_Tr_0046.nii.gz"
+ },
+ {
+ "image": "images/FLARE22_Tr_0032_0000.nii.gz",
+ "label": "labels/FLARE22_Tr_0032.nii.gz"
+ },
+ {
+ "image": "images/FLARE22_Tr_0022_0000.nii.gz",
+ "label": "labels/FLARE22_Tr_0022.nii.gz"
+ }
+ ]
+}
diff --git a/vista3d/data/jsons/LIDC_5_folds.json b/vista3d/data/jsons/LIDC_5_folds.json
new file mode 100644
index 0000000..b8385be
--- /dev/null
+++ b/vista3d/data/jsons/LIDC_5_folds.json
@@ -0,0 +1,2943 @@
+{
+ "training": [
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0587_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0587_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0587_0/LIDC-IDRI-0587_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0560_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0560_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0560_0/LIDC-IDRI-0560_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0390_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0390_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0390_0/LIDC-IDRI-0390_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0202_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0202_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0202_1/LIDC-IDRI-0202_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0385_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0385_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0385_0/LIDC-IDRI-0385_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0082_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0082_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0082_0/LIDC-IDRI-0082_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0476_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0476_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0476_0/LIDC-IDRI-0476_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0360_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0360_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0360_0/LIDC-IDRI-0360_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0468_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0468_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0468_0/LIDC-IDRI-0468_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0374_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0374_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0374_0/LIDC-IDRI-0374_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0713_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0713_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0713_0/LIDC-IDRI-0713_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0273_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0273_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0273_1/LIDC-IDRI-0273_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0185_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0185_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0185_1/LIDC-IDRI-0185_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0735_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0735_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0735_0/LIDC-IDRI-0735_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0329_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0329_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0329_0/LIDC-IDRI-0329_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0393_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0393_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0393_0/LIDC-IDRI-0393_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0061_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0061_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0061_1/LIDC-IDRI-0061_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0032_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0032_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0032_1/LIDC-IDRI-0032_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0073_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0073_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0073_0/LIDC-IDRI-0073_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0394_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0394_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0394_0/LIDC-IDRI-0394_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0442_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0442_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0442_0/LIDC-IDRI-0442_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0659_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0659_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0659_0/LIDC-IDRI-0659_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0549_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0549_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0549_0/LIDC-IDRI-0549_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0226_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0226_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0226_0/LIDC-IDRI-0226_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0182_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0182_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0182_0/LIDC-IDRI-0182_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0322_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0322_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0436_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0436_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0436_0/LIDC-IDRI-0436_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0068_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0068_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0624_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0624_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0199_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0199_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0600_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0600_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0449_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0449_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0060_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0060_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0060_1/LIDC-IDRI-0060_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0601_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0601_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0059_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0059_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0059_0/LIDC-IDRI-0059_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0259_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0259_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0302_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0302_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0557_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0557_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0134_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0134_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0263_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0263_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0547_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0547_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0547_0/LIDC-IDRI-0547_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0492_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0492_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0590_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0590_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0658_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0658_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0691_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0691_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0383_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0383_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0103_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0103_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0221_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0221_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0370_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0370_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0370_0/LIDC-IDRI-0370_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0440_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0440_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0645_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0645_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0776_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0776_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0116_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0116_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0116_0/LIDC-IDRI-0116_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0124_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0124_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0124_0/LIDC-IDRI-0124_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0403_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0403_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0133_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0133_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0063_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0063_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0063_0/LIDC-IDRI-0063_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0038_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0038_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0548_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0548_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0243_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0243_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0243_0/LIDC-IDRI-0243_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0340_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0340_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0426_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0426_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0491_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0491_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0517_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0517_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0727_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0727_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0727_0/LIDC-IDRI-0727_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0036_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0036_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0493_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0493_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0754_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0754_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0095_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0095_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0095_1/LIDC-IDRI-0095_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0257_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0257_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0522_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0522_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0371_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0371_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0458_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0458_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0458_0/LIDC-IDRI-0458_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0062_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0062_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0062_1/LIDC-IDRI-0062_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0299_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0299_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0190_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0190_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0512_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0512_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0512_0/LIDC-IDRI-0512_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0209_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0209_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0230_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0230_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0230_0/LIDC-IDRI-0230_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0332_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0332_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0176_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0176_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0176_1/LIDC-IDRI-0176_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0368_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0368_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0368_0/LIDC-IDRI-0368_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0556_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0556_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0556_0/LIDC-IDRI-0556_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0267_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0267_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0452_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0452_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0452_0/LIDC-IDRI-0452_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0652_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0652_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0057_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0057_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0057_0/LIDC-IDRI-0057_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0223_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0223_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0223_1/LIDC-IDRI-0223_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0486_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0486_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0486_0/LIDC-IDRI-0486_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0499_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0499_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0499_0/LIDC-IDRI-0499_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0296_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0296_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0296_0/LIDC-IDRI-0296_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0674_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0674_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0674_0/LIDC-IDRI-0674_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0626_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0626_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0626_0/LIDC-IDRI-0626_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0536_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0536_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0536_0/LIDC-IDRI-0536_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0337_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0337_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0337_0/LIDC-IDRI-0337_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0387_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0387_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0387_0/LIDC-IDRI-0387_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0673_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0673_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0673_0/LIDC-IDRI-0673_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0235_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0235_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0235_0/LIDC-IDRI-0235_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0605_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0605_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0605_0/LIDC-IDRI-0605_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0219_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0219_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0219_1/LIDC-IDRI-0219_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0460_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0460_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0460_0/LIDC-IDRI-0460_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0639_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0639_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0639_0/LIDC-IDRI-0639_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0483_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0483_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0483_0/LIDC-IDRI-0483_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0201_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0201_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0201_1/LIDC-IDRI-0201_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0197_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0197_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0197_1/LIDC-IDRI-0197_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0298_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0298_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0298_0/LIDC-IDRI-0298_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0208_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0208_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0208_1/LIDC-IDRI-0208_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0166_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0166_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0166_1/LIDC-IDRI-0166_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0328_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0328_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0188_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0188_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0188_1/LIDC-IDRI-0188_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0118_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0118_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0118_1/LIDC-IDRI-0118_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0399_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0399_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0399_0/LIDC-IDRI-0399_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0409_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0409_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0409_0/LIDC-IDRI-0409_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0395_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0395_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0395_0/LIDC-IDRI-0395_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0762_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0762_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0762_0/LIDC-IDRI-0762_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0362_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0362_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0362_0/LIDC-IDRI-0362_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0229_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0229_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0229_1/LIDC-IDRI-0229_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0703_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0703_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0703_0/LIDC-IDRI-0703_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0212_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0212_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0212_1/LIDC-IDRI-0212_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0083_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0083_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0083_1/LIDC-IDRI-0083_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0558_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0558_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0558_0/LIDC-IDRI-0558_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0731_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0731_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0731_0/LIDC-IDRI-0731_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0451_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0451_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0451_0/LIDC-IDRI-0451_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0143_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0143_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0143_1/LIDC-IDRI-0143_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0108_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0108_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0108_0/LIDC-IDRI-0108_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0165_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0165_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0165_1/LIDC-IDRI-0165_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0149_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0149_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0149_0/LIDC-IDRI-0149_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0506_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0506_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0506_0/LIDC-IDRI-0506_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0612_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0612_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0612_0/LIDC-IDRI-0612_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0588_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0588_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0588_0/LIDC-IDRI-0588_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0287_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0287_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0287_0/LIDC-IDRI-0287_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0081_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0081_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0081_0/LIDC-IDRI-0081_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0150_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0150_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0150_1/LIDC-IDRI-0150_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0076_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0076_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0076_1/LIDC-IDRI-0076_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0317_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0317_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0317_0/LIDC-IDRI-0317_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0384_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0384_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0525_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0525_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0525_0/LIDC-IDRI-0525_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0683_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0683_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0683_0/LIDC-IDRI-0683_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0274_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0274_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0274_0/LIDC-IDRI-0274_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0107_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0107_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0107_0/LIDC-IDRI-0107_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0122_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0122_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0122_0/LIDC-IDRI-0122_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0481_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0481_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0481_0/LIDC-IDRI-0481_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0497_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0497_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0497_0/LIDC-IDRI-0497_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0679_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0679_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0679_0/LIDC-IDRI-0679_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0608_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0608_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0608_0/LIDC-IDRI-0608_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0698_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0698_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0698_0/LIDC-IDRI-0698_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0090_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0090_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0090_1/LIDC-IDRI-0090_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0155_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0155_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0155_0/LIDC-IDRI-0155_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0245_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0245_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0245_1/LIDC-IDRI-0245_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0619_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0619_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0619_0/LIDC-IDRI-0619_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0629_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0629_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0629_0/LIDC-IDRI-0629_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0554_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0554_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0554_0/LIDC-IDRI-0554_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0372_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0372_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0372_0/LIDC-IDRI-0372_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0589_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0589_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0589_0/LIDC-IDRI-0589_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0140_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0140_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0303_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0303_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0303_0/LIDC-IDRI-0303_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0207_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0207_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0207_0/LIDC-IDRI-0207_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0112_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0112_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0112_0/LIDC-IDRI-0112_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0537_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0537_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0341_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0341_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0341_0/LIDC-IDRI-0341_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0379_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0379_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0379_0/LIDC-IDRI-0379_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0505_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0505_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0505_0/LIDC-IDRI-0505_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0477_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0477_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0477_0/LIDC-IDRI-0477_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0369_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0369_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0369_0/LIDC-IDRI-0369_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0382_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0382_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0382_0/LIDC-IDRI-0382_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0332_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0332_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0332_1/LIDC-IDRI-0332_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0594_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0594_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0594_0/LIDC-IDRI-0594_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0198_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0198_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0198_1/LIDC-IDRI-0198_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0276_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0276_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0276_1/LIDC-IDRI-0276_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0064_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0064_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0064_0/LIDC-IDRI-0064_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0220_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0220_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0220_1/LIDC-IDRI-0220_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0096_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0096_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0096_1/LIDC-IDRI-0096_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0676_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0676_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0465_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0465_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0465_0/LIDC-IDRI-0465_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0027_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0027_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0027_0/LIDC-IDRI-0027_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0570_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0570_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0570_0/LIDC-IDRI-0570_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0604_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0604_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0604_0/LIDC-IDRI-0604_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0564_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0564_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0564_0/LIDC-IDRI-0564_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0171_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0171_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0171_1/LIDC-IDRI-0171_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0710_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0710_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0657_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0657_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0496_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0496_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0496_0/LIDC-IDRI-0496_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0295_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0295_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0295_0/LIDC-IDRI-0295_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0046_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0046_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0046_0/LIDC-IDRI-0046_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0598_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0598_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0598_0/LIDC-IDRI-0598_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0541_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0541_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0541_0/LIDC-IDRI-0541_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0121_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0121_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0121_0/LIDC-IDRI-0121_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0175_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0175_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0175_1/LIDC-IDRI-0175_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0174_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0174_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0174_1/LIDC-IDRI-0174_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0562_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0562_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0562_0/LIDC-IDRI-0562_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0326_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0326_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0270_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0270_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0270_1/LIDC-IDRI-0270_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0128_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0128_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0128_1/LIDC-IDRI-0128_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0316_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0316_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0316_0/LIDC-IDRI-0316_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0708_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0708_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0708_0/LIDC-IDRI-0708_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0378_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0378_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0378_0/LIDC-IDRI-0378_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0543_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0543_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0404_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0404_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0404_0/LIDC-IDRI-0404_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0376_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0376_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0638_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0638_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0638_0/LIDC-IDRI-0638_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0415_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0415_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0415_0/LIDC-IDRI-0415_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0336_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0336_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0336_0/LIDC-IDRI-0336_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0193_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0193_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0193_1/LIDC-IDRI-0193_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0191_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0191_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0191_0/LIDC-IDRI-0191_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0671_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0671_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0671_0/LIDC-IDRI-0671_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0047_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0047_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0047_1/LIDC-IDRI-0047_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0689_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0689_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0689_0/LIDC-IDRI-0689_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0578_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0578_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0578_0/LIDC-IDRI-0578_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0227_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0227_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0227_1/LIDC-IDRI-0227_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0042_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0042_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0042_0/LIDC-IDRI-0042_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0284_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0284_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0284_1/LIDC-IDRI-0284_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0097_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0097_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0097_1/LIDC-IDRI-0097_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0101_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0101_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0101_1/LIDC-IDRI-0101_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0662_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0662_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0662_0/LIDC-IDRI-0662_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0026_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0026_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0026_0/LIDC-IDRI-0026_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0217_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0217_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0217_1/LIDC-IDRI-0217_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0636_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0636_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0636_0/LIDC-IDRI-0636_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0531_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0531_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0531_0/LIDC-IDRI-0531_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0507_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0507_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0507_0/LIDC-IDRI-0507_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0687_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0687_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0687_0/LIDC-IDRI-0687_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0320_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0320_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0320_0/LIDC-IDRI-0320_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0264_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0264_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0264_0/LIDC-IDRI-0264_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0584_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0584_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0584_0/LIDC-IDRI-0584_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0367_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0367_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0367_0/LIDC-IDRI-0367_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0145_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0145_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0145_0/LIDC-IDRI-0145_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0670_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0670_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0670_0/LIDC-IDRI-0670_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0553_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0553_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0339_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0339_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0617_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0617_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0617_0/LIDC-IDRI-0617_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0656_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0656_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0343_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0343_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0343_0/LIDC-IDRI-0343_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0427_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0427_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0427_0/LIDC-IDRI-0427_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0099_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0099_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0099_0/LIDC-IDRI-0099_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0324_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0324_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0324_0/LIDC-IDRI-0324_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0423_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0423_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0423_0/LIDC-IDRI-0423_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0237_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0237_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0338_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0338_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0338_0/LIDC-IDRI-0338_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0474_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0474_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0106_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0106_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0106_1/LIDC-IDRI-0106_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0278_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0278_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0278_1/LIDC-IDRI-0278_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0148_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0148_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0148_1/LIDC-IDRI-0148_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0094_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0094_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0094_1/LIDC-IDRI-0094_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0290_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0290_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0290_1/LIDC-IDRI-0290_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0318_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0318_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0318_0/LIDC-IDRI-0318_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0412_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0412_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0412_0/LIDC-IDRI-0412_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0072_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0072_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0072_1/LIDC-IDRI-0072_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0597_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0597_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0067_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0067_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0067_0/LIDC-IDRI-0067_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0684_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0684_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0195_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0195_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0195_1/LIDC-IDRI-0195_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0025_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0025_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0025_1/LIDC-IDRI-0025_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0309_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0309_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0309_0/LIDC-IDRI-0309_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0402_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0402_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0490_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0490_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0048_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0048_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0048_0/LIDC-IDRI-0048_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0424_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0424_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0424_0/LIDC-IDRI-0424_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0678_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0678_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0093_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0093_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0093_0/LIDC-IDRI-0093_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0518_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0518_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0518_0/LIDC-IDRI-0518_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0712_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0712_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0712_0/LIDC-IDRI-0712_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0186_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0186_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0043_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0043_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0043_0/LIDC-IDRI-0043_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0661_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0661_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0661_0/LIDC-IDRI-0661_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0463_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0463_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0463_0/LIDC-IDRI-0463_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0306_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0306_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0487_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0487_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0643_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0643_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0643_0/LIDC-IDRI-0643_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0192_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0192_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0192_0/LIDC-IDRI-0192_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0105_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0105_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0675_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0675_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0675_0/LIDC-IDRI-0675_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0141_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0141_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0633_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0633_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0633_0/LIDC-IDRI-0633_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0151_2.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0151_2.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0292_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0292_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0292_0/LIDC-IDRI-0292_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0550_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0550_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0550_0/LIDC-IDRI-0550_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0126_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0126_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0126_1/LIDC-IDRI-0126_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0397_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0397_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0125_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0125_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0125_1/LIDC-IDRI-0125_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0252_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0252_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0110_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0110_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0110_0/LIDC-IDRI-0110_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0742_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0742_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0742_0/LIDC-IDRI-0742_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0205_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0205_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0205_1/LIDC-IDRI-0205_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0716_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0716_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0728_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0728_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0398_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0398_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0398_0/LIDC-IDRI-0398_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0308_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0308_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0070_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0070_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0400_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0400_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0400_0/LIDC-IDRI-0400_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0457_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0457_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0457_0/LIDC-IDRI-0457_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0459_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0459_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0459_0/LIDC-IDRI-0459_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0056_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0056_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0333_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0333_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0333_0/LIDC-IDRI-0333_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0521_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0521_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0521_0/LIDC-IDRI-0521_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0087_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0087_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0087_0/LIDC-IDRI-0087_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0421_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0421_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0391_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0391_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0391_0/LIDC-IDRI-0391_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0342_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0342_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0342_0/LIDC-IDRI-0342_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0613_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0613_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0613_0/LIDC-IDRI-0613_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0443_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0443_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0058_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0058_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0058_1/LIDC-IDRI-0058_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0734_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0734_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0152_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0152_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0152_1/LIDC-IDRI-0152_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0667_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0667_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0136_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0136_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0136_1/LIDC-IDRI-0136_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0138_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0138_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0138_1/LIDC-IDRI-0138_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0349_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0349_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0349_0/LIDC-IDRI-0349_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0577_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0577_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0577_0/LIDC-IDRI-0577_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0178_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0178_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0178_1/LIDC-IDRI-0178_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0685_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0685_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0685_0/LIDC-IDRI-0685_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0304_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0304_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0508_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0508_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0508_0/LIDC-IDRI-0508_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0542_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0542_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0542_0/LIDC-IDRI-0542_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0482_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0482_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0482_0/LIDC-IDRI-0482_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0603_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0603_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0603_0/LIDC-IDRI-0603_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0519_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0519_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0206_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0206_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0709_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0709_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0709_0/LIDC-IDRI-0709_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0448_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0448_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0697_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0697_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0546_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0546_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0546_0/LIDC-IDRI-0546_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0218_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0218_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0218_1/LIDC-IDRI-0218_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0147_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0147_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0147_1/LIDC-IDRI-0147_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0151_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0151_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0151_1/LIDC-IDRI-0151_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0279_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0279_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0109_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0109_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0109_1/LIDC-IDRI-0109_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0050_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0050_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0686_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0686_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0686_0/LIDC-IDRI-0686_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0567_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0567_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0567_0/LIDC-IDRI-0567_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0555_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0555_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0555_0/LIDC-IDRI-0555_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0500_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0500_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0500_0/LIDC-IDRI-0500_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0511_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0511_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0511_0/LIDC-IDRI-0511_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0216_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0216_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0216_1/LIDC-IDRI-0216_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0591_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0591_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0591_0/LIDC-IDRI-0591_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0327_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0327_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0327_0/LIDC-IDRI-0327_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0377_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0377_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0377_0/LIDC-IDRI-0377_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0599_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0599_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0599_0/LIDC-IDRI-0599_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0401_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0401_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0401_0/LIDC-IDRI-0401_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0672_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0672_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0077_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0077_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0077_0/LIDC-IDRI-0077_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0575_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0575_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0029_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0029_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0248_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0248_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0248_1/LIDC-IDRI-0248_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0647_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0647_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0602_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0602_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0602_0/LIDC-IDRI-0602_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0323_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0323_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0323_0/LIDC-IDRI-0323_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0039_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0039_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0039_0/LIDC-IDRI-0039_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0535_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0535_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0535_0/LIDC-IDRI-0535_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0079_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0079_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0079_0/LIDC-IDRI-0079_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0425_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0425_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0425_0/LIDC-IDRI-0425_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0561_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0561_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0561_0/LIDC-IDRI-0561_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0356_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0356_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0356_0/LIDC-IDRI-0356_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0319_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0319_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0319_0/LIDC-IDRI-0319_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0669_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0669_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0669_0/LIDC-IDRI-0669_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0258_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0258_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0258_1/LIDC-IDRI-0258_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0455_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0455_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0455_0/LIDC-IDRI-0455_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0721_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0721_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0721_0/LIDC-IDRI-0721_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0239_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0239_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0222_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0222_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0222_0/LIDC-IDRI-0222_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0420_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0420_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0420_0/LIDC-IDRI-0420_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0520_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0520_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0520_0/LIDC-IDRI-0520_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0037_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0037_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0037_0/LIDC-IDRI-0037_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0607_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0607_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0131_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0131_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0131_0/LIDC-IDRI-0131_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0330_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0330_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0330_0/LIDC-IDRI-0330_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0641_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0641_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0312_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0312_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0312_0/LIDC-IDRI-0312_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0494_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0494_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0183_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0183_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0183_1/LIDC-IDRI-0183_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0719_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0719_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0364_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0364_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0262_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0262_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0262_1/LIDC-IDRI-0262_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0615_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0615_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0615_0/LIDC-IDRI-0615_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0254_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0254_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0254_0/LIDC-IDRI-0254_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0479_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0479_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0160_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0160_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0611_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0611_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0611_0/LIDC-IDRI-0611_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0389_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0389_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0293_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0293_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0559_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0559_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0559_0/LIDC-IDRI-0559_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0334_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0334_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0334_0/LIDC-IDRI-0334_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0644_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0644_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0622_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0622_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0622_0/LIDC-IDRI-0622_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0417_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0417_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0417_0/LIDC-IDRI-0417_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0495_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0495_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0495_0/LIDC-IDRI-0495_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0454_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0454_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0696_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0696_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0696_0/LIDC-IDRI-0696_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0706_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0706_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0100_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0100_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0100_1/LIDC-IDRI-0100_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0695_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0695_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0695_0/LIDC-IDRI-0695_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0215_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0215_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0215_1/LIDC-IDRI-0215_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0527_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0527_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0527_0/LIDC-IDRI-0527_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0157_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0157_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0157_0/LIDC-IDRI-0157_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0024_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0024_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0024_0/LIDC-IDRI-0024_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0642_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0642_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0642_0/LIDC-IDRI-0642_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0350_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0350_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0041_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0041_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0041_1/LIDC-IDRI-0041_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0388_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0388_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0388_0/LIDC-IDRI-0388_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0453_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0453_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0453_0/LIDC-IDRI-0453_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0053_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0053_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0053_0/LIDC-IDRI-0053_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0117_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0117_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0117_0/LIDC-IDRI-0117_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0726_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0726_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0726_0/LIDC-IDRI-0726_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0583_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0583_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0583_0/LIDC-IDRI-0583_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0214_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0214_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0534_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0534_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0534_0/LIDC-IDRI-0534_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0680_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0680_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0680_0/LIDC-IDRI-0680_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0291_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0291_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0291_1/LIDC-IDRI-0291_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0593_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0593_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0593_0/LIDC-IDRI-0593_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0153_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0153_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0153_0/LIDC-IDRI-0153_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0470_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0470_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0470_0/LIDC-IDRI-0470_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0628_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0628_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0628_0/LIDC-IDRI-0628_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0569_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0569_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0069_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0069_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0069_1/LIDC-IDRI-0069_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0724_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0724_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0724_0/LIDC-IDRI-0724_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0653_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0653_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0653_0/LIDC-IDRI-0653_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0625_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0625_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0241_1.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0241_1.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0241_1/LIDC-IDRI-0241_1_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0717_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0717_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0717_0/LIDC-IDRI-0717_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0447_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0447_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0447_0/LIDC-IDRI-0447_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0419_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0419_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0213_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0213_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0213_0/LIDC-IDRI-0213_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0616_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0616_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0616_0/LIDC-IDRI-0616_0_seg.nii.gz"
+ },
+ {
+ "image": "Image_LIDC/LIDC-IDRI-0582_0.nii.gz",
+ "pseudo_label": "Image_LIDC/LIDC-IDRI-0582_0.nii.gz",
+ "dataset": "/data/LIDC/LIDC",
+ "region": "/data/LIDC/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0582_0/LIDC-IDRI-0582_0_seg.nii.gz"
+ }
+ ],
+ "training_transform": [
+ {
+ "_target_": "RandCropByLabelClassesd",
+ "keys": [
+ "@image_key",
+ "@label_key",
+ "@pseudo_label_key",
+ "@label_sv_key"
+ ],
+ "label_key": "@pseudo_label_key",
+ "num_classes": 133,
+ "num_samples": "@num_patches_per_image",
+ "spatial_size": "@patch_size",
+ "ratios": "$tuple(float(i >= 0) for i in range(133))",
+ "warn": false,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandZoomd",
+ "keys": [
+ "@image_key",
+ "@label_key",
+ "@pseudo_label_key",
+ "@label_sv_key"
+ ],
+ "min_zoom": 0.8,
+ "max_zoom": 1.2,
+ "mode": [
+ "trilinear",
+ "nearest",
+ "nearest",
+ "nearest"
+ ],
+ "prob": 0.2,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandSimulateLowResolutiond",
+ "keys": [
+ "@image_key"
+ ],
+ "zoom_range": [
+ 0.3,
+ 1
+ ],
+ "prob": 0.2,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandGaussianSmoothd",
+ "keys": [
+ "@image_key"
+ ],
+ "prob": 0.2,
+ "sigma_x": [
+ 0.5,
+ 1.0
+ ],
+ "sigma_y": [
+ 0.5,
+ 1.0
+ ],
+ "sigma_z": [
+ 0.5,
+ 1.0
+ ]
+ },
+ {
+ "_target_": "RandScaleIntensityd",
+ "keys": [
+ "@image_key"
+ ],
+ "factors": 0.1,
+ "prob": 0.2
+ },
+ {
+ "_target_": "RandShiftIntensityd",
+ "keys": [
+ "@image_key"
+ ],
+ "offsets": 0.1,
+ "prob": 0.2
+ },
+ {
+ "_target_": "RandGaussianNoised",
+ "keys": [
+ "@image_key"
+ ],
+ "prob": 0.2,
+ "mean": 0.0,
+ "std": 0.2
+ }
+ ]
+}
diff --git a/vista3d/data/jsons/Multi-organ-Abdominal-CT-btcv_5_folds.json b/vista3d/data/jsons/Multi-organ-Abdominal-CT-btcv_5_folds.json
new file mode 100644
index 0000000..fbe3747
--- /dev/null
+++ b/vista3d/data/jsons/Multi-organ-Abdominal-CT-btcv_5_folds.json
@@ -0,0 +1,461 @@
+{
+ "training": [
+ {
+ "image": "images_btcv/img0067.nii",
+ "pseudo_label": "images_btcv/img0067.nii.gz",
+ "label": "label_btcv_multiorgan/label0067.nii",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "images_btcv/img0007.nii",
+ "pseudo_label": "images_btcv/img0007.nii.gz",
+ "label": "label_btcv_multiorgan/label0007.nii",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "images_btcv/img0027.nii",
+ "pseudo_label": "images_btcv/img0027.nii.gz",
+ "label": "label_btcv_multiorgan/label0027.nii",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "images_btcv/img0008.nii",
+ "pseudo_label": "images_btcv/img0008.nii.gz",
+ "label": "label_btcv_multiorgan/label0008.nii",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "images_btcv/img0075.nii",
+ "pseudo_label": "images_btcv/img0075.nii.gz",
+ "label": "label_btcv_multiorgan/label0075.nii",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "images_btcv/img0002.nii",
+ "pseudo_label": "images_btcv/img0002.nii.gz",
+ "label": "label_btcv_multiorgan/label0002.nii",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "images_btcv/img0006.nii",
+ "pseudo_label": "images_btcv/img0006.nii.gz",
+ "label": "label_btcv_multiorgan/label0006.nii",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "images_btcv/img0078.nii",
+ "pseudo_label": "images_btcv/img0078.nii.gz",
+ "label": "label_btcv_multiorgan/label0078.nii",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "images_btcv/img0079.nii",
+ "pseudo_label": "images_btcv/img0079.nii.gz",
+ "label": "label_btcv_multiorgan/label0079.nii",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0079/img0079_seg.nii.gz"
+ },
+ {
+ "image": "images_btcv/img0037.nii",
+ "pseudo_label": "images_btcv/img0037.nii.gz",
+ "label": "label_btcv_multiorgan/label0037.nii",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0037/img0037_seg.nii.gz"
+ },
+ {
+ "image": "images_btcv/img0064.nii",
+ "pseudo_label": "images_btcv/img0064.nii.gz",
+ "label": "label_btcv_multiorgan/label0064.nii",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0064/img0064_seg.nii.gz"
+ },
+ {
+ "image": "images_btcv/img0063.nii",
+ "pseudo_label": "images_btcv/img0063.nii.gz",
+ "label": "label_btcv_multiorgan/label0063.nii",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0063/img0063_seg.nii.gz"
+ },
+ {
+ "image": "images_btcv/img0070.nii",
+ "pseudo_label": "images_btcv/img0070.nii.gz",
+ "label": "label_btcv_multiorgan/label0070.nii",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0070/img0070_seg.nii.gz"
+ },
+ {
+ "image": "images_btcv/img0004.nii",
+ "pseudo_label": "images_btcv/img0004.nii.gz",
+ "label": "label_btcv_multiorgan/label0004.nii",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0004/img0004_seg.nii.gz"
+ },
+ {
+ "image": "images_btcv/img0080.nii",
+ "pseudo_label": "images_btcv/img0080.nii.gz",
+ "label": "label_btcv_multiorgan/label0080.nii",
+ "fold": 1,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "images_btcv/img0003.nii",
+ "pseudo_label": "images_btcv/img0003.nii.gz",
+ "label": "label_btcv_multiorgan/label0003.nii",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0003/img0003_seg.nii.gz"
+ },
+ {
+ "image": "images_btcv/img0001.nii",
+ "pseudo_label": "images_btcv/img0001.nii.gz",
+ "label": "label_btcv_multiorgan/label0001.nii",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0001/img0001_seg.nii.gz"
+ },
+ {
+ "image": "images_btcv/img0034.nii",
+ "pseudo_label": "images_btcv/img0034.nii.gz",
+ "label": "label_btcv_multiorgan/label0034.nii",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0034/img0034_seg.nii.gz"
+ },
+ {
+ "image": "images_btcv/img0039.nii",
+ "pseudo_label": "images_btcv/img0039.nii.gz",
+ "label": "label_btcv_multiorgan/label0039.nii",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0039/img0039_seg.nii.gz"
+ },
+ {
+ "image": "images_btcv/img0031.nii",
+ "pseudo_label": "images_btcv/img0031.nii.gz",
+ "label": "label_btcv_multiorgan/label0031.nii",
+ "fold": 2,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "images_btcv/img0066.nii",
+ "pseudo_label": "images_btcv/img0066.nii.gz",
+ "label": "label_btcv_multiorgan/label0066.nii",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0066/img0066_seg.nii.gz"
+ },
+ {
+ "image": "images_btcv/img0022.nii",
+ "pseudo_label": "images_btcv/img0022.nii.gz",
+ "label": "label_btcv_multiorgan/label0022.nii",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0022/img0022_seg.nii.gz"
+ },
+ {
+ "image": "images_btcv/img0068.nii",
+ "pseudo_label": "images_btcv/img0068.nii.gz",
+ "label": "label_btcv_multiorgan/label0068.nii",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0068/img0068_seg.nii.gz"
+ },
+ {
+ "image": "images_btcv/img0024.nii",
+ "pseudo_label": "images_btcv/img0024.nii.gz",
+ "label": "label_btcv_multiorgan/label0024.nii",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0024/img0024_seg.nii.gz"
+ },
+ {
+ "image": "images_btcv/img0030.nii",
+ "pseudo_label": "images_btcv/img0030.nii.gz",
+ "label": "label_btcv_multiorgan/label0030.nii",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0030/img0030_seg.nii.gz"
+ },
+ {
+ "image": "images_btcv/img0029.nii",
+ "pseudo_label": "images_btcv/img0029.nii.gz",
+ "label": "label_btcv_multiorgan/label0029.nii",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0029/img0029_seg.nii.gz"
+ },
+ {
+ "image": "images_btcv/img0009.nii",
+ "pseudo_label": "images_btcv/img0009.nii.gz",
+ "label": "label_btcv_multiorgan/label0009.nii",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0009/img0009_seg.nii.gz"
+ },
+ {
+ "image": "images_btcv/img0023.nii",
+ "pseudo_label": "images_btcv/img0023.nii.gz",
+ "label": "label_btcv_multiorgan/label0023.nii",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0023/img0023_seg.nii.gz"
+ },
+ {
+ "image": "images_btcv/img0036.nii",
+ "pseudo_label": "images_btcv/img0036.nii.gz",
+ "label": "label_btcv_multiorgan/label0036.nii",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0036/img0036_seg.nii.gz"
+ },
+ {
+ "image": "images_btcv/img0040.nii",
+ "pseudo_label": "images_btcv/img0040.nii.gz",
+ "label": "label_btcv_multiorgan/label0040.nii",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0040/img0040_seg.nii.gz"
+ },
+ {
+ "image": "images_btcv/img0069.nii",
+ "pseudo_label": "images_btcv/img0069.nii.gz",
+ "label": "label_btcv_multiorgan/label0069.nii",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0069/img0069_seg.nii.gz"
+ },
+ {
+ "image": "images_btcv/img0035.nii",
+ "pseudo_label": "images_btcv/img0035.nii.gz",
+ "label": "label_btcv_multiorgan/label0035.nii",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0035/img0035_seg.nii.gz"
+ },
+ {
+ "image": "images_btcv/img0061.nii",
+ "pseudo_label": "images_btcv/img0061.nii.gz",
+ "label": "label_btcv_multiorgan/label0061.nii",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0061/img0061_seg.nii.gz"
+ },
+ {
+ "image": "images_btcv/img0005.nii",
+ "pseudo_label": "images_btcv/img0005.nii.gz",
+ "label": "label_btcv_multiorgan/label0005.nii",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0005/img0005_seg.nii.gz"
+ },
+ {
+ "image": "images_btcv/img0026.nii",
+ "pseudo_label": "images_btcv/img0026.nii.gz",
+ "label": "label_btcv_multiorgan/label0026.nii",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0026/img0026_seg.nii.gz"
+ },
+ {
+ "image": "images_btcv/img0025.nii",
+ "pseudo_label": "images_btcv/img0025.nii.gz",
+ "label": "label_btcv_multiorgan/label0025.nii",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0025/img0025_seg.nii.gz"
+ },
+ {
+ "image": "images_btcv/img0010.nii",
+ "pseudo_label": "images_btcv/img0010.nii.gz",
+ "label": "label_btcv_multiorgan/label0010.nii",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0010/img0010_seg.nii.gz"
+ },
+ {
+ "image": "images_btcv/img0065.nii",
+ "pseudo_label": "images_btcv/img0065.nii.gz",
+ "label": "label_btcv_multiorgan/label0065.nii",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0065/img0065_seg.nii.gz"
+ }
+ ],
+ "testing": [
+ {
+ "image": "images_btcv/img0021.nii",
+ "label": "label_btcv_multiorgan/label0021.nii"
+ },
+ {
+ "image": "images_btcv/img0074.nii",
+ "label": "label_btcv_multiorgan/label0074.nii"
+ },
+ {
+ "image": "images_btcv/img0028.nii",
+ "label": "label_btcv_multiorgan/label0028.nii"
+ },
+ {
+ "image": "images_btcv/img0033.nii",
+ "label": "label_btcv_multiorgan/label0033.nii"
+ },
+ {
+ "image": "images_btcv/img0076.nii",
+ "label": "label_btcv_multiorgan/label0076.nii"
+ },
+ {
+ "image": "images_btcv/img0038.nii",
+ "label": "label_btcv_multiorgan/label0038.nii"
+ },
+ {
+ "image": "images_btcv/img0077.nii",
+ "label": "label_btcv_multiorgan/label0077.nii"
+ },
+ {
+ "image": "images_btcv/img0062.nii",
+ "label": "label_btcv_multiorgan/label0062.nii"
+ },
+ {
+ "image": "images_btcv/img0032.nii",
+ "label": "label_btcv_multiorgan/label0032.nii"
+ }
+ ],
+ "training_transform": [
+ {
+ "_target_": "RandCropByLabelClassesd",
+ "keys": [
+ "@image_key",
+ "@label_key",
+ "@pseudo_label_key",
+ "@label_sv_key"
+ ],
+ "label_key": "@pseudo_label_key",
+ "num_classes": 133,
+ "num_samples": "@num_patches_per_image",
+ "spatial_size": "@patch_size",
+ "ratios": "$tuple(float(i >= 0) for i in range(133))",
+ "warn": false,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandZoomd",
+ "keys": [
+ "@image_key",
+ "@label_key",
+ "@pseudo_label_key",
+ "@label_sv_key"
+ ],
+ "min_zoom": 0.8,
+ "max_zoom": 1.2,
+ "mode": [
+ "trilinear",
+ "nearest",
+ "nearest",
+ "nearest"
+ ],
+ "prob": 0.2,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandSimulateLowResolutiond",
+ "keys": [
+ "@image_key"
+ ],
+ "zoom_range": [
+ 0.3,
+ 1
+ ],
+ "prob": 0.2,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandGaussianSmoothd",
+ "keys": [
+ "@image_key"
+ ],
+ "prob": 0.2,
+ "sigma_x": [
+ 0.5,
+ 1.0
+ ],
+ "sigma_y": [
+ 0.5,
+ 1.0
+ ],
+ "sigma_z": [
+ 0.5,
+ 1.0
+ ]
+ },
+ {
+ "_target_": "RandScaleIntensityd",
+ "keys": [
+ "@image_key"
+ ],
+ "factors": 0.1,
+ "prob": 0.2
+ },
+ {
+ "_target_": "RandShiftIntensityd",
+ "keys": [
+ "@image_key"
+ ],
+ "offsets": 0.1,
+ "prob": 0.2
+ },
+ {
+ "_target_": "RandGaussianNoised",
+ "keys": [
+ "@image_key"
+ ],
+ "prob": 0.2,
+ "mean": 0.0,
+ "std": 0.2
+ }
+ ],
+ "label_dict": {
+ "1": "spleen",
+ "2": "right kidney",
+ "3": "left kidney",
+ "4": "gallbladder",
+ "5": "esophagus",
+ "6": "liver",
+ "7": "stomach",
+ "8": "aorta",
+ "9": "inferior vena cava",
+ "10": "portal vein and splenic vein",
+ "11": "pancreas",
+ "12": "right adrenal gland",
+ "13": "left adrenal gland",
+ "14": "duodenum"
+ },
+ "original_label_dict": {
+ "1": "spleen",
+ "2": "right kidney",
+ "3": "left kidney",
+ "4": "gallbladder",
+ "5": "esophagus",
+ "6": "liver",
+ "7": "stomach",
+ "8": "aorta",
+ "9": "inferior vena cava",
+ "10": "portal vein and splenic vein",
+ "11": "pancreas",
+ "12": "right adrenal gland",
+ "13": "left adrenal gland",
+ "14": "duodenum"
+ }
+}
diff --git a/vista3d/data/jsons/Multi-organ-Abdominal-CT-tcia_5_folds.json b/vista3d/data/jsons/Multi-organ-Abdominal-CT-tcia_5_folds.json
new file mode 100644
index 0000000..0060f1e
--- /dev/null
+++ b/vista3d/data/jsons/Multi-organ-Abdominal-CT-tcia_5_folds.json
@@ -0,0 +1,415 @@
+{
+ "training": [
+ {
+ "image": "images_tcia/PANCREAS_0045.nii",
+ "pseudo_label": "images_tcia/PANCREAS_0045.nii.gz",
+ "label": "label_tcia_multiorgan+rkidney/label0045.nii",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "images_tcia/PANCREAS_0003.nii",
+ "pseudo_label": "images_tcia/PANCREAS_0003.nii.gz",
+ "label": "label_tcia_multiorgan+rkidney/label0003.nii",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "images_tcia/PANCREAS_0028.nii",
+ "pseudo_label": "images_tcia/PANCREAS_0028.nii.gz",
+ "label": "label_tcia_multiorgan+rkidney/label0028.nii",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "images_tcia/PANCREAS_0043.nii",
+ "pseudo_label": "images_tcia/PANCREAS_0043.nii.gz",
+ "label": "label_tcia_multiorgan+rkidney/label0043.nii",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "images_tcia/PANCREAS_0027.nii",
+ "pseudo_label": "images_tcia/PANCREAS_0027.nii.gz",
+ "label": "label_tcia_multiorgan+rkidney/label0027.nii",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "images_tcia/PANCREAS_0040.nii",
+ "pseudo_label": "images_tcia/PANCREAS_0040.nii.gz",
+ "label": "label_tcia_multiorgan+rkidney/label0040.nii",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "images_tcia/PANCREAS_0008.nii",
+ "pseudo_label": "images_tcia/PANCREAS_0008.nii.gz",
+ "label": "label_tcia_multiorgan+rkidney/label0008.nii",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "images_tcia/PANCREAS_0024.nii",
+ "pseudo_label": "images_tcia/PANCREAS_0024.nii.gz",
+ "label": "label_tcia_multiorgan+rkidney/label0024.nii",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-tcia_100/PANCREAS_0024/PANCREAS_0024_seg.nii.gz"
+ },
+ {
+ "image": "images_tcia/PANCREAS_0016.nii",
+ "pseudo_label": "images_tcia/PANCREAS_0016.nii.gz",
+ "label": "label_tcia_multiorgan+rkidney/label0016.nii",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-tcia_100/PANCREAS_0016/PANCREAS_0016_seg.nii.gz"
+ },
+ {
+ "image": "images_tcia/PANCREAS_0010.nii",
+ "pseudo_label": "images_tcia/PANCREAS_0010.nii.gz",
+ "label": "label_tcia_multiorgan+rkidney/label0010.nii",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-tcia_100/PANCREAS_0010/PANCREAS_0010_seg.nii.gz"
+ },
+ {
+ "image": "images_tcia/PANCREAS_0011.nii",
+ "pseudo_label": "images_tcia/PANCREAS_0011.nii.gz",
+ "label": "label_tcia_multiorgan+rkidney/label0011.nii",
+ "fold": 1,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "images_tcia/PANCREAS_0032.nii",
+ "pseudo_label": "images_tcia/PANCREAS_0032.nii.gz",
+ "label": "label_tcia_multiorgan+rkidney/label0032.nii",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-tcia_100/PANCREAS_0032/PANCREAS_0032_seg.nii.gz"
+ },
+ {
+ "image": "images_tcia/PANCREAS_0006.nii",
+ "pseudo_label": "images_tcia/PANCREAS_0006.nii.gz",
+ "label": "label_tcia_multiorgan+rkidney/label0006.nii",
+ "fold": 1,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "images_tcia/PANCREAS_0030.nii",
+ "pseudo_label": "images_tcia/PANCREAS_0030.nii.gz",
+ "label": "label_tcia_multiorgan+rkidney/label0030.nii",
+ "fold": 1,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "images_tcia/PANCREAS_0046.nii",
+ "pseudo_label": "images_tcia/PANCREAS_0046.nii.gz",
+ "label": "label_tcia_multiorgan+rkidney/label0046.nii",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-tcia_100/PANCREAS_0046/PANCREAS_0046_seg.nii.gz"
+ },
+ {
+ "image": "images_tcia/PANCREAS_0005.nii",
+ "pseudo_label": "images_tcia/PANCREAS_0005.nii.gz",
+ "label": "label_tcia_multiorgan+rkidney/label0005.nii",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-tcia_100/PANCREAS_0005/PANCREAS_0005_seg.nii.gz"
+ },
+ {
+ "image": "images_tcia/PANCREAS_0047.nii",
+ "pseudo_label": "images_tcia/PANCREAS_0047.nii.gz",
+ "label": "label_tcia_multiorgan+rkidney/label0047.nii",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-tcia_100/PANCREAS_0047/PANCREAS_0047_seg.nii.gz"
+ },
+ {
+ "image": "images_tcia/PANCREAS_0034.nii",
+ "pseudo_label": "images_tcia/PANCREAS_0034.nii.gz",
+ "label": "label_tcia_multiorgan+rkidney/label0034.nii",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-tcia_100/PANCREAS_0034/PANCREAS_0034_seg.nii.gz"
+ },
+ {
+ "image": "images_tcia/PANCREAS_0017.nii",
+ "pseudo_label": "images_tcia/PANCREAS_0017.nii.gz",
+ "label": "label_tcia_multiorgan+rkidney/label0017.nii",
+ "fold": 2,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "images_tcia/PANCREAS_0021.nii",
+ "pseudo_label": "images_tcia/PANCREAS_0021.nii.gz",
+ "label": "label_tcia_multiorgan+rkidney/label0021.nii",
+ "fold": 2,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "images_tcia/PANCREAS_0039.nii",
+ "pseudo_label": "images_tcia/PANCREAS_0039.nii.gz",
+ "label": "label_tcia_multiorgan+rkidney/label0039.nii",
+ "fold": 2,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "images_tcia/PANCREAS_0009.nii",
+ "pseudo_label": "images_tcia/PANCREAS_0009.nii.gz",
+ "label": "label_tcia_multiorgan+rkidney/label0009.nii",
+ "fold": 3,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "images_tcia/PANCREAS_0022.nii",
+ "pseudo_label": "images_tcia/PANCREAS_0022.nii.gz",
+ "label": "label_tcia_multiorgan+rkidney/label0022.nii",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-tcia_100/PANCREAS_0022/PANCREAS_0022_seg.nii.gz"
+ },
+ {
+ "image": "images_tcia/PANCREAS_0004.nii",
+ "pseudo_label": "images_tcia/PANCREAS_0004.nii.gz",
+ "label": "label_tcia_multiorgan+rkidney/label0004.nii",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-tcia_100/PANCREAS_0004/PANCREAS_0004_seg.nii.gz"
+ },
+ {
+ "image": "images_tcia/PANCREAS_0019.nii",
+ "pseudo_label": "images_tcia/PANCREAS_0019.nii.gz",
+ "label": "label_tcia_multiorgan+rkidney/label0019.nii",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-tcia_100/PANCREAS_0019/PANCREAS_0019_seg.nii.gz"
+ },
+ {
+ "image": "images_tcia/PANCREAS_0014.nii",
+ "pseudo_label": "images_tcia/PANCREAS_0014.nii.gz",
+ "label": "label_tcia_multiorgan+rkidney/label0014.nii",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-tcia_100/PANCREAS_0014/PANCREAS_0014_seg.nii.gz"
+ },
+ {
+ "image": "images_tcia/PANCREAS_0013.nii",
+ "pseudo_label": "images_tcia/PANCREAS_0013.nii.gz",
+ "label": "label_tcia_multiorgan+rkidney/label0013.nii",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-tcia_100/PANCREAS_0013/PANCREAS_0013_seg.nii.gz"
+ },
+ {
+ "image": "images_tcia/PANCREAS_0038.nii",
+ "pseudo_label": "images_tcia/PANCREAS_0038.nii.gz",
+ "label": "label_tcia_multiorgan+rkidney/label0038.nii",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-tcia_100/PANCREAS_0038/PANCREAS_0038_seg.nii.gz"
+ },
+ {
+ "image": "images_tcia/PANCREAS_0048.nii",
+ "pseudo_label": "images_tcia/PANCREAS_0048.nii.gz",
+ "label": "label_tcia_multiorgan+rkidney/label0048.nii",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-tcia_100/PANCREAS_0048/PANCREAS_0048_seg.nii.gz"
+ },
+ {
+ "image": "images_tcia/PANCREAS_0033.nii",
+ "pseudo_label": "images_tcia/PANCREAS_0033.nii.gz",
+ "label": "label_tcia_multiorgan+rkidney/label0033.nii",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-tcia_100/PANCREAS_0033/PANCREAS_0033_seg.nii.gz"
+ },
+ {
+ "image": "images_tcia/PANCREAS_0042.nii",
+ "pseudo_label": "images_tcia/PANCREAS_0042.nii.gz",
+ "label": "label_tcia_multiorgan+rkidney/label0042.nii",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-tcia_100/PANCREAS_0042/PANCREAS_0042_seg.nii.gz"
+ },
+ {
+ "image": "images_tcia/PANCREAS_0007.nii",
+ "pseudo_label": "images_tcia/PANCREAS_0007.nii.gz",
+ "label": "label_tcia_multiorgan+rkidney/label0007.nii",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-tcia_100/PANCREAS_0007/PANCREAS_0007_seg.nii.gz"
+ },
+ {
+ "image": "images_tcia/PANCREAS_0002.nii",
+ "pseudo_label": "images_tcia/PANCREAS_0002.nii.gz",
+ "label": "label_tcia_multiorgan+rkidney/label0002.nii",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-tcia_100/PANCREAS_0002/PANCREAS_0002_seg.nii.gz"
+ },
+ {
+ "image": "images_tcia/PANCREAS_0018.nii",
+ "pseudo_label": "images_tcia/PANCREAS_0018.nii.gz",
+ "label": "label_tcia_multiorgan+rkidney/label0018.nii",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-tcia_100/PANCREAS_0018/PANCREAS_0018_seg.nii.gz"
+ }
+ ],
+ "training_transform": [
+ {
+ "_target_": "RandCropByLabelClassesd",
+ "keys": [
+ "@image_key",
+ "@label_key",
+ "@pseudo_label_key",
+ "@label_sv_key"
+ ],
+ "label_key": "@pseudo_label_key",
+ "num_classes": 133,
+ "num_samples": "@num_patches_per_image",
+ "spatial_size": "@patch_size",
+ "ratios": "$tuple(float(i >= 0) for i in range(133))",
+ "warn": false,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandZoomd",
+ "keys": [
+ "@image_key",
+ "@label_key",
+ "@pseudo_label_key",
+ "@label_sv_key"
+ ],
+ "min_zoom": 0.8,
+ "max_zoom": 1.2,
+ "mode": [
+ "trilinear",
+ "nearest",
+ "nearest",
+ "nearest"
+ ],
+ "prob": 0.2,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandSimulateLowResolutiond",
+ "keys": [
+ "@image_key"
+ ],
+ "zoom_range": [
+ 0.3,
+ 1
+ ],
+ "prob": 0.2,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandGaussianSmoothd",
+ "keys": [
+ "@image_key"
+ ],
+ "prob": 0.2,
+ "sigma_x": [
+ 0.5,
+ 1.0
+ ],
+ "sigma_y": [
+ 0.5,
+ 1.0
+ ],
+ "sigma_z": [
+ 0.5,
+ 1.0
+ ]
+ },
+ {
+ "_target_": "RandScaleIntensityd",
+ "keys": [
+ "@image_key"
+ ],
+ "factors": 0.1,
+ "prob": 0.2
+ },
+ {
+ "_target_": "RandShiftIntensityd",
+ "keys": [
+ "@image_key"
+ ],
+ "offsets": 0.1,
+ "prob": 0.2
+ },
+ {
+ "_target_": "RandGaussianNoised",
+ "keys": [
+ "@image_key"
+ ],
+ "prob": 0.2,
+ "mean": 0.0,
+ "std": 0.2
+ }
+ ],
+ "label_dict": {
+ "1": "spleen",
+ "2": "right kidney",
+ "3": "left kidney",
+ "4": "gallbladder",
+ "5": "esophagus",
+ "6": "liver",
+ "7": "stomach",
+ "8": "pancreas",
+ "9": "duodenum"
+ },
+ "original_label_dict": {
+ "1": "spleen",
+ "2": "right kidney",
+ "3": "left kidney",
+ "4": "gallbladder",
+ "5": "esophagus",
+ "6": "liver",
+ "7": "stomach",
+ "8": "pancreas",
+ "9": "duodenum"
+ },
+ "testing": [
+ {
+ "image": "images_tcia/PANCREAS_0029.nii",
+ "label": "label_tcia_multiorgan+rkidney/label0029.nii"
+ },
+ {
+ "image": "images_tcia/PANCREAS_0041.nii",
+ "label": "label_tcia_multiorgan+rkidney/label0041.nii"
+ },
+ {
+ "image": "images_tcia/PANCREAS_0012.nii",
+ "label": "label_tcia_multiorgan+rkidney/label0012.nii"
+ },
+ {
+ "image": "images_tcia/PANCREAS_0044.nii",
+ "label": "label_tcia_multiorgan+rkidney/label0044.nii"
+ },
+ {
+ "image": "images_tcia/PANCREAS_0020.nii",
+ "label": "label_tcia_multiorgan+rkidney/label0020.nii"
+ },
+ {
+ "image": "images_tcia/PANCREAS_0026.nii",
+ "label": "label_tcia_multiorgan+rkidney/label0026.nii"
+ },
+ {
+ "image": "images_tcia/PANCREAS_0031.nii",
+ "label": "label_tcia_multiorgan+rkidney/label0031.nii"
+ },
+ {
+ "image": "images_tcia/PANCREAS_0035.nii",
+ "label": "label_tcia_multiorgan+rkidney/label0035.nii"
+ },
+ {
+ "image": "images_tcia/PANCREAS_0025.nii",
+ "label": "label_tcia_multiorgan+rkidney/label0025.nii"
+ }
+ ]
+}
diff --git a/vista3d/data/jsons/NLST_5_folds.json b/vista3d/data/jsons/NLST_5_folds.json
new file mode 100644
index 0000000..619d414
--- /dev/null
+++ b/vista3d/data/jsons/NLST_5_folds.json
@@ -0,0 +1,21888 @@
+{
+ "training": [
+ {
+ "image": "102913/4_1opasevzoomb30f37021206030na.nii.gz",
+ "pseudo_label": "102913/4_1opasevzoomb30f37021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102913/4_1opasevzoomb30f37021206030na/4_1opasevzoomb30f37021206030na_seg.nii.gz"
+ },
+ {
+ "image": "102913/2_0opasevzoomb50f36021206030na.nii.gz",
+ "pseudo_label": "102913/2_0opasevzoomb50f36021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102913/2_0opasevzoomb50f36021206030na/2_0opasevzoomb50f36021206030na_seg.nii.gz"
+ },
+ {
+ "image": "102913/2_2opasevzoomb50f37021206030na.nii.gz",
+ "pseudo_label": "102913/2_2opasevzoomb50f37021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102913/2_2opasevzoomb50f37021206030na/2_2opasevzoomb50f37021206030na_seg.nii.gz"
+ },
+ {
+ "image": "102913/3_1opasevzoomb50f37021206030na.nii.gz",
+ "pseudo_label": "102913/3_1opasevzoomb50f37021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102913/3_1opasevzoomb50f37021206030na/3_1opasevzoomb50f37021206030na_seg.nii.gz"
+ },
+ {
+ "image": "102913/3_0opasevzoomb30f36021206030na.nii.gz",
+ "pseudo_label": "102913/3_0opasevzoomb30f36021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102913/3_0opasevzoomb30f36021206030na/3_0opasevzoomb30f36021206030na_seg.nii.gz"
+ },
+ {
+ "image": "106739/2_1opagels16standard3202514040014.nii.gz",
+ "pseudo_label": "106739/2_1opagels16standard3202514040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106739/2_1opagels16standard3202514040014/2_1opagels16standard3202514040014_seg.nii.gz"
+ },
+ {
+ "image": "106739/2_2opagels16standard3202514040014.nii.gz",
+ "pseudo_label": "106739/2_2opagels16standard3202514040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106739/2_2opagels16standard3202514040014/2_2opagels16standard3202514040014_seg.nii.gz"
+ },
+ {
+ "image": "107864/3_1opagels16standard3062512000na.nii.gz",
+ "pseudo_label": "107864/3_1opagels16standard3062512000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107864/3_1opagels16standard3062512000na/3_1opagels16standard3062512000na_seg.nii.gz"
+ },
+ {
+ "image": "107864/3_0opagelsqxbone3242512048015.nii.gz",
+ "pseudo_label": "107864/3_0opagelsqxbone3242512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107864/3_0opagelsqxbone3242512048015/3_0opagelsqxbone3242512048015_seg.nii.gz"
+ },
+ {
+ "image": "107864/2_0opagelsqxstandard3242512048015.nii.gz",
+ "pseudo_label": "107864/2_0opagelsqxstandard3242512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107864/2_0opagelsqxstandard3242512048015/2_0opagelsqxstandard3242512048015_seg.nii.gz"
+ },
+ {
+ "image": "100628/3_0opatoaqul4fc512852212040nana.nii.gz",
+ "pseudo_label": "100628/3_0opatoaqul4fc512852212040nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100628/3_0opatoaqul4fc512852212040nana/3_0opatoaqul4fc512852212040nana_seg.nii.gz"
+ },
+ {
+ "image": "100628/3_2opatoaqul4fc512922212040nana.nii.gz",
+ "pseudo_label": "100628/3_2opatoaqul4fc512922212040nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100628/3_2opatoaqul4fc512922212040nana/3_2opatoaqul4fc512922212040nana_seg.nii.gz"
+ },
+ {
+ "image": "100628/3_1opatoaqul4fc512844212040nana.nii.gz",
+ "pseudo_label": "100628/3_1opatoaqul4fc512844212040nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100628/3_1opatoaqul4fc512844212040nana/3_1opatoaqul4fc512844212040nana_seg.nii.gz"
+ },
+ {
+ "image": "103785/0_0opaphmx8000d33132120790112.nii.gz",
+ "pseudo_label": "103785/0_0opaphmx8000d33132120790112.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103785/0_0opaphmx8000d33132120790112/0_0opaphmx8000d33132120790112_seg.nii.gz"
+ },
+ {
+ "image": "103785/0_1opaphmx8000c31532120600118.nii.gz",
+ "pseudo_label": "103785/0_1opaphmx8000c31532120600118.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103785/0_1opaphmx8000c31532120600118/0_1opaphmx8000c31532120600118_seg.nii.gz"
+ },
+ {
+ "image": "103785/0_0opaphmx8000c32832120790112.nii.gz",
+ "pseudo_label": "103785/0_0opaphmx8000c32832120790112.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103785/0_0opaphmx8000c32832120790112/0_0opaphmx8000c32832120790112_seg.nii.gz"
+ },
+ {
+ "image": "103785/0_1opaphmx8000d31532120600118.nii.gz",
+ "pseudo_label": "103785/0_1opaphmx8000d31532120600118.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103785/0_1opaphmx8000d31532120600118/0_1opaphmx8000d31532120600118_seg.nii.gz"
+ },
+ {
+ "image": "103785/8241_2opaphmx8000b3563212039018.nii.gz",
+ "pseudo_label": "103785/8241_2opaphmx8000b3563212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103785/8241_2opaphmx8000b3563212039018/8241_2opaphmx8000b3563212039018_seg.nii.gz"
+ },
+ {
+ "image": "103726/2_2opasevzoomb30f33021208040na.nii.gz",
+ "pseudo_label": "103726/2_2opasevzoomb30f33021208040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103726/2_2opasevzoomb30f33021208040na/2_2opasevzoomb30f33021208040na_seg.nii.gz"
+ },
+ {
+ "image": "103726/3_0opasevzoomb50f330214012060na.nii.gz",
+ "pseudo_label": "103726/3_0opasevzoomb50f330214012060na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103726/3_0opasevzoomb50f330214012060na/3_0opasevzoomb50f330214012060na_seg.nii.gz"
+ },
+ {
+ "image": "103726/3_2opasevzoomb50f33021208040na.nii.gz",
+ "pseudo_label": "103726/3_2opasevzoomb50f33021208040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103726/3_2opasevzoomb50f33021208040na/3_2opasevzoomb50f33021208040na_seg.nii.gz"
+ },
+ {
+ "image": "103726/2_0opasevzoomb30f330214012060na.nii.gz",
+ "pseudo_label": "103726/2_0opasevzoomb30f330214012060na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103726/2_0opasevzoomb30f330214012060na/2_0opasevzoomb30f330214012060na_seg.nii.gz"
+ },
+ {
+ "image": "103726/2_1opasevzoomb30f33021208040na.nii.gz",
+ "pseudo_label": "103726/2_1opasevzoomb30f33021208040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103726/2_1opasevzoomb30f33021208040na/2_1opasevzoomb30f33021208040na_seg.nii.gz"
+ },
+ {
+ "image": "103726/3_1opasevzoomb50f33021208040na.nii.gz",
+ "pseudo_label": "103726/3_1opasevzoomb50f33021208040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103726/3_1opasevzoomb50f33021208040na/3_1opasevzoomb50f33021208040na_seg.nii.gz"
+ },
+ {
+ "image": "110659/2_1opasevzoomb30f34621207540na.nii.gz",
+ "pseudo_label": "110659/2_1opasevzoomb30f34621207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110659/2_1opasevzoomb30f34621207540na/2_1opasevzoomb30f34621207540na_seg.nii.gz"
+ },
+ {
+ "image": "110659/3_0opasevzoomb50f35021207540na.nii.gz",
+ "pseudo_label": "110659/3_0opasevzoomb50f35021207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110659/3_0opasevzoomb50f35021207540na/3_0opasevzoomb50f35021207540na_seg.nii.gz"
+ },
+ {
+ "image": "111144/2_1opasesen16b30f28821204032na.nii.gz",
+ "pseudo_label": "111144/2_1opasesen16b30f28821204032na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111144/2_1opasesen16b30f28821204032na/2_1opasesen16b30f28821204032na_seg.nii.gz"
+ },
+ {
+ "image": "111144/2_2opasesen16b30f29021204032na.nii.gz",
+ "pseudo_label": "111144/2_2opasesen16b30f29021204032na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111144/2_2opasesen16b30f29021204032na/2_2opasesen16b30f29021204032na_seg.nii.gz"
+ },
+ {
+ "image": "111848/6_0opasevzoomb30f36021206030na.nii.gz",
+ "pseudo_label": "111848/6_0opasevzoomb30f36021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111848/6_0opasevzoomb30f36021206030na/6_0opasevzoomb30f36021206030na_seg.nii.gz"
+ },
+ {
+ "image": "111848/3_0opasevzoomb30f36051206030na.nii.gz",
+ "pseudo_label": "111848/3_0opasevzoomb30f36051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111848/3_0opasevzoomb30f36051206030na/3_0opasevzoomb30f36051206030na_seg.nii.gz"
+ },
+ {
+ "image": "111848/4_0opasevzoomb50f36051206030na.nii.gz",
+ "pseudo_label": "111848/4_0opasevzoomb50f36051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111848/4_0opasevzoomb50f36051206030na/4_0opasevzoomb50f36051206030na_seg.nii.gz"
+ },
+ {
+ "image": "108028/2_2opagelsqxstandard3172514040015.nii.gz",
+ "pseudo_label": "108028/2_2opagelsqxstandard3172514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108028/2_2opagelsqxstandard3172514040015/2_2opagelsqxstandard3172514040015_seg.nii.gz"
+ },
+ {
+ "image": "108028/2_1opagelsqxstandard3202514040015.nii.gz",
+ "pseudo_label": "108028/2_1opagelsqxstandard3202514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108028/2_1opagelsqxstandard3202514040015/2_1opagelsqxstandard3202514040015_seg.nii.gz"
+ },
+ {
+ "image": "108028/2_0opagelsplusstandard3402514040015.nii.gz",
+ "pseudo_label": "108028/2_0opagelsplusstandard3402514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108028/2_0opagelsplusstandard3402514040015/2_0opagelsplusstandard3402514040015_seg.nii.gz"
+ },
+ {
+ "image": "108162/2_2opagelsqxstandard36025120640115.nii.gz",
+ "pseudo_label": "108162/2_2opagelsqxstandard36025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108162/2_2opagelsqxstandard36025120640115/2_2opagelsqxstandard36025120640115_seg.nii.gz"
+ },
+ {
+ "image": "105899/4_2opasevzoomb50f30051206030na.nii.gz",
+ "pseudo_label": "105899/4_2opasevzoomb50f30051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105899/4_2opasevzoomb50f30051206030na/4_2opasevzoomb50f30051206030na_seg.nii.gz"
+ },
+ {
+ "image": "105899/4_1opasevzoomb50f29051206030na.nii.gz",
+ "pseudo_label": "105899/4_1opasevzoomb50f29051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105899/4_1opasevzoomb50f29051206030na/4_1opasevzoomb50f29051206030na_seg.nii.gz"
+ },
+ {
+ "image": "105899/5_1opasevzoomb30f29051206030na.nii.gz",
+ "pseudo_label": "105899/5_1opasevzoomb30f29051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105899/5_1opasevzoomb30f29051206030na/5_1opasevzoomb30f29051206030na_seg.nii.gz"
+ },
+ {
+ "image": "105899/5_2opasevzoomb30f30051206030na.nii.gz",
+ "pseudo_label": "105899/5_2opasevzoomb30f30051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105899/5_2opasevzoomb30f30051206030na/5_2opasevzoomb30f30051206030na_seg.nii.gz"
+ },
+ {
+ "image": "105899/6_2opasevzoomb30f30021206030na.nii.gz",
+ "pseudo_label": "105899/6_2opasevzoomb30f30021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105899/6_2opasevzoomb30f30021206030na/6_2opasevzoomb30f30021206030na_seg.nii.gz"
+ },
+ {
+ "image": "105899/4_0opasevzoomb50f31251206030na.nii.gz",
+ "pseudo_label": "105899/4_0opasevzoomb50f31251206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105899/4_0opasevzoomb50f31251206030na/4_0opasevzoomb50f31251206030na_seg.nii.gz"
+ },
+ {
+ "image": "105899/3_1opasevzoomb50f29021206030na.nii.gz",
+ "pseudo_label": "105899/3_1opasevzoomb50f29021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105899/3_1opasevzoomb50f29021206030na/3_1opasevzoomb50f29021206030na_seg.nii.gz"
+ },
+ {
+ "image": "105899/6_1opasevzoomb30f29021206030na.nii.gz",
+ "pseudo_label": "105899/6_1opasevzoomb30f29021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105899/6_1opasevzoomb30f29021206030na/6_1opasevzoomb30f29021206030na_seg.nii.gz"
+ },
+ {
+ "image": "105899/3_0opasevzoomb50f31221206030na.nii.gz",
+ "pseudo_label": "105899/3_0opasevzoomb50f31221206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105899/3_0opasevzoomb50f31221206030na/3_0opasevzoomb50f31221206030na_seg.nii.gz"
+ },
+ {
+ "image": "105899/3_2opasevzoomb50f30021206030na.nii.gz",
+ "pseudo_label": "105899/3_2opasevzoomb50f30021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105899/3_2opasevzoomb50f30021206030na/3_2opasevzoomb50f30021206030na_seg.nii.gz"
+ },
+ {
+ "image": "105899/6_0opasevzoomb30f31221206030na.nii.gz",
+ "pseudo_label": "105899/6_0opasevzoomb30f31221206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105899/6_0opasevzoomb30f31221206030na/6_0opasevzoomb30f31221206030na_seg.nii.gz"
+ },
+ {
+ "image": "105899/5_0opasevzoomb30f31251206030na.nii.gz",
+ "pseudo_label": "105899/5_0opasevzoomb30f31251206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105899/5_0opasevzoomb30f31251206030na/5_0opasevzoomb30f31251206030na_seg.nii.gz"
+ },
+ {
+ "image": "107019/3_1opasesen16b30f35821204032na.nii.gz",
+ "pseudo_label": "107019/3_1opasesen16b30f35821204032na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107019/3_1opasesen16b30f35821204032na/3_1opasesen16b30f35821204032na_seg.nii.gz"
+ },
+ {
+ "image": "107019/2_0opasesen16b30f30621206048na.nii.gz",
+ "pseudo_label": "107019/2_0opasesen16b30f30621206048na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107019/2_0opasesen16b30f30621206048na/2_0opasesen16b30f30621206048na_seg.nii.gz"
+ },
+ {
+ "image": "112391/3_0opagels16standard35025120600114.nii.gz",
+ "pseudo_label": "112391/3_0opagels16standard35025120600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112391/3_0opagels16standard35025120600114/3_0opagels16standard35025120600114_seg.nii.gz"
+ },
+ {
+ "image": "104022/2_1opagelsqxstandard3202512048015.nii.gz",
+ "pseudo_label": "104022/2_1opagelsqxstandard3202512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104022/2_1opagelsqxstandard3202512048015/2_1opagelsqxstandard3202512048015_seg.nii.gz"
+ },
+ {
+ "image": "112831/2_0opagehsqxstandard31025120560115.nii.gz",
+ "pseudo_label": "112831/2_0opagehsqxstandard31025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112831/2_0opagehsqxstandard31025120560115/2_0opagehsqxstandard31025120560115_seg.nii.gz"
+ },
+ {
+ "image": "112831/2_1opagehsqxstandard31025120560115.nii.gz",
+ "pseudo_label": "112831/2_1opagehsqxstandard31025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112831/2_1opagehsqxstandard31025120560115/2_1opagehsqxstandard31025120560115_seg.nii.gz"
+ },
+ {
+ "image": "112831/3_1opagehsqxbone31025120560115.nii.gz",
+ "pseudo_label": "112831/3_1opagehsqxbone31025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112831/3_1opagehsqxbone31025120560115/3_1opagehsqxbone31025120560115_seg.nii.gz"
+ },
+ {
+ "image": "111191/0_0opaphmx8000c3423212039018.nii.gz",
+ "pseudo_label": "111191/0_0opaphmx8000c3423212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111191/0_0opaphmx8000c3423212039018/0_0opaphmx8000c3423212039018_seg.nii.gz"
+ },
+ {
+ "image": "102187/2_1opasesen16b30f38021407056na.nii.gz",
+ "pseudo_label": "102187/2_1opasesen16b30f38021407056na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102187/2_1opasesen16b30f38021407056na/2_1opasesen16b30f38021407056na_seg.nii.gz"
+ },
+ {
+ "image": "102187/2_2opasesen16b30f31821204032na.nii.gz",
+ "pseudo_label": "102187/2_2opasesen16b30f31821204032na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102187/2_2opasesen16b30f31821204032na/2_2opasesen16b30f31821204032na_seg.nii.gz"
+ },
+ {
+ "image": "102187/2_0opasevzoomb30f32021206030na.nii.gz",
+ "pseudo_label": "102187/2_0opasevzoomb30f32021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102187/2_0opasevzoomb30f32021206030na/2_0opasevzoomb30f32021206030na_seg.nii.gz"
+ },
+ {
+ "image": "102187/3_0opasevzoomb30f32021206030na.nii.gz",
+ "pseudo_label": "102187/3_0opasevzoomb30f32021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102187/3_0opasevzoomb30f32021206030na/3_0opasevzoomb30f32021206030na_seg.nii.gz"
+ },
+ {
+ "image": "106312/2_0opagelsqxstandard28025120640115.nii.gz",
+ "pseudo_label": "106312/2_0opagelsqxstandard28025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106312/2_0opagelsqxstandard28025120640115/2_0opagelsqxstandard28025120640115_seg.nii.gz"
+ },
+ {
+ "image": "106312/2_2opagelsqxstandard3502512048015.nii.gz",
+ "pseudo_label": "106312/2_2opagelsqxstandard3502512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106312/2_2opagelsqxstandard3502512048015/2_2opagelsqxstandard3502512048015_seg.nii.gz"
+ },
+ {
+ "image": "106312/2_1opagelsqxstandard3302512048015.nii.gz",
+ "pseudo_label": "106312/2_1opagelsqxstandard3302512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106312/2_1opagelsqxstandard3302512048015/2_1opagelsqxstandard3302512048015_seg.nii.gz"
+ },
+ {
+ "image": "106484/2_1opasesen16b30f31021204032na.nii.gz",
+ "pseudo_label": "106484/2_1opasesen16b30f31021204032na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106484/2_1opasesen16b30f31021204032na/2_1opasesen16b30f31021204032na_seg.nii.gz"
+ },
+ {
+ "image": "106484/2_2opasesen16b30f31321204032na.nii.gz",
+ "pseudo_label": "106484/2_2opasesen16b30f31321204032na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106484/2_2opasesen16b30f31321204032na/2_2opasesen16b30f31321204032na_seg.nii.gz"
+ },
+ {
+ "image": "100846/2_2opagelsplusstandard3202514040015.nii.gz",
+ "pseudo_label": "100846/2_2opagelsplusstandard3202514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100846/2_2opagelsplusstandard3202514040015/2_2opagelsplusstandard3202514040015_seg.nii.gz"
+ },
+ {
+ "image": "100846/2_1opagelsplusstandard3112514040015.nii.gz",
+ "pseudo_label": "100846/2_1opagelsplusstandard3112514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100846/2_1opagelsplusstandard3112514040015/2_1opagelsplusstandard3112514040015_seg.nii.gz"
+ },
+ {
+ "image": "100846/2_0opagelsplusstandard3202514040015.nii.gz",
+ "pseudo_label": "100846/2_0opagelsplusstandard3202514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100846/2_0opagelsplusstandard3202514040015/2_0opagelsplusstandard3202514040015_seg.nii.gz"
+ },
+ {
+ "image": "106729/3_2opagels16standard37025140720114.nii.gz",
+ "pseudo_label": "106729/3_2opagels16standard37025140720114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106729/3_2opagels16standard37025140720114/3_2opagels16standard37025140720114_seg.nii.gz"
+ },
+ {
+ "image": "106729/2_0opagels16bone36025120800114.nii.gz",
+ "pseudo_label": "106729/2_0opagels16bone36025120800114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106729/2_0opagels16bone36025120800114/2_0opagels16bone36025120800114_seg.nii.gz"
+ },
+ {
+ "image": "106729/2_2opagels16bone37025140720114.nii.gz",
+ "pseudo_label": "106729/2_2opagels16bone37025140720114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106729/2_2opagels16bone37025140720114/2_2opagels16bone37025140720114_seg.nii.gz"
+ },
+ {
+ "image": "106729/2_1opagels16bone36025120600114.nii.gz",
+ "pseudo_label": "106729/2_1opagels16bone36025120600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106729/2_1opagels16bone36025120600114/2_1opagels16bone36025120600114_seg.nii.gz"
+ },
+ {
+ "image": "101217/2_2opagehsqxstandard35025120560115.nii.gz",
+ "pseudo_label": "101217/2_2opagehsqxstandard35025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101217/2_2opagehsqxstandard35025120560115/2_2opagehsqxstandard35025120560115_seg.nii.gz"
+ },
+ {
+ "image": "101217/2_0opagehsqxstandard32025120560115.nii.gz",
+ "pseudo_label": "101217/2_0opagehsqxstandard32025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101217/2_0opagehsqxstandard32025120560115/2_0opagehsqxstandard32025120560115_seg.nii.gz"
+ },
+ {
+ "image": "101217/2_1opagehsqxstandard35025120560115.nii.gz",
+ "pseudo_label": "101217/2_1opagehsqxstandard35025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101217/2_1opagehsqxstandard35025120560115/2_1opagehsqxstandard35025120560115_seg.nii.gz"
+ },
+ {
+ "image": "101217/3_0opagehsqxbone32025120560115.nii.gz",
+ "pseudo_label": "101217/3_0opagehsqxbone32025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101217/3_0opagehsqxbone32025120560115/3_0opagehsqxbone32025120560115_seg.nii.gz"
+ },
+ {
+ "image": "113321/1_1opagelspluslung39025120800115.nii.gz",
+ "pseudo_label": "113321/1_1opagelspluslung39025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113321/1_1opagelspluslung39025120800115/1_1opagelspluslung39025120800115_seg.nii.gz"
+ },
+ {
+ "image": "113321/1_0opagelsplusstandard38925120800108.nii.gz",
+ "pseudo_label": "113321/1_0opagelsplusstandard38925120800108.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113321/1_0opagelsplusstandard38925120800108/1_0opagelsplusstandard38925120800108_seg.nii.gz"
+ },
+ {
+ "image": "113321/1_0opagelspluslung38925120800108.nii.gz",
+ "pseudo_label": "113321/1_0opagelspluslung38925120800108.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113321/1_0opagelspluslung38925120800108/1_0opagelspluslung38925120800108_seg.nii.gz"
+ },
+ {
+ "image": "113321/1_1opagelsplusstandard39025120800115.nii.gz",
+ "pseudo_label": "113321/1_1opagelsplusstandard39025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113321/1_1opagelsplusstandard39025120800115/1_1opagelsplusstandard39025120800115_seg.nii.gz"
+ },
+ {
+ "image": "100983/2_1opagelsqxstandard3602514040015.nii.gz",
+ "pseudo_label": "100983/2_1opagelsqxstandard3602514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100983/2_1opagelsqxstandard3602514040015/2_1opagelsqxstandard3602514040015_seg.nii.gz"
+ },
+ {
+ "image": "100983/2_2opagelsqxstandard3402514040015.nii.gz",
+ "pseudo_label": "100983/2_2opagelsqxstandard3402514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100983/2_2opagelsqxstandard3402514040015/2_2opagelsqxstandard3402514040015_seg.nii.gz"
+ },
+ {
+ "image": "104065/3_0opasevzoomb50f380212016080na.nii.gz",
+ "pseudo_label": "104065/3_0opasevzoomb50f380212016080na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104065/3_0opasevzoomb50f380212016080na/3_0opasevzoomb50f380212016080na_seg.nii.gz"
+ },
+ {
+ "image": "110340/2_1opasesen16b50f33021204530na.nii.gz",
+ "pseudo_label": "110340/2_1opasesen16b50f33021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110340/2_1opasesen16b50f33021204530na/2_1opasesen16b50f33021204530na_seg.nii.gz"
+ },
+ {
+ "image": "110340/3_1opasesen16b30f33021204530na.nii.gz",
+ "pseudo_label": "110340/3_1opasesen16b30f33021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110340/3_1opasesen16b30f33021204530na/3_1opasesen16b30f33021204530na_seg.nii.gz"
+ },
+ {
+ "image": "110340/2_0opasevzoomb50f32021206030na.nii.gz",
+ "pseudo_label": "110340/2_0opasevzoomb50f32021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110340/2_0opasevzoomb50f32021206030na/2_0opasevzoomb50f32021206030na_seg.nii.gz"
+ },
+ {
+ "image": "110340/2_2opasesen16b50f32021204530na.nii.gz",
+ "pseudo_label": "110340/2_2opasesen16b50f32021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110340/2_2opasesen16b50f32021204530na/2_2opasesen16b50f32021204530na_seg.nii.gz"
+ },
+ {
+ "image": "109306/2_0opasevzoomb30f340212016080na.nii.gz",
+ "pseudo_label": "109306/2_0opasevzoomb30f340212016080na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109306/2_0opasevzoomb30f340212016080na/2_0opasevzoomb30f340212016080na_seg.nii.gz"
+ },
+ {
+ "image": "109306/3_1opagels16standard34025120720114.nii.gz",
+ "pseudo_label": "109306/3_1opagels16standard34025120720114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109306/3_1opagels16standard34025120720114/3_1opagels16standard34025120720114_seg.nii.gz"
+ },
+ {
+ "image": "109306/2_1opagels16bone34025120720114.nii.gz",
+ "pseudo_label": "109306/2_1opagels16bone34025120720114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109306/2_1opagels16bone34025120720114/2_1opagels16bone34025120720114_seg.nii.gz"
+ },
+ {
+ "image": "109306/2_2opagels16bone34025120600114.nii.gz",
+ "pseudo_label": "109306/2_2opagels16bone34025120600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109306/2_2opagels16bone34025120600114/2_2opagels16bone34025120600114_seg.nii.gz"
+ },
+ {
+ "image": "106058/3_1opasevzoomb50f36021408040na.nii.gz",
+ "pseudo_label": "106058/3_1opasevzoomb50f36021408040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106058/3_1opasevzoomb50f36021408040na/3_1opasevzoomb50f36021408040na_seg.nii.gz"
+ },
+ {
+ "image": "106058/102_0osagels16bone36025120600114.nii.gz",
+ "pseudo_label": "106058/102_0osagels16bone36025120600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106058/102_0osagels16bone36025120600114/102_0osagels16bone36025120600114_seg.nii.gz"
+ },
+ {
+ "image": "109740/1_0opagelsplusstandard36025120800108.nii.gz",
+ "pseudo_label": "109740/1_0opagelsplusstandard36025120800108.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109740/1_0opagelsplusstandard36025120800108/1_0opagelsplusstandard36025120800108_seg.nii.gz"
+ },
+ {
+ "image": "111704/2_0opagelsqxstandard32625120600115.nii.gz",
+ "pseudo_label": "111704/2_0opagelsqxstandard32625120600115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111704/2_0opagelsqxstandard32625120600115/2_0opagelsqxstandard32625120600115_seg.nii.gz"
+ },
+ {
+ "image": "111704/2_1opagelsqxstandard3202512048015.nii.gz",
+ "pseudo_label": "111704/2_1opagelsqxstandard3202512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111704/2_1opagelsqxstandard3202512048015/2_1opagelsqxstandard3202512048015_seg.nii.gz"
+ },
+ {
+ "image": "111704/2_2opagels16standard32025120571nana.nii.gz",
+ "pseudo_label": "111704/2_2opagels16standard32025120571nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111704/2_2opagels16standard32025120571nana/2_2opagels16standard32025120571nana_seg.nii.gz"
+ },
+ {
+ "image": "107072/3_1opagelsqxstandard35025120640115.nii.gz",
+ "pseudo_label": "107072/3_1opagelsqxstandard35025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107072/3_1opagelsqxstandard35025120640115/3_1opagelsqxstandard35025120640115_seg.nii.gz"
+ },
+ {
+ "image": "107072/2_0opagelsqxstandard35325120800115.nii.gz",
+ "pseudo_label": "107072/2_0opagelsqxstandard35325120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107072/2_0opagelsqxstandard35325120800115/2_0opagelsqxstandard35325120800115_seg.nii.gz"
+ },
+ {
+ "image": "105585/3_1opagehsqxbone35025120560115.nii.gz",
+ "pseudo_label": "105585/3_1opagehsqxbone35025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105585/3_1opagehsqxbone35025120560115/3_1opagehsqxbone35025120560115_seg.nii.gz"
+ },
+ {
+ "image": "105585/2_0opagehsqxstandard35025120560115.nii.gz",
+ "pseudo_label": "105585/2_0opagehsqxstandard35025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105585/2_0opagehsqxstandard35025120560115/2_0opagehsqxstandard35025120560115_seg.nii.gz"
+ },
+ {
+ "image": "105585/2_1opagehsqxstandard35025120560115.nii.gz",
+ "pseudo_label": "105585/2_1opagehsqxstandard35025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105585/2_1opagehsqxstandard35025120560115/2_1opagehsqxstandard35025120560115_seg.nii.gz"
+ },
+ {
+ "image": "102577/2_0opagelsplusstandard39425140800115.nii.gz",
+ "pseudo_label": "102577/2_0opagelsplusstandard39425140800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102577/2_0opagelsplusstandard39425140800115/2_0opagelsplusstandard39425140800115_seg.nii.gz"
+ },
+ {
+ "image": "100717/2_0opagelsqxstandard3602512000na.nii.gz",
+ "pseudo_label": "100717/2_0opagelsqxstandard3602512000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100717/2_0opagelsqxstandard3602512000na/2_0opagelsqxstandard3602512000na_seg.nii.gz"
+ },
+ {
+ "image": "101115/2_0opasevzoomb50f34021206030na.nii.gz",
+ "pseudo_label": "101115/2_0opasevzoomb50f34021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101115/2_0opasevzoomb50f34021206030na/2_0opasevzoomb50f34021206030na_seg.nii.gz"
+ },
+ {
+ "image": "102305/5_2opasevzoomb30f33051206030na.nii.gz",
+ "pseudo_label": "102305/5_2opasevzoomb30f33051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102305/5_2opasevzoomb30f33051206030na/5_2opasevzoomb30f33051206030na_seg.nii.gz"
+ },
+ {
+ "image": "102305/4_2opasevzoomb50f33051206030na.nii.gz",
+ "pseudo_label": "102305/4_2opasevzoomb50f33051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102305/4_2opasevzoomb50f33051206030na/4_2opasevzoomb50f33051206030na_seg.nii.gz"
+ },
+ {
+ "image": "102305/6_0opasevzoomb30f36021206030na.nii.gz",
+ "pseudo_label": "102305/6_0opasevzoomb30f36021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102305/6_0opasevzoomb30f36021206030na/6_0opasevzoomb30f36021206030na_seg.nii.gz"
+ },
+ {
+ "image": "102305/3_0opasevzoomb50f36021206030na.nii.gz",
+ "pseudo_label": "102305/3_0opasevzoomb50f36021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102305/3_0opasevzoomb50f36021206030na/3_0opasevzoomb50f36021206030na_seg.nii.gz"
+ },
+ {
+ "image": "102305/5_1opasevzoomb30f32051206030na.nii.gz",
+ "pseudo_label": "102305/5_1opasevzoomb30f32051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102305/5_1opasevzoomb30f32051206030na/5_1opasevzoomb30f32051206030na_seg.nii.gz"
+ },
+ {
+ "image": "102305/4_0opasevzoomb50f36051206030na.nii.gz",
+ "pseudo_label": "102305/4_0opasevzoomb50f36051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102305/4_0opasevzoomb50f36051206030na/4_0opasevzoomb50f36051206030na_seg.nii.gz"
+ },
+ {
+ "image": "102305/3_1opasevzoomb50f32021206030na.nii.gz",
+ "pseudo_label": "102305/3_1opasevzoomb50f32021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102305/3_1opasevzoomb50f32021206030na/3_1opasevzoomb50f32021206030na_seg.nii.gz"
+ },
+ {
+ "image": "109791/2_1opagelsqxstandard3502514040015.nii.gz",
+ "pseudo_label": "109791/2_1opagelsqxstandard3502514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109791/2_1opagelsqxstandard3502514040015/2_1opagelsqxstandard3502514040015_seg.nii.gz"
+ },
+ {
+ "image": "109791/2_2opagelsqxstandard3402514040015.nii.gz",
+ "pseudo_label": "109791/2_2opagelsqxstandard3402514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109791/2_2opagelsqxstandard3402514040015/2_2opagelsqxstandard3402514040015_seg.nii.gz"
+ },
+ {
+ "image": "109791/2_0opagelsqxstandard3512514040015.nii.gz",
+ "pseudo_label": "109791/2_0opagelsqxstandard3512514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109791/2_0opagelsqxstandard3512514040015/2_0opagelsqxstandard3512514040015_seg.nii.gz"
+ },
+ {
+ "image": "108950/2_1opasesen16b30f34221204032na.nii.gz",
+ "pseudo_label": "108950/2_1opasesen16b30f34221204032na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108950/2_1opasesen16b30f34221204032na/2_1opasesen16b30f34221204032na_seg.nii.gz"
+ },
+ {
+ "image": "108950/2_0opasesen16b30f33421206048na.nii.gz",
+ "pseudo_label": "108950/2_0opasesen16b30f33421206048na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108950/2_0opasesen16b30f33421206048na/2_0opasesen16b30f33421206048na_seg.nii.gz"
+ },
+ {
+ "image": "108950/2_2opasesen16b30f34421204032na.nii.gz",
+ "pseudo_label": "108950/2_2opasesen16b30f34421204032na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108950/2_2opasesen16b30f34421204032na/2_2opasesen16b30f34421204032na_seg.nii.gz"
+ },
+ {
+ "image": "112248/2_2opagehsqxstandard35025120560115.nii.gz",
+ "pseudo_label": "112248/2_2opagehsqxstandard35025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112248/2_2opagehsqxstandard35025120560115/2_2opagehsqxstandard35025120560115_seg.nii.gz"
+ },
+ {
+ "image": "112248/2_1opagehsqxstandard35025120560115.nii.gz",
+ "pseudo_label": "112248/2_1opagehsqxstandard35025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112248/2_1opagehsqxstandard35025120560115/2_1opagehsqxstandard35025120560115_seg.nii.gz"
+ },
+ {
+ "image": "112248/3_0opagehsqxbone35025120560115.nii.gz",
+ "pseudo_label": "112248/3_0opagehsqxbone35025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112248/3_0opagehsqxbone35025120560115/3_0opagehsqxbone35025120560115_seg.nii.gz"
+ },
+ {
+ "image": "104792/6_1opasevzoomb30f26451206030na.nii.gz",
+ "pseudo_label": "104792/6_1opasevzoomb30f26451206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104792/6_1opasevzoomb30f26451206030na/6_1opasevzoomb30f26451206030na_seg.nii.gz"
+ },
+ {
+ "image": "104792/3_0opasevzoomb30f29651206030na.nii.gz",
+ "pseudo_label": "104792/3_0opasevzoomb30f29651206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104792/3_0opasevzoomb30f29651206030na/3_0opasevzoomb30f29651206030na_seg.nii.gz"
+ },
+ {
+ "image": "104792/4_2opasevzoomb50f27251206030na.nii.gz",
+ "pseudo_label": "104792/4_2opasevzoomb50f27251206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104792/4_2opasevzoomb50f27251206030na/4_2opasevzoomb50f27251206030na_seg.nii.gz"
+ },
+ {
+ "image": "104792/5_0opasevzoomb50f29621206030na.nii.gz",
+ "pseudo_label": "104792/5_0opasevzoomb50f29621206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104792/5_0opasevzoomb50f29621206030na/5_0opasevzoomb50f29621206030na_seg.nii.gz"
+ },
+ {
+ "image": "104792/5_2opasevzoomb50f27221206030na.nii.gz",
+ "pseudo_label": "104792/5_2opasevzoomb50f27221206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104792/5_2opasevzoomb50f27221206030na/5_2opasevzoomb50f27221206030na_seg.nii.gz"
+ },
+ {
+ "image": "104792/3_2opasevzoomb30f27251206030na.nii.gz",
+ "pseudo_label": "104792/3_2opasevzoomb30f27251206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104792/3_2opasevzoomb30f27251206030na/3_2opasevzoomb30f27251206030na_seg.nii.gz"
+ },
+ {
+ "image": "104792/7_1opasevzoomb50f26751206030na.nii.gz",
+ "pseudo_label": "104792/7_1opasevzoomb50f26751206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104792/7_1opasevzoomb50f26751206030na/7_1opasevzoomb50f26751206030na_seg.nii.gz"
+ },
+ {
+ "image": "106863/2_0opagels16bone3602512040014.nii.gz",
+ "pseudo_label": "106863/2_0opagels16bone3602512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106863/2_0opagels16bone3602512040014/2_0opagels16bone3602512040014_seg.nii.gz"
+ },
+ {
+ "image": "106863/2_1opagelspr16bone3502512040014.nii.gz",
+ "pseudo_label": "106863/2_1opagelspr16bone3502512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106863/2_1opagelspr16bone3502512040014/2_1opagelspr16bone3502512040014_seg.nii.gz"
+ },
+ {
+ "image": "106863/2_2opagelspr16bone3302512048014.nii.gz",
+ "pseudo_label": "106863/2_2opagelspr16bone3302512048014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106863/2_2opagelspr16bone3302512048014/2_2opagelspr16bone3302512048014_seg.nii.gz"
+ },
+ {
+ "image": "106863/3_0opagels16standard3602512040014.nii.gz",
+ "pseudo_label": "106863/3_0opagels16standard3602512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106863/3_0opagels16standard3602512040014/3_0opagels16standard3602512040014_seg.nii.gz"
+ },
+ {
+ "image": "106863/3_1opagelspr16standard3502512040014.nii.gz",
+ "pseudo_label": "106863/3_1opagelspr16standard3502512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106863/3_1opagelspr16standard3502512040014/3_1opagelspr16standard3502512040014_seg.nii.gz"
+ },
+ {
+ "image": "101379/5_1opasesen16b30f34021204530na.nii.gz",
+ "pseudo_label": "101379/5_1opasesen16b30f34021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101379/5_1opasesen16b30f34021204530na/5_1opasesen16b30f34021204530na_seg.nii.gz"
+ },
+ {
+ "image": "101379/4_2opasesen16b30f33051204530na.nii.gz",
+ "pseudo_label": "101379/4_2opasesen16b30f33051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101379/4_2opasesen16b30f33051204530na/4_2opasesen16b30f33051204530na_seg.nii.gz"
+ },
+ {
+ "image": "101379/6_1opasesen16b50f34051204530na.nii.gz",
+ "pseudo_label": "101379/6_1opasesen16b50f34051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101379/6_1opasesen16b50f34051204530na/6_1opasesen16b50f34051204530na_seg.nii.gz"
+ },
+ {
+ "image": "101379/7_2opasesen16b30f33021204530na.nii.gz",
+ "pseudo_label": "101379/7_2opasesen16b30f33021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101379/7_2opasesen16b30f33021204530na/7_2opasesen16b30f33021204530na_seg.nii.gz"
+ },
+ {
+ "image": "101379/8_2opasesen16b50f33051204530na.nii.gz",
+ "pseudo_label": "101379/8_2opasesen16b50f33051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101379/8_2opasesen16b50f33051204530na/8_2opasesen16b50f33051204530na_seg.nii.gz"
+ },
+ {
+ "image": "101379/4_0opasesen16b50f31651206040na.nii.gz",
+ "pseudo_label": "101379/4_0opasesen16b50f31651206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101379/4_0opasesen16b50f31651206040na/4_0opasesen16b50f31651206040na_seg.nii.gz"
+ },
+ {
+ "image": "101379/4_1opasesen16b30f34051204530na.nii.gz",
+ "pseudo_label": "101379/4_1opasesen16b30f34051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101379/4_1opasesen16b30f34051204530na/4_1opasesen16b30f34051204530na_seg.nii.gz"
+ },
+ {
+ "image": "101379/3_0opasesen16b30f33551206040na.nii.gz",
+ "pseudo_label": "101379/3_0opasesen16b30f33551206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101379/3_0opasesen16b30f33551206040na/3_0opasesen16b30f33551206040na_seg.nii.gz"
+ },
+ {
+ "image": "100182/2_2opagelsplusstandard32025140908nana.nii.gz",
+ "pseudo_label": "100182/2_2opagelsplusstandard32025140908nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100182/2_2opagelsplusstandard32025140908nana/2_2opagelsplusstandard32025140908nana_seg.nii.gz"
+ },
+ {
+ "image": "102273/2_1opagelsqxstandard3902512048015.nii.gz",
+ "pseudo_label": "102273/2_1opagelsqxstandard3902512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102273/2_1opagelsqxstandard3902512048015/2_1opagelsqxstandard3902512048015_seg.nii.gz"
+ },
+ {
+ "image": "102273/2_2opagelsqxstandard37025120640115.nii.gz",
+ "pseudo_label": "102273/2_2opagelsqxstandard37025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102273/2_2opagelsqxstandard37025120640115/2_2opagelsqxstandard37025120640115_seg.nii.gz"
+ },
+ {
+ "image": "107128/2_2opagelsqxstandard36025120640115.nii.gz",
+ "pseudo_label": "107128/2_2opagelsqxstandard36025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107128/2_2opagelsqxstandard36025120640115/2_2opagelsqxstandard36025120640115_seg.nii.gz"
+ },
+ {
+ "image": "107128/3_0opagelsqxbone36025120560115.nii.gz",
+ "pseudo_label": "107128/3_0opagelsqxbone36025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107128/3_0opagelsqxbone36025120560115/3_0opagelsqxbone36025120560115_seg.nii.gz"
+ },
+ {
+ "image": "107128/3_2opagelsqxbone36025120640115.nii.gz",
+ "pseudo_label": "107128/3_2opagelsqxbone36025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107128/3_2opagelsqxbone36025120640115/3_2opagelsqxbone36025120640115_seg.nii.gz"
+ },
+ {
+ "image": "107128/2_1opagelsqxstandard33425120640115.nii.gz",
+ "pseudo_label": "107128/2_1opagelsqxstandard33425120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107128/2_1opagelsqxstandard33425120640115/2_1opagelsqxstandard33425120640115_seg.nii.gz"
+ },
+ {
+ "image": "107128/3_1opagelsqxbone33425120640115.nii.gz",
+ "pseudo_label": "107128/3_1opagelsqxbone33425120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107128/3_1opagelsqxbone33425120640115/3_1opagelsqxbone33425120640115_seg.nii.gz"
+ },
+ {
+ "image": "107128/2_0opagelsqxstandard36025120560115.nii.gz",
+ "pseudo_label": "107128/2_0opagelsqxstandard36025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107128/2_0opagelsqxstandard36025120560115/2_0opagelsqxstandard36025120560115_seg.nii.gz"
+ },
+ {
+ "image": "110169/2_1opagelsplusstandard3202514040015.nii.gz",
+ "pseudo_label": "110169/2_1opagelsplusstandard3202514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110169/2_1opagelsplusstandard3202514040015/2_1opagelsplusstandard3202514040015_seg.nii.gz"
+ },
+ {
+ "image": "110169/2_0opagelsplusstandard3002514040015.nii.gz",
+ "pseudo_label": "110169/2_0opagelsplusstandard3002514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110169/2_0opagelsplusstandard3002514040015/2_0opagelsplusstandard3002514040015_seg.nii.gz"
+ },
+ {
+ "image": "110169/2_2opagelsplusstandard3202514040015.nii.gz",
+ "pseudo_label": "110169/2_2opagelsplusstandard3202514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110169/2_2opagelsplusstandard3202514040015/2_2opagelsplusstandard3202514040015_seg.nii.gz"
+ },
+ {
+ "image": "101644/2_1opasesen16b50f33021204530na.nii.gz",
+ "pseudo_label": "101644/2_1opasesen16b50f33021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101644/2_1opasesen16b50f33021204530na/2_1opasesen16b50f33021204530na_seg.nii.gz"
+ },
+ {
+ "image": "101644/3_0opasevzoomb30f36221208040na.nii.gz",
+ "pseudo_label": "101644/3_0opasevzoomb30f36221208040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101644/3_0opasevzoomb30f36221208040na/3_0opasevzoomb30f36221208040na_seg.nii.gz"
+ },
+ {
+ "image": "101644/3_1opasesen16b30f33021204530na.nii.gz",
+ "pseudo_label": "101644/3_1opasesen16b30f33021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101644/3_1opasesen16b30f33021204530na/3_1opasesen16b30f33021204530na_seg.nii.gz"
+ },
+ {
+ "image": "101644/2_0opasevzoomb50f36221208040na.nii.gz",
+ "pseudo_label": "101644/2_0opasevzoomb50f36221208040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101644/2_0opasevzoomb50f36221208040na/2_0opasevzoomb50f36221208040na_seg.nii.gz"
+ },
+ {
+ "image": "101318/3_1opatoaqul4fc513613212060nana.nii.gz",
+ "pseudo_label": "101318/3_1opatoaqul4fc513613212060nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101318/3_1opatoaqul4fc513613212060nana/3_1opatoaqul4fc513613212060nana_seg.nii.gz"
+ },
+ {
+ "image": "106457/2_2opagehsqxstandard32025120560115.nii.gz",
+ "pseudo_label": "106457/2_2opagehsqxstandard32025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106457/2_2opagehsqxstandard32025120560115/2_2opagehsqxstandard32025120560115_seg.nii.gz"
+ },
+ {
+ "image": "106457/3_0opagehsqxbone32025120640115.nii.gz",
+ "pseudo_label": "106457/3_0opagehsqxbone32025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106457/3_0opagehsqxbone32025120640115/3_0opagehsqxbone32025120640115_seg.nii.gz"
+ },
+ {
+ "image": "106457/2_0opagehsqxstandard32025120640115.nii.gz",
+ "pseudo_label": "106457/2_0opagehsqxstandard32025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106457/2_0opagehsqxstandard32025120640115/2_0opagehsqxstandard32025120640115_seg.nii.gz"
+ },
+ {
+ "image": "100394/5_1opasesen16b50f29251204530na.nii.gz",
+ "pseudo_label": "100394/5_1opasesen16b50f29251204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100394/5_1opasesen16b50f29251204530na/5_1opasesen16b50f29251204530na_seg.nii.gz"
+ },
+ {
+ "image": "100394/3_2opasesen16b30f27451204530na.nii.gz",
+ "pseudo_label": "100394/3_2opasesen16b30f27451204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100394/3_2opasesen16b30f27451204530na/3_2opasesen16b30f27451204530na_seg.nii.gz"
+ },
+ {
+ "image": "100394/5_0opasesen16b50f29621206040na.nii.gz",
+ "pseudo_label": "100394/5_0opasesen16b50f29621206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100394/5_0opasesen16b50f29621206040na/5_0opasesen16b50f29621206040na_seg.nii.gz"
+ },
+ {
+ "image": "100394/5_2opasesen16b50f27451204530na.nii.gz",
+ "pseudo_label": "100394/5_2opasesen16b50f27451204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100394/5_2opasesen16b50f27451204530na/5_2opasesen16b50f27451204530na_seg.nii.gz"
+ },
+ {
+ "image": "100394/3_0opasesen16b30f29651206040na.nii.gz",
+ "pseudo_label": "100394/3_0opasesen16b30f29651206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100394/3_0opasesen16b30f29651206040na/3_0opasesen16b30f29651206040na_seg.nii.gz"
+ },
+ {
+ "image": "100394/6_0opasesen16b30f29621206040na.nii.gz",
+ "pseudo_label": "100394/6_0opasesen16b30f29621206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100394/6_0opasesen16b30f29621206040na/6_0opasesen16b30f29621206040na_seg.nii.gz"
+ },
+ {
+ "image": "100394/4_0opasesen16b50f29651206040na.nii.gz",
+ "pseudo_label": "100394/4_0opasesen16b50f29651206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100394/4_0opasesen16b50f29651206040na/4_0opasesen16b50f29651206040na_seg.nii.gz"
+ },
+ {
+ "image": "100394/6_2opasesen16b50f27421204530na.nii.gz",
+ "pseudo_label": "100394/6_2opasesen16b50f27421204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100394/6_2opasesen16b50f27421204530na/6_2opasesen16b50f27421204530na_seg.nii.gz"
+ },
+ {
+ "image": "100394/3_1opasesen16b30f29251204530na.nii.gz",
+ "pseudo_label": "100394/3_1opasesen16b30f29251204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100394/3_1opasesen16b30f29251204530na/3_1opasesen16b30f29251204530na_seg.nii.gz"
+ },
+ {
+ "image": "107346/2_2opasevzoomb30f33021208040na.nii.gz",
+ "pseudo_label": "107346/2_2opasevzoomb30f33021208040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107346/2_2opasevzoomb30f33021208040na/2_2opasevzoomb30f33021208040na_seg.nii.gz"
+ },
+ {
+ "image": "107346/3_2opasevzoomb50f33021208040na.nii.gz",
+ "pseudo_label": "107346/3_2opasevzoomb50f33021208040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107346/3_2opasevzoomb50f33021208040na/3_2opasevzoomb50f33021208040na_seg.nii.gz"
+ },
+ {
+ "image": "107346/2_1opasevzoomb30f32021408040na.nii.gz",
+ "pseudo_label": "107346/2_1opasevzoomb30f32021408040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107346/2_1opasevzoomb30f32021408040na/2_1opasevzoomb30f32021408040na_seg.nii.gz"
+ },
+ {
+ "image": "107346/3_0opasevzoomb50f310212012060na.nii.gz",
+ "pseudo_label": "107346/3_0opasevzoomb50f310212012060na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107346/3_0opasevzoomb50f310212012060na/3_0opasevzoomb50f310212012060na_seg.nii.gz"
+ },
+ {
+ "image": "107346/2_0opasevzoomb30f310212012060na.nii.gz",
+ "pseudo_label": "107346/2_0opasevzoomb30f310212012060na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107346/2_0opasevzoomb30f310212012060na/2_0opasevzoomb30f310212012060na_seg.nii.gz"
+ },
+ {
+ "image": "107346/3_1opasevzoomb50f32221408040na.nii.gz",
+ "pseudo_label": "107346/3_1opasevzoomb50f32221408040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107346/3_1opasevzoomb50f32221408040na/3_1opasevzoomb50f32221408040na_seg.nii.gz"
+ },
+ {
+ "image": "108366/5_1opasevzoomb30f40051206030na.nii.gz",
+ "pseudo_label": "108366/5_1opasevzoomb30f40051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108366/5_1opasevzoomb30f40051206030na/5_1opasevzoomb30f40051206030na_seg.nii.gz"
+ },
+ {
+ "image": "108366/6_2opasevzoomb30f38021206030na.nii.gz",
+ "pseudo_label": "108366/6_2opasevzoomb30f38021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108366/6_2opasevzoomb30f38021206030na/6_2opasevzoomb30f38021206030na_seg.nii.gz"
+ },
+ {
+ "image": "108366/5_2opasevzoomb30f38051206030na.nii.gz",
+ "pseudo_label": "108366/5_2opasevzoomb30f38051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108366/5_2opasevzoomb30f38051206030na/5_2opasevzoomb30f38051206030na_seg.nii.gz"
+ },
+ {
+ "image": "108366/5_0opasevzoomb30f36851206030na.nii.gz",
+ "pseudo_label": "108366/5_0opasevzoomb30f36851206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108366/5_0opasevzoomb30f36851206030na/5_0opasevzoomb30f36851206030na_seg.nii.gz"
+ },
+ {
+ "image": "108366/4_1opasevzoomb50f40051206030na.nii.gz",
+ "pseudo_label": "108366/4_1opasevzoomb50f40051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108366/4_1opasevzoomb50f40051206030na/4_1opasevzoomb50f40051206030na_seg.nii.gz"
+ },
+ {
+ "image": "108366/3_2opasevzoomb50f38021206030na.nii.gz",
+ "pseudo_label": "108366/3_2opasevzoomb50f38021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108366/3_2opasevzoomb50f38021206030na/3_2opasevzoomb50f38021206030na_seg.nii.gz"
+ },
+ {
+ "image": "108366/4_0opasevzoomb50f36851206030na.nii.gz",
+ "pseudo_label": "108366/4_0opasevzoomb50f36851206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108366/4_0opasevzoomb50f36851206030na/4_0opasevzoomb50f36851206030na_seg.nii.gz"
+ },
+ {
+ "image": "108366/4_2opasevzoomb50f38051206030na.nii.gz",
+ "pseudo_label": "108366/4_2opasevzoomb50f38051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108366/4_2opasevzoomb50f38051206030na/4_2opasevzoomb50f38051206030na_seg.nii.gz"
+ },
+ {
+ "image": "113079/1_1opagelsplusstandard37025120800115.nii.gz",
+ "pseudo_label": "113079/1_1opagelsplusstandard37025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113079/1_1opagelsplusstandard37025120800115/1_1opagelsplusstandard37025120800115_seg.nii.gz"
+ },
+ {
+ "image": "113079/1_2opatoaqul4fc303691212080nana.nii.gz",
+ "pseudo_label": "113079/1_2opatoaqul4fc303691212080nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113079/1_2opatoaqul4fc303691212080nana/1_2opatoaqul4fc303691212080nana_seg.nii.gz"
+ },
+ {
+ "image": "113079/1_0opagelsplusstandard37025120800108.nii.gz",
+ "pseudo_label": "113079/1_0opagelsplusstandard37025120800108.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113079/1_0opagelsplusstandard37025120800108/1_0opagelsplusstandard37025120800108_seg.nii.gz"
+ },
+ {
+ "image": "102193/3_2opagels16standard35025140600114.nii.gz",
+ "pseudo_label": "102193/3_2opagels16standard35025140600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102193/3_2opagels16standard35025140600114/3_2opagels16standard35025140600114_seg.nii.gz"
+ },
+ {
+ "image": "102193/2_2opagels16bone35025140600114.nii.gz",
+ "pseudo_label": "102193/2_2opagels16bone35025140600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102193/2_2opagels16bone35025140600114/2_2opagels16bone35025140600114_seg.nii.gz"
+ },
+ {
+ "image": "102193/2_1opagels16bone35025120600114.nii.gz",
+ "pseudo_label": "102193/2_1opagels16bone35025120600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102193/2_1opagels16bone35025120600114/2_1opagels16bone35025120600114_seg.nii.gz"
+ },
+ {
+ "image": "110616/3_1opagelsqxstandard320514040015.nii.gz",
+ "pseudo_label": "110616/3_1opagelsqxstandard320514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110616/3_1opagelsqxstandard320514040015/3_1opagelsqxstandard320514040015_seg.nii.gz"
+ },
+ {
+ "image": "110616/2_1opagelsqxstandard3202514040015.nii.gz",
+ "pseudo_label": "110616/2_1opagelsqxstandard3202514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110616/2_1opagelsqxstandard3202514040015/2_1opagelsqxstandard3202514040015_seg.nii.gz"
+ },
+ {
+ "image": "105868/8208_1opaphmx8000d34732120800118.nii.gz",
+ "pseudo_label": "105868/8208_1opaphmx8000d34732120800118.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105868/8208_1opaphmx8000d34732120800118/8208_1opaphmx8000d34732120800118_seg.nii.gz"
+ },
+ {
+ "image": "105868/0_0opaphmx8000d33632120600112.nii.gz",
+ "pseudo_label": "105868/0_0opaphmx8000d33632120600112.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105868/0_0opaphmx8000d33632120600112/0_0opaphmx8000d33632120600112_seg.nii.gz"
+ },
+ {
+ "image": "100266/6_2opasesen16b50f29921204530na.nii.gz",
+ "pseudo_label": "100266/6_2opasesen16b50f29921204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100266/6_2opasesen16b50f29921204530na/6_2opasesen16b50f29921204530na_seg.nii.gz"
+ },
+ {
+ "image": "100266/3_0opasesen16b30f36851206040na.nii.gz",
+ "pseudo_label": "100266/3_0opasesen16b30f36851206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100266/3_0opasesen16b30f36851206040na/3_0opasesen16b30f36851206040na_seg.nii.gz"
+ },
+ {
+ "image": "100266/6_1opasevzoomb30f36621206030na.nii.gz",
+ "pseudo_label": "100266/6_1opasevzoomb30f36621206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100266/6_1opasevzoomb30f36621206030na/6_1opasevzoomb30f36621206030na_seg.nii.gz"
+ },
+ {
+ "image": "100266/4_1opasevzoomb50f36651206030na.nii.gz",
+ "pseudo_label": "100266/4_1opasevzoomb50f36651206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100266/4_1opasevzoomb50f36651206030na/4_1opasevzoomb50f36651206030na_seg.nii.gz"
+ },
+ {
+ "image": "100266/6_0opasesen16b30f36821206040na.nii.gz",
+ "pseudo_label": "100266/6_0opasesen16b30f36821206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100266/6_0opasesen16b30f36821206040na/6_0opasesen16b30f36821206040na_seg.nii.gz"
+ },
+ {
+ "image": "100266/5_2opasesen16b50f29951204530na.nii.gz",
+ "pseudo_label": "100266/5_2opasesen16b50f29951204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100266/5_2opasesen16b50f29951204530na/5_2opasesen16b50f29951204530na_seg.nii.gz"
+ },
+ {
+ "image": "100266/3_2opasesen16b30f29951204530na.nii.gz",
+ "pseudo_label": "100266/3_2opasesen16b30f29951204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100266/3_2opasesen16b30f29951204530na/3_2opasesen16b30f29951204530na_seg.nii.gz"
+ },
+ {
+ "image": "100266/3_1opasevzoomb30f36651206030na.nii.gz",
+ "pseudo_label": "100266/3_1opasevzoomb30f36651206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100266/3_1opasevzoomb30f36651206030na/3_1opasevzoomb30f36651206030na_seg.nii.gz"
+ },
+ {
+ "image": "100266/4_0opasesen16b50f36851206040na.nii.gz",
+ "pseudo_label": "100266/4_0opasesen16b50f36851206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100266/4_0opasesen16b50f36851206040na/4_0opasesen16b50f36851206040na_seg.nii.gz"
+ },
+ {
+ "image": "107307/4_0opasesen16b50f35451204530na.nii.gz",
+ "pseudo_label": "107307/4_0opasesen16b50f35451204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107307/4_0opasesen16b50f35451204530na/4_0opasesen16b50f35451204530na_seg.nii.gz"
+ },
+ {
+ "image": "107307/5_2opasesen16b50f32551204530na.nii.gz",
+ "pseudo_label": "107307/5_2opasesen16b50f32551204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107307/5_2opasesen16b50f32551204530na/5_2opasesen16b50f32551204530na_seg.nii.gz"
+ },
+ {
+ "image": "107307/5_1opasesen16b30f32851204530na.nii.gz",
+ "pseudo_label": "107307/5_1opasesen16b30f32851204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107307/5_1opasesen16b30f32851204530na/5_1opasesen16b30f32851204530na_seg.nii.gz"
+ },
+ {
+ "image": "107307/3_2opasesen16b30f31051204530na.nii.gz",
+ "pseudo_label": "107307/3_2opasesen16b30f31051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107307/3_2opasesen16b30f31051204530na/3_2opasesen16b30f31051204530na_seg.nii.gz"
+ },
+ {
+ "image": "107307/7_1opasesen16b50f32851204530na.nii.gz",
+ "pseudo_label": "107307/7_1opasesen16b50f32851204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107307/7_1opasesen16b50f32851204530na/7_1opasesen16b50f32851204530na_seg.nii.gz"
+ },
+ {
+ "image": "107307/3_0opasesen16b30f35451204530na.nii.gz",
+ "pseudo_label": "107307/3_0opasesen16b30f35451204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107307/3_0opasesen16b30f35451204530na/3_0opasesen16b30f35451204530na_seg.nii.gz"
+ },
+ {
+ "image": "107307/7_2opasesen16b30f32551204530na.nii.gz",
+ "pseudo_label": "107307/7_2opasesen16b30f32551204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107307/7_2opasesen16b30f32551204530na/7_2opasesen16b30f32551204530na_seg.nii.gz"
+ },
+ {
+ "image": "109156/7867_1opaphmx8000c3223212039018.nii.gz",
+ "pseudo_label": "109156/7867_1opaphmx8000c3223212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109156/7867_1opaphmx8000c3223212039018/7867_1opaphmx8000c3223212039018_seg.nii.gz"
+ },
+ {
+ "image": "109156/7730_0opaphmx8000c3303212039018.nii.gz",
+ "pseudo_label": "109156/7730_0opaphmx8000c3303212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109156/7730_0opaphmx8000c3303212039018/7730_0opaphmx8000c3303212039018_seg.nii.gz"
+ },
+ {
+ "image": "109156/7731_0opaphmx8000d3303212039018.nii.gz",
+ "pseudo_label": "109156/7731_0opaphmx8000d3303212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109156/7731_0opaphmx8000d3303212039018/7731_0opaphmx8000d3303212039018_seg.nii.gz"
+ },
+ {
+ "image": "109156/7866_1opaphmx8000d3223212039018.nii.gz",
+ "pseudo_label": "109156/7866_1opaphmx8000d3223212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109156/7866_1opaphmx8000d3223212039018/7866_1opaphmx8000d3223212039018_seg.nii.gz"
+ },
+ {
+ "image": "109156/2211_2opaphmx8000d32832120390na.nii.gz",
+ "pseudo_label": "109156/2211_2opaphmx8000d32832120390na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109156/2211_2opaphmx8000d32832120390na/2211_2opaphmx8000d32832120390na_seg.nii.gz"
+ },
+ {
+ "image": "104179/6_2opasesen16b50f30551204530na.nii.gz",
+ "pseudo_label": "104179/6_2opasesen16b50f30551204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104179/6_2opasesen16b50f30551204530na/6_2opasesen16b50f30551204530na_seg.nii.gz"
+ },
+ {
+ "image": "104179/6_1opasesen16b50f30021204530na.nii.gz",
+ "pseudo_label": "104179/6_1opasesen16b50f30021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104179/6_1opasesen16b50f30021204530na/6_1opasesen16b50f30021204530na_seg.nii.gz"
+ },
+ {
+ "image": "104179/4_1opasesen16b30f30021204530na.nii.gz",
+ "pseudo_label": "104179/4_1opasesen16b30f30021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104179/4_1opasesen16b30f30021204530na/4_1opasesen16b30f30021204530na_seg.nii.gz"
+ },
+ {
+ "image": "104179/5_1opasesen16b50f30051204530na.nii.gz",
+ "pseudo_label": "104179/5_1opasesen16b50f30051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104179/5_1opasesen16b50f30051204530na/5_1opasesen16b50f30051204530na_seg.nii.gz"
+ },
+ {
+ "image": "104179/6_0opasevzoomb30f29621206030na.nii.gz",
+ "pseudo_label": "104179/6_0opasevzoomb30f29621206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104179/6_0opasevzoomb30f29621206030na/6_0opasevzoomb30f29621206030na_seg.nii.gz"
+ },
+ {
+ "image": "104179/4_2opasesen16b30f27621204530na.nii.gz",
+ "pseudo_label": "104179/4_2opasesen16b30f27621204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104179/4_2opasesen16b30f27621204530na/4_2opasesen16b30f27621204530na_seg.nii.gz"
+ },
+ {
+ "image": "104179/3_1opasesen16b30f30051204530na.nii.gz",
+ "pseudo_label": "104179/3_1opasesen16b30f30051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104179/3_1opasesen16b30f30051204530na/3_1opasesen16b30f30051204530na_seg.nii.gz"
+ },
+ {
+ "image": "104179/3_2opasesen16b30f28451204530na.nii.gz",
+ "pseudo_label": "104179/3_2opasesen16b30f28451204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104179/3_2opasesen16b30f28451204530na/3_2opasesen16b30f28451204530na_seg.nii.gz"
+ },
+ {
+ "image": "104179/4_0opasevzoomb50f29651206030na.nii.gz",
+ "pseudo_label": "104179/4_0opasevzoomb50f29651206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104179/4_0opasevzoomb50f29651206030na/4_0opasevzoomb50f29651206030na_seg.nii.gz"
+ },
+ {
+ "image": "112241/1_0opagelsplusstandard36025120800115.nii.gz",
+ "pseudo_label": "112241/1_0opagelsplusstandard36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112241/1_0opagelsplusstandard36025120800115/1_0opagelsplusstandard36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "112241/3_2opagelsplusstandard36025120800115.nii.gz",
+ "pseudo_label": "112241/3_2opagelsplusstandard36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112241/3_2opagelsplusstandard36025120800115/3_2opagelsplusstandard36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "112241/1_0opagelspluslung36025120800115.nii.gz",
+ "pseudo_label": "112241/1_0opagelspluslung36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112241/1_0opagelspluslung36025120800115/1_0opagelspluslung36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "102561/2_1opasevzoomb50f28021206030na.nii.gz",
+ "pseudo_label": "102561/2_1opasevzoomb50f28021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102561/2_1opasevzoomb50f28021206030na/2_1opasevzoomb50f28021206030na_seg.nii.gz"
+ },
+ {
+ "image": "102561/3_0opasevzoomb30f28021206030na.nii.gz",
+ "pseudo_label": "102561/3_0opasevzoomb30f28021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102561/3_0opasevzoomb30f28021206030na/3_0opasevzoomb30f28021206030na_seg.nii.gz"
+ },
+ {
+ "image": "102561/4_0opasevzoomb60f29021206030na.nii.gz",
+ "pseudo_label": "102561/4_0opasevzoomb60f29021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102561/4_0opasevzoomb60f29021206030na/4_0opasevzoomb60f29021206030na_seg.nii.gz"
+ },
+ {
+ "image": "106511/2_0opagels16bone3302512040014.nii.gz",
+ "pseudo_label": "106511/2_0opagels16bone3302512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106511/2_0opagels16bone3302512040014/2_0opagels16bone3302512040014_seg.nii.gz"
+ },
+ {
+ "image": "106511/3_0opagels16standard3302512040014.nii.gz",
+ "pseudo_label": "106511/3_0opagels16standard3302512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106511/3_0opagels16standard3302512040014/3_0opagels16standard3302512040014_seg.nii.gz"
+ },
+ {
+ "image": "106511/2_1opagels16bone3042512040014.nii.gz",
+ "pseudo_label": "106511/2_1opagels16bone3042512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106511/2_1opagels16bone3042512040014/2_1opagels16bone3042512040014_seg.nii.gz"
+ },
+ {
+ "image": "106511/3_1opagels16standard3042512040014.nii.gz",
+ "pseudo_label": "106511/3_1opagels16standard3042512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106511/3_1opagels16standard3042512040014/3_1opagels16standard3042512040014_seg.nii.gz"
+ },
+ {
+ "image": "106407/3_1opatoaqul4fc513223212055nana.nii.gz",
+ "pseudo_label": "106407/3_1opatoaqul4fc513223212055nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106407/3_1opatoaqul4fc513223212055nana/3_1opatoaqul4fc513223212055nana_seg.nii.gz"
+ },
+ {
+ "image": "106407/4_0opatoaqul4fc513094212050nana.nii.gz",
+ "pseudo_label": "106407/4_0opatoaqul4fc513094212050nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106407/4_0opatoaqul4fc513094212050nana/4_0opatoaqul4fc513094212050nana_seg.nii.gz"
+ },
+ {
+ "image": "106407/3_0opatoaqul4fc51350212050nana.nii.gz",
+ "pseudo_label": "106407/3_0opatoaqul4fc51350212050nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106407/3_0opatoaqul4fc51350212050nana/3_0opatoaqul4fc51350212050nana_seg.nii.gz"
+ },
+ {
+ "image": "105697/2_0opagels16bone36025120640114.nii.gz",
+ "pseudo_label": "105697/2_0opagels16bone36025120640114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105697/2_0opagels16bone36025120640114/2_0opagels16bone36025120640114_seg.nii.gz"
+ },
+ {
+ "image": "105697/2_2opagels16bone36025120600114.nii.gz",
+ "pseudo_label": "105697/2_2opagels16bone36025120600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105697/2_2opagels16bone36025120600114/2_2opagels16bone36025120600114_seg.nii.gz"
+ },
+ {
+ "image": "113082/2_0opagelsqxstandard35625120800115.nii.gz",
+ "pseudo_label": "113082/2_0opagelsqxstandard35625120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113082/2_0opagelsqxstandard35625120800115/2_0opagelsqxstandard35625120800115_seg.nii.gz"
+ },
+ {
+ "image": "113082/2_1opagelsqxstandard35625120700115.nii.gz",
+ "pseudo_label": "113082/2_1opagelsqxstandard35625120700115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113082/2_1opagelsqxstandard35625120700115/2_1opagelsqxstandard35625120700115_seg.nii.gz"
+ },
+ {
+ "image": "101802/2_1opasevzoomb30f39021207540na.nii.gz",
+ "pseudo_label": "101802/2_1opasevzoomb30f39021207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101802/2_1opasevzoomb30f39021207540na/2_1opasevzoomb30f39021207540na_seg.nii.gz"
+ },
+ {
+ "image": "101802/3_1opasevzoomb50f39021207540na.nii.gz",
+ "pseudo_label": "101802/3_1opasevzoomb50f39021207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101802/3_1opasevzoomb50f39021207540na/3_1opasevzoomb50f39021207540na_seg.nii.gz"
+ },
+ {
+ "image": "101802/2_0opasevzoomb30f39021207540na.nii.gz",
+ "pseudo_label": "101802/2_0opasevzoomb30f39021207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101802/2_0opasevzoomb30f39021207540na/2_0opasevzoomb30f39021207540na_seg.nii.gz"
+ },
+ {
+ "image": "101802/3_2opasevzoomb50f41421207540na.nii.gz",
+ "pseudo_label": "101802/3_2opasevzoomb50f41421207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101802/3_2opasevzoomb50f41421207540na/3_2opasevzoomb50f41421207540na_seg.nii.gz"
+ },
+ {
+ "image": "105086/5_2opasevzoomb30f38051206030na.nii.gz",
+ "pseudo_label": "105086/5_2opasevzoomb30f38051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105086/5_2opasevzoomb30f38051206030na/5_2opasevzoomb30f38051206030na_seg.nii.gz"
+ },
+ {
+ "image": "105086/3_1opasevzoomb50f38221206030na.nii.gz",
+ "pseudo_label": "105086/3_1opasevzoomb50f38221206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105086/3_1opasevzoomb50f38221206030na/3_1opasevzoomb50f38221206030na_seg.nii.gz"
+ },
+ {
+ "image": "105086/3_0opasevzoomb30f36751206030na.nii.gz",
+ "pseudo_label": "105086/3_0opasevzoomb30f36751206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105086/3_0opasevzoomb30f36751206030na/3_0opasevzoomb30f36751206030na_seg.nii.gz"
+ },
+ {
+ "image": "105086/5_1opasevzoomb30f38251206030na.nii.gz",
+ "pseudo_label": "105086/5_1opasevzoomb30f38251206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105086/5_1opasevzoomb30f38251206030na/5_1opasevzoomb30f38251206030na_seg.nii.gz"
+ },
+ {
+ "image": "105086/4_2opasevzoomb50f38051206030na.nii.gz",
+ "pseudo_label": "105086/4_2opasevzoomb50f38051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105086/4_2opasevzoomb50f38051206030na/4_2opasevzoomb50f38051206030na_seg.nii.gz"
+ },
+ {
+ "image": "105086/5_0opasevzoomb50f36751206030na.nii.gz",
+ "pseudo_label": "105086/5_0opasevzoomb50f36751206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105086/5_0opasevzoomb50f36751206030na/5_0opasevzoomb50f36751206030na_seg.nii.gz"
+ },
+ {
+ "image": "105086/7_0opasevzoomb30f36721206030na.nii.gz",
+ "pseudo_label": "105086/7_0opasevzoomb30f36721206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105086/7_0opasevzoomb30f36721206030na/7_0opasevzoomb30f36721206030na_seg.nii.gz"
+ },
+ {
+ "image": "105086/4_1opasevzoomb50f38251206030na.nii.gz",
+ "pseudo_label": "105086/4_1opasevzoomb50f38251206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105086/4_1opasevzoomb50f38251206030na/4_1opasevzoomb50f38251206030na_seg.nii.gz"
+ },
+ {
+ "image": "101309/3_2opasesen16b30f30721204032na.nii.gz",
+ "pseudo_label": "101309/3_2opasesen16b30f30721204032na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101309/3_2opasesen16b30f30721204032na/3_2opasesen16b30f30721204032na_seg.nii.gz"
+ },
+ {
+ "image": "101309/2_0opasesen16b30f34021204032na.nii.gz",
+ "pseudo_label": "101309/2_0opasesen16b30f34021204032na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101309/2_0opasesen16b30f34021204032na/2_0opasesen16b30f34021204032na_seg.nii.gz"
+ },
+ {
+ "image": "111312/2_2opagelspr16bone3402512048014.nii.gz",
+ "pseudo_label": "111312/2_2opagelspr16bone3402512048014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111312/2_2opagelspr16bone3402512048014/2_2opagelspr16bone3402512048014_seg.nii.gz"
+ },
+ {
+ "image": "111312/3_1opagels16standard3872512000na.nii.gz",
+ "pseudo_label": "111312/3_1opagels16standard3872512000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111312/3_1opagels16standard3872512000na/3_1opagels16standard3872512000na_seg.nii.gz"
+ },
+ {
+ "image": "111312/3_0opagelsqxstandard34325120640115.nii.gz",
+ "pseudo_label": "111312/3_0opagelsqxstandard34325120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111312/3_0opagelsqxstandard34325120640115/3_0opagelsqxstandard34325120640115_seg.nii.gz"
+ },
+ {
+ "image": "111312/3_2opagelspr16standard3402512048014.nii.gz",
+ "pseudo_label": "111312/3_2opagelspr16standard3402512048014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111312/3_2opagelspr16standard3402512048014/3_2opagelspr16standard3402512048014_seg.nii.gz"
+ },
+ {
+ "image": "101996/3_1opasevzoomb50f33021408040na.nii.gz",
+ "pseudo_label": "101996/3_1opasevzoomb50f33021408040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101996/3_1opasevzoomb50f33021408040na/3_1opasevzoomb50f33021408040na_seg.nii.gz"
+ },
+ {
+ "image": "111039/3_2opatoaqul4fc513016212040nana.nii.gz",
+ "pseudo_label": "111039/3_2opatoaqul4fc513016212040nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111039/3_2opatoaqul4fc513016212040nana/3_2opatoaqul4fc513016212040nana_seg.nii.gz"
+ },
+ {
+ "image": "103418/2_1opasesen16b30f29221204032na.nii.gz",
+ "pseudo_label": "103418/2_1opasesen16b30f29221204032na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103418/2_1opasesen16b30f29221204032na/2_1opasesen16b30f29221204032na_seg.nii.gz"
+ },
+ {
+ "image": "103418/3_0opasevzoomb30f28221204020na.nii.gz",
+ "pseudo_label": "103418/3_0opasevzoomb30f28221204020na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103418/3_0opasevzoomb30f28221204020na/3_0opasevzoomb30f28221204020na_seg.nii.gz"
+ },
+ {
+ "image": "113048/2_2opagelsqxstandard2932514040015.nii.gz",
+ "pseudo_label": "113048/2_2opagelsqxstandard2932514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113048/2_2opagelsqxstandard2932514040015/2_2opagelsqxstandard2932514040015_seg.nii.gz"
+ },
+ {
+ "image": "113048/2_0opagelsqxstandard3402514040015.nii.gz",
+ "pseudo_label": "113048/2_0opagelsqxstandard3402514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113048/2_0opagelsqxstandard3402514040015/2_0opagelsqxstandard3402514040015_seg.nii.gz"
+ },
+ {
+ "image": "113048/2_1opagelsqxstandard3402514040015.nii.gz",
+ "pseudo_label": "113048/2_1opagelsqxstandard3402514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113048/2_1opagelsqxstandard3402514040015/2_1opagelsqxstandard3402514040015_seg.nii.gz"
+ },
+ {
+ "image": "103146/2_0opagelsqxstandard3702512048015.nii.gz",
+ "pseudo_label": "103146/2_0opagelsqxstandard3702512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103146/2_0opagelsqxstandard3702512048015/2_0opagelsqxstandard3702512048015_seg.nii.gz"
+ },
+ {
+ "image": "106135/2_1opagelsqxstandard3402512048015.nii.gz",
+ "pseudo_label": "106135/2_1opagelsqxstandard3402512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106135/2_1opagelsqxstandard3402512048015/2_1opagelsqxstandard3402512048015_seg.nii.gz"
+ },
+ {
+ "image": "101153/3_2opasevzoomb30f34021206030na.nii.gz",
+ "pseudo_label": "101153/3_2opasevzoomb30f34021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101153/3_2opasevzoomb30f34021206030na/3_2opasevzoomb30f34021206030na_seg.nii.gz"
+ },
+ {
+ "image": "111859/4_0opatoaqul4fc513094212040nana.nii.gz",
+ "pseudo_label": "111859/4_0opatoaqul4fc513094212040nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111859/4_0opatoaqul4fc513094212040nana/4_0opatoaqul4fc513094212040nana_seg.nii.gz"
+ },
+ {
+ "image": "110781/5_0opasevzoomb30f400512012060na.nii.gz",
+ "pseudo_label": "110781/5_0opasevzoomb30f400512012060na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110781/5_0opasevzoomb30f400512012060na/5_0opasevzoomb30f400512012060na_seg.nii.gz"
+ },
+ {
+ "image": "110781/4_2opasevzoomb50f36051206030na.nii.gz",
+ "pseudo_label": "110781/4_2opasevzoomb50f36051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110781/4_2opasevzoomb50f36051206030na/4_2opasevzoomb50f36051206030na_seg.nii.gz"
+ },
+ {
+ "image": "110781/4_0opasevzoomb50f400512012060na.nii.gz",
+ "pseudo_label": "110781/4_0opasevzoomb50f400512012060na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110781/4_0opasevzoomb50f400512012060na/4_0opasevzoomb50f400512012060na_seg.nii.gz"
+ },
+ {
+ "image": "110781/5_2opasevzoomb30f36051206030na.nii.gz",
+ "pseudo_label": "110781/5_2opasevzoomb30f36051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110781/5_2opasevzoomb30f36051206030na/5_2opasevzoomb30f36051206030na_seg.nii.gz"
+ },
+ {
+ "image": "110781/3_2opasevzoomb50f36021206030na.nii.gz",
+ "pseudo_label": "110781/3_2opasevzoomb50f36021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110781/3_2opasevzoomb50f36021206030na/3_2opasevzoomb50f36021206030na_seg.nii.gz"
+ },
+ {
+ "image": "107338/6_2opasevzoomb30f27221206030na.nii.gz",
+ "pseudo_label": "107338/6_2opasevzoomb30f27221206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107338/6_2opasevzoomb30f27221206030na/6_2opasevzoomb30f27221206030na_seg.nii.gz"
+ },
+ {
+ "image": "107338/4_0opasevzoomb50f38051206030na.nii.gz",
+ "pseudo_label": "107338/4_0opasevzoomb50f38051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107338/4_0opasevzoomb50f38051206030na/4_0opasevzoomb50f38051206030na_seg.nii.gz"
+ },
+ {
+ "image": "107338/3_0opasevzoomb30f38051206030na.nii.gz",
+ "pseudo_label": "107338/3_0opasevzoomb30f38051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107338/3_0opasevzoomb30f38051206030na/3_0opasevzoomb30f38051206030na_seg.nii.gz"
+ },
+ {
+ "image": "107338/4_1opasesen16b30f30021204530na.nii.gz",
+ "pseudo_label": "107338/4_1opasesen16b30f30021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107338/4_1opasesen16b30f30021204530na/4_1opasesen16b30f30021204530na_seg.nii.gz"
+ },
+ {
+ "image": "107338/4_2opasevzoomb50f27251206030na.nii.gz",
+ "pseudo_label": "107338/4_2opasevzoomb50f27251206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107338/4_2opasevzoomb50f27251206030na/4_2opasevzoomb50f27251206030na_seg.nii.gz"
+ },
+ {
+ "image": "107338/3_1opasesen16b30f30051204530na.nii.gz",
+ "pseudo_label": "107338/3_1opasesen16b30f30051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107338/3_1opasesen16b30f30051204530na/3_1opasesen16b30f30051204530na_seg.nii.gz"
+ },
+ {
+ "image": "107338/5_0opasevzoomb50f38021206030na.nii.gz",
+ "pseudo_label": "107338/5_0opasevzoomb50f38021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107338/5_0opasevzoomb50f38021206030na/5_0opasevzoomb50f38021206030na_seg.nii.gz"
+ },
+ {
+ "image": "107338/3_2opasevzoomb30f27251206030na.nii.gz",
+ "pseudo_label": "107338/3_2opasevzoomb30f27251206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107338/3_2opasevzoomb30f27251206030na/3_2opasevzoomb30f27251206030na_seg.nii.gz"
+ },
+ {
+ "image": "103704/3_2opasesen16b30f30221204032na.nii.gz",
+ "pseudo_label": "103704/3_2opasesen16b30f30221204032na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103704/3_2opasesen16b30f30221204032na/3_2opasesen16b30f30221204032na_seg.nii.gz"
+ },
+ {
+ "image": "103704/2_0opasesen16b30f32621204032na.nii.gz",
+ "pseudo_label": "103704/2_0opasesen16b30f32621204032na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103704/2_0opasesen16b30f32621204032na/2_0opasesen16b30f32621204032na_seg.nii.gz"
+ },
+ {
+ "image": "110866/2_0opasevzoomb50f33021208040na.nii.gz",
+ "pseudo_label": "110866/2_0opasevzoomb50f33021208040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110866/2_0opasevzoomb50f33021208040na/2_0opasevzoomb50f33021208040na_seg.nii.gz"
+ },
+ {
+ "image": "106575/6_2opasesen16b50f34021204530na.nii.gz",
+ "pseudo_label": "106575/6_2opasesen16b50f34021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106575/6_2opasesen16b50f34021204530na/6_2opasesen16b50f34021204530na_seg.nii.gz"
+ },
+ {
+ "image": "106575/3_2opasesen16b30f34051204530na.nii.gz",
+ "pseudo_label": "106575/3_2opasesen16b30f34051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106575/3_2opasesen16b30f34051204530na/3_2opasesen16b30f34051204530na_seg.nii.gz"
+ },
+ {
+ "image": "106575/4_2opasesen16b30f34021204530na.nii.gz",
+ "pseudo_label": "106575/4_2opasesen16b30f34021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106575/4_2opasesen16b30f34021204530na/4_2opasesen16b30f34021204530na_seg.nii.gz"
+ },
+ {
+ "image": "106575/3_1opasevzoomb30f40451206030na.nii.gz",
+ "pseudo_label": "106575/3_1opasevzoomb30f40451206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106575/3_1opasevzoomb30f40451206030na/3_1opasevzoomb30f40451206030na_seg.nii.gz"
+ },
+ {
+ "image": "106575/5_2opasesen16b50f34051204530na.nii.gz",
+ "pseudo_label": "106575/5_2opasesen16b50f34051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106575/5_2opasesen16b50f34051204530na/5_2opasesen16b50f34051204530na_seg.nii.gz"
+ },
+ {
+ "image": "106575/4_0opasesen16b50f38051206040na.nii.gz",
+ "pseudo_label": "106575/4_0opasesen16b50f38051206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106575/4_0opasesen16b50f38051206040na/4_0opasesen16b50f38051206040na_seg.nii.gz"
+ },
+ {
+ "image": "106575/4_1opasevzoomb50f40451206030na.nii.gz",
+ "pseudo_label": "106575/4_1opasevzoomb50f40451206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106575/4_1opasevzoomb50f40451206030na/4_1opasevzoomb50f40451206030na_seg.nii.gz"
+ },
+ {
+ "image": "106575/6_1opasevzoomb20f40421206030na.nii.gz",
+ "pseudo_label": "106575/6_1opasevzoomb20f40421206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106575/6_1opasevzoomb20f40421206030na/6_1opasevzoomb20f40421206030na_seg.nii.gz"
+ },
+ {
+ "image": "106575/6_0opasesen16b30f38021206040na.nii.gz",
+ "pseudo_label": "106575/6_0opasesen16b30f38021206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106575/6_0opasesen16b30f38021206040na/6_0opasesen16b30f38021206040na_seg.nii.gz"
+ },
+ {
+ "image": "106575/3_0opasesen16b30f38051206040na.nii.gz",
+ "pseudo_label": "106575/3_0opasesen16b30f38051206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106575/3_0opasesen16b30f38051206040na/3_0opasesen16b30f38051206040na_seg.nii.gz"
+ },
+ {
+ "image": "110088/3_2opasesen16b30f33021204530na.nii.gz",
+ "pseudo_label": "110088/3_2opasesen16b30f33021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110088/3_2opasesen16b30f33021204530na/3_2opasesen16b30f33021204530na_seg.nii.gz"
+ },
+ {
+ "image": "110088/2_2opasesen16b50f33021204530na.nii.gz",
+ "pseudo_label": "110088/2_2opasesen16b50f33021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110088/2_2opasesen16b50f33021204530na/2_2opasesen16b50f33021204530na_seg.nii.gz"
+ },
+ {
+ "image": "110088/2_0opasevzoomb50f32021206030na.nii.gz",
+ "pseudo_label": "110088/2_0opasevzoomb50f32021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110088/2_0opasevzoomb50f32021206030na/2_0opasevzoomb50f32021206030na_seg.nii.gz"
+ },
+ {
+ "image": "109663/2_0opagels16bone32025120600114.nii.gz",
+ "pseudo_label": "109663/2_0opagels16bone32025120600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109663/2_0opagels16bone32025120600114/2_0opagels16bone32025120600114_seg.nii.gz"
+ },
+ {
+ "image": "109663/3_0opagels16standard32025120600114.nii.gz",
+ "pseudo_label": "109663/3_0opagels16standard32025120600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109663/3_0opagels16standard32025120600114/3_0opagels16standard32025120600114_seg.nii.gz"
+ },
+ {
+ "image": "105137/5_2opasevzoomb30f28021206030na.nii.gz",
+ "pseudo_label": "105137/5_2opasevzoomb30f28021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105137/5_2opasevzoomb30f28021206030na/5_2opasevzoomb30f28021206030na_seg.nii.gz"
+ },
+ {
+ "image": "105137/3_0opasevzoomb50f29021206030na.nii.gz",
+ "pseudo_label": "105137/3_0opasevzoomb50f29021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105137/3_0opasevzoomb50f29021206030na/3_0opasevzoomb50f29021206030na_seg.nii.gz"
+ },
+ {
+ "image": "105137/3_1opasevzoomb30f29021206030na.nii.gz",
+ "pseudo_label": "105137/3_1opasevzoomb30f29021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105137/3_1opasevzoomb30f29021206030na/3_1opasevzoomb30f29021206030na_seg.nii.gz"
+ },
+ {
+ "image": "112631/2_2opagelsplusstandard3202514000na.nii.gz",
+ "pseudo_label": "112631/2_2opagelsplusstandard3202514000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112631/2_2opagelsplusstandard3202514000na/2_2opagelsplusstandard3202514000na_seg.nii.gz"
+ },
+ {
+ "image": "112631/2_0opagelsqxstandard2722514000na.nii.gz",
+ "pseudo_label": "112631/2_0opagelsqxstandard2722514000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112631/2_0opagelsqxstandard2722514000na/2_0opagelsqxstandard2722514000na_seg.nii.gz"
+ },
+ {
+ "image": "112631/2_1opagelsplusstandard2902514000na.nii.gz",
+ "pseudo_label": "112631/2_1opagelsplusstandard2902514000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112631/2_1opagelsplusstandard2902514000na/2_1opagelsplusstandard2902514000na_seg.nii.gz"
+ },
+ {
+ "image": "111888/5_1opasesen16b50f44051204530na.nii.gz",
+ "pseudo_label": "111888/5_1opasesen16b50f44051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111888/5_1opasesen16b50f44051204530na/5_1opasesen16b50f44051204530na_seg.nii.gz"
+ },
+ {
+ "image": "111888/5_2opasevzoomb50f36421206030na.nii.gz",
+ "pseudo_label": "111888/5_2opasevzoomb50f36421206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111888/5_2opasevzoomb50f36421206030na/5_2opasevzoomb50f36421206030na_seg.nii.gz"
+ },
+ {
+ "image": "111888/6_2opasevzoomb30f36421206030na.nii.gz",
+ "pseudo_label": "111888/6_2opasevzoomb30f36421206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111888/6_2opasevzoomb30f36421206030na/6_2opasevzoomb30f36421206030na_seg.nii.gz"
+ },
+ {
+ "image": "111888/4_0opasesen16b50f38051204530na.nii.gz",
+ "pseudo_label": "111888/4_0opasesen16b50f38051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111888/4_0opasesen16b50f38051204530na/4_0opasesen16b50f38051204530na_seg.nii.gz"
+ },
+ {
+ "image": "111888/4_2opasevzoomb50f36451206030na.nii.gz",
+ "pseudo_label": "111888/4_2opasevzoomb50f36451206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111888/4_2opasevzoomb50f36451206030na/4_2opasevzoomb50f36451206030na_seg.nii.gz"
+ },
+ {
+ "image": "111888/3_0opasesen16b30f38051204530na.nii.gz",
+ "pseudo_label": "111888/3_0opasesen16b30f38051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111888/3_0opasesen16b30f38051204530na/3_0opasesen16b30f38051204530na_seg.nii.gz"
+ },
+ {
+ "image": "111888/3_2opasevzoomb30f36451206030na.nii.gz",
+ "pseudo_label": "111888/3_2opasevzoomb30f36451206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111888/3_2opasevzoomb30f36451206030na/3_2opasevzoomb30f36451206030na_seg.nii.gz"
+ },
+ {
+ "image": "107052/3_0opagelsqxbone34025120720115.nii.gz",
+ "pseudo_label": "107052/3_0opagelsqxbone34025120720115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107052/3_0opagelsqxbone34025120720115/3_0opagelsqxbone34025120720115_seg.nii.gz"
+ },
+ {
+ "image": "107052/2_0opagelsqxstandard34025120720115.nii.gz",
+ "pseudo_label": "107052/2_0opagelsqxstandard34025120720115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107052/2_0opagelsqxstandard34025120720115/2_0opagelsqxstandard34025120720115_seg.nii.gz"
+ },
+ {
+ "image": "102362/2_1opasesen16b50f36021204530na.nii.gz",
+ "pseudo_label": "102362/2_1opasesen16b50f36021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102362/2_1opasesen16b50f36021204530na/2_1opasesen16b50f36021204530na_seg.nii.gz"
+ },
+ {
+ "image": "102362/3_2opasevzoomb30f34021206030na.nii.gz",
+ "pseudo_label": "102362/3_2opasevzoomb30f34021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102362/3_2opasevzoomb30f34021206030na/3_2opasevzoomb30f34021206030na_seg.nii.gz"
+ },
+ {
+ "image": "100046/5_1opasevzoomb30f34451206030na.nii.gz",
+ "pseudo_label": "100046/5_1opasevzoomb30f34451206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100046/5_1opasevzoomb30f34451206030na/5_1opasevzoomb30f34451206030na_seg.nii.gz"
+ },
+ {
+ "image": "100046/4_2opasevzoomb50f35051206030na.nii.gz",
+ "pseudo_label": "100046/4_2opasevzoomb50f35051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100046/4_2opasevzoomb50f35051206030na/4_2opasevzoomb50f35051206030na_seg.nii.gz"
+ },
+ {
+ "image": "100046/5_0opasevzoomb30f35051206030na.nii.gz",
+ "pseudo_label": "100046/5_0opasevzoomb30f35051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100046/5_0opasevzoomb30f35051206030na/5_0opasevzoomb30f35051206030na_seg.nii.gz"
+ },
+ {
+ "image": "100046/6_2opasevzoomb30f35021206030na.nii.gz",
+ "pseudo_label": "100046/6_2opasevzoomb30f35021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100046/6_2opasevzoomb30f35021206030na/6_2opasevzoomb30f35021206030na_seg.nii.gz"
+ },
+ {
+ "image": "100046/4_0opasevzoomb50f35051206030na.nii.gz",
+ "pseudo_label": "100046/4_0opasevzoomb50f35051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100046/4_0opasevzoomb50f35051206030na/4_0opasevzoomb50f35051206030na_seg.nii.gz"
+ },
+ {
+ "image": "100046/6_0opasevzoomb30f35021206030na.nii.gz",
+ "pseudo_label": "100046/6_0opasevzoomb30f35021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100046/6_0opasevzoomb30f35021206030na/6_0opasevzoomb30f35021206030na_seg.nii.gz"
+ },
+ {
+ "image": "100046/5_2opasevzoomb30f35051206030na.nii.gz",
+ "pseudo_label": "100046/5_2opasevzoomb30f35051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100046/5_2opasevzoomb30f35051206030na/5_2opasevzoomb30f35051206030na_seg.nii.gz"
+ },
+ {
+ "image": "100046/4_1opasevzoomb50f34451206030na.nii.gz",
+ "pseudo_label": "100046/4_1opasevzoomb50f34451206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100046/4_1opasevzoomb50f34451206030na/4_1opasevzoomb50f34451206030na_seg.nii.gz"
+ },
+ {
+ "image": "102115/2_1opagehsqxstandard36025120560115.nii.gz",
+ "pseudo_label": "102115/2_1opagehsqxstandard36025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102115/2_1opagehsqxstandard36025120560115/2_1opagehsqxstandard36025120560115_seg.nii.gz"
+ },
+ {
+ "image": "102115/2_0opagehsqxstandard36025120560115.nii.gz",
+ "pseudo_label": "102115/2_0opagehsqxstandard36025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102115/2_0opagehsqxstandard36025120560115/2_0opagehsqxstandard36025120560115_seg.nii.gz"
+ },
+ {
+ "image": "102115/3_2opagehsqxstandard36025120560115.nii.gz",
+ "pseudo_label": "102115/3_2opagehsqxstandard36025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102115/3_2opagehsqxstandard36025120560115/3_2opagehsqxstandard36025120560115_seg.nii.gz"
+ },
+ {
+ "image": "102115/3_1opagehsqxbone36025120560115.nii.gz",
+ "pseudo_label": "102115/3_1opagehsqxbone36025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102115/3_1opagehsqxbone36025120560115/3_1opagehsqxbone36025120560115_seg.nii.gz"
+ },
+ {
+ "image": "103101/3_2opagehsqxbone38025120560115.nii.gz",
+ "pseudo_label": "103101/3_2opagehsqxbone38025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103101/3_2opagehsqxbone38025120560115/3_2opagehsqxbone38025120560115_seg.nii.gz"
+ },
+ {
+ "image": "103101/3_1opagehsqxbone38025120560115.nii.gz",
+ "pseudo_label": "103101/3_1opagehsqxbone38025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103101/3_1opagehsqxbone38025120560115/3_1opagehsqxbone38025120560115_seg.nii.gz"
+ },
+ {
+ "image": "103101/2_1opagehsqxstandard38025120560115.nii.gz",
+ "pseudo_label": "103101/2_1opagehsqxstandard38025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103101/2_1opagehsqxstandard38025120560115/2_1opagehsqxstandard38025120560115_seg.nii.gz"
+ },
+ {
+ "image": "103101/2_2opagehsqxstandard38025120560115.nii.gz",
+ "pseudo_label": "103101/2_2opagehsqxstandard38025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103101/2_2opagehsqxstandard38025120560115/2_2opagehsqxstandard38025120560115_seg.nii.gz"
+ },
+ {
+ "image": "102341/2_0opagelsqxstandard3062514048015.nii.gz",
+ "pseudo_label": "102341/2_0opagelsqxstandard3062514048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102341/2_0opagelsqxstandard3062514048015/2_0opagelsqxstandard3062514048015_seg.nii.gz"
+ },
+ {
+ "image": "102341/2_2opagelsqxstandard3102514048015.nii.gz",
+ "pseudo_label": "102341/2_2opagelsqxstandard3102514048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102341/2_2opagelsqxstandard3102514048015/2_2opagelsqxstandard3102514048015_seg.nii.gz"
+ },
+ {
+ "image": "104880/857_0opaphmx8000b2613212040nana.nii.gz",
+ "pseudo_label": "104880/857_0opaphmx8000b2613212040nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104880/857_0opaphmx8000b2613212040nana/857_0opaphmx8000b2613212040nana_seg.nii.gz"
+ },
+ {
+ "image": "104880/858_0opaphmx8000d2613212040nana.nii.gz",
+ "pseudo_label": "104880/858_0opaphmx8000d2613212040nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104880/858_0opaphmx8000d2613212040nana/858_0opaphmx8000d2613212040nana_seg.nii.gz"
+ },
+ {
+ "image": "104880/7727_1opaphmx8000a2703212040nana.nii.gz",
+ "pseudo_label": "104880/7727_1opaphmx8000a2703212040nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104880/7727_1opaphmx8000a2703212040nana/7727_1opaphmx8000a2703212040nana_seg.nii.gz"
+ },
+ {
+ "image": "104880/5620_2opaphmx8000d2703212040nana.nii.gz",
+ "pseudo_label": "104880/5620_2opaphmx8000d2703212040nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104880/5620_2opaphmx8000d2703212040nana/5620_2opaphmx8000d2703212040nana_seg.nii.gz"
+ },
+ {
+ "image": "104880/7728_1opaphmx8000c2703212040nana.nii.gz",
+ "pseudo_label": "104880/7728_1opaphmx8000c2703212040nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104880/7728_1opaphmx8000c2703212040nana/7728_1opaphmx8000c2703212040nana_seg.nii.gz"
+ },
+ {
+ "image": "104880/5619_2opaphmx8000a2703212040nana.nii.gz",
+ "pseudo_label": "104880/5619_2opaphmx8000a2703212040nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104880/5619_2opaphmx8000a2703212040nana/5619_2opaphmx8000a2703212040nana_seg.nii.gz"
+ },
+ {
+ "image": "109491/3_1opasevzoomb50f36021408040na.nii.gz",
+ "pseudo_label": "109491/3_1opasevzoomb50f36021408040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109491/3_1opasevzoomb50f36021408040na/3_1opasevzoomb50f36021408040na_seg.nii.gz"
+ },
+ {
+ "image": "109491/3_0opasevzoomb50f360212016080na.nii.gz",
+ "pseudo_label": "109491/3_0opasevzoomb50f360212016080na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109491/3_0opasevzoomb50f360212016080na/3_0opasevzoomb50f360212016080na_seg.nii.gz"
+ },
+ {
+ "image": "106808/2_2opagelsplusstandard36025140841nana.nii.gz",
+ "pseudo_label": "106808/2_2opagelsplusstandard36025140841nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106808/2_2opagelsplusstandard36025140841nana/2_2opagelsplusstandard36025140841nana_seg.nii.gz"
+ },
+ {
+ "image": "102663/2_1opagelsplusstandard3202514040015.nii.gz",
+ "pseudo_label": "102663/2_1opagelsplusstandard3202514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102663/2_1opagelsplusstandard3202514040015/2_1opagelsplusstandard3202514040015_seg.nii.gz"
+ },
+ {
+ "image": "102663/2_2opagelsplusstandard3202514040015.nii.gz",
+ "pseudo_label": "102663/2_2opagelsplusstandard3202514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102663/2_2opagelsplusstandard3202514040015/2_2opagelsplusstandard3202514040015_seg.nii.gz"
+ },
+ {
+ "image": "102663/2_0opagelsplusstandard3202514040015.nii.gz",
+ "pseudo_label": "102663/2_0opagelsplusstandard3202514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102663/2_0opagelsplusstandard3202514040015/2_0opagelsplusstandard3202514040015_seg.nii.gz"
+ },
+ {
+ "image": "100037/2_1opagels16standard32025120nanana.nii.gz",
+ "pseudo_label": "100037/2_1opagels16standard32025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100037/2_1opagels16standard32025120nanana/2_1opagels16standard32025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "100037/3_1opagels16bone32025120nanana.nii.gz",
+ "pseudo_label": "100037/3_1opagels16bone32025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100037/3_1opagels16bone32025120nanana/3_1opagels16bone32025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "100037/3_0opagelsqxbone32025120nanana.nii.gz",
+ "pseudo_label": "100037/3_0opagelsqxbone32025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100037/3_0opagelsqxbone32025120nanana/3_0opagelsqxbone32025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "100037/4_2opagels16standard32025120nanana.nii.gz",
+ "pseudo_label": "100037/4_2opagels16standard32025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100037/4_2opagels16standard32025120nanana/4_2opagels16standard32025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "107390/4_0opatoaqul4fc512812212040nana.nii.gz",
+ "pseudo_label": "107390/4_0opatoaqul4fc512812212040nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107390/4_0opatoaqul4fc512812212040nana/4_0opatoaqul4fc512812212040nana_seg.nii.gz"
+ },
+ {
+ "image": "105689/2_0opasevzoomb50f29221204020na.nii.gz",
+ "pseudo_label": "105689/2_0opasevzoomb50f29221204020na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105689/2_0opasevzoomb50f29221204020na/2_0opasevzoomb50f29221204020na_seg.nii.gz"
+ },
+ {
+ "image": "102222/0_0opaphmx8000c36132120600112.nii.gz",
+ "pseudo_label": "102222/0_0opaphmx8000c36132120600112.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102222/0_0opaphmx8000c36132120600112/0_0opaphmx8000c36132120600112_seg.nii.gz"
+ },
+ {
+ "image": "102222/4495_2opaphmx8000c3263212041018.nii.gz",
+ "pseudo_label": "102222/4495_2opaphmx8000c3263212041018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102222/4495_2opaphmx8000c3263212041018/4495_2opaphmx8000c3263212041018_seg.nii.gz"
+ },
+ {
+ "image": "111964/2_2opagelspr16bone36025120560114.nii.gz",
+ "pseudo_label": "111964/2_2opagelspr16bone36025120560114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111964/2_2opagelspr16bone36025120560114/2_2opagelspr16bone36025120560114_seg.nii.gz"
+ },
+ {
+ "image": "111964/2_1opagels16bone3602512040014.nii.gz",
+ "pseudo_label": "111964/2_1opagels16bone3602512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111964/2_1opagels16bone3602512040014/2_1opagels16bone3602512040014_seg.nii.gz"
+ },
+ {
+ "image": "106098/2_2opagelsplusstandard34025140908nana.nii.gz",
+ "pseudo_label": "106098/2_2opagelsplusstandard34025140908nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106098/2_2opagelsplusstandard34025140908nana/2_2opagelsplusstandard34025140908nana_seg.nii.gz"
+ },
+ {
+ "image": "106098/2_1opagelsqxstandard3702514040015.nii.gz",
+ "pseudo_label": "106098/2_1opagelsqxstandard3702514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106098/2_1opagelsqxstandard3702514040015/2_1opagelsqxstandard3702514040015_seg.nii.gz"
+ },
+ {
+ "image": "106098/2_0opagelsplusstandard3402514040015.nii.gz",
+ "pseudo_label": "106098/2_0opagelsplusstandard3402514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106098/2_0opagelsplusstandard3402514040015/2_0opagelsplusstandard3402514040015_seg.nii.gz"
+ },
+ {
+ "image": "104916/3_2opatoaqul4fc513078212060nana.nii.gz",
+ "pseudo_label": "104916/3_2opatoaqul4fc513078212060nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104916/3_2opatoaqul4fc513078212060nana/3_2opatoaqul4fc513078212060nana_seg.nii.gz"
+ },
+ {
+ "image": "104916/3_0opatoaqul4fc513031212060nana.nii.gz",
+ "pseudo_label": "104916/3_0opatoaqul4fc513031212060nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104916/3_0opatoaqul4fc513031212060nana/3_0opatoaqul4fc513031212060nana_seg.nii.gz"
+ },
+ {
+ "image": "107185/2_0opagelsqxstandard2702512048015.nii.gz",
+ "pseudo_label": "107185/2_0opagelsqxstandard2702512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107185/2_0opagelsqxstandard2702512048015/2_0opagelsqxstandard2702512048015_seg.nii.gz"
+ },
+ {
+ "image": "107185/2_1opagelsqxstandard3002512048015.nii.gz",
+ "pseudo_label": "107185/2_1opagelsqxstandard3002512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107185/2_1opagelsqxstandard3002512048015/2_1opagelsqxstandard3002512048015_seg.nii.gz"
+ },
+ {
+ "image": "111466/3_1opagels16standard2952512040014.nii.gz",
+ "pseudo_label": "111466/3_1opagels16standard2952512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111466/3_1opagels16standard2952512040014/3_1opagels16standard2952512040014_seg.nii.gz"
+ },
+ {
+ "image": "111466/2_1opagels16bone2952512040014.nii.gz",
+ "pseudo_label": "111466/2_1opagels16bone2952512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111466/2_1opagels16bone2952512040014/2_1opagels16bone2952512040014_seg.nii.gz"
+ },
+ {
+ "image": "111466/2_2opagelspr16bone2802512048014.nii.gz",
+ "pseudo_label": "111466/2_2opagelspr16bone2802512048014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111466/2_2opagelspr16bone2802512048014/2_2opagelspr16bone2802512048014_seg.nii.gz"
+ },
+ {
+ "image": "111466/2_0opagelsqxbone2902512048015.nii.gz",
+ "pseudo_label": "111466/2_0opagelsqxbone2902512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111466/2_0opagelsqxbone2902512048015/2_0opagelsqxbone2902512048015_seg.nii.gz"
+ },
+ {
+ "image": "111466/3_0opagelsqxstandard2902512048015.nii.gz",
+ "pseudo_label": "111466/3_0opagelsqxstandard2902512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111466/3_0opagelsqxstandard2902512048015/3_0opagelsqxstandard2902512048015_seg.nii.gz"
+ },
+ {
+ "image": "104279/2_0opasevzoomb50f27821208040na.nii.gz",
+ "pseudo_label": "104279/2_0opasevzoomb50f27821208040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104279/2_0opasevzoomb50f27821208040na/2_0opasevzoomb50f27821208040na_seg.nii.gz"
+ },
+ {
+ "image": "104279/3_1opasevzoomb30f27621206030na.nii.gz",
+ "pseudo_label": "104279/3_1opasevzoomb30f27621206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104279/3_1opasevzoomb30f27621206030na/3_1opasevzoomb30f27621206030na_seg.nii.gz"
+ },
+ {
+ "image": "104271/3_2opagels16standard35025140600114.nii.gz",
+ "pseudo_label": "104271/3_2opagels16standard35025140600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104271/3_2opagels16standard35025140600114/3_2opagels16standard35025140600114_seg.nii.gz"
+ },
+ {
+ "image": "102297/5_2opasesen16b50f34051204530na.nii.gz",
+ "pseudo_label": "102297/5_2opasesen16b50f34051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102297/5_2opasesen16b50f34051204530na/5_2opasesen16b50f34051204530na_seg.nii.gz"
+ },
+ {
+ "image": "102297/4_0opasevzoomb50f38051206030na.nii.gz",
+ "pseudo_label": "102297/4_0opasevzoomb50f38051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102297/4_0opasevzoomb50f38051206030na/4_0opasevzoomb50f38051206030na_seg.nii.gz"
+ },
+ {
+ "image": "102297/3_0opasevzoomb30f38051206030na.nii.gz",
+ "pseudo_label": "102297/3_0opasevzoomb30f38051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102297/3_0opasevzoomb30f38051206030na/3_0opasevzoomb30f38051206030na_seg.nii.gz"
+ },
+ {
+ "image": "102297/3_1opasesen16b30f34051204530na.nii.gz",
+ "pseudo_label": "102297/3_1opasesen16b30f34051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102297/3_1opasesen16b30f34051204530na/3_1opasesen16b30f34051204530na_seg.nii.gz"
+ },
+ {
+ "image": "102297/5_1opasesen16b50f34051204530na.nii.gz",
+ "pseudo_label": "102297/5_1opasesen16b50f34051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102297/5_1opasesen16b50f34051204530na/5_1opasesen16b50f34051204530na_seg.nii.gz"
+ },
+ {
+ "image": "102297/6_1opasesen16b50f34021204530na.nii.gz",
+ "pseudo_label": "102297/6_1opasesen16b50f34021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102297/6_1opasesen16b50f34021204530na/6_1opasesen16b50f34021204530na_seg.nii.gz"
+ },
+ {
+ "image": "100938/4_1opasevzoomb50f36351206030na.nii.gz",
+ "pseudo_label": "100938/4_1opasevzoomb50f36351206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100938/4_1opasevzoomb50f36351206030na/4_1opasevzoomb50f36351206030na_seg.nii.gz"
+ },
+ {
+ "image": "100938/6_0opasesen16b50f32851206040na.nii.gz",
+ "pseudo_label": "100938/6_0opasesen16b50f32851206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100938/6_0opasesen16b50f32851206040na/6_0opasesen16b50f32851206040na_seg.nii.gz"
+ },
+ {
+ "image": "100938/5_0opasesen16b50f32821206040na.nii.gz",
+ "pseudo_label": "100938/5_0opasesen16b50f32821206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100938/5_0opasesen16b50f32821206040na/5_0opasesen16b50f32821206040na_seg.nii.gz"
+ },
+ {
+ "image": "100938/6_1opasevzoomb30f36321206030na.nii.gz",
+ "pseudo_label": "100938/6_1opasevzoomb30f36321206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100938/6_1opasevzoomb30f36321206030na/6_1opasevzoomb30f36321206030na_seg.nii.gz"
+ },
+ {
+ "image": "100938/3_2opasevzoomb30f31051206030na.nii.gz",
+ "pseudo_label": "100938/3_2opasevzoomb30f31051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100938/3_2opasevzoomb30f31051206030na/3_2opasevzoomb30f31051206030na_seg.nii.gz"
+ },
+ {
+ "image": "100938/3_0opasesen16b30f32851206040na.nii.gz",
+ "pseudo_label": "100938/3_0opasesen16b30f32851206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100938/3_0opasesen16b30f32851206040na/3_0opasesen16b30f32851206040na_seg.nii.gz"
+ },
+ {
+ "image": "100938/7_0opasesen16b30f32821206040na.nii.gz",
+ "pseudo_label": "100938/7_0opasesen16b30f32821206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100938/7_0opasesen16b30f32821206040na/7_0opasesen16b30f32821206040na_seg.nii.gz"
+ },
+ {
+ "image": "100938/6_2opasevzoomb30f31021206030na.nii.gz",
+ "pseudo_label": "100938/6_2opasevzoomb30f31021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100938/6_2opasevzoomb30f31021206030na/6_2opasevzoomb30f31021206030na_seg.nii.gz"
+ },
+ {
+ "image": "100938/4_2opasevzoomb50f31051206030na.nii.gz",
+ "pseudo_label": "100938/4_2opasevzoomb50f31051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100938/4_2opasevzoomb50f31051206030na/4_2opasevzoomb50f31051206030na_seg.nii.gz"
+ },
+ {
+ "image": "100938/5_2opasevzoomb50f31021206030na.nii.gz",
+ "pseudo_label": "100938/5_2opasevzoomb50f31021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100938/5_2opasevzoomb50f31021206030na/5_2opasevzoomb50f31021206030na_seg.nii.gz"
+ },
+ {
+ "image": "100938/3_1opasevzoomb30f36351206030na.nii.gz",
+ "pseudo_label": "100938/3_1opasevzoomb30f36351206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100938/3_1opasevzoomb30f36351206030na/3_1opasevzoomb30f36351206030na_seg.nii.gz"
+ },
+ {
+ "image": "110994/1_1opagelspluslung31025120800115.nii.gz",
+ "pseudo_label": "110994/1_1opagelspluslung31025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110994/1_1opagelspluslung31025120800115/1_1opagelspluslung31025120800115_seg.nii.gz"
+ },
+ {
+ "image": "110994/1_0opagelspluslung3102512010250115.nii.gz",
+ "pseudo_label": "110994/1_0opagelspluslung3102512010250115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110994/1_0opagelspluslung3102512010250115/1_0opagelspluslung3102512010250115_seg.nii.gz"
+ },
+ {
+ "image": "110994/1_0opagelsplusstandard3102512010250115.nii.gz",
+ "pseudo_label": "110994/1_0opagelsplusstandard3102512010250115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110994/1_0opagelsplusstandard3102512010250115/1_0opagelsplusstandard3102512010250115_seg.nii.gz"
+ },
+ {
+ "image": "108903/2_1opagelsqxstandard28025140400na.nii.gz",
+ "pseudo_label": "108903/2_1opagelsqxstandard28025140400na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108903/2_1opagelsqxstandard28025140400na/2_1opagelsqxstandard28025140400na_seg.nii.gz"
+ },
+ {
+ "image": "108903/2_0opagelsplusstandard28025140400na.nii.gz",
+ "pseudo_label": "108903/2_0opagelsplusstandard28025140400na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108903/2_0opagelsplusstandard28025140400na/2_0opagelsplusstandard28025140400na_seg.nii.gz"
+ },
+ {
+ "image": "108293/2_1opagehsqxstandard36025120560115.nii.gz",
+ "pseudo_label": "108293/2_1opagehsqxstandard36025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108293/2_1opagehsqxstandard36025120560115/2_1opagehsqxstandard36025120560115_seg.nii.gz"
+ },
+ {
+ "image": "108293/2_2opagehsqxstandard36025120560115.nii.gz",
+ "pseudo_label": "108293/2_2opagehsqxstandard36025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108293/2_2opagehsqxstandard36025120560115/2_2opagehsqxstandard36025120560115_seg.nii.gz"
+ },
+ {
+ "image": "108293/2_0opagehsqxstandard36025120560115.nii.gz",
+ "pseudo_label": "108293/2_0opagehsqxstandard36025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108293/2_0opagehsqxstandard36025120560115/2_0opagehsqxstandard36025120560115_seg.nii.gz"
+ },
+ {
+ "image": "108293/3_1opagehsqxbone36025120560115.nii.gz",
+ "pseudo_label": "108293/3_1opagehsqxbone36025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108293/3_1opagehsqxbone36025120560115/3_1opagehsqxbone36025120560115_seg.nii.gz"
+ },
+ {
+ "image": "112651/2_0opagelsplusstandard3002514040015.nii.gz",
+ "pseudo_label": "112651/2_0opagelsplusstandard3002514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112651/2_0opagelsplusstandard3002514040015/2_0opagelsplusstandard3002514040015_seg.nii.gz"
+ },
+ {
+ "image": "112651/2_2opagelsplusstandard32025140808nana.nii.gz",
+ "pseudo_label": "112651/2_2opagelsplusstandard32025140808nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112651/2_2opagelsplusstandard32025140808nana/2_2opagelsplusstandard32025140808nana_seg.nii.gz"
+ },
+ {
+ "image": "108515/3_0opagelsqxbone29025120560115.nii.gz",
+ "pseudo_label": "108515/3_0opagelsqxbone29025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108515/3_0opagelsqxbone29025120560115/3_0opagelsqxbone29025120560115_seg.nii.gz"
+ },
+ {
+ "image": "108515/2_1opagelsqxstandard27925120560115.nii.gz",
+ "pseudo_label": "108515/2_1opagelsqxstandard27925120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108515/2_1opagelsqxstandard27925120560115/2_1opagelsqxstandard27925120560115_seg.nii.gz"
+ },
+ {
+ "image": "108515/2_2opagelsqxstandard27925120640115.nii.gz",
+ "pseudo_label": "108515/2_2opagelsqxstandard27925120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108515/2_2opagelsqxstandard27925120640115/2_2opagelsqxstandard27925120640115_seg.nii.gz"
+ },
+ {
+ "image": "108515/2_0opagelsqxstandard29025120560115.nii.gz",
+ "pseudo_label": "108515/2_0opagelsqxstandard29025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108515/2_0opagelsqxstandard29025120560115/2_0opagelsqxstandard29025120560115_seg.nii.gz"
+ },
+ {
+ "image": "108515/3_2opagelsqxbone27925120640115.nii.gz",
+ "pseudo_label": "108515/3_2opagelsqxbone27925120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108515/3_2opagelsqxbone27925120640115/3_2opagelsqxbone27925120640115_seg.nii.gz"
+ },
+ {
+ "image": "108163/3_1opatoaqul4fc513262212040nana.nii.gz",
+ "pseudo_label": "108163/3_1opatoaqul4fc513262212040nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108163/3_1opatoaqul4fc513262212040nana/3_1opatoaqul4fc513262212040nana_seg.nii.gz"
+ },
+ {
+ "image": "108163/5_2opatoaqul4fc513094212050nana.nii.gz",
+ "pseudo_label": "108163/5_2opatoaqul4fc513094212050nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108163/5_2opatoaqul4fc513094212050nana/5_2opatoaqul4fc513094212050nana_seg.nii.gz"
+ },
+ {
+ "image": "108948/3_2opatoaqul4fc513094212060nana.nii.gz",
+ "pseudo_label": "108948/3_2opatoaqul4fc513094212060nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108948/3_2opatoaqul4fc513094212060nana/3_2opatoaqul4fc513094212060nana_seg.nii.gz"
+ },
+ {
+ "image": "102544/2_0opasevzoomb50f27021206030na.nii.gz",
+ "pseudo_label": "102544/2_0opasevzoomb50f27021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102544/2_0opasevzoomb50f27021206030na/2_0opasevzoomb50f27021206030na_seg.nii.gz"
+ },
+ {
+ "image": "102544/2_2opasevzoomb50f28021206030na.nii.gz",
+ "pseudo_label": "102544/2_2opasevzoomb50f28021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102544/2_2opasevzoomb50f28021206030na/2_2opasevzoomb50f28021206030na_seg.nii.gz"
+ },
+ {
+ "image": "107321/4_0opasesen16b30f30051206040na.nii.gz",
+ "pseudo_label": "107321/4_0opasesen16b30f30051206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107321/4_0opasesen16b30f30051206040na/4_0opasesen16b30f30051206040na_seg.nii.gz"
+ },
+ {
+ "image": "107321/3_2opasesen16b30f27051204530na.nii.gz",
+ "pseudo_label": "107321/3_2opasesen16b30f27051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107321/3_2opasesen16b30f27051204530na/3_2opasesen16b30f27051204530na_seg.nii.gz"
+ },
+ {
+ "image": "107321/7_0opasesen16b30f30021206040na.nii.gz",
+ "pseudo_label": "107321/7_0opasesen16b30f30021206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107321/7_0opasesen16b30f30021206040na/7_0opasesen16b30f30021206040na_seg.nii.gz"
+ },
+ {
+ "image": "107321/6_2opasesen16b50f30051204530na.nii.gz",
+ "pseudo_label": "107321/6_2opasesen16b50f30051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107321/6_2opasesen16b50f30051204530na/6_2opasesen16b50f30051204530na_seg.nii.gz"
+ },
+ {
+ "image": "107321/4_2opasesen16b30f30051204530na.nii.gz",
+ "pseudo_label": "107321/4_2opasesen16b30f30051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107321/4_2opasesen16b30f30051204530na/4_2opasesen16b30f30051204530na_seg.nii.gz"
+ },
+ {
+ "image": "107321/7_1opasesen16b50f32721204530na.nii.gz",
+ "pseudo_label": "107321/7_1opasesen16b50f32721204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107321/7_1opasesen16b50f32721204530na/7_1opasesen16b50f32721204530na_seg.nii.gz"
+ },
+ {
+ "image": "107321/11_0opasesen16b50f30051206040na.nii.gz",
+ "pseudo_label": "107321/11_0opasesen16b50f30051206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107321/11_0opasesen16b50f30051206040na/11_0opasesen16b50f30051206040na_seg.nii.gz"
+ },
+ {
+ "image": "107321/5_1opasesen16b50f32751204530na.nii.gz",
+ "pseudo_label": "107321/5_1opasesen16b50f32751204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107321/5_1opasesen16b50f32751204530na/5_1opasesen16b50f32751204530na_seg.nii.gz"
+ },
+ {
+ "image": "107321/3_0opasesen16b30f30051206040na.nii.gz",
+ "pseudo_label": "107321/3_0opasesen16b30f30051206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107321/3_0opasesen16b30f30051206040na/3_0opasesen16b30f30051206040na_seg.nii.gz"
+ },
+ {
+ "image": "107321/6_1opasesen16b30f32751204530na.nii.gz",
+ "pseudo_label": "107321/6_1opasesen16b30f32751204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107321/6_1opasesen16b30f32751204530na/6_1opasesen16b30f32751204530na_seg.nii.gz"
+ },
+ {
+ "image": "107321/3_1opasesen16b30f30051204530na.nii.gz",
+ "pseudo_label": "107321/3_1opasesen16b30f30051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107321/3_1opasesen16b30f30051204530na/3_1opasesen16b30f30051204530na_seg.nii.gz"
+ },
+ {
+ "image": "107321/10_0opasesen16b50f30051206040na.nii.gz",
+ "pseudo_label": "107321/10_0opasesen16b50f30051206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107321/10_0opasesen16b50f30051206040na/10_0opasesen16b50f30051206040na_seg.nii.gz"
+ },
+ {
+ "image": "107321/9_0opasesen16b50f30021206040na.nii.gz",
+ "pseudo_label": "107321/9_0opasesen16b50f30021206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107321/9_0opasesen16b50f30021206040na/9_0opasesen16b50f30021206040na_seg.nii.gz"
+ },
+ {
+ "image": "105578/3_2opagelsqxstandard3272514040015.nii.gz",
+ "pseudo_label": "105578/3_2opagelsqxstandard3272514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105578/3_2opagelsqxstandard3272514040015/3_2opagelsqxstandard3272514040015_seg.nii.gz"
+ },
+ {
+ "image": "105578/2_2opagelsqxstandard3272514040015.nii.gz",
+ "pseudo_label": "105578/2_2opagelsqxstandard3272514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105578/2_2opagelsqxstandard3272514040015/2_2opagelsqxstandard3272514040015_seg.nii.gz"
+ },
+ {
+ "image": "105578/2_0opagelsqxstandard3402514040015.nii.gz",
+ "pseudo_label": "105578/2_0opagelsqxstandard3402514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105578/2_0opagelsqxstandard3402514040015/2_0opagelsqxstandard3402514040015_seg.nii.gz"
+ },
+ {
+ "image": "108598/2_2opagelsqxstandard36025120640115.nii.gz",
+ "pseudo_label": "108598/2_2opagelsqxstandard36025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108598/2_2opagelsqxstandard36025120640115/2_2opagelsqxstandard36025120640115_seg.nii.gz"
+ },
+ {
+ "image": "108598/3_0opagelsqxbone36025120560115.nii.gz",
+ "pseudo_label": "108598/3_0opagelsqxbone36025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108598/3_0opagelsqxbone36025120560115/3_0opagelsqxbone36025120560115_seg.nii.gz"
+ },
+ {
+ "image": "108598/3_1opagelsqxbone36025120640115.nii.gz",
+ "pseudo_label": "108598/3_1opagelsqxbone36025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108598/3_1opagelsqxbone36025120640115/3_1opagelsqxbone36025120640115_seg.nii.gz"
+ },
+ {
+ "image": "108598/3_2opagelsqxbone36025120640115.nii.gz",
+ "pseudo_label": "108598/3_2opagelsqxbone36025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108598/3_2opagelsqxbone36025120640115/3_2opagelsqxbone36025120640115_seg.nii.gz"
+ },
+ {
+ "image": "108598/2_1opagelsqxstandard37525120640115.nii.gz",
+ "pseudo_label": "108598/2_1opagelsqxstandard37525120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108598/2_1opagelsqxstandard37525120640115/2_1opagelsqxstandard37525120640115_seg.nii.gz"
+ },
+ {
+ "image": "108598/2_0opagelsqxstandard36025120560115.nii.gz",
+ "pseudo_label": "108598/2_0opagelsqxstandard36025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108598/2_0opagelsqxstandard36025120560115/2_0opagelsqxstandard36025120560115_seg.nii.gz"
+ },
+ {
+ "image": "105814/2_1opasevzoomb30f42021407540na.nii.gz",
+ "pseudo_label": "105814/2_1opasevzoomb30f42021407540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105814/2_1opasevzoomb30f42021407540na/2_1opasevzoomb30f42021407540na_seg.nii.gz"
+ },
+ {
+ "image": "105814/3_1opasevzoomb50f42021407540na.nii.gz",
+ "pseudo_label": "105814/3_1opasevzoomb50f42021407540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105814/3_1opasevzoomb50f42021407540na/3_1opasevzoomb50f42021407540na_seg.nii.gz"
+ },
+ {
+ "image": "105814/3_0opasevzoomb50f37021207540na.nii.gz",
+ "pseudo_label": "105814/3_0opasevzoomb50f37021207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105814/3_0opasevzoomb50f37021207540na/3_0opasevzoomb50f37021207540na_seg.nii.gz"
+ },
+ {
+ "image": "105814/2_0opasevzoomb30f37021207540na.nii.gz",
+ "pseudo_label": "105814/2_0opasevzoomb30f37021207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105814/2_0opasevzoomb30f37021207540na/2_0opasevzoomb30f37021207540na_seg.nii.gz"
+ },
+ {
+ "image": "104516/2_2opagelsplusstandard36025140400na.nii.gz",
+ "pseudo_label": "104516/2_2opagelsplusstandard36025140400na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104516/2_2opagelsplusstandard36025140400na/2_2opagelsplusstandard36025140400na_seg.nii.gz"
+ },
+ {
+ "image": "104516/2_0opagelsplusstandard32025140400na.nii.gz",
+ "pseudo_label": "104516/2_0opagelsplusstandard32025140400na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104516/2_0opagelsplusstandard32025140400na/2_0opagelsplusstandard32025140400na_seg.nii.gz"
+ },
+ {
+ "image": "104516/2_1opagelsplusstandard35025140400na.nii.gz",
+ "pseudo_label": "104516/2_1opagelsplusstandard35025140400na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104516/2_1opagelsplusstandard35025140400na/2_1opagelsplusstandard35025140400na_seg.nii.gz"
+ },
+ {
+ "image": "101400/5_0opasevzoomb30f34021206030na.nii.gz",
+ "pseudo_label": "101400/5_0opasevzoomb30f34021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101400/5_0opasevzoomb30f34021206030na/5_0opasevzoomb30f34021206030na_seg.nii.gz"
+ },
+ {
+ "image": "101400/2_2opasesen16b50f36021204530na.nii.gz",
+ "pseudo_label": "101400/2_2opasesen16b50f36021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101400/2_2opasesen16b50f36021204530na/2_2opasesen16b50f36021204530na_seg.nii.gz"
+ },
+ {
+ "image": "101400/3_0opasevzoomb50f34021206030na.nii.gz",
+ "pseudo_label": "101400/3_0opasevzoomb50f34021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101400/3_0opasevzoomb50f34021206030na/3_0opasevzoomb50f34021206030na_seg.nii.gz"
+ },
+ {
+ "image": "104954/2_1opagels16bone34025120600114.nii.gz",
+ "pseudo_label": "104954/2_1opagels16bone34025120600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104954/2_1opagels16bone34025120600114/2_1opagels16bone34025120600114_seg.nii.gz"
+ },
+ {
+ "image": "104954/2_2opagels16bone36025120720114.nii.gz",
+ "pseudo_label": "104954/2_2opagels16bone36025120720114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104954/2_2opagels16bone36025120720114/2_2opagels16bone36025120720114_seg.nii.gz"
+ },
+ {
+ "image": "107667/3_0opagelsqxbone30225120720115.nii.gz",
+ "pseudo_label": "107667/3_0opagelsqxbone30225120720115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107667/3_0opagelsqxbone30225120720115/3_0opagelsqxbone30225120720115_seg.nii.gz"
+ },
+ {
+ "image": "107667/3_2opagelsqxbone33525120720115.nii.gz",
+ "pseudo_label": "107667/3_2opagelsqxbone33525120720115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107667/3_2opagelsqxbone33525120720115/3_2opagelsqxbone33525120720115_seg.nii.gz"
+ },
+ {
+ "image": "107667/2_2opagelsqxstandard33525120720115.nii.gz",
+ "pseudo_label": "107667/2_2opagelsqxstandard33525120720115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107667/2_2opagelsqxstandard33525120720115/2_2opagelsqxstandard33525120720115_seg.nii.gz"
+ },
+ {
+ "image": "107667/2_1opagelsqxstandard31025120720115.nii.gz",
+ "pseudo_label": "107667/2_1opagelsqxstandard31025120720115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107667/2_1opagelsqxstandard31025120720115/2_1opagelsqxstandard31025120720115_seg.nii.gz"
+ },
+ {
+ "image": "107667/2_0opagelsqxstandard30225120720115.nii.gz",
+ "pseudo_label": "107667/2_0opagelsqxstandard30225120720115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107667/2_0opagelsqxstandard30225120720115/2_0opagelsqxstandard30225120720115_seg.nii.gz"
+ },
+ {
+ "image": "111605/1_1opagelsplusstandard36025120800115.nii.gz",
+ "pseudo_label": "111605/1_1opagelsplusstandard36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111605/1_1opagelsplusstandard36025120800115/1_1opagelsplusstandard36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "111605/1_1opagelspluslung36025120800115.nii.gz",
+ "pseudo_label": "111605/1_1opagelspluslung36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111605/1_1opagelspluslung36025120800115/1_1opagelspluslung36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "107117/5_2opasevzoomb30f34051206030na.nii.gz",
+ "pseudo_label": "107117/5_2opasevzoomb30f34051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107117/5_2opasevzoomb30f34051206030na/5_2opasevzoomb30f34051206030na_seg.nii.gz"
+ },
+ {
+ "image": "107117/4_2opasevzoomb50f34051206030na.nii.gz",
+ "pseudo_label": "107117/4_2opasevzoomb50f34051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107117/4_2opasevzoomb50f34051206030na/4_2opasevzoomb50f34051206030na_seg.nii.gz"
+ },
+ {
+ "image": "107117/3_1opasevzoomb30f30851206030na.nii.gz",
+ "pseudo_label": "107117/3_1opasevzoomb30f30851206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107117/3_1opasevzoomb30f30851206030na/3_1opasevzoomb30f30851206030na_seg.nii.gz"
+ },
+ {
+ "image": "107117/3_0opasevzoomb30f38051206030na.nii.gz",
+ "pseudo_label": "107117/3_0opasevzoomb30f38051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107117/3_0opasevzoomb30f38051206030na/3_0opasevzoomb30f38051206030na_seg.nii.gz"
+ },
+ {
+ "image": "107117/4_1opasevzoomb50f30851206030na.nii.gz",
+ "pseudo_label": "107117/4_1opasevzoomb50f30851206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107117/4_1opasevzoomb50f30851206030na/4_1opasevzoomb50f30851206030na_seg.nii.gz"
+ },
+ {
+ "image": "107117/5_0opasevzoomb50f38021206030na.nii.gz",
+ "pseudo_label": "107117/5_0opasevzoomb50f38021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107117/5_0opasevzoomb50f38021206030na/5_0opasevzoomb50f38021206030na_seg.nii.gz"
+ },
+ {
+ "image": "104744/3_1opagehsqxbone35025120560115.nii.gz",
+ "pseudo_label": "104744/3_1opagehsqxbone35025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104744/3_1opagehsqxbone35025120560115/3_1opagehsqxbone35025120560115_seg.nii.gz"
+ },
+ {
+ "image": "104744/2_1opagehsqxstandard35025120560115.nii.gz",
+ "pseudo_label": "104744/2_1opagehsqxstandard35025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104744/2_1opagehsqxstandard35025120560115/2_1opagehsqxstandard35025120560115_seg.nii.gz"
+ },
+ {
+ "image": "104744/3_2opagehsqxbone35025120560115.nii.gz",
+ "pseudo_label": "104744/3_2opagehsqxbone35025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104744/3_2opagehsqxbone35025120560115/3_2opagehsqxbone35025120560115_seg.nii.gz"
+ },
+ {
+ "image": "108674/2_0opagehsqxstandard30025120560115.nii.gz",
+ "pseudo_label": "108674/2_0opagehsqxstandard30025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108674/2_0opagehsqxstandard30025120560115/2_0opagehsqxstandard30025120560115_seg.nii.gz"
+ },
+ {
+ "image": "108674/2_1opagehsqxstandard30025120560115.nii.gz",
+ "pseudo_label": "108674/2_1opagehsqxstandard30025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108674/2_1opagehsqxstandard30025120560115/2_1opagehsqxstandard30025120560115_seg.nii.gz"
+ },
+ {
+ "image": "108674/2_2opagehsqxstandard30025120560115.nii.gz",
+ "pseudo_label": "108674/2_2opagehsqxstandard30025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108674/2_2opagehsqxstandard30025120560115/2_2opagehsqxstandard30025120560115_seg.nii.gz"
+ },
+ {
+ "image": "108674/3_0opagehsqxbone30025120560115.nii.gz",
+ "pseudo_label": "108674/3_0opagehsqxbone30025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108674/3_0opagehsqxbone30025120560115/3_0opagehsqxbone30025120560115_seg.nii.gz"
+ },
+ {
+ "image": "107525/2_1opagels16bone3302512000na.nii.gz",
+ "pseudo_label": "107525/2_1opagels16bone3302512000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107525/2_1opagels16bone3302512000na/2_1opagels16bone3302512000na_seg.nii.gz"
+ },
+ {
+ "image": "107525/3_2opagelspr16standard33025120560114.nii.gz",
+ "pseudo_label": "107525/3_2opagelspr16standard33025120560114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107525/3_2opagelspr16standard33025120560114/3_2opagelspr16standard33025120560114_seg.nii.gz"
+ },
+ {
+ "image": "107525/2_2opagelspr16bone33025120560114.nii.gz",
+ "pseudo_label": "107525/2_2opagelspr16bone33025120560114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107525/2_2opagelspr16bone33025120560114/2_2opagelspr16bone33025120560114_seg.nii.gz"
+ },
+ {
+ "image": "107525/3_0opagelsqxstandard3602512048015.nii.gz",
+ "pseudo_label": "107525/3_0opagelsqxstandard3602512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107525/3_0opagelsqxstandard3602512048015/3_0opagelsqxstandard3602512048015_seg.nii.gz"
+ },
+ {
+ "image": "107525/3_1opagels16standard3302512000na.nii.gz",
+ "pseudo_label": "107525/3_1opagels16standard3302512000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107525/3_1opagels16standard3302512000na/3_1opagels16standard3302512000na_seg.nii.gz"
+ },
+ {
+ "image": "102878/3_0opasevzoomb50f340212010560na.nii.gz",
+ "pseudo_label": "102878/3_0opasevzoomb50f340212010560na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102878/3_0opasevzoomb50f340212010560na/3_0opasevzoomb50f340212010560na_seg.nii.gz"
+ },
+ {
+ "image": "102878/2_2opasevzoomb30f36021207540na.nii.gz",
+ "pseudo_label": "102878/2_2opasevzoomb30f36021207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102878/2_2opasevzoomb30f36021207540na/2_2opasevzoomb30f36021207540na_seg.nii.gz"
+ },
+ {
+ "image": "104191/5_2opasevzoomb30f34051206030na.nii.gz",
+ "pseudo_label": "104191/5_2opasevzoomb30f34051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104191/5_2opasevzoomb30f34051206030na/5_2opasevzoomb30f34051206030na_seg.nii.gz"
+ },
+ {
+ "image": "104191/4_2opasevzoomb50f34051206030na.nii.gz",
+ "pseudo_label": "104191/4_2opasevzoomb50f34051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104191/4_2opasevzoomb50f34051206030na/4_2opasevzoomb50f34051206030na_seg.nii.gz"
+ },
+ {
+ "image": "104191/6_2opasevzoomb30f34021206030na.nii.gz",
+ "pseudo_label": "104191/6_2opasevzoomb30f34021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104191/6_2opasevzoomb30f34021206030na/6_2opasevzoomb30f34021206030na_seg.nii.gz"
+ },
+ {
+ "image": "104191/5_1opasevzoomb30f34051206030na.nii.gz",
+ "pseudo_label": "104191/5_1opasevzoomb30f34051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104191/5_1opasevzoomb30f34051206030na/5_1opasevzoomb30f34051206030na_seg.nii.gz"
+ },
+ {
+ "image": "104191/4_0opasevzoomb50f36251206030na.nii.gz",
+ "pseudo_label": "104191/4_0opasevzoomb50f36251206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104191/4_0opasevzoomb50f36251206030na/4_0opasevzoomb50f36251206030na_seg.nii.gz"
+ },
+ {
+ "image": "104191/3_2opasevzoomb50f34021206030na.nii.gz",
+ "pseudo_label": "104191/3_2opasevzoomb50f34021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104191/3_2opasevzoomb50f34021206030na/3_2opasevzoomb50f34021206030na_seg.nii.gz"
+ },
+ {
+ "image": "104191/5_0opasevzoomb30f36251206030na.nii.gz",
+ "pseudo_label": "104191/5_0opasevzoomb30f36251206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104191/5_0opasevzoomb30f36251206030na/5_0opasevzoomb30f36251206030na_seg.nii.gz"
+ },
+ {
+ "image": "104191/4_1opasevzoomb50f34051206030na.nii.gz",
+ "pseudo_label": "104191/4_1opasevzoomb50f34051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104191/4_1opasevzoomb50f34051206030na/4_1opasevzoomb50f34051206030na_seg.nii.gz"
+ },
+ {
+ "image": "109112/3_1opasesen16b30f30351204530na.nii.gz",
+ "pseudo_label": "109112/3_1opasesen16b30f30351204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109112/3_1opasesen16b30f30351204530na/3_1opasesen16b30f30351204530na_seg.nii.gz"
+ },
+ {
+ "image": "109112/3_2opasesen16b30f27051204530na.nii.gz",
+ "pseudo_label": "109112/3_2opasesen16b30f27051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109112/3_2opasesen16b30f27051204530na/3_2opasesen16b30f27051204530na_seg.nii.gz"
+ },
+ {
+ "image": "109112/5_0opasesen16b20f31021206040na.nii.gz",
+ "pseudo_label": "109112/5_0opasesen16b20f31021206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109112/5_0opasesen16b20f31021206040na/5_0opasesen16b20f31021206040na_seg.nii.gz"
+ },
+ {
+ "image": "109112/6_2opasesen16b30f28621204530na.nii.gz",
+ "pseudo_label": "109112/6_2opasesen16b30f28621204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109112/6_2opasesen16b30f28621204530na/6_2opasesen16b30f28621204530na_seg.nii.gz"
+ },
+ {
+ "image": "109112/7_2opasesen16b50f28621204530na.nii.gz",
+ "pseudo_label": "109112/7_2opasesen16b50f28621204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109112/7_2opasesen16b50f28621204530na/7_2opasesen16b50f28621204530na_seg.nii.gz"
+ },
+ {
+ "image": "109112/5_1opasesen16b50f30051204530na.nii.gz",
+ "pseudo_label": "109112/5_1opasesen16b50f30051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109112/5_1opasesen16b50f30051204530na/5_1opasesen16b50f30051204530na_seg.nii.gz"
+ },
+ {
+ "image": "109112/7_0opasesen16b50f31021206040na.nii.gz",
+ "pseudo_label": "109112/7_0opasesen16b50f31021206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109112/7_0opasesen16b50f31021206040na/7_0opasesen16b50f31021206040na_seg.nii.gz"
+ },
+ {
+ "image": "109112/4_0opasesen16b20f31051206040na.nii.gz",
+ "pseudo_label": "109112/4_0opasesen16b20f31051206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109112/4_0opasesen16b20f31051206040na/4_0opasesen16b20f31051206040na_seg.nii.gz"
+ },
+ {
+ "image": "109112/6_0opasesen16b50f31051206040na.nii.gz",
+ "pseudo_label": "109112/6_0opasesen16b50f31051206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109112/6_0opasesen16b50f31051206040na/6_0opasesen16b50f31051206040na_seg.nii.gz"
+ },
+ {
+ "image": "100577/2_0opagelsqxstandard3402512048015.nii.gz",
+ "pseudo_label": "100577/2_0opagelsqxstandard3402512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100577/2_0opagelsqxstandard3402512048015/2_0opagelsqxstandard3402512048015_seg.nii.gz"
+ },
+ {
+ "image": "100577/2_1opagelsqxstandard3602512048015.nii.gz",
+ "pseudo_label": "100577/2_1opagelsqxstandard3602512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100577/2_1opagelsqxstandard3602512048015/2_1opagelsqxstandard3602512048015_seg.nii.gz"
+ },
+ {
+ "image": "110287/2_0opagehsqxstandard38025120560115.nii.gz",
+ "pseudo_label": "110287/2_0opagehsqxstandard38025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110287/2_0opagehsqxstandard38025120560115/2_0opagehsqxstandard38025120560115_seg.nii.gz"
+ },
+ {
+ "image": "110287/2_1opagehsqxstandard38025120560115.nii.gz",
+ "pseudo_label": "110287/2_1opagehsqxstandard38025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110287/2_1opagehsqxstandard38025120560115/2_1opagehsqxstandard38025120560115_seg.nii.gz"
+ },
+ {
+ "image": "110287/2_2opagehsqxstandard38025120560115.nii.gz",
+ "pseudo_label": "110287/2_2opagehsqxstandard38025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110287/2_2opagehsqxstandard38025120560115/2_2opagehsqxstandard38025120560115_seg.nii.gz"
+ },
+ {
+ "image": "106959/2_1opasesen16b30f29621204032na.nii.gz",
+ "pseudo_label": "106959/2_1opasesen16b30f29621204032na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106959/2_1opasesen16b30f29621204032na/2_1opasesen16b30f29621204032na_seg.nii.gz"
+ },
+ {
+ "image": "106428/3_2opagelspr16standard3002512040014.nii.gz",
+ "pseudo_label": "106428/3_2opagelspr16standard3002512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106428/3_2opagelspr16standard3002512040014/3_2opagelspr16standard3002512040014_seg.nii.gz"
+ },
+ {
+ "image": "106428/2_0opagelsqxbone3102512048015.nii.gz",
+ "pseudo_label": "106428/2_0opagelsqxbone3102512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106428/2_0opagelsqxbone3102512048015/2_0opagelsqxbone3102512048015_seg.nii.gz"
+ },
+ {
+ "image": "106428/2_1opagels16bone31425120560114.nii.gz",
+ "pseudo_label": "106428/2_1opagels16bone31425120560114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106428/2_1opagels16bone31425120560114/2_1opagels16bone31425120560114_seg.nii.gz"
+ },
+ {
+ "image": "106428/3_1opagels16standard31425120560114.nii.gz",
+ "pseudo_label": "106428/3_1opagels16standard31425120560114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106428/3_1opagels16standard31425120560114/3_1opagels16standard31425120560114_seg.nii.gz"
+ },
+ {
+ "image": "111303/3_0opagelsqxbone38025120640115.nii.gz",
+ "pseudo_label": "111303/3_0opagelsqxbone38025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111303/3_0opagelsqxbone38025120640115/3_0opagelsqxbone38025120640115_seg.nii.gz"
+ },
+ {
+ "image": "111303/3_1opagelsqxbone34025120640115.nii.gz",
+ "pseudo_label": "111303/3_1opagelsqxbone34025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111303/3_1opagelsqxbone34025120640115/3_1opagelsqxbone34025120640115_seg.nii.gz"
+ },
+ {
+ "image": "111303/2_2opagelsqxstandard36625120640115.nii.gz",
+ "pseudo_label": "111303/2_2opagelsqxstandard36625120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111303/2_2opagelsqxstandard36625120640115/2_2opagelsqxstandard36625120640115_seg.nii.gz"
+ },
+ {
+ "image": "111303/3_2opagelsqxbone36625120640115.nii.gz",
+ "pseudo_label": "111303/3_2opagelsqxbone36625120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111303/3_2opagelsqxbone36625120640115/3_2opagelsqxbone36625120640115_seg.nii.gz"
+ },
+ {
+ "image": "111303/2_0opagelsqxstandard38025120640115.nii.gz",
+ "pseudo_label": "111303/2_0opagelsqxstandard38025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111303/2_0opagelsqxstandard38025120640115/2_0opagelsqxstandard38025120640115_seg.nii.gz"
+ },
+ {
+ "image": "112803/3_2opagelsqxbone36125120720115.nii.gz",
+ "pseudo_label": "112803/3_2opagelsqxbone36125120720115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112803/3_2opagelsqxbone36125120720115/3_2opagelsqxbone36125120720115_seg.nii.gz"
+ },
+ {
+ "image": "112803/2_1opagelsqxstandard36525120720115.nii.gz",
+ "pseudo_label": "112803/2_1opagelsqxstandard36525120720115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112803/2_1opagelsqxstandard36525120720115/2_1opagelsqxstandard36525120720115_seg.nii.gz"
+ },
+ {
+ "image": "112803/2_0opagelsqxstandard39025120720115.nii.gz",
+ "pseudo_label": "112803/2_0opagelsqxstandard39025120720115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112803/2_0opagelsqxstandard39025120720115/2_0opagelsqxstandard39025120720115_seg.nii.gz"
+ },
+ {
+ "image": "112803/3_0opagelsqxbone39025120720115.nii.gz",
+ "pseudo_label": "112803/3_0opagelsqxbone39025120720115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112803/3_0opagelsqxbone39025120720115/3_0opagelsqxbone39025120720115_seg.nii.gz"
+ },
+ {
+ "image": "112803/3_1opagelsqxbone36525120720115.nii.gz",
+ "pseudo_label": "112803/3_1opagelsqxbone36525120720115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112803/3_1opagelsqxbone36525120720115/3_1opagelsqxbone36525120720115_seg.nii.gz"
+ },
+ {
+ "image": "112803/2_2opagelsqxstandard36125120720115.nii.gz",
+ "pseudo_label": "112803/2_2opagelsqxstandard36125120720115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112803/2_2opagelsqxstandard36125120720115/2_2opagelsqxstandard36125120720115_seg.nii.gz"
+ },
+ {
+ "image": "105050/5_2opasesen16b50f36251204530na.nii.gz",
+ "pseudo_label": "105050/5_2opasesen16b50f36251204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105050/5_2opasesen16b50f36251204530na/5_2opasesen16b50f36251204530na_seg.nii.gz"
+ },
+ {
+ "image": "105050/4_0opasevzoomb30f370512012060na.nii.gz",
+ "pseudo_label": "105050/4_0opasevzoomb30f370512012060na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105050/4_0opasevzoomb30f370512012060na/4_0opasevzoomb30f370512012060na_seg.nii.gz"
+ },
+ {
+ "image": "105050/4_1opasesen16b30f38851204530na.nii.gz",
+ "pseudo_label": "105050/4_1opasesen16b30f38851204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105050/4_1opasesen16b30f38851204530na/4_1opasesen16b30f38851204530na_seg.nii.gz"
+ },
+ {
+ "image": "105050/7_1opasesen16b50f38821204530na.nii.gz",
+ "pseudo_label": "105050/7_1opasesen16b50f38821204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105050/7_1opasesen16b50f38821204530na/7_1opasesen16b50f38821204530na_seg.nii.gz"
+ },
+ {
+ "image": "105050/6_0opasevzoomb50f370512012060na.nii.gz",
+ "pseudo_label": "105050/6_0opasevzoomb50f370512012060na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105050/6_0opasevzoomb50f370512012060na/6_0opasevzoomb50f370512012060na_seg.nii.gz"
+ },
+ {
+ "image": "105050/6_1opasesen16b50f38851204530na.nii.gz",
+ "pseudo_label": "105050/6_1opasesen16b50f38851204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105050/6_1opasesen16b50f38851204530na/6_1opasesen16b50f38851204530na_seg.nii.gz"
+ },
+ {
+ "image": "113116/2_1opagels16bone35025120600114.nii.gz",
+ "pseudo_label": "113116/2_1opagels16bone35025120600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113116/2_1opagels16bone35025120600114/2_1opagels16bone35025120600114_seg.nii.gz"
+ },
+ {
+ "image": "102706/2_2opagelsqxstandard35425120640115.nii.gz",
+ "pseudo_label": "102706/2_2opagelsqxstandard35425120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102706/2_2opagelsqxstandard35425120640115/2_2opagelsqxstandard35425120640115_seg.nii.gz"
+ },
+ {
+ "image": "102706/2_0opagelsqxstandard33025120640115.nii.gz",
+ "pseudo_label": "102706/2_0opagelsqxstandard33025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102706/2_0opagelsqxstandard33025120640115/2_0opagelsqxstandard33025120640115_seg.nii.gz"
+ },
+ {
+ "image": "102706/3_1opagelsqxbone34225120560115.nii.gz",
+ "pseudo_label": "102706/3_1opagelsqxbone34225120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102706/3_1opagelsqxbone34225120560115/3_1opagelsqxbone34225120560115_seg.nii.gz"
+ },
+ {
+ "image": "102706/3_0opagelsqxbone33025120640115.nii.gz",
+ "pseudo_label": "102706/3_0opagelsqxbone33025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102706/3_0opagelsqxbone33025120640115/3_0opagelsqxbone33025120640115_seg.nii.gz"
+ },
+ {
+ "image": "102706/3_2opagelsqxbone35425120640115.nii.gz",
+ "pseudo_label": "102706/3_2opagelsqxbone35425120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102706/3_2opagelsqxbone35425120640115/3_2opagelsqxbone35425120640115_seg.nii.gz"
+ },
+ {
+ "image": "102706/2_1opagelsqxstandard34225120560115.nii.gz",
+ "pseudo_label": "102706/2_1opagelsqxstandard34225120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102706/2_1opagelsqxstandard34225120560115/2_1opagelsqxstandard34225120560115_seg.nii.gz"
+ },
+ {
+ "image": "106188/2_0opasevzoomb50f33021206030na.nii.gz",
+ "pseudo_label": "106188/2_0opasevzoomb50f33021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106188/2_0opasevzoomb50f33021206030na/2_0opasevzoomb50f33021206030na_seg.nii.gz"
+ },
+ {
+ "image": "101047/2_0opasevzoomb50f28821206030na.nii.gz",
+ "pseudo_label": "101047/2_0opasevzoomb50f28821206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101047/2_0opasevzoomb50f28821206030na/2_0opasevzoomb50f28821206030na_seg.nii.gz"
+ },
+ {
+ "image": "103778/2_2opagelsqxstandard3102514000na.nii.gz",
+ "pseudo_label": "103778/2_2opagelsqxstandard3102514000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103778/2_2opagelsqxstandard3102514000na/2_2opagelsqxstandard3102514000na_seg.nii.gz"
+ },
+ {
+ "image": "103778/2_0opagelsqxstandard3202512000na.nii.gz",
+ "pseudo_label": "103778/2_0opagelsqxstandard3202512000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103778/2_0opagelsqxstandard3202512000na/2_0opagelsqxstandard3202512000na_seg.nii.gz"
+ },
+ {
+ "image": "106648/2_2opagelsplusstandard4002514040015.nii.gz",
+ "pseudo_label": "106648/2_2opagelsplusstandard4002514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106648/2_2opagelsplusstandard4002514040015/2_2opagelsplusstandard4002514040015_seg.nii.gz"
+ },
+ {
+ "image": "106648/2_0opagelsplusstandard40025140720115.nii.gz",
+ "pseudo_label": "106648/2_0opagelsplusstandard40025140720115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106648/2_0opagelsplusstandard40025140720115/2_0opagelsplusstandard40025140720115_seg.nii.gz"
+ },
+ {
+ "image": "103982/2_2opagehsqxstandard31025120560115.nii.gz",
+ "pseudo_label": "103982/2_2opagehsqxstandard31025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103982/2_2opagehsqxstandard31025120560115/2_2opagehsqxstandard31025120560115_seg.nii.gz"
+ },
+ {
+ "image": "103982/2_1opagehsqxstandard31025120560115.nii.gz",
+ "pseudo_label": "103982/2_1opagehsqxstandard31025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103982/2_1opagehsqxstandard31025120560115/2_1opagehsqxstandard31025120560115_seg.nii.gz"
+ },
+ {
+ "image": "103982/3_1opagehsqxbone31025120560115.nii.gz",
+ "pseudo_label": "103982/3_1opagehsqxbone31025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103982/3_1opagehsqxbone31025120560115/3_1opagehsqxbone31025120560115_seg.nii.gz"
+ },
+ {
+ "image": "103982/3_0opagehsqxbone31025120560115.nii.gz",
+ "pseudo_label": "103982/3_0opagehsqxbone31025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103982/3_0opagehsqxbone31025120560115/3_0opagehsqxbone31025120560115_seg.nii.gz"
+ },
+ {
+ "image": "108403/2_1opagels16bone3802512040014.nii.gz",
+ "pseudo_label": "108403/2_1opagels16bone3802512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108403/2_1opagels16bone3802512040014/2_1opagels16bone3802512040014_seg.nii.gz"
+ },
+ {
+ "image": "108403/3_1opagels16standard3772512040014.nii.gz",
+ "pseudo_label": "108403/3_1opagels16standard3772512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108403/3_1opagels16standard3772512040014/3_1opagels16standard3772512040014_seg.nii.gz"
+ },
+ {
+ "image": "108403/2_2opagelspr16bone36025120560114.nii.gz",
+ "pseudo_label": "108403/2_2opagelspr16bone36025120560114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108403/2_2opagelspr16bone36025120560114/2_2opagelspr16bone36025120560114_seg.nii.gz"
+ },
+ {
+ "image": "108403/3_2opagelspr16standard36025120560114.nii.gz",
+ "pseudo_label": "108403/3_2opagelspr16standard36025120560114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108403/3_2opagelspr16standard36025120560114/3_2opagelspr16standard36025120560114_seg.nii.gz"
+ },
+ {
+ "image": "110049/2_0opagelsqxstandard3422514048015.nii.gz",
+ "pseudo_label": "110049/2_0opagelsqxstandard3422514048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110049/2_0opagelsqxstandard3422514048015/2_0opagelsqxstandard3422514048015_seg.nii.gz"
+ },
+ {
+ "image": "110049/2_1opagelsqxstandard3402514048015.nii.gz",
+ "pseudo_label": "110049/2_1opagelsqxstandard3402514048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110049/2_1opagelsqxstandard3402514048015/2_1opagelsqxstandard3402514048015_seg.nii.gz"
+ },
+ {
+ "image": "110049/2_2opagelsqxstandard3402514048015.nii.gz",
+ "pseudo_label": "110049/2_2opagelsqxstandard3402514048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110049/2_2opagelsqxstandard3402514048015/2_2opagelsqxstandard3402514048015_seg.nii.gz"
+ },
+ {
+ "image": "108802/2_0opasevzoomb50f38021206030na.nii.gz",
+ "pseudo_label": "108802/2_0opasevzoomb50f38021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108802/2_0opasevzoomb50f38021206030na/2_0opasevzoomb50f38021206030na_seg.nii.gz"
+ },
+ {
+ "image": "102320/2_0opagehsqxstandard35025120560115.nii.gz",
+ "pseudo_label": "102320/2_0opagehsqxstandard35025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102320/2_0opagehsqxstandard35025120560115/2_0opagehsqxstandard35025120560115_seg.nii.gz"
+ },
+ {
+ "image": "102320/2_1opagehsqxstandard35025120560115.nii.gz",
+ "pseudo_label": "102320/2_1opagehsqxstandard35025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102320/2_1opagehsqxstandard35025120560115/2_1opagehsqxstandard35025120560115_seg.nii.gz"
+ },
+ {
+ "image": "102320/3_0opagehsqxbone35025120560115.nii.gz",
+ "pseudo_label": "102320/3_0opagehsqxbone35025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102320/3_0opagehsqxbone35025120560115/3_0opagehsqxbone35025120560115_seg.nii.gz"
+ },
+ {
+ "image": "104678/3_2opagehsqxbone39025120560115.nii.gz",
+ "pseudo_label": "104678/3_2opagehsqxbone39025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104678/3_2opagehsqxbone39025120560115/3_2opagehsqxbone39025120560115_seg.nii.gz"
+ },
+ {
+ "image": "104678/2_1opagehsqxstandard39025120560115.nii.gz",
+ "pseudo_label": "104678/2_1opagehsqxstandard39025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104678/2_1opagehsqxstandard39025120560115/2_1opagehsqxstandard39025120560115_seg.nii.gz"
+ },
+ {
+ "image": "104678/3_0opagehsqxbone39025120560115.nii.gz",
+ "pseudo_label": "104678/3_0opagehsqxbone39025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104678/3_0opagehsqxbone39025120560115/3_0opagehsqxbone39025120560115_seg.nii.gz"
+ },
+ {
+ "image": "104678/2_0opagehsqxstandard39025120560115.nii.gz",
+ "pseudo_label": "104678/2_0opagehsqxstandard39025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104678/2_0opagehsqxstandard39025120560115/2_0opagehsqxstandard39025120560115_seg.nii.gz"
+ },
+ {
+ "image": "100740/2_2opagehsqxstandard35025120560115.nii.gz",
+ "pseudo_label": "100740/2_2opagehsqxstandard35025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100740/2_2opagehsqxstandard35025120560115/2_2opagehsqxstandard35025120560115_seg.nii.gz"
+ },
+ {
+ "image": "100740/2_0opagehsqxstandard35025120560115.nii.gz",
+ "pseudo_label": "100740/2_0opagehsqxstandard35025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100740/2_0opagehsqxstandard35025120560115/2_0opagehsqxstandard35025120560115_seg.nii.gz"
+ },
+ {
+ "image": "100740/2_1opagehsqxstandard35025120560115.nii.gz",
+ "pseudo_label": "100740/2_1opagehsqxstandard35025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100740/2_1opagehsqxstandard35025120560115/2_1opagehsqxstandard35025120560115_seg.nii.gz"
+ },
+ {
+ "image": "100740/3_0opagehsqxbone35025120560115.nii.gz",
+ "pseudo_label": "100740/3_0opagehsqxbone35025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100740/3_0opagehsqxbone35025120560115/3_0opagehsqxbone35025120560115_seg.nii.gz"
+ },
+ {
+ "image": "107754/3_2opasevzoomb30f35221208040na.nii.gz",
+ "pseudo_label": "107754/3_2opasevzoomb30f35221208040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107754/3_2opasevzoomb30f35221208040na/3_2opasevzoomb30f35221208040na_seg.nii.gz"
+ },
+ {
+ "image": "107754/2_1opasevzoomb50f35221206030na.nii.gz",
+ "pseudo_label": "107754/2_1opasevzoomb50f35221206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107754/2_1opasevzoomb50f35221206030na/2_1opasevzoomb50f35221206030na_seg.nii.gz"
+ },
+ {
+ "image": "107754/2_0opasevzoomb50f34021208040na.nii.gz",
+ "pseudo_label": "107754/2_0opasevzoomb50f34021208040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107754/2_0opasevzoomb50f34021208040na/2_0opasevzoomb50f34021208040na_seg.nii.gz"
+ },
+ {
+ "image": "107754/3_1opasevzoomb30f35221206030na.nii.gz",
+ "pseudo_label": "107754/3_1opasevzoomb30f35221206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107754/3_1opasevzoomb30f35221206030na/3_1opasevzoomb30f35221206030na_seg.nii.gz"
+ },
+ {
+ "image": "107501/3545_2opaphmx8000c38032120453612.nii.gz",
+ "pseudo_label": "107501/3545_2opaphmx8000c38032120453612.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107501/3545_2opaphmx8000c38032120453612/3545_2opaphmx8000c38032120453612_seg.nii.gz"
+ },
+ {
+ "image": "107501/1624_1opaphmx8000c40032120453612.nii.gz",
+ "pseudo_label": "107501/1624_1opaphmx8000c40032120453612.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107501/1624_1opaphmx8000c40032120453612/1624_1opaphmx8000c40032120453612_seg.nii.gz"
+ },
+ {
+ "image": "110758/2_1opagels16standard3902514040014.nii.gz",
+ "pseudo_label": "110758/2_1opagels16standard3902514040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110758/2_1opagels16standard3902514040014/2_1opagels16standard3902514040014_seg.nii.gz"
+ },
+ {
+ "image": "110758/2_0opagelsqxstandard39525140640115.nii.gz",
+ "pseudo_label": "110758/2_0opagelsqxstandard39525140640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110758/2_0opagelsqxstandard39525140640115/2_0opagelsqxstandard39525140640115_seg.nii.gz"
+ },
+ {
+ "image": "100791/2_0opagels16standard3202514040014.nii.gz",
+ "pseudo_label": "100791/2_0opagels16standard3202514040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100791/2_0opagels16standard3202514040014/2_0opagels16standard3202514040014_seg.nii.gz"
+ },
+ {
+ "image": "100791/2_2opagels16standard3302514040014.nii.gz",
+ "pseudo_label": "100791/2_2opagels16standard3302514040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100791/2_2opagels16standard3302514040014/2_2opagels16standard3302514040014_seg.nii.gz"
+ },
+ {
+ "image": "107697/3_2opatoaqul4fc512906212040nana.nii.gz",
+ "pseudo_label": "107697/3_2opatoaqul4fc512906212040nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107697/3_2opatoaqul4fc512906212040nana/3_2opatoaqul4fc512906212040nana_seg.nii.gz"
+ },
+ {
+ "image": "100201/2_0opagelsqxstandard3402512048015.nii.gz",
+ "pseudo_label": "100201/2_0opagelsqxstandard3402512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100201/2_0opagelsqxstandard3402512048015/2_0opagelsqxstandard3402512048015_seg.nii.gz"
+ },
+ {
+ "image": "109576/2_2opagels16bone2902512048014.nii.gz",
+ "pseudo_label": "109576/2_2opagels16bone2902512048014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109576/2_2opagels16bone2902512048014/2_2opagels16bone2902512048014_seg.nii.gz"
+ },
+ {
+ "image": "109576/3_2opagels16standard2902512048014.nii.gz",
+ "pseudo_label": "109576/3_2opagels16standard2902512048014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109576/3_2opagels16standard2902512048014/3_2opagels16standard2902512048014_seg.nii.gz"
+ },
+ {
+ "image": "109576/2_0opagelsqxbone3192512048015.nii.gz",
+ "pseudo_label": "109576/2_0opagelsqxbone3192512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109576/2_0opagelsqxbone3192512048015/2_0opagelsqxbone3192512048015_seg.nii.gz"
+ },
+ {
+ "image": "109576/3_0opagelsqxstandard3192512048015.nii.gz",
+ "pseudo_label": "109576/3_0opagelsqxstandard3192512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109576/3_0opagelsqxstandard3192512048015/3_0opagelsqxstandard3192512048015_seg.nii.gz"
+ },
+ {
+ "image": "100726/2_0opagelsqxstandard3252514040015.nii.gz",
+ "pseudo_label": "100726/2_0opagelsqxstandard3252514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100726/2_0opagelsqxstandard3252514040015/2_0opagelsqxstandard3252514040015_seg.nii.gz"
+ },
+ {
+ "image": "100726/2_1opagelsqxstandard3502514040015.nii.gz",
+ "pseudo_label": "100726/2_1opagelsqxstandard3502514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100726/2_1opagelsqxstandard3502514040015/2_1opagelsqxstandard3502514040015_seg.nii.gz"
+ },
+ {
+ "image": "100726/2_2opagelsqxstandard3602514040015.nii.gz",
+ "pseudo_label": "100726/2_2opagelsqxstandard3602514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100726/2_2opagelsqxstandard3602514040015/2_2opagelsqxstandard3602514040015_seg.nii.gz"
+ },
+ {
+ "image": "101392/5_1opasesen16b50f32851204530na.nii.gz",
+ "pseudo_label": "101392/5_1opasesen16b50f32851204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101392/5_1opasesen16b50f32851204530na/5_1opasesen16b50f32851204530na_seg.nii.gz"
+ },
+ {
+ "image": "101392/5_2opasesen16b50f34351204530na.nii.gz",
+ "pseudo_label": "101392/5_2opasesen16b50f34351204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101392/5_2opasesen16b50f34351204530na/5_2opasesen16b50f34351204530na_seg.nii.gz"
+ },
+ {
+ "image": "101392/3_1opasesen16b30f32851204530na.nii.gz",
+ "pseudo_label": "101392/3_1opasesen16b30f32851204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101392/3_1opasesen16b30f32851204530na/3_1opasesen16b30f32851204530na_seg.nii.gz"
+ },
+ {
+ "image": "101392/4_0opasevzoomb50f34251206030na.nii.gz",
+ "pseudo_label": "101392/4_0opasevzoomb50f34251206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101392/4_0opasevzoomb50f34251206030na/4_0opasevzoomb50f34251206030na_seg.nii.gz"
+ },
+ {
+ "image": "101392/8_0opasevzoomb50f34221206030na.nii.gz",
+ "pseudo_label": "101392/8_0opasevzoomb50f34221206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101392/8_0opasevzoomb50f34221206030na/8_0opasevzoomb50f34221206030na_seg.nii.gz"
+ },
+ {
+ "image": "101392/3_2opasesen16b30f34351204530na.nii.gz",
+ "pseudo_label": "101392/3_2opasesen16b30f34351204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101392/3_2opasesen16b30f34351204530na/3_2opasesen16b30f34351204530na_seg.nii.gz"
+ },
+ {
+ "image": "101392/7_0opasevzoomb50f34251206030na.nii.gz",
+ "pseudo_label": "101392/7_0opasevzoomb50f34251206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101392/7_0opasevzoomb50f34251206030na/7_0opasevzoomb50f34251206030na_seg.nii.gz"
+ },
+ {
+ "image": "101392/4_1opasesen16b30f32821204530na.nii.gz",
+ "pseudo_label": "101392/4_1opasesen16b30f32821204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101392/4_1opasesen16b30f32821204530na/4_1opasesen16b30f32821204530na_seg.nii.gz"
+ },
+ {
+ "image": "101392/6_0opasevzoomb30f34251206030na.nii.gz",
+ "pseudo_label": "101392/6_0opasevzoomb30f34251206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101392/6_0opasevzoomb30f34251206030na/6_0opasevzoomb30f34251206030na_seg.nii.gz"
+ },
+ {
+ "image": "101392/3_0opasevzoomb30f34251206030na.nii.gz",
+ "pseudo_label": "101392/3_0opasevzoomb30f34251206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101392/3_0opasevzoomb30f34251206030na/3_0opasevzoomb30f34251206030na_seg.nii.gz"
+ },
+ {
+ "image": "101392/6_1opasesen16b50f32821204530na.nii.gz",
+ "pseudo_label": "101392/6_1opasesen16b50f32821204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101392/6_1opasesen16b50f32821204530na/6_1opasesen16b50f32821204530na_seg.nii.gz"
+ },
+ {
+ "image": "100035/3_1opagehsqxbone30025120560115.nii.gz",
+ "pseudo_label": "100035/3_1opagehsqxbone30025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100035/3_1opagehsqxbone30025120560115/3_1opagehsqxbone30025120560115_seg.nii.gz"
+ },
+ {
+ "image": "100035/3_0opagehsqxbone30025120640115.nii.gz",
+ "pseudo_label": "100035/3_0opagehsqxbone30025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100035/3_0opagehsqxbone30025120640115/3_0opagehsqxbone30025120640115_seg.nii.gz"
+ },
+ {
+ "image": "100035/2_1opagehsqxstandard30025120560115.nii.gz",
+ "pseudo_label": "100035/2_1opagehsqxstandard30025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100035/2_1opagehsqxstandard30025120560115/2_1opagehsqxstandard30025120560115_seg.nii.gz"
+ },
+ {
+ "image": "100035/3_2opagehsqxbone30025120560115.nii.gz",
+ "pseudo_label": "100035/3_2opagehsqxbone30025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100035/3_2opagehsqxbone30025120560115/3_2opagehsqxbone30025120560115_seg.nii.gz"
+ },
+ {
+ "image": "100035/2_2opagehsqxstandard30025120560115.nii.gz",
+ "pseudo_label": "100035/2_2opagehsqxstandard30025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100035/2_2opagehsqxstandard30025120560115/2_2opagehsqxstandard30025120560115_seg.nii.gz"
+ },
+ {
+ "image": "100035/2_0opagehsqxstandard30025120640115.nii.gz",
+ "pseudo_label": "100035/2_0opagehsqxstandard30025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100035/2_0opagehsqxstandard30025120640115/2_0opagehsqxstandard30025120640115_seg.nii.gz"
+ },
+ {
+ "image": "102847/7295_2opaphmx8000c35332120453612.nii.gz",
+ "pseudo_label": "102847/7295_2opaphmx8000c35332120453612.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102847/7295_2opaphmx8000c35332120453612/7295_2opaphmx8000c35332120453612_seg.nii.gz"
+ },
+ {
+ "image": "102847/3691_0opaphmx8000c278321208787012.nii.gz",
+ "pseudo_label": "102847/3691_0opaphmx8000c278321208787012.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102847/3691_0opaphmx8000c278321208787012/3691_0opaphmx8000c278321208787012_seg.nii.gz"
+ },
+ {
+ "image": "107996/3_0opasesen16b30f34851204530na.nii.gz",
+ "pseudo_label": "107996/3_0opasesen16b30f34851204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107996/3_0opasesen16b30f34851204530na/3_0opasesen16b30f34851204530na_seg.nii.gz"
+ },
+ {
+ "image": "107996/6_1opasesen16b50f30021204530na.nii.gz",
+ "pseudo_label": "107996/6_1opasesen16b50f30021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107996/6_1opasesen16b50f30021204530na/6_1opasesen16b50f30021204530na_seg.nii.gz"
+ },
+ {
+ "image": "107996/5_0opasesen16b50f34821204530na.nii.gz",
+ "pseudo_label": "107996/5_0opasesen16b50f34821204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107996/5_0opasesen16b50f34821204530na/5_0opasesen16b50f34821204530na_seg.nii.gz"
+ },
+ {
+ "image": "107996/3_2opasesen16b30f30451204530na.nii.gz",
+ "pseudo_label": "107996/3_2opasesen16b30f30451204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107996/3_2opasesen16b30f30451204530na/3_2opasesen16b30f30451204530na_seg.nii.gz"
+ },
+ {
+ "image": "107996/4_1opasesen16b30f30021204530na.nii.gz",
+ "pseudo_label": "107996/4_1opasesen16b30f30021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107996/4_1opasesen16b30f30021204530na/4_1opasesen16b30f30021204530na_seg.nii.gz"
+ },
+ {
+ "image": "107996/5_1opasesen16b50f30051204530na.nii.gz",
+ "pseudo_label": "107996/5_1opasesen16b50f30051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107996/5_1opasesen16b50f30051204530na/5_1opasesen16b50f30051204530na_seg.nii.gz"
+ },
+ {
+ "image": "107996/6_0opasesen16b30f34821204530na.nii.gz",
+ "pseudo_label": "107996/6_0opasesen16b30f34821204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107996/6_0opasesen16b30f34821204530na/6_0opasesen16b30f34821204530na_seg.nii.gz"
+ },
+ {
+ "image": "107996/3_1opasesen16b30f30051204530na.nii.gz",
+ "pseudo_label": "107996/3_1opasesen16b30f30051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107996/3_1opasesen16b30f30051204530na/3_1opasesen16b30f30051204530na_seg.nii.gz"
+ },
+ {
+ "image": "107996/5_2opasesen16b50f30751204530na.nii.gz",
+ "pseudo_label": "107996/5_2opasesen16b50f30751204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107996/5_2opasesen16b50f30751204530na/5_2opasesen16b50f30751204530na_seg.nii.gz"
+ },
+ {
+ "image": "107996/6_2opasesen16b50f30721204530na.nii.gz",
+ "pseudo_label": "107996/6_2opasesen16b50f30721204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107996/6_2opasesen16b50f30721204530na/6_2opasesen16b50f30721204530na_seg.nii.gz"
+ },
+ {
+ "image": "107996/4_0opasesen16b50f34851204530na.nii.gz",
+ "pseudo_label": "107996/4_0opasesen16b50f34851204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107996/4_0opasesen16b50f34851204530na/4_0opasesen16b50f34851204530na_seg.nii.gz"
+ },
+ {
+ "image": "101369/3_1opagelsqxbone37025120640115.nii.gz",
+ "pseudo_label": "101369/3_1opagelsqxbone37025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101369/3_1opagelsqxbone37025120640115/3_1opagelsqxbone37025120640115_seg.nii.gz"
+ },
+ {
+ "image": "101369/2_2opagelsqxstandard37625120640115.nii.gz",
+ "pseudo_label": "101369/2_2opagelsqxstandard37625120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101369/2_2opagelsqxstandard37625120640115/2_2opagelsqxstandard37625120640115_seg.nii.gz"
+ },
+ {
+ "image": "101369/3_2opagelsqxbone37625120640115.nii.gz",
+ "pseudo_label": "101369/3_2opagelsqxbone37625120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101369/3_2opagelsqxbone37625120640115/3_2opagelsqxbone37625120640115_seg.nii.gz"
+ },
+ {
+ "image": "101369/2_1opagelsqxstandard37025120640115.nii.gz",
+ "pseudo_label": "101369/2_1opagelsqxstandard37025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101369/2_1opagelsqxstandard37025120640115/2_1opagelsqxstandard37025120640115_seg.nii.gz"
+ },
+ {
+ "image": "110899/1_0opagelsplusstandard32025120800115.nii.gz",
+ "pseudo_label": "110899/1_0opagelsplusstandard32025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110899/1_0opagelsplusstandard32025120800115/1_0opagelsplusstandard32025120800115_seg.nii.gz"
+ },
+ {
+ "image": "110899/1_0opagelspluslung32025120800115.nii.gz",
+ "pseudo_label": "110899/1_0opagelspluslung32025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110899/1_0opagelspluslung32025120800115/1_0opagelspluslung32025120800115_seg.nii.gz"
+ },
+ {
+ "image": "110899/1_2opagelspluslung32025120800115.nii.gz",
+ "pseudo_label": "110899/1_2opagelspluslung32025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110899/1_2opagelspluslung32025120800115/1_2opagelspluslung32025120800115_seg.nii.gz"
+ },
+ {
+ "image": "110899/1_2opagelsplusstandard32025120800115.nii.gz",
+ "pseudo_label": "110899/1_2opagelsplusstandard32025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110899/1_2opagelsplusstandard32025120800115/1_2opagelsplusstandard32025120800115_seg.nii.gz"
+ },
+ {
+ "image": "111697/3_0opasevzoomb50f35221207540na.nii.gz",
+ "pseudo_label": "111697/3_0opasevzoomb50f35221207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111697/3_0opasevzoomb50f35221207540na/3_0opasevzoomb50f35221207540na_seg.nii.gz"
+ },
+ {
+ "image": "111697/2_2opasevzoomb30f40821207540na.nii.gz",
+ "pseudo_label": "111697/2_2opasevzoomb30f40821207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111697/2_2opasevzoomb30f40821207540na/2_2opasevzoomb30f40821207540na_seg.nii.gz"
+ },
+ {
+ "image": "111697/3_1opasevzoomb50f40021207540na.nii.gz",
+ "pseudo_label": "111697/3_1opasevzoomb50f40021207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111697/3_1opasevzoomb50f40021207540na/3_1opasevzoomb50f40021207540na_seg.nii.gz"
+ },
+ {
+ "image": "111697/2_0opasevzoomb30f35221207540na.nii.gz",
+ "pseudo_label": "111697/2_0opasevzoomb30f35221207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111697/2_0opasevzoomb30f35221207540na/2_0opasevzoomb30f35221207540na_seg.nii.gz"
+ },
+ {
+ "image": "102253/2_2opagels16standard3602514040014.nii.gz",
+ "pseudo_label": "102253/2_2opagels16standard3602514040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102253/2_2opagels16standard3602514040014/2_2opagels16standard3602514040014_seg.nii.gz"
+ },
+ {
+ "image": "102253/2_0opagels16standard3602514040014.nii.gz",
+ "pseudo_label": "102253/2_0opagels16standard3602514040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102253/2_0opagels16standard3602514040014/2_0opagels16standard3602514040014_seg.nii.gz"
+ },
+ {
+ "image": "102253/2_1opagels16standard3382514040014.nii.gz",
+ "pseudo_label": "102253/2_1opagels16standard3382514040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102253/2_1opagels16standard3382514040014/2_1opagels16standard3382514040014_seg.nii.gz"
+ },
+ {
+ "image": "104362/2_0opagelsqxstandard36025120640115.nii.gz",
+ "pseudo_label": "104362/2_0opagelsqxstandard36025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104362/2_0opagelsqxstandard36025120640115/2_0opagelsqxstandard36025120640115_seg.nii.gz"
+ },
+ {
+ "image": "104362/3_0opagelsqxbone36025120640115.nii.gz",
+ "pseudo_label": "104362/3_0opagelsqxbone36025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104362/3_0opagelsqxbone36025120640115/3_0opagelsqxbone36025120640115_seg.nii.gz"
+ },
+ {
+ "image": "104362/2_1opagelsqxstandard34625120640115.nii.gz",
+ "pseudo_label": "104362/2_1opagelsqxstandard34625120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104362/2_1opagelsqxstandard34625120640115/2_1opagelsqxstandard34625120640115_seg.nii.gz"
+ },
+ {
+ "image": "104362/3_2opagelsqxbone35225120640115.nii.gz",
+ "pseudo_label": "104362/3_2opagelsqxbone35225120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104362/3_2opagelsqxbone35225120640115/3_2opagelsqxbone35225120640115_seg.nii.gz"
+ },
+ {
+ "image": "104362/3_1opagelsqxbone34625120640115.nii.gz",
+ "pseudo_label": "104362/3_1opagelsqxbone34625120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104362/3_1opagelsqxbone34625120640115/3_1opagelsqxbone34625120640115_seg.nii.gz"
+ },
+ {
+ "image": "104362/2_2opagelsqxstandard35225120640115.nii.gz",
+ "pseudo_label": "104362/2_2opagelsqxstandard35225120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104362/2_2opagelsqxstandard35225120640115/2_2opagelsqxstandard35225120640115_seg.nii.gz"
+ },
+ {
+ "image": "104748/3_1opagels16standard36025120720114.nii.gz",
+ "pseudo_label": "104748/3_1opagels16standard36025120720114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104748/3_1opagels16standard36025120720114/3_1opagels16standard36025120720114_seg.nii.gz"
+ },
+ {
+ "image": "104748/2_2opagels16bone36025140600114.nii.gz",
+ "pseudo_label": "104748/2_2opagels16bone36025140600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104748/2_2opagels16bone36025140600114/2_2opagels16bone36025140600114_seg.nii.gz"
+ },
+ {
+ "image": "105819/2_2opagelspr16bone3002512048014.nii.gz",
+ "pseudo_label": "105819/2_2opagelspr16bone3002512048014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105819/2_2opagelspr16bone3002512048014/2_2opagelspr16bone3002512048014_seg.nii.gz"
+ },
+ {
+ "image": "105819/3_2opagelspr16standard3002512048014.nii.gz",
+ "pseudo_label": "105819/3_2opagelspr16standard3002512048014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105819/3_2opagelspr16standard3002512048014/3_2opagelspr16standard3002512048014_seg.nii.gz"
+ },
+ {
+ "image": "105819/2_0opagelsqxbone3072512048015.nii.gz",
+ "pseudo_label": "105819/2_0opagelsqxbone3072512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105819/2_0opagelsqxbone3072512048015/2_0opagelsqxbone3072512048015_seg.nii.gz"
+ },
+ {
+ "image": "105819/2_1opagels16bone3202512000na.nii.gz",
+ "pseudo_label": "105819/2_1opagels16bone3202512000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105819/2_1opagels16bone3202512000na/2_1opagels16bone3202512000na_seg.nii.gz"
+ },
+ {
+ "image": "105819/3_0opagelsqxstandard3072512048015.nii.gz",
+ "pseudo_label": "105819/3_0opagelsqxstandard3072512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105819/3_0opagelsqxstandard3072512048015/3_0opagelsqxstandard3072512048015_seg.nii.gz"
+ },
+ {
+ "image": "106359/2_2opagelsplusstandard3802514040015.nii.gz",
+ "pseudo_label": "106359/2_2opagelsplusstandard3802514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106359/2_2opagelsplusstandard3802514040015/2_2opagelsplusstandard3802514040015_seg.nii.gz"
+ },
+ {
+ "image": "106359/2_0opagelsplusstandard3502514040015.nii.gz",
+ "pseudo_label": "106359/2_0opagelsplusstandard3502514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106359/2_0opagelsplusstandard3502514040015/2_0opagelsplusstandard3502514040015_seg.nii.gz"
+ },
+ {
+ "image": "106359/2_1opagelsplusstandard3502514040015.nii.gz",
+ "pseudo_label": "106359/2_1opagelsplusstandard3502514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106359/2_1opagelsplusstandard3502514040015/2_1opagelsplusstandard3502514040015_seg.nii.gz"
+ },
+ {
+ "image": "110390/3_2opagehsqxbone33025120560115.nii.gz",
+ "pseudo_label": "110390/3_2opagehsqxbone33025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110390/3_2opagehsqxbone33025120560115/3_2opagehsqxbone33025120560115_seg.nii.gz"
+ },
+ {
+ "image": "110390/2_0opagehsqxstandard33025120560115.nii.gz",
+ "pseudo_label": "110390/2_0opagehsqxstandard33025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110390/2_0opagehsqxstandard33025120560115/2_0opagehsqxstandard33025120560115_seg.nii.gz"
+ },
+ {
+ "image": "110390/2_1opagehsqxstandard33025120560115.nii.gz",
+ "pseudo_label": "110390/2_1opagehsqxstandard33025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110390/2_1opagehsqxstandard33025120560115/2_1opagehsqxstandard33025120560115_seg.nii.gz"
+ },
+ {
+ "image": "110390/3_0opagehsqxbone33025120560115.nii.gz",
+ "pseudo_label": "110390/3_0opagehsqxbone33025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110390/3_0opagehsqxbone33025120560115/3_0opagehsqxbone33025120560115_seg.nii.gz"
+ },
+ {
+ "image": "105946/2_0opagelsqxstandard3602512040015.nii.gz",
+ "pseudo_label": "105946/2_0opagelsqxstandard3602512040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105946/2_0opagelsqxstandard3602512040015/2_0opagelsqxstandard3602512040015_seg.nii.gz"
+ },
+ {
+ "image": "113230/2_1opagelsqxstandard40025120640115.nii.gz",
+ "pseudo_label": "113230/2_1opagelsqxstandard40025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113230/2_1opagelsqxstandard40025120640115/2_1opagelsqxstandard40025120640115_seg.nii.gz"
+ },
+ {
+ "image": "107904/3_1opagelsqxbone29025120560115.nii.gz",
+ "pseudo_label": "107904/3_1opagelsqxbone29025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107904/3_1opagelsqxbone29025120560115/3_1opagelsqxbone29025120560115_seg.nii.gz"
+ },
+ {
+ "image": "107904/2_2opagelsqxstandard28125120560115.nii.gz",
+ "pseudo_label": "107904/2_2opagelsqxstandard28125120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107904/2_2opagelsqxstandard28125120560115/2_2opagelsqxstandard28125120560115_seg.nii.gz"
+ },
+ {
+ "image": "107904/4_0opagelsqxstandard25325120560115.nii.gz",
+ "pseudo_label": "107904/4_0opagelsqxstandard25325120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107904/4_0opagelsqxstandard25325120560115/4_0opagelsqxstandard25325120560115_seg.nii.gz"
+ },
+ {
+ "image": "107904/5_0opagelsqxbone25325120560115.nii.gz",
+ "pseudo_label": "107904/5_0opagelsqxbone25325120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107904/5_0opagelsqxbone25325120560115/5_0opagelsqxbone25325120560115_seg.nii.gz"
+ },
+ {
+ "image": "107904/2_1opagelsqxstandard29025120560115.nii.gz",
+ "pseudo_label": "107904/2_1opagelsqxstandard29025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107904/2_1opagelsqxstandard29025120560115/2_1opagelsqxstandard29025120560115_seg.nii.gz"
+ },
+ {
+ "image": "107904/3_2opagelsqxbone28125120560115.nii.gz",
+ "pseudo_label": "107904/3_2opagelsqxbone28125120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107904/3_2opagelsqxbone28125120560115/3_2opagelsqxbone28125120560115_seg.nii.gz"
+ },
+ {
+ "image": "107904/3_0opagelsqxbone25325120560115.nii.gz",
+ "pseudo_label": "107904/3_0opagelsqxbone25325120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107904/3_0opagelsqxbone25325120560115/3_0opagelsqxbone25325120560115_seg.nii.gz"
+ },
+ {
+ "image": "112875/2_2opagelsqxstandard3202512048015.nii.gz",
+ "pseudo_label": "112875/2_2opagelsqxstandard3202512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112875/2_2opagelsqxstandard3202512048015/2_2opagelsqxstandard3202512048015_seg.nii.gz"
+ },
+ {
+ "image": "112875/2_0opagelsqxstandard3102512048015.nii.gz",
+ "pseudo_label": "112875/2_0opagelsqxstandard3102512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112875/2_0opagelsqxstandard3102512048015/2_0opagelsqxstandard3102512048015_seg.nii.gz"
+ },
+ {
+ "image": "112875/2_1opagelsqxstandard33025120480na.nii.gz",
+ "pseudo_label": "112875/2_1opagelsqxstandard33025120480na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112875/2_1opagelsqxstandard33025120480na/2_1opagelsqxstandard33025120480na_seg.nii.gz"
+ },
+ {
+ "image": "100771/2_0opasesen16b30f36221204032na.nii.gz",
+ "pseudo_label": "100771/2_0opasesen16b30f36221204032na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100771/2_0opasesen16b30f36221204032na/2_0opasesen16b30f36221204032na_seg.nii.gz"
+ },
+ {
+ "image": "103564/4_0opatoaqul4fc513438212050nana.nii.gz",
+ "pseudo_label": "103564/4_0opatoaqul4fc513438212050nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103564/4_0opatoaqul4fc513438212050nana/4_0opatoaqul4fc513438212050nana_seg.nii.gz"
+ },
+ {
+ "image": "102933/3_2opatoaqul4fc51300212055nana.nii.gz",
+ "pseudo_label": "102933/3_2opatoaqul4fc51300212055nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102933/3_2opatoaqul4fc51300212055nana/3_2opatoaqul4fc51300212055nana_seg.nii.gz"
+ },
+ {
+ "image": "100871/2_1opagelsqxstandard30025120640115.nii.gz",
+ "pseudo_label": "100871/2_1opagelsqxstandard30025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100871/2_1opagelsqxstandard30025120640115/2_1opagelsqxstandard30025120640115_seg.nii.gz"
+ },
+ {
+ "image": "100871/2_0opagelsqxstandard30625120640115.nii.gz",
+ "pseudo_label": "100871/2_0opagelsqxstandard30625120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100871/2_0opagelsqxstandard30625120640115/2_0opagelsqxstandard30625120640115_seg.nii.gz"
+ },
+ {
+ "image": "100871/2_2opagelsqxstandard34025120480na.nii.gz",
+ "pseudo_label": "100871/2_2opagelsqxstandard34025120480na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100871/2_2opagelsqxstandard34025120480na/2_2opagelsqxstandard34025120480na_seg.nii.gz"
+ },
+ {
+ "image": "112031/3_2opasesen16b50f34021204530na.nii.gz",
+ "pseudo_label": "112031/3_2opasesen16b50f34021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112031/3_2opasesen16b50f34021204530na/3_2opasesen16b50f34021204530na_seg.nii.gz"
+ },
+ {
+ "image": "112481/3_0opagelsqxbone34425120640115.nii.gz",
+ "pseudo_label": "112481/3_0opagelsqxbone34425120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112481/3_0opagelsqxbone34425120640115/3_0opagelsqxbone34425120640115_seg.nii.gz"
+ },
+ {
+ "image": "112481/3_1opagelsqxbone34825120640115.nii.gz",
+ "pseudo_label": "112481/3_1opagelsqxbone34825120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112481/3_1opagelsqxbone34825120640115/3_1opagelsqxbone34825120640115_seg.nii.gz"
+ },
+ {
+ "image": "112481/2_1opagelsqxstandard34825120640115.nii.gz",
+ "pseudo_label": "112481/2_1opagelsqxstandard34825120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112481/2_1opagelsqxstandard34825120640115/2_1opagelsqxstandard34825120640115_seg.nii.gz"
+ },
+ {
+ "image": "112481/2_2opagelsqxstandard35025120640115.nii.gz",
+ "pseudo_label": "112481/2_2opagelsqxstandard35025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112481/2_2opagelsqxstandard35025120640115/2_2opagelsqxstandard35025120640115_seg.nii.gz"
+ },
+ {
+ "image": "112481/2_0opagelsqxstandard34425120640115.nii.gz",
+ "pseudo_label": "112481/2_0opagelsqxstandard34425120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112481/2_0opagelsqxstandard34425120640115/2_0opagelsqxstandard34425120640115_seg.nii.gz"
+ },
+ {
+ "image": "112481/3_2opagelsqxbone35025120640115.nii.gz",
+ "pseudo_label": "112481/3_2opagelsqxbone35025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112481/3_2opagelsqxbone35025120640115/3_2opagelsqxbone35025120640115_seg.nii.gz"
+ },
+ {
+ "image": "104923/1_0opagelsplusstandard38025120800108.nii.gz",
+ "pseudo_label": "104923/1_0opagelsplusstandard38025120800108.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104923/1_0opagelsplusstandard38025120800108/1_0opagelsplusstandard38025120800108_seg.nii.gz"
+ },
+ {
+ "image": "104923/1_1opagelspluslung38025120800115.nii.gz",
+ "pseudo_label": "104923/1_1opagelspluslung38025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104923/1_1opagelspluslung38025120800115/1_1opagelspluslung38025120800115_seg.nii.gz"
+ },
+ {
+ "image": "104923/1_0opagelspluslung38025120800108.nii.gz",
+ "pseudo_label": "104923/1_0opagelspluslung38025120800108.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104923/1_0opagelspluslung38025120800108/1_0opagelspluslung38025120800108_seg.nii.gz"
+ },
+ {
+ "image": "104923/1_2opagelsplusstandard38025120800115.nii.gz",
+ "pseudo_label": "104923/1_2opagelsplusstandard38025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104923/1_2opagelsplusstandard38025120800115/1_2opagelsplusstandard38025120800115_seg.nii.gz"
+ },
+ {
+ "image": "104923/1_2opagelspluslung38025120800115.nii.gz",
+ "pseudo_label": "104923/1_2opagelspluslung38025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104923/1_2opagelspluslung38025120800115/1_2opagelspluslung38025120800115_seg.nii.gz"
+ },
+ {
+ "image": "110204/2_2opagelspr16bone2902512048014.nii.gz",
+ "pseudo_label": "110204/2_2opagelspr16bone2902512048014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110204/2_2opagelspr16bone2902512048014/2_2opagelspr16bone2902512048014_seg.nii.gz"
+ },
+ {
+ "image": "110204/3_2opagelspr16standard2902512048014.nii.gz",
+ "pseudo_label": "110204/3_2opagelspr16standard2902512048014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110204/3_2opagelspr16standard2902512048014/3_2opagelspr16standard2902512048014_seg.nii.gz"
+ },
+ {
+ "image": "110204/3_1opagels16standard3212512040014.nii.gz",
+ "pseudo_label": "110204/3_1opagels16standard3212512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110204/3_1opagels16standard3212512040014/3_1opagels16standard3212512040014_seg.nii.gz"
+ },
+ {
+ "image": "110204/3_0opagelsqxstandard3602512048015.nii.gz",
+ "pseudo_label": "110204/3_0opagelsqxstandard3602512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110204/3_0opagelsqxstandard3602512048015/3_0opagelsqxstandard3602512048015_seg.nii.gz"
+ },
+ {
+ "image": "110204/2_1opagels16bone3302512040014.nii.gz",
+ "pseudo_label": "110204/2_1opagels16bone3302512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110204/2_1opagels16bone3302512040014/2_1opagels16bone3302512040014_seg.nii.gz"
+ },
+ {
+ "image": "112440/3_2opagelsqxbone33225120720115.nii.gz",
+ "pseudo_label": "112440/3_2opagelsqxbone33225120720115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112440/3_2opagelsqxbone33225120720115/3_2opagelsqxbone33225120720115_seg.nii.gz"
+ },
+ {
+ "image": "112440/2_1opagelsqxstandard33625120720115.nii.gz",
+ "pseudo_label": "112440/2_1opagelsqxstandard33625120720115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112440/2_1opagelsqxstandard33625120720115/2_1opagelsqxstandard33625120720115_seg.nii.gz"
+ },
+ {
+ "image": "112440/2_2opagelsqxstandard33225120720115.nii.gz",
+ "pseudo_label": "112440/2_2opagelsqxstandard33225120720115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112440/2_2opagelsqxstandard33225120720115/2_2opagelsqxstandard33225120720115_seg.nii.gz"
+ },
+ {
+ "image": "112440/3_1opagelsqxbone33625120720115.nii.gz",
+ "pseudo_label": "112440/3_1opagelsqxbone33625120720115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112440/3_1opagelsqxbone33625120720115/3_1opagelsqxbone33625120720115_seg.nii.gz"
+ },
+ {
+ "image": "101715/2_2opagehsqxstandard35025120560115.nii.gz",
+ "pseudo_label": "101715/2_2opagehsqxstandard35025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101715/2_2opagehsqxstandard35025120560115/2_2opagehsqxstandard35025120560115_seg.nii.gz"
+ },
+ {
+ "image": "101715/2_0opagehsqxstandard35025120560115.nii.gz",
+ "pseudo_label": "101715/2_0opagehsqxstandard35025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101715/2_0opagehsqxstandard35025120560115/2_0opagehsqxstandard35025120560115_seg.nii.gz"
+ },
+ {
+ "image": "101715/2_1opagehsqxstandard35025120560115.nii.gz",
+ "pseudo_label": "101715/2_1opagehsqxstandard35025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101715/2_1opagehsqxstandard35025120560115/2_1opagehsqxstandard35025120560115_seg.nii.gz"
+ },
+ {
+ "image": "101715/3_0opagehsqxbone35025120560115.nii.gz",
+ "pseudo_label": "101715/3_0opagehsqxbone35025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101715/3_0opagehsqxbone35025120560115/3_0opagehsqxbone35025120560115_seg.nii.gz"
+ },
+ {
+ "image": "101715/3_2opagehsqxbone35025120560115.nii.gz",
+ "pseudo_label": "101715/3_2opagehsqxbone35025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101715/3_2opagehsqxbone35025120560115/3_2opagehsqxbone35025120560115_seg.nii.gz"
+ },
+ {
+ "image": "100173/2_1opasevzoomb50f28021206030na.nii.gz",
+ "pseudo_label": "100173/2_1opasevzoomb50f28021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100173/2_1opasevzoomb50f28021206030na/2_1opasevzoomb50f28021206030na_seg.nii.gz"
+ },
+ {
+ "image": "100173/3_0opasevzoomb30f29421206030na.nii.gz",
+ "pseudo_label": "100173/3_0opasevzoomb30f29421206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100173/3_0opasevzoomb30f29421206030na/3_0opasevzoomb30f29421206030na_seg.nii.gz"
+ },
+ {
+ "image": "100173/3_2opasesen16b30f27021204530na.nii.gz",
+ "pseudo_label": "100173/3_2opasesen16b30f27021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100173/3_2opasesen16b30f27021204530na/3_2opasesen16b30f27021204530na_seg.nii.gz"
+ },
+ {
+ "image": "100173/4_2opasesen16b50f27021204530na.nii.gz",
+ "pseudo_label": "100173/4_2opasesen16b50f27021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100173/4_2opasesen16b50f27021204530na/4_2opasesen16b50f27021204530na_seg.nii.gz"
+ },
+ {
+ "image": "100173/5_2opasesen16b30f27021204530na.nii.gz",
+ "pseudo_label": "100173/5_2opasesen16b30f27021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100173/5_2opasesen16b30f27021204530na/5_2opasesen16b30f27021204530na_seg.nii.gz"
+ },
+ {
+ "image": "109162/3_2opatoaqul4fc513203212040nana.nii.gz",
+ "pseudo_label": "109162/3_2opatoaqul4fc513203212040nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109162/3_2opatoaqul4fc513203212040nana/3_2opatoaqul4fc513203212040nana_seg.nii.gz"
+ },
+ {
+ "image": "110917/3_1opasevzoomb50f35021206030na.nii.gz",
+ "pseudo_label": "110917/3_1opasevzoomb50f35021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110917/3_1opasevzoomb50f35021206030na/3_1opasevzoomb50f35021206030na_seg.nii.gz"
+ },
+ {
+ "image": "110917/4_2opasevzoomb50f35051206030na.nii.gz",
+ "pseudo_label": "110917/4_2opasevzoomb50f35051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110917/4_2opasevzoomb50f35051206030na/4_2opasevzoomb50f35051206030na_seg.nii.gz"
+ },
+ {
+ "image": "110917/5_0opasevzoomb30f40851206030na.nii.gz",
+ "pseudo_label": "110917/5_0opasevzoomb30f40851206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110917/5_0opasevzoomb30f40851206030na/5_0opasevzoomb30f40851206030na_seg.nii.gz"
+ },
+ {
+ "image": "110917/6_0opasevzoomb30f40821206030na.nii.gz",
+ "pseudo_label": "110917/6_0opasevzoomb30f40821206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110917/6_0opasevzoomb30f40821206030na/6_0opasevzoomb30f40821206030na_seg.nii.gz"
+ },
+ {
+ "image": "110917/6_2opasevzoomb30f35021206030na.nii.gz",
+ "pseudo_label": "110917/6_2opasevzoomb30f35021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110917/6_2opasevzoomb30f35021206030na/6_2opasevzoomb30f35021206030na_seg.nii.gz"
+ },
+ {
+ "image": "110917/4_0opasevzoomb50f40851206030na.nii.gz",
+ "pseudo_label": "110917/4_0opasevzoomb50f40851206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110917/4_0opasevzoomb50f40851206030na/4_0opasevzoomb50f40851206030na_seg.nii.gz"
+ },
+ {
+ "image": "110917/4_1opasevzoomb50f35051206030na.nii.gz",
+ "pseudo_label": "110917/4_1opasevzoomb50f35051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110917/4_1opasevzoomb50f35051206030na/4_1opasevzoomb50f35051206030na_seg.nii.gz"
+ },
+ {
+ "image": "110917/5_2opasevzoomb30f35051206030na.nii.gz",
+ "pseudo_label": "110917/5_2opasevzoomb30f35051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110917/5_2opasevzoomb30f35051206030na/5_2opasevzoomb30f35051206030na_seg.nii.gz"
+ },
+ {
+ "image": "110917/5_1opasevzoomb30f35051206030na.nii.gz",
+ "pseudo_label": "110917/5_1opasevzoomb30f35051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110917/5_1opasevzoomb30f35051206030na/5_1opasevzoomb30f35051206030na_seg.nii.gz"
+ },
+ {
+ "image": "110917/3_2opasevzoomb50f35021206030na.nii.gz",
+ "pseudo_label": "110917/3_2opasevzoomb50f35021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110917/3_2opasevzoomb50f35021206030na/3_2opasevzoomb50f35021206030na_seg.nii.gz"
+ },
+ {
+ "image": "112698/3_2opatoaqul4fc513141212060nana.nii.gz",
+ "pseudo_label": "112698/3_2opatoaqul4fc513141212060nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112698/3_2opatoaqul4fc513141212060nana/3_2opatoaqul4fc513141212060nana_seg.nii.gz"
+ },
+ {
+ "image": "112698/3_0opatoaqul4fc512844212040nana.nii.gz",
+ "pseudo_label": "112698/3_0opatoaqul4fc512844212040nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112698/3_0opatoaqul4fc512844212040nana/3_0opatoaqul4fc512844212040nana_seg.nii.gz"
+ },
+ {
+ "image": "112698/5_1opatoaqul4fc51400212040nana.nii.gz",
+ "pseudo_label": "112698/5_1opatoaqul4fc51400212040nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112698/5_1opatoaqul4fc51400212040nana/5_1opatoaqul4fc51400212040nana_seg.nii.gz"
+ },
+ {
+ "image": "110883/2_0opagelsqxstandard3702514048015.nii.gz",
+ "pseudo_label": "110883/2_0opagelsqxstandard3702514048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110883/2_0opagelsqxstandard3702514048015/2_0opagelsqxstandard3702514048015_seg.nii.gz"
+ },
+ {
+ "image": "110883/2_1opagelsqxstandard3702514048015.nii.gz",
+ "pseudo_label": "110883/2_1opagelsqxstandard3702514048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110883/2_1opagelsqxstandard3702514048015/2_1opagelsqxstandard3702514048015_seg.nii.gz"
+ },
+ {
+ "image": "110428/2_2opagelsplusstandard30025120600115.nii.gz",
+ "pseudo_label": "110428/2_2opagelsplusstandard30025120600115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110428/2_2opagelsplusstandard30025120600115/2_2opagelsplusstandard30025120600115_seg.nii.gz"
+ },
+ {
+ "image": "103306/2_1opagels16bone33025120560114.nii.gz",
+ "pseudo_label": "103306/2_1opagels16bone33025120560114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103306/2_1opagels16bone33025120560114/2_1opagels16bone33025120560114_seg.nii.gz"
+ },
+ {
+ "image": "103306/3_2opagelspr16standard35025120560114.nii.gz",
+ "pseudo_label": "103306/3_2opagelspr16standard35025120560114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103306/3_2opagelspr16standard35025120560114/3_2opagelspr16standard35025120560114_seg.nii.gz"
+ },
+ {
+ "image": "103306/2_0opagelsqxbone3522512048015.nii.gz",
+ "pseudo_label": "103306/2_0opagelsqxbone3522512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103306/2_0opagelsqxbone3522512048015/2_0opagelsqxbone3522512048015_seg.nii.gz"
+ },
+ {
+ "image": "103306/2_2opagelspr16bone35025120560114.nii.gz",
+ "pseudo_label": "103306/2_2opagelspr16bone35025120560114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103306/2_2opagelspr16bone35025120560114/2_2opagelspr16bone35025120560114_seg.nii.gz"
+ },
+ {
+ "image": "105479/3212_2opaphmx8000d3653212039018.nii.gz",
+ "pseudo_label": "105479/3212_2opaphmx8000d3653212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105479/3212_2opaphmx8000d3653212039018/3212_2opaphmx8000d3653212039018_seg.nii.gz"
+ },
+ {
+ "image": "110689/2_0opagelsqxstandard3002514040015.nii.gz",
+ "pseudo_label": "110689/2_0opagelsqxstandard3002514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110689/2_0opagelsqxstandard3002514040015/2_0opagelsqxstandard3002514040015_seg.nii.gz"
+ },
+ {
+ "image": "110689/2_2opagels16standard3002514040014.nii.gz",
+ "pseudo_label": "110689/2_2opagels16standard3002514040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110689/2_2opagels16standard3002514040014/2_2opagels16standard3002514040014_seg.nii.gz"
+ },
+ {
+ "image": "107990/3_0opasevzoomb50f410512012060na.nii.gz",
+ "pseudo_label": "107990/3_0opasevzoomb50f410512012060na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107990/3_0opasevzoomb50f410512012060na/3_0opasevzoomb50f410512012060na_seg.nii.gz"
+ },
+ {
+ "image": "107990/6_2opasevzoomb30f38021206030na.nii.gz",
+ "pseudo_label": "107990/6_2opasevzoomb30f38021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107990/6_2opasevzoomb30f38021206030na/6_2opasevzoomb30f38021206030na_seg.nii.gz"
+ },
+ {
+ "image": "107990/5_2opasevzoomb30f38051206030na.nii.gz",
+ "pseudo_label": "107990/5_2opasevzoomb30f38051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107990/5_2opasevzoomb30f38051206030na/5_2opasevzoomb30f38051206030na_seg.nii.gz"
+ },
+ {
+ "image": "107990/2_0opasevzoomb50f410212012060na.nii.gz",
+ "pseudo_label": "107990/2_0opasevzoomb50f410212012060na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107990/2_0opasevzoomb50f410212012060na/2_0opasevzoomb50f410212012060na_seg.nii.gz"
+ },
+ {
+ "image": "107990/3_2opasevzoomb50f38021206030na.nii.gz",
+ "pseudo_label": "107990/3_2opasevzoomb50f38021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107990/3_2opasevzoomb50f38021206030na/3_2opasevzoomb50f38021206030na_seg.nii.gz"
+ },
+ {
+ "image": "107990/4_2opasevzoomb50f38051206030na.nii.gz",
+ "pseudo_label": "107990/4_2opasevzoomb50f38051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107990/4_2opasevzoomb50f38051206030na/4_2opasevzoomb50f38051206030na_seg.nii.gz"
+ },
+ {
+ "image": "107990/4_1opasevzoomb50f37351206030na.nii.gz",
+ "pseudo_label": "107990/4_1opasevzoomb50f37351206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107990/4_1opasevzoomb50f37351206030na/4_1opasevzoomb50f37351206030na_seg.nii.gz"
+ },
+ {
+ "image": "107990/3_1opasevzoomb30f37351206030na.nii.gz",
+ "pseudo_label": "107990/3_1opasevzoomb30f37351206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107990/3_1opasevzoomb30f37351206030na/3_1opasevzoomb30f37351206030na_seg.nii.gz"
+ },
+ {
+ "image": "107990/4_0opasevzoomb30f410512012060na.nii.gz",
+ "pseudo_label": "107990/4_0opasevzoomb30f410512012060na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107990/4_0opasevzoomb30f410512012060na/4_0opasevzoomb30f410512012060na_seg.nii.gz"
+ },
+ {
+ "image": "107990/6_1opasevzoomb30f37321206030na.nii.gz",
+ "pseudo_label": "107990/6_1opasevzoomb30f37321206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107990/6_1opasevzoomb30f37321206030na/6_1opasevzoomb30f37321206030na_seg.nii.gz"
+ },
+ {
+ "image": "112901/2_1opagehsqxstandard28025120560115.nii.gz",
+ "pseudo_label": "112901/2_1opagehsqxstandard28025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112901/2_1opagehsqxstandard28025120560115/2_1opagehsqxstandard28025120560115_seg.nii.gz"
+ },
+ {
+ "image": "112901/3_0opagehsqxbone28025120560115.nii.gz",
+ "pseudo_label": "112901/3_0opagehsqxbone28025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112901/3_0opagehsqxbone28025120560115/3_0opagehsqxbone28025120560115_seg.nii.gz"
+ },
+ {
+ "image": "107570/2_0opagelsqxstandard30025120500115.nii.gz",
+ "pseudo_label": "107570/2_0opagelsqxstandard30025120500115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107570/2_0opagelsqxstandard30025120500115/2_0opagelsqxstandard30025120500115_seg.nii.gz"
+ },
+ {
+ "image": "107570/2_1opagelsqxstandard30025120640115.nii.gz",
+ "pseudo_label": "107570/2_1opagelsqxstandard30025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107570/2_1opagelsqxstandard30025120640115/2_1opagelsqxstandard30025120640115_seg.nii.gz"
+ },
+ {
+ "image": "107570/2_2opagels16standard30025120697nana.nii.gz",
+ "pseudo_label": "107570/2_2opagels16standard30025120697nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107570/2_2opagels16standard30025120697nana/2_2opagels16standard30025120697nana_seg.nii.gz"
+ },
+ {
+ "image": "104438/3_0opasevzoomb50f34021206030na.nii.gz",
+ "pseudo_label": "104438/3_0opasevzoomb50f34021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104438/3_0opasevzoomb50f34021206030na/3_0opasevzoomb50f34021206030na_seg.nii.gz"
+ },
+ {
+ "image": "104438/5_0opasevzoomb30f34051206030na.nii.gz",
+ "pseudo_label": "104438/5_0opasevzoomb30f34051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104438/5_0opasevzoomb30f34051206030na/5_0opasevzoomb30f34051206030na_seg.nii.gz"
+ },
+ {
+ "image": "111078/2_1opasesen16b30f29221204032na.nii.gz",
+ "pseudo_label": "111078/2_1opasesen16b30f29221204032na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111078/2_1opasesen16b30f29221204032na/2_1opasesen16b30f29221204032na_seg.nii.gz"
+ },
+ {
+ "image": "111078/2_2opasesen16b30f29421204032na.nii.gz",
+ "pseudo_label": "111078/2_2opasesen16b30f29421204032na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111078/2_2opasesen16b30f29421204032na/2_2opasesen16b30f29421204032na_seg.nii.gz"
+ },
+ {
+ "image": "101521/4_0opatoaqul4fc513453212060nana.nii.gz",
+ "pseudo_label": "101521/4_0opatoaqul4fc513453212060nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101521/4_0opatoaqul4fc513453212060nana/4_0opatoaqul4fc513453212060nana_seg.nii.gz"
+ },
+ {
+ "image": "101521/3_1opatoaqul4fc513406212060nana.nii.gz",
+ "pseudo_label": "101521/3_1opatoaqul4fc513406212060nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101521/3_1opatoaqul4fc513406212060nana/3_1opatoaqul4fc513406212060nana_seg.nii.gz"
+ },
+ {
+ "image": "110307/3_0opasevzoomb30f31621206030na.nii.gz",
+ "pseudo_label": "110307/3_0opasevzoomb30f31621206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110307/3_0opasevzoomb30f31621206030na/3_0opasevzoomb30f31621206030na_seg.nii.gz"
+ },
+ {
+ "image": "110307/2_1opasevzoomb50f33421206030na.nii.gz",
+ "pseudo_label": "110307/2_1opasevzoomb50f33421206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110307/2_1opasevzoomb50f33421206030na/2_1opasevzoomb50f33421206030na_seg.nii.gz"
+ },
+ {
+ "image": "108009/3_0opasevzoomb30f34021208040na.nii.gz",
+ "pseudo_label": "108009/3_0opasevzoomb30f34021208040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108009/3_0opasevzoomb30f34021208040na/3_0opasevzoomb30f34021208040na_seg.nii.gz"
+ },
+ {
+ "image": "103415/1_1opagelspluslung33025120800115.nii.gz",
+ "pseudo_label": "103415/1_1opagelspluslung33025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103415/1_1opagelspluslung33025120800115/1_1opagelspluslung33025120800115_seg.nii.gz"
+ },
+ {
+ "image": "103415/1_0opagelspluslung33025120800115.nii.gz",
+ "pseudo_label": "103415/1_0opagelspluslung33025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103415/1_0opagelspluslung33025120800115/1_0opagelspluslung33025120800115_seg.nii.gz"
+ },
+ {
+ "image": "103415/1_0opagelsplusstandard33025120800115.nii.gz",
+ "pseudo_label": "103415/1_0opagelsplusstandard33025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103415/1_0opagelsplusstandard33025120800115/1_0opagelsplusstandard33025120800115_seg.nii.gz"
+ },
+ {
+ "image": "103415/1_2opagelsplusstandard33025120800115.nii.gz",
+ "pseudo_label": "103415/1_2opagelsplusstandard33025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103415/1_2opagelsplusstandard33025120800115/1_2opagelsplusstandard33025120800115_seg.nii.gz"
+ },
+ {
+ "image": "103415/1_2opagelspluslung33025120800115.nii.gz",
+ "pseudo_label": "103415/1_2opagelspluslung33025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103415/1_2opagelspluslung33025120800115/1_2opagelspluslung33025120800115_seg.nii.gz"
+ },
+ {
+ "image": "111920/3_1opasevzoomb50f34021207540na.nii.gz",
+ "pseudo_label": "111920/3_1opasevzoomb50f34021207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111920/3_1opasevzoomb50f34021207540na/3_1opasevzoomb50f34021207540na_seg.nii.gz"
+ },
+ {
+ "image": "111920/2_0opasevzoomb30f31021403520na.nii.gz",
+ "pseudo_label": "111920/2_0opasevzoomb30f31021403520na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111920/2_0opasevzoomb30f31021403520na/2_0opasevzoomb30f31021403520na_seg.nii.gz"
+ },
+ {
+ "image": "111920/3_0opasevzoomb50f31021403520na.nii.gz",
+ "pseudo_label": "111920/3_0opasevzoomb50f31021403520na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111920/3_0opasevzoomb50f31021403520na/3_0opasevzoomb50f31021403520na_seg.nii.gz"
+ },
+ {
+ "image": "102260/2_2opagehsqxstandard35025120560115.nii.gz",
+ "pseudo_label": "102260/2_2opagehsqxstandard35025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102260/2_2opagehsqxstandard35025120560115/2_2opagehsqxstandard35025120560115_seg.nii.gz"
+ },
+ {
+ "image": "102260/2_0opagehsqxstandard35025120560115.nii.gz",
+ "pseudo_label": "102260/2_0opagehsqxstandard35025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102260/2_0opagehsqxstandard35025120560115/2_0opagehsqxstandard35025120560115_seg.nii.gz"
+ },
+ {
+ "image": "102260/2_1opagehsqxstandard35025120560115.nii.gz",
+ "pseudo_label": "102260/2_1opagehsqxstandard35025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102260/2_1opagehsqxstandard35025120560115/2_1opagehsqxstandard35025120560115_seg.nii.gz"
+ },
+ {
+ "image": "104282/2_1opagelsqxstandard3102512048015.nii.gz",
+ "pseudo_label": "104282/2_1opagelsqxstandard3102512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104282/2_1opagelsqxstandard3102512048015/2_1opagelsqxstandard3102512048015_seg.nii.gz"
+ },
+ {
+ "image": "104282/2_0opagelsqxstandard280251206401na.nii.gz",
+ "pseudo_label": "104282/2_0opagelsqxstandard280251206401na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104282/2_0opagelsqxstandard280251206401na/2_0opagelsqxstandard280251206401na_seg.nii.gz"
+ },
+ {
+ "image": "113281/3_1opatoaqul4fc513203212060nana.nii.gz",
+ "pseudo_label": "113281/3_1opatoaqul4fc513203212060nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113281/3_1opatoaqul4fc513203212060nana/3_1opatoaqul4fc513203212060nana_seg.nii.gz"
+ },
+ {
+ "image": "113281/3_0opatoaqul4fc513156212060nana.nii.gz",
+ "pseudo_label": "113281/3_0opatoaqul4fc513156212060nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113281/3_0opatoaqul4fc513156212060nana/3_0opatoaqul4fc513156212060nana_seg.nii.gz"
+ },
+ {
+ "image": "103580/4_0opasevzoomb50f36451206030na.nii.gz",
+ "pseudo_label": "103580/4_0opasevzoomb50f36451206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103580/4_0opasevzoomb50f36451206030na/4_0opasevzoomb50f36451206030na_seg.nii.gz"
+ },
+ {
+ "image": "103580/5_1opasevzoomb30f32051206030na.nii.gz",
+ "pseudo_label": "103580/5_1opasevzoomb30f32051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103580/5_1opasevzoomb30f32051206030na/5_1opasevzoomb30f32051206030na_seg.nii.gz"
+ },
+ {
+ "image": "103580/5_2opasevzoomb30f29051206030na.nii.gz",
+ "pseudo_label": "103580/5_2opasevzoomb30f29051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103580/5_2opasevzoomb30f29051206030na/5_2opasevzoomb30f29051206030na_seg.nii.gz"
+ },
+ {
+ "image": "103580/4_1opasevzoomb50f32051206030na.nii.gz",
+ "pseudo_label": "103580/4_1opasevzoomb50f32051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103580/4_1opasevzoomb50f32051206030na/4_1opasevzoomb50f32051206030na_seg.nii.gz"
+ },
+ {
+ "image": "103580/4_2opasevzoomb50f29051206030na.nii.gz",
+ "pseudo_label": "103580/4_2opasevzoomb50f29051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103580/4_2opasevzoomb50f29051206030na/4_2opasevzoomb50f29051206030na_seg.nii.gz"
+ },
+ {
+ "image": "103580/6_2opasevzoomb30f29021206030na.nii.gz",
+ "pseudo_label": "103580/6_2opasevzoomb30f29021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103580/6_2opasevzoomb30f29021206030na/6_2opasevzoomb30f29021206030na_seg.nii.gz"
+ },
+ {
+ "image": "103580/6_1opasevzoomb30f32021206030na.nii.gz",
+ "pseudo_label": "103580/6_1opasevzoomb30f32021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103580/6_1opasevzoomb30f32021206030na/6_1opasevzoomb30f32021206030na_seg.nii.gz"
+ },
+ {
+ "image": "108488/4_0opatoaqul4fc513094212065nana.nii.gz",
+ "pseudo_label": "108488/4_0opatoaqul4fc513094212065nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108488/4_0opatoaqul4fc513094212065nana/4_0opatoaqul4fc513094212065nana_seg.nii.gz"
+ },
+ {
+ "image": "109405/3_2opagelspr16standard2902512040014.nii.gz",
+ "pseudo_label": "109405/3_2opagelspr16standard2902512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109405/3_2opagelspr16standard2902512040014/3_2opagelspr16standard2902512040014_seg.nii.gz"
+ },
+ {
+ "image": "109405/3_0opagelsqxstandard3302512048015.nii.gz",
+ "pseudo_label": "109405/3_0opagelsqxstandard3302512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109405/3_0opagelsqxstandard3302512048015/3_0opagelsqxstandard3302512048015_seg.nii.gz"
+ },
+ {
+ "image": "109405/3_1opagels16standard3202512040014.nii.gz",
+ "pseudo_label": "109405/3_1opagels16standard3202512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109405/3_1opagels16standard3202512040014/3_1opagels16standard3202512040014_seg.nii.gz"
+ },
+ {
+ "image": "109405/2_2opagelspr16bone2902512040014.nii.gz",
+ "pseudo_label": "109405/2_2opagelspr16bone2902512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109405/2_2opagelspr16bone2902512040014/2_2opagelspr16bone2902512040014_seg.nii.gz"
+ },
+ {
+ "image": "109405/2_1opagels16bone3202512040014.nii.gz",
+ "pseudo_label": "109405/2_1opagels16bone3202512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109405/2_1opagels16bone3202512040014/2_1opagels16bone3202512040014_seg.nii.gz"
+ },
+ {
+ "image": "104994/1_1opagelspluslung38025120800115.nii.gz",
+ "pseudo_label": "104994/1_1opagelspluslung38025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104994/1_1opagelspluslung38025120800115/1_1opagelspluslung38025120800115_seg.nii.gz"
+ },
+ {
+ "image": "104994/1_0opagelspluslung38025120800108.nii.gz",
+ "pseudo_label": "104994/1_0opagelspluslung38025120800108.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104994/1_0opagelspluslung38025120800108/1_0opagelspluslung38025120800108_seg.nii.gz"
+ },
+ {
+ "image": "107972/2_0opagelsqxstandard2862514048015.nii.gz",
+ "pseudo_label": "107972/2_0opagelsqxstandard2862514048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107972/2_0opagelsqxstandard2862514048015/2_0opagelsqxstandard2862514048015_seg.nii.gz"
+ },
+ {
+ "image": "107532/2_1opagelsplusstandard3202514040015.nii.gz",
+ "pseudo_label": "107532/2_1opagelsplusstandard3202514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107532/2_1opagelsplusstandard3202514040015/2_1opagelsplusstandard3202514040015_seg.nii.gz"
+ },
+ {
+ "image": "107532/2_2opagelsplusstandard3102514040015.nii.gz",
+ "pseudo_label": "107532/2_2opagelsplusstandard3102514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107532/2_2opagelsplusstandard3102514040015/2_2opagelsplusstandard3102514040015_seg.nii.gz"
+ },
+ {
+ "image": "109234/2_2opagelspr16bone2702512040014.nii.gz",
+ "pseudo_label": "109234/2_2opagelspr16bone2702512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109234/2_2opagelspr16bone2702512040014/2_2opagelspr16bone2702512040014_seg.nii.gz"
+ },
+ {
+ "image": "109234/2_1opagels16bone3002512000na.nii.gz",
+ "pseudo_label": "109234/2_1opagels16bone3002512000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109234/2_1opagels16bone3002512000na/2_1opagels16bone3002512000na_seg.nii.gz"
+ },
+ {
+ "image": "109234/3_2opagelspr16standard2702512040014.nii.gz",
+ "pseudo_label": "109234/3_2opagelspr16standard2702512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109234/3_2opagelspr16standard2702512040014/3_2opagelspr16standard2702512040014_seg.nii.gz"
+ },
+ {
+ "image": "109234/3_1opagels16standard3002512000na.nii.gz",
+ "pseudo_label": "109234/3_1opagels16standard3002512000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109234/3_1opagels16standard3002512000na/3_1opagels16standard3002512000na_seg.nii.gz"
+ },
+ {
+ "image": "104320/2_1opasevzoomb30f32821207540na.nii.gz",
+ "pseudo_label": "104320/2_1opasevzoomb30f32821207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104320/2_1opasevzoomb30f32821207540na/2_1opasevzoomb30f32821207540na_seg.nii.gz"
+ },
+ {
+ "image": "104320/2_2opasevzoomb30f33221207540na.nii.gz",
+ "pseudo_label": "104320/2_2opasevzoomb30f33221207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104320/2_2opasevzoomb30f33221207540na/2_2opasevzoomb30f33221207540na_seg.nii.gz"
+ },
+ {
+ "image": "104320/3_1opasevzoomb50f32821207540na.nii.gz",
+ "pseudo_label": "104320/3_1opasevzoomb50f32821207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104320/3_1opasevzoomb50f32821207540na/3_1opasevzoomb50f32821207540na_seg.nii.gz"
+ },
+ {
+ "image": "104320/3_2opasevzoomb50f33221207540na.nii.gz",
+ "pseudo_label": "104320/3_2opasevzoomb50f33221207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104320/3_2opasevzoomb50f33221207540na/3_2opasevzoomb50f33221207540na_seg.nii.gz"
+ },
+ {
+ "image": "112493/2_0opagelsqxstandard3402514040015.nii.gz",
+ "pseudo_label": "112493/2_0opagelsqxstandard3402514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112493/2_0opagelsqxstandard3402514040015/2_0opagelsqxstandard3402514040015_seg.nii.gz"
+ },
+ {
+ "image": "112493/3_2opagelsplusstandard37025140560115.nii.gz",
+ "pseudo_label": "112493/3_2opagelsplusstandard37025140560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112493/3_2opagelsplusstandard37025140560115/3_2opagelsplusstandard37025140560115_seg.nii.gz"
+ },
+ {
+ "image": "112493/2_1opagelsplusstandard3502514040015.nii.gz",
+ "pseudo_label": "112493/2_1opagelsplusstandard3502514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112493/2_1opagelsplusstandard3502514040015/2_1opagelsplusstandard3502514040015_seg.nii.gz"
+ },
+ {
+ "image": "112493/2_2opagelsplusstandard3702514040015.nii.gz",
+ "pseudo_label": "112493/2_2opagelsplusstandard3702514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112493/2_2opagelsplusstandard3702514040015/2_2opagelsplusstandard3702514040015_seg.nii.gz"
+ },
+ {
+ "image": "108642/950_2opaphmx8000c35032120756012.nii.gz",
+ "pseudo_label": "108642/950_2opaphmx8000c35032120756012.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108642/950_2opaphmx8000c35032120756012/950_2opaphmx8000c35032120756012_seg.nii.gz"
+ },
+ {
+ "image": "100543/2_0opagelsqxstandard3002514040015.nii.gz",
+ "pseudo_label": "100543/2_0opagelsqxstandard3002514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100543/2_0opagelsqxstandard3002514040015/2_0opagelsqxstandard3002514040015_seg.nii.gz"
+ },
+ {
+ "image": "100543/2_1opagelsplusstandard2802514040015.nii.gz",
+ "pseudo_label": "100543/2_1opagelsplusstandard2802514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100543/2_1opagelsplusstandard2802514040015/2_1opagelsplusstandard2802514040015_seg.nii.gz"
+ },
+ {
+ "image": "105184/2_0opagelsqxstandard37425120720115.nii.gz",
+ "pseudo_label": "105184/2_0opagelsqxstandard37425120720115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105184/2_0opagelsqxstandard37425120720115/2_0opagelsqxstandard37425120720115_seg.nii.gz"
+ },
+ {
+ "image": "105184/2_1opagelsqxstandard37225120640115.nii.gz",
+ "pseudo_label": "105184/2_1opagelsqxstandard37225120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105184/2_1opagelsqxstandard37225120640115/2_1opagelsqxstandard37225120640115_seg.nii.gz"
+ },
+ {
+ "image": "105184/3_2opagelsqxbone38825120640115.nii.gz",
+ "pseudo_label": "105184/3_2opagelsqxbone38825120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105184/3_2opagelsqxbone38825120640115/3_2opagelsqxbone38825120640115_seg.nii.gz"
+ },
+ {
+ "image": "105184/3_1opagelsqxbone37225120640115.nii.gz",
+ "pseudo_label": "105184/3_1opagelsqxbone37225120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105184/3_1opagelsqxbone37225120640115/3_1opagelsqxbone37225120640115_seg.nii.gz"
+ },
+ {
+ "image": "105184/3_0opagelsqxbone37425120720115.nii.gz",
+ "pseudo_label": "105184/3_0opagelsqxbone37425120720115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105184/3_0opagelsqxbone37425120720115/3_0opagelsqxbone37425120720115_seg.nii.gz"
+ },
+ {
+ "image": "104049/2_0opagelsqxstandard29325120560115.nii.gz",
+ "pseudo_label": "104049/2_0opagelsqxstandard29325120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104049/2_0opagelsqxstandard29325120560115/2_0opagelsqxstandard29325120560115_seg.nii.gz"
+ },
+ {
+ "image": "104049/3_0opagelsqxbone29325120560115.nii.gz",
+ "pseudo_label": "104049/3_0opagelsqxbone29325120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104049/3_0opagelsqxbone29325120560115/3_0opagelsqxbone29325120560115_seg.nii.gz"
+ },
+ {
+ "image": "104049/2_2opagelsqxstandard29925120560115.nii.gz",
+ "pseudo_label": "104049/2_2opagelsqxstandard29925120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104049/2_2opagelsqxstandard29925120560115/2_2opagelsqxstandard29925120560115_seg.nii.gz"
+ },
+ {
+ "image": "104049/2_1opagelsqxstandard30725120560115.nii.gz",
+ "pseudo_label": "104049/2_1opagelsqxstandard30725120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104049/2_1opagelsqxstandard30725120560115/2_1opagelsqxstandard30725120560115_seg.nii.gz"
+ },
+ {
+ "image": "104049/3_1opagelsqxbone30725120560115.nii.gz",
+ "pseudo_label": "104049/3_1opagelsqxbone30725120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104049/3_1opagelsqxbone30725120560115/3_1opagelsqxbone30725120560115_seg.nii.gz"
+ },
+ {
+ "image": "108615/3_2opasevzoomb50f35021207540na.nii.gz",
+ "pseudo_label": "108615/3_2opasevzoomb50f35021207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108615/3_2opasevzoomb50f35021207540na/3_2opasevzoomb50f35021207540na_seg.nii.gz"
+ },
+ {
+ "image": "108615/2_0opasevzoomb30f340212010560na.nii.gz",
+ "pseudo_label": "108615/2_0opasevzoomb30f340212010560na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108615/2_0opasevzoomb30f340212010560na/2_0opasevzoomb30f340212010560na_seg.nii.gz"
+ },
+ {
+ "image": "108615/2_2opasevzoomb30f35021207540na.nii.gz",
+ "pseudo_label": "108615/2_2opasevzoomb30f35021207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108615/2_2opasevzoomb30f35021207540na/2_2opasevzoomb30f35021207540na_seg.nii.gz"
+ },
+ {
+ "image": "108615/3_1opasevzoomb50f29221207040na.nii.gz",
+ "pseudo_label": "108615/3_1opasevzoomb50f29221207040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108615/3_1opasevzoomb50f29221207040na/3_1opasevzoomb50f29221207040na_seg.nii.gz"
+ },
+ {
+ "image": "101818/2_1opasevzoomb30f35021207540na.nii.gz",
+ "pseudo_label": "101818/2_1opasevzoomb30f35021207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101818/2_1opasevzoomb30f35021207540na/2_1opasevzoomb30f35021207540na_seg.nii.gz"
+ },
+ {
+ "image": "101818/3_1opasevzoomb50f35021207540na.nii.gz",
+ "pseudo_label": "101818/3_1opasevzoomb50f35021207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101818/3_1opasevzoomb50f35021207540na/3_1opasevzoomb50f35021207540na_seg.nii.gz"
+ },
+ {
+ "image": "101818/2_2opasevzoomb30f36021207540na.nii.gz",
+ "pseudo_label": "101818/2_2opasevzoomb30f36021207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101818/2_2opasevzoomb30f36021207540na/2_2opasevzoomb30f36021207540na_seg.nii.gz"
+ },
+ {
+ "image": "110252/3_1opagehsqxbone33025120560115.nii.gz",
+ "pseudo_label": "110252/3_1opagehsqxbone33025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110252/3_1opagehsqxbone33025120560115/3_1opagehsqxbone33025120560115_seg.nii.gz"
+ },
+ {
+ "image": "110252/2_0opagehsqxstandard33025120560115.nii.gz",
+ "pseudo_label": "110252/2_0opagehsqxstandard33025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110252/2_0opagehsqxstandard33025120560115/2_0opagehsqxstandard33025120560115_seg.nii.gz"
+ },
+ {
+ "image": "110252/2_1opagehsqxstandard33025120560115.nii.gz",
+ "pseudo_label": "110252/2_1opagehsqxstandard33025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110252/2_1opagehsqxstandard33025120560115/2_1opagehsqxstandard33025120560115_seg.nii.gz"
+ },
+ {
+ "image": "110252/3_0opagehsqxbone33025120560115.nii.gz",
+ "pseudo_label": "110252/3_0opagehsqxbone33025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110252/3_0opagehsqxbone33025120560115/3_0opagehsqxbone33025120560115_seg.nii.gz"
+ },
+ {
+ "image": "110252/2_2opagehsqxstandard34025120560115.nii.gz",
+ "pseudo_label": "110252/2_2opagehsqxstandard34025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110252/2_2opagehsqxstandard34025120560115/2_2opagehsqxstandard34025120560115_seg.nii.gz"
+ },
+ {
+ "image": "105326/3_2opagelsqxbone37925120640115.nii.gz",
+ "pseudo_label": "105326/3_2opagelsqxbone37925120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105326/3_2opagelsqxbone37925120640115/3_2opagelsqxbone37925120640115_seg.nii.gz"
+ },
+ {
+ "image": "105326/2_2opagelsqxstandard37925120640115.nii.gz",
+ "pseudo_label": "105326/2_2opagelsqxstandard37925120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105326/2_2opagelsqxstandard37925120640115/2_2opagelsqxstandard37925120640115_seg.nii.gz"
+ },
+ {
+ "image": "112766/2_0opagelsqxstandard30025120nanana.nii.gz",
+ "pseudo_label": "112766/2_0opagelsqxstandard30025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112766/2_0opagelsqxstandard30025120nanana/2_0opagelsqxstandard30025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "112766/3_0opagelsqxbone30025120nanana.nii.gz",
+ "pseudo_label": "112766/3_0opagelsqxbone30025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112766/3_0opagelsqxbone30025120nanana/3_0opagelsqxbone30025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "110245/3_1opatoaqul4fc512969212040nana.nii.gz",
+ "pseudo_label": "110245/3_1opatoaqul4fc512969212040nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110245/3_1opatoaqul4fc512969212040nana/3_1opatoaqul4fc512969212040nana_seg.nii.gz"
+ },
+ {
+ "image": "110245/3_0opatoaqul4fc513094212050nana.nii.gz",
+ "pseudo_label": "110245/3_0opatoaqul4fc513094212050nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110245/3_0opatoaqul4fc513094212050nana/3_0opatoaqul4fc513094212050nana_seg.nii.gz"
+ },
+ {
+ "image": "110245/3_2opatoaqul4fc513105212080nana.nii.gz",
+ "pseudo_label": "110245/3_2opatoaqul4fc513105212080nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110245/3_2opatoaqul4fc513105212080nana/3_2opatoaqul4fc513105212080nana_seg.nii.gz"
+ },
+ {
+ "image": "103121/2_1opasevzoomb30f36021408040na.nii.gz",
+ "pseudo_label": "103121/2_1opasevzoomb30f36021408040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103121/2_1opasevzoomb30f36021408040na/2_1opasevzoomb30f36021408040na_seg.nii.gz"
+ },
+ {
+ "image": "101572/2_1opasevzoomb30f36221207540na.nii.gz",
+ "pseudo_label": "101572/2_1opasevzoomb30f36221207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101572/2_1opasevzoomb30f36221207540na/2_1opasevzoomb30f36221207540na_seg.nii.gz"
+ },
+ {
+ "image": "101572/3_2opasevzoomb50f40421207540na.nii.gz",
+ "pseudo_label": "101572/3_2opasevzoomb50f40421207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101572/3_2opasevzoomb50f40421207540na/3_2opasevzoomb50f40421207540na_seg.nii.gz"
+ },
+ {
+ "image": "100855/2_0opagelsqxstandard3302512048015.nii.gz",
+ "pseudo_label": "100855/2_0opagelsqxstandard3302512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100855/2_0opagelsqxstandard3302512048015/2_0opagelsqxstandard3302512048015_seg.nii.gz"
+ },
+ {
+ "image": "110583/3_1opasevzoomb30f34621206030na.nii.gz",
+ "pseudo_label": "110583/3_1opasevzoomb30f34621206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110583/3_1opasevzoomb30f34621206030na/3_1opasevzoomb30f34621206030na_seg.nii.gz"
+ },
+ {
+ "image": "105509/2_2opagehsqxstandard35025120560115.nii.gz",
+ "pseudo_label": "105509/2_2opagehsqxstandard35025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105509/2_2opagehsqxstandard35025120560115/2_2opagehsqxstandard35025120560115_seg.nii.gz"
+ },
+ {
+ "image": "105509/3_1opagehsqxbone35025120560115.nii.gz",
+ "pseudo_label": "105509/3_1opagehsqxbone35025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105509/3_1opagehsqxbone35025120560115/3_1opagehsqxbone35025120560115_seg.nii.gz"
+ },
+ {
+ "image": "105509/2_0opagehsqxstandard35025120560115.nii.gz",
+ "pseudo_label": "105509/2_0opagehsqxstandard35025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105509/2_0opagehsqxstandard35025120560115/2_0opagehsqxstandard35025120560115_seg.nii.gz"
+ },
+ {
+ "image": "105509/2_1opagehsqxstandard35025120560115.nii.gz",
+ "pseudo_label": "105509/2_1opagehsqxstandard35025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105509/2_1opagehsqxstandard35025120560115/2_1opagehsqxstandard35025120560115_seg.nii.gz"
+ },
+ {
+ "image": "108916/2_2opagelsqxstandard3002514040015.nii.gz",
+ "pseudo_label": "108916/2_2opagelsqxstandard3002514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108916/2_2opagelsqxstandard3002514040015/2_2opagelsqxstandard3002514040015_seg.nii.gz"
+ },
+ {
+ "image": "108916/2_1opagelsqxstandard2832514040015.nii.gz",
+ "pseudo_label": "108916/2_1opagelsqxstandard2832514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108916/2_1opagelsqxstandard2832514040015/2_1opagelsqxstandard2832514040015_seg.nii.gz"
+ },
+ {
+ "image": "108916/3_2opagelsqxstandard3002514040015.nii.gz",
+ "pseudo_label": "108916/3_2opagelsqxstandard3002514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108916/3_2opagelsqxstandard3002514040015/3_2opagelsqxstandard3002514040015_seg.nii.gz"
+ },
+ {
+ "image": "108916/2_0opagelsqxstandard2912514040015.nii.gz",
+ "pseudo_label": "108916/2_0opagelsqxstandard2912514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108916/2_0opagelsqxstandard2912514040015/2_0opagelsqxstandard2912514040015_seg.nii.gz"
+ },
+ {
+ "image": "100153/2_2opagels16standard3802514040014.nii.gz",
+ "pseudo_label": "100153/2_2opagels16standard3802514040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100153/2_2opagels16standard3802514040014/2_2opagels16standard3802514040014_seg.nii.gz"
+ },
+ {
+ "image": "100153/2_0opagels16standard3602514040014.nii.gz",
+ "pseudo_label": "100153/2_0opagels16standard3602514040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100153/2_0opagels16standard3602514040014/2_0opagels16standard3602514040014_seg.nii.gz"
+ },
+ {
+ "image": "100153/2_1opagels16standard3702514040014.nii.gz",
+ "pseudo_label": "100153/2_1opagels16standard3702514040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100153/2_1opagels16standard3702514040014/2_1opagels16standard3702514040014_seg.nii.gz"
+ },
+ {
+ "image": "108971/2_2opagels16standard33025120nanana.nii.gz",
+ "pseudo_label": "108971/2_2opagels16standard33025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108971/2_2opagels16standard33025120nanana/2_2opagels16standard33025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "108971/2_1opagels16standard33025120nanana.nii.gz",
+ "pseudo_label": "108971/2_1opagels16standard33025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108971/2_1opagels16standard33025120nanana/2_1opagels16standard33025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "108971/3_1opagels16bone33025120nanana.nii.gz",
+ "pseudo_label": "108971/3_1opagels16bone33025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108971/3_1opagels16bone33025120nanana/3_1opagels16bone33025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "108971/2_0opagelsqxstandard32825120nanana.nii.gz",
+ "pseudo_label": "108971/2_0opagelsqxstandard32825120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108971/2_0opagelsqxstandard32825120nanana/2_0opagelsqxstandard32825120nanana_seg.nii.gz"
+ },
+ {
+ "image": "103566/2_1opagelsqxstandard3502514048015.nii.gz",
+ "pseudo_label": "103566/2_1opagelsqxstandard3502514048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103566/2_1opagelsqxstandard3502514048015/2_1opagelsqxstandard3502514048015_seg.nii.gz"
+ },
+ {
+ "image": "108147/2_2opagehsqxstandard34025120560115.nii.gz",
+ "pseudo_label": "108147/2_2opagehsqxstandard34025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108147/2_2opagehsqxstandard34025120560115/2_2opagehsqxstandard34025120560115_seg.nii.gz"
+ },
+ {
+ "image": "108147/2_1opagehsqxstandard34025120560115.nii.gz",
+ "pseudo_label": "108147/2_1opagehsqxstandard34025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108147/2_1opagehsqxstandard34025120560115/2_1opagehsqxstandard34025120560115_seg.nii.gz"
+ },
+ {
+ "image": "104263/5308_1opaphmx8000c38032120756012.nii.gz",
+ "pseudo_label": "104263/5308_1opaphmx8000c38032120756012.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104263/5308_1opaphmx8000c38032120756012/5308_1opaphmx8000c38032120756012_seg.nii.gz"
+ },
+ {
+ "image": "104263/3355_2opaphmx8000c40032120756012.nii.gz",
+ "pseudo_label": "104263/3355_2opaphmx8000c40032120756012.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104263/3355_2opaphmx8000c40032120756012/3355_2opaphmx8000c40032120756012_seg.nii.gz"
+ },
+ {
+ "image": "104263/4387_0opaphmx8000c376321409987912.nii.gz",
+ "pseudo_label": "104263/4387_0opaphmx8000c376321409987912.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104263/4387_0opaphmx8000c376321409987912/4387_0opaphmx8000c376321409987912_seg.nii.gz"
+ },
+ {
+ "image": "106339/1_0opagelsplusstandard36025120800115.nii.gz",
+ "pseudo_label": "106339/1_0opagelsplusstandard36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106339/1_0opagelsplusstandard36025120800115/1_0opagelsplusstandard36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "106339/1_2opagelsplusstandard36025120800115.nii.gz",
+ "pseudo_label": "106339/1_2opagelsplusstandard36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106339/1_2opagelsplusstandard36025120800115/1_2opagelsplusstandard36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "106339/1_2opagelspluslung36025120800115.nii.gz",
+ "pseudo_label": "106339/1_2opagelspluslung36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106339/1_2opagelspluslung36025120800115/1_2opagelspluslung36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "106339/1_0opagelspluslung36025120800115.nii.gz",
+ "pseudo_label": "106339/1_0opagelspluslung36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106339/1_0opagelspluslung36025120800115/1_0opagelspluslung36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "106339/1_1opatoaqul4fc023594312080nana.nii.gz",
+ "pseudo_label": "106339/1_1opatoaqul4fc023594312080nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106339/1_1opatoaqul4fc023594312080nana/1_1opatoaqul4fc023594312080nana_seg.nii.gz"
+ },
+ {
+ "image": "104937/2_0opagelsplusstandard3612514040015.nii.gz",
+ "pseudo_label": "104937/2_0opagelsplusstandard3612514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104937/2_0opagelsplusstandard3612514040015/2_0opagelsplusstandard3612514040015_seg.nii.gz"
+ },
+ {
+ "image": "104937/2_2opagelsqxstandard3402514040015.nii.gz",
+ "pseudo_label": "104937/2_2opagelsqxstandard3402514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104937/2_2opagelsqxstandard3402514040015/2_2opagelsqxstandard3402514040015_seg.nii.gz"
+ },
+ {
+ "image": "100056/2_1opagehsqxstandard27025120560115.nii.gz",
+ "pseudo_label": "100056/2_1opagehsqxstandard27025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100056/2_1opagehsqxstandard27025120560115/2_1opagehsqxstandard27025120560115_seg.nii.gz"
+ },
+ {
+ "image": "100056/2_0opagehsqxstandard27025120560115.nii.gz",
+ "pseudo_label": "100056/2_0opagehsqxstandard27025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100056/2_0opagehsqxstandard27025120560115/2_0opagehsqxstandard27025120560115_seg.nii.gz"
+ },
+ {
+ "image": "100056/2_2opagehsqxstandard27025120560115.nii.gz",
+ "pseudo_label": "100056/2_2opagehsqxstandard27025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100056/2_2opagehsqxstandard27025120560115/2_2opagehsqxstandard27025120560115_seg.nii.gz"
+ },
+ {
+ "image": "105754/2_2opagehsqxstandard32025120560115.nii.gz",
+ "pseudo_label": "105754/2_2opagehsqxstandard32025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105754/2_2opagehsqxstandard32025120560115/2_2opagehsqxstandard32025120560115_seg.nii.gz"
+ },
+ {
+ "image": "105754/3_0opagehsqxstandard32025120560115.nii.gz",
+ "pseudo_label": "105754/3_0opagehsqxstandard32025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105754/3_0opagehsqxstandard32025120560115/3_0opagehsqxstandard32025120560115_seg.nii.gz"
+ },
+ {
+ "image": "105754/4_0opagehsqxbone32025120560115.nii.gz",
+ "pseudo_label": "105754/4_0opagehsqxbone32025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105754/4_0opagehsqxbone32025120560115/4_0opagehsqxbone32025120560115_seg.nii.gz"
+ },
+ {
+ "image": "105754/2_1opagehsqxstandard32025120560115.nii.gz",
+ "pseudo_label": "105754/2_1opagehsqxstandard32025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105754/2_1opagehsqxstandard32025120560115/2_1opagehsqxstandard32025120560115_seg.nii.gz"
+ },
+ {
+ "image": "100686/2_1opagelspr16bone3702512048014.nii.gz",
+ "pseudo_label": "100686/2_1opagelspr16bone3702512048014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100686/2_1opagelspr16bone3702512048014/2_1opagelspr16bone3702512048014_seg.nii.gz"
+ },
+ {
+ "image": "100686/3_0opagelsqxstandard38025120560115.nii.gz",
+ "pseudo_label": "100686/3_0opagelsqxstandard38025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100686/3_0opagelsqxstandard38025120560115/3_0opagelsqxstandard38025120560115_seg.nii.gz"
+ },
+ {
+ "image": "100686/2_2opagelspr16bone36025120560114.nii.gz",
+ "pseudo_label": "100686/2_2opagelspr16bone36025120560114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100686/2_2opagelspr16bone36025120560114/2_2opagelspr16bone36025120560114_seg.nii.gz"
+ },
+ {
+ "image": "100686/3_2opagelspr16standard36025120560114.nii.gz",
+ "pseudo_label": "100686/3_2opagelspr16standard36025120560114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100686/3_2opagelspr16standard36025120560114/3_2opagelspr16standard36025120560114_seg.nii.gz"
+ },
+ {
+ "image": "100686/3_1opagelspr16standard3702512048014.nii.gz",
+ "pseudo_label": "100686/3_1opagelspr16standard3702512048014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100686/3_1opagelspr16standard3702512048014/3_1opagelspr16standard3702512048014_seg.nii.gz"
+ },
+ {
+ "image": "109961/3_1opasevzoomb50f32021206030na.nii.gz",
+ "pseudo_label": "109961/3_1opasevzoomb50f32021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109961/3_1opasevzoomb50f32021206030na/3_1opasevzoomb50f32021206030na_seg.nii.gz"
+ },
+ {
+ "image": "103237/3_0opagels16standard38025120780114.nii.gz",
+ "pseudo_label": "103237/3_0opagels16standard38025120780114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103237/3_0opagels16standard38025120780114/3_0opagels16standard38025120780114_seg.nii.gz"
+ },
+ {
+ "image": "103237/2_0opagels16bone38025120780114.nii.gz",
+ "pseudo_label": "103237/2_0opagels16bone38025120780114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103237/2_0opagels16bone38025120780114/2_0opagels16bone38025120780114_seg.nii.gz"
+ },
+ {
+ "image": "103237/3_2opagels16standard38025120800114.nii.gz",
+ "pseudo_label": "103237/3_2opagels16standard38025120800114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103237/3_2opagels16standard38025120800114/3_2opagels16standard38025120800114_seg.nii.gz"
+ },
+ {
+ "image": "108485/4_1opasesen16b30f31421206048na.nii.gz",
+ "pseudo_label": "108485/4_1opasesen16b30f31421206048na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108485/4_1opasesen16b30f31421206048na/4_1opasesen16b30f31421206048na_seg.nii.gz"
+ },
+ {
+ "image": "100440/3_0opagelsqxbone32025120640115.nii.gz",
+ "pseudo_label": "100440/3_0opagelsqxbone32025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100440/3_0opagelsqxbone32025120640115/3_0opagelsqxbone32025120640115_seg.nii.gz"
+ },
+ {
+ "image": "100440/2_1opagelsqxstandard33925120640115.nii.gz",
+ "pseudo_label": "100440/2_1opagelsqxstandard33925120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100440/2_1opagelsqxstandard33925120640115/2_1opagelsqxstandard33925120640115_seg.nii.gz"
+ },
+ {
+ "image": "100440/2_2opagelsqxstandard35025120560115.nii.gz",
+ "pseudo_label": "100440/2_2opagelsqxstandard35025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100440/2_2opagelsqxstandard35025120560115/2_2opagelsqxstandard35025120560115_seg.nii.gz"
+ },
+ {
+ "image": "100440/3_2opagelsqxbone35025120560115.nii.gz",
+ "pseudo_label": "100440/3_2opagelsqxbone35025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100440/3_2opagelsqxbone35025120560115/3_2opagelsqxbone35025120560115_seg.nii.gz"
+ },
+ {
+ "image": "100440/3_1opagelsqxbone33925120640115.nii.gz",
+ "pseudo_label": "100440/3_1opagelsqxbone33925120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100440/3_1opagelsqxbone33925120640115/3_1opagelsqxbone33925120640115_seg.nii.gz"
+ },
+ {
+ "image": "100440/2_0opagelsqxstandard32025120640115.nii.gz",
+ "pseudo_label": "100440/2_0opagelsqxstandard32025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100440/2_0opagelsqxstandard32025120640115/2_0opagelsqxstandard32025120640115_seg.nii.gz"
+ },
+ {
+ "image": "106558/4_0opasesen16b50f30751206040na.nii.gz",
+ "pseudo_label": "106558/4_0opasesen16b50f30751206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106558/4_0opasesen16b50f30751206040na/4_0opasesen16b50f30751206040na_seg.nii.gz"
+ },
+ {
+ "image": "106558/4_2opasevzoomb50f31651206030na.nii.gz",
+ "pseudo_label": "106558/4_2opasevzoomb50f31651206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106558/4_2opasevzoomb50f31651206030na/4_2opasevzoomb50f31651206030na_seg.nii.gz"
+ },
+ {
+ "image": "106558/3_2opasevzoomb30f31651206030na.nii.gz",
+ "pseudo_label": "106558/3_2opasevzoomb30f31651206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106558/3_2opasevzoomb30f31651206030na/3_2opasevzoomb30f31651206030na_seg.nii.gz"
+ },
+ {
+ "image": "106558/5_1opasesen16b50f31251204530na.nii.gz",
+ "pseudo_label": "106558/5_1opasesen16b50f31251204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106558/5_1opasesen16b50f31251204530na/5_1opasesen16b50f31251204530na_seg.nii.gz"
+ },
+ {
+ "image": "106558/6_2opasevzoomb30f31621206030na.nii.gz",
+ "pseudo_label": "106558/6_2opasevzoomb30f31621206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106558/6_2opasevzoomb30f31621206030na/6_2opasevzoomb30f31621206030na_seg.nii.gz"
+ },
+ {
+ "image": "106558/3_1opasesen16b30f31251204530na.nii.gz",
+ "pseudo_label": "106558/3_1opasesen16b30f31251204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106558/3_1opasesen16b30f31251204530na/3_1opasesen16b30f31251204530na_seg.nii.gz"
+ },
+ {
+ "image": "106558/6_0opasesen16b30f30721206040na.nii.gz",
+ "pseudo_label": "106558/6_0opasesen16b30f30721206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106558/6_0opasesen16b30f30721206040na/6_0opasesen16b30f30721206040na_seg.nii.gz"
+ },
+ {
+ "image": "106558/5_0opasesen16b50f30721206040na.nii.gz",
+ "pseudo_label": "106558/5_0opasesen16b50f30721206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106558/5_0opasesen16b50f30721206040na/5_0opasesen16b50f30721206040na_seg.nii.gz"
+ },
+ {
+ "image": "106558/5_2opasevzoomb50f31621206030na.nii.gz",
+ "pseudo_label": "106558/5_2opasevzoomb50f31621206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106558/5_2opasevzoomb50f31621206030na/5_2opasevzoomb50f31621206030na_seg.nii.gz"
+ },
+ {
+ "image": "107680/2_2opagehsqxstandard32025120560115.nii.gz",
+ "pseudo_label": "107680/2_2opagehsqxstandard32025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107680/2_2opagehsqxstandard32025120560115/2_2opagehsqxstandard32025120560115_seg.nii.gz"
+ },
+ {
+ "image": "107680/2_0opagehsqxstandard32025120560115.nii.gz",
+ "pseudo_label": "107680/2_0opagehsqxstandard32025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107680/2_0opagehsqxstandard32025120560115/2_0opagehsqxstandard32025120560115_seg.nii.gz"
+ },
+ {
+ "image": "107680/3_0opagehsqxbone32025120560115.nii.gz",
+ "pseudo_label": "107680/3_0opagehsqxbone32025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107680/3_0opagehsqxbone32025120560115/3_0opagehsqxbone32025120560115_seg.nii.gz"
+ },
+ {
+ "image": "107680/2_1opagehsqxstandard32025120560115.nii.gz",
+ "pseudo_label": "107680/2_1opagehsqxstandard32025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107680/2_1opagehsqxstandard32025120560115/2_1opagehsqxstandard32025120560115_seg.nii.gz"
+ },
+ {
+ "image": "107172/2_0opasevzoomb50f29021206030na.nii.gz",
+ "pseudo_label": "107172/2_0opasevzoomb50f29021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107172/2_0opasevzoomb50f29021206030na/2_0opasevzoomb50f29021206030na_seg.nii.gz"
+ },
+ {
+ "image": "107172/3_0opasevzoomb30f29021206030na.nii.gz",
+ "pseudo_label": "107172/3_0opasevzoomb30f29021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107172/3_0opasevzoomb30f29021206030na/3_0opasevzoomb30f29021206030na_seg.nii.gz"
+ },
+ {
+ "image": "107172/3_2opasesen16b30f30021204530na.nii.gz",
+ "pseudo_label": "107172/3_2opasesen16b30f30021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107172/3_2opasesen16b30f30021204530na/3_2opasesen16b30f30021204530na_seg.nii.gz"
+ },
+ {
+ "image": "107172/3_1opasevzoomb30f30021206030na.nii.gz",
+ "pseudo_label": "107172/3_1opasevzoomb30f30021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107172/3_1opasevzoomb30f30021206030na/3_1opasevzoomb30f30021206030na_seg.nii.gz"
+ },
+ {
+ "image": "110250/2_0opagelsqxstandard30025120nanana.nii.gz",
+ "pseudo_label": "110250/2_0opagelsqxstandard30025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110250/2_0opagelsqxstandard30025120nanana/2_0opagelsqxstandard30025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "110250/3_1opagels16bone30025120nanana.nii.gz",
+ "pseudo_label": "110250/3_1opagels16bone30025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110250/3_1opagels16bone30025120nanana/3_1opagels16bone30025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "110250/2_2opagels16standard30025120nanana.nii.gz",
+ "pseudo_label": "110250/2_2opagels16standard30025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110250/2_2opagels16standard30025120nanana/2_2opagels16standard30025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "110250/2_1opagels16standard30025120nanana.nii.gz",
+ "pseudo_label": "110250/2_1opagels16standard30025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110250/2_1opagels16standard30025120nanana/2_1opagels16standard30025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "110250/3_2opagels16bone30025120nanana.nii.gz",
+ "pseudo_label": "110250/3_2opagels16bone30025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110250/3_2opagels16bone30025120nanana/3_2opagels16bone30025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "110250/3_0opagelsqxbone30025120nanana.nii.gz",
+ "pseudo_label": "110250/3_0opagelsqxbone30025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110250/3_0opagelsqxbone30025120nanana/3_0opagelsqxbone30025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "102348/2_0opasevzoomb50f33021206030na.nii.gz",
+ "pseudo_label": "102348/2_0opasevzoomb50f33021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102348/2_0opasevzoomb50f33021206030na/2_0opasevzoomb50f33021206030na_seg.nii.gz"
+ },
+ {
+ "image": "102348/3_2opasesen16b30f31021204530na.nii.gz",
+ "pseudo_label": "102348/3_2opasesen16b30f31021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102348/3_2opasesen16b30f31021204530na/3_2opasesen16b30f31021204530na_seg.nii.gz"
+ },
+ {
+ "image": "107097/4113_1opaphmx8000c40032120453612.nii.gz",
+ "pseudo_label": "107097/4113_1opaphmx8000c40032120453612.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107097/4113_1opaphmx8000c40032120453612/4113_1opaphmx8000c40032120453612_seg.nii.gz"
+ },
+ {
+ "image": "107097/4112_1opaphmx8000c40032120453612.nii.gz",
+ "pseudo_label": "107097/4112_1opaphmx8000c40032120453612.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107097/4112_1opaphmx8000c40032120453612/4112_1opaphmx8000c40032120453612_seg.nii.gz"
+ },
+ {
+ "image": "100772/0_0opaphmx8000d29432120600112.nii.gz",
+ "pseudo_label": "100772/0_0opaphmx8000d29432120600112.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100772/0_0opaphmx8000d29432120600112/0_0opaphmx8000d29432120600112_seg.nii.gz"
+ },
+ {
+ "image": "100772/0_1opaphmx8000d27132120600118.nii.gz",
+ "pseudo_label": "100772/0_1opaphmx8000d27132120600118.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100772/0_1opaphmx8000d27132120600118/0_1opaphmx8000d27132120600118_seg.nii.gz"
+ },
+ {
+ "image": "100772/0_0opaphmx8000c29432120600112.nii.gz",
+ "pseudo_label": "100772/0_0opaphmx8000c29432120600112.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100772/0_0opaphmx8000c29432120600112/0_0opaphmx8000c29432120600112_seg.nii.gz"
+ },
+ {
+ "image": "100772/5997_2opaphmx8000d2693212039018.nii.gz",
+ "pseudo_label": "100772/5997_2opaphmx8000d2693212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100772/5997_2opaphmx8000d2693212039018/5997_2opaphmx8000d2693212039018_seg.nii.gz"
+ },
+ {
+ "image": "105094/2_2opagehsqxstandard35025120560115.nii.gz",
+ "pseudo_label": "105094/2_2opagehsqxstandard35025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105094/2_2opagehsqxstandard35025120560115/2_2opagehsqxstandard35025120560115_seg.nii.gz"
+ },
+ {
+ "image": "105094/3_1opagehsqxbone35025120560115.nii.gz",
+ "pseudo_label": "105094/3_1opagehsqxbone35025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105094/3_1opagehsqxbone35025120560115/3_1opagehsqxbone35025120560115_seg.nii.gz"
+ },
+ {
+ "image": "105094/2_1opagehsqxstandard35025120560115.nii.gz",
+ "pseudo_label": "105094/2_1opagehsqxstandard35025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105094/2_1opagehsqxstandard35025120560115/2_1opagehsqxstandard35025120560115_seg.nii.gz"
+ },
+ {
+ "image": "105094/3_0opagehsqxbone35025120560115.nii.gz",
+ "pseudo_label": "105094/3_0opagehsqxbone35025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105094/3_0opagehsqxbone35025120560115/3_0opagehsqxbone35025120560115_seg.nii.gz"
+ },
+ {
+ "image": "105094/3_2opagehsqxbone35025120560115.nii.gz",
+ "pseudo_label": "105094/3_2opagehsqxbone35025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105094/3_2opagehsqxbone35025120560115/3_2opagehsqxbone35025120560115_seg.nii.gz"
+ },
+ {
+ "image": "105188/1_0opagelsplusstandard33025120800108.nii.gz",
+ "pseudo_label": "105188/1_0opagelsplusstandard33025120800108.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105188/1_0opagelsplusstandard33025120800108/1_0opagelsplusstandard33025120800108_seg.nii.gz"
+ },
+ {
+ "image": "105188/1_0opagelspluslung33025120800108.nii.gz",
+ "pseudo_label": "105188/1_0opagelspluslung33025120800108.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105188/1_0opagelspluslung33025120800108/1_0opagelspluslung33025120800108_seg.nii.gz"
+ },
+ {
+ "image": "105188/1_2opagelsplusstandard33025120800115.nii.gz",
+ "pseudo_label": "105188/1_2opagelsplusstandard33025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105188/1_2opagelsplusstandard33025120800115/1_2opagelsplusstandard33025120800115_seg.nii.gz"
+ },
+ {
+ "image": "105188/1_1opagelsplusstandard33025120800115.nii.gz",
+ "pseudo_label": "105188/1_1opagelsplusstandard33025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105188/1_1opagelsplusstandard33025120800115/1_1opagelsplusstandard33025120800115_seg.nii.gz"
+ },
+ {
+ "image": "110647/4_0opasesen16b50f32951204530na.nii.gz",
+ "pseudo_label": "110647/4_0opasesen16b50f32951204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110647/4_0opasesen16b50f32951204530na/4_0opasesen16b50f32951204530na_seg.nii.gz"
+ },
+ {
+ "image": "110647/4_2opasevzoomb50f31751206030na.nii.gz",
+ "pseudo_label": "110647/4_2opasevzoomb50f31751206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110647/4_2opasevzoomb50f31751206030na/4_2opasevzoomb50f31751206030na_seg.nii.gz"
+ },
+ {
+ "image": "110647/3_2opasevzoomb30f31751206030na.nii.gz",
+ "pseudo_label": "110647/3_2opasevzoomb30f31751206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110647/3_2opasevzoomb30f31751206030na/3_2opasevzoomb30f31751206030na_seg.nii.gz"
+ },
+ {
+ "image": "110647/6_1opasesen16b50f30721204530na.nii.gz",
+ "pseudo_label": "110647/6_1opasesen16b50f30721204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110647/6_1opasesen16b50f30721204530na/6_1opasesen16b50f30721204530na_seg.nii.gz"
+ },
+ {
+ "image": "110647/6_2opasevzoomb30f31721206030na.nii.gz",
+ "pseudo_label": "110647/6_2opasevzoomb30f31721206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110647/6_2opasevzoomb30f31721206030na/6_2opasevzoomb30f31721206030na_seg.nii.gz"
+ },
+ {
+ "image": "110647/3_0opasesen16b30f32951204530na.nii.gz",
+ "pseudo_label": "110647/3_0opasesen16b30f32951204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110647/3_0opasesen16b30f32951204530na/3_0opasesen16b30f32951204530na_seg.nii.gz"
+ },
+ {
+ "image": "110647/4_1opasesen16b30f30721204530na.nii.gz",
+ "pseudo_label": "110647/4_1opasesen16b30f30721204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110647/4_1opasesen16b30f30721204530na/4_1opasesen16b30f30721204530na_seg.nii.gz"
+ },
+ {
+ "image": "110647/5_1opasesen16b50f30751204530na.nii.gz",
+ "pseudo_label": "110647/5_1opasesen16b50f30751204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110647/5_1opasesen16b50f30751204530na/5_1opasesen16b50f30751204530na_seg.nii.gz"
+ },
+ {
+ "image": "110647/5_0opasesen16b50f32921204530na.nii.gz",
+ "pseudo_label": "110647/5_0opasesen16b50f32921204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110647/5_0opasesen16b50f32921204530na/5_0opasesen16b50f32921204530na_seg.nii.gz"
+ },
+ {
+ "image": "110647/3_1opasesen16b30f30751204530na.nii.gz",
+ "pseudo_label": "110647/3_1opasesen16b30f30751204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110647/3_1opasesen16b30f30751204530na/3_1opasesen16b30f30751204530na_seg.nii.gz"
+ },
+ {
+ "image": "110472/7_0opatoaqul4fc51400212080nana.nii.gz",
+ "pseudo_label": "110472/7_0opatoaqul4fc51400212080nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110472/7_0opatoaqul4fc51400212080nana/7_0opatoaqul4fc51400212080nana_seg.nii.gz"
+ },
+ {
+ "image": "110472/8_0opatoaqul4fc82400212080nana.nii.gz",
+ "pseudo_label": "110472/8_0opatoaqul4fc82400212080nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110472/8_0opatoaqul4fc82400212080nana/8_0opatoaqul4fc82400212080nana_seg.nii.gz"
+ },
+ {
+ "image": "100810/2_2opagels16standard36025120nanana.nii.gz",
+ "pseudo_label": "100810/2_2opagels16standard36025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100810/2_2opagels16standard36025120nanana/2_2opagels16standard36025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "100810/2_1opagels16standard36025120nanana.nii.gz",
+ "pseudo_label": "100810/2_1opagels16standard36025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100810/2_1opagels16standard36025120nanana/2_1opagels16standard36025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "100810/3_1opagels16bone36025120nanana.nii.gz",
+ "pseudo_label": "100810/3_1opagels16bone36025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100810/3_1opagels16bone36025120nanana/3_1opagels16bone36025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "100810/3_2opagels16bone36025120nanana.nii.gz",
+ "pseudo_label": "100810/3_2opagels16bone36025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100810/3_2opagels16bone36025120nanana/3_2opagels16bone36025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "100810/3_0opagelsqxbone36025120nanana.nii.gz",
+ "pseudo_label": "100810/3_0opagelsqxbone36025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100810/3_0opagelsqxbone36025120nanana/3_0opagelsqxbone36025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "100810/2_0opagelsqxstandard36025120nanana.nii.gz",
+ "pseudo_label": "100810/2_0opagelsqxstandard36025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100810/2_0opagelsqxstandard36025120nanana/2_0opagelsqxstandard36025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "100314/3_1opagelsqxbone36425120720115.nii.gz",
+ "pseudo_label": "100314/3_1opagelsqxbone36425120720115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100314/3_1opagelsqxbone36425120720115/3_1opagelsqxbone36425120720115_seg.nii.gz"
+ },
+ {
+ "image": "100314/2_1opagelsqxstandard36425120720115.nii.gz",
+ "pseudo_label": "100314/2_1opagelsqxstandard36425120720115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100314/2_1opagelsqxstandard36425120720115/2_1opagelsqxstandard36425120720115_seg.nii.gz"
+ },
+ {
+ "image": "100314/2_0opagelsqxstandard37125120720115.nii.gz",
+ "pseudo_label": "100314/2_0opagelsqxstandard37125120720115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100314/2_0opagelsqxstandard37125120720115/2_0opagelsqxstandard37125120720115_seg.nii.gz"
+ },
+ {
+ "image": "100314/3_0opagelsqxbone37125120720115.nii.gz",
+ "pseudo_label": "100314/3_0opagelsqxbone37125120720115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100314/3_0opagelsqxbone37125120720115/3_0opagelsqxbone37125120720115_seg.nii.gz"
+ },
+ {
+ "image": "110481/6_1opasevzoomb30f38021206030na.nii.gz",
+ "pseudo_label": "110481/6_1opasevzoomb30f38021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110481/6_1opasevzoomb30f38021206030na/6_1opasevzoomb30f38021206030na_seg.nii.gz"
+ },
+ {
+ "image": "110481/4_2opasevzoomb50f35051206030na.nii.gz",
+ "pseudo_label": "110481/4_2opasevzoomb50f35051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110481/4_2opasevzoomb50f35051206030na/4_2opasevzoomb50f35051206030na_seg.nii.gz"
+ },
+ {
+ "image": "110481/5_2opasevzoomb50f35021206030na.nii.gz",
+ "pseudo_label": "110481/5_2opasevzoomb50f35021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110481/5_2opasevzoomb50f35021206030na/5_2opasevzoomb50f35021206030na_seg.nii.gz"
+ },
+ {
+ "image": "110481/4_0opasevzoomb50f38051206030na.nii.gz",
+ "pseudo_label": "110481/4_0opasevzoomb50f38051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110481/4_0opasevzoomb50f38051206030na/4_0opasevzoomb50f38051206030na_seg.nii.gz"
+ },
+ {
+ "image": "110481/3_1opasevzoomb50f38021206030na.nii.gz",
+ "pseudo_label": "110481/3_1opasevzoomb50f38021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110481/3_1opasevzoomb50f38021206030na/3_1opasevzoomb50f38021206030na_seg.nii.gz"
+ },
+ {
+ "image": "110481/4_1opasevzoomb50f38051206030na.nii.gz",
+ "pseudo_label": "110481/4_1opasevzoomb50f38051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110481/4_1opasevzoomb50f38051206030na/4_1opasevzoomb50f38051206030na_seg.nii.gz"
+ },
+ {
+ "image": "110481/5_1opasevzoomb30f38051206030na.nii.gz",
+ "pseudo_label": "110481/5_1opasevzoomb30f38051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110481/5_1opasevzoomb30f38051206030na/5_1opasevzoomb30f38051206030na_seg.nii.gz"
+ },
+ {
+ "image": "110481/3_2opasevzoomb30f35051206030na.nii.gz",
+ "pseudo_label": "110481/3_2opasevzoomb30f35051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110481/3_2opasevzoomb30f35051206030na/3_2opasevzoomb30f35051206030na_seg.nii.gz"
+ },
+ {
+ "image": "101273/3_1opasevzoomb50f36021408040na.nii.gz",
+ "pseudo_label": "101273/3_1opasevzoomb50f36021408040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101273/3_1opasevzoomb50f36021408040na/3_1opasevzoomb50f36021408040na_seg.nii.gz"
+ },
+ {
+ "image": "108859/2_1opagehsqxstandard36025120560115.nii.gz",
+ "pseudo_label": "108859/2_1opagehsqxstandard36025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108859/2_1opagehsqxstandard36025120560115/2_1opagehsqxstandard36025120560115_seg.nii.gz"
+ },
+ {
+ "image": "108859/102_2osagehsqxstandard36025120560115.nii.gz",
+ "pseudo_label": "108859/102_2osagehsqxstandard36025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108859/102_2osagehsqxstandard36025120560115/102_2osagehsqxstandard36025120560115_seg.nii.gz"
+ },
+ {
+ "image": "108859/2_0opagehsqxstandard36025120560115.nii.gz",
+ "pseudo_label": "108859/2_0opagehsqxstandard36025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108859/2_0opagehsqxstandard36025120560115/2_0opagehsqxstandard36025120560115_seg.nii.gz"
+ },
+ {
+ "image": "108859/3_0opagehsqxbone36025120560115.nii.gz",
+ "pseudo_label": "108859/3_0opagehsqxbone36025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108859/3_0opagehsqxbone36025120560115/3_0opagehsqxbone36025120560115_seg.nii.gz"
+ },
+ {
+ "image": "108859/3_1opagehsqxbone36025120560115.nii.gz",
+ "pseudo_label": "108859/3_1opagehsqxbone36025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108859/3_1opagehsqxbone36025120560115/3_1opagehsqxbone36025120560115_seg.nii.gz"
+ },
+ {
+ "image": "113093/2_0opasevzoomb50f31021206030na.nii.gz",
+ "pseudo_label": "113093/2_0opasevzoomb50f31021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113093/2_0opasevzoomb50f31021206030na/2_0opasevzoomb50f31021206030na_seg.nii.gz"
+ },
+ {
+ "image": "113093/2_1opasesen16b30f29021204530na.nii.gz",
+ "pseudo_label": "113093/2_1opasesen16b30f29021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113093/2_1opasesen16b30f29021204530na/2_1opasesen16b30f29021204530na_seg.nii.gz"
+ },
+ {
+ "image": "113093/3_2opasevzoomb30f29021206030na.nii.gz",
+ "pseudo_label": "113093/3_2opasevzoomb30f29021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113093/3_2opasevzoomb30f29021206030na/3_2opasevzoomb30f29021206030na_seg.nii.gz"
+ },
+ {
+ "image": "111629/550_1opaphmx8000c37632120604812.nii.gz",
+ "pseudo_label": "111629/550_1opaphmx8000c37632120604812.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111629/550_1opaphmx8000c37632120604812/550_1opaphmx8000c37632120604812_seg.nii.gz"
+ },
+ {
+ "image": "109710/4_2opasevzoomb50f36051206030na.nii.gz",
+ "pseudo_label": "109710/4_2opasevzoomb50f36051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109710/4_2opasevzoomb50f36051206030na/4_2opasevzoomb50f36051206030na_seg.nii.gz"
+ },
+ {
+ "image": "109710/5_0opasesen16b50f34651204530na.nii.gz",
+ "pseudo_label": "109710/5_0opasesen16b50f34651204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109710/5_0opasesen16b50f34651204530na/5_0opasesen16b50f34651204530na_seg.nii.gz"
+ },
+ {
+ "image": "109710/5_1opasesen16b50f34151204530na.nii.gz",
+ "pseudo_label": "109710/5_1opasesen16b50f34151204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109710/5_1opasesen16b50f34151204530na/5_1opasesen16b50f34151204530na_seg.nii.gz"
+ },
+ {
+ "image": "109710/3_1opasesen16b30f34151204530na.nii.gz",
+ "pseudo_label": "109710/3_1opasesen16b30f34151204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109710/3_1opasesen16b30f34151204530na/3_1opasesen16b30f34151204530na_seg.nii.gz"
+ },
+ {
+ "image": "109710/3_0opasesen16b30f35451204530na.nii.gz",
+ "pseudo_label": "109710/3_0opasesen16b30f35451204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109710/3_0opasesen16b30f35451204530na/3_0opasesen16b30f35451204530na_seg.nii.gz"
+ },
+ {
+ "image": "109710/6_1opasesen16b50f34121204530na.nii.gz",
+ "pseudo_label": "109710/6_1opasesen16b50f34121204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109710/6_1opasesen16b50f34121204530na/6_1opasesen16b50f34121204530na_seg.nii.gz"
+ },
+ {
+ "image": "109710/5_2opasevzoomb30f36051206030na.nii.gz",
+ "pseudo_label": "109710/5_2opasevzoomb30f36051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109710/5_2opasevzoomb30f36051206030na/5_2opasevzoomb30f36051206030na_seg.nii.gz"
+ },
+ {
+ "image": "109710/3_2opasevzoomb50f36021206030na.nii.gz",
+ "pseudo_label": "109710/3_2opasevzoomb50f36021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109710/3_2opasevzoomb50f36021206030na/3_2opasevzoomb50f36021206030na_seg.nii.gz"
+ },
+ {
+ "image": "105663/2_2opagelsqxstandard3702514048015.nii.gz",
+ "pseudo_label": "105663/2_2opagelsqxstandard3702514048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105663/2_2opagelsqxstandard3702514048015/2_2opagelsqxstandard3702514048015_seg.nii.gz"
+ },
+ {
+ "image": "105663/2_1opagelsqxstandard3702514048015.nii.gz",
+ "pseudo_label": "105663/2_1opagelsqxstandard3702514048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105663/2_1opagelsqxstandard3702514048015/2_1opagelsqxstandard3702514048015_seg.nii.gz"
+ },
+ {
+ "image": "105663/2_0opagelsqxstandard3682514048015.nii.gz",
+ "pseudo_label": "105663/2_0opagelsqxstandard3682514048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105663/2_0opagelsqxstandard3682514048015/2_0opagelsqxstandard3682514048015_seg.nii.gz"
+ },
+ {
+ "image": "109349/1_2opagelspluslung31025120800115.nii.gz",
+ "pseudo_label": "109349/1_2opagelspluslung31025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109349/1_2opagelspluslung31025120800115/1_2opagelspluslung31025120800115_seg.nii.gz"
+ },
+ {
+ "image": "109349/1_0opagelsplusstandard31525120800115.nii.gz",
+ "pseudo_label": "109349/1_0opagelsplusstandard31525120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109349/1_0opagelsplusstandard31525120800115/1_0opagelsplusstandard31525120800115_seg.nii.gz"
+ },
+ {
+ "image": "103629/3_2opasesen16b30f34621204032na.nii.gz",
+ "pseudo_label": "103629/3_2opasesen16b30f34621204032na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103629/3_2opasesen16b30f34621204032na/3_2opasesen16b30f34621204032na_seg.nii.gz"
+ },
+ {
+ "image": "103629/3_1opasesen16b30f33821204032na.nii.gz",
+ "pseudo_label": "103629/3_1opasesen16b30f33821204032na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103629/3_1opasesen16b30f33821204032na/3_1opasesen16b30f33821204032na_seg.nii.gz"
+ },
+ {
+ "image": "103629/2_1opasesen16b30f33821204032na.nii.gz",
+ "pseudo_label": "103629/2_1opasesen16b30f33821204032na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103629/2_1opasesen16b30f33821204032na/2_1opasesen16b30f33821204032na_seg.nii.gz"
+ },
+ {
+ "image": "103629/2_0opasevzoomb30f322212016080na.nii.gz",
+ "pseudo_label": "103629/2_0opasevzoomb30f322212016080na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103629/2_0opasevzoomb30f322212016080na/2_0opasevzoomb30f322212016080na_seg.nii.gz"
+ },
+ {
+ "image": "107394/4_2opasesen16b30f31821204530na.nii.gz",
+ "pseudo_label": "107394/4_2opasesen16b30f31821204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107394/4_2opasesen16b30f31821204530na/4_2opasesen16b30f31821204530na_seg.nii.gz"
+ },
+ {
+ "image": "107394/4_0opasevzoomb50f36451206030na.nii.gz",
+ "pseudo_label": "107394/4_0opasevzoomb50f36451206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107394/4_0opasevzoomb50f36451206030na/4_0opasevzoomb50f36451206030na_seg.nii.gz"
+ },
+ {
+ "image": "107394/5_1opasesen16b50f33551204530na.nii.gz",
+ "pseudo_label": "107394/5_1opasesen16b50f33551204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107394/5_1opasesen16b50f33551204530na/5_1opasesen16b50f33551204530na_seg.nii.gz"
+ },
+ {
+ "image": "107394/3_2opasesen16b30f31851204530na.nii.gz",
+ "pseudo_label": "107394/3_2opasesen16b30f31851204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107394/3_2opasesen16b30f31851204530na/3_2opasesen16b30f31851204530na_seg.nii.gz"
+ },
+ {
+ "image": "107394/3_1opasesen16b30f33551204530na.nii.gz",
+ "pseudo_label": "107394/3_1opasesen16b30f33551204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107394/3_1opasesen16b30f33551204530na/3_1opasesen16b30f33551204530na_seg.nii.gz"
+ },
+ {
+ "image": "107394/4_1opasesen16b30f33521204530na.nii.gz",
+ "pseudo_label": "107394/4_1opasesen16b30f33521204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107394/4_1opasesen16b30f33521204530na/4_1opasesen16b30f33521204530na_seg.nii.gz"
+ },
+ {
+ "image": "107394/3_0opasevzoomb30f36451206030na.nii.gz",
+ "pseudo_label": "107394/3_0opasevzoomb30f36451206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107394/3_0opasevzoomb30f36451206030na/3_0opasevzoomb30f36451206030na_seg.nii.gz"
+ },
+ {
+ "image": "107394/6_0opasevzoomb30f36421206030na.nii.gz",
+ "pseudo_label": "107394/6_0opasevzoomb30f36421206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107394/6_0opasevzoomb30f36421206030na/6_0opasevzoomb30f36421206030na_seg.nii.gz"
+ },
+ {
+ "image": "107394/5_2opasesen16b50f31851204530na.nii.gz",
+ "pseudo_label": "107394/5_2opasesen16b50f31851204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107394/5_2opasesen16b50f31851204530na/5_2opasesen16b50f31851204530na_seg.nii.gz"
+ },
+ {
+ "image": "107776/2_1opasevzoomb30f31021207540na.nii.gz",
+ "pseudo_label": "107776/2_1opasevzoomb30f31021207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107776/2_1opasevzoomb30f31021207540na/2_1opasevzoomb30f31021207540na_seg.nii.gz"
+ },
+ {
+ "image": "101863/3_2opagelspr16standard3602512040014.nii.gz",
+ "pseudo_label": "101863/3_2opagelspr16standard3602512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101863/3_2opagelspr16standard3602512040014/3_2opagelspr16standard3602512040014_seg.nii.gz"
+ },
+ {
+ "image": "101863/3_0opagelsqxstandard3602512048015.nii.gz",
+ "pseudo_label": "101863/3_0opagelsqxstandard3602512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101863/3_0opagelsqxstandard3602512048015/3_0opagelsqxstandard3602512048015_seg.nii.gz"
+ },
+ {
+ "image": "101863/2_2opagelspr16bone3602512040014.nii.gz",
+ "pseudo_label": "101863/2_2opagelspr16bone3602512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101863/2_2opagelspr16bone3602512040014/2_2opagelspr16bone3602512040014_seg.nii.gz"
+ },
+ {
+ "image": "101863/3_1opagels16standard3402512040014.nii.gz",
+ "pseudo_label": "101863/3_1opagels16standard3402512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101863/3_1opagels16standard3402512040014/3_1opagels16standard3402512040014_seg.nii.gz"
+ },
+ {
+ "image": "108914/3_0opagelsqxbone31725120640115.nii.gz",
+ "pseudo_label": "108914/3_0opagelsqxbone31725120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108914/3_0opagelsqxbone31725120640115/3_0opagelsqxbone31725120640115_seg.nii.gz"
+ },
+ {
+ "image": "108914/2_0opagelsqxstandard31725120640115.nii.gz",
+ "pseudo_label": "108914/2_0opagelsqxstandard31725120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108914/2_0opagelsqxstandard31725120640115/2_0opagelsqxstandard31725120640115_seg.nii.gz"
+ },
+ {
+ "image": "112900/3_1opatoaqul4fc513125212040nana.nii.gz",
+ "pseudo_label": "112900/3_1opatoaqul4fc513125212040nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112900/3_1opatoaqul4fc513125212040nana/3_1opatoaqul4fc513125212040nana_seg.nii.gz"
+ },
+ {
+ "image": "112900/3_0opatoaqul4fc513086212040nana.nii.gz",
+ "pseudo_label": "112900/3_0opatoaqul4fc513086212040nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112900/3_0opatoaqul4fc513086212040nana/3_0opatoaqul4fc513086212040nana_seg.nii.gz"
+ },
+ {
+ "image": "102807/2_2opagelsplusstandard35525120600115.nii.gz",
+ "pseudo_label": "102807/2_2opagelsplusstandard35525120600115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102807/2_2opagelsplusstandard35525120600115/2_2opagelsplusstandard35525120600115_seg.nii.gz"
+ },
+ {
+ "image": "108133/2_0opagelsqxstandard34025120640115.nii.gz",
+ "pseudo_label": "108133/2_0opagelsqxstandard34025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108133/2_0opagelsqxstandard34025120640115/2_0opagelsqxstandard34025120640115_seg.nii.gz"
+ },
+ {
+ "image": "108133/2_1opagelsqxstandard3602512048015.nii.gz",
+ "pseudo_label": "108133/2_1opagelsqxstandard3602512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108133/2_1opagelsqxstandard3602512048015/2_1opagelsqxstandard3602512048015_seg.nii.gz"
+ },
+ {
+ "image": "100456/1_1opagelsplusstandard38525120800115.nii.gz",
+ "pseudo_label": "100456/1_1opagelsplusstandard38525120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100456/1_1opagelsplusstandard38525120800115/1_1opagelsplusstandard38525120800115_seg.nii.gz"
+ },
+ {
+ "image": "100456/1_1opagelspluslung38525120800115.nii.gz",
+ "pseudo_label": "100456/1_1opagelspluslung38525120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100456/1_1opagelspluslung38525120800115/1_1opagelspluslung38525120800115_seg.nii.gz"
+ },
+ {
+ "image": "100456/1_2opagelsplusstandard38025120800115.nii.gz",
+ "pseudo_label": "100456/1_2opagelsplusstandard38025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100456/1_2opagelsplusstandard38025120800115/1_2opagelsplusstandard38025120800115_seg.nii.gz"
+ },
+ {
+ "image": "100456/1_2opagelspluslung38025120800115.nii.gz",
+ "pseudo_label": "100456/1_2opagelspluslung38025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100456/1_2opagelspluslung38025120800115/1_2opagelspluslung38025120800115_seg.nii.gz"
+ },
+ {
+ "image": "100456/1_0opagelspluslung38525120800115.nii.gz",
+ "pseudo_label": "100456/1_0opagelspluslung38525120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100456/1_0opagelspluslung38525120800115/1_0opagelspluslung38525120800115_seg.nii.gz"
+ },
+ {
+ "image": "105557/2_0opagels16standard3602512048014.nii.gz",
+ "pseudo_label": "105557/2_0opagels16standard3602512048014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105557/2_0opagels16standard3602512048014/2_0opagels16standard3602512048014_seg.nii.gz"
+ },
+ {
+ "image": "105310/2_1opagels16bone3802512000na.nii.gz",
+ "pseudo_label": "105310/2_1opagels16bone3802512000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105310/2_1opagels16bone3802512000na/2_1opagels16bone3802512000na_seg.nii.gz"
+ },
+ {
+ "image": "105310/3_0opagelsqxstandard35225120640115.nii.gz",
+ "pseudo_label": "105310/3_0opagelsqxstandard35225120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105310/3_0opagelsqxstandard35225120640115/3_0opagelsqxstandard35225120640115_seg.nii.gz"
+ },
+ {
+ "image": "105310/2_2opagelspr16bone35025120560114.nii.gz",
+ "pseudo_label": "105310/2_2opagelspr16bone35025120560114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105310/2_2opagelspr16bone35025120560114/2_2opagelspr16bone35025120560114_seg.nii.gz"
+ },
+ {
+ "image": "105310/3_1opagels16standard3782512000na.nii.gz",
+ "pseudo_label": "105310/3_1opagels16standard3782512000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105310/3_1opagels16standard3782512000na/3_1opagels16standard3782512000na_seg.nii.gz"
+ },
+ {
+ "image": "105310/2_0opagelsqxbone35225120640115.nii.gz",
+ "pseudo_label": "105310/2_0opagelsqxbone35225120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105310/2_0opagelsqxbone35225120640115/2_0opagelsqxbone35225120640115_seg.nii.gz"
+ },
+ {
+ "image": "109133/2_0opasevzoomb50f34021206030na.nii.gz",
+ "pseudo_label": "109133/2_0opasevzoomb50f34021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109133/2_0opasevzoomb50f34021206030na/2_0opasevzoomb50f34021206030na_seg.nii.gz"
+ },
+ {
+ "image": "109133/2_1opasevzoomb50f33021206030na.nii.gz",
+ "pseudo_label": "109133/2_1opasevzoomb50f33021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109133/2_1opasevzoomb50f33021206030na/2_1opasevzoomb50f33021206030na_seg.nii.gz"
+ },
+ {
+ "image": "109133/3_0opasevzoomb50f34021206030na.nii.gz",
+ "pseudo_label": "109133/3_0opasevzoomb50f34021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109133/3_0opasevzoomb50f34021206030na/3_0opasevzoomb50f34021206030na_seg.nii.gz"
+ },
+ {
+ "image": "100899/3_2opasesen16b30f32551204530na.nii.gz",
+ "pseudo_label": "100899/3_2opasesen16b30f32551204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100899/3_2opasesen16b30f32551204530na/3_2opasesen16b30f32551204530na_seg.nii.gz"
+ },
+ {
+ "image": "100899/6_2opasesen16b50f33421204530na.nii.gz",
+ "pseudo_label": "100899/6_2opasesen16b50f33421204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100899/6_2opasesen16b50f33421204530na/6_2opasesen16b50f33421204530na_seg.nii.gz"
+ },
+ {
+ "image": "100899/5_1opasesen16b50f32451204530na.nii.gz",
+ "pseudo_label": "100899/5_1opasesen16b50f32451204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100899/5_1opasesen16b50f32451204530na/5_1opasesen16b50f32451204530na_seg.nii.gz"
+ },
+ {
+ "image": "100899/4_0opasesen16b50f33851204530na.nii.gz",
+ "pseudo_label": "100899/4_0opasesen16b50f33851204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100899/4_0opasesen16b50f33851204530na/4_0opasesen16b50f33851204530na_seg.nii.gz"
+ },
+ {
+ "image": "100899/3_0opasesen16b30f33851204530na.nii.gz",
+ "pseudo_label": "100899/3_0opasesen16b30f33851204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100899/3_0opasesen16b30f33851204530na/3_0opasesen16b30f33851204530na_seg.nii.gz"
+ },
+ {
+ "image": "100899/6_1opasesen16b50f32421204530na.nii.gz",
+ "pseudo_label": "100899/6_1opasesen16b50f32421204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100899/6_1opasesen16b50f32421204530na/6_1opasesen16b50f32421204530na_seg.nii.gz"
+ },
+ {
+ "image": "100899/3_1opasesen16b30f32451204530na.nii.gz",
+ "pseudo_label": "100899/3_1opasesen16b30f32451204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100899/3_1opasesen16b30f32451204530na/3_1opasesen16b30f32451204530na_seg.nii.gz"
+ },
+ {
+ "image": "100899/5_2opasesen16b50f33651204530na.nii.gz",
+ "pseudo_label": "100899/5_2opasesen16b50f33651204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100899/5_2opasesen16b50f33651204530na/5_2opasesen16b50f33651204530na_seg.nii.gz"
+ },
+ {
+ "image": "100899/4_1opasesen16b30f32421204530na.nii.gz",
+ "pseudo_label": "100899/4_1opasesen16b30f32421204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100899/4_1opasesen16b30f32421204530na/4_1opasesen16b30f32421204530na_seg.nii.gz"
+ },
+ {
+ "image": "106085/2725_2opaphmx8000c31032120453612.nii.gz",
+ "pseudo_label": "106085/2725_2opaphmx8000c31032120453612.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106085/2725_2opaphmx8000c31032120453612/2725_2opaphmx8000c31032120453612_seg.nii.gz"
+ },
+ {
+ "image": "101337/4_1opasevzoomb30f29021206030na.nii.gz",
+ "pseudo_label": "101337/4_1opasevzoomb30f29021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101337/4_1opasevzoomb30f29021206030na/4_1opasevzoomb30f29021206030na_seg.nii.gz"
+ },
+ {
+ "image": "101337/3_2opasevzoomb30f30021206030na.nii.gz",
+ "pseudo_label": "101337/3_2opasevzoomb30f30021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101337/3_2opasevzoomb30f30021206030na/3_2opasevzoomb30f30021206030na_seg.nii.gz"
+ },
+ {
+ "image": "101337/2_0opasevzoomb50f30221204020na.nii.gz",
+ "pseudo_label": "101337/2_0opasevzoomb50f30221204020na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101337/2_0opasevzoomb50f30221204020na/2_0opasevzoomb50f30221204020na_seg.nii.gz"
+ },
+ {
+ "image": "105231/3_0opagelsqxbone30225120560115.nii.gz",
+ "pseudo_label": "105231/3_0opagelsqxbone30225120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105231/3_0opagelsqxbone30225120560115/3_0opagelsqxbone30225120560115_seg.nii.gz"
+ },
+ {
+ "image": "105231/3_1opagelsqxbone30025120640115.nii.gz",
+ "pseudo_label": "105231/3_1opagelsqxbone30025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105231/3_1opagelsqxbone30025120640115/3_1opagelsqxbone30025120640115_seg.nii.gz"
+ },
+ {
+ "image": "105231/3_2opagelsqxbone31525120640115.nii.gz",
+ "pseudo_label": "105231/3_2opagelsqxbone31525120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105231/3_2opagelsqxbone31525120640115/3_2opagelsqxbone31525120640115_seg.nii.gz"
+ },
+ {
+ "image": "105231/2_0opagelsqxstandard30225120560115.nii.gz",
+ "pseudo_label": "105231/2_0opagelsqxstandard30225120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105231/2_0opagelsqxstandard30225120560115/2_0opagelsqxstandard30225120560115_seg.nii.gz"
+ },
+ {
+ "image": "105231/2_1opagelsqxstandard30025120640115.nii.gz",
+ "pseudo_label": "105231/2_1opagelsqxstandard30025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105231/2_1opagelsqxstandard30025120640115/2_1opagelsqxstandard30025120640115_seg.nii.gz"
+ },
+ {
+ "image": "106725/8956_2opaphmx8000d3423212039018.nii.gz",
+ "pseudo_label": "106725/8956_2opaphmx8000d3423212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106725/8956_2opaphmx8000d3423212039018/8956_2opaphmx8000d3423212039018_seg.nii.gz"
+ },
+ {
+ "image": "106725/0_0opaphmx8000d38232120600112.nii.gz",
+ "pseudo_label": "106725/0_0opaphmx8000d38232120600112.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106725/0_0opaphmx8000d38232120600112/0_0opaphmx8000d38232120600112_seg.nii.gz"
+ },
+ {
+ "image": "106725/0_0opaphmx8000c38232120600112.nii.gz",
+ "pseudo_label": "106725/0_0opaphmx8000c38232120600112.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106725/0_0opaphmx8000c38232120600112/0_0opaphmx8000c38232120600112_seg.nii.gz"
+ },
+ {
+ "image": "110005/7645_1opaphmx8000d38432120500118.nii.gz",
+ "pseudo_label": "110005/7645_1opaphmx8000d38432120500118.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110005/7645_1opaphmx8000d38432120500118/7645_1opaphmx8000d38432120500118_seg.nii.gz"
+ },
+ {
+ "image": "110005/0_0opaphmx8000d3843212039018.nii.gz",
+ "pseudo_label": "110005/0_0opaphmx8000d3843212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110005/0_0opaphmx8000d3843212039018/0_0opaphmx8000d3843212039018_seg.nii.gz"
+ },
+ {
+ "image": "108561/2_0opagelsqxstandard3352512048015.nii.gz",
+ "pseudo_label": "108561/2_0opagelsqxstandard3352512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108561/2_0opagelsqxstandard3352512048015/2_0opagelsqxstandard3352512048015_seg.nii.gz"
+ },
+ {
+ "image": "108561/2_1opagelsqxstandard3602512048015.nii.gz",
+ "pseudo_label": "108561/2_1opagelsqxstandard3602512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108561/2_1opagelsqxstandard3602512048015/2_1opagelsqxstandard3602512048015_seg.nii.gz"
+ },
+ {
+ "image": "111410/2_0opasevzoomb50f36621208040na.nii.gz",
+ "pseudo_label": "111410/2_0opasevzoomb50f36621208040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111410/2_0opasevzoomb50f36621208040na/2_0opasevzoomb50f36621208040na_seg.nii.gz"
+ },
+ {
+ "image": "111410/4_1opasevzoomb60f38521208040na.nii.gz",
+ "pseudo_label": "111410/4_1opasevzoomb60f38521208040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111410/4_1opasevzoomb60f38521208040na/4_1opasevzoomb60f38521208040na_seg.nii.gz"
+ },
+ {
+ "image": "111410/3_1opasevzoomb30f36421208040na.nii.gz",
+ "pseudo_label": "111410/3_1opasevzoomb30f36421208040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111410/3_1opasevzoomb30f36421208040na/3_1opasevzoomb30f36421208040na_seg.nii.gz"
+ },
+ {
+ "image": "110677/7566_2opaphmx8000d35932120600118.nii.gz",
+ "pseudo_label": "110677/7566_2opaphmx8000d35932120600118.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110677/7566_2opaphmx8000d35932120600118/7566_2opaphmx8000d35932120600118_seg.nii.gz"
+ },
+ {
+ "image": "103031/2_0opagelsqxstandard36025120600115.nii.gz",
+ "pseudo_label": "103031/2_0opagelsqxstandard36025120600115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103031/2_0opagelsqxstandard36025120600115/2_0opagelsqxstandard36025120600115_seg.nii.gz"
+ },
+ {
+ "image": "103031/2_2opagels16soft36025120554nana.nii.gz",
+ "pseudo_label": "103031/2_2opagels16soft36025120554nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103031/2_2opagels16soft36025120554nana/2_2opagels16soft36025120554nana_seg.nii.gz"
+ },
+ {
+ "image": "103031/2_1opagels16standard36025120505nana.nii.gz",
+ "pseudo_label": "103031/2_1opagels16standard36025120505nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103031/2_1opagels16standard36025120505nana/2_1opagels16standard36025120505nana_seg.nii.gz"
+ },
+ {
+ "image": "112240/3_2opagels16bone31025120nanana.nii.gz",
+ "pseudo_label": "112240/3_2opagels16bone31025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112240/3_2opagels16bone31025120nanana/3_2opagels16bone31025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "112240/3_0opagelsqxbone31025120nanana.nii.gz",
+ "pseudo_label": "112240/3_0opagelsqxbone31025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112240/3_0opagelsqxbone31025120nanana/3_0opagelsqxbone31025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "112240/3_1opagels16bone31025120nanana.nii.gz",
+ "pseudo_label": "112240/3_1opagels16bone31025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112240/3_1opagels16bone31025120nanana/3_1opagels16bone31025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "112240/2_2opagels16standard31025120nanana.nii.gz",
+ "pseudo_label": "112240/2_2opagels16standard31025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112240/2_2opagels16standard31025120nanana/2_2opagels16standard31025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "112240/2_0opagelsqxstandard31025120nanana.nii.gz",
+ "pseudo_label": "112240/2_0opagelsqxstandard31025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112240/2_0opagelsqxstandard31025120nanana/2_0opagelsqxstandard31025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "102091/4_0opasesen16b30f29021204530na.nii.gz",
+ "pseudo_label": "102091/4_0opasesen16b30f29021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102091/4_0opasesen16b30f29021204530na/4_0opasesen16b30f29021204530na_seg.nii.gz"
+ },
+ {
+ "image": "102091/3_2opasesen16b50f29021204530na.nii.gz",
+ "pseudo_label": "102091/3_2opasesen16b50f29021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102091/3_2opasesen16b50f29021204530na/3_2opasesen16b50f29021204530na_seg.nii.gz"
+ },
+ {
+ "image": "102091/4_2opasesen16b31f29021204530na.nii.gz",
+ "pseudo_label": "102091/4_2opasesen16b31f29021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102091/4_2opasesen16b31f29021204530na/4_2opasesen16b31f29021204530na_seg.nii.gz"
+ },
+ {
+ "image": "102091/2_0opasesen16b50f29021204530na.nii.gz",
+ "pseudo_label": "102091/2_0opasesen16b50f29021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102091/2_0opasesen16b50f29021204530na/2_0opasesen16b50f29021204530na_seg.nii.gz"
+ },
+ {
+ "image": "104250/3_0opagehsqxbone28025120560115.nii.gz",
+ "pseudo_label": "104250/3_0opagehsqxbone28025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104250/3_0opagehsqxbone28025120560115/3_0opagehsqxbone28025120560115_seg.nii.gz"
+ },
+ {
+ "image": "104250/2_2opagehsqxstandard28025120560115.nii.gz",
+ "pseudo_label": "104250/2_2opagehsqxstandard28025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104250/2_2opagehsqxstandard28025120560115/2_2opagehsqxstandard28025120560115_seg.nii.gz"
+ },
+ {
+ "image": "104250/2_0opagehsqxstandard28025120560115.nii.gz",
+ "pseudo_label": "104250/2_0opagehsqxstandard28025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104250/2_0opagehsqxstandard28025120560115/2_0opagehsqxstandard28025120560115_seg.nii.gz"
+ },
+ {
+ "image": "109857/2_1opagelsqxstandard34325120700115.nii.gz",
+ "pseudo_label": "109857/2_1opagelsqxstandard34325120700115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109857/2_1opagelsqxstandard34325120700115/2_1opagelsqxstandard34325120700115_seg.nii.gz"
+ },
+ {
+ "image": "109857/2_0opagelsqxstandard34325120600115.nii.gz",
+ "pseudo_label": "109857/2_0opagelsqxstandard34325120600115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109857/2_0opagelsqxstandard34325120600115/2_0opagelsqxstandard34325120600115_seg.nii.gz"
+ },
+ {
+ "image": "100591/8803_2opaphmx8000c31432120453612.nii.gz",
+ "pseudo_label": "100591/8803_2opaphmx8000c31432120453612.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100591/8803_2opaphmx8000c31432120453612/8803_2opaphmx8000c31432120453612_seg.nii.gz"
+ },
+ {
+ "image": "100591/5722_0opaphmx8000c290321205024012.nii.gz",
+ "pseudo_label": "100591/5722_0opaphmx8000c290321205024012.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100591/5722_0opaphmx8000c290321205024012/5722_0opaphmx8000c290321205024012_seg.nii.gz"
+ },
+ {
+ "image": "109413/3_1opagels16standard3922512040014.nii.gz",
+ "pseudo_label": "109413/3_1opagels16standard3922512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109413/3_1opagels16standard3922512040014/3_1opagels16standard3922512040014_seg.nii.gz"
+ },
+ {
+ "image": "109413/2_2opagelspr16bone36025120560114.nii.gz",
+ "pseudo_label": "109413/2_2opagelspr16bone36025120560114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109413/2_2opagelspr16bone36025120560114/2_2opagelspr16bone36025120560114_seg.nii.gz"
+ },
+ {
+ "image": "109413/3_2opagelspr16standard36025120560114.nii.gz",
+ "pseudo_label": "109413/3_2opagelspr16standard36025120560114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109413/3_2opagelspr16standard36025120560114/3_2opagelspr16standard36025120560114_seg.nii.gz"
+ },
+ {
+ "image": "109413/3_0opagelsqxstandard3962512048015.nii.gz",
+ "pseudo_label": "109413/3_0opagelsqxstandard3962512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109413/3_0opagelsqxstandard3962512048015/3_0opagelsqxstandard3962512048015_seg.nii.gz"
+ },
+ {
+ "image": "109413/2_1opagels16bone3922512040014.nii.gz",
+ "pseudo_label": "109413/2_1opagels16bone3922512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109413/2_1opagels16bone3922512040014/2_1opagels16bone3922512040014_seg.nii.gz"
+ },
+ {
+ "image": "109413/2_0opagelsqxbone3962512048015.nii.gz",
+ "pseudo_label": "109413/2_0opagelsqxbone3962512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109413/2_0opagelsqxbone3962512048015/2_0opagelsqxbone3962512048015_seg.nii.gz"
+ },
+ {
+ "image": "104324/3_2opagehsqxbone31025120560115.nii.gz",
+ "pseudo_label": "104324/3_2opagehsqxbone31025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104324/3_2opagehsqxbone31025120560115/3_2opagehsqxbone31025120560115_seg.nii.gz"
+ },
+ {
+ "image": "104324/2_1opagehsqxstandard31025120560115.nii.gz",
+ "pseudo_label": "104324/2_1opagehsqxstandard31025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104324/2_1opagehsqxstandard31025120560115/2_1opagehsqxstandard31025120560115_seg.nii.gz"
+ },
+ {
+ "image": "104324/3_0opagehsqxbone31025120560115.nii.gz",
+ "pseudo_label": "104324/3_0opagehsqxbone31025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104324/3_0opagehsqxbone31025120560115/3_0opagehsqxbone31025120560115_seg.nii.gz"
+ },
+ {
+ "image": "110531/2_0opagelsqxstandard36025120640115.nii.gz",
+ "pseudo_label": "110531/2_0opagelsqxstandard36025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110531/2_0opagelsqxstandard36025120640115/2_0opagelsqxstandard36025120640115_seg.nii.gz"
+ },
+ {
+ "image": "110531/2_2opagelsqxstandard44125120560115.nii.gz",
+ "pseudo_label": "110531/2_2opagelsqxstandard44125120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110531/2_2opagelsqxstandard44125120560115/2_2opagelsqxstandard44125120560115_seg.nii.gz"
+ },
+ {
+ "image": "110531/3_0opagelsqxbone36025120640115.nii.gz",
+ "pseudo_label": "110531/3_0opagelsqxbone36025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110531/3_0opagelsqxbone36025120640115/3_0opagelsqxbone36025120640115_seg.nii.gz"
+ },
+ {
+ "image": "110531/3_1opagelsqxbone36525120640115.nii.gz",
+ "pseudo_label": "110531/3_1opagelsqxbone36525120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110531/3_1opagelsqxbone36525120640115/3_1opagelsqxbone36525120640115_seg.nii.gz"
+ },
+ {
+ "image": "112802/2_1opagelsqxstandard36725120640115.nii.gz",
+ "pseudo_label": "112802/2_1opagelsqxstandard36725120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112802/2_1opagelsqxstandard36725120640115/2_1opagelsqxstandard36725120640115_seg.nii.gz"
+ },
+ {
+ "image": "112802/2_2opagelsqxstandard36025120640115.nii.gz",
+ "pseudo_label": "112802/2_2opagelsqxstandard36025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112802/2_2opagelsqxstandard36025120640115/2_2opagelsqxstandard36025120640115_seg.nii.gz"
+ },
+ {
+ "image": "112802/3_0opagelsqxbone36925120640115.nii.gz",
+ "pseudo_label": "112802/3_0opagelsqxbone36925120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112802/3_0opagelsqxbone36925120640115/3_0opagelsqxbone36925120640115_seg.nii.gz"
+ },
+ {
+ "image": "112802/3_1opagelsqxbone36725120640115.nii.gz",
+ "pseudo_label": "112802/3_1opagelsqxbone36725120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112802/3_1opagelsqxbone36725120640115/3_1opagelsqxbone36725120640115_seg.nii.gz"
+ },
+ {
+ "image": "112802/3_2opagelsqxbone36025120640115.nii.gz",
+ "pseudo_label": "112802/3_2opagelsqxbone36025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112802/3_2opagelsqxbone36025120640115/3_2opagelsqxbone36025120640115_seg.nii.gz"
+ },
+ {
+ "image": "112802/2_0opagelsqxstandard36925120640115.nii.gz",
+ "pseudo_label": "112802/2_0opagelsqxstandard36925120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112802/2_0opagelsqxstandard36925120640115/2_0opagelsqxstandard36925120640115_seg.nii.gz"
+ },
+ {
+ "image": "107959/3_1opasevzoomb30f32021206030na.nii.gz",
+ "pseudo_label": "107959/3_1opasevzoomb30f32021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107959/3_1opasevzoomb30f32021206030na/3_1opasevzoomb30f32021206030na_seg.nii.gz"
+ },
+ {
+ "image": "107959/2_0opasevzoomb50f34021206030na.nii.gz",
+ "pseudo_label": "107959/2_0opasevzoomb50f34021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107959/2_0opasevzoomb50f34021206030na/2_0opasevzoomb50f34021206030na_seg.nii.gz"
+ },
+ {
+ "image": "107959/3_0opasevzoomb30f34021206030na.nii.gz",
+ "pseudo_label": "107959/3_0opasevzoomb30f34021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107959/3_0opasevzoomb30f34021206030na/3_0opasevzoomb30f34021206030na_seg.nii.gz"
+ },
+ {
+ "image": "104101/3_0opagehsqxbone34025120560115.nii.gz",
+ "pseudo_label": "104101/3_0opagehsqxbone34025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104101/3_0opagehsqxbone34025120560115/3_0opagehsqxbone34025120560115_seg.nii.gz"
+ },
+ {
+ "image": "104101/2_0opagehsqxstandard34025120560115.nii.gz",
+ "pseudo_label": "104101/2_0opagehsqxstandard34025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104101/2_0opagehsqxstandard34025120560115/2_0opagehsqxstandard34025120560115_seg.nii.gz"
+ },
+ {
+ "image": "104101/2_2opagehsqxstandard34025120560115.nii.gz",
+ "pseudo_label": "104101/2_2opagehsqxstandard34025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104101/2_2opagehsqxstandard34025120560115/2_2opagehsqxstandard34025120560115_seg.nii.gz"
+ },
+ {
+ "image": "104101/2_1opagehsqxstandard34025120560115.nii.gz",
+ "pseudo_label": "104101/2_1opagehsqxstandard34025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104101/2_1opagehsqxstandard34025120560115/2_1opagehsqxstandard34025120560115_seg.nii.gz"
+ },
+ {
+ "image": "102218/2_0opagelsqxstandard30025120nanana.nii.gz",
+ "pseudo_label": "102218/2_0opagelsqxstandard30025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102218/2_0opagelsqxstandard30025120nanana/2_0opagelsqxstandard30025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "102218/3_1opagels16bone30025120nanana.nii.gz",
+ "pseudo_label": "102218/3_1opagels16bone30025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102218/3_1opagels16bone30025120nanana/3_1opagels16bone30025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "102218/2_2opagels16standard30025120nanana.nii.gz",
+ "pseudo_label": "102218/2_2opagels16standard30025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102218/2_2opagels16standard30025120nanana/2_2opagels16standard30025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "102218/2_1opagels16standard30025120nanana.nii.gz",
+ "pseudo_label": "102218/2_1opagels16standard30025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102218/2_1opagels16standard30025120nanana/2_1opagels16standard30025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "102218/3_2opagels16bone30025120nanana.nii.gz",
+ "pseudo_label": "102218/3_2opagels16bone30025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102218/3_2opagels16bone30025120nanana/3_2opagels16bone30025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "102218/3_0opagelsqxbone30025120nanana.nii.gz",
+ "pseudo_label": "102218/3_0opagelsqxbone30025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102218/3_0opagelsqxbone30025120nanana/3_0opagelsqxbone30025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "110262/1_0opagelspluslung33025120800115.nii.gz",
+ "pseudo_label": "110262/1_0opagelspluslung33025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110262/1_0opagelspluslung33025120800115/1_0opagelspluslung33025120800115_seg.nii.gz"
+ },
+ {
+ "image": "110262/1_0opagelsplusstandard33025120800115.nii.gz",
+ "pseudo_label": "110262/1_0opagelsplusstandard33025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110262/1_0opagelsplusstandard33025120800115/1_0opagelsplusstandard33025120800115_seg.nii.gz"
+ },
+ {
+ "image": "110262/1_1opagelsplusstandard33025120800115.nii.gz",
+ "pseudo_label": "110262/1_1opagelsplusstandard33025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110262/1_1opagelsplusstandard33025120800115/1_1opagelsplusstandard33025120800115_seg.nii.gz"
+ },
+ {
+ "image": "110262/1_2opagelspluslung33025120800115.nii.gz",
+ "pseudo_label": "110262/1_2opagelspluslung33025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110262/1_2opagelspluslung33025120800115/1_2opagelspluslung33025120800115_seg.nii.gz"
+ },
+ {
+ "image": "111673/3_2opasevzoomb50f40821207540na.nii.gz",
+ "pseudo_label": "111673/3_2opasevzoomb50f40821207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111673/3_2opasevzoomb50f40821207540na/3_2opasevzoomb50f40821207540na_seg.nii.gz"
+ },
+ {
+ "image": "111673/2_0opasevzoomb30f38121207540na.nii.gz",
+ "pseudo_label": "111673/2_0opasevzoomb30f38121207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111673/2_0opasevzoomb30f38121207540na/2_0opasevzoomb30f38121207540na_seg.nii.gz"
+ },
+ {
+ "image": "113188/2_2opasevzoomb30f33021208040na.nii.gz",
+ "pseudo_label": "113188/2_2opasevzoomb30f33021208040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113188/2_2opasevzoomb30f33021208040na/2_2opasevzoomb30f33021208040na_seg.nii.gz"
+ },
+ {
+ "image": "112880/3_1opagehsqxbone28025120560115.nii.gz",
+ "pseudo_label": "112880/3_1opagehsqxbone28025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112880/3_1opagehsqxbone28025120560115/3_1opagehsqxbone28025120560115_seg.nii.gz"
+ },
+ {
+ "image": "112880/2_1opagehsqxstandard28025120560115.nii.gz",
+ "pseudo_label": "112880/2_1opagehsqxstandard28025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112880/2_1opagehsqxstandard28025120560115/2_1opagehsqxstandard28025120560115_seg.nii.gz"
+ },
+ {
+ "image": "112880/3_2opagehsqxbone28025120560115.nii.gz",
+ "pseudo_label": "112880/3_2opagehsqxbone28025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112880/3_2opagehsqxbone28025120560115/3_2opagehsqxbone28025120560115_seg.nii.gz"
+ },
+ {
+ "image": "112880/2_2opagehsqxstandard28025120560115.nii.gz",
+ "pseudo_label": "112880/2_2opagehsqxstandard28025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112880/2_2opagehsqxstandard28025120560115/2_2opagehsqxstandard28025120560115_seg.nii.gz"
+ },
+ {
+ "image": "112880/2_0opagehsqxstandard28025120560115.nii.gz",
+ "pseudo_label": "112880/2_0opagehsqxstandard28025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112880/2_0opagehsqxstandard28025120560115/2_0opagehsqxstandard28025120560115_seg.nii.gz"
+ },
+ {
+ "image": "110989/3_1opatoaqul4fc512797212040nana.nii.gz",
+ "pseudo_label": "110989/3_1opatoaqul4fc512797212040nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110989/3_1opatoaqul4fc512797212040nana/3_1opatoaqul4fc512797212040nana_seg.nii.gz"
+ },
+ {
+ "image": "102613/3_1opagehsqxbone28025120560115.nii.gz",
+ "pseudo_label": "102613/3_1opagehsqxbone28025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102613/3_1opagehsqxbone28025120560115/3_1opagehsqxbone28025120560115_seg.nii.gz"
+ },
+ {
+ "image": "102613/3_0opagehsqxbone28025120560115.nii.gz",
+ "pseudo_label": "102613/3_0opagehsqxbone28025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102613/3_0opagehsqxbone28025120560115/3_0opagehsqxbone28025120560115_seg.nii.gz"
+ },
+ {
+ "image": "102613/2_2opagehsqxstandard28025120560115.nii.gz",
+ "pseudo_label": "102613/2_2opagehsqxstandard28025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102613/2_2opagehsqxstandard28025120560115/2_2opagehsqxstandard28025120560115_seg.nii.gz"
+ },
+ {
+ "image": "102613/2_0opagehsqxstandard28025120560115.nii.gz",
+ "pseudo_label": "102613/2_0opagehsqxstandard28025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102613/2_0opagehsqxstandard28025120560115/2_0opagehsqxstandard28025120560115_seg.nii.gz"
+ },
+ {
+ "image": "110454/2_1opagelsqxstandard3202514048015.nii.gz",
+ "pseudo_label": "110454/2_1opagelsqxstandard3202514048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110454/2_1opagelsqxstandard3202514048015/2_1opagelsqxstandard3202514048015_seg.nii.gz"
+ },
+ {
+ "image": "110454/2_0opagelsqxstandard3202514048015.nii.gz",
+ "pseudo_label": "110454/2_0opagelsqxstandard3202514048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110454/2_0opagelsqxstandard3202514048015/2_0opagelsqxstandard3202514048015_seg.nii.gz"
+ },
+ {
+ "image": "110454/2_2opagelsqxstandard3202514048015.nii.gz",
+ "pseudo_label": "110454/2_2opagelsqxstandard3202514048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110454/2_2opagelsqxstandard3202514048015/2_2opagelsqxstandard3202514048015_seg.nii.gz"
+ },
+ {
+ "image": "108154/3_0opasevzoomb50f34721207540na.nii.gz",
+ "pseudo_label": "108154/3_0opasevzoomb50f34721207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108154/3_0opasevzoomb50f34721207540na/3_0opasevzoomb50f34721207540na_seg.nii.gz"
+ },
+ {
+ "image": "104357/2_2opasevzoomb30f31021207540na.nii.gz",
+ "pseudo_label": "104357/2_2opasevzoomb30f31021207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104357/2_2opasevzoomb30f31021207540na/2_2opasevzoomb30f31021207540na_seg.nii.gz"
+ },
+ {
+ "image": "104357/4_0opasevzoomb50f34021207540na.nii.gz",
+ "pseudo_label": "104357/4_0opasevzoomb50f34021207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104357/4_0opasevzoomb50f34021207540na/4_0opasevzoomb50f34021207540na_seg.nii.gz"
+ },
+ {
+ "image": "104357/2_0opasevzoomb30f38051207540na.nii.gz",
+ "pseudo_label": "104357/2_0opasevzoomb30f38051207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104357/2_0opasevzoomb30f38051207540na/2_0opasevzoomb30f38051207540na_seg.nii.gz"
+ },
+ {
+ "image": "104357/2_1opasevzoomb30f33421207540na.nii.gz",
+ "pseudo_label": "104357/2_1opasevzoomb30f33421207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104357/2_1opasevzoomb30f33421207540na/2_1opasevzoomb30f33421207540na_seg.nii.gz"
+ },
+ {
+ "image": "104357/3_1opasevzoomb50f33421207540na.nii.gz",
+ "pseudo_label": "104357/3_1opasevzoomb50f33421207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104357/3_1opasevzoomb50f33421207540na/3_1opasevzoomb50f33421207540na_seg.nii.gz"
+ },
+ {
+ "image": "104357/3_0opasevzoomb30f34021207540na.nii.gz",
+ "pseudo_label": "104357/3_0opasevzoomb30f34021207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104357/3_0opasevzoomb30f34021207540na/3_0opasevzoomb30f34021207540na_seg.nii.gz"
+ },
+ {
+ "image": "113335/2_0opagelsqxstandard40025120600115.nii.gz",
+ "pseudo_label": "113335/2_0opagelsqxstandard40025120600115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113335/2_0opagelsqxstandard40025120600115/2_0opagelsqxstandard40025120600115_seg.nii.gz"
+ },
+ {
+ "image": "105586/4_0opasevzoomb50f290212010050na.nii.gz",
+ "pseudo_label": "105586/4_0opasevzoomb50f290212010050na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105586/4_0opasevzoomb50f290212010050na/4_0opasevzoomb50f290212010050na_seg.nii.gz"
+ },
+ {
+ "image": "105586/3_2opasesen16b30f28021204530na.nii.gz",
+ "pseudo_label": "105586/3_2opasesen16b30f28021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105586/3_2opasesen16b30f28021204530na/3_2opasesen16b30f28021204530na_seg.nii.gz"
+ },
+ {
+ "image": "105586/2_1opasesen16b50f30621206040na.nii.gz",
+ "pseudo_label": "105586/2_1opasesen16b50f30621206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105586/2_1opasesen16b50f30621206040na/2_1opasesen16b50f30621206040na_seg.nii.gz"
+ },
+ {
+ "image": "102118/2_0opasevzoomb50f31021208040na.nii.gz",
+ "pseudo_label": "102118/2_0opasevzoomb50f31021208040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102118/2_0opasevzoomb50f31021208040na/2_0opasevzoomb50f31021208040na_seg.nii.gz"
+ },
+ {
+ "image": "102118/3_1opasevzoomb30f34021206030na.nii.gz",
+ "pseudo_label": "102118/3_1opasevzoomb30f34021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102118/3_1opasevzoomb30f34021206030na/3_1opasevzoomb30f34021206030na_seg.nii.gz"
+ },
+ {
+ "image": "102118/2_1opasevzoomb50f34021206030na.nii.gz",
+ "pseudo_label": "102118/2_1opasevzoomb50f34021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102118/2_1opasevzoomb50f34021206030na/2_1opasevzoomb50f34021206030na_seg.nii.gz"
+ },
+ {
+ "image": "111080/2_2opagehsqxstandard31025120560115.nii.gz",
+ "pseudo_label": "111080/2_2opagehsqxstandard31025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111080/2_2opagehsqxstandard31025120560115/2_2opagehsqxstandard31025120560115_seg.nii.gz"
+ },
+ {
+ "image": "111080/2_1opagehsqxstandard31025120560115.nii.gz",
+ "pseudo_label": "111080/2_1opagehsqxstandard31025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111080/2_1opagehsqxstandard31025120560115/2_1opagehsqxstandard31025120560115_seg.nii.gz"
+ },
+ {
+ "image": "111080/3_1opagehsqxbone31025120560115.nii.gz",
+ "pseudo_label": "111080/3_1opagehsqxbone31025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111080/3_1opagehsqxbone31025120560115/3_1opagehsqxbone31025120560115_seg.nii.gz"
+ },
+ {
+ "image": "105601/4_1opasevzoomb50f369512012060na.nii.gz",
+ "pseudo_label": "105601/4_1opasevzoomb50f369512012060na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105601/4_1opasevzoomb50f369512012060na/4_1opasevzoomb50f369512012060na_seg.nii.gz"
+ },
+ {
+ "image": "105601/4_0opasesen16b30f40821204530na.nii.gz",
+ "pseudo_label": "105601/4_0opasesen16b30f40821204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105601/4_0opasesen16b30f40821204530na/4_0opasesen16b30f40821204530na_seg.nii.gz"
+ },
+ {
+ "image": "105601/5_0opasesen16b50f40851204530na.nii.gz",
+ "pseudo_label": "105601/5_0opasesen16b50f40851204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105601/5_0opasesen16b50f40851204530na/5_0opasesen16b50f40851204530na_seg.nii.gz"
+ },
+ {
+ "image": "105601/3_1opasevzoomb30f369512012060na.nii.gz",
+ "pseudo_label": "105601/3_1opasevzoomb30f369512012060na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105601/3_1opasevzoomb30f369512012060na/3_1opasevzoomb30f369512012060na_seg.nii.gz"
+ },
+ {
+ "image": "105601/5_2opasesen16b50f38351204530na.nii.gz",
+ "pseudo_label": "105601/5_2opasesen16b50f38351204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105601/5_2opasesen16b50f38351204530na/5_2opasesen16b50f38351204530na_seg.nii.gz"
+ },
+ {
+ "image": "105601/4_2opasesen16b30f38321204530na.nii.gz",
+ "pseudo_label": "105601/4_2opasesen16b30f38321204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105601/4_2opasesen16b30f38321204530na/4_2opasesen16b30f38321204530na_seg.nii.gz"
+ },
+ {
+ "image": "105601/3_0opasesen16b30f40851204530na.nii.gz",
+ "pseudo_label": "105601/3_0opasesen16b30f40851204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105601/3_0opasesen16b30f40851204530na/3_0opasesen16b30f40851204530na_seg.nii.gz"
+ },
+ {
+ "image": "105601/3_2opasesen16b30f38351204530na.nii.gz",
+ "pseudo_label": "105601/3_2opasesen16b30f38351204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105601/3_2opasesen16b30f38351204530na/3_2opasesen16b30f38351204530na_seg.nii.gz"
+ },
+ {
+ "image": "104188/2_0opasevzoomb50f37821208040na.nii.gz",
+ "pseudo_label": "104188/2_0opasevzoomb50f37821208040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104188/2_0opasevzoomb50f37821208040na/2_0opasevzoomb50f37821208040na_seg.nii.gz"
+ },
+ {
+ "image": "104188/3_0opasevzoomb50f37821208040na.nii.gz",
+ "pseudo_label": "104188/3_0opasevzoomb50f37821208040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104188/3_0opasevzoomb50f37821208040na/3_0opasevzoomb50f37821208040na_seg.nii.gz"
+ },
+ {
+ "image": "104188/3_2opasevzoomb30f35021206030na.nii.gz",
+ "pseudo_label": "104188/3_2opasevzoomb30f35021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104188/3_2opasevzoomb30f35021206030na/3_2opasevzoomb30f35021206030na_seg.nii.gz"
+ },
+ {
+ "image": "104188/2_1opasevzoomb50f37821206030na.nii.gz",
+ "pseudo_label": "104188/2_1opasevzoomb50f37821206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104188/2_1opasevzoomb50f37821206030na/2_1opasevzoomb50f37821206030na_seg.nii.gz"
+ },
+ {
+ "image": "104188/2_2opasevzoomb50f35021206030na.nii.gz",
+ "pseudo_label": "104188/2_2opasevzoomb50f35021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104188/2_2opasevzoomb50f35021206030na/2_2opasevzoomb50f35021206030na_seg.nii.gz"
+ },
+ {
+ "image": "100242/2_0opagehsqxstandard29025120560115.nii.gz",
+ "pseudo_label": "100242/2_0opagehsqxstandard29025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100242/2_0opagehsqxstandard29025120560115/2_0opagehsqxstandard29025120560115_seg.nii.gz"
+ },
+ {
+ "image": "100242/3_0opagehsqxbone29025120560115.nii.gz",
+ "pseudo_label": "100242/3_0opagehsqxbone29025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100242/3_0opagehsqxbone29025120560115/3_0opagehsqxbone29025120560115_seg.nii.gz"
+ },
+ {
+ "image": "107787/1_1opagelspluslung33025120800115.nii.gz",
+ "pseudo_label": "107787/1_1opagelspluslung33025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107787/1_1opagelspluslung33025120800115/1_1opagelspluslung33025120800115_seg.nii.gz"
+ },
+ {
+ "image": "107787/1_0opagelspluslung33025120800115.nii.gz",
+ "pseudo_label": "107787/1_0opagelspluslung33025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107787/1_0opagelspluslung33025120800115/1_0opagelspluslung33025120800115_seg.nii.gz"
+ },
+ {
+ "image": "107787/1_0opagelsplusstandard33025120800115.nii.gz",
+ "pseudo_label": "107787/1_0opagelsplusstandard33025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107787/1_0opagelsplusstandard33025120800115/1_0opagelsplusstandard33025120800115_seg.nii.gz"
+ },
+ {
+ "image": "107787/1_2opagelsplusstandard33025120800115.nii.gz",
+ "pseudo_label": "107787/1_2opagelsplusstandard33025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107787/1_2opagelsplusstandard33025120800115/1_2opagelsplusstandard33025120800115_seg.nii.gz"
+ },
+ {
+ "image": "107787/1_1opagelsplusstandard33025120800115.nii.gz",
+ "pseudo_label": "107787/1_1opagelsplusstandard33025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107787/1_1opagelsplusstandard33025120800115/1_1opagelsplusstandard33025120800115_seg.nii.gz"
+ },
+ {
+ "image": "107787/1_2opagelspluslung33025120800115.nii.gz",
+ "pseudo_label": "107787/1_2opagelspluslung33025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107787/1_2opagelspluslung33025120800115/1_2opagelspluslung33025120800115_seg.nii.gz"
+ },
+ {
+ "image": "101606/3_0opasevzoomb30f35021206030na.nii.gz",
+ "pseudo_label": "101606/3_0opasevzoomb30f35021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101606/3_0opasevzoomb30f35021206030na/3_0opasevzoomb30f35021206030na_seg.nii.gz"
+ },
+ {
+ "image": "106411/6990_2opaphmx8000c2693212039018.nii.gz",
+ "pseudo_label": "106411/6990_2opaphmx8000c2693212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106411/6990_2opaphmx8000c2693212039018/6990_2opaphmx8000c2693212039018_seg.nii.gz"
+ },
+ {
+ "image": "106411/5615_1opaphmx8000c2873212039018.nii.gz",
+ "pseudo_label": "106411/5615_1opaphmx8000c2873212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106411/5615_1opaphmx8000c2873212039018/5615_1opaphmx8000c2873212039018_seg.nii.gz"
+ },
+ {
+ "image": "106411/0_0opaphmx8000d28232120600112.nii.gz",
+ "pseudo_label": "106411/0_0opaphmx8000d28232120600112.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106411/0_0opaphmx8000d28232120600112/0_0opaphmx8000d28232120600112_seg.nii.gz"
+ },
+ {
+ "image": "110452/2_0opagelsqxstandard30025120nanana.nii.gz",
+ "pseudo_label": "110452/2_0opagelsqxstandard30025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110452/2_0opagelsqxstandard30025120nanana/2_0opagelsqxstandard30025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "110452/3_1opagels16bone30025120nanana.nii.gz",
+ "pseudo_label": "110452/3_1opagels16bone30025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110452/3_1opagels16bone30025120nanana/3_1opagels16bone30025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "110452/2_2opagels16standard30025120nanana.nii.gz",
+ "pseudo_label": "110452/2_2opagels16standard30025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110452/2_2opagels16standard30025120nanana/2_2opagels16standard30025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "110452/2_1opagels16standard30025120nanana.nii.gz",
+ "pseudo_label": "110452/2_1opagels16standard30025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110452/2_1opagels16standard30025120nanana/2_1opagels16standard30025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "110452/3_2opagels16bone30025120nanana.nii.gz",
+ "pseudo_label": "110452/3_2opagels16bone30025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110452/3_2opagels16bone30025120nanana/3_2opagels16bone30025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "110452/3_0opagelsqxbone30025120nanana.nii.gz",
+ "pseudo_label": "110452/3_0opagelsqxbone30025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110452/3_0opagelsqxbone30025120nanana/3_0opagelsqxbone30025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "112710/2_1opagehsqxstandard29025120560115.nii.gz",
+ "pseudo_label": "112710/2_1opagehsqxstandard29025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112710/2_1opagehsqxstandard29025120560115/2_1opagehsqxstandard29025120560115_seg.nii.gz"
+ },
+ {
+ "image": "112710/3_1opagehsqxbone29025120560115.nii.gz",
+ "pseudo_label": "112710/3_1opagehsqxbone29025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112710/3_1opagehsqxbone29025120560115/3_1opagehsqxbone29025120560115_seg.nii.gz"
+ },
+ {
+ "image": "112710/2_2opagehsqxstandard29025120560115.nii.gz",
+ "pseudo_label": "112710/2_2opagehsqxstandard29025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112710/2_2opagehsqxstandard29025120560115/2_2opagehsqxstandard29025120560115_seg.nii.gz"
+ },
+ {
+ "image": "103150/1_2opagelspluslung34025120800115.nii.gz",
+ "pseudo_label": "103150/1_2opagelspluslung34025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103150/1_2opagelspluslung34025120800115/1_2opagelspluslung34025120800115_seg.nii.gz"
+ },
+ {
+ "image": "103150/1_2opagelsplusstandard34025120800115.nii.gz",
+ "pseudo_label": "103150/1_2opagelsplusstandard34025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103150/1_2opagelsplusstandard34025120800115/1_2opagelsplusstandard34025120800115_seg.nii.gz"
+ },
+ {
+ "image": "103150/1_1opagelspluslung34025120800115.nii.gz",
+ "pseudo_label": "103150/1_1opagelspluslung34025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103150/1_1opagelspluslung34025120800115/1_1opagelspluslung34025120800115_seg.nii.gz"
+ },
+ {
+ "image": "103150/1_1opagelsplusstandard34025120800115.nii.gz",
+ "pseudo_label": "103150/1_1opagelsplusstandard34025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103150/1_1opagelsplusstandard34025120800115/1_1opagelsplusstandard34025120800115_seg.nii.gz"
+ },
+ {
+ "image": "103150/1_0opagelspluslung34025120800108.nii.gz",
+ "pseudo_label": "103150/1_0opagelspluslung34025120800108.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103150/1_0opagelspluslung34025120800108/1_0opagelspluslung34025120800108_seg.nii.gz"
+ },
+ {
+ "image": "103150/1_0opagelsplusstandard34025120800108.nii.gz",
+ "pseudo_label": "103150/1_0opagelsplusstandard34025120800108.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103150/1_0opagelsplusstandard34025120800108/1_0opagelsplusstandard34025120800108_seg.nii.gz"
+ },
+ {
+ "image": "103086/4_0opatoaqul4fc513297212040nana.nii.gz",
+ "pseudo_label": "103086/4_0opatoaqul4fc513297212040nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103086/4_0opatoaqul4fc513297212040nana/4_0opatoaqul4fc513297212040nana_seg.nii.gz"
+ },
+ {
+ "image": "103086/4_2opatoaqul4fc513422212040nana.nii.gz",
+ "pseudo_label": "103086/4_2opatoaqul4fc513422212040nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103086/4_2opatoaqul4fc513422212040nana/4_2opatoaqul4fc513422212040nana_seg.nii.gz"
+ },
+ {
+ "image": "103086/7_2opatoaqul4fc513422212040nana.nii.gz",
+ "pseudo_label": "103086/7_2opatoaqul4fc513422212040nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103086/7_2opatoaqul4fc513422212040nana/7_2opatoaqul4fc513422212040nana_seg.nii.gz"
+ },
+ {
+ "image": "105045/2_1opasesen16b30f35221206048na.nii.gz",
+ "pseudo_label": "105045/2_1opasesen16b30f35221206048na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105045/2_1opasesen16b30f35221206048na/2_1opasesen16b30f35221206048na_seg.nii.gz"
+ },
+ {
+ "image": "101669/2_2opagehsqxstandard32025120560115.nii.gz",
+ "pseudo_label": "101669/2_2opagehsqxstandard32025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101669/2_2opagehsqxstandard32025120560115/2_2opagehsqxstandard32025120560115_seg.nii.gz"
+ },
+ {
+ "image": "101669/2_0opagehsqxstandard32025120560115.nii.gz",
+ "pseudo_label": "101669/2_0opagehsqxstandard32025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101669/2_0opagehsqxstandard32025120560115/2_0opagehsqxstandard32025120560115_seg.nii.gz"
+ },
+ {
+ "image": "101669/3_0opagehsqxbone32025120560115.nii.gz",
+ "pseudo_label": "101669/3_0opagehsqxbone32025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101669/3_0opagehsqxbone32025120560115/3_0opagehsqxbone32025120560115_seg.nii.gz"
+ },
+ {
+ "image": "101669/3_1opagehsqxbone32025120560115.nii.gz",
+ "pseudo_label": "101669/3_1opagehsqxbone32025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101669/3_1opagehsqxbone32025120560115/3_1opagehsqxbone32025120560115_seg.nii.gz"
+ },
+ {
+ "image": "101669/2_1opagehsqxstandard32025120560115.nii.gz",
+ "pseudo_label": "101669/2_1opagehsqxstandard32025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101669/2_1opagehsqxstandard32025120560115/2_1opagehsqxstandard32025120560115_seg.nii.gz"
+ },
+ {
+ "image": "102871/3_2opatoaqul4fc513172212040nana.nii.gz",
+ "pseudo_label": "102871/3_2opatoaqul4fc513172212040nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102871/3_2opatoaqul4fc513172212040nana/3_2opatoaqul4fc513172212040nana_seg.nii.gz"
+ },
+ {
+ "image": "102963/3_1opasevzoomb50f32021207540na.nii.gz",
+ "pseudo_label": "102963/3_1opasevzoomb50f32021207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102963/3_1opasevzoomb50f32021207540na/3_1opasevzoomb50f32021207540na_seg.nii.gz"
+ },
+ {
+ "image": "102963/2_2opasevzoomb30f33821207540na.nii.gz",
+ "pseudo_label": "102963/2_2opasevzoomb30f33821207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102963/2_2opasevzoomb30f33821207540na/2_2opasevzoomb30f33821207540na_seg.nii.gz"
+ },
+ {
+ "image": "110912/3_1opagels16bone37025120nanana.nii.gz",
+ "pseudo_label": "110912/3_1opagels16bone37025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110912/3_1opagels16bone37025120nanana/3_1opagels16bone37025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "110912/3_2opagels16bone37025120nanana.nii.gz",
+ "pseudo_label": "110912/3_2opagels16bone37025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110912/3_2opagels16bone37025120nanana/3_2opagels16bone37025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "110912/2_0opagelsqxstandard37025120nanana.nii.gz",
+ "pseudo_label": "110912/2_0opagelsqxstandard37025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110912/2_0opagelsqxstandard37025120nanana/2_0opagelsqxstandard37025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "110912/2_1opagels16standard37025120nanana.nii.gz",
+ "pseudo_label": "110912/2_1opagels16standard37025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110912/2_1opagels16standard37025120nanana/2_1opagels16standard37025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "109269/5_1opasevzoomb30f33651206030na.nii.gz",
+ "pseudo_label": "109269/5_1opasevzoomb30f33651206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109269/5_1opasevzoomb30f33651206030na/5_1opasevzoomb30f33651206030na_seg.nii.gz"
+ },
+ {
+ "image": "109269/4_1opasevzoomb50f33651206030na.nii.gz",
+ "pseudo_label": "109269/4_1opasevzoomb50f33651206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109269/4_1opasevzoomb50f33651206030na/4_1opasevzoomb50f33651206030na_seg.nii.gz"
+ },
+ {
+ "image": "109269/3_0opasevzoomb50f330512012060na.nii.gz",
+ "pseudo_label": "109269/3_0opasevzoomb50f330512012060na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109269/3_0opasevzoomb50f330512012060na/3_0opasevzoomb50f330512012060na_seg.nii.gz"
+ },
+ {
+ "image": "109269/5_0opasevzoomb30f330212012060na.nii.gz",
+ "pseudo_label": "109269/5_0opasevzoomb30f330212012060na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109269/5_0opasevzoomb30f330212012060na/5_0opasevzoomb30f330212012060na_seg.nii.gz"
+ },
+ {
+ "image": "104539/3_1opagels16standard4102512048014.nii.gz",
+ "pseudo_label": "104539/3_1opagels16standard4102512048014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104539/3_1opagels16standard4102512048014/3_1opagels16standard4102512048014_seg.nii.gz"
+ },
+ {
+ "image": "104539/2_1opagels16bone4102512048014.nii.gz",
+ "pseudo_label": "104539/2_1opagels16bone4102512048014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104539/2_1opagels16bone4102512048014/2_1opagels16bone4102512048014_seg.nii.gz"
+ },
+ {
+ "image": "104539/2_2opagelspr16bone3502512048014.nii.gz",
+ "pseudo_label": "104539/2_2opagelspr16bone3502512048014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104539/2_2opagelspr16bone3502512048014/2_2opagelspr16bone3502512048014_seg.nii.gz"
+ },
+ {
+ "image": "104539/3_2opagelspr16standard3502512048014.nii.gz",
+ "pseudo_label": "104539/3_2opagelspr16standard3502512048014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104539/3_2opagelspr16standard3502512048014/3_2opagelspr16standard3502512048014_seg.nii.gz"
+ },
+ {
+ "image": "104539/2_0opagelsqxbone3602512048015.nii.gz",
+ "pseudo_label": "104539/2_0opagelsqxbone3602512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104539/2_0opagelsqxbone3602512048015/2_0opagelsqxbone3602512048015_seg.nii.gz"
+ },
+ {
+ "image": "106286/9_0opasevzoomb30f38021206030na.nii.gz",
+ "pseudo_label": "106286/9_0opasevzoomb30f38021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106286/9_0opasevzoomb30f38021206030na/9_0opasevzoomb30f38021206030na_seg.nii.gz"
+ },
+ {
+ "image": "106286/6_0opasevzoomb50f38021206030na.nii.gz",
+ "pseudo_label": "106286/6_0opasevzoomb50f38021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106286/6_0opasevzoomb50f38021206030na/6_0opasevzoomb50f38021206030na_seg.nii.gz"
+ },
+ {
+ "image": "106286/8_0opasevzoomb30f38051206030na.nii.gz",
+ "pseudo_label": "106286/8_0opasevzoomb30f38051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106286/8_0opasevzoomb30f38051206030na/8_0opasevzoomb30f38051206030na_seg.nii.gz"
+ },
+ {
+ "image": "106286/7_0opasevzoomb50f38051206030na.nii.gz",
+ "pseudo_label": "106286/7_0opasevzoomb50f38051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106286/7_0opasevzoomb50f38051206030na/7_0opasevzoomb50f38051206030na_seg.nii.gz"
+ },
+ {
+ "image": "109092/2_1opagelsplusstandard3202514040015.nii.gz",
+ "pseudo_label": "109092/2_1opagelsplusstandard3202514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109092/2_1opagelsplusstandard3202514040015/2_1opagelsplusstandard3202514040015_seg.nii.gz"
+ },
+ {
+ "image": "109092/2_2opagelsplusstandard3302514040015.nii.gz",
+ "pseudo_label": "109092/2_2opagelsplusstandard3302514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109092/2_2opagelsplusstandard3302514040015/2_2opagelsplusstandard3302514040015_seg.nii.gz"
+ },
+ {
+ "image": "101373/3_1opagels16bone37025120nanana.nii.gz",
+ "pseudo_label": "101373/3_1opagels16bone37025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101373/3_1opagels16bone37025120nanana/3_1opagels16bone37025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "101373/3_2opagels16bone37025120nanana.nii.gz",
+ "pseudo_label": "101373/3_2opagels16bone37025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101373/3_2opagels16bone37025120nanana/3_2opagels16bone37025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "101373/2_2opagels16standard37025120nanana.nii.gz",
+ "pseudo_label": "101373/2_2opagels16standard37025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101373/2_2opagels16standard37025120nanana/2_2opagels16standard37025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "101373/2_0opagelsqxstandard34025120nanana.nii.gz",
+ "pseudo_label": "101373/2_0opagelsqxstandard34025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101373/2_0opagelsqxstandard34025120nanana/2_0opagelsqxstandard34025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "101373/2_1opagels16standard37025120nanana.nii.gz",
+ "pseudo_label": "101373/2_1opagels16standard37025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101373/2_1opagels16standard37025120nanana/2_1opagels16standard37025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "104437/2_1opagelsqxstandard36725120640115.nii.gz",
+ "pseudo_label": "104437/2_1opagelsqxstandard36725120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104437/2_1opagelsqxstandard36725120640115/2_1opagelsqxstandard36725120640115_seg.nii.gz"
+ },
+ {
+ "image": "104437/2_2opagelsqxstandard36725120640115.nii.gz",
+ "pseudo_label": "104437/2_2opagelsqxstandard36725120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104437/2_2opagelsqxstandard36725120640115/2_2opagelsqxstandard36725120640115_seg.nii.gz"
+ },
+ {
+ "image": "104437/2_0opagelsqxstandard36025120640115.nii.gz",
+ "pseudo_label": "104437/2_0opagelsqxstandard36025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104437/2_0opagelsqxstandard36025120640115/2_0opagelsqxstandard36025120640115_seg.nii.gz"
+ },
+ {
+ "image": "104437/3_0opagelsqxbone36025120640115.nii.gz",
+ "pseudo_label": "104437/3_0opagelsqxbone36025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104437/3_0opagelsqxbone36025120640115/3_0opagelsqxbone36025120640115_seg.nii.gz"
+ },
+ {
+ "image": "104437/3_1opagelsqxbone36725120640115.nii.gz",
+ "pseudo_label": "104437/3_1opagelsqxbone36725120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104437/3_1opagelsqxbone36725120640115/3_1opagelsqxbone36725120640115_seg.nii.gz"
+ },
+ {
+ "image": "104437/3_2opagelsqxbone36725120640115.nii.gz",
+ "pseudo_label": "104437/3_2opagelsqxbone36725120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104437/3_2opagelsqxbone36725120640115/3_2opagelsqxbone36725120640115_seg.nii.gz"
+ },
+ {
+ "image": "112745/2_0opagelsplusstandard3302514040015.nii.gz",
+ "pseudo_label": "112745/2_0opagelsplusstandard3302514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112745/2_0opagelsplusstandard3302514040015/2_0opagelsplusstandard3302514040015_seg.nii.gz"
+ },
+ {
+ "image": "112745/2_1opagelsplusstandard3302514040015.nii.gz",
+ "pseudo_label": "112745/2_1opagelsplusstandard3302514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112745/2_1opagelsplusstandard3302514040015/2_1opagelsplusstandard3302514040015_seg.nii.gz"
+ },
+ {
+ "image": "112745/2_2opagelsplusstandard3502514040015.nii.gz",
+ "pseudo_label": "112745/2_2opagelsplusstandard3502514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112745/2_2opagelsplusstandard3502514040015/2_2opagelsplusstandard3502514040015_seg.nii.gz"
+ },
+ {
+ "image": "102402/2_2opagehsqxstandard31025120560115.nii.gz",
+ "pseudo_label": "102402/2_2opagehsqxstandard31025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102402/2_2opagehsqxstandard31025120560115/2_2opagehsqxstandard31025120560115_seg.nii.gz"
+ },
+ {
+ "image": "102402/3_2opagehsqxbone31025120560115.nii.gz",
+ "pseudo_label": "102402/3_2opagehsqxbone31025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102402/3_2opagehsqxbone31025120560115/3_2opagehsqxbone31025120560115_seg.nii.gz"
+ },
+ {
+ "image": "102402/2_0opagehsqxstandard31025120560115.nii.gz",
+ "pseudo_label": "102402/2_0opagehsqxstandard31025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102402/2_0opagehsqxstandard31025120560115/2_0opagehsqxstandard31025120560115_seg.nii.gz"
+ },
+ {
+ "image": "102402/2_1opagehsqxstandard31025120560115.nii.gz",
+ "pseudo_label": "102402/2_1opagehsqxstandard31025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102402/2_1opagehsqxstandard31025120560115/2_1opagehsqxstandard31025120560115_seg.nii.gz"
+ },
+ {
+ "image": "102402/3_1opagehsqxbone31025120560115.nii.gz",
+ "pseudo_label": "102402/3_1opagehsqxbone31025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102402/3_1opagehsqxbone31025120560115/3_1opagehsqxbone31025120560115_seg.nii.gz"
+ },
+ {
+ "image": "102402/3_0opagehsqxbone31025120560115.nii.gz",
+ "pseudo_label": "102402/3_0opagehsqxbone31025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102402/3_0opagehsqxbone31025120560115/3_0opagehsqxbone31025120560115_seg.nii.gz"
+ },
+ {
+ "image": "110595/2_2opagelsqxstandard3562514040015.nii.gz",
+ "pseudo_label": "110595/2_2opagelsqxstandard3562514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110595/2_2opagelsqxstandard3562514040015/2_2opagelsqxstandard3562514040015_seg.nii.gz"
+ },
+ {
+ "image": "110595/2_1opagels16standard3502514040014.nii.gz",
+ "pseudo_label": "110595/2_1opagels16standard3502514040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110595/2_1opagels16standard3502514040014/2_1opagels16standard3502514040014_seg.nii.gz"
+ },
+ {
+ "image": "110595/2_0opagelsplusstandard3472514040015.nii.gz",
+ "pseudo_label": "110595/2_0opagelsplusstandard3472514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110595/2_0opagelsplusstandard3472514040015/2_0opagelsplusstandard3472514040015_seg.nii.gz"
+ },
+ {
+ "image": "109389/3_2opagelspr16standard2732512040014.nii.gz",
+ "pseudo_label": "109389/3_2opagelspr16standard2732512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109389/3_2opagelspr16standard2732512040014/3_2opagelspr16standard2732512040014_seg.nii.gz"
+ },
+ {
+ "image": "109389/3_0opagelsqxstandard3122512048015.nii.gz",
+ "pseudo_label": "109389/3_0opagelsqxstandard3122512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109389/3_0opagelsqxstandard3122512048015/3_0opagelsqxstandard3122512048015_seg.nii.gz"
+ },
+ {
+ "image": "109389/2_1opagelspr16bone2902512040014.nii.gz",
+ "pseudo_label": "109389/2_1opagelspr16bone2902512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109389/2_1opagelspr16bone2902512040014/2_1opagelspr16bone2902512040014_seg.nii.gz"
+ },
+ {
+ "image": "109389/2_0opagelsqxbone3122512048015.nii.gz",
+ "pseudo_label": "109389/2_0opagelsqxbone3122512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109389/2_0opagelsqxbone3122512048015/2_0opagelsqxbone3122512048015_seg.nii.gz"
+ },
+ {
+ "image": "109389/2_2opagelspr16bone2732512040014.nii.gz",
+ "pseudo_label": "109389/2_2opagelspr16bone2732512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109389/2_2opagelspr16bone2732512040014/2_2opagelspr16bone2732512040014_seg.nii.gz"
+ },
+ {
+ "image": "109389/3_1opagelspr16standard2902512040014.nii.gz",
+ "pseudo_label": "109389/3_1opagelspr16standard2902512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109389/3_1opagelspr16standard2902512040014/3_1opagelspr16standard2902512040014_seg.nii.gz"
+ },
+ {
+ "image": "108455/2_0opagelsplusstandard3702514040015.nii.gz",
+ "pseudo_label": "108455/2_0opagelsplusstandard3702514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108455/2_0opagelsplusstandard3702514040015/2_0opagelsplusstandard3702514040015_seg.nii.gz"
+ },
+ {
+ "image": "108455/2_1opagelsqxstandard3692514040015.nii.gz",
+ "pseudo_label": "108455/2_1opagelsqxstandard3692514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108455/2_1opagelsqxstandard3692514040015/2_1opagelsqxstandard3692514040015_seg.nii.gz"
+ },
+ {
+ "image": "108455/2_2opagelsplusstandard37025140928nana.nii.gz",
+ "pseudo_label": "108455/2_2opagelsplusstandard37025140928nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108455/2_2opagelsplusstandard37025140928nana/2_2opagelsplusstandard37025140928nana_seg.nii.gz"
+ },
+ {
+ "image": "102342/2_0opagelsqxstandard3032514040015.nii.gz",
+ "pseudo_label": "102342/2_0opagelsqxstandard3032514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102342/2_0opagelsqxstandard3032514040015/2_0opagelsqxstandard3032514040015_seg.nii.gz"
+ },
+ {
+ "image": "102342/2_2opagelsqxstandard3402514040015.nii.gz",
+ "pseudo_label": "102342/2_2opagelsqxstandard3402514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102342/2_2opagelsqxstandard3402514040015/2_2opagelsqxstandard3402514040015_seg.nii.gz"
+ },
+ {
+ "image": "110107/2_0opagehsqxstandard32025120560115.nii.gz",
+ "pseudo_label": "110107/2_0opagehsqxstandard32025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110107/2_0opagehsqxstandard32025120560115/2_0opagehsqxstandard32025120560115_seg.nii.gz"
+ },
+ {
+ "image": "110107/3_0opagehsqxbone32025120560115.nii.gz",
+ "pseudo_label": "110107/3_0opagehsqxbone32025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110107/3_0opagehsqxbone32025120560115/3_0opagehsqxbone32025120560115_seg.nii.gz"
+ },
+ {
+ "image": "110107/3_1opagehsqxbone32025120560115.nii.gz",
+ "pseudo_label": "110107/3_1opagehsqxbone32025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110107/3_1opagehsqxbone32025120560115/3_1opagehsqxbone32025120560115_seg.nii.gz"
+ },
+ {
+ "image": "110107/2_1opagehsqxstandard32025120560115.nii.gz",
+ "pseudo_label": "110107/2_1opagehsqxstandard32025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110107/2_1opagehsqxstandard32025120560115/2_1opagehsqxstandard32025120560115_seg.nii.gz"
+ },
+ {
+ "image": "103832/2_1opagelsqxstandard37125140400na.nii.gz",
+ "pseudo_label": "103832/2_1opagelsqxstandard37125140400na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103832/2_1opagelsqxstandard37125140400na/2_1opagelsqxstandard37125140400na_seg.nii.gz"
+ },
+ {
+ "image": "103832/2_2opagelsqxstandard36025140400na.nii.gz",
+ "pseudo_label": "103832/2_2opagelsqxstandard36025140400na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103832/2_2opagelsqxstandard36025140400na/2_2opagelsqxstandard36025140400na_seg.nii.gz"
+ },
+ {
+ "image": "103832/2_0opagelsqxstandard34025140400na.nii.gz",
+ "pseudo_label": "103832/2_0opagelsqxstandard34025140400na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103832/2_0opagelsqxstandard34025140400na/2_0opagelsqxstandard34025140400na_seg.nii.gz"
+ },
+ {
+ "image": "112676/2_1opasevzoomb50f30821206030na.nii.gz",
+ "pseudo_label": "112676/2_1opasevzoomb50f30821206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112676/2_1opasevzoomb50f30821206030na/2_1opasevzoomb50f30821206030na_seg.nii.gz"
+ },
+ {
+ "image": "112676/3_0opasevzoomb30f29821208040na.nii.gz",
+ "pseudo_label": "112676/3_0opasevzoomb30f29821208040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112676/3_0opasevzoomb30f29821208040na/3_0opasevzoomb30f29821208040na_seg.nii.gz"
+ },
+ {
+ "image": "112676/2_0opasevzoomb50f29821208040na.nii.gz",
+ "pseudo_label": "112676/2_0opasevzoomb50f29821208040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112676/2_0opasevzoomb50f29821208040na/2_0opasevzoomb50f29821208040na_seg.nii.gz"
+ },
+ {
+ "image": "112676/3_1opasevzoomb30f30821206030na.nii.gz",
+ "pseudo_label": "112676/3_1opasevzoomb30f30821206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112676/3_1opasevzoomb30f30821206030na/3_1opasevzoomb30f30821206030na_seg.nii.gz"
+ },
+ {
+ "image": "107312/2_0opagelsqxstandard3602514040015.nii.gz",
+ "pseudo_label": "107312/2_0opagelsqxstandard3602514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107312/2_0opagelsqxstandard3602514040015/2_0opagelsqxstandard3602514040015_seg.nii.gz"
+ },
+ {
+ "image": "107312/2_2opagelsqxstandard3602514040015.nii.gz",
+ "pseudo_label": "107312/2_2opagelsqxstandard3602514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107312/2_2opagelsqxstandard3602514040015/2_2opagelsqxstandard3602514040015_seg.nii.gz"
+ },
+ {
+ "image": "100995/2_1opagels16bone38025120560114.nii.gz",
+ "pseudo_label": "100995/2_1opagels16bone38025120560114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100995/2_1opagels16bone38025120560114/2_1opagels16bone38025120560114_seg.nii.gz"
+ },
+ {
+ "image": "100995/3_2opagelspr16standard3802512048014.nii.gz",
+ "pseudo_label": "100995/3_2opagelspr16standard3802512048014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100995/3_2opagelspr16standard3802512048014/3_2opagelspr16standard3802512048014_seg.nii.gz"
+ },
+ {
+ "image": "100995/2_2opagelspr16bone3802512048014.nii.gz",
+ "pseudo_label": "100995/2_2opagelspr16bone3802512048014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100995/2_2opagelspr16bone3802512048014/2_2opagelspr16bone3802512048014_seg.nii.gz"
+ },
+ {
+ "image": "100995/3_1opagels16standard38025120560114.nii.gz",
+ "pseudo_label": "100995/3_1opagels16standard38025120560114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100995/3_1opagels16standard38025120560114/3_1opagels16standard38025120560114_seg.nii.gz"
+ },
+ {
+ "image": "104064/3_2opasevzoomb30f30351206030na.nii.gz",
+ "pseudo_label": "104064/3_2opasevzoomb30f30351206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104064/3_2opasevzoomb30f30351206030na/3_2opasevzoomb30f30351206030na_seg.nii.gz"
+ },
+ {
+ "image": "104064/4_2opasevzoomb50f30351206030na.nii.gz",
+ "pseudo_label": "104064/4_2opasevzoomb50f30351206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104064/4_2opasevzoomb50f30351206030na/4_2opasevzoomb50f30351206030na_seg.nii.gz"
+ },
+ {
+ "image": "104064/5_2opasevzoomb50f30321206030na.nii.gz",
+ "pseudo_label": "104064/5_2opasevzoomb50f30321206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104064/5_2opasevzoomb50f30321206030na/5_2opasevzoomb50f30321206030na_seg.nii.gz"
+ },
+ {
+ "image": "104064/4_1opasesen16b30f30021204530na.nii.gz",
+ "pseudo_label": "104064/4_1opasesen16b30f30021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104064/4_1opasesen16b30f30021204530na/4_1opasesen16b30f30021204530na_seg.nii.gz"
+ },
+ {
+ "image": "104064/5_1opasesen16b50f30051204530na.nii.gz",
+ "pseudo_label": "104064/5_1opasesen16b50f30051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104064/5_1opasesen16b50f30051204530na/5_1opasesen16b50f30051204530na_seg.nii.gz"
+ },
+ {
+ "image": "104064/5_0opasesen16b30f31621204530na.nii.gz",
+ "pseudo_label": "104064/5_0opasesen16b30f31621204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104064/5_0opasesen16b30f31621204530na/5_0opasesen16b30f31621204530na_seg.nii.gz"
+ },
+ {
+ "image": "104064/3_1opasesen16b30f30051204530na.nii.gz",
+ "pseudo_label": "104064/3_1opasesen16b30f30051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104064/3_1opasesen16b30f30051204530na/3_1opasesen16b30f30051204530na_seg.nii.gz"
+ },
+ {
+ "image": "104064/4_0opasesen16b30f31651204530na.nii.gz",
+ "pseudo_label": "104064/4_0opasesen16b30f31651204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104064/4_0opasesen16b30f31651204530na/4_0opasesen16b30f31651204530na_seg.nii.gz"
+ },
+ {
+ "image": "104064/7_0opasesen16b50f31621204530na.nii.gz",
+ "pseudo_label": "104064/7_0opasesen16b50f31621204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104064/7_0opasesen16b50f31621204530na/7_0opasesen16b50f31621204530na_seg.nii.gz"
+ },
+ {
+ "image": "104064/3_0opasesen16b30f31651204530na.nii.gz",
+ "pseudo_label": "104064/3_0opasesen16b30f31651204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104064/3_0opasesen16b30f31651204530na/3_0opasesen16b30f31651204530na_seg.nii.gz"
+ },
+ {
+ "image": "104064/6_0opasesen16b50f31651204530na.nii.gz",
+ "pseudo_label": "104064/6_0opasesen16b50f31651204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104064/6_0opasesen16b50f31651204530na/6_0opasesen16b50f31651204530na_seg.nii.gz"
+ },
+ {
+ "image": "103668/2_0opasevzoomb30f330214014070na.nii.gz",
+ "pseudo_label": "103668/2_0opasevzoomb30f330214014070na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103668/2_0opasevzoomb30f330214014070na/2_0opasevzoomb30f330214014070na_seg.nii.gz"
+ },
+ {
+ "image": "103668/3_2opasevzoomb50f35021208040na.nii.gz",
+ "pseudo_label": "103668/3_2opasevzoomb50f35021208040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103668/3_2opasevzoomb50f35021208040na/3_2opasevzoomb50f35021208040na_seg.nii.gz"
+ },
+ {
+ "image": "111544/2_0opagelsplusstandard37025140640115.nii.gz",
+ "pseudo_label": "111544/2_0opagelsplusstandard37025140640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111544/2_0opagelsplusstandard37025140640115/2_0opagelsplusstandard37025140640115_seg.nii.gz"
+ },
+ {
+ "image": "111544/2_1opagelsplusstandard3802514040015.nii.gz",
+ "pseudo_label": "111544/2_1opagelsplusstandard3802514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111544/2_1opagelsplusstandard3802514040015/2_1opagelsplusstandard3802514040015_seg.nii.gz"
+ },
+ {
+ "image": "100002/1_1opagelspluslung36025120800115.nii.gz",
+ "pseudo_label": "100002/1_1opagelspluslung36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100002/1_1opagelspluslung36025120800115/1_1opagelspluslung36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "100002/1_2opagelsplusstandard36025120800115.nii.gz",
+ "pseudo_label": "100002/1_2opagelsplusstandard36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100002/1_2opagelsplusstandard36025120800115/1_2opagelsplusstandard36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "100002/1_2opagelspluslung36025120800115.nii.gz",
+ "pseudo_label": "100002/1_2opagelspluslung36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100002/1_2opagelspluslung36025120800115/1_2opagelspluslung36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "100002/1_0opagelspluslung36025120800115.nii.gz",
+ "pseudo_label": "100002/1_0opagelspluslung36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100002/1_0opagelspluslung36025120800115/1_0opagelspluslung36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "104446/2_2opagelsplusstandard32025140854nana.nii.gz",
+ "pseudo_label": "104446/2_2opagelsplusstandard32025140854nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104446/2_2opagelsplusstandard32025140854nana/2_2opagelsplusstandard32025140854nana_seg.nii.gz"
+ },
+ {
+ "image": "104446/2_0opagelsplusstandard2962514040015.nii.gz",
+ "pseudo_label": "104446/2_0opagelsplusstandard2962514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104446/2_0opagelsplusstandard2962514040015/2_0opagelsplusstandard2962514040015_seg.nii.gz"
+ },
+ {
+ "image": "104446/2_1opagelsplusstandard27425140861nana.nii.gz",
+ "pseudo_label": "104446/2_1opagelsplusstandard27425140861nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104446/2_1opagelsplusstandard27425140861nana/2_1opagelsplusstandard27425140861nana_seg.nii.gz"
+ },
+ {
+ "image": "104278/2_2opagelsqxstandard35525120640115.nii.gz",
+ "pseudo_label": "104278/2_2opagelsqxstandard35525120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104278/2_2opagelsqxstandard35525120640115/2_2opagelsqxstandard35525120640115_seg.nii.gz"
+ },
+ {
+ "image": "104278/3_0opagelsqxbone33625120640115.nii.gz",
+ "pseudo_label": "104278/3_0opagelsqxbone33625120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104278/3_0opagelsqxbone33625120640115/3_0opagelsqxbone33625120640115_seg.nii.gz"
+ },
+ {
+ "image": "104278/3_1opagelsqxbone34525120640115.nii.gz",
+ "pseudo_label": "104278/3_1opagelsqxbone34525120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104278/3_1opagelsqxbone34525120640115/3_1opagelsqxbone34525120640115_seg.nii.gz"
+ },
+ {
+ "image": "104278/3_2opagelsqxbone35525120640115.nii.gz",
+ "pseudo_label": "104278/3_2opagelsqxbone35525120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104278/3_2opagelsqxbone35525120640115/3_2opagelsqxbone35525120640115_seg.nii.gz"
+ },
+ {
+ "image": "104278/2_1opagelsqxstandard34525120640115.nii.gz",
+ "pseudo_label": "104278/2_1opagelsqxstandard34525120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104278/2_1opagelsqxstandard34525120640115/2_1opagelsqxstandard34525120640115_seg.nii.gz"
+ },
+ {
+ "image": "104278/2_0opagelsqxstandard33625120640115.nii.gz",
+ "pseudo_label": "104278/2_0opagelsqxstandard33625120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104278/2_0opagelsqxstandard33625120640115/2_0opagelsqxstandard33625120640115_seg.nii.gz"
+ },
+ {
+ "image": "100159/2_0opagelsqxstandard3302512048015.nii.gz",
+ "pseudo_label": "100159/2_0opagelsqxstandard3302512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100159/2_0opagelsqxstandard3302512048015/2_0opagelsqxstandard3302512048015_seg.nii.gz"
+ },
+ {
+ "image": "100159/2_1opagels16standard32025120600114.nii.gz",
+ "pseudo_label": "100159/2_1opagels16standard32025120600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100159/2_1opagels16standard32025120600114/2_1opagels16standard32025120600114_seg.nii.gz"
+ },
+ {
+ "image": "106829/3_2opasevzoomb50f36021208040na.nii.gz",
+ "pseudo_label": "106829/3_2opasevzoomb50f36021208040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106829/3_2opasevzoomb50f36021208040na/3_2opasevzoomb50f36021208040na_seg.nii.gz"
+ },
+ {
+ "image": "111603/2_1opagels16bone28025120600114.nii.gz",
+ "pseudo_label": "111603/2_1opagels16bone28025120600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111603/2_1opagels16bone28025120600114/2_1opagels16bone28025120600114_seg.nii.gz"
+ },
+ {
+ "image": "111603/3_1opagels16standard28025120600114.nii.gz",
+ "pseudo_label": "111603/3_1opagels16standard28025120600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111603/3_1opagels16standard28025120600114/3_1opagels16standard28025120600114_seg.nii.gz"
+ },
+ {
+ "image": "111603/3_0opagels16standard28025120600114.nii.gz",
+ "pseudo_label": "111603/3_0opagels16standard28025120600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111603/3_0opagels16standard28025120600114/3_0opagels16standard28025120600114_seg.nii.gz"
+ },
+ {
+ "image": "102405/3_2opasesen16b30f34021204530na.nii.gz",
+ "pseudo_label": "102405/3_2opasesen16b30f34021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102405/3_2opasesen16b30f34021204530na/3_2opasesen16b30f34021204530na_seg.nii.gz"
+ },
+ {
+ "image": "102405/2_0opasevzoomb50f34021206030na.nii.gz",
+ "pseudo_label": "102405/2_0opasevzoomb50f34021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102405/2_0opasevzoomb50f34021206030na/2_0opasevzoomb50f34021206030na_seg.nii.gz"
+ },
+ {
+ "image": "102405/2_1opasevzoomb50f32021206030na.nii.gz",
+ "pseudo_label": "102405/2_1opasevzoomb50f32021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102405/2_1opasevzoomb50f32021206030na/2_1opasevzoomb50f32021206030na_seg.nii.gz"
+ },
+ {
+ "image": "106026/2_2opagels16bone30025120600114.nii.gz",
+ "pseudo_label": "106026/2_2opagels16bone30025120600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106026/2_2opagels16bone30025120600114/2_2opagels16bone30025120600114_seg.nii.gz"
+ },
+ {
+ "image": "106026/102_0osagels16standard30025120600114.nii.gz",
+ "pseudo_label": "106026/102_0osagels16standard30025120600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106026/102_0osagels16standard30025120600114/102_0osagels16standard30025120600114_seg.nii.gz"
+ },
+ {
+ "image": "104072/2_1opagehsqxstandard28025120560115.nii.gz",
+ "pseudo_label": "104072/2_1opagehsqxstandard28025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104072/2_1opagehsqxstandard28025120560115/2_1opagehsqxstandard28025120560115_seg.nii.gz"
+ },
+ {
+ "image": "104072/2_2opagehsqxstandard28025120560115.nii.gz",
+ "pseudo_label": "104072/2_2opagehsqxstandard28025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104072/2_2opagehsqxstandard28025120560115/2_2opagehsqxstandard28025120560115_seg.nii.gz"
+ },
+ {
+ "image": "104072/2_0opagehsqxstandard28025120640115.nii.gz",
+ "pseudo_label": "104072/2_0opagehsqxstandard28025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104072/2_0opagehsqxstandard28025120640115/2_0opagehsqxstandard28025120640115_seg.nii.gz"
+ },
+ {
+ "image": "107152/3_1opagehsqxbone33025120560115.nii.gz",
+ "pseudo_label": "107152/3_1opagehsqxbone33025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107152/3_1opagehsqxbone33025120560115/3_1opagehsqxbone33025120560115_seg.nii.gz"
+ },
+ {
+ "image": "107152/2_0opagehsqxstandard33025120560115.nii.gz",
+ "pseudo_label": "107152/2_0opagehsqxstandard33025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107152/2_0opagehsqxstandard33025120560115/2_0opagehsqxstandard33025120560115_seg.nii.gz"
+ },
+ {
+ "image": "107152/2_1opagehsqxstandard33025120560115.nii.gz",
+ "pseudo_label": "107152/2_1opagehsqxstandard33025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107152/2_1opagehsqxstandard33025120560115/2_1opagehsqxstandard33025120560115_seg.nii.gz"
+ },
+ {
+ "image": "107152/3_0opagehsqxbone33025120560115.nii.gz",
+ "pseudo_label": "107152/3_0opagehsqxbone33025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107152/3_0opagehsqxbone33025120560115/3_0opagehsqxbone33025120560115_seg.nii.gz"
+ },
+ {
+ "image": "107152/2_2opagehsqxstandard33025120560115.nii.gz",
+ "pseudo_label": "107152/2_2opagehsqxstandard33025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107152/2_2opagehsqxstandard33025120560115/2_2opagehsqxstandard33025120560115_seg.nii.gz"
+ },
+ {
+ "image": "110719/3_2opasevzoomb50f37021208040na.nii.gz",
+ "pseudo_label": "110719/3_2opasevzoomb50f37021208040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110719/3_2opasevzoomb50f37021208040na/3_2opasevzoomb50f37021208040na_seg.nii.gz"
+ },
+ {
+ "image": "104725/1_2opatoaqul4fc303809212080nana.nii.gz",
+ "pseudo_label": "104725/1_2opatoaqul4fc303809212080nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104725/1_2opatoaqul4fc303809212080nana/1_2opatoaqul4fc303809212080nana_seg.nii.gz"
+ },
+ {
+ "image": "104725/1_1opagelsplusstandard36025120800115.nii.gz",
+ "pseudo_label": "104725/1_1opagelsplusstandard36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104725/1_1opagelsplusstandard36025120800115/1_1opagelsplusstandard36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "104725/1_0opagelspluslung38025120800115.nii.gz",
+ "pseudo_label": "104725/1_0opagelspluslung38025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104725/1_0opagelspluslung38025120800115/1_0opagelspluslung38025120800115_seg.nii.gz"
+ },
+ {
+ "image": "104725/1_1opagelspluslung36025120800115.nii.gz",
+ "pseudo_label": "104725/1_1opagelspluslung36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104725/1_1opagelspluslung36025120800115/1_1opagelspluslung36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "104725/1_0opagelsplusstandard38025120800115.nii.gz",
+ "pseudo_label": "104725/1_0opagelsplusstandard38025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104725/1_0opagelsplusstandard38025120800115/1_0opagelsplusstandard38025120800115_seg.nii.gz"
+ },
+ {
+ "image": "103554/3_0opatoaqul4fc513398212060nana.nii.gz",
+ "pseudo_label": "103554/3_0opatoaqul4fc513398212060nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103554/3_0opatoaqul4fc513398212060nana/3_0opatoaqul4fc513398212060nana_seg.nii.gz"
+ },
+ {
+ "image": "101947/3_0opagelsqxstandard3302512048015.nii.gz",
+ "pseudo_label": "101947/3_0opagelsqxstandard3302512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101947/3_0opagelsqxstandard3302512048015/3_0opagelsqxstandard3302512048015_seg.nii.gz"
+ },
+ {
+ "image": "101947/2_0opagelsqxbone3302512048015.nii.gz",
+ "pseudo_label": "101947/2_0opagelsqxbone3302512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101947/2_0opagelsqxbone3302512048015/2_0opagelsqxbone3302512048015_seg.nii.gz"
+ },
+ {
+ "image": "101947/3_2opagelspr16standard3202512048014.nii.gz",
+ "pseudo_label": "101947/3_2opagelspr16standard3202512048014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101947/3_2opagelspr16standard3202512048014/3_2opagelspr16standard3202512048014_seg.nii.gz"
+ },
+ {
+ "image": "101947/2_2opagelspr16bone3202512048014.nii.gz",
+ "pseudo_label": "101947/2_2opagelspr16bone3202512048014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101947/2_2opagelspr16bone3202512048014/2_2opagelspr16bone3202512048014_seg.nii.gz"
+ },
+ {
+ "image": "101947/2_1opagels16bone3402512000na.nii.gz",
+ "pseudo_label": "101947/2_1opagels16bone3402512000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101947/2_1opagels16bone3402512000na/2_1opagels16bone3402512000na_seg.nii.gz"
+ },
+ {
+ "image": "101947/3_1opagels16standard3402512000na.nii.gz",
+ "pseudo_label": "101947/3_1opagels16standard3402512000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101947/3_1opagels16standard3402512000na/3_1opagels16standard3402512000na_seg.nii.gz"
+ },
+ {
+ "image": "108367/3_0opagelsqxbone37625120640115.nii.gz",
+ "pseudo_label": "108367/3_0opagelsqxbone37625120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108367/3_0opagelsqxbone37625120640115/3_0opagelsqxbone37625120640115_seg.nii.gz"
+ },
+ {
+ "image": "108367/2_0opagelsqxstandard37625120640115.nii.gz",
+ "pseudo_label": "108367/2_0opagelsqxstandard37625120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108367/2_0opagelsqxstandard37625120640115/2_0opagelsqxstandard37625120640115_seg.nii.gz"
+ },
+ {
+ "image": "108367/4_1opagelsqxstandard36025120640115.nii.gz",
+ "pseudo_label": "108367/4_1opagelsqxstandard36025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108367/4_1opagelsqxstandard36025120640115/4_1opagelsqxstandard36025120640115_seg.nii.gz"
+ },
+ {
+ "image": "108367/2_1opagelsqxstandard36025120640115.nii.gz",
+ "pseudo_label": "108367/2_1opagelsqxstandard36025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108367/2_1opagelsqxstandard36025120640115/2_1opagelsqxstandard36025120640115_seg.nii.gz"
+ },
+ {
+ "image": "108367/5_1opagelsqxbone36025120640115.nii.gz",
+ "pseudo_label": "108367/5_1opagelsqxbone36025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108367/5_1opagelsqxbone36025120640115/5_1opagelsqxbone36025120640115_seg.nii.gz"
+ },
+ {
+ "image": "108367/3_1opagelsqxbone36025120640115.nii.gz",
+ "pseudo_label": "108367/3_1opagelsqxbone36025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108367/3_1opagelsqxbone36025120640115/3_1opagelsqxbone36025120640115_seg.nii.gz"
+ },
+ {
+ "image": "108367/2_2opagelsqxstandard39325120640115.nii.gz",
+ "pseudo_label": "108367/2_2opagelsqxstandard39325120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108367/2_2opagelsqxstandard39325120640115/2_2opagelsqxstandard39325120640115_seg.nii.gz"
+ },
+ {
+ "image": "109947/2_0opagelsqxstandard41325120640115.nii.gz",
+ "pseudo_label": "109947/2_0opagelsqxstandard41325120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109947/2_0opagelsqxstandard41325120640115/2_0opagelsqxstandard41325120640115_seg.nii.gz"
+ },
+ {
+ "image": "109947/2_2opagelsqxstandard39125120640115.nii.gz",
+ "pseudo_label": "109947/2_2opagelsqxstandard39125120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109947/2_2opagelsqxstandard39125120640115/2_2opagelsqxstandard39125120640115_seg.nii.gz"
+ },
+ {
+ "image": "105378/2_0opagelsqxbone3532512048015.nii.gz",
+ "pseudo_label": "105378/2_0opagelsqxbone3532512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105378/2_0opagelsqxbone3532512048015/2_0opagelsqxbone3532512048015_seg.nii.gz"
+ },
+ {
+ "image": "105378/2_1opagels16bone3352512048014.nii.gz",
+ "pseudo_label": "105378/2_1opagels16bone3352512048014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105378/2_1opagels16bone3352512048014/2_1opagels16bone3352512048014_seg.nii.gz"
+ },
+ {
+ "image": "105378/3_1opagels16standard3352512048014.nii.gz",
+ "pseudo_label": "105378/3_1opagels16standard3352512048014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105378/3_1opagels16standard3352512048014/3_1opagels16standard3352512048014_seg.nii.gz"
+ },
+ {
+ "image": "105378/3_2opagelspr16standard3202512048014.nii.gz",
+ "pseudo_label": "105378/3_2opagelspr16standard3202512048014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105378/3_2opagelspr16standard3202512048014/3_2opagelspr16standard3202512048014_seg.nii.gz"
+ },
+ {
+ "image": "105378/2_2opagelspr16bone3202512048014.nii.gz",
+ "pseudo_label": "105378/2_2opagelspr16bone3202512048014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105378/2_2opagelspr16bone3202512048014/2_2opagelspr16bone3202512048014_seg.nii.gz"
+ },
+ {
+ "image": "105378/3_0opagelsqxstandard3532512048015.nii.gz",
+ "pseudo_label": "105378/3_0opagelsqxstandard3532512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105378/3_0opagelsqxstandard3532512048015/3_0opagelsqxstandard3532512048015_seg.nii.gz"
+ },
+ {
+ "image": "112075/2_2opagehsqxstandard32025120560115.nii.gz",
+ "pseudo_label": "112075/2_2opagehsqxstandard32025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112075/2_2opagehsqxstandard32025120560115/2_2opagehsqxstandard32025120560115_seg.nii.gz"
+ },
+ {
+ "image": "112075/2_0opagehsqxstandard32025120560115.nii.gz",
+ "pseudo_label": "112075/2_0opagehsqxstandard32025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112075/2_0opagehsqxstandard32025120560115/2_0opagehsqxstandard32025120560115_seg.nii.gz"
+ },
+ {
+ "image": "112075/3_0opagehsqxbone32025120560115.nii.gz",
+ "pseudo_label": "112075/3_0opagehsqxbone32025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112075/3_0opagehsqxbone32025120560115/3_0opagehsqxbone32025120560115_seg.nii.gz"
+ },
+ {
+ "image": "111137/2_2opagelsqxstandard36025120640115.nii.gz",
+ "pseudo_label": "111137/2_2opagelsqxstandard36025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111137/2_2opagelsqxstandard36025120640115/2_2opagelsqxstandard36025120640115_seg.nii.gz"
+ },
+ {
+ "image": "111137/3_1opagelsqxbone35225120640115.nii.gz",
+ "pseudo_label": "111137/3_1opagelsqxbone35225120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111137/3_1opagelsqxbone35225120640115/3_1opagelsqxbone35225120640115_seg.nii.gz"
+ },
+ {
+ "image": "111137/2_1opagelsqxstandard35225120640115.nii.gz",
+ "pseudo_label": "111137/2_1opagelsqxstandard35225120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111137/2_1opagelsqxstandard35225120640115/2_1opagelsqxstandard35225120640115_seg.nii.gz"
+ },
+ {
+ "image": "111137/3_2opagelsqxbone36025120640115.nii.gz",
+ "pseudo_label": "111137/3_2opagelsqxbone36025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111137/3_2opagelsqxbone36025120640115/3_2opagelsqxbone36025120640115_seg.nii.gz"
+ },
+ {
+ "image": "111137/2_0opagelsqxstandard35025120640115.nii.gz",
+ "pseudo_label": "111137/2_0opagelsqxstandard35025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111137/2_0opagelsqxstandard35025120640115/2_0opagelsqxstandard35025120640115_seg.nii.gz"
+ },
+ {
+ "image": "111137/3_0opagelsqxbone35025120640115.nii.gz",
+ "pseudo_label": "111137/3_0opagelsqxbone35025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111137/3_0opagelsqxbone35025120640115/3_0opagelsqxbone35025120640115_seg.nii.gz"
+ },
+ {
+ "image": "107084/3_0opagelsqxbone30625120720115.nii.gz",
+ "pseudo_label": "107084/3_0opagelsqxbone30625120720115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107084/3_0opagelsqxbone30625120720115/3_0opagelsqxbone30625120720115_seg.nii.gz"
+ },
+ {
+ "image": "107084/2_2opagelsqxstandard32025120720115.nii.gz",
+ "pseudo_label": "107084/2_2opagelsqxstandard32025120720115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107084/2_2opagelsqxstandard32025120720115/2_2opagelsqxstandard32025120720115_seg.nii.gz"
+ },
+ {
+ "image": "107084/3_1opagelsqxbone31825120720115.nii.gz",
+ "pseudo_label": "107084/3_1opagelsqxbone31825120720115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107084/3_1opagelsqxbone31825120720115/3_1opagelsqxbone31825120720115_seg.nii.gz"
+ },
+ {
+ "image": "107084/3_2opagelsqxbone32225120720115.nii.gz",
+ "pseudo_label": "107084/3_2opagelsqxbone32225120720115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107084/3_2opagelsqxbone32225120720115/3_2opagelsqxbone32225120720115_seg.nii.gz"
+ },
+ {
+ "image": "107084/2_0opagelsqxstandard30625120720115.nii.gz",
+ "pseudo_label": "107084/2_0opagelsqxstandard30625120720115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107084/2_0opagelsqxstandard30625120720115/2_0opagelsqxstandard30625120720115_seg.nii.gz"
+ },
+ {
+ "image": "107084/2_1opagelsqxstandard31825120720115.nii.gz",
+ "pseudo_label": "107084/2_1opagelsqxstandard31825120720115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107084/2_1opagelsqxstandard31825120720115/2_1opagelsqxstandard31825120720115_seg.nii.gz"
+ },
+ {
+ "image": "105811/3_0opatoaqul4fc512812212040nana.nii.gz",
+ "pseudo_label": "105811/3_0opatoaqul4fc512812212040nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105811/3_0opatoaqul4fc512812212040nana/3_0opatoaqul4fc512812212040nana_seg.nii.gz"
+ },
+ {
+ "image": "105811/3_1opatoaqul4fc512844212050nana.nii.gz",
+ "pseudo_label": "105811/3_1opatoaqul4fc512844212050nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105811/3_1opatoaqul4fc512844212050nana/3_1opatoaqul4fc512844212050nana_seg.nii.gz"
+ },
+ {
+ "image": "102578/2_2opagelsqxstandard36025120640115.nii.gz",
+ "pseudo_label": "102578/2_2opagelsqxstandard36025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102578/2_2opagelsqxstandard36025120640115/2_2opagelsqxstandard36025120640115_seg.nii.gz"
+ },
+ {
+ "image": "102578/3_2opagelsqxbone36025120640115.nii.gz",
+ "pseudo_label": "102578/3_2opagelsqxbone36025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102578/3_2opagelsqxbone36025120640115/3_2opagelsqxbone36025120640115_seg.nii.gz"
+ },
+ {
+ "image": "102578/2_1opagelsqxstandard35125120640115.nii.gz",
+ "pseudo_label": "102578/2_1opagelsqxstandard35125120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102578/2_1opagelsqxstandard35125120640115/2_1opagelsqxstandard35125120640115_seg.nii.gz"
+ },
+ {
+ "image": "102578/3_0opagelsqxbone35425120560115.nii.gz",
+ "pseudo_label": "102578/3_0opagelsqxbone35425120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102578/3_0opagelsqxbone35425120560115/3_0opagelsqxbone35425120560115_seg.nii.gz"
+ },
+ {
+ "image": "102578/2_0opagelsqxstandard35425120560115.nii.gz",
+ "pseudo_label": "102578/2_0opagelsqxstandard35425120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102578/2_0opagelsqxstandard35425120560115/2_0opagelsqxstandard35425120560115_seg.nii.gz"
+ },
+ {
+ "image": "107686/3_0opasevzoomb30f32021206030na.nii.gz",
+ "pseudo_label": "107686/3_0opasevzoomb30f32021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107686/3_0opasevzoomb30f32021206030na/3_0opasevzoomb30f32021206030na_seg.nii.gz"
+ },
+ {
+ "image": "107686/3_2opasesen16b30f31021204530na.nii.gz",
+ "pseudo_label": "107686/3_2opasesen16b30f31021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107686/3_2opasesen16b30f31021204530na/3_2opasesen16b30f31021204530na_seg.nii.gz"
+ },
+ {
+ "image": "107686/2_2opasesen16b50f31021204530na.nii.gz",
+ "pseudo_label": "107686/2_2opasesen16b50f31021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107686/2_2opasesen16b50f31021204530na/2_2opasesen16b50f31021204530na_seg.nii.gz"
+ },
+ {
+ "image": "100225/2075_2opaphmx8000c34832120453612.nii.gz",
+ "pseudo_label": "100225/2075_2opaphmx8000c34832120453612.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100225/2075_2opaphmx8000c34832120453612/2075_2opaphmx8000c34832120453612_seg.nii.gz"
+ },
+ {
+ "image": "108263/2_2opagelsplusstandard3202514040015.nii.gz",
+ "pseudo_label": "108263/2_2opagelsplusstandard3202514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108263/2_2opagelsplusstandard3202514040015/2_2opagelsplusstandard3202514040015_seg.nii.gz"
+ },
+ {
+ "image": "108263/2_0opagelsplusstandard3202514040015.nii.gz",
+ "pseudo_label": "108263/2_0opagelsplusstandard3202514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108263/2_0opagelsplusstandard3202514040015/2_0opagelsplusstandard3202514040015_seg.nii.gz"
+ },
+ {
+ "image": "110439/5_0opasevzoomb50f29021206030na.nii.gz",
+ "pseudo_label": "110439/5_0opasevzoomb50f29021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110439/5_0opasevzoomb50f29021206030na/5_0opasevzoomb50f29021206030na_seg.nii.gz"
+ },
+ {
+ "image": "110439/2_1opasesen16b50f30021204530na.nii.gz",
+ "pseudo_label": "110439/2_1opasesen16b50f30021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110439/2_1opasesen16b50f30021204530na/2_1opasesen16b50f30021204530na_seg.nii.gz"
+ },
+ {
+ "image": "104752/2_1opagelsqxstandard3212512048015.nii.gz",
+ "pseudo_label": "104752/2_1opagelsqxstandard3212512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104752/2_1opagelsqxstandard3212512048015/2_1opagelsqxstandard3212512048015_seg.nii.gz"
+ },
+ {
+ "image": "110396/5_2opasevzoomb50f29421206030na.nii.gz",
+ "pseudo_label": "110396/5_2opasevzoomb50f29421206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110396/5_2opasevzoomb50f29421206030na/5_2opasevzoomb50f29421206030na_seg.nii.gz"
+ },
+ {
+ "image": "110396/6_0opasesen16b30f34421204530na.nii.gz",
+ "pseudo_label": "110396/6_0opasesen16b30f34421204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110396/6_0opasesen16b30f34421204530na/6_0opasesen16b30f34421204530na_seg.nii.gz"
+ },
+ {
+ "image": "110396/3_0opasesen16b30f34451204530na.nii.gz",
+ "pseudo_label": "110396/3_0opasesen16b30f34451204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110396/3_0opasesen16b30f34451204530na/3_0opasesen16b30f34451204530na_seg.nii.gz"
+ },
+ {
+ "image": "110396/6_1opasevzoomb30f34021206030na.nii.gz",
+ "pseudo_label": "110396/6_1opasevzoomb30f34021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110396/6_1opasevzoomb30f34021206030na/6_1opasevzoomb30f34021206030na_seg.nii.gz"
+ },
+ {
+ "image": "110396/4_2opasevzoomb50f29451206030na.nii.gz",
+ "pseudo_label": "110396/4_2opasevzoomb50f29451206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110396/4_2opasevzoomb50f29451206030na/4_2opasevzoomb50f29451206030na_seg.nii.gz"
+ },
+ {
+ "image": "110396/3_2opasevzoomb30f29451206030na.nii.gz",
+ "pseudo_label": "110396/3_2opasevzoomb30f29451206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110396/3_2opasevzoomb30f29451206030na/3_2opasevzoomb30f29451206030na_seg.nii.gz"
+ },
+ {
+ "image": "110396/3_1opasevzoomb30f34051206030na.nii.gz",
+ "pseudo_label": "110396/3_1opasevzoomb30f34051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110396/3_1opasevzoomb30f34051206030na/3_1opasevzoomb30f34051206030na_seg.nii.gz"
+ },
+ {
+ "image": "110396/4_0opasesen16b50f34451204530na.nii.gz",
+ "pseudo_label": "110396/4_0opasesen16b50f34451204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110396/4_0opasesen16b50f34451204530na/4_0opasesen16b50f34451204530na_seg.nii.gz"
+ },
+ {
+ "image": "110396/4_1opasevzoomb50f34051206030na.nii.gz",
+ "pseudo_label": "110396/4_1opasevzoomb50f34051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110396/4_1opasevzoomb50f34051206030na/4_1opasevzoomb50f34051206030na_seg.nii.gz"
+ },
+ {
+ "image": "110844/2_0opasevzoomb30f370214016080na.nii.gz",
+ "pseudo_label": "110844/2_0opasevzoomb30f370214016080na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110844/2_0opasevzoomb30f370214016080na/2_0opasevzoomb30f370214016080na_seg.nii.gz"
+ },
+ {
+ "image": "107467/2_2opasesen16b30f30221204032na.nii.gz",
+ "pseudo_label": "107467/2_2opasesen16b30f30221204032na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107467/2_2opasesen16b30f30221204032na/2_2opasesen16b30f30221204032na_seg.nii.gz"
+ },
+ {
+ "image": "110789/2_0opagelsqxstandard32425120640115.nii.gz",
+ "pseudo_label": "110789/2_0opagelsqxstandard32425120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110789/2_0opagelsqxstandard32425120640115/2_0opagelsqxstandard32425120640115_seg.nii.gz"
+ },
+ {
+ "image": "110789/2_2opagelsqxstandard32325120640115.nii.gz",
+ "pseudo_label": "110789/2_2opagelsqxstandard32325120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110789/2_2opagelsqxstandard32325120640115/2_2opagelsqxstandard32325120640115_seg.nii.gz"
+ },
+ {
+ "image": "110789/3_2opagelsqxbone32325120640115.nii.gz",
+ "pseudo_label": "110789/3_2opagelsqxbone32325120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110789/3_2opagelsqxbone32325120640115/3_2opagelsqxbone32325120640115_seg.nii.gz"
+ },
+ {
+ "image": "110789/2_1opagelsqxstandard32325120720115.nii.gz",
+ "pseudo_label": "110789/2_1opagelsqxstandard32325120720115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110789/2_1opagelsqxstandard32325120720115/2_1opagelsqxstandard32325120720115_seg.nii.gz"
+ },
+ {
+ "image": "110789/3_1opagelsqxbone32325120720115.nii.gz",
+ "pseudo_label": "110789/3_1opagelsqxbone32325120720115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110789/3_1opagelsqxbone32325120720115/3_1opagelsqxbone32325120720115_seg.nii.gz"
+ },
+ {
+ "image": "107967/3_1opasevzoomb50f34021207540na.nii.gz",
+ "pseudo_label": "107967/3_1opasevzoomb50f34021207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107967/3_1opasevzoomb50f34021207540na/3_1opasevzoomb50f34021207540na_seg.nii.gz"
+ },
+ {
+ "image": "107967/2_0opasevzoomb30f340212010560na.nii.gz",
+ "pseudo_label": "107967/2_0opasevzoomb30f340212010560na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107967/2_0opasevzoomb30f340212010560na/2_0opasevzoomb30f340212010560na_seg.nii.gz"
+ },
+ {
+ "image": "107967/3_0opasevzoomb50f340212010560na.nii.gz",
+ "pseudo_label": "107967/3_0opasevzoomb50f340212010560na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107967/3_0opasevzoomb50f340212010560na/3_0opasevzoomb50f340212010560na_seg.nii.gz"
+ },
+ {
+ "image": "107967/2_2opasevzoomb30f37221207540na.nii.gz",
+ "pseudo_label": "107967/2_2opasevzoomb30f37221207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107967/2_2opasevzoomb30f37221207540na/2_2opasevzoomb30f37221207540na_seg.nii.gz"
+ },
+ {
+ "image": "108611/2_0opagelsqxstandard34025120500115.nii.gz",
+ "pseudo_label": "108611/2_0opagelsqxstandard34025120500115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108611/2_0opagelsqxstandard34025120500115/2_0opagelsqxstandard34025120500115_seg.nii.gz"
+ },
+ {
+ "image": "107830/2_0opagelsqxstandard3302512048015.nii.gz",
+ "pseudo_label": "107830/2_0opagelsqxstandard3302512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107830/2_0opagelsqxstandard3302512048015/2_0opagelsqxstandard3302512048015_seg.nii.gz"
+ },
+ {
+ "image": "107830/2_1opagelsqxstandard3202512048015.nii.gz",
+ "pseudo_label": "107830/2_1opagelsqxstandard3202512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107830/2_1opagelsqxstandard3202512048015/2_1opagelsqxstandard3202512048015_seg.nii.gz"
+ },
+ {
+ "image": "107889/3_1opasevzoomb50f35021206030na.nii.gz",
+ "pseudo_label": "107889/3_1opasevzoomb50f35021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107889/3_1opasevzoomb50f35021206030na/3_1opasevzoomb50f35021206030na_seg.nii.gz"
+ },
+ {
+ "image": "107889/4_2opasevzoomb50f36051206030na.nii.gz",
+ "pseudo_label": "107889/4_2opasevzoomb50f36051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107889/4_2opasevzoomb50f36051206030na/4_2opasevzoomb50f36051206030na_seg.nii.gz"
+ },
+ {
+ "image": "107889/6_2opasevzoomb30f36021206030na.nii.gz",
+ "pseudo_label": "107889/6_2opasevzoomb30f36021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107889/6_2opasevzoomb30f36021206030na/6_2opasevzoomb30f36021206030na_seg.nii.gz"
+ },
+ {
+ "image": "107889/5_0opasevzoomb30f38051206030na.nii.gz",
+ "pseudo_label": "107889/5_0opasevzoomb30f38051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107889/5_0opasevzoomb30f38051206030na/5_0opasevzoomb30f38051206030na_seg.nii.gz"
+ },
+ {
+ "image": "107889/4_1opasevzoomb50f35051206030na.nii.gz",
+ "pseudo_label": "107889/4_1opasevzoomb50f35051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107889/4_1opasevzoomb50f35051206030na/4_1opasevzoomb50f35051206030na_seg.nii.gz"
+ },
+ {
+ "image": "107889/6_1opasevzoomb30f35021206030na.nii.gz",
+ "pseudo_label": "107889/6_1opasevzoomb30f35021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107889/6_1opasevzoomb30f35021206030na/6_1opasevzoomb30f35021206030na_seg.nii.gz"
+ },
+ {
+ "image": "107889/5_2opasevzoomb30f36051206030na.nii.gz",
+ "pseudo_label": "107889/5_2opasevzoomb30f36051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107889/5_2opasevzoomb30f36051206030na/5_2opasevzoomb30f36051206030na_seg.nii.gz"
+ },
+ {
+ "image": "107889/5_1opasevzoomb30f35051206030na.nii.gz",
+ "pseudo_label": "107889/5_1opasevzoomb30f35051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107889/5_1opasevzoomb30f35051206030na/5_1opasevzoomb30f35051206030na_seg.nii.gz"
+ },
+ {
+ "image": "107889/3_2opasevzoomb50f36021206030na.nii.gz",
+ "pseudo_label": "107889/3_2opasevzoomb50f36021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107889/3_2opasevzoomb50f36021206030na/3_2opasevzoomb50f36021206030na_seg.nii.gz"
+ },
+ {
+ "image": "101561/7_1opasevzoomb30f29021206030na.nii.gz",
+ "pseudo_label": "101561/7_1opasevzoomb30f29021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101561/7_1opasevzoomb30f29021206030na/7_1opasevzoomb30f29021206030na_seg.nii.gz"
+ },
+ {
+ "image": "101561/2_2opasesen16b50f30021204530na.nii.gz",
+ "pseudo_label": "101561/2_2opasesen16b50f30021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101561/2_2opasesen16b50f30021204530na/2_2opasesen16b50f30021204530na_seg.nii.gz"
+ },
+ {
+ "image": "112558/5_2opasevzoomb50f31721206030na.nii.gz",
+ "pseudo_label": "112558/5_2opasevzoomb50f31721206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112558/5_2opasevzoomb50f31721206030na/5_2opasevzoomb50f31721206030na_seg.nii.gz"
+ },
+ {
+ "image": "112558/4_2opasevzoomb50f31751206030na.nii.gz",
+ "pseudo_label": "112558/4_2opasevzoomb50f31751206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112558/4_2opasevzoomb50f31751206030na/4_2opasevzoomb50f31751206030na_seg.nii.gz"
+ },
+ {
+ "image": "112558/6_1opasesen16b50f30021204530na.nii.gz",
+ "pseudo_label": "112558/6_1opasesen16b50f30021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112558/6_1opasesen16b50f30021204530na/6_1opasesen16b50f30021204530na_seg.nii.gz"
+ },
+ {
+ "image": "112558/3_2opasevzoomb30f31751206030na.nii.gz",
+ "pseudo_label": "112558/3_2opasevzoomb30f31751206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112558/3_2opasevzoomb30f31751206030na/3_2opasevzoomb30f31751206030na_seg.nii.gz"
+ },
+ {
+ "image": "112558/3_0opasesen16b30f33451206040na.nii.gz",
+ "pseudo_label": "112558/3_0opasesen16b30f33451206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112558/3_0opasesen16b30f33451206040na/3_0opasesen16b30f33451206040na_seg.nii.gz"
+ },
+ {
+ "image": "112558/4_0opasesen16b50f33451206040na.nii.gz",
+ "pseudo_label": "112558/4_0opasesen16b50f33451206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112558/4_0opasesen16b50f33451206040na/4_0opasesen16b50f33451206040na_seg.nii.gz"
+ },
+ {
+ "image": "112558/4_1opasesen16b30f30021204530na.nii.gz",
+ "pseudo_label": "112558/4_1opasesen16b30f30021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112558/4_1opasesen16b30f30021204530na/4_1opasesen16b30f30021204530na_seg.nii.gz"
+ },
+ {
+ "image": "112558/5_1opasesen16b50f30051204530na.nii.gz",
+ "pseudo_label": "112558/5_1opasesen16b50f30051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112558/5_1opasesen16b50f30051204530na/5_1opasesen16b50f30051204530na_seg.nii.gz"
+ },
+ {
+ "image": "112558/3_1opasesen16b30f30051204530na.nii.gz",
+ "pseudo_label": "112558/3_1opasesen16b30f30051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112558/3_1opasesen16b30f30051204530na/3_1opasesen16b30f30051204530na_seg.nii.gz"
+ },
+ {
+ "image": "104487/2_1opasesen16b30f27221204032na.nii.gz",
+ "pseudo_label": "104487/2_1opasesen16b30f27221204032na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104487/2_1opasesen16b30f27221204032na/2_1opasesen16b30f27221204032na_seg.nii.gz"
+ },
+ {
+ "image": "104487/2_0opasesen16b30f27221204032na.nii.gz",
+ "pseudo_label": "104487/2_0opasesen16b30f27221204032na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104487/2_0opasesen16b30f27221204032na/2_0opasesen16b30f27221204032na_seg.nii.gz"
+ },
+ {
+ "image": "109548/4_0opatoaqul4fc513203212040nana.nii.gz",
+ "pseudo_label": "109548/4_0opatoaqul4fc513203212040nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109548/4_0opatoaqul4fc513203212040nana/4_0opatoaqul4fc513203212040nana_seg.nii.gz"
+ },
+ {
+ "image": "109548/3_2opatoaqul4fc513125212040nana.nii.gz",
+ "pseudo_label": "109548/3_2opatoaqul4fc513125212040nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109548/3_2opatoaqul4fc513125212040nana/3_2opatoaqul4fc513125212040nana_seg.nii.gz"
+ },
+ {
+ "image": "109548/3_1opatoaqul4fc513223212060nana.nii.gz",
+ "pseudo_label": "109548/3_1opatoaqul4fc513223212060nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109548/3_1opatoaqul4fc513223212060nana/3_1opatoaqul4fc513223212060nana_seg.nii.gz"
+ },
+ {
+ "image": "108676/1_1opagelsplusstandard36025120800115.nii.gz",
+ "pseudo_label": "108676/1_1opagelsplusstandard36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108676/1_1opagelsplusstandard36025120800115/1_1opagelsplusstandard36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "108676/1_1opagelspluslung36025120800115.nii.gz",
+ "pseudo_label": "108676/1_1opagelspluslung36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108676/1_1opagelspluslung36025120800115/1_1opagelspluslung36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "108676/1_0opagelsplusstandard36025120800115.nii.gz",
+ "pseudo_label": "108676/1_0opagelsplusstandard36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108676/1_0opagelsplusstandard36025120800115/1_0opagelsplusstandard36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "108676/1_2opagelsplusstandard36025120800115.nii.gz",
+ "pseudo_label": "108676/1_2opagelsplusstandard36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108676/1_2opagelsplusstandard36025120800115/1_2opagelsplusstandard36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "108676/1_2opagelspluslung36025120800115.nii.gz",
+ "pseudo_label": "108676/1_2opagelspluslung36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108676/1_2opagelspluslung36025120800115/1_2opagelspluslung36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "108676/1_0opagelspluslung36025120800115.nii.gz",
+ "pseudo_label": "108676/1_0opagelspluslung36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108676/1_0opagelspluslung36025120800115/1_0opagelspluslung36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "104528/3_2opasevzoomb50f31021207540na.nii.gz",
+ "pseudo_label": "104528/3_2opasevzoomb50f31021207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104528/3_2opasevzoomb50f31021207540na/3_2opasevzoomb50f31021207540na_seg.nii.gz"
+ },
+ {
+ "image": "104528/2_1opasevzoomb30f29421207540na.nii.gz",
+ "pseudo_label": "104528/2_1opasevzoomb30f29421207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104528/2_1opasevzoomb30f29421207540na/2_1opasevzoomb30f29421207540na_seg.nii.gz"
+ },
+ {
+ "image": "104528/3_1opasevzoomb50f29421207540na.nii.gz",
+ "pseudo_label": "104528/3_1opasevzoomb50f29421207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104528/3_1opasevzoomb50f29421207540na/3_1opasevzoomb50f29421207540na_seg.nii.gz"
+ },
+ {
+ "image": "106023/2_0opagelsqxstandard31025120560115.nii.gz",
+ "pseudo_label": "106023/2_0opagelsqxstandard31025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106023/2_0opagelsqxstandard31025120560115/2_0opagelsqxstandard31025120560115_seg.nii.gz"
+ },
+ {
+ "image": "106023/3_0opagelsqxbone31025120560115.nii.gz",
+ "pseudo_label": "106023/3_0opagelsqxbone31025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106023/3_0opagelsqxbone31025120560115/3_0opagelsqxbone31025120560115_seg.nii.gz"
+ },
+ {
+ "image": "108368/3_0opagehsqxbone32025120640115.nii.gz",
+ "pseudo_label": "108368/3_0opagehsqxbone32025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108368/3_0opagehsqxbone32025120640115/3_0opagehsqxbone32025120640115_seg.nii.gz"
+ },
+ {
+ "image": "108368/2_2opagehsqxstandard34025120560115.nii.gz",
+ "pseudo_label": "108368/2_2opagehsqxstandard34025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108368/2_2opagehsqxstandard34025120560115/2_2opagehsqxstandard34025120560115_seg.nii.gz"
+ },
+ {
+ "image": "108368/3_1opagehsqxbone32025120560115.nii.gz",
+ "pseudo_label": "108368/3_1opagehsqxbone32025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108368/3_1opagehsqxbone32025120560115/3_1opagehsqxbone32025120560115_seg.nii.gz"
+ },
+ {
+ "image": "108368/2_1opagehsqxstandard32025120560115.nii.gz",
+ "pseudo_label": "108368/2_1opagehsqxstandard32025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108368/2_1opagehsqxstandard32025120560115/2_1opagehsqxstandard32025120560115_seg.nii.gz"
+ },
+ {
+ "image": "102093/2_0opagelsqxstandard37525120600115.nii.gz",
+ "pseudo_label": "102093/2_0opagelsqxstandard37525120600115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102093/2_0opagelsqxstandard37525120600115/2_0opagelsqxstandard37525120600115_seg.nii.gz"
+ },
+ {
+ "image": "102093/2_2opagels16standard38025120505nana.nii.gz",
+ "pseudo_label": "102093/2_2opagels16standard38025120505nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102093/2_2opagels16standard38025120505nana/2_2opagels16standard38025120505nana_seg.nii.gz"
+ },
+ {
+ "image": "111246/5_2opasevzoomb30f28951206030na.nii.gz",
+ "pseudo_label": "111246/5_2opasevzoomb30f28951206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111246/5_2opasevzoomb30f28951206030na/5_2opasevzoomb30f28951206030na_seg.nii.gz"
+ },
+ {
+ "image": "111246/3_2opasevzoomb50f28921206030na.nii.gz",
+ "pseudo_label": "111246/3_2opasevzoomb50f28921206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111246/3_2opasevzoomb50f28921206030na/3_2opasevzoomb50f28921206030na_seg.nii.gz"
+ },
+ {
+ "image": "111246/6_1opasevzoomb30f30021206030na.nii.gz",
+ "pseudo_label": "111246/6_1opasevzoomb30f30021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111246/6_1opasevzoomb30f30021206030na/6_1opasevzoomb30f30021206030na_seg.nii.gz"
+ },
+ {
+ "image": "111246/6_0opasevzoomb30f28421206030na.nii.gz",
+ "pseudo_label": "111246/6_0opasevzoomb30f28421206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111246/6_0opasevzoomb30f28421206030na/6_0opasevzoomb30f28421206030na_seg.nii.gz"
+ },
+ {
+ "image": "111246/4_0opasevzoomb50f28451206030na.nii.gz",
+ "pseudo_label": "111246/4_0opasevzoomb50f28451206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111246/4_0opasevzoomb50f28451206030na/4_0opasevzoomb50f28451206030na_seg.nii.gz"
+ },
+ {
+ "image": "111246/5_1opasevzoomb30f30051206030na.nii.gz",
+ "pseudo_label": "111246/5_1opasevzoomb30f30051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111246/5_1opasevzoomb30f30051206030na/5_1opasevzoomb30f30051206030na_seg.nii.gz"
+ },
+ {
+ "image": "111246/4_2opasevzoomb50f28951206030na.nii.gz",
+ "pseudo_label": "111246/4_2opasevzoomb50f28951206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111246/4_2opasevzoomb50f28951206030na/4_2opasevzoomb50f28951206030na_seg.nii.gz"
+ },
+ {
+ "image": "111246/4_1opasevzoomb50f30051206030na.nii.gz",
+ "pseudo_label": "111246/4_1opasevzoomb50f30051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111246/4_1opasevzoomb50f30051206030na/4_1opasevzoomb50f30051206030na_seg.nii.gz"
+ },
+ {
+ "image": "111246/3_0opasevzoomb50f28421206030na.nii.gz",
+ "pseudo_label": "111246/3_0opasevzoomb50f28421206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111246/3_0opasevzoomb50f28421206030na/3_0opasevzoomb50f28421206030na_seg.nii.gz"
+ },
+ {
+ "image": "111246/3_1opasevzoomb50f30021206030na.nii.gz",
+ "pseudo_label": "111246/3_1opasevzoomb50f30021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111246/3_1opasevzoomb50f30021206030na/3_1opasevzoomb50f30021206030na_seg.nii.gz"
+ },
+ {
+ "image": "106849/3_2opagelsqxbone36225120640115.nii.gz",
+ "pseudo_label": "106849/3_2opagelsqxbone36225120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106849/3_2opagelsqxbone36225120640115/3_2opagelsqxbone36225120640115_seg.nii.gz"
+ },
+ {
+ "image": "106849/2_2opagelsqxstandard36225120640115.nii.gz",
+ "pseudo_label": "106849/2_2opagelsqxstandard36225120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106849/2_2opagelsqxstandard36225120640115/2_2opagelsqxstandard36225120640115_seg.nii.gz"
+ },
+ {
+ "image": "106849/3_1opagelsqxbone40025120640115.nii.gz",
+ "pseudo_label": "106849/3_1opagelsqxbone40025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106849/3_1opagelsqxbone40025120640115/3_1opagelsqxbone40025120640115_seg.nii.gz"
+ },
+ {
+ "image": "113214/2_0opagelsqxstandard4142512000na.nii.gz",
+ "pseudo_label": "113214/2_0opagelsqxstandard4142512000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113214/2_0opagelsqxstandard4142512000na/2_0opagelsqxstandard4142512000na_seg.nii.gz"
+ },
+ {
+ "image": "103849/3_0opagehsqxbone37025120560115.nii.gz",
+ "pseudo_label": "103849/3_0opagehsqxbone37025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103849/3_0opagehsqxbone37025120560115/3_0opagehsqxbone37025120560115_seg.nii.gz"
+ },
+ {
+ "image": "103849/2_2opagehsqxstandard37025120560115.nii.gz",
+ "pseudo_label": "103849/2_2opagehsqxstandard37025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103849/2_2opagehsqxstandard37025120560115/2_2opagehsqxstandard37025120560115_seg.nii.gz"
+ },
+ {
+ "image": "103849/2_1opagehsqxstandard37025120560115.nii.gz",
+ "pseudo_label": "103849/2_1opagehsqxstandard37025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103849/2_1opagehsqxstandard37025120560115/2_1opagehsqxstandard37025120560115_seg.nii.gz"
+ },
+ {
+ "image": "103849/2_0opagehsqxstandard37025120560115.nii.gz",
+ "pseudo_label": "103849/2_0opagehsqxstandard37025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103849/2_0opagehsqxstandard37025120560115/2_0opagehsqxstandard37025120560115_seg.nii.gz"
+ },
+ {
+ "image": "113224/891_2opaphmx8000d3353212039018.nii.gz",
+ "pseudo_label": "113224/891_2opaphmx8000d3353212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113224/891_2opaphmx8000d3353212039018/891_2opaphmx8000d3353212039018_seg.nii.gz"
+ },
+ {
+ "image": "110657/2_2opagelsqxstandard38525120720115.nii.gz",
+ "pseudo_label": "110657/2_2opagelsqxstandard38525120720115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110657/2_2opagelsqxstandard38525120720115/2_2opagelsqxstandard38525120720115_seg.nii.gz"
+ },
+ {
+ "image": "110657/2_0opagelsqxstandard40025120720115.nii.gz",
+ "pseudo_label": "110657/2_0opagelsqxstandard40025120720115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110657/2_0opagelsqxstandard40025120720115/2_0opagelsqxstandard40025120720115_seg.nii.gz"
+ },
+ {
+ "image": "110657/3_0opagelsqxbone40025120720115.nii.gz",
+ "pseudo_label": "110657/3_0opagelsqxbone40025120720115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110657/3_0opagelsqxbone40025120720115/3_0opagelsqxbone40025120720115_seg.nii.gz"
+ },
+ {
+ "image": "110657/3_2opagelsqxbone38525120720115.nii.gz",
+ "pseudo_label": "110657/3_2opagelsqxbone38525120720115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110657/3_2opagelsqxbone38525120720115/3_2opagelsqxbone38525120720115_seg.nii.gz"
+ },
+ {
+ "image": "111388/3_1opatoaqul4fc513633212060nana.nii.gz",
+ "pseudo_label": "111388/3_1opatoaqul4fc513633212060nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111388/3_1opatoaqul4fc513633212060nana/3_1opatoaqul4fc513633212060nana_seg.nii.gz"
+ },
+ {
+ "image": "112981/3_0opagelsqxstandard3402512048015.nii.gz",
+ "pseudo_label": "112981/3_0opagelsqxstandard3402512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112981/3_0opagelsqxstandard3402512048015/3_0opagelsqxstandard3402512048015_seg.nii.gz"
+ },
+ {
+ "image": "112652/2_2opasesen16b30f35021204032na.nii.gz",
+ "pseudo_label": "112652/2_2opasesen16b30f35021204032na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112652/2_2opasesen16b30f35021204032na/2_2opasesen16b30f35021204032na_seg.nii.gz"
+ },
+ {
+ "image": "108874/2_0opagels16standard29825140800114.nii.gz",
+ "pseudo_label": "108874/2_0opagels16standard29825140800114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108874/2_0opagels16standard29825140800114/2_0opagels16standard29825140800114_seg.nii.gz"
+ },
+ {
+ "image": "108874/2_2opagels16standard3402514040014.nii.gz",
+ "pseudo_label": "108874/2_2opagels16standard3402514040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108874/2_2opagels16standard3402514040014/2_2opagels16standard3402514040014_seg.nii.gz"
+ },
+ {
+ "image": "108874/3_1opagels16standard35625140640114.nii.gz",
+ "pseudo_label": "108874/3_1opagels16standard35625140640114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108874/3_1opagels16standard35625140640114/3_1opagels16standard35625140640114_seg.nii.gz"
+ },
+ {
+ "image": "108713/3_2opasesen16b30f39421204530na.nii.gz",
+ "pseudo_label": "108713/3_2opasesen16b30f39421204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108713/3_2opasesen16b30f39421204530na/3_2opasesen16b30f39421204530na_seg.nii.gz"
+ },
+ {
+ "image": "104541/2_2opagelsqxstandard35625120560115.nii.gz",
+ "pseudo_label": "104541/2_2opagelsqxstandard35625120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104541/2_2opagelsqxstandard35625120560115/2_2opagelsqxstandard35625120560115_seg.nii.gz"
+ },
+ {
+ "image": "104541/3_0opagelsqxbone40025120640115.nii.gz",
+ "pseudo_label": "104541/3_0opagelsqxbone40025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104541/3_0opagelsqxbone40025120640115/3_0opagelsqxbone40025120640115_seg.nii.gz"
+ },
+ {
+ "image": "104541/3_2opagelsqxbone35625120560115.nii.gz",
+ "pseudo_label": "104541/3_2opagelsqxbone35625120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104541/3_2opagelsqxbone35625120560115/3_2opagelsqxbone35625120560115_seg.nii.gz"
+ },
+ {
+ "image": "104541/3_1opagelsqxbone36525120640115.nii.gz",
+ "pseudo_label": "104541/3_1opagelsqxbone36525120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104541/3_1opagelsqxbone36525120640115/3_1opagelsqxbone36525120640115_seg.nii.gz"
+ },
+ {
+ "image": "104541/2_0opagelsqxstandard40025120640115.nii.gz",
+ "pseudo_label": "104541/2_0opagelsqxstandard40025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104541/2_0opagelsqxstandard40025120640115/2_0opagelsqxstandard40025120640115_seg.nii.gz"
+ },
+ {
+ "image": "104541/2_1opagelsqxstandard36525120640115.nii.gz",
+ "pseudo_label": "104541/2_1opagelsqxstandard36525120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104541/2_1opagelsqxstandard36525120640115/2_1opagelsqxstandard36525120640115_seg.nii.gz"
+ },
+ {
+ "image": "102485/3_2opatoaqul4fc51300212040nana.nii.gz",
+ "pseudo_label": "102485/3_2opatoaqul4fc51300212040nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102485/3_2opatoaqul4fc51300212040nana/3_2opatoaqul4fc51300212040nana_seg.nii.gz"
+ },
+ {
+ "image": "102485/3_0opatoaqul4fc512906212045nana.nii.gz",
+ "pseudo_label": "102485/3_0opatoaqul4fc512906212045nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102485/3_0opatoaqul4fc512906212045nana/3_0opatoaqul4fc512906212045nana_seg.nii.gz"
+ },
+ {
+ "image": "107563/2_2opagelsqxstandard3802514000na.nii.gz",
+ "pseudo_label": "107563/2_2opagelsqxstandard3802514000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107563/2_2opagelsqxstandard3802514000na/2_2opagelsqxstandard3802514000na_seg.nii.gz"
+ },
+ {
+ "image": "107563/2_0opagelsqxstandard3602514000na.nii.gz",
+ "pseudo_label": "107563/2_0opagelsqxstandard3602514000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107563/2_0opagelsqxstandard3602514000na/2_0opagelsqxstandard3602514000na_seg.nii.gz"
+ },
+ {
+ "image": "101171/3_2opasesen16b30f33021204530na.nii.gz",
+ "pseudo_label": "101171/3_2opasesen16b30f33021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101171/3_2opasesen16b30f33021204530na/3_2opasesen16b30f33021204530na_seg.nii.gz"
+ },
+ {
+ "image": "101171/2_0opasevzoomb50f350212012060na.nii.gz",
+ "pseudo_label": "101171/2_0opasevzoomb50f350212012060na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101171/2_0opasevzoomb50f350212012060na/2_0opasevzoomb50f350212012060na_seg.nii.gz"
+ },
+ {
+ "image": "101171/4_2opasesen16b50f33021204530na.nii.gz",
+ "pseudo_label": "101171/4_2opasesen16b50f33021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101171/4_2opasesen16b50f33021204530na/4_2opasesen16b50f33021204530na_seg.nii.gz"
+ },
+ {
+ "image": "111123/2_1opasesen16b30f32021204032na.nii.gz",
+ "pseudo_label": "111123/2_1opasesen16b30f32021204032na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111123/2_1opasesen16b30f32021204032na/2_1opasesen16b30f32021204032na_seg.nii.gz"
+ },
+ {
+ "image": "111123/2_2opasesen16b30f28021204032na.nii.gz",
+ "pseudo_label": "111123/2_2opasesen16b30f28021204032na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111123/2_2opasesen16b30f28021204032na/2_2opasesen16b30f28021204032na_seg.nii.gz"
+ },
+ {
+ "image": "109464/1_1opagelsplusstandard36025120800115.nii.gz",
+ "pseudo_label": "109464/1_1opagelsplusstandard36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109464/1_1opagelsplusstandard36025120800115/1_1opagelsplusstandard36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "109464/1_1opagelspluslung36025120800115.nii.gz",
+ "pseudo_label": "109464/1_1opagelspluslung36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109464/1_1opagelspluslung36025120800115/1_1opagelspluslung36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "109464/1_2opagelsplusstandard36025120800115.nii.gz",
+ "pseudo_label": "109464/1_2opagelsplusstandard36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109464/1_2opagelsplusstandard36025120800115/1_2opagelsplusstandard36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "109464/1_0opagelsplusstandard36025120800108.nii.gz",
+ "pseudo_label": "109464/1_0opagelsplusstandard36025120800108.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109464/1_0opagelsplusstandard36025120800108/1_0opagelsplusstandard36025120800108_seg.nii.gz"
+ },
+ {
+ "image": "109464/1_2opagelspluslung36025120800115.nii.gz",
+ "pseudo_label": "109464/1_2opagelspluslung36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109464/1_2opagelspluslung36025120800115/1_2opagelspluslung36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "111574/2_2opagehsqxstandard35025120560115.nii.gz",
+ "pseudo_label": "111574/2_2opagehsqxstandard35025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111574/2_2opagehsqxstandard35025120560115/2_2opagehsqxstandard35025120560115_seg.nii.gz"
+ },
+ {
+ "image": "111574/3_1opagehsqxbone35025120560115.nii.gz",
+ "pseudo_label": "111574/3_1opagehsqxbone35025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111574/3_1opagehsqxbone35025120560115/3_1opagehsqxbone35025120560115_seg.nii.gz"
+ },
+ {
+ "image": "111574/2_1opagehsqxstandard35025120560115.nii.gz",
+ "pseudo_label": "111574/2_1opagehsqxstandard35025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111574/2_1opagehsqxstandard35025120560115/2_1opagehsqxstandard35025120560115_seg.nii.gz"
+ },
+ {
+ "image": "111574/3_2opagehsqxbone35025120560115.nii.gz",
+ "pseudo_label": "111574/3_2opagehsqxbone35025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111574/3_2opagehsqxbone35025120560115/3_2opagehsqxbone35025120560115_seg.nii.gz"
+ },
+ {
+ "image": "112991/3_1opasevzoomb50f29021207540na.nii.gz",
+ "pseudo_label": "112991/3_1opasevzoomb50f29021207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112991/3_1opasevzoomb50f29021207540na/3_1opasevzoomb50f29021207540na_seg.nii.gz"
+ },
+ {
+ "image": "112991/3_2opasevzoomb50f35021207540na.nii.gz",
+ "pseudo_label": "112991/3_2opasevzoomb50f35021207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112991/3_2opasevzoomb50f35021207540na/3_2opasevzoomb50f35021207540na_seg.nii.gz"
+ },
+ {
+ "image": "112991/2_1opasevzoomb30f29021207540na.nii.gz",
+ "pseudo_label": "112991/2_1opasevzoomb30f29021207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112991/2_1opasevzoomb30f29021207540na/2_1opasevzoomb30f29021207540na_seg.nii.gz"
+ },
+ {
+ "image": "112991/2_2opasevzoomb30f35021207540na.nii.gz",
+ "pseudo_label": "112991/2_2opasevzoomb30f35021207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112991/2_2opasevzoomb30f35021207540na/2_2opasevzoomb30f35021207540na_seg.nii.gz"
+ },
+ {
+ "image": "101837/3_0opagelsqxbone31025120nanana.nii.gz",
+ "pseudo_label": "101837/3_0opagelsqxbone31025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101837/3_0opagelsqxbone31025120nanana/3_0opagelsqxbone31025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "101837/3_1opagels16bone31025120nanana.nii.gz",
+ "pseudo_label": "101837/3_1opagels16bone31025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101837/3_1opagels16bone31025120nanana/3_1opagels16bone31025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "101837/2_1opagels16standard31025120nanana.nii.gz",
+ "pseudo_label": "101837/2_1opagels16standard31025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101837/2_1opagels16standard31025120nanana/2_1opagels16standard31025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "101837/2_0opagelsqxstandard31025120nanana.nii.gz",
+ "pseudo_label": "101837/2_0opagelsqxstandard31025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101837/2_0opagelsqxstandard31025120nanana/2_0opagelsqxstandard31025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "100364/0_0opaphmx8000c36132120600112.nii.gz",
+ "pseudo_label": "100364/0_0opaphmx8000c36132120600112.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100364/0_0opaphmx8000c36132120600112/0_0opaphmx8000c36132120600112_seg.nii.gz"
+ },
+ {
+ "image": "100364/1915_2opaphmx8000d3293212039018.nii.gz",
+ "pseudo_label": "100364/1915_2opaphmx8000d3293212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100364/1915_2opaphmx8000d3293212039018/1915_2opaphmx8000d3293212039018_seg.nii.gz"
+ },
+ {
+ "image": "109969/2_1opagelsplusstandard3302514040015.nii.gz",
+ "pseudo_label": "109969/2_1opagelsplusstandard3302514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109969/2_1opagelsplusstandard3302514040015/2_1opagelsplusstandard3302514040015_seg.nii.gz"
+ },
+ {
+ "image": "109969/2_0opagelsplusstandard3402514040015.nii.gz",
+ "pseudo_label": "109969/2_0opagelsplusstandard3402514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109969/2_0opagelsplusstandard3402514040015/2_0opagelsplusstandard3402514040015_seg.nii.gz"
+ },
+ {
+ "image": "109969/2_2opagelsplusstandard3392514040015.nii.gz",
+ "pseudo_label": "109969/2_2opagelsplusstandard3392514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109969/2_2opagelsplusstandard3392514040015/2_2opagelsplusstandard3392514040015_seg.nii.gz"
+ },
+ {
+ "image": "109969/3_2opagelsplusstandard3432514040015.nii.gz",
+ "pseudo_label": "109969/3_2opagelsplusstandard3432514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109969/3_2opagelsplusstandard3432514040015/3_2opagelsplusstandard3432514040015_seg.nii.gz"
+ },
+ {
+ "image": "101989/3_1opatoaqul4fc512766212040nana.nii.gz",
+ "pseudo_label": "101989/3_1opatoaqul4fc512766212040nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101989/3_1opatoaqul4fc512766212040nana/3_1opatoaqul4fc512766212040nana_seg.nii.gz"
+ },
+ {
+ "image": "106837/2_2opagehsqxstandard32025120560115.nii.gz",
+ "pseudo_label": "106837/2_2opagehsqxstandard32025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106837/2_2opagehsqxstandard32025120560115/2_2opagehsqxstandard32025120560115_seg.nii.gz"
+ },
+ {
+ "image": "106837/2_0opagehsqxstandard32025120560115.nii.gz",
+ "pseudo_label": "106837/2_0opagehsqxstandard32025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106837/2_0opagehsqxstandard32025120560115/2_0opagehsqxstandard32025120560115_seg.nii.gz"
+ },
+ {
+ "image": "106837/3_0opagehsqxbone32025120560115.nii.gz",
+ "pseudo_label": "106837/3_0opagehsqxbone32025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106837/3_0opagehsqxbone32025120560115/3_0opagehsqxbone32025120560115_seg.nii.gz"
+ },
+ {
+ "image": "106837/2_1opagehsqxstandard32025120560115.nii.gz",
+ "pseudo_label": "106837/2_1opagehsqxstandard32025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106837/2_1opagehsqxstandard32025120560115/2_1opagehsqxstandard32025120560115_seg.nii.gz"
+ },
+ {
+ "image": "104625/7599_1opaphmx8000c38132120453612.nii.gz",
+ "pseudo_label": "104625/7599_1opaphmx8000c38132120453612.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104625/7599_1opaphmx8000c38132120453612/7599_1opaphmx8000c38132120453612_seg.nii.gz"
+ },
+ {
+ "image": "104625/5160_0opaphmx8000c347321208787012.nii.gz",
+ "pseudo_label": "104625/5160_0opaphmx8000c347321208787012.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104625/5160_0opaphmx8000c347321208787012/5160_0opaphmx8000c347321208787012_seg.nii.gz"
+ },
+ {
+ "image": "112175/3_2opasevzoomb50f39621207040na.nii.gz",
+ "pseudo_label": "112175/3_2opasevzoomb50f39621207040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112175/3_2opasevzoomb50f39621207040na/3_2opasevzoomb50f39621207040na_seg.nii.gz"
+ },
+ {
+ "image": "112175/2_0opasevzoomb30f403212010560na.nii.gz",
+ "pseudo_label": "112175/2_0opasevzoomb30f403212010560na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112175/2_0opasevzoomb30f403212010560na/2_0opasevzoomb30f403212010560na_seg.nii.gz"
+ },
+ {
+ "image": "101296/2_0opasevzoomb50f29021206030na.nii.gz",
+ "pseudo_label": "101296/2_0opasevzoomb50f29021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101296/2_0opasevzoomb50f29021206030na/2_0opasevzoomb50f29021206030na_seg.nii.gz"
+ },
+ {
+ "image": "101296/3_0opasevzoomb30f29021206030na.nii.gz",
+ "pseudo_label": "101296/3_0opasevzoomb30f29021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101296/3_0opasevzoomb30f29021206030na/3_0opasevzoomb30f29021206030na_seg.nii.gz"
+ },
+ {
+ "image": "101296/3_1opasevzoomb50f29021206030na.nii.gz",
+ "pseudo_label": "101296/3_1opasevzoomb50f29021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101296/3_1opasevzoomb50f29021206030na/3_1opasevzoomb50f29021206030na_seg.nii.gz"
+ },
+ {
+ "image": "101296/6_1opasevzoomb30f29021206030na.nii.gz",
+ "pseudo_label": "101296/6_1opasevzoomb30f29021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101296/6_1opasevzoomb30f29021206030na/6_1opasevzoomb30f29021206030na_seg.nii.gz"
+ },
+ {
+ "image": "101296/5_1opasevzoomb50f29021206030na.nii.gz",
+ "pseudo_label": "101296/5_1opasevzoomb50f29021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101296/5_1opasevzoomb50f29021206030na/5_1opasevzoomb50f29021206030na_seg.nii.gz"
+ },
+ {
+ "image": "110181/2_2opagelspr16bone3502512048014.nii.gz",
+ "pseudo_label": "110181/2_2opagelspr16bone3502512048014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110181/2_2opagelspr16bone3502512048014/2_2opagelspr16bone3502512048014_seg.nii.gz"
+ },
+ {
+ "image": "110181/3_1opagels16standard3472512048014.nii.gz",
+ "pseudo_label": "110181/3_1opagels16standard3472512048014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110181/3_1opagels16standard3472512048014/3_1opagels16standard3472512048014_seg.nii.gz"
+ },
+ {
+ "image": "110181/3_2opagelspr16standard3502512048014.nii.gz",
+ "pseudo_label": "110181/3_2opagelspr16standard3502512048014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110181/3_2opagelspr16standard3502512048014/3_2opagelspr16standard3502512048014_seg.nii.gz"
+ },
+ {
+ "image": "110181/2_1opagels16bone3472512048014.nii.gz",
+ "pseudo_label": "110181/2_1opagels16bone3472512048014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110181/2_1opagels16bone3472512048014/2_1opagels16bone3472512048014_seg.nii.gz"
+ },
+ {
+ "image": "107656/1_1opatoaqul4fc103398312080nana.nii.gz",
+ "pseudo_label": "107656/1_1opatoaqul4fc103398312080nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107656/1_1opatoaqul4fc103398312080nana/1_1opatoaqul4fc103398312080nana_seg.nii.gz"
+ },
+ {
+ "image": "107656/1_0opagelsplusstandard34025120800115.nii.gz",
+ "pseudo_label": "107656/1_0opagelsplusstandard34025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107656/1_0opagelsplusstandard34025120800115/1_0opagelsplusstandard34025120800115_seg.nii.gz"
+ },
+ {
+ "image": "107656/1_2opagelsplusstandard36025120800115.nii.gz",
+ "pseudo_label": "107656/1_2opagelsplusstandard36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107656/1_2opagelsplusstandard36025120800115/1_2opagelsplusstandard36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "107968/2_1opagelsqxstandard32025120640115.nii.gz",
+ "pseudo_label": "107968/2_1opagelsqxstandard32025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107968/2_1opagelsqxstandard32025120640115/2_1opagelsqxstandard32025120640115_seg.nii.gz"
+ },
+ {
+ "image": "107968/3_1opagelsqxbone32025120640115.nii.gz",
+ "pseudo_label": "107968/3_1opagelsqxbone32025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107968/3_1opagelsqxbone32025120640115/3_1opagelsqxbone32025120640115_seg.nii.gz"
+ },
+ {
+ "image": "107968/2_2opagelsqxstandard36025120560115.nii.gz",
+ "pseudo_label": "107968/2_2opagelsqxstandard36025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107968/2_2opagelsqxstandard36025120560115/2_2opagelsqxstandard36025120560115_seg.nii.gz"
+ },
+ {
+ "image": "107968/3_0opagelsqxbone34025120720115.nii.gz",
+ "pseudo_label": "107968/3_0opagelsqxbone34025120720115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107968/3_0opagelsqxbone34025120720115/3_0opagelsqxbone34025120720115_seg.nii.gz"
+ },
+ {
+ "image": "107968/3_2opagelsqxbone36025120560115.nii.gz",
+ "pseudo_label": "107968/3_2opagelsqxbone36025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107968/3_2opagelsqxbone36025120560115/3_2opagelsqxbone36025120560115_seg.nii.gz"
+ },
+ {
+ "image": "107968/2_0opagelsqxstandard34025120720115.nii.gz",
+ "pseudo_label": "107968/2_0opagelsqxstandard34025120720115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107968/2_0opagelsqxstandard34025120720115/2_0opagelsqxstandard34025120720115_seg.nii.gz"
+ },
+ {
+ "image": "109520/2_0opagelsplusstandard38825120600115.nii.gz",
+ "pseudo_label": "109520/2_0opagelsplusstandard38825120600115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109520/2_0opagelsplusstandard38825120600115/2_0opagelsplusstandard38825120600115_seg.nii.gz"
+ },
+ {
+ "image": "107856/6_0opasevzoomb20f32621206030na.nii.gz",
+ "pseudo_label": "107856/6_0opasevzoomb20f32621206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107856/6_0opasevzoomb20f32621206030na/6_0opasevzoomb20f32621206030na_seg.nii.gz"
+ },
+ {
+ "image": "107856/5_2opasesen16b50f32051204530na.nii.gz",
+ "pseudo_label": "107856/5_2opasesen16b50f32051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107856/5_2opasesen16b50f32051204530na/5_2opasesen16b50f32051204530na_seg.nii.gz"
+ },
+ {
+ "image": "107856/3_1opasesen16b30f30051204530na.nii.gz",
+ "pseudo_label": "107856/3_1opasesen16b30f30051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107856/3_1opasesen16b30f30051204530na/3_1opasesen16b30f30051204530na_seg.nii.gz"
+ },
+ {
+ "image": "107856/3_0opasevzoomb30f32651206030na.nii.gz",
+ "pseudo_label": "107856/3_0opasevzoomb30f32651206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107856/3_0opasevzoomb30f32651206030na/3_0opasevzoomb30f32651206030na_seg.nii.gz"
+ },
+ {
+ "image": "107856/4_2opasesen16b30f32021204530na.nii.gz",
+ "pseudo_label": "107856/4_2opasesen16b30f32021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107856/4_2opasesen16b30f32021204530na/4_2opasesen16b30f32021204530na_seg.nii.gz"
+ },
+ {
+ "image": "107856/4_0opasevzoomb50f32651206030na.nii.gz",
+ "pseudo_label": "107856/4_0opasevzoomb50f32651206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107856/4_0opasevzoomb50f32651206030na/4_0opasevzoomb50f32651206030na_seg.nii.gz"
+ },
+ {
+ "image": "107687/2_2opagels16standard3502514040014.nii.gz",
+ "pseudo_label": "107687/2_2opagels16standard3502514040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107687/2_2opagels16standard3502514040014/2_2opagels16standard3502514040014_seg.nii.gz"
+ },
+ {
+ "image": "107687/2_1opagels16standard3392514040014.nii.gz",
+ "pseudo_label": "107687/2_1opagels16standard3392514040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107687/2_1opagels16standard3392514040014/2_1opagels16standard3392514040014_seg.nii.gz"
+ },
+ {
+ "image": "107687/2_0opagelsqxstandard3202514040015.nii.gz",
+ "pseudo_label": "107687/2_0opagelsqxstandard3202514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107687/2_0opagelsqxstandard3202514040015/2_0opagelsqxstandard3202514040015_seg.nii.gz"
+ },
+ {
+ "image": "108482/2_2opagelsqxstandard36025120640115.nii.gz",
+ "pseudo_label": "108482/2_2opagelsqxstandard36025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108482/2_2opagelsqxstandard36025120640115/2_2opagelsqxstandard36025120640115_seg.nii.gz"
+ },
+ {
+ "image": "108482/2_0opagelsqxstandard36025120640115.nii.gz",
+ "pseudo_label": "108482/2_0opagelsqxstandard36025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108482/2_0opagelsqxstandard36025120640115/2_0opagelsqxstandard36025120640115_seg.nii.gz"
+ },
+ {
+ "image": "108482/3_0opagelsqxbone36025120640115.nii.gz",
+ "pseudo_label": "108482/3_0opagelsqxbone36025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108482/3_0opagelsqxbone36025120640115/3_0opagelsqxbone36025120640115_seg.nii.gz"
+ },
+ {
+ "image": "108482/3_1opagelsqxbone36025120640115.nii.gz",
+ "pseudo_label": "108482/3_1opagelsqxbone36025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108482/3_1opagelsqxbone36025120640115/3_1opagelsqxbone36025120640115_seg.nii.gz"
+ },
+ {
+ "image": "108482/3_2opagelsqxbone36025120640115.nii.gz",
+ "pseudo_label": "108482/3_2opagelsqxbone36025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108482/3_2opagelsqxbone36025120640115/3_2opagelsqxbone36025120640115_seg.nii.gz"
+ },
+ {
+ "image": "111830/2_0opagelsqxstandard2892514048015.nii.gz",
+ "pseudo_label": "111830/2_0opagelsqxstandard2892514048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111830/2_0opagelsqxstandard2892514048015/2_0opagelsqxstandard2892514048015_seg.nii.gz"
+ },
+ {
+ "image": "111830/2_2opagelsqxstandard2902514048015.nii.gz",
+ "pseudo_label": "111830/2_2opagelsqxstandard2902514048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111830/2_2opagelsqxstandard2902514048015/2_2opagelsqxstandard2902514048015_seg.nii.gz"
+ },
+ {
+ "image": "111830/2_1opageunkstandard2902514048015.nii.gz",
+ "pseudo_label": "111830/2_1opageunkstandard2902514048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111830/2_1opageunkstandard2902514048015/2_1opageunkstandard2902514048015_seg.nii.gz"
+ },
+ {
+ "image": "111389/2_2opagels16standard37025120627nana.nii.gz",
+ "pseudo_label": "111389/2_2opagels16standard37025120627nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111389/2_2opagels16standard37025120627nana/2_2opagels16standard37025120627nana_seg.nii.gz"
+ },
+ {
+ "image": "111389/3_1opagelsqxstandard3702512048015.nii.gz",
+ "pseudo_label": "111389/3_1opagelsqxstandard3702512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111389/3_1opagelsqxstandard3702512048015/3_1opagelsqxstandard3702512048015_seg.nii.gz"
+ },
+ {
+ "image": "108832/2_0opagelsqxstandard36025120640115.nii.gz",
+ "pseudo_label": "108832/2_0opagelsqxstandard36025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108832/2_0opagelsqxstandard36025120640115/2_0opagelsqxstandard36025120640115_seg.nii.gz"
+ },
+ {
+ "image": "108832/2_1opagelsqxstandard3102512048015.nii.gz",
+ "pseudo_label": "108832/2_1opagelsqxstandard3102512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108832/2_1opagelsqxstandard3102512048015/2_1opagelsqxstandard3102512048015_seg.nii.gz"
+ },
+ {
+ "image": "106110/3_1opasevzoomb30f27251206030na.nii.gz",
+ "pseudo_label": "106110/3_1opasevzoomb30f27251206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106110/3_1opasevzoomb30f27251206030na/3_1opasevzoomb30f27251206030na_seg.nii.gz"
+ },
+ {
+ "image": "106110/5_2opasevzoomb50f27551206030na.nii.gz",
+ "pseudo_label": "106110/5_2opasevzoomb50f27551206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106110/5_2opasevzoomb50f27551206030na/5_2opasevzoomb50f27551206030na_seg.nii.gz"
+ },
+ {
+ "image": "106110/3_0opasesen16b30f27851209060na.nii.gz",
+ "pseudo_label": "106110/3_0opasesen16b30f27851209060na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106110/3_0opasesen16b30f27851209060na/3_0opasesen16b30f27851209060na_seg.nii.gz"
+ },
+ {
+ "image": "106110/6_0opasesen16b30f27821209060na.nii.gz",
+ "pseudo_label": "106110/6_0opasesen16b30f27821209060na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106110/6_0opasesen16b30f27821209060na/6_0opasesen16b30f27821209060na_seg.nii.gz"
+ },
+ {
+ "image": "106110/4_2opasevzoomb30f27551206030na.nii.gz",
+ "pseudo_label": "106110/4_2opasevzoomb30f27551206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106110/4_2opasevzoomb30f27551206030na/4_2opasevzoomb30f27551206030na_seg.nii.gz"
+ },
+ {
+ "image": "106110/4_1opasevzoomb50f27251206030na.nii.gz",
+ "pseudo_label": "106110/4_1opasevzoomb50f27251206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106110/4_1opasevzoomb50f27251206030na/4_1opasevzoomb50f27251206030na_seg.nii.gz"
+ },
+ {
+ "image": "106110/4_0opasesen16b50f27851209060na.nii.gz",
+ "pseudo_label": "106110/4_0opasesen16b50f27851209060na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106110/4_0opasesen16b50f27851209060na/4_0opasesen16b50f27851209060na_seg.nii.gz"
+ },
+ {
+ "image": "106127/3_1opatoaqul4fc51300212055nana.nii.gz",
+ "pseudo_label": "106127/3_1opatoaqul4fc51300212055nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106127/3_1opatoaqul4fc51300212055nana/3_1opatoaqul4fc51300212055nana_seg.nii.gz"
+ },
+ {
+ "image": "106127/3_2opatoaqul4fc513219212075nana.nii.gz",
+ "pseudo_label": "106127/3_2opatoaqul4fc513219212075nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106127/3_2opatoaqul4fc513219212075nana/3_2opatoaqul4fc513219212075nana_seg.nii.gz"
+ },
+ {
+ "image": "103372/3_2opagelspr16standard40025120640114.nii.gz",
+ "pseudo_label": "103372/3_2opagelspr16standard40025120640114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103372/3_2opagelspr16standard40025120640114/3_2opagelspr16standard40025120640114_seg.nii.gz"
+ },
+ {
+ "image": "103372/2_1opagels16bone4522512048014.nii.gz",
+ "pseudo_label": "103372/2_1opagels16bone4522512048014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103372/2_1opagels16bone4522512048014/2_1opagels16bone4522512048014_seg.nii.gz"
+ },
+ {
+ "image": "103372/5_1opagels16standard4522512048014.nii.gz",
+ "pseudo_label": "103372/5_1opagels16standard4522512048014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103372/5_1opagels16standard4522512048014/5_1opagels16standard4522512048014_seg.nii.gz"
+ },
+ {
+ "image": "103372/2_2opagelspr16bone40025120640114.nii.gz",
+ "pseudo_label": "103372/2_2opagelspr16bone40025120640114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103372/2_2opagelspr16bone40025120640114/2_2opagelspr16bone40025120640114_seg.nii.gz"
+ },
+ {
+ "image": "103372/3_1opagels16standard4522512048014.nii.gz",
+ "pseudo_label": "103372/3_1opagels16standard4522512048014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103372/3_1opagels16standard4522512048014/3_1opagels16standard4522512048014_seg.nii.gz"
+ },
+ {
+ "image": "103372/4_1opagels16bone4522512048014.nii.gz",
+ "pseudo_label": "103372/4_1opagels16bone4522512048014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103372/4_1opagels16bone4522512048014/4_1opagels16bone4522512048014_seg.nii.gz"
+ },
+ {
+ "image": "105244/2_2opagelsqxstandard3002514040015.nii.gz",
+ "pseudo_label": "105244/2_2opagelsqxstandard3002514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105244/2_2opagelsqxstandard3002514040015/2_2opagelsqxstandard3002514040015_seg.nii.gz"
+ },
+ {
+ "image": "105244/2_0opagelsplusstandard3502514040015.nii.gz",
+ "pseudo_label": "105244/2_0opagelsplusstandard3502514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105244/2_0opagelsplusstandard3502514040015/2_0opagelsplusstandard3502514040015_seg.nii.gz"
+ },
+ {
+ "image": "105244/2_1opagelsqxstandard3052514040015.nii.gz",
+ "pseudo_label": "105244/2_1opagelsqxstandard3052514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105244/2_1opagelsqxstandard3052514040015/2_1opagelsqxstandard3052514040015_seg.nii.gz"
+ },
+ {
+ "image": "105908/3_1opasevzoomb30f27021206030na.nii.gz",
+ "pseudo_label": "105908/3_1opasevzoomb30f27021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105908/3_1opasevzoomb30f27021206030na/3_1opasevzoomb30f27021206030na_seg.nii.gz"
+ },
+ {
+ "image": "105908/2_2opasesen16b50f27021204530na.nii.gz",
+ "pseudo_label": "105908/2_2opasesen16b50f27021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105908/2_2opasesen16b50f27021204530na/2_2opasesen16b50f27021204530na_seg.nii.gz"
+ },
+ {
+ "image": "105908/2_0opasevzoomb50f25021206030na.nii.gz",
+ "pseudo_label": "105908/2_0opasevzoomb50f25021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105908/2_0opasevzoomb50f25021206030na/2_0opasevzoomb50f25021206030na_seg.nii.gz"
+ },
+ {
+ "image": "100631/3_2opasevzoomb30f34021206030na.nii.gz",
+ "pseudo_label": "100631/3_2opasevzoomb30f34021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100631/3_2opasevzoomb30f34021206030na/3_2opasevzoomb30f34021206030na_seg.nii.gz"
+ },
+ {
+ "image": "107463/3_1opatoaqul4fc513203212080nana.nii.gz",
+ "pseudo_label": "107463/3_1opatoaqul4fc513203212080nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107463/3_1opatoaqul4fc513203212080nana/3_1opatoaqul4fc513203212080nana_seg.nii.gz"
+ },
+ {
+ "image": "102892/2_2opasevzoomb50f34421206030na.nii.gz",
+ "pseudo_label": "102892/2_2opasevzoomb50f34421206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102892/2_2opasevzoomb50f34421206030na/2_2opasevzoomb50f34421206030na_seg.nii.gz"
+ },
+ {
+ "image": "102892/2_1opasesen16b50f33021204530na.nii.gz",
+ "pseudo_label": "102892/2_1opasesen16b50f33021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102892/2_1opasesen16b50f33021204530na/2_1opasesen16b50f33021204530na_seg.nii.gz"
+ },
+ {
+ "image": "102892/2_0opasevzoomb50f32021206030na.nii.gz",
+ "pseudo_label": "102892/2_0opasevzoomb50f32021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102892/2_0opasevzoomb50f32021206030na/2_0opasevzoomb50f32021206030na_seg.nii.gz"
+ },
+ {
+ "image": "102892/3_0opasevzoomb30f32021206030na.nii.gz",
+ "pseudo_label": "102892/3_0opasevzoomb30f32021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102892/3_0opasevzoomb30f32021206030na/3_0opasevzoomb30f32021206030na_seg.nii.gz"
+ },
+ {
+ "image": "112306/2_2opagehsqxstandard32025120560115.nii.gz",
+ "pseudo_label": "112306/2_2opagehsqxstandard32025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112306/2_2opagehsqxstandard32025120560115/2_2opagehsqxstandard32025120560115_seg.nii.gz"
+ },
+ {
+ "image": "112306/2_0opagehsqxstandard32025120560115.nii.gz",
+ "pseudo_label": "112306/2_0opagehsqxstandard32025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112306/2_0opagehsqxstandard32025120560115/2_0opagehsqxstandard32025120560115_seg.nii.gz"
+ },
+ {
+ "image": "112306/3_2opagehsqxbone32025120560115.nii.gz",
+ "pseudo_label": "112306/3_2opagehsqxbone32025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112306/3_2opagehsqxbone32025120560115/3_2opagehsqxbone32025120560115_seg.nii.gz"
+ },
+ {
+ "image": "112306/3_1opagehsqxbone32025120560115.nii.gz",
+ "pseudo_label": "112306/3_1opagehsqxbone32025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112306/3_1opagehsqxbone32025120560115/3_1opagehsqxbone32025120560115_seg.nii.gz"
+ },
+ {
+ "image": "112306/2_1opagehsqxstandard32025120560115.nii.gz",
+ "pseudo_label": "112306/2_1opagehsqxstandard32025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112306/2_1opagehsqxstandard32025120560115/2_1opagehsqxstandard32025120560115_seg.nii.gz"
+ },
+ {
+ "image": "102708/0_0opaphmx8000c31932120600112.nii.gz",
+ "pseudo_label": "102708/0_0opaphmx8000c31932120600112.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102708/0_0opaphmx8000c31932120600112/0_0opaphmx8000c31932120600112_seg.nii.gz"
+ },
+ {
+ "image": "102708/5742_2opaphmx8000d3033212041018.nii.gz",
+ "pseudo_label": "102708/5742_2opaphmx8000d3033212041018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102708/5742_2opaphmx8000d3033212041018/5742_2opaphmx8000d3033212041018_seg.nii.gz"
+ },
+ {
+ "image": "102708/1261_1opaphmx8000c3013212039018.nii.gz",
+ "pseudo_label": "102708/1261_1opaphmx8000c3013212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102708/1261_1opaphmx8000c3013212039018/1261_1opaphmx8000c3013212039018_seg.nii.gz"
+ },
+ {
+ "image": "102708/0_0opaphmx8000d31932120600112.nii.gz",
+ "pseudo_label": "102708/0_0opaphmx8000d31932120600112.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102708/0_0opaphmx8000d31932120600112/0_0opaphmx8000d31932120600112_seg.nii.gz"
+ },
+ {
+ "image": "101155/2_1opagehsqxstandard29025120560115.nii.gz",
+ "pseudo_label": "101155/2_1opagehsqxstandard29025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101155/2_1opagehsqxstandard29025120560115/2_1opagehsqxstandard29025120560115_seg.nii.gz"
+ },
+ {
+ "image": "101155/5_2opagehsqxbone29025120560115.nii.gz",
+ "pseudo_label": "101155/5_2opagehsqxbone29025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101155/5_2opagehsqxbone29025120560115/5_2opagehsqxbone29025120560115_seg.nii.gz"
+ },
+ {
+ "image": "101155/2_0opagehsqxstandard29025120560115.nii.gz",
+ "pseudo_label": "101155/2_0opagehsqxstandard29025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101155/2_0opagehsqxstandard29025120560115/2_0opagehsqxstandard29025120560115_seg.nii.gz"
+ },
+ {
+ "image": "101155/3_0opagehsqxbone29025120560115.nii.gz",
+ "pseudo_label": "101155/3_0opagehsqxbone29025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101155/3_0opagehsqxbone29025120560115/3_0opagehsqxbone29025120560115_seg.nii.gz"
+ },
+ {
+ "image": "109034/3_2opasesen16b30f34021204530na.nii.gz",
+ "pseudo_label": "109034/3_2opasesen16b30f34021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109034/3_2opasesen16b30f34021204530na/3_2opasesen16b30f34021204530na_seg.nii.gz"
+ },
+ {
+ "image": "109034/3_1opasevzoomb30f35021206030na.nii.gz",
+ "pseudo_label": "109034/3_1opasevzoomb30f35021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109034/3_1opasevzoomb30f35021206030na/3_1opasevzoomb30f35021206030na_seg.nii.gz"
+ },
+ {
+ "image": "109034/2_2opasesen16b50f34021204530na.nii.gz",
+ "pseudo_label": "109034/2_2opasesen16b50f34021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109034/2_2opasesen16b50f34021204530na/2_2opasesen16b50f34021204530na_seg.nii.gz"
+ },
+ {
+ "image": "107874/2_0opasevzoomb50f34021206030na.nii.gz",
+ "pseudo_label": "107874/2_0opasevzoomb50f34021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107874/2_0opasevzoomb50f34021206030na/2_0opasevzoomb50f34021206030na_seg.nii.gz"
+ },
+ {
+ "image": "107874/3_0opasevzoomb30f34021206030na.nii.gz",
+ "pseudo_label": "107874/3_0opasevzoomb30f34021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107874/3_0opasevzoomb30f34021206030na/3_0opasevzoomb30f34021206030na_seg.nii.gz"
+ },
+ {
+ "image": "107874/2_1opasesen16b50f37621204530na.nii.gz",
+ "pseudo_label": "107874/2_1opasesen16b50f37621204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107874/2_1opasesen16b50f37621204530na/2_1opasesen16b50f37621204530na_seg.nii.gz"
+ },
+ {
+ "image": "107874/3_2opasevzoomb30f35021206030na.nii.gz",
+ "pseudo_label": "107874/3_2opasevzoomb30f35021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107874/3_2opasevzoomb30f35021206030na/3_2opasevzoomb30f35021206030na_seg.nii.gz"
+ },
+ {
+ "image": "107874/3_1opasesen16b30f37621204530na.nii.gz",
+ "pseudo_label": "107874/3_1opasesen16b30f37621204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107874/3_1opasesen16b30f37621204530na/3_1opasesen16b30f37621204530na_seg.nii.gz"
+ },
+ {
+ "image": "101741/2_0opasevzoomb50f34021206030na.nii.gz",
+ "pseudo_label": "101741/2_0opasevzoomb50f34021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101741/2_0opasevzoomb50f34021206030na/2_0opasevzoomb50f34021206030na_seg.nii.gz"
+ },
+ {
+ "image": "101741/3_0opasevzoomb30f34021206030na.nii.gz",
+ "pseudo_label": "101741/3_0opasevzoomb30f34021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101741/3_0opasevzoomb30f34021206030na/3_0opasevzoomb30f34021206030na_seg.nii.gz"
+ },
+ {
+ "image": "101741/4_2opasesen16b50f33021204530na.nii.gz",
+ "pseudo_label": "101741/4_2opasesen16b50f33021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101741/4_2opasesen16b50f33021204530na/4_2opasesen16b50f33021204530na_seg.nii.gz"
+ },
+ {
+ "image": "110849/3_1opagels16standard34025140600114.nii.gz",
+ "pseudo_label": "110849/3_1opagels16standard34025140600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110849/3_1opagels16standard34025140600114/3_1opagels16standard34025140600114_seg.nii.gz"
+ },
+ {
+ "image": "110849/2_1opagels16bone34025140600114.nii.gz",
+ "pseudo_label": "110849/2_1opagels16bone34025140600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110849/2_1opagels16bone34025140600114/2_1opagels16bone34025140600114_seg.nii.gz"
+ },
+ {
+ "image": "110849/5_2opagels16standard34025120600114.nii.gz",
+ "pseudo_label": "110849/5_2opagels16standard34025120600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110849/5_2opagels16standard34025120600114/5_2opagels16standard34025120600114_seg.nii.gz"
+ },
+ {
+ "image": "112122/2_1opagelsqxstandard31925120640115.nii.gz",
+ "pseudo_label": "112122/2_1opagelsqxstandard31925120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112122/2_1opagelsqxstandard31925120640115/2_1opagelsqxstandard31925120640115_seg.nii.gz"
+ },
+ {
+ "image": "112800/2_2opagels16standard3202514040014.nii.gz",
+ "pseudo_label": "112800/2_2opagels16standard3202514040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112800/2_2opagels16standard3202514040014/2_2opagels16standard3202514040014_seg.nii.gz"
+ },
+ {
+ "image": "112800/2_0opagelsqxstandard3202514040015.nii.gz",
+ "pseudo_label": "112800/2_0opagelsqxstandard3202514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112800/2_0opagelsqxstandard3202514040015/2_0opagelsqxstandard3202514040015_seg.nii.gz"
+ },
+ {
+ "image": "101921/3_0opasevzoomb50f30221207540na.nii.gz",
+ "pseudo_label": "101921/3_0opasevzoomb50f30221207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101921/3_0opasevzoomb50f30221207540na/3_0opasevzoomb50f30221207540na_seg.nii.gz"
+ },
+ {
+ "image": "101921/2_0opasevzoomb30f30221207540na.nii.gz",
+ "pseudo_label": "101921/2_0opasevzoomb30f30221207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101921/2_0opasevzoomb30f30221207540na/2_0opasevzoomb30f30221207540na_seg.nii.gz"
+ },
+ {
+ "image": "101921/3_1opasevzoomb50f28021207540na.nii.gz",
+ "pseudo_label": "101921/3_1opasevzoomb50f28021207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101921/3_1opasevzoomb50f28021207540na/3_1opasevzoomb50f28021207540na_seg.nii.gz"
+ },
+ {
+ "image": "101921/2_2opasevzoomb30f31221207540na.nii.gz",
+ "pseudo_label": "101921/2_2opasevzoomb30f31221207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101921/2_2opasevzoomb30f31221207540na/2_2opasevzoomb30f31221207540na_seg.nii.gz"
+ },
+ {
+ "image": "107917/1_1opagelspluslung38025120800115.nii.gz",
+ "pseudo_label": "107917/1_1opagelspluslung38025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107917/1_1opagelspluslung38025120800115/1_1opagelspluslung38025120800115_seg.nii.gz"
+ },
+ {
+ "image": "107917/1_0opagelspluslung38025120800115.nii.gz",
+ "pseudo_label": "107917/1_0opagelspluslung38025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107917/1_0opagelspluslung38025120800115/1_0opagelspluslung38025120800115_seg.nii.gz"
+ },
+ {
+ "image": "107917/1_1opagelsplusstandard38025120800115.nii.gz",
+ "pseudo_label": "107917/1_1opagelsplusstandard38025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107917/1_1opagelsplusstandard38025120800115/1_1opagelsplusstandard38025120800115_seg.nii.gz"
+ },
+ {
+ "image": "107917/1_2opagelsplusstandard38025120800115.nii.gz",
+ "pseudo_label": "107917/1_2opagelsplusstandard38025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107917/1_2opagelsplusstandard38025120800115/1_2opagelsplusstandard38025120800115_seg.nii.gz"
+ },
+ {
+ "image": "107917/1_2opagelspluslung38025120800115.nii.gz",
+ "pseudo_label": "107917/1_2opagelspluslung38025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107917/1_2opagelspluslung38025120800115/1_2opagelspluslung38025120800115_seg.nii.gz"
+ },
+ {
+ "image": "107917/1_0opagelsplusstandard38025120800115.nii.gz",
+ "pseudo_label": "107917/1_0opagelsplusstandard38025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107917/1_0opagelsplusstandard38025120800115/1_0opagelsplusstandard38025120800115_seg.nii.gz"
+ },
+ {
+ "image": "101297/2_0opagelsplusstandard3502514040015.nii.gz",
+ "pseudo_label": "101297/2_0opagelsplusstandard3502514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101297/2_0opagelsplusstandard3502514040015/2_0opagelsplusstandard3502514040015_seg.nii.gz"
+ },
+ {
+ "image": "101297/2_1opagelsqxstandard3802514040015.nii.gz",
+ "pseudo_label": "101297/2_1opagelsqxstandard3802514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101297/2_1opagelsqxstandard3802514040015/2_1opagelsqxstandard3802514040015_seg.nii.gz"
+ },
+ {
+ "image": "111808/3_0opagels16standard35025120720114.nii.gz",
+ "pseudo_label": "111808/3_0opagels16standard35025120720114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111808/3_0opagels16standard35025120720114/3_0opagels16standard35025120720114_seg.nii.gz"
+ },
+ {
+ "image": "111808/3_1opagels16standard35025120600114.nii.gz",
+ "pseudo_label": "111808/3_1opagels16standard35025120600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111808/3_1opagels16standard35025120600114/3_1opagels16standard35025120600114_seg.nii.gz"
+ },
+ {
+ "image": "111808/2_1opagels16bone35025120600114.nii.gz",
+ "pseudo_label": "111808/2_1opagels16bone35025120600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111808/2_1opagels16bone35025120600114/2_1opagels16bone35025120600114_seg.nii.gz"
+ },
+ {
+ "image": "103604/3_0opagelsqxbone35025120560115.nii.gz",
+ "pseudo_label": "103604/3_0opagelsqxbone35025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103604/3_0opagelsqxbone35025120560115/3_0opagelsqxbone35025120560115_seg.nii.gz"
+ },
+ {
+ "image": "103604/2_1opagelsqxstandard33825120560115.nii.gz",
+ "pseudo_label": "103604/2_1opagelsqxstandard33825120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103604/2_1opagelsqxstandard33825120560115/2_1opagelsqxstandard33825120560115_seg.nii.gz"
+ },
+ {
+ "image": "103604/2_0opagelsqxstandard35025120560115.nii.gz",
+ "pseudo_label": "103604/2_0opagelsqxstandard35025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103604/2_0opagelsqxstandard35025120560115/2_0opagelsqxstandard35025120560115_seg.nii.gz"
+ },
+ {
+ "image": "103604/2_2opagelsqxstandard34525120640115.nii.gz",
+ "pseudo_label": "103604/2_2opagelsqxstandard34525120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103604/2_2opagelsqxstandard34525120640115/2_2opagelsqxstandard34525120640115_seg.nii.gz"
+ },
+ {
+ "image": "103604/3_1opagelsqxbone33825120560115.nii.gz",
+ "pseudo_label": "103604/3_1opagelsqxbone33825120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103604/3_1opagelsqxbone33825120560115/3_1opagelsqxbone33825120560115_seg.nii.gz"
+ },
+ {
+ "image": "104351/1_1opagelsplusstandard36025120800115.nii.gz",
+ "pseudo_label": "104351/1_1opagelsplusstandard36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104351/1_1opagelsplusstandard36025120800115/1_1opagelsplusstandard36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "104351/1_0opagelspluslung36025120800108.nii.gz",
+ "pseudo_label": "104351/1_0opagelspluslung36025120800108.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104351/1_0opagelspluslung36025120800108/1_0opagelspluslung36025120800108_seg.nii.gz"
+ },
+ {
+ "image": "104351/1_1opagelspluslung36025120800115.nii.gz",
+ "pseudo_label": "104351/1_1opagelspluslung36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104351/1_1opagelspluslung36025120800115/1_1opagelspluslung36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "104351/1_2opagelsplusstandard36025120800115.nii.gz",
+ "pseudo_label": "104351/1_2opagelsplusstandard36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104351/1_2opagelsplusstandard36025120800115/1_2opagelsplusstandard36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "104351/1_0opagelsplusstandard36025120800108.nii.gz",
+ "pseudo_label": "104351/1_0opagelsplusstandard36025120800108.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104351/1_0opagelsplusstandard36025120800108/1_0opagelsplusstandard36025120800108_seg.nii.gz"
+ },
+ {
+ "image": "102255/3_0opagelsqxstandard3342512048015.nii.gz",
+ "pseudo_label": "102255/3_0opagelsqxstandard3342512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102255/3_0opagelsqxstandard3342512048015/3_0opagelsqxstandard3342512048015_seg.nii.gz"
+ },
+ {
+ "image": "102255/2_0opagelsqxbone3342512048015.nii.gz",
+ "pseudo_label": "102255/2_0opagelsqxbone3342512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102255/2_0opagelsqxbone3342512048015/2_0opagelsqxbone3342512048015_seg.nii.gz"
+ },
+ {
+ "image": "102255/2_1opagels16bone3202512000na.nii.gz",
+ "pseudo_label": "102255/2_1opagels16bone3202512000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102255/2_1opagels16bone3202512000na/2_1opagels16bone3202512000na_seg.nii.gz"
+ },
+ {
+ "image": "102255/3_2opagelspr16standard3002512040014.nii.gz",
+ "pseudo_label": "102255/3_2opagelspr16standard3002512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102255/3_2opagelspr16standard3002512040014/3_2opagelspr16standard3002512040014_seg.nii.gz"
+ },
+ {
+ "image": "111310/9753_0opaphmx8000c351321205624512.nii.gz",
+ "pseudo_label": "111310/9753_0opaphmx8000c351321205624512.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111310/9753_0opaphmx8000c351321205624512/9753_0opaphmx8000c351321205624512_seg.nii.gz"
+ },
+ {
+ "image": "111310/1465_1opaphmx8000c35332120453612.nii.gz",
+ "pseudo_label": "111310/1465_1opaphmx8000c35332120453612.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111310/1465_1opaphmx8000c35332120453612/1465_1opaphmx8000c35332120453612_seg.nii.gz"
+ },
+ {
+ "image": "105499/3_1opasevzoomb50f39021408040na.nii.gz",
+ "pseudo_label": "105499/3_1opasevzoomb50f39021408040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105499/3_1opasevzoomb50f39021408040na/3_1opasevzoomb50f39021408040na_seg.nii.gz"
+ },
+ {
+ "image": "105499/2_1opasevzoomb30f39021408040na.nii.gz",
+ "pseudo_label": "105499/2_1opasevzoomb30f39021408040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105499/2_1opasevzoomb30f39021408040na/2_1opasevzoomb30f39021408040na_seg.nii.gz"
+ },
+ {
+ "image": "103761/2_0opasevzoomb50f31021206030na.nii.gz",
+ "pseudo_label": "103761/2_0opasevzoomb50f31021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103761/2_0opasevzoomb50f31021206030na/2_0opasevzoomb50f31021206030na_seg.nii.gz"
+ },
+ {
+ "image": "103761/3_2opasevzoomb30f29821206030na.nii.gz",
+ "pseudo_label": "103761/3_2opasevzoomb30f29821206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103761/3_2opasevzoomb30f29821206030na/3_2opasevzoomb30f29821206030na_seg.nii.gz"
+ },
+ {
+ "image": "112939/3_0opagelsqxbone3082512048015.nii.gz",
+ "pseudo_label": "112939/3_0opagelsqxbone3082512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112939/3_0opagelsqxbone3082512048015/3_0opagelsqxbone3082512048015_seg.nii.gz"
+ },
+ {
+ "image": "112939/2_1opagels16bone2892512000na.nii.gz",
+ "pseudo_label": "112939/2_1opagels16bone2892512000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112939/2_1opagels16bone2892512000na/2_1opagels16bone2892512000na_seg.nii.gz"
+ },
+ {
+ "image": "112939/2_0opagelsqxstandard3082512048015.nii.gz",
+ "pseudo_label": "112939/2_0opagelsqxstandard3082512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112939/2_0opagelsqxstandard3082512048015/2_0opagelsqxstandard3082512048015_seg.nii.gz"
+ },
+ {
+ "image": "112939/3_1opagels16standard2892512000na.nii.gz",
+ "pseudo_label": "112939/3_1opagels16standard2892512000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112939/3_1opagels16standard2892512000na/3_1opagels16standard2892512000na_seg.nii.gz"
+ },
+ {
+ "image": "108944/3488_2opaphmx8000c34032120453612.nii.gz",
+ "pseudo_label": "108944/3488_2opaphmx8000c34032120453612.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108944/3488_2opaphmx8000c34032120453612/3488_2opaphmx8000c34032120453612_seg.nii.gz"
+ },
+ {
+ "image": "108944/4340_0opaphmx8000c32232120453612.nii.gz",
+ "pseudo_label": "108944/4340_0opaphmx8000c32232120453612.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108944/4340_0opaphmx8000c32232120453612/4340_0opaphmx8000c32232120453612_seg.nii.gz"
+ },
+ {
+ "image": "112561/0_0opaphmx8000d34732120600118.nii.gz",
+ "pseudo_label": "112561/0_0opaphmx8000d34732120600118.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112561/0_0opaphmx8000d34732120600118/0_0opaphmx8000d34732120600118_seg.nii.gz"
+ },
+ {
+ "image": "112561/964_1opaphmx8000d34932120600118.nii.gz",
+ "pseudo_label": "112561/964_1opaphmx8000d34932120600118.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112561/964_1opaphmx8000d34932120600118/964_1opaphmx8000d34932120600118_seg.nii.gz"
+ },
+ {
+ "image": "112561/963_1opaphmx8000c34932120600118.nii.gz",
+ "pseudo_label": "112561/963_1opaphmx8000c34932120600118.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112561/963_1opaphmx8000c34932120600118/963_1opaphmx8000c34932120600118_seg.nii.gz"
+ },
+ {
+ "image": "112561/3062_2opaphmx8000c3333212039018.nii.gz",
+ "pseudo_label": "112561/3062_2opaphmx8000c3333212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112561/3062_2opaphmx8000c3333212039018/3062_2opaphmx8000c3333212039018_seg.nii.gz"
+ },
+ {
+ "image": "112561/3061_2opaphmx8000d3333212039018.nii.gz",
+ "pseudo_label": "112561/3061_2opaphmx8000d3333212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112561/3061_2opaphmx8000d3333212039018/3061_2opaphmx8000d3333212039018_seg.nii.gz"
+ },
+ {
+ "image": "112561/0_0opaphmx8000c34732120600118.nii.gz",
+ "pseudo_label": "112561/0_0opaphmx8000c34732120600118.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112561/0_0opaphmx8000c34732120600118/0_0opaphmx8000c34732120600118_seg.nii.gz"
+ },
+ {
+ "image": "103049/2_0opagehsqxstandard38025120560115.nii.gz",
+ "pseudo_label": "103049/2_0opagehsqxstandard38025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103049/2_0opagehsqxstandard38025120560115/2_0opagehsqxstandard38025120560115_seg.nii.gz"
+ },
+ {
+ "image": "103049/4_1opagehsqxbone38025120560115.nii.gz",
+ "pseudo_label": "103049/4_1opagehsqxbone38025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103049/4_1opagehsqxbone38025120560115/4_1opagehsqxbone38025120560115_seg.nii.gz"
+ },
+ {
+ "image": "103049/3_0opagehsqxbone38025120560115.nii.gz",
+ "pseudo_label": "103049/3_0opagehsqxbone38025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103049/3_0opagehsqxbone38025120560115/3_0opagehsqxbone38025120560115_seg.nii.gz"
+ },
+ {
+ "image": "103049/3_1opagehsqxstandard38025120560115.nii.gz",
+ "pseudo_label": "103049/3_1opagehsqxstandard38025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103049/3_1opagehsqxstandard38025120560115/3_1opagehsqxstandard38025120560115_seg.nii.gz"
+ },
+ {
+ "image": "103049/2_2opagehsqxstandard38025120560115.nii.gz",
+ "pseudo_label": "103049/2_2opagehsqxstandard38025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103049/2_2opagehsqxstandard38025120560115/2_2opagehsqxstandard38025120560115_seg.nii.gz"
+ },
+ {
+ "image": "112616/2_2opasesen16b30f34421204032na.nii.gz",
+ "pseudo_label": "112616/2_2opasesen16b30f34421204032na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112616/2_2opasesen16b30f34421204032na/2_2opasesen16b30f34421204032na_seg.nii.gz"
+ },
+ {
+ "image": "100731/3_2opatoaqul4fc513141212050nana.nii.gz",
+ "pseudo_label": "100731/3_2opatoaqul4fc513141212050nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100731/3_2opatoaqul4fc513141212050nana/3_2opatoaqul4fc513141212050nana_seg.nii.gz"
+ },
+ {
+ "image": "100731/3_1opatoaqul4fc51300212060nana.nii.gz",
+ "pseudo_label": "100731/3_1opatoaqul4fc51300212060nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100731/3_1opatoaqul4fc51300212060nana/3_1opatoaqul4fc51300212060nana_seg.nii.gz"
+ },
+ {
+ "image": "111945/2_1opagelsqxstandard34425120640115.nii.gz",
+ "pseudo_label": "111945/2_1opagelsqxstandard34425120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111945/2_1opagelsqxstandard34425120640115/2_1opagelsqxstandard34425120640115_seg.nii.gz"
+ },
+ {
+ "image": "111945/3_1opagelsqxbone34425120640115.nii.gz",
+ "pseudo_label": "111945/3_1opagelsqxbone34425120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111945/3_1opagelsqxbone34425120640115/3_1opagelsqxbone34425120640115_seg.nii.gz"
+ },
+ {
+ "image": "111945/3_2opagelsqxbone36025120640115.nii.gz",
+ "pseudo_label": "111945/3_2opagelsqxbone36025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111945/3_2opagelsqxbone36025120640115/3_2opagelsqxbone36025120640115_seg.nii.gz"
+ },
+ {
+ "image": "106642/6307_1opaphmx8000c36932120453612.nii.gz",
+ "pseudo_label": "106642/6307_1opaphmx8000c36932120453612.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106642/6307_1opaphmx8000c36932120453612/6307_1opaphmx8000c36932120453612_seg.nii.gz"
+ },
+ {
+ "image": "106642/4418_0opaphmx8000c364321208787012.nii.gz",
+ "pseudo_label": "106642/4418_0opaphmx8000c364321208787012.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106642/4418_0opaphmx8000c364321208787012/4418_0opaphmx8000c364321208787012_seg.nii.gz"
+ },
+ {
+ "image": "102356/3_2opasevzoomb50f33221207540na.nii.gz",
+ "pseudo_label": "102356/3_2opasevzoomb50f33221207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102356/3_2opasevzoomb50f33221207540na/3_2opasevzoomb50f33221207540na_seg.nii.gz"
+ },
+ {
+ "image": "108069/3_1opatoaqul4fc513301212055nana.nii.gz",
+ "pseudo_label": "108069/3_1opatoaqul4fc513301212055nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108069/3_1opatoaqul4fc513301212055nana/3_1opatoaqul4fc513301212055nana_seg.nii.gz"
+ },
+ {
+ "image": "103839/2_2opasevzoomb30f33021208040na.nii.gz",
+ "pseudo_label": "103839/2_2opasevzoomb30f33021208040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103839/2_2opasevzoomb30f33021208040na/2_2opasevzoomb30f33021208040na_seg.nii.gz"
+ },
+ {
+ "image": "103839/3_0opagels16standard30025120600114.nii.gz",
+ "pseudo_label": "103839/3_0opagels16standard30025120600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103839/3_0opagels16standard30025120600114/3_0opagels16standard30025120600114_seg.nii.gz"
+ },
+ {
+ "image": "107414/3_0opagehsqxbone34025120560115.nii.gz",
+ "pseudo_label": "107414/3_0opagehsqxbone34025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107414/3_0opagehsqxbone34025120560115/3_0opagehsqxbone34025120560115_seg.nii.gz"
+ },
+ {
+ "image": "107414/3_2opagehsqxbone34025120560115.nii.gz",
+ "pseudo_label": "107414/3_2opagehsqxbone34025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107414/3_2opagehsqxbone34025120560115/3_2opagehsqxbone34025120560115_seg.nii.gz"
+ },
+ {
+ "image": "107414/2_0opagehsqxstandard34025120560115.nii.gz",
+ "pseudo_label": "107414/2_0opagehsqxstandard34025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107414/2_0opagehsqxstandard34025120560115/2_0opagehsqxstandard34025120560115_seg.nii.gz"
+ },
+ {
+ "image": "107414/2_2opagehsqxstandard34025120560115.nii.gz",
+ "pseudo_label": "107414/2_2opagehsqxstandard34025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107414/2_2opagehsqxstandard34025120560115/2_2opagehsqxstandard34025120560115_seg.nii.gz"
+ },
+ {
+ "image": "107414/2_1opagehsqxstandard34025120560115.nii.gz",
+ "pseudo_label": "107414/2_1opagehsqxstandard34025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107414/2_1opagehsqxstandard34025120560115/2_1opagehsqxstandard34025120560115_seg.nii.gz"
+ },
+ {
+ "image": "102991/3_1opagelsqxbone41025120720115.nii.gz",
+ "pseudo_label": "102991/3_1opagelsqxbone41025120720115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102991/3_1opagelsqxbone41025120720115/3_1opagelsqxbone41025120720115_seg.nii.gz"
+ },
+ {
+ "image": "102991/2_2opagelsqxstandard38725120720115.nii.gz",
+ "pseudo_label": "102991/2_2opagelsqxstandard38725120720115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102991/2_2opagelsqxstandard38725120720115/2_2opagelsqxstandard38725120720115_seg.nii.gz"
+ },
+ {
+ "image": "102991/3_2opagelsqxbone38725120720115.nii.gz",
+ "pseudo_label": "102991/3_2opagelsqxbone38725120720115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102991/3_2opagelsqxbone38725120720115/3_2opagelsqxbone38725120720115_seg.nii.gz"
+ },
+ {
+ "image": "108790/2_0opagels16standard34925140640114.nii.gz",
+ "pseudo_label": "108790/2_0opagels16standard34925140640114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108790/2_0opagels16standard34925140640114/2_0opagels16standard34925140640114_seg.nii.gz"
+ },
+ {
+ "image": "108790/2_2opagels16standard3602514040014.nii.gz",
+ "pseudo_label": "108790/2_2opagels16standard3602514040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108790/2_2opagels16standard3602514040014/2_2opagels16standard3602514040014_seg.nii.gz"
+ },
+ {
+ "image": "108790/2_1opagels16standard3402514040014.nii.gz",
+ "pseudo_label": "108790/2_1opagels16standard3402514040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108790/2_1opagels16standard3402514040014/2_1opagels16standard3402514040014_seg.nii.gz"
+ },
+ {
+ "image": "106634/2_0opagehsqxstandard26025120560115.nii.gz",
+ "pseudo_label": "106634/2_0opagehsqxstandard26025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106634/2_0opagehsqxstandard26025120560115/2_0opagehsqxstandard26025120560115_seg.nii.gz"
+ },
+ {
+ "image": "106634/2_1opagehsqxstandard26025120560115.nii.gz",
+ "pseudo_label": "106634/2_1opagehsqxstandard26025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106634/2_1opagehsqxstandard26025120560115/2_1opagehsqxstandard26025120560115_seg.nii.gz"
+ },
+ {
+ "image": "106634/3_1opagehsqxbone26025120560115.nii.gz",
+ "pseudo_label": "106634/3_1opagehsqxbone26025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106634/3_1opagehsqxbone26025120560115/3_1opagehsqxbone26025120560115_seg.nii.gz"
+ },
+ {
+ "image": "106634/3_0opagehsqxbone26025120560115.nii.gz",
+ "pseudo_label": "106634/3_0opagehsqxbone26025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106634/3_0opagehsqxbone26025120560115/3_0opagehsqxbone26025120560115_seg.nii.gz"
+ },
+ {
+ "image": "106634/2_2opagehsqxstandard26025120560115.nii.gz",
+ "pseudo_label": "106634/2_2opagehsqxstandard26025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106634/2_2opagehsqxstandard26025120560115/2_2opagehsqxstandard26025120560115_seg.nii.gz"
+ },
+ {
+ "image": "102763/3_2opasesen16b30f35021204530na.nii.gz",
+ "pseudo_label": "102763/3_2opasesen16b30f35021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102763/3_2opasesen16b30f35021204530na/3_2opasesen16b30f35021204530na_seg.nii.gz"
+ },
+ {
+ "image": "102763/5_0opasevzoomb50f38021208040na.nii.gz",
+ "pseudo_label": "102763/5_0opasevzoomb50f38021208040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102763/5_0opasevzoomb50f38021208040na/5_0opasevzoomb50f38021208040na_seg.nii.gz"
+ },
+ {
+ "image": "102763/3_1opasevzoomb30f37521206030na.nii.gz",
+ "pseudo_label": "102763/3_1opasevzoomb30f37521206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102763/3_1opasevzoomb30f37521206030na/3_1opasevzoomb30f37521206030na_seg.nii.gz"
+ },
+ {
+ "image": "102763/4_0opasevzoomb30f38021208040na.nii.gz",
+ "pseudo_label": "102763/4_0opasevzoomb30f38021208040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102763/4_0opasevzoomb30f38021208040na/4_0opasevzoomb30f38021208040na_seg.nii.gz"
+ },
+ {
+ "image": "102689/1_0opagelsplusstandard39025120800115.nii.gz",
+ "pseudo_label": "102689/1_0opagelsplusstandard39025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102689/1_0opagelsplusstandard39025120800115/1_0opagelsplusstandard39025120800115_seg.nii.gz"
+ },
+ {
+ "image": "102689/1_1opagelsplusstandard36025120800115.nii.gz",
+ "pseudo_label": "102689/1_1opagelsplusstandard36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102689/1_1opagelsplusstandard36025120800115/1_1opagelsplusstandard36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "102689/1_1opagelspluslung36025120800115.nii.gz",
+ "pseudo_label": "102689/1_1opagelspluslung36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102689/1_1opagelspluslung36025120800115/1_1opagelspluslung36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "102689/1_2opagelsplusstandard36025120800115.nii.gz",
+ "pseudo_label": "102689/1_2opagelsplusstandard36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102689/1_2opagelsplusstandard36025120800115/1_2opagelsplusstandard36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "102689/1_2opagelspluslung36025120800115.nii.gz",
+ "pseudo_label": "102689/1_2opagelspluslung36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102689/1_2opagelspluslung36025120800115/1_2opagelspluslung36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "102689/1_0opagelspluslung39025120800115.nii.gz",
+ "pseudo_label": "102689/1_0opagelspluslung39025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102689/1_0opagelspluslung39025120800115/1_0opagelspluslung39025120800115_seg.nii.gz"
+ },
+ {
+ "image": "109376/3_1opagels16standard36025120640114.nii.gz",
+ "pseudo_label": "109376/3_1opagels16standard36025120640114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109376/3_1opagels16standard36025120640114/3_1opagels16standard36025120640114_seg.nii.gz"
+ },
+ {
+ "image": "109376/3_0opagelsqxstandard38625120800115.nii.gz",
+ "pseudo_label": "109376/3_0opagelsqxstandard38625120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109376/3_0opagelsqxstandard38625120800115/3_0opagelsqxstandard38625120800115_seg.nii.gz"
+ },
+ {
+ "image": "109376/2_1opagels16bone36025120640114.nii.gz",
+ "pseudo_label": "109376/2_1opagels16bone36025120640114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109376/2_1opagels16bone36025120640114/2_1opagels16bone36025120640114_seg.nii.gz"
+ },
+ {
+ "image": "109376/3_2opagels16standard3302512040014.nii.gz",
+ "pseudo_label": "109376/3_2opagels16standard3302512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109376/3_2opagels16standard3302512040014/3_2opagels16standard3302512040014_seg.nii.gz"
+ },
+ {
+ "image": "109376/2_0opagelsqxbone38625120800115.nii.gz",
+ "pseudo_label": "109376/2_0opagelsqxbone38625120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109376/2_0opagelsqxbone38625120800115/2_0opagelsqxbone38625120800115_seg.nii.gz"
+ },
+ {
+ "image": "101230/2_2opagelsqxstandard38425120640115.nii.gz",
+ "pseudo_label": "101230/2_2opagelsqxstandard38425120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101230/2_2opagelsqxstandard38425120640115/2_2opagelsqxstandard38425120640115_seg.nii.gz"
+ },
+ {
+ "image": "102066/3_1opagels16standard32025120600114.nii.gz",
+ "pseudo_label": "102066/3_1opagels16standard32025120600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102066/3_1opagels16standard32025120600114/3_1opagels16standard32025120600114_seg.nii.gz"
+ },
+ {
+ "image": "102066/3_0opagels16standard32025140600114.nii.gz",
+ "pseudo_label": "102066/3_0opagels16standard32025140600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102066/3_0opagels16standard32025140600114/3_0opagels16standard32025140600114_seg.nii.gz"
+ },
+ {
+ "image": "105176/4_0opagelsqxbone29025120nanana.nii.gz",
+ "pseudo_label": "105176/4_0opagelsqxbone29025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105176/4_0opagelsqxbone29025120nanana/4_0opagelsqxbone29025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "105176/3_1opagels16bone29025120nanana.nii.gz",
+ "pseudo_label": "105176/3_1opagels16bone29025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105176/3_1opagels16bone29025120nanana/3_1opagels16bone29025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "105176/3_0opagelsqxstandard29025120nanana.nii.gz",
+ "pseudo_label": "105176/3_0opagelsqxstandard29025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105176/3_0opagelsqxstandard29025120nanana/3_0opagelsqxstandard29025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "105176/2_1opagels16standard29025120nanana.nii.gz",
+ "pseudo_label": "105176/2_1opagels16standard29025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105176/2_1opagels16standard29025120nanana/2_1opagels16standard29025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "105176/3_2opagels16standard29025120nanana.nii.gz",
+ "pseudo_label": "105176/3_2opagels16standard29025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105176/3_2opagels16standard29025120nanana/3_2opagels16standard29025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "111498/3_1opasevzoomb50f30421207540na.nii.gz",
+ "pseudo_label": "111498/3_1opasevzoomb50f30421207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111498/3_1opasevzoomb50f30421207540na/3_1opasevzoomb50f30421207540na_seg.nii.gz"
+ },
+ {
+ "image": "111498/2_1opasevzoomb30f30421207540na.nii.gz",
+ "pseudo_label": "111498/2_1opasevzoomb30f30421207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111498/2_1opasevzoomb30f30421207540na/2_1opasevzoomb30f30421207540na_seg.nii.gz"
+ },
+ {
+ "image": "111498/3_0opasevzoomb50f28021208040na.nii.gz",
+ "pseudo_label": "111498/3_0opasevzoomb50f28021208040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111498/3_0opasevzoomb50f28021208040na/3_0opasevzoomb50f28021208040na_seg.nii.gz"
+ },
+ {
+ "image": "106377/2_2opasesen16b50f36021204530na.nii.gz",
+ "pseudo_label": "106377/2_2opasesen16b50f36021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106377/2_2opasesen16b50f36021204530na/2_2opasesen16b50f36021204530na_seg.nii.gz"
+ },
+ {
+ "image": "106377/3_0opasesen16b30f35021204530na.nii.gz",
+ "pseudo_label": "106377/3_0opasesen16b30f35021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106377/3_0opasesen16b30f35021204530na/3_0opasesen16b30f35021204530na_seg.nii.gz"
+ },
+ {
+ "image": "107577/2_1opagelsqxstandard3702512048015.nii.gz",
+ "pseudo_label": "107577/2_1opagelsqxstandard3702512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107577/2_1opagelsqxstandard3702512048015/2_1opagelsqxstandard3702512048015_seg.nii.gz"
+ },
+ {
+ "image": "101001/2_2opagels16bone33025120720114.nii.gz",
+ "pseudo_label": "101001/2_2opagels16bone33025120720114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101001/2_2opagels16bone33025120720114/2_2opagels16bone33025120720114_seg.nii.gz"
+ },
+ {
+ "image": "101001/3_2opagels16standard33025120720114.nii.gz",
+ "pseudo_label": "101001/3_2opagels16standard33025120720114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101001/3_2opagels16standard33025120720114/3_2opagels16standard33025120720114_seg.nii.gz"
+ },
+ {
+ "image": "101001/4_0opagels16bone35025140600114.nii.gz",
+ "pseudo_label": "101001/4_0opagels16bone35025140600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101001/4_0opagels16bone35025140600114/4_0opagels16bone35025140600114_seg.nii.gz"
+ },
+ {
+ "image": "107438/2_2opagelsqxstandard31525120640115.nii.gz",
+ "pseudo_label": "107438/2_2opagelsqxstandard31525120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107438/2_2opagelsqxstandard31525120640115/2_2opagelsqxstandard31525120640115_seg.nii.gz"
+ },
+ {
+ "image": "107438/2_1opagelsqxstandard31325120640115.nii.gz",
+ "pseudo_label": "107438/2_1opagelsqxstandard31325120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107438/2_1opagelsqxstandard31325120640115/2_1opagelsqxstandard31325120640115_seg.nii.gz"
+ },
+ {
+ "image": "107438/3_0opagelsqxbone31025120640115.nii.gz",
+ "pseudo_label": "107438/3_0opagelsqxbone31025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107438/3_0opagelsqxbone31025120640115/3_0opagelsqxbone31025120640115_seg.nii.gz"
+ },
+ {
+ "image": "107578/3_1opasevzoomb50f37021207540na.nii.gz",
+ "pseudo_label": "107578/3_1opasevzoomb50f37021207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107578/3_1opasevzoomb50f37021207540na/3_1opasevzoomb50f37021207540na_seg.nii.gz"
+ },
+ {
+ "image": "107578/2_0opasevzoomb30f380212010560na.nii.gz",
+ "pseudo_label": "107578/2_0opasevzoomb30f380212010560na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107578/2_0opasevzoomb30f380212010560na/2_0opasevzoomb30f380212010560na_seg.nii.gz"
+ },
+ {
+ "image": "107578/4_0opasevzoomb50f380212010560na.nii.gz",
+ "pseudo_label": "107578/4_0opasevzoomb50f380212010560na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107578/4_0opasevzoomb50f380212010560na/4_0opasevzoomb50f380212010560na_seg.nii.gz"
+ },
+ {
+ "image": "107578/2_2opasevzoomb30f43221207540na.nii.gz",
+ "pseudo_label": "107578/2_2opasevzoomb30f43221207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107578/2_2opasevzoomb30f43221207540na/2_2opasevzoomb30f43221207540na_seg.nii.gz"
+ },
+ {
+ "image": "104173/2_2opagelsqxstandard36025120640115.nii.gz",
+ "pseudo_label": "104173/2_2opagelsqxstandard36025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104173/2_2opagelsqxstandard36025120640115/2_2opagelsqxstandard36025120640115_seg.nii.gz"
+ },
+ {
+ "image": "104173/2_1opagelsqxstandard36025120640115.nii.gz",
+ "pseudo_label": "104173/2_1opagelsqxstandard36025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104173/2_1opagelsqxstandard36025120640115/2_1opagelsqxstandard36025120640115_seg.nii.gz"
+ },
+ {
+ "image": "104173/3_0opagelsqxbone39025120640115.nii.gz",
+ "pseudo_label": "104173/3_0opagelsqxbone39025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104173/3_0opagelsqxbone39025120640115/3_0opagelsqxbone39025120640115_seg.nii.gz"
+ },
+ {
+ "image": "104173/3_1opagelsqxbone36025120640115.nii.gz",
+ "pseudo_label": "104173/3_1opagelsqxbone36025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104173/3_1opagelsqxbone36025120640115/3_1opagelsqxbone36025120640115_seg.nii.gz"
+ },
+ {
+ "image": "104173/2_0opagelsqxstandard39025120640115.nii.gz",
+ "pseudo_label": "104173/2_0opagelsqxstandard39025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104173/2_0opagelsqxstandard39025120640115/2_0opagelsqxstandard39025120640115_seg.nii.gz"
+ },
+ {
+ "image": "105275/2_0opagelsqxstandard37425120640115.nii.gz",
+ "pseudo_label": "105275/2_0opagelsqxstandard37425120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105275/2_0opagelsqxstandard37425120640115/2_0opagelsqxstandard37425120640115_seg.nii.gz"
+ },
+ {
+ "image": "104368/2_2opasevzoomb50f30021206030na.nii.gz",
+ "pseudo_label": "104368/2_2opasevzoomb50f30021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104368/2_2opasevzoomb50f30021206030na/2_2opasevzoomb50f30021206030na_seg.nii.gz"
+ },
+ {
+ "image": "104368/2_1opasesen16b50f30021204530na.nii.gz",
+ "pseudo_label": "104368/2_1opasesen16b50f30021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104368/2_1opasesen16b50f30021204530na/2_1opasesen16b50f30021204530na_seg.nii.gz"
+ },
+ {
+ "image": "104002/3_1opatoaqul4fc513406212080nana.nii.gz",
+ "pseudo_label": "104002/3_1opatoaqul4fc513406212080nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104002/3_1opatoaqul4fc513406212080nana/3_1opatoaqul4fc513406212080nana_seg.nii.gz"
+ },
+ {
+ "image": "104002/4_2opatoaqul4fc513453212050nana.nii.gz",
+ "pseudo_label": "104002/4_2opatoaqul4fc513453212050nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104002/4_2opatoaqul4fc513453212050nana/4_2opatoaqul4fc513453212050nana_seg.nii.gz"
+ },
+ {
+ "image": "103890/7122_2opaphmx8000c3353212039018.nii.gz",
+ "pseudo_label": "103890/7122_2opaphmx8000c3353212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103890/7122_2opaphmx8000c3353212039018/7122_2opaphmx8000c3353212039018_seg.nii.gz"
+ },
+ {
+ "image": "112469/2_0opagelsqxstandard30025120nanana.nii.gz",
+ "pseudo_label": "112469/2_0opagelsqxstandard30025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112469/2_0opagelsqxstandard30025120nanana/2_0opagelsqxstandard30025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "112469/3_1opagels16bone30025120nanana.nii.gz",
+ "pseudo_label": "112469/3_1opagels16bone30025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112469/3_1opagels16bone30025120nanana/3_1opagels16bone30025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "112469/2_2opagels16standard30025120nanana.nii.gz",
+ "pseudo_label": "112469/2_2opagels16standard30025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112469/2_2opagels16standard30025120nanana/2_2opagels16standard30025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "112469/2_1opagels16standard30025120nanana.nii.gz",
+ "pseudo_label": "112469/2_1opagels16standard30025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112469/2_1opagels16standard30025120nanana/2_1opagels16standard30025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "112469/3_2opagels16bone30025120nanana.nii.gz",
+ "pseudo_label": "112469/3_2opagels16bone30025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112469/3_2opagels16bone30025120nanana/3_2opagels16bone30025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "112469/3_0opagelsqxbone30025120nanana.nii.gz",
+ "pseudo_label": "112469/3_0opagelsqxbone30025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112469/3_0opagelsqxbone30025120nanana/3_0opagelsqxbone30025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "102082/2_1opagels16bone36025120600114.nii.gz",
+ "pseudo_label": "102082/2_1opagels16bone36025120600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102082/2_1opagels16bone36025120600114/2_1opagels16bone36025120600114_seg.nii.gz"
+ },
+ {
+ "image": "102082/3_0opagels16standard36025120600114.nii.gz",
+ "pseudo_label": "102082/3_0opagels16standard36025120600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102082/3_0opagels16standard36025120600114/3_0opagels16standard36025120600114_seg.nii.gz"
+ },
+ {
+ "image": "102082/3_2opagels16standard36025140600114.nii.gz",
+ "pseudo_label": "102082/3_2opagels16standard36025140600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102082/3_2opagels16standard36025140600114/3_2opagels16standard36025140600114_seg.nii.gz"
+ },
+ {
+ "image": "107413/5_1opasesen16b50f30451204530na.nii.gz",
+ "pseudo_label": "107413/5_1opasesen16b50f30451204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107413/5_1opasesen16b50f30451204530na/5_1opasesen16b50f30451204530na_seg.nii.gz"
+ },
+ {
+ "image": "107413/7_2opasesen16b30f32351204530na.nii.gz",
+ "pseudo_label": "107413/7_2opasesen16b30f32351204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107413/7_2opasesen16b30f32351204530na/7_2opasesen16b30f32351204530na_seg.nii.gz"
+ },
+ {
+ "image": "107413/4_2opasesen16b30f32321204530na.nii.gz",
+ "pseudo_label": "107413/4_2opasesen16b30f32321204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107413/4_2opasesen16b30f32321204530na/4_2opasesen16b30f32321204530na_seg.nii.gz"
+ },
+ {
+ "image": "107413/3_0opasevzoomb30f32251206030na.nii.gz",
+ "pseudo_label": "107413/3_0opasevzoomb30f32251206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107413/3_0opasevzoomb30f32251206030na/3_0opasevzoomb30f32251206030na_seg.nii.gz"
+ },
+ {
+ "image": "107413/5_2opasesen16b50f32351204530na.nii.gz",
+ "pseudo_label": "107413/5_2opasesen16b50f32351204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107413/5_2opasesen16b50f32351204530na/5_2opasesen16b50f32351204530na_seg.nii.gz"
+ },
+ {
+ "image": "107413/4_0opasevzoomb50f32251206030na.nii.gz",
+ "pseudo_label": "107413/4_0opasevzoomb50f32251206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107413/4_0opasevzoomb50f32251206030na/4_0opasevzoomb50f32251206030na_seg.nii.gz"
+ },
+ {
+ "image": "105820/2_2opagelsqxstandard35725120640115.nii.gz",
+ "pseudo_label": "105820/2_2opagelsqxstandard35725120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105820/2_2opagelsqxstandard35725120640115/2_2opagelsqxstandard35725120640115_seg.nii.gz"
+ },
+ {
+ "image": "105820/3_0opagelsqxbone32025120640115.nii.gz",
+ "pseudo_label": "105820/3_0opagelsqxbone32025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105820/3_0opagelsqxbone32025120640115/3_0opagelsqxbone32025120640115_seg.nii.gz"
+ },
+ {
+ "image": "105820/2_1opagelsqxstandard34025120640115.nii.gz",
+ "pseudo_label": "105820/2_1opagelsqxstandard34025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105820/2_1opagelsqxstandard34025120640115/2_1opagelsqxstandard34025120640115_seg.nii.gz"
+ },
+ {
+ "image": "105820/3_1opagelsqxbone34025120640115.nii.gz",
+ "pseudo_label": "105820/3_1opagelsqxbone34025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105820/3_1opagelsqxbone34025120640115/3_1opagelsqxbone34025120640115_seg.nii.gz"
+ },
+ {
+ "image": "105820/3_2opagelsqxbone35725120640115.nii.gz",
+ "pseudo_label": "105820/3_2opagelsqxbone35725120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105820/3_2opagelsqxbone35725120640115/3_2opagelsqxbone35725120640115_seg.nii.gz"
+ },
+ {
+ "image": "110771/3_2opatoaqul4fc51350212080nana.nii.gz",
+ "pseudo_label": "110771/3_2opatoaqul4fc51350212080nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110771/3_2opatoaqul4fc51350212080nana/3_2opatoaqul4fc51350212080nana_seg.nii.gz"
+ },
+ {
+ "image": "105297/0_0opaphmx8000d2963212039018.nii.gz",
+ "pseudo_label": "105297/0_0opaphmx8000d2963212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105297/0_0opaphmx8000d2963212039018/0_0opaphmx8000d2963212039018_seg.nii.gz"
+ },
+ {
+ "image": "105297/0_0opaphmx8000c2963212039018.nii.gz",
+ "pseudo_label": "105297/0_0opaphmx8000c2963212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105297/0_0opaphmx8000c2963212039018/0_0opaphmx8000c2963212039018_seg.nii.gz"
+ },
+ {
+ "image": "105297/222_2opaphmx8000c2743212039018.nii.gz",
+ "pseudo_label": "105297/222_2opaphmx8000c2743212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105297/222_2opaphmx8000c2743212039018/222_2opaphmx8000c2743212039018_seg.nii.gz"
+ },
+ {
+ "image": "105297/9296_1opaphmx8000d2893212039018.nii.gz",
+ "pseudo_label": "105297/9296_1opaphmx8000d2893212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105297/9296_1opaphmx8000d2893212039018/9296_1opaphmx8000d2893212039018_seg.nii.gz"
+ },
+ {
+ "image": "112257/2_0opagelsqxstandard30025120nanana.nii.gz",
+ "pseudo_label": "112257/2_0opagelsqxstandard30025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112257/2_0opagelsqxstandard30025120nanana/2_0opagelsqxstandard30025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "112257/3_0opagelsqxbone30025120nanana.nii.gz",
+ "pseudo_label": "112257/3_0opagelsqxbone30025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112257/3_0opagelsqxbone30025120nanana/3_0opagelsqxbone30025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "108842/2_2opagelspr16bone3602512048014.nii.gz",
+ "pseudo_label": "108842/2_2opagelspr16bone3602512048014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108842/2_2opagelspr16bone3602512048014/2_2opagelspr16bone3602512048014_seg.nii.gz"
+ },
+ {
+ "image": "108842/3_1opagels16standard3602512040014.nii.gz",
+ "pseudo_label": "108842/3_1opagels16standard3602512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108842/3_1opagels16standard3602512040014/3_1opagels16standard3602512040014_seg.nii.gz"
+ },
+ {
+ "image": "108842/3_2opagelspr16standard3602512048014.nii.gz",
+ "pseudo_label": "108842/3_2opagelspr16standard3602512048014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108842/3_2opagelspr16standard3602512048014/3_2opagelspr16standard3602512048014_seg.nii.gz"
+ },
+ {
+ "image": "108842/3_0opagelsqxstandard3602512048015.nii.gz",
+ "pseudo_label": "108842/3_0opagelsqxstandard3602512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108842/3_0opagelsqxstandard3602512048015/3_0opagelsqxstandard3602512048015_seg.nii.gz"
+ },
+ {
+ "image": "108842/2_1opagels16bone3602512040014.nii.gz",
+ "pseudo_label": "108842/2_1opagels16bone3602512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108842/2_1opagels16bone3602512040014/2_1opagels16bone3602512040014_seg.nii.gz"
+ },
+ {
+ "image": "108842/2_0opagelsqxbone3602512048015.nii.gz",
+ "pseudo_label": "108842/2_0opagelsqxbone3602512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108842/2_0opagelsqxbone3602512048015/2_0opagelsqxbone3602512048015_seg.nii.gz"
+ },
+ {
+ "image": "109531/2_1opagelsqxstandard35225120600115.nii.gz",
+ "pseudo_label": "109531/2_1opagelsqxstandard35225120600115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109531/2_1opagelsqxstandard35225120600115/2_1opagelsqxstandard35225120600115_seg.nii.gz"
+ },
+ {
+ "image": "109531/2_0opagelsqxstandard35225120800115.nii.gz",
+ "pseudo_label": "109531/2_0opagelsqxstandard35225120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109531/2_0opagelsqxstandard35225120800115/2_0opagelsqxstandard35225120800115_seg.nii.gz"
+ },
+ {
+ "image": "109531/2_2opagels16standard40025120582nana.nii.gz",
+ "pseudo_label": "109531/2_2opagels16standard40025120582nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109531/2_2opagels16standard40025120582nana/2_2opagels16standard40025120582nana_seg.nii.gz"
+ },
+ {
+ "image": "106760/3_1opatoaqul4fc513109212040nana.nii.gz",
+ "pseudo_label": "106760/3_1opatoaqul4fc513109212040nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106760/3_1opatoaqul4fc513109212040nana/3_1opatoaqul4fc513109212040nana_seg.nii.gz"
+ },
+ {
+ "image": "106760/4_2opatoaqul4fc513203212060nana.nii.gz",
+ "pseudo_label": "106760/4_2opatoaqul4fc513203212060nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106760/4_2opatoaqul4fc513203212060nana/4_2opatoaqul4fc513203212060nana_seg.nii.gz"
+ },
+ {
+ "image": "106760/4_1opatoaqul4fc513109212040nana.nii.gz",
+ "pseudo_label": "106760/4_1opatoaqul4fc513109212040nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106760/4_1opatoaqul4fc513109212040nana/4_1opatoaqul4fc513109212040nana_seg.nii.gz"
+ },
+ {
+ "image": "113127/2_0opagelsqxstandard34025120nanana.nii.gz",
+ "pseudo_label": "113127/2_0opagelsqxstandard34025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113127/2_0opagelsqxstandard34025120nanana/2_0opagelsqxstandard34025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "113127/3_0opagelsqxbone34025120nanana.nii.gz",
+ "pseudo_label": "113127/3_0opagelsqxbone34025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113127/3_0opagelsqxbone34025120nanana/3_0opagelsqxbone34025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "113127/3_1opagels16bone34025120nanana.nii.gz",
+ "pseudo_label": "113127/3_1opagels16bone34025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113127/3_1opagels16bone34025120nanana/3_1opagels16bone34025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "113127/2_1opagels16standard34025120nanana.nii.gz",
+ "pseudo_label": "113127/2_1opagels16standard34025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113127/2_1opagels16standard34025120nanana/2_1opagels16standard34025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "113127/2_2opagels16standard34025120nanana.nii.gz",
+ "pseudo_label": "113127/2_2opagels16standard34025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113127/2_2opagels16standard34025120nanana/2_2opagels16standard34025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "113127/3_2opagels16bone34025120nanana.nii.gz",
+ "pseudo_label": "113127/3_2opagels16bone34025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113127/3_2opagels16bone34025120nanana/3_2opagels16bone34025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "112211/4_0opagehsqxstandard37025120560115.nii.gz",
+ "pseudo_label": "112211/4_0opagehsqxstandard37025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112211/4_0opagehsqxstandard37025120560115/4_0opagehsqxstandard37025120560115_seg.nii.gz"
+ },
+ {
+ "image": "112211/2_2opagehsqxstandard37025120560115.nii.gz",
+ "pseudo_label": "112211/2_2opagehsqxstandard37025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112211/2_2opagehsqxstandard37025120560115/2_2opagehsqxstandard37025120560115_seg.nii.gz"
+ },
+ {
+ "image": "103123/5_2opasesen16b50f34951204530na.nii.gz",
+ "pseudo_label": "103123/5_2opasesen16b50f34951204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103123/5_2opasesen16b50f34951204530na/5_2opasesen16b50f34951204530na_seg.nii.gz"
+ },
+ {
+ "image": "103123/4_0opasesen16b50f38751206040na.nii.gz",
+ "pseudo_label": "103123/4_0opasesen16b50f38751206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103123/4_0opasesen16b50f38751206040na/4_0opasesen16b50f38751206040na_seg.nii.gz"
+ },
+ {
+ "image": "103123/3_2opasesen16b30f34951204530na.nii.gz",
+ "pseudo_label": "103123/3_2opasesen16b30f34951204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103123/3_2opasesen16b30f34951204530na/3_2opasesen16b30f34951204530na_seg.nii.gz"
+ },
+ {
+ "image": "103123/3_1opasesen16b30f37751204530na.nii.gz",
+ "pseudo_label": "103123/3_1opasesen16b30f37751204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103123/3_1opasesen16b30f37751204530na/3_1opasesen16b30f37751204530na_seg.nii.gz"
+ },
+ {
+ "image": "103123/7_0opasesen16b30f38751206040na.nii.gz",
+ "pseudo_label": "103123/7_0opasesen16b30f38751206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103123/7_0opasesen16b30f38751206040na/7_0opasesen16b30f38751206040na_seg.nii.gz"
+ },
+ {
+ "image": "103123/5_1opasesen16b50f37751204530na.nii.gz",
+ "pseudo_label": "103123/5_1opasesen16b50f37751204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103123/5_1opasesen16b50f37751204530na/5_1opasesen16b50f37751204530na_seg.nii.gz"
+ },
+ {
+ "image": "101393/2_2opasevzoomb50f32421206030na.nii.gz",
+ "pseudo_label": "101393/2_2opasevzoomb50f32421206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101393/2_2opasevzoomb50f32421206030na/2_2opasevzoomb50f32421206030na_seg.nii.gz"
+ },
+ {
+ "image": "101393/2_0opasevzoomb50f32221206030na.nii.gz",
+ "pseudo_label": "101393/2_0opasevzoomb50f32221206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101393/2_0opasevzoomb50f32221206030na/2_0opasevzoomb50f32221206030na_seg.nii.gz"
+ },
+ {
+ "image": "101393/3_1opasesen16b30f30021204530na.nii.gz",
+ "pseudo_label": "101393/3_1opasesen16b30f30021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101393/3_1opasesen16b30f30021204530na/3_1opasesen16b30f30021204530na_seg.nii.gz"
+ },
+ {
+ "image": "101393/2_1opasesen16b50f30021204530na.nii.gz",
+ "pseudo_label": "101393/2_1opasesen16b50f30021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101393/2_1opasesen16b50f30021204530na/2_1opasesen16b50f30021204530na_seg.nii.gz"
+ },
+ {
+ "image": "101393/3_2opasevzoomb30f32421206030na.nii.gz",
+ "pseudo_label": "101393/3_2opasevzoomb30f32421206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101393/3_2opasevzoomb30f32421206030na/3_2opasevzoomb30f32421206030na_seg.nii.gz"
+ },
+ {
+ "image": "105620/2_1opagehsqxstandard33025120560115.nii.gz",
+ "pseudo_label": "105620/2_1opagehsqxstandard33025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105620/2_1opagehsqxstandard33025120560115/2_1opagehsqxstandard33025120560115_seg.nii.gz"
+ },
+ {
+ "image": "105620/3_0opagehsqxbone33025120560115.nii.gz",
+ "pseudo_label": "105620/3_0opagehsqxbone33025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105620/3_0opagehsqxbone33025120560115/3_0opagehsqxbone33025120560115_seg.nii.gz"
+ },
+ {
+ "image": "105620/2_2opagehsqxstandard33025120560115.nii.gz",
+ "pseudo_label": "105620/2_2opagehsqxstandard33025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105620/2_2opagehsqxstandard33025120560115/2_2opagehsqxstandard33025120560115_seg.nii.gz"
+ },
+ {
+ "image": "110650/2_2opasevzoomb30f33221207540na.nii.gz",
+ "pseudo_label": "110650/2_2opasevzoomb30f33221207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110650/2_2opasevzoomb30f33221207540na/2_2opasevzoomb30f33221207540na_seg.nii.gz"
+ },
+ {
+ "image": "110650/3_0opasevzoomb30f340212010560na.nii.gz",
+ "pseudo_label": "110650/3_0opasevzoomb30f340212010560na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110650/3_0opasevzoomb30f340212010560na/3_0opasevzoomb30f340212010560na_seg.nii.gz"
+ },
+ {
+ "image": "101028/2_0opagels16bone32025120600114.nii.gz",
+ "pseudo_label": "101028/2_0opagels16bone32025120600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101028/2_0opagels16bone32025120600114/2_0opagels16bone32025120600114_seg.nii.gz"
+ },
+ {
+ "image": "101028/2_2opagels16bone31025120600114.nii.gz",
+ "pseudo_label": "101028/2_2opagels16bone31025120600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101028/2_2opagels16bone31025120600114/2_2opagels16bone31025120600114_seg.nii.gz"
+ },
+ {
+ "image": "101028/3_2opagels16standard31025120600114.nii.gz",
+ "pseudo_label": "101028/3_2opagels16standard31025120600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101028/3_2opagels16standard31025120600114/3_2opagels16standard31025120600114_seg.nii.gz"
+ },
+ {
+ "image": "112289/5_0opasevzoomb50f34021207540na.nii.gz",
+ "pseudo_label": "112289/5_0opasevzoomb50f34021207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112289/5_0opasevzoomb50f34021207540na/5_0opasevzoomb50f34021207540na_seg.nii.gz"
+ },
+ {
+ "image": "110203/2_0opasevzoomb50f33021206030na.nii.gz",
+ "pseudo_label": "110203/2_0opasevzoomb50f33021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110203/2_0opasevzoomb50f33021206030na/2_0opasevzoomb50f33021206030na_seg.nii.gz"
+ },
+ {
+ "image": "110203/3_2opasesen16b30f32021204530na.nii.gz",
+ "pseudo_label": "110203/3_2opasesen16b30f32021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110203/3_2opasesen16b30f32021204530na/3_2opasesen16b30f32021204530na_seg.nii.gz"
+ },
+ {
+ "image": "101079/3_1opagels16standard3682512000na.nii.gz",
+ "pseudo_label": "101079/3_1opagels16standard3682512000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101079/3_1opagels16standard3682512000na/3_1opagels16standard3682512000na_seg.nii.gz"
+ },
+ {
+ "image": "101079/2_1opagels16bone3682512000na.nii.gz",
+ "pseudo_label": "101079/2_1opagels16bone3682512000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101079/2_1opagels16bone3682512000na/2_1opagels16bone3682512000na_seg.nii.gz"
+ },
+ {
+ "image": "101079/3_2opagelspr16standard3202512040014.nii.gz",
+ "pseudo_label": "101079/3_2opagelspr16standard3202512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101079/3_2opagelspr16standard3202512040014/3_2opagelspr16standard3202512040014_seg.nii.gz"
+ },
+ {
+ "image": "101079/2_2opagelspr16bone3202512040014.nii.gz",
+ "pseudo_label": "101079/2_2opagelspr16bone3202512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101079/2_2opagelspr16bone3202512040014/2_2opagelspr16bone3202512040014_seg.nii.gz"
+ },
+ {
+ "image": "101079/3_0opagelsqxstandard3512512048015.nii.gz",
+ "pseudo_label": "101079/3_0opagelsqxstandard3512512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101079/3_0opagelsqxstandard3512512048015/3_0opagelsqxstandard3512512048015_seg.nii.gz"
+ },
+ {
+ "image": "112239/3_0opagehsqxbone34025120560115.nii.gz",
+ "pseudo_label": "112239/3_0opagehsqxbone34025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112239/3_0opagehsqxbone34025120560115/3_0opagehsqxbone34025120560115_seg.nii.gz"
+ },
+ {
+ "image": "112239/3_2opagehsqxbone34025120560115.nii.gz",
+ "pseudo_label": "112239/3_2opagehsqxbone34025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112239/3_2opagehsqxbone34025120560115/3_2opagehsqxbone34025120560115_seg.nii.gz"
+ },
+ {
+ "image": "112239/3_1opagehsqxbone34025120560115.nii.gz",
+ "pseudo_label": "112239/3_1opagehsqxbone34025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112239/3_1opagehsqxbone34025120560115/3_1opagehsqxbone34025120560115_seg.nii.gz"
+ },
+ {
+ "image": "112239/2_2opagehsqxstandard34025120560115.nii.gz",
+ "pseudo_label": "112239/2_2opagehsqxstandard34025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112239/2_2opagehsqxstandard34025120560115/2_2opagehsqxstandard34025120560115_seg.nii.gz"
+ },
+ {
+ "image": "112239/2_1opagehsqxstandard34025120560115.nii.gz",
+ "pseudo_label": "112239/2_1opagehsqxstandard34025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112239/2_1opagehsqxstandard34025120560115/2_1opagehsqxstandard34025120560115_seg.nii.gz"
+ },
+ {
+ "image": "109420/5_1opasevzoomb30f34051206030na.nii.gz",
+ "pseudo_label": "109420/5_1opasevzoomb30f34051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109420/5_1opasevzoomb30f34051206030na/5_1opasevzoomb30f34051206030na_seg.nii.gz"
+ },
+ {
+ "image": "109420/5_0opasevzoomb30f366512012060na.nii.gz",
+ "pseudo_label": "109420/5_0opasevzoomb30f366512012060na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109420/5_0opasevzoomb30f366512012060na/5_0opasevzoomb30f366512012060na_seg.nii.gz"
+ },
+ {
+ "image": "108935/3_2opasesen16b30f30021204530na.nii.gz",
+ "pseudo_label": "108935/3_2opasesen16b30f30021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108935/3_2opasesen16b30f30021204530na/3_2opasesen16b30f30021204530na_seg.nii.gz"
+ },
+ {
+ "image": "108935/2_1opasevzoomb50f30021206030na.nii.gz",
+ "pseudo_label": "108935/2_1opasevzoomb50f30021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108935/2_1opasevzoomb50f30021206030na/2_1opasevzoomb50f30021206030na_seg.nii.gz"
+ },
+ {
+ "image": "108248/2_0opagels16bone3202512040014.nii.gz",
+ "pseudo_label": "108248/2_0opagels16bone3202512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108248/2_0opagels16bone3202512040014/2_0opagels16bone3202512040014_seg.nii.gz"
+ },
+ {
+ "image": "108248/3_0opagels16standard3202512040014.nii.gz",
+ "pseudo_label": "108248/3_0opagels16standard3202512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108248/3_0opagels16standard3202512040014/3_0opagels16standard3202512040014_seg.nii.gz"
+ },
+ {
+ "image": "108248/2_2opagelspr16bone3102512040014.nii.gz",
+ "pseudo_label": "108248/2_2opagelspr16bone3102512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108248/2_2opagelspr16bone3102512040014/2_2opagelspr16bone3102512040014_seg.nii.gz"
+ },
+ {
+ "image": "108248/3_1opagelspr16standard3002512040014.nii.gz",
+ "pseudo_label": "108248/3_1opagelspr16standard3002512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108248/3_1opagelspr16standard3002512040014/3_1opagelspr16standard3002512040014_seg.nii.gz"
+ },
+ {
+ "image": "107642/2_2opagelsplusstandard32925140888nana.nii.gz",
+ "pseudo_label": "107642/2_2opagelsplusstandard32925140888nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107642/2_2opagelsplusstandard32925140888nana/2_2opagelsplusstandard32925140888nana_seg.nii.gz"
+ },
+ {
+ "image": "107642/2_0opagelsqxstandard3202514000na.nii.gz",
+ "pseudo_label": "107642/2_0opagelsqxstandard3202514000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107642/2_0opagelsqxstandard3202514000na/2_0opagelsqxstandard3202514000na_seg.nii.gz"
+ },
+ {
+ "image": "102509/3_1opasevzoomb30f32021206030na.nii.gz",
+ "pseudo_label": "102509/3_1opasevzoomb30f32021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102509/3_1opasevzoomb30f32021206030na/3_1opasevzoomb30f32021206030na_seg.nii.gz"
+ },
+ {
+ "image": "102509/2_0opasevzoomb50f29021206030na.nii.gz",
+ "pseudo_label": "102509/2_0opasevzoomb50f29021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102509/2_0opasevzoomb50f29021206030na/2_0opasevzoomb50f29021206030na_seg.nii.gz"
+ },
+ {
+ "image": "102509/3_2opasevzoomb30f31021206030na.nii.gz",
+ "pseudo_label": "102509/3_2opasevzoomb30f31021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102509/3_2opasevzoomb30f31021206030na/3_2opasevzoomb30f31021206030na_seg.nii.gz"
+ },
+ {
+ "image": "102509/2_2opasevzoomb50f31021206030na.nii.gz",
+ "pseudo_label": "102509/2_2opasevzoomb50f31021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102509/2_2opasevzoomb50f31021206030na/2_2opasevzoomb50f31021206030na_seg.nii.gz"
+ },
+ {
+ "image": "104086/3_2opasesen16b30f37251204530na.nii.gz",
+ "pseudo_label": "104086/3_2opasesen16b30f37251204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104086/3_2opasesen16b30f37251204530na/3_2opasesen16b30f37251204530na_seg.nii.gz"
+ },
+ {
+ "image": "104086/3_1opasesen16b30f37451204530na.nii.gz",
+ "pseudo_label": "104086/3_1opasesen16b30f37451204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104086/3_1opasesen16b30f37451204530na/3_1opasesen16b30f37451204530na_seg.nii.gz"
+ },
+ {
+ "image": "104086/5_0opasesen16b50f32851204530na.nii.gz",
+ "pseudo_label": "104086/5_0opasesen16b50f32851204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104086/5_0opasesen16b50f32851204530na/5_0opasesen16b50f32851204530na_seg.nii.gz"
+ },
+ {
+ "image": "104086/4_0opasesen16b30f32821204530na.nii.gz",
+ "pseudo_label": "104086/4_0opasesen16b30f32821204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104086/4_0opasesen16b30f32821204530na/4_0opasesen16b30f32821204530na_seg.nii.gz"
+ },
+ {
+ "image": "104086/5_2opasesen16b50f37251204530na.nii.gz",
+ "pseudo_label": "104086/5_2opasesen16b50f37251204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104086/5_2opasesen16b50f37251204530na/5_2opasesen16b50f37251204530na_seg.nii.gz"
+ },
+ {
+ "image": "104086/5_1opasesen16b50f37451204530na.nii.gz",
+ "pseudo_label": "104086/5_1opasesen16b50f37451204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104086/5_1opasesen16b50f37451204530na/5_1opasesen16b50f37451204530na_seg.nii.gz"
+ },
+ {
+ "image": "104086/3_0opasesen16b30f32851204530na.nii.gz",
+ "pseudo_label": "104086/3_0opasesen16b30f32851204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104086/3_0opasesen16b30f32851204530na/3_0opasesen16b30f32851204530na_seg.nii.gz"
+ },
+ {
+ "image": "104352/3_1opasevzoomb30f33021206030na.nii.gz",
+ "pseudo_label": "104352/3_1opasevzoomb30f33021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104352/3_1opasevzoomb30f33021206030na/3_1opasevzoomb30f33021206030na_seg.nii.gz"
+ },
+ {
+ "image": "104352/2_2opasevzoomb50f33021206030na.nii.gz",
+ "pseudo_label": "104352/2_2opasevzoomb50f33021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104352/2_2opasevzoomb50f33021206030na/2_2opasevzoomb50f33021206030na_seg.nii.gz"
+ },
+ {
+ "image": "110923/3_2opagels16standard33025140600114.nii.gz",
+ "pseudo_label": "110923/3_2opagels16standard33025140600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110923/3_2opagels16standard33025140600114/3_2opagels16standard33025140600114_seg.nii.gz"
+ },
+ {
+ "image": "110712/5_0opatoaqul4fc823266212080nana.nii.gz",
+ "pseudo_label": "110712/5_0opatoaqul4fc823266212080nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110712/5_0opatoaqul4fc823266212080nana/5_0opatoaqul4fc823266212080nana_seg.nii.gz"
+ },
+ {
+ "image": "110712/3_2opatoaqul4fc513496212060nana.nii.gz",
+ "pseudo_label": "110712/3_2opatoaqul4fc513496212060nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110712/3_2opatoaqul4fc513496212060nana/3_2opatoaqul4fc513496212060nana_seg.nii.gz"
+ },
+ {
+ "image": "108399/3_2opasesen16b30f38021204530na.nii.gz",
+ "pseudo_label": "108399/3_2opasesen16b30f38021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108399/3_2opasesen16b30f38021204530na/3_2opasesen16b30f38021204530na_seg.nii.gz"
+ },
+ {
+ "image": "112742/2_1opagelsqxstandard36025120640115.nii.gz",
+ "pseudo_label": "112742/2_1opagelsqxstandard36025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112742/2_1opagelsqxstandard36025120640115/2_1opagelsqxstandard36025120640115_seg.nii.gz"
+ },
+ {
+ "image": "107779/2_0opagehsqxstandard33025120560115.nii.gz",
+ "pseudo_label": "107779/2_0opagehsqxstandard33025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107779/2_0opagehsqxstandard33025120560115/2_0opagehsqxstandard33025120560115_seg.nii.gz"
+ },
+ {
+ "image": "107911/2_1opasesen16b30f31021204032na.nii.gz",
+ "pseudo_label": "107911/2_1opasesen16b30f31021204032na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107911/2_1opasesen16b30f31021204032na/2_1opasesen16b30f31021204032na_seg.nii.gz"
+ },
+ {
+ "image": "104465/3_2opasevzoomb30f33221206030na.nii.gz",
+ "pseudo_label": "104465/3_2opasevzoomb30f33221206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104465/3_2opasevzoomb30f33221206030na/3_2opasevzoomb30f33221206030na_seg.nii.gz"
+ },
+ {
+ "image": "104465/2_0opasevzoomb50f34021206030na.nii.gz",
+ "pseudo_label": "104465/2_0opasevzoomb50f34021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104465/2_0opasevzoomb50f34021206030na/2_0opasevzoomb50f34021206030na_seg.nii.gz"
+ },
+ {
+ "image": "104465/3_0opasevzoomb30f34021206030na.nii.gz",
+ "pseudo_label": "104465/3_0opasevzoomb30f34021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104465/3_0opasevzoomb30f34021206030na/3_0opasevzoomb30f34021206030na_seg.nii.gz"
+ },
+ {
+ "image": "103340/3_0opasevzoomb50f340212010560na.nii.gz",
+ "pseudo_label": "103340/3_0opasevzoomb50f340212010560na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103340/3_0opasevzoomb50f340212010560na/3_0opasevzoomb50f340212010560na_seg.nii.gz"
+ },
+ {
+ "image": "105359/2_1opagehsqxstandard29025120560115.nii.gz",
+ "pseudo_label": "105359/2_1opagehsqxstandard29025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105359/2_1opagehsqxstandard29025120560115/2_1opagehsqxstandard29025120560115_seg.nii.gz"
+ },
+ {
+ "image": "105359/2_0opagehsqxstandard29025120560115.nii.gz",
+ "pseudo_label": "105359/2_0opagehsqxstandard29025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105359/2_0opagehsqxstandard29025120560115/2_0opagehsqxstandard29025120560115_seg.nii.gz"
+ },
+ {
+ "image": "105359/2_2opagehsqxstandard29025120560115.nii.gz",
+ "pseudo_label": "105359/2_2opagehsqxstandard29025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105359/2_2opagehsqxstandard29025120560115/2_2opagehsqxstandard29025120560115_seg.nii.gz"
+ },
+ {
+ "image": "104767/2_0opagelsqxstandard3802514000na.nii.gz",
+ "pseudo_label": "104767/2_0opagelsqxstandard3802514000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104767/2_0opagelsqxstandard3802514000na/2_0opagelsqxstandard3802514000na_seg.nii.gz"
+ },
+ {
+ "image": "104767/2_1opagelsplusstandard3702514000na.nii.gz",
+ "pseudo_label": "104767/2_1opagelsplusstandard3702514000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104767/2_1opagelsplusstandard3702514000na/2_1opagelsplusstandard3702514000na_seg.nii.gz"
+ },
+ {
+ "image": "110513/2_1opagelsplusstandard38025140794nana.nii.gz",
+ "pseudo_label": "110513/2_1opagelsplusstandard38025140794nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110513/2_1opagelsplusstandard38025140794nana/2_1opagelsplusstandard38025140794nana_seg.nii.gz"
+ },
+ {
+ "image": "110513/2_0opagelsplusstandard4042514040015.nii.gz",
+ "pseudo_label": "110513/2_0opagelsplusstandard4042514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110513/2_0opagelsplusstandard4042514040015/2_0opagelsplusstandard4042514040015_seg.nii.gz"
+ },
+ {
+ "image": "102817/9556_0opaphmx8000c277321205624512.nii.gz",
+ "pseudo_label": "102817/9556_0opaphmx8000c277321205624512.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102817/9556_0opaphmx8000c277321205624512/9556_0opaphmx8000c277321205624512_seg.nii.gz"
+ },
+ {
+ "image": "109823/3_0opatoaqul4fc513094212055nana.nii.gz",
+ "pseudo_label": "109823/3_0opatoaqul4fc513094212055nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109823/3_0opatoaqul4fc513094212055nana/3_0opatoaqul4fc513094212055nana_seg.nii.gz"
+ },
+ {
+ "image": "109823/3_1opatoaqul4fc513164212060nana.nii.gz",
+ "pseudo_label": "109823/3_1opatoaqul4fc513164212060nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109823/3_1opatoaqul4fc513164212060nana/3_1opatoaqul4fc513164212060nana_seg.nii.gz"
+ },
+ {
+ "image": "109823/3_2opatoaqul4fc513203212050nana.nii.gz",
+ "pseudo_label": "109823/3_2opatoaqul4fc513203212050nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109823/3_2opatoaqul4fc513203212050nana/3_2opatoaqul4fc513203212050nana_seg.nii.gz"
+ },
+ {
+ "image": "110086/2_2opagelsqxstandard36825120720115.nii.gz",
+ "pseudo_label": "110086/2_2opagelsqxstandard36825120720115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110086/2_2opagelsqxstandard36825120720115/2_2opagelsqxstandard36825120720115_seg.nii.gz"
+ },
+ {
+ "image": "110086/3_1opagelsqxbone39025120640115.nii.gz",
+ "pseudo_label": "110086/3_1opagelsqxbone39025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110086/3_1opagelsqxbone39025120640115/3_1opagelsqxbone39025120640115_seg.nii.gz"
+ },
+ {
+ "image": "110086/2_1opagelsqxstandard39025120640115.nii.gz",
+ "pseudo_label": "110086/2_1opagelsqxstandard39025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110086/2_1opagelsqxstandard39025120640115/2_1opagelsqxstandard39025120640115_seg.nii.gz"
+ },
+ {
+ "image": "110086/3_2opagelsqxbone36825120720115.nii.gz",
+ "pseudo_label": "110086/3_2opagelsqxbone36825120720115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110086/3_2opagelsqxbone36825120720115/3_2opagelsqxbone36825120720115_seg.nii.gz"
+ },
+ {
+ "image": "105426/2_0opagelsqxstandard3302512048015.nii.gz",
+ "pseudo_label": "105426/2_0opagelsqxstandard3302512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105426/2_0opagelsqxstandard3302512048015/2_0opagelsqxstandard3302512048015_seg.nii.gz"
+ },
+ {
+ "image": "111640/2_0opagelsqxstandard3612514048015.nii.gz",
+ "pseudo_label": "111640/2_0opagelsqxstandard3612514048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111640/2_0opagelsqxstandard3612514048015/2_0opagelsqxstandard3612514048015_seg.nii.gz"
+ },
+ {
+ "image": "111640/2_2opagelsqxstandard3602514048015.nii.gz",
+ "pseudo_label": "111640/2_2opagelsqxstandard3602514048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111640/2_2opagelsqxstandard3602514048015/2_2opagelsqxstandard3602514048015_seg.nii.gz"
+ },
+ {
+ "image": "103874/2_2opagelsqxstandard36025120640115.nii.gz",
+ "pseudo_label": "103874/2_2opagelsqxstandard36025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103874/2_2opagelsqxstandard36025120640115/2_2opagelsqxstandard36025120640115_seg.nii.gz"
+ },
+ {
+ "image": "110430/2_0opagels16standard36025140400na.nii.gz",
+ "pseudo_label": "110430/2_0opagels16standard36025140400na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110430/2_0opagels16standard36025140400na/2_0opagels16standard36025140400na_seg.nii.gz"
+ },
+ {
+ "image": "104589/2_0opasesen16b30f29021204032na.nii.gz",
+ "pseudo_label": "104589/2_0opasesen16b30f29021204032na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104589/2_0opasesen16b30f29021204032na/2_0opasesen16b30f29021204032na_seg.nii.gz"
+ },
+ {
+ "image": "105524/2_1opagelsplusstandard3202514040015.nii.gz",
+ "pseudo_label": "105524/2_1opagelsplusstandard3202514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105524/2_1opagelsplusstandard3202514040015/2_1opagelsplusstandard3202514040015_seg.nii.gz"
+ },
+ {
+ "image": "105524/2_0opagelsplusstandard33025140560115.nii.gz",
+ "pseudo_label": "105524/2_0opagelsplusstandard33025140560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105524/2_0opagelsplusstandard33025140560115/2_0opagelsplusstandard33025140560115_seg.nii.gz"
+ },
+ {
+ "image": "105524/2_2opagelsplusstandard35125140794nana.nii.gz",
+ "pseudo_label": "105524/2_2opagelsplusstandard35125140794nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105524/2_2opagelsplusstandard35125140794nana/2_2opagelsplusstandard35125140794nana_seg.nii.gz"
+ },
+ {
+ "image": "108350/3_0opagelsqxstandard3202512048015.nii.gz",
+ "pseudo_label": "108350/3_0opagelsqxstandard3202512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108350/3_0opagelsqxstandard3202512048015/3_0opagelsqxstandard3202512048015_seg.nii.gz"
+ },
+ {
+ "image": "108350/3_1opagels16standard3202512048014.nii.gz",
+ "pseudo_label": "108350/3_1opagels16standard3202512048014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108350/3_1opagels16standard3202512048014/3_1opagels16standard3202512048014_seg.nii.gz"
+ },
+ {
+ "image": "108350/3_2opagelspr16standard3202512040014.nii.gz",
+ "pseudo_label": "108350/3_2opagelspr16standard3202512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108350/3_2opagelspr16standard3202512040014/3_2opagelspr16standard3202512040014_seg.nii.gz"
+ },
+ {
+ "image": "108350/2_0opagelsqxbone3202512048015.nii.gz",
+ "pseudo_label": "108350/2_0opagelsqxbone3202512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108350/2_0opagelsqxbone3202512048015/2_0opagelsqxbone3202512048015_seg.nii.gz"
+ },
+ {
+ "image": "108350/2_2opagelspr16bone3202512040014.nii.gz",
+ "pseudo_label": "108350/2_2opagelspr16bone3202512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108350/2_2opagelspr16bone3202512040014/2_2opagelspr16bone3202512040014_seg.nii.gz"
+ },
+ {
+ "image": "100805/2_0opagehsqxstandard31025120560115.nii.gz",
+ "pseudo_label": "100805/2_0opagehsqxstandard31025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100805/2_0opagehsqxstandard31025120560115/2_0opagehsqxstandard31025120560115_seg.nii.gz"
+ },
+ {
+ "image": "100805/2_1opagehsqxstandard31025120560115.nii.gz",
+ "pseudo_label": "100805/2_1opagehsqxstandard31025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100805/2_1opagehsqxstandard31025120560115/2_1opagehsqxstandard31025120560115_seg.nii.gz"
+ },
+ {
+ "image": "109899/2_1opagels16standard32025120453nana.nii.gz",
+ "pseudo_label": "109899/2_1opagels16standard32025120453nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109899/2_1opagels16standard32025120453nana/2_1opagels16standard32025120453nana_seg.nii.gz"
+ },
+ {
+ "image": "109899/2_2opagels16standard32025120435nana.nii.gz",
+ "pseudo_label": "109899/2_2opagels16standard32025120435nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109899/2_2opagels16standard32025120435nana/2_2opagels16standard32025120435nana_seg.nii.gz"
+ },
+ {
+ "image": "110777/4_2opatoaqul4fc512938212040nana.nii.gz",
+ "pseudo_label": "110777/4_2opatoaqul4fc512938212040nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110777/4_2opatoaqul4fc512938212040nana/4_2opatoaqul4fc512938212040nana_seg.nii.gz"
+ },
+ {
+ "image": "110777/5_0opatoaqul4fc512984212040nana.nii.gz",
+ "pseudo_label": "110777/5_0opatoaqul4fc512984212040nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110777/5_0opatoaqul4fc512984212040nana/5_0opatoaqul4fc512984212040nana_seg.nii.gz"
+ },
+ {
+ "image": "112119/2_0opasevzoomb30f350214016080na.nii.gz",
+ "pseudo_label": "112119/2_0opasevzoomb30f350214016080na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112119/2_0opasevzoomb30f350214016080na/2_0opasevzoomb30f350214016080na_seg.nii.gz"
+ },
+ {
+ "image": "102004/2_1opasesen16b30f33621204032na.nii.gz",
+ "pseudo_label": "102004/2_1opasesen16b30f33621204032na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102004/2_1opasesen16b30f33621204032na/2_1opasesen16b30f33621204032na_seg.nii.gz"
+ },
+ {
+ "image": "113316/2_0opagelsplusstandard3002514040015.nii.gz",
+ "pseudo_label": "113316/2_0opagelsplusstandard3002514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113316/2_0opagelsplusstandard3002514040015/2_0opagelsplusstandard3002514040015_seg.nii.gz"
+ },
+ {
+ "image": "113316/2_2opagelsplusstandard27925140841nana.nii.gz",
+ "pseudo_label": "113316/2_2opagelsplusstandard27925140841nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113316/2_2opagelsplusstandard27925140841nana/2_2opagelsplusstandard27925140841nana_seg.nii.gz"
+ },
+ {
+ "image": "113316/2_1opagelsqxstandard3002514040015.nii.gz",
+ "pseudo_label": "113316/2_1opagelsqxstandard3002514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113316/2_1opagelsqxstandard3002514040015/2_1opagelsqxstandard3002514040015_seg.nii.gz"
+ },
+ {
+ "image": "107334/2_2opagelspr16bone3602512040014.nii.gz",
+ "pseudo_label": "107334/2_2opagelspr16bone3602512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107334/2_2opagelspr16bone3602512040014/2_2opagelspr16bone3602512040014_seg.nii.gz"
+ },
+ {
+ "image": "107334/3_1opagels16standard3402512048014.nii.gz",
+ "pseudo_label": "107334/3_1opagels16standard3402512048014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107334/3_1opagels16standard3402512048014/3_1opagels16standard3402512048014_seg.nii.gz"
+ },
+ {
+ "image": "103078/3_0opasevzoomb50f280212012060na.nii.gz",
+ "pseudo_label": "103078/3_0opasevzoomb50f280212012060na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103078/3_0opasevzoomb50f280212012060na/3_0opasevzoomb50f280212012060na_seg.nii.gz"
+ },
+ {
+ "image": "103078/2_2opasevzoomb30f31021208040na.nii.gz",
+ "pseudo_label": "103078/2_2opasevzoomb30f31021208040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103078/2_2opasevzoomb30f31021208040na/2_2opasevzoomb30f31021208040na_seg.nii.gz"
+ },
+ {
+ "image": "112251/2_2opasevzoomb30f38021207040na.nii.gz",
+ "pseudo_label": "112251/2_2opasevzoomb30f38021207040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112251/2_2opasevzoomb30f38021207040na/2_2opasevzoomb30f38021207040na_seg.nii.gz"
+ },
+ {
+ "image": "112251/3_0opasevzoomb50f34021207540na.nii.gz",
+ "pseudo_label": "112251/3_0opasevzoomb50f34021207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112251/3_0opasevzoomb50f34021207540na/3_0opasevzoomb50f34021207540na_seg.nii.gz"
+ },
+ {
+ "image": "106763/2_2opagelsqxstandard3402514000na.nii.gz",
+ "pseudo_label": "106763/2_2opagelsqxstandard3402514000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106763/2_2opagelsqxstandard3402514000na/2_2opagelsqxstandard3402514000na_seg.nii.gz"
+ },
+ {
+ "image": "106763/2_1opagels16standard3402514000na.nii.gz",
+ "pseudo_label": "106763/2_1opagels16standard3402514000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106763/2_1opagels16standard3402514000na/2_1opagels16standard3402514000na_seg.nii.gz"
+ },
+ {
+ "image": "106763/2_0opagelsqxstandard3402514000na.nii.gz",
+ "pseudo_label": "106763/2_0opagelsqxstandard3402514000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106763/2_0opagelsqxstandard3402514000na/2_0opagelsqxstandard3402514000na_seg.nii.gz"
+ },
+ {
+ "image": "101834/2_0opagelsqxstandard3202514040015.nii.gz",
+ "pseudo_label": "101834/2_0opagelsqxstandard3202514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101834/2_0opagelsqxstandard3202514040015/2_0opagelsqxstandard3202514040015_seg.nii.gz"
+ },
+ {
+ "image": "103032/3_1opasesen16b30f27551204530na.nii.gz",
+ "pseudo_label": "103032/3_1opasesen16b30f27551204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103032/3_1opasesen16b30f27551204530na/3_1opasesen16b30f27551204530na_seg.nii.gz"
+ },
+ {
+ "image": "103032/6_0opasesen16b50f30021204530na.nii.gz",
+ "pseudo_label": "103032/6_0opasesen16b50f30021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103032/6_0opasesen16b50f30021204530na/6_0opasesen16b50f30021204530na_seg.nii.gz"
+ },
+ {
+ "image": "103032/9_2opasesen16b50f28021204530na.nii.gz",
+ "pseudo_label": "103032/9_2opasesen16b50f28021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103032/9_2opasesen16b50f28021204530na/9_2opasesen16b50f28021204530na_seg.nii.gz"
+ },
+ {
+ "image": "103032/6_2opasesen16b30f28451204530na.nii.gz",
+ "pseudo_label": "103032/6_2opasesen16b30f28451204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103032/6_2opasesen16b30f28451204530na/6_2opasesen16b30f28451204530na_seg.nii.gz"
+ },
+ {
+ "image": "103032/5_0opasesen16b50f30051204530na.nii.gz",
+ "pseudo_label": "103032/5_0opasesen16b50f30051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103032/5_0opasesen16b50f30051204530na/5_0opasesen16b50f30051204530na_seg.nii.gz"
+ },
+ {
+ "image": "103032/5_2opasesen16b30f28451204530na.nii.gz",
+ "pseudo_label": "103032/5_2opasesen16b30f28451204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103032/5_2opasesen16b30f28451204530na/5_2opasesen16b30f28451204530na_seg.nii.gz"
+ },
+ {
+ "image": "103032/3_0opasesen16b30f30051204530na.nii.gz",
+ "pseudo_label": "103032/3_0opasesen16b30f30051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103032/3_0opasesen16b30f30051204530na/3_0opasesen16b30f30051204530na_seg.nii.gz"
+ },
+ {
+ "image": "103032/4_1opasesen16b30f27521204530na.nii.gz",
+ "pseudo_label": "103032/4_1opasesen16b30f27521204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103032/4_1opasesen16b30f27521204530na/4_1opasesen16b30f27521204530na_seg.nii.gz"
+ },
+ {
+ "image": "103032/5_1opasesen16b50f27551204530na.nii.gz",
+ "pseudo_label": "103032/5_1opasesen16b50f27551204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103032/5_1opasesen16b50f27551204530na/5_1opasesen16b50f27551204530na_seg.nii.gz"
+ },
+ {
+ "image": "103032/7_2opasesen16b30f28021204530na.nii.gz",
+ "pseudo_label": "103032/7_2opasesen16b30f28021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103032/7_2opasesen16b30f28021204530na/7_2opasesen16b30f28021204530na_seg.nii.gz"
+ },
+ {
+ "image": "110128/2_0opagehsqxstandard30025120560115.nii.gz",
+ "pseudo_label": "110128/2_0opagehsqxstandard30025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110128/2_0opagehsqxstandard30025120560115/2_0opagehsqxstandard30025120560115_seg.nii.gz"
+ },
+ {
+ "image": "110128/3_2opagehsqxbone30025120560115.nii.gz",
+ "pseudo_label": "110128/3_2opagehsqxbone30025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110128/3_2opagehsqxbone30025120560115/3_2opagehsqxbone30025120560115_seg.nii.gz"
+ },
+ {
+ "image": "110128/2_2opagehsqxstandard30025120560115.nii.gz",
+ "pseudo_label": "110128/2_2opagehsqxstandard30025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110128/2_2opagehsqxstandard30025120560115/2_2opagehsqxstandard30025120560115_seg.nii.gz"
+ },
+ {
+ "image": "110128/3_0opagehsqxbone30025120560115.nii.gz",
+ "pseudo_label": "110128/3_0opagehsqxbone30025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110128/3_0opagehsqxbone30025120560115/3_0opagehsqxbone30025120560115_seg.nii.gz"
+ },
+ {
+ "image": "110035/2_2opagelspr16bone3002512048014.nii.gz",
+ "pseudo_label": "110035/2_2opagelspr16bone3002512048014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110035/2_2opagelspr16bone3002512048014/2_2opagelspr16bone3002512048014_seg.nii.gz"
+ },
+ {
+ "image": "110035/3_2opagelspr16standard3002512048014.nii.gz",
+ "pseudo_label": "110035/3_2opagelspr16standard3002512048014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110035/3_2opagelspr16standard3002512048014/3_2opagelspr16standard3002512048014_seg.nii.gz"
+ },
+ {
+ "image": "107399/2_2opagelsqxstandard3602512000na.nii.gz",
+ "pseudo_label": "107399/2_2opagelsqxstandard3602512000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107399/2_2opagelsqxstandard3602512000na/2_2opagelsqxstandard3602512000na_seg.nii.gz"
+ },
+ {
+ "image": "101489/2_0opasevzoomb50f34021206030na.nii.gz",
+ "pseudo_label": "101489/2_0opasevzoomb50f34021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101489/2_0opasevzoomb50f34021206030na/2_0opasevzoomb50f34021206030na_seg.nii.gz"
+ },
+ {
+ "image": "101489/2_1opasesen16b50f33021204530na.nii.gz",
+ "pseudo_label": "101489/2_1opasesen16b50f33021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101489/2_1opasesen16b50f33021204530na/2_1opasesen16b50f33021204530na_seg.nii.gz"
+ },
+ {
+ "image": "101489/2_2opasesen16b50f32021204530na.nii.gz",
+ "pseudo_label": "101489/2_2opasesen16b50f32021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101489/2_2opasesen16b50f32021204530na/2_2opasesen16b50f32021204530na_seg.nii.gz"
+ },
+ {
+ "image": "103615/3_0opatoaqul4fc512406212040nana.nii.gz",
+ "pseudo_label": "103615/3_0opatoaqul4fc512406212040nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103615/3_0opatoaqul4fc512406212040nana/3_0opatoaqul4fc512406212040nana_seg.nii.gz"
+ },
+ {
+ "image": "103615/3_2opatoaqul4fc512703212040nana.nii.gz",
+ "pseudo_label": "103615/3_2opatoaqul4fc512703212040nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103615/3_2opatoaqul4fc512703212040nana/3_2opatoaqul4fc512703212040nana_seg.nii.gz"
+ },
+ {
+ "image": "103797/2_1opasevzoomb30f34021207040na.nii.gz",
+ "pseudo_label": "103797/2_1opasevzoomb30f34021207040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103797/2_1opasevzoomb30f34021207040na/2_1opasevzoomb30f34021207040na_seg.nii.gz"
+ },
+ {
+ "image": "103797/3_1opasevzoomb50f34021207040na.nii.gz",
+ "pseudo_label": "103797/3_1opasevzoomb50f34021207040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103797/3_1opasevzoomb50f34021207040na/3_1opasevzoomb50f34021207040na_seg.nii.gz"
+ },
+ {
+ "image": "103797/101_2opasevzoomb30f32421207540na.nii.gz",
+ "pseudo_label": "103797/101_2opasevzoomb30f32421207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103797/101_2opasevzoomb30f32421207540na/101_2opasevzoomb30f32421207540na_seg.nii.gz"
+ },
+ {
+ "image": "110600/3_1opagelsqxbone31025120640115.nii.gz",
+ "pseudo_label": "110600/3_1opagelsqxbone31025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110600/3_1opagelsqxbone31025120640115/3_1opagelsqxbone31025120640115_seg.nii.gz"
+ },
+ {
+ "image": "110600/2_2opagelsqxstandard36025120560115.nii.gz",
+ "pseudo_label": "110600/2_2opagelsqxstandard36025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110600/2_2opagelsqxstandard36025120560115/2_2opagelsqxstandard36025120560115_seg.nii.gz"
+ },
+ {
+ "image": "110600/2_0opagelsqxstandard32025120640115.nii.gz",
+ "pseudo_label": "110600/2_0opagelsqxstandard32025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110600/2_0opagelsqxstandard32025120640115/2_0opagelsqxstandard32025120640115_seg.nii.gz"
+ },
+ {
+ "image": "109839/1_1opatoaqul4fc303594312080nana.nii.gz",
+ "pseudo_label": "109839/1_1opatoaqul4fc303594312080nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109839/1_1opatoaqul4fc303594312080nana/1_1opatoaqul4fc303594312080nana_seg.nii.gz"
+ },
+ {
+ "image": "109839/1_0opagelsplusstandard38425120800115.nii.gz",
+ "pseudo_label": "109839/1_0opagelsplusstandard38425120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109839/1_0opagelsplusstandard38425120800115/1_0opagelsplusstandard38425120800115_seg.nii.gz"
+ },
+ {
+ "image": "109839/1_0opagelspluslung38425120800115.nii.gz",
+ "pseudo_label": "109839/1_0opagelspluslung38425120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109839/1_0opagelspluslung38425120800115/1_0opagelspluslung38425120800115_seg.nii.gz"
+ },
+ {
+ "image": "109839/1_2opagelspluslung36025120800115.nii.gz",
+ "pseudo_label": "109839/1_2opagelspluslung36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109839/1_2opagelspluslung36025120800115/1_2opagelspluslung36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "109839/1_1opatoaqul4fc023594312080nana.nii.gz",
+ "pseudo_label": "109839/1_1opatoaqul4fc023594312080nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109839/1_1opatoaqul4fc023594312080nana/1_1opatoaqul4fc023594312080nana_seg.nii.gz"
+ },
+ {
+ "image": "105888/2_0opagehsqxstandard37025120640115.nii.gz",
+ "pseudo_label": "105888/2_0opagehsqxstandard37025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105888/2_0opagehsqxstandard37025120640115/2_0opagehsqxstandard37025120640115_seg.nii.gz"
+ },
+ {
+ "image": "105888/2_2opagehsqxstandard37025120560115.nii.gz",
+ "pseudo_label": "105888/2_2opagehsqxstandard37025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105888/2_2opagehsqxstandard37025120560115/2_2opagehsqxstandard37025120560115_seg.nii.gz"
+ },
+ {
+ "image": "105888/2_1opagehsqxstandard37025120560115.nii.gz",
+ "pseudo_label": "105888/2_1opagehsqxstandard37025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105888/2_1opagehsqxstandard37025120560115/2_1opagehsqxstandard37025120560115_seg.nii.gz"
+ },
+ {
+ "image": "105888/3_0opagehsqxbone37025120640115.nii.gz",
+ "pseudo_label": "105888/3_0opagehsqxbone37025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105888/3_0opagehsqxbone37025120640115/3_0opagehsqxbone37025120640115_seg.nii.gz"
+ },
+ {
+ "image": "100949/2_0opagehsqxstandard26025120560115.nii.gz",
+ "pseudo_label": "100949/2_0opagehsqxstandard26025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100949/2_0opagehsqxstandard26025120560115/2_0opagehsqxstandard26025120560115_seg.nii.gz"
+ },
+ {
+ "image": "100949/2_1opagehsqxstandard26025120560115.nii.gz",
+ "pseudo_label": "100949/2_1opagehsqxstandard26025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100949/2_1opagehsqxstandard26025120560115/2_1opagehsqxstandard26025120560115_seg.nii.gz"
+ },
+ {
+ "image": "100949/3_1opagehsqxbone26025120560115.nii.gz",
+ "pseudo_label": "100949/3_1opagehsqxbone26025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100949/3_1opagehsqxbone26025120560115/3_1opagehsqxbone26025120560115_seg.nii.gz"
+ },
+ {
+ "image": "100949/3_2opagehsqxbone26025120560115.nii.gz",
+ "pseudo_label": "100949/3_2opagehsqxbone26025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100949/3_2opagehsqxbone26025120560115/3_2opagehsqxbone26025120560115_seg.nii.gz"
+ },
+ {
+ "image": "107091/2_1opagelsplusstandard3302514040015.nii.gz",
+ "pseudo_label": "107091/2_1opagelsplusstandard3302514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107091/2_1opagelsplusstandard3302514040015/2_1opagelsplusstandard3302514040015_seg.nii.gz"
+ },
+ {
+ "image": "110545/2_2opagelsqxstandard2902514048015.nii.gz",
+ "pseudo_label": "110545/2_2opagelsqxstandard2902514048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110545/2_2opagelsqxstandard2902514048015/2_2opagelsqxstandard2902514048015_seg.nii.gz"
+ },
+ {
+ "image": "110545/2_1opagelsqxstandard2902514048015.nii.gz",
+ "pseudo_label": "110545/2_1opagelsqxstandard2902514048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110545/2_1opagelsqxstandard2902514048015/2_1opagelsqxstandard2902514048015_seg.nii.gz"
+ },
+ {
+ "image": "106229/2_0opagelsplusstandard3002514040015.nii.gz",
+ "pseudo_label": "106229/2_0opagelsplusstandard3002514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106229/2_0opagelsplusstandard3002514040015/2_0opagelsplusstandard3002514040015_seg.nii.gz"
+ },
+ {
+ "image": "106229/2_2opagelsqxstandard3102514040015.nii.gz",
+ "pseudo_label": "106229/2_2opagelsqxstandard3102514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106229/2_2opagelsqxstandard3102514040015/2_2opagelsqxstandard3102514040015_seg.nii.gz"
+ },
+ {
+ "image": "106604/3_2opatoaqul4fc513406212040nana.nii.gz",
+ "pseudo_label": "106604/3_2opatoaqul4fc513406212040nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106604/3_2opatoaqul4fc513406212040nana/3_2opatoaqul4fc513406212040nana_seg.nii.gz"
+ },
+ {
+ "image": "106604/3_1opatoaqul4fc513301212040nana.nii.gz",
+ "pseudo_label": "106604/3_1opatoaqul4fc513301212040nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106604/3_1opatoaqul4fc513301212040nana/3_1opatoaqul4fc513301212040nana_seg.nii.gz"
+ },
+ {
+ "image": "110959/2_2opagelsplusstandard36025120800115.nii.gz",
+ "pseudo_label": "110959/2_2opagelsplusstandard36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110959/2_2opagelsplusstandard36025120800115/2_2opagelsplusstandard36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "110959/1_1opagelsplusstandard36025120800115.nii.gz",
+ "pseudo_label": "110959/1_1opagelsplusstandard36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110959/1_1opagelsplusstandard36025120800115/1_1opagelsplusstandard36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "110959/1_1opagelspluslung36025120800115.nii.gz",
+ "pseudo_label": "110959/1_1opagelspluslung36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110959/1_1opagelspluslung36025120800115/1_1opagelspluslung36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "110959/1_0opagelsplusstandard36025120800115.nii.gz",
+ "pseudo_label": "110959/1_0opagelsplusstandard36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110959/1_0opagelsplusstandard36025120800115/1_0opagelsplusstandard36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "110959/1_0opagelspluslung36025120800115.nii.gz",
+ "pseudo_label": "110959/1_0opagelspluslung36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110959/1_0opagelspluslung36025120800115/1_0opagelspluslung36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "110959/2_2opagelspluslung36025120800115.nii.gz",
+ "pseudo_label": "110959/2_2opagelspluslung36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110959/2_2opagelspluslung36025120800115/2_2opagelspluslung36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "104650/4_0opasevzoomb50f36021207540na.nii.gz",
+ "pseudo_label": "104650/4_0opasevzoomb50f36021207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104650/4_0opasevzoomb50f36021207540na/4_0opasevzoomb50f36021207540na_seg.nii.gz"
+ },
+ {
+ "image": "104300/2_0opasevzoomb50f29021206030na.nii.gz",
+ "pseudo_label": "104300/2_0opasevzoomb50f29021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104300/2_0opasevzoomb50f29021206030na/2_0opasevzoomb50f29021206030na_seg.nii.gz"
+ },
+ {
+ "image": "104300/3_2opasevzoomb30f30021206030na.nii.gz",
+ "pseudo_label": "104300/3_2opasevzoomb30f30021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104300/3_2opasevzoomb30f30021206030na/3_2opasevzoomb30f30021206030na_seg.nii.gz"
+ },
+ {
+ "image": "103587/3_0opagels16standard40025120640114.nii.gz",
+ "pseudo_label": "103587/3_0opagels16standard40025120640114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103587/3_0opagels16standard40025120640114/3_0opagels16standard40025120640114_seg.nii.gz"
+ },
+ {
+ "image": "103587/2_0opagels16bone40025120640114.nii.gz",
+ "pseudo_label": "103587/2_0opagels16bone40025120640114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103587/2_0opagels16bone40025120640114/2_0opagels16bone40025120640114_seg.nii.gz"
+ },
+ {
+ "image": "107551/3_1opasesen16b30f30021204530na.nii.gz",
+ "pseudo_label": "107551/3_1opasesen16b30f30021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107551/3_1opasesen16b30f30021204530na/3_1opasesen16b30f30021204530na_seg.nii.gz"
+ },
+ {
+ "image": "107551/3_2opasesen16b30f29021204530na.nii.gz",
+ "pseudo_label": "107551/3_2opasesen16b30f29021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107551/3_2opasesen16b30f29021204530na/3_2opasesen16b30f29021204530na_seg.nii.gz"
+ },
+ {
+ "image": "107551/2_2opasesen16b50f29021204530na.nii.gz",
+ "pseudo_label": "107551/2_2opasesen16b50f29021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107551/2_2opasesen16b50f29021204530na/2_2opasesen16b50f29021204530na_seg.nii.gz"
+ },
+ {
+ "image": "107551/2_1opasesen16b50f30021204530na.nii.gz",
+ "pseudo_label": "107551/2_1opasesen16b50f30021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107551/2_1opasesen16b50f30021204530na/2_1opasesen16b50f30021204530na_seg.nii.gz"
+ },
+ {
+ "image": "101593/4_1opasevzoomb50f34251206030na.nii.gz",
+ "pseudo_label": "101593/4_1opasevzoomb50f34251206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101593/4_1opasevzoomb50f34251206030na/4_1opasevzoomb50f34251206030na_seg.nii.gz"
+ },
+ {
+ "image": "101593/4_0opasesen16b50f38051206040na.nii.gz",
+ "pseudo_label": "101593/4_0opasesen16b50f38051206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101593/4_0opasesen16b50f38051206040na/4_0opasesen16b50f38051206040na_seg.nii.gz"
+ },
+ {
+ "image": "101593/5_1opasevzoomb50f34221206030na.nii.gz",
+ "pseudo_label": "101593/5_1opasevzoomb50f34221206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101593/5_1opasevzoomb50f34221206030na/5_1opasevzoomb50f34221206030na_seg.nii.gz"
+ },
+ {
+ "image": "101593/3_0opasesen16b30f38051206040na.nii.gz",
+ "pseudo_label": "101593/3_0opasesen16b30f38051206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101593/3_0opasesen16b30f38051206040na/3_0opasesen16b30f38051206040na_seg.nii.gz"
+ },
+ {
+ "image": "101593/3_1opasevzoomb30f34251206030na.nii.gz",
+ "pseudo_label": "101593/3_1opasevzoomb30f34251206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101593/3_1opasevzoomb30f34251206030na/3_1opasevzoomb30f34251206030na_seg.nii.gz"
+ },
+ {
+ "image": "110364/0_0opaphmx8000c3503212039018.nii.gz",
+ "pseudo_label": "110364/0_0opaphmx8000c3503212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110364/0_0opaphmx8000c3503212039018/0_0opaphmx8000c3503212039018_seg.nii.gz"
+ },
+ {
+ "image": "110364/0_0opaphmx8000d3503212039018.nii.gz",
+ "pseudo_label": "110364/0_0opaphmx8000d3503212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110364/0_0opaphmx8000d3503212039018/0_0opaphmx8000d3503212039018_seg.nii.gz"
+ },
+ {
+ "image": "108991/2_1opasesen16b30f30221207056na.nii.gz",
+ "pseudo_label": "108991/2_1opasesen16b30f30221207056na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108991/2_1opasesen16b30f30221207056na/2_1opasesen16b30f30221207056na_seg.nii.gz"
+ },
+ {
+ "image": "108991/2_0opasevzoomb30f28421206030na.nii.gz",
+ "pseudo_label": "108991/2_0opasevzoomb30f28421206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108991/2_0opasevzoomb30f28421206030na/2_0opasevzoomb30f28421206030na_seg.nii.gz"
+ },
+ {
+ "image": "105408/2_2opasesen16b30f37321204032na.nii.gz",
+ "pseudo_label": "105408/2_2opasesen16b30f37321204032na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105408/2_2opasesen16b30f37321204032na/2_2opasesen16b30f37321204032na_seg.nii.gz"
+ },
+ {
+ "image": "105408/4_0opasesen16b30f33621204032na.nii.gz",
+ "pseudo_label": "105408/4_0opasesen16b30f33621204032na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105408/4_0opasesen16b30f33621204032na/4_0opasesen16b30f33621204032na_seg.nii.gz"
+ },
+ {
+ "image": "105408/3_2opasesen16b30f37321204032na.nii.gz",
+ "pseudo_label": "105408/3_2opasesen16b30f37321204032na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105408/3_2opasesen16b30f37321204032na/3_2opasesen16b30f37321204032na_seg.nii.gz"
+ },
+ {
+ "image": "100811/5_2opasevzoomb50f27921206030na.nii.gz",
+ "pseudo_label": "100811/5_2opasevzoomb50f27921206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100811/5_2opasevzoomb50f27921206030na/5_2opasevzoomb50f27921206030na_seg.nii.gz"
+ },
+ {
+ "image": "100811/4_1opasesen16b30f30021204530na.nii.gz",
+ "pseudo_label": "100811/4_1opasesen16b30f30021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100811/4_1opasesen16b30f30021204530na/4_1opasesen16b30f30021204530na_seg.nii.gz"
+ },
+ {
+ "image": "100811/5_1opasesen16b50f30051204530na.nii.gz",
+ "pseudo_label": "100811/5_1opasesen16b50f30051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100811/5_1opasesen16b50f30051204530na/5_1opasesen16b50f30051204530na_seg.nii.gz"
+ },
+ {
+ "image": "100811/3_2opasevzoomb30f27951206030na.nii.gz",
+ "pseudo_label": "100811/3_2opasevzoomb30f27951206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100811/3_2opasevzoomb30f27951206030na/3_2opasevzoomb30f27951206030na_seg.nii.gz"
+ },
+ {
+ "image": "100811/6_0opasesen16b50f34121202828na.nii.gz",
+ "pseudo_label": "100811/6_0opasesen16b50f34121202828na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100811/6_0opasesen16b50f34121202828na/6_0opasesen16b50f34121202828na_seg.nii.gz"
+ },
+ {
+ "image": "100811/4_0opasesen16b50f34151202828na.nii.gz",
+ "pseudo_label": "100811/4_0opasesen16b50f34151202828na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100811/4_0opasesen16b50f34151202828na/4_0opasesen16b50f34151202828na_seg.nii.gz"
+ },
+ {
+ "image": "100811/3_1opasesen16b30f30051204530na.nii.gz",
+ "pseudo_label": "100811/3_1opasesen16b30f30051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100811/3_1opasesen16b30f30051204530na/3_1opasesen16b30f30051204530na_seg.nii.gz"
+ },
+ {
+ "image": "100811/3_0opasesen16b30f28251202828na.nii.gz",
+ "pseudo_label": "100811/3_0opasesen16b30f28251202828na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100811/3_0opasesen16b30f28251202828na/3_0opasesen16b30f28251202828na_seg.nii.gz"
+ },
+ {
+ "image": "106669/3_0opasevzoomb50f290212012060na.nii.gz",
+ "pseudo_label": "106669/3_0opasevzoomb50f290212012060na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106669/3_0opasevzoomb50f290212012060na/3_0opasevzoomb50f290212012060na_seg.nii.gz"
+ },
+ {
+ "image": "100900/5_2opasevzoomb50f29421206030na.nii.gz",
+ "pseudo_label": "100900/5_2opasevzoomb50f29421206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100900/5_2opasevzoomb50f29421206030na/5_2opasevzoomb50f29421206030na_seg.nii.gz"
+ },
+ {
+ "image": "100900/3_0opasesen16b30f36251206040na.nii.gz",
+ "pseudo_label": "100900/3_0opasesen16b30f36251206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100900/3_0opasesen16b30f36251206040na/3_0opasesen16b30f36251206040na_seg.nii.gz"
+ },
+ {
+ "image": "100900/6_2opasevzoomb30f29421206030na.nii.gz",
+ "pseudo_label": "100900/6_2opasevzoomb30f29421206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100900/6_2opasevzoomb30f29421206030na/6_2opasevzoomb30f29421206030na_seg.nii.gz"
+ },
+ {
+ "image": "100900/4_0opasesen16b50f36251206040na.nii.gz",
+ "pseudo_label": "100900/4_0opasesen16b50f36251206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100900/4_0opasesen16b50f36251206040na/4_0opasesen16b50f36251206040na_seg.nii.gz"
+ },
+ {
+ "image": "100900/3_1opasesen16b30f30051204530na.nii.gz",
+ "pseudo_label": "100900/3_1opasesen16b30f30051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100900/3_1opasesen16b30f30051204530na/3_1opasesen16b30f30051204530na_seg.nii.gz"
+ },
+ {
+ "image": "100900/3_2opasevzoomb30f29451206030na.nii.gz",
+ "pseudo_label": "100900/3_2opasevzoomb30f29451206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100900/3_2opasevzoomb30f29451206030na/3_2opasevzoomb30f29451206030na_seg.nii.gz"
+ },
+ {
+ "image": "100900/6_1opasesen16b60f30021204530na.nii.gz",
+ "pseudo_label": "100900/6_1opasesen16b60f30021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100900/6_1opasesen16b60f30021204530na/6_1opasesen16b60f30021204530na_seg.nii.gz"
+ },
+ {
+ "image": "112936/2_0opagels16bone3602512040014.nii.gz",
+ "pseudo_label": "112936/2_0opagels16bone3602512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112936/2_0opagels16bone3602512040014/2_0opagels16bone3602512040014_seg.nii.gz"
+ },
+ {
+ "image": "112936/3_2opagelspr16standard3402512040014.nii.gz",
+ "pseudo_label": "112936/3_2opagelspr16standard3402512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112936/3_2opagelspr16standard3402512040014/3_2opagelspr16standard3402512040014_seg.nii.gz"
+ },
+ {
+ "image": "112936/3_0opagels16standard3602512040014.nii.gz",
+ "pseudo_label": "112936/3_0opagels16standard3602512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112936/3_0opagels16standard3602512040014/3_0opagels16standard3602512040014_seg.nii.gz"
+ },
+ {
+ "image": "112936/2_2opagelspr16bone3402512040014.nii.gz",
+ "pseudo_label": "112936/2_2opagelspr16bone3402512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112936/2_2opagelspr16bone3402512040014/2_2opagelspr16bone3402512040014_seg.nii.gz"
+ },
+ {
+ "image": "112936/2_1opagels16bone3392512000na.nii.gz",
+ "pseudo_label": "112936/2_1opagels16bone3392512000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112936/2_1opagels16bone3392512000na/2_1opagels16bone3392512000na_seg.nii.gz"
+ },
+ {
+ "image": "112936/3_1opagels16standard3392512000na.nii.gz",
+ "pseudo_label": "112936/3_1opagels16standard3392512000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112936/3_1opagels16standard3392512000na/3_1opagels16standard3392512000na_seg.nii.gz"
+ },
+ {
+ "image": "111012/1_1opagelsplusstandard36025120800115.nii.gz",
+ "pseudo_label": "111012/1_1opagelsplusstandard36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111012/1_1opagelsplusstandard36025120800115/1_1opagelsplusstandard36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "111012/1_0opagelsplusstandard3602512010250115.nii.gz",
+ "pseudo_label": "111012/1_0opagelsplusstandard3602512010250115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111012/1_0opagelsplusstandard3602512010250115/1_0opagelsplusstandard3602512010250115_seg.nii.gz"
+ },
+ {
+ "image": "111012/1_0opagelspluslung3602512010250115.nii.gz",
+ "pseudo_label": "111012/1_0opagelspluslung3602512010250115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111012/1_0opagelspluslung3602512010250115/1_0opagelspluslung3602512010250115_seg.nii.gz"
+ },
+ {
+ "image": "110632/3_1opasevzoomb30f32151206030na.nii.gz",
+ "pseudo_label": "110632/3_1opasevzoomb30f32151206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110632/3_1opasevzoomb30f32151206030na/3_1opasevzoomb30f32151206030na_seg.nii.gz"
+ },
+ {
+ "image": "110632/4_1opasevzoomb50f32151206030na.nii.gz",
+ "pseudo_label": "110632/4_1opasevzoomb50f32151206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110632/4_1opasevzoomb50f32151206030na/4_1opasevzoomb50f32151206030na_seg.nii.gz"
+ },
+ {
+ "image": "110632/4_0opasesen16b30f30651206040na.nii.gz",
+ "pseudo_label": "110632/4_0opasesen16b30f30651206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110632/4_0opasesen16b30f30651206040na/4_0opasesen16b30f30651206040na_seg.nii.gz"
+ },
+ {
+ "image": "110632/5_0opasesen16b30f32451206040na.nii.gz",
+ "pseudo_label": "110632/5_0opasesen16b30f32451206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110632/5_0opasesen16b30f32451206040na/5_0opasesen16b30f32451206040na_seg.nii.gz"
+ },
+ {
+ "image": "110632/4_2opasevzoomb50f30851206030na.nii.gz",
+ "pseudo_label": "110632/4_2opasevzoomb50f30851206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110632/4_2opasevzoomb50f30851206030na/4_2opasevzoomb50f30851206030na_seg.nii.gz"
+ },
+ {
+ "image": "110632/5_1opasevzoomb50f32121206030na.nii.gz",
+ "pseudo_label": "110632/5_1opasevzoomb50f32121206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110632/5_1opasevzoomb50f32121206030na/5_1opasevzoomb50f32121206030na_seg.nii.gz"
+ },
+ {
+ "image": "110632/6_0opasesen16b50f30651206040na.nii.gz",
+ "pseudo_label": "110632/6_0opasesen16b50f30651206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110632/6_0opasesen16b50f30651206040na/6_0opasesen16b50f30651206040na_seg.nii.gz"
+ },
+ {
+ "image": "110632/3_2opasevzoomb30f30851206030na.nii.gz",
+ "pseudo_label": "110632/3_2opasevzoomb30f30851206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110632/3_2opasevzoomb30f30851206030na/3_2opasevzoomb30f30851206030na_seg.nii.gz"
+ },
+ {
+ "image": "109898/4_2opasevzoomb50f35251206030na.nii.gz",
+ "pseudo_label": "109898/4_2opasevzoomb50f35251206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109898/4_2opasevzoomb50f35251206030na/4_2opasevzoomb50f35251206030na_seg.nii.gz"
+ },
+ {
+ "image": "109898/5_1opasevzoomb30f35851206030na.nii.gz",
+ "pseudo_label": "109898/5_1opasevzoomb30f35851206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109898/5_1opasevzoomb30f35851206030na/5_1opasevzoomb30f35851206030na_seg.nii.gz"
+ },
+ {
+ "image": "109898/6_1opasevzoomb30f35821206030na.nii.gz",
+ "pseudo_label": "109898/6_1opasevzoomb30f35821206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109898/6_1opasevzoomb30f35821206030na/6_1opasevzoomb30f35821206030na_seg.nii.gz"
+ },
+ {
+ "image": "109898/4_0opasevzoomb50f38051206030na.nii.gz",
+ "pseudo_label": "109898/4_0opasevzoomb50f38051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109898/4_0opasevzoomb50f38051206030na/4_0opasevzoomb50f38051206030na_seg.nii.gz"
+ },
+ {
+ "image": "109898/6_2opasevzoomb30f35221206030na.nii.gz",
+ "pseudo_label": "109898/6_2opasevzoomb30f35221206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109898/6_2opasevzoomb30f35221206030na/6_2opasevzoomb30f35221206030na_seg.nii.gz"
+ },
+ {
+ "image": "109898/3_2opasevzoomb50f35221206030na.nii.gz",
+ "pseudo_label": "109898/3_2opasevzoomb50f35221206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109898/3_2opasevzoomb50f35221206030na/3_2opasevzoomb50f35221206030na_seg.nii.gz"
+ },
+ {
+ "image": "109898/4_1opasevzoomb50f35851206030na.nii.gz",
+ "pseudo_label": "109898/4_1opasevzoomb50f35851206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109898/4_1opasevzoomb50f35851206030na/4_1opasevzoomb50f35851206030na_seg.nii.gz"
+ },
+ {
+ "image": "103736/6516_2opaphmx8000c3153212039018.nii.gz",
+ "pseudo_label": "103736/6516_2opaphmx8000c3153212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103736/6516_2opaphmx8000c3153212039018/6516_2opaphmx8000c3153212039018_seg.nii.gz"
+ },
+ {
+ "image": "103736/0_0opaphmx8000d33832120600112.nii.gz",
+ "pseudo_label": "103736/0_0opaphmx8000d33832120600112.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103736/0_0opaphmx8000d33832120600112/0_0opaphmx8000d33832120600112_seg.nii.gz"
+ },
+ {
+ "image": "103736/6515_2opaphmx8000d3153212039018.nii.gz",
+ "pseudo_label": "103736/6515_2opaphmx8000d3153212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103736/6515_2opaphmx8000d3153212039018/6515_2opaphmx8000d3153212039018_seg.nii.gz"
+ },
+ {
+ "image": "103736/1258_1opaphmx8000c3243212039018.nii.gz",
+ "pseudo_label": "103736/1258_1opaphmx8000c3243212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103736/1258_1opaphmx8000c3243212039018/1258_1opaphmx8000c3243212039018_seg.nii.gz"
+ },
+ {
+ "image": "103736/0_0opaphmx8000c33832120600112.nii.gz",
+ "pseudo_label": "103736/0_0opaphmx8000c33832120600112.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103736/0_0opaphmx8000c33832120600112/0_0opaphmx8000c33832120600112_seg.nii.gz"
+ },
+ {
+ "image": "100322/3_2opagehsqxbone38025120560115.nii.gz",
+ "pseudo_label": "100322/3_2opagehsqxbone38025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100322/3_2opagehsqxbone38025120560115/3_2opagehsqxbone38025120560115_seg.nii.gz"
+ },
+ {
+ "image": "100322/2_1opagehsqxstandard38025120560115.nii.gz",
+ "pseudo_label": "100322/2_1opagehsqxstandard38025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100322/2_1opagehsqxstandard38025120560115/2_1opagehsqxstandard38025120560115_seg.nii.gz"
+ },
+ {
+ "image": "112946/2_1opagelsqxstandard3302512048015.nii.gz",
+ "pseudo_label": "112946/2_1opagelsqxstandard3302512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112946/2_1opagelsqxstandard3302512048015/2_1opagelsqxstandard3302512048015_seg.nii.gz"
+ },
+ {
+ "image": "106697/2_1opagelsqxstandard31425120640115.nii.gz",
+ "pseudo_label": "106697/2_1opagelsqxstandard31425120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106697/2_1opagelsqxstandard31425120640115/2_1opagelsqxstandard31425120640115_seg.nii.gz"
+ },
+ {
+ "image": "106697/3_2opagelsqxbone31825120720115.nii.gz",
+ "pseudo_label": "106697/3_2opagelsqxbone31825120720115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106697/3_2opagelsqxbone31825120720115/3_2opagelsqxbone31825120720115_seg.nii.gz"
+ },
+ {
+ "image": "106697/2_2opagelsqxstandard31825120720115.nii.gz",
+ "pseudo_label": "106697/2_2opagelsqxstandard31825120720115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106697/2_2opagelsqxstandard31825120720115/2_2opagelsqxstandard31825120720115_seg.nii.gz"
+ },
+ {
+ "image": "106697/2_0opagelsqxstandard30025120560115.nii.gz",
+ "pseudo_label": "106697/2_0opagelsqxstandard30025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106697/2_0opagelsqxstandard30025120560115/2_0opagelsqxstandard30025120560115_seg.nii.gz"
+ },
+ {
+ "image": "106697/3_0opagelsqxbone30025120560115.nii.gz",
+ "pseudo_label": "106697/3_0opagelsqxbone30025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106697/3_0opagelsqxbone30025120560115/3_0opagelsqxbone30025120560115_seg.nii.gz"
+ },
+ {
+ "image": "106697/3_1opagelsqxbone31425120640115.nii.gz",
+ "pseudo_label": "106697/3_1opagelsqxbone31425120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106697/3_1opagelsqxbone31425120640115/3_1opagelsqxbone31425120640115_seg.nii.gz"
+ },
+ {
+ "image": "100788/4_1opasesen16b30f33421204530na.nii.gz",
+ "pseudo_label": "100788/4_1opasesen16b30f33421204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100788/4_1opasesen16b30f33421204530na/4_1opasesen16b30f33421204530na_seg.nii.gz"
+ },
+ {
+ "image": "100788/3_2opasesen16b30f33451204530na.nii.gz",
+ "pseudo_label": "100788/3_2opasesen16b30f33451204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100788/3_2opasesen16b30f33451204530na/3_2opasesen16b30f33451204530na_seg.nii.gz"
+ },
+ {
+ "image": "100788/3_1opasesen16b30f33451204530na.nii.gz",
+ "pseudo_label": "100788/3_1opasesen16b30f33451204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100788/3_1opasesen16b30f33451204530na/3_1opasesen16b30f33451204530na_seg.nii.gz"
+ },
+ {
+ "image": "100788/6_0opasevzoomb60f300512012060na.nii.gz",
+ "pseudo_label": "100788/6_0opasevzoomb60f300512012060na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100788/6_0opasevzoomb60f300512012060na/6_0opasevzoomb60f300512012060na_seg.nii.gz"
+ },
+ {
+ "image": "100788/5_0opasevzoomb50f300212012060na.nii.gz",
+ "pseudo_label": "100788/5_0opasevzoomb50f300212012060na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100788/5_0opasevzoomb50f300212012060na/5_0opasevzoomb50f300212012060na_seg.nii.gz"
+ },
+ {
+ "image": "100788/6_1opasesen16b50f33421204530na.nii.gz",
+ "pseudo_label": "100788/6_1opasesen16b50f33421204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100788/6_1opasesen16b50f33421204530na/6_1opasesen16b50f33421204530na_seg.nii.gz"
+ },
+ {
+ "image": "100788/4_0opasevzoomb30f300512012060na.nii.gz",
+ "pseudo_label": "100788/4_0opasevzoomb30f300512012060na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100788/4_0opasevzoomb30f300512012060na/4_0opasevzoomb30f300512012060na_seg.nii.gz"
+ },
+ {
+ "image": "100788/4_2opasesen16b30f33421204530na.nii.gz",
+ "pseudo_label": "100788/4_2opasesen16b30f33421204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100788/4_2opasesen16b30f33421204530na/4_2opasesen16b30f33421204530na_seg.nii.gz"
+ },
+ {
+ "image": "100788/5_1opasesen16b50f33451204530na.nii.gz",
+ "pseudo_label": "100788/5_1opasesen16b50f33451204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100788/5_1opasesen16b50f33451204530na/5_1opasesen16b50f33451204530na_seg.nii.gz"
+ },
+ {
+ "image": "100788/5_2opasesen16b50f33451204530na.nii.gz",
+ "pseudo_label": "100788/5_2opasesen16b50f33451204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100788/5_2opasesen16b50f33451204530na/5_2opasesen16b50f33451204530na_seg.nii.gz"
+ },
+ {
+ "image": "103702/7705_1opaphmx8000c3003212040nana.nii.gz",
+ "pseudo_label": "103702/7705_1opaphmx8000c3003212040nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103702/7705_1opaphmx8000c3003212040nana/7705_1opaphmx8000c3003212040nana_seg.nii.gz"
+ },
+ {
+ "image": "103702/443_0opaphmx8000b2973212040nana.nii.gz",
+ "pseudo_label": "103702/443_0opaphmx8000b2973212040nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103702/443_0opaphmx8000b2973212040nana/443_0opaphmx8000b2973212040nana_seg.nii.gz"
+ },
+ {
+ "image": "103702/4691_2opaphmx8000d3103212040nana.nii.gz",
+ "pseudo_label": "103702/4691_2opaphmx8000d3103212040nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103702/4691_2opaphmx8000d3103212040nana/4691_2opaphmx8000d3103212040nana_seg.nii.gz"
+ },
+ {
+ "image": "103702/444_0opaphmx8000d2973212040nana.nii.gz",
+ "pseudo_label": "103702/444_0opaphmx8000d2973212040nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103702/444_0opaphmx8000d2973212040nana/444_0opaphmx8000d2973212040nana_seg.nii.gz"
+ },
+ {
+ "image": "103702/7704_1opaphmx8000a3003212040nana.nii.gz",
+ "pseudo_label": "103702/7704_1opaphmx8000a3003212040nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103702/7704_1opaphmx8000a3003212040nana/7704_1opaphmx8000a3003212040nana_seg.nii.gz"
+ },
+ {
+ "image": "108386/3_1opasevzoomb50f30821206030na.nii.gz",
+ "pseudo_label": "108386/3_1opasevzoomb50f30821206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108386/3_1opasevzoomb50f30821206030na/3_1opasevzoomb50f30821206030na_seg.nii.gz"
+ },
+ {
+ "image": "108386/4_0opasevzoomb50f34051206030na.nii.gz",
+ "pseudo_label": "108386/4_0opasevzoomb50f34051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108386/4_0opasevzoomb50f34051206030na/4_0opasevzoomb50f34051206030na_seg.nii.gz"
+ },
+ {
+ "image": "108386/4_1opasevzoomb50f30851206030na.nii.gz",
+ "pseudo_label": "108386/4_1opasevzoomb50f30851206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108386/4_1opasevzoomb50f30851206030na/4_1opasevzoomb50f30851206030na_seg.nii.gz"
+ },
+ {
+ "image": "108386/5_0opasevzoomb30f34051206030na.nii.gz",
+ "pseudo_label": "108386/5_0opasevzoomb30f34051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108386/5_0opasevzoomb30f34051206030na/5_0opasevzoomb30f34051206030na_seg.nii.gz"
+ },
+ {
+ "image": "100992/2_1opagelsqxstandard40025120640115.nii.gz",
+ "pseudo_label": "100992/2_1opagelsqxstandard40025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100992/2_1opagelsqxstandard40025120640115/2_1opagelsqxstandard40025120640115_seg.nii.gz"
+ },
+ {
+ "image": "100992/2_2opagelsqxstandard38025120640115.nii.gz",
+ "pseudo_label": "100992/2_2opagelsqxstandard38025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100992/2_2opagelsqxstandard38025120640115/2_2opagelsqxstandard38025120640115_seg.nii.gz"
+ },
+ {
+ "image": "103184/1_0opagelsplusstandard33025120800108.nii.gz",
+ "pseudo_label": "103184/1_0opagelsplusstandard33025120800108.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103184/1_0opagelsplusstandard33025120800108/1_0opagelsplusstandard33025120800108_seg.nii.gz"
+ },
+ {
+ "image": "103184/1_0opagelspluslung33025120800108.nii.gz",
+ "pseudo_label": "103184/1_0opagelspluslung33025120800108.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103184/1_0opagelspluslung33025120800108/1_0opagelspluslung33025120800108_seg.nii.gz"
+ },
+ {
+ "image": "103184/1_1opagelspluslung33025120800115.nii.gz",
+ "pseudo_label": "103184/1_1opagelspluslung33025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103184/1_1opagelspluslung33025120800115/1_1opagelspluslung33025120800115_seg.nii.gz"
+ },
+ {
+ "image": "103184/1_2opagelsplusstandard33025120800115.nii.gz",
+ "pseudo_label": "103184/1_2opagelsplusstandard33025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103184/1_2opagelsplusstandard33025120800115/1_2opagelsplusstandard33025120800115_seg.nii.gz"
+ },
+ {
+ "image": "103184/1_1opagelsplusstandard33025120800115.nii.gz",
+ "pseudo_label": "103184/1_1opagelsplusstandard33025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103184/1_1opagelsplusstandard33025120800115/1_1opagelsplusstandard33025120800115_seg.nii.gz"
+ },
+ {
+ "image": "103184/1_2opagelspluslung33025120800115.nii.gz",
+ "pseudo_label": "103184/1_2opagelspluslung33025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103184/1_2opagelspluslung33025120800115/1_2opagelspluslung33025120800115_seg.nii.gz"
+ },
+ {
+ "image": "109843/4_2opasevzoomb30f29421206030na.nii.gz",
+ "pseudo_label": "109843/4_2opasevzoomb30f29421206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109843/4_2opasevzoomb30f29421206030na/4_2opasevzoomb30f29421206030na_seg.nii.gz"
+ },
+ {
+ "image": "102086/2_2opasevzoomb30f39621207540na.nii.gz",
+ "pseudo_label": "102086/2_2opasevzoomb30f39621207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102086/2_2opasevzoomb30f39621207540na/2_2opasevzoomb30f39621207540na_seg.nii.gz"
+ },
+ {
+ "image": "102086/3_1opasevzoomb50f36021207540na.nii.gz",
+ "pseudo_label": "102086/3_1opasevzoomb50f36021207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102086/3_1opasevzoomb50f36021207540na/3_1opasevzoomb50f36021207540na_seg.nii.gz"
+ },
+ {
+ "image": "102086/3_2opasevzoomb70f39621207540na.nii.gz",
+ "pseudo_label": "102086/3_2opasevzoomb70f39621207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102086/3_2opasevzoomb70f39621207540na/3_2opasevzoomb70f39621207540na_seg.nii.gz"
+ },
+ {
+ "image": "103510/3_2opasesen16b30f34021204530na.nii.gz",
+ "pseudo_label": "103510/3_2opasesen16b30f34021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103510/3_2opasesen16b30f34021204530na/3_2opasesen16b30f34021204530na_seg.nii.gz"
+ },
+ {
+ "image": "102275/2_1opagelsplusstandard35025140640115.nii.gz",
+ "pseudo_label": "102275/2_1opagelsplusstandard35025140640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102275/2_1opagelsplusstandard35025140640115/2_1opagelsplusstandard35025140640115_seg.nii.gz"
+ },
+ {
+ "image": "102275/2_0opagelsplusstandard3802514040015.nii.gz",
+ "pseudo_label": "102275/2_0opagelsplusstandard3802514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102275/2_0opagelsplusstandard3802514040015/2_0opagelsplusstandard3802514040015_seg.nii.gz"
+ },
+ {
+ "image": "100547/8508_1opaphmx8000c35732120453612.nii.gz",
+ "pseudo_label": "100547/8508_1opaphmx8000c35732120453612.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100547/8508_1opaphmx8000c35732120453612/8508_1opaphmx8000c35732120453612_seg.nii.gz"
+ },
+ {
+ "image": "100547/4666_0opaphmx8000c328321208787012.nii.gz",
+ "pseudo_label": "100547/4666_0opaphmx8000c328321208787012.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100547/4666_0opaphmx8000c328321208787012/4666_0opaphmx8000c328321208787012_seg.nii.gz"
+ },
+ {
+ "image": "101046/2_2opagelsplusstandard34125140841nana.nii.gz",
+ "pseudo_label": "101046/2_2opagelsplusstandard34125140841nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101046/2_2opagelsplusstandard34125140841nana/2_2opagelsplusstandard34125140841nana_seg.nii.gz"
+ },
+ {
+ "image": "101046/2_0opagelsplusstandard3302514040015.nii.gz",
+ "pseudo_label": "101046/2_0opagelsplusstandard3302514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101046/2_0opagelsplusstandard3302514040015/2_0opagelsplusstandard3302514040015_seg.nii.gz"
+ },
+ {
+ "image": "110100/5_0opasevzoomb50f33221206030na.nii.gz",
+ "pseudo_label": "110100/5_0opasevzoomb50f33221206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110100/5_0opasevzoomb50f33221206030na/5_0opasevzoomb50f33221206030na_seg.nii.gz"
+ },
+ {
+ "image": "110100/4_2opasesen16b30f30021204530na.nii.gz",
+ "pseudo_label": "110100/4_2opasesen16b30f30021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110100/4_2opasesen16b30f30021204530na/4_2opasesen16b30f30021204530na_seg.nii.gz"
+ },
+ {
+ "image": "110100/3_2opasesen16b30f32551204530na.nii.gz",
+ "pseudo_label": "110100/3_2opasesen16b30f32551204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110100/3_2opasesen16b30f32551204530na/3_2opasesen16b30f32551204530na_seg.nii.gz"
+ },
+ {
+ "image": "110100/4_0opasevzoomb50f33251206030na.nii.gz",
+ "pseudo_label": "110100/4_0opasevzoomb50f33251206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110100/4_0opasevzoomb50f33251206030na/4_0opasevzoomb50f33251206030na_seg.nii.gz"
+ },
+ {
+ "image": "110100/3_1opasesen16b30f31051204530na.nii.gz",
+ "pseudo_label": "110100/3_1opasesen16b30f31051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110100/3_1opasesen16b30f31051204530na/3_1opasesen16b30f31051204530na_seg.nii.gz"
+ },
+ {
+ "image": "110100/3_0opasevzoomb30f33251206030na.nii.gz",
+ "pseudo_label": "110100/3_0opasevzoomb30f33251206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110100/3_0opasevzoomb30f33251206030na/3_0opasevzoomb30f33251206030na_seg.nii.gz"
+ },
+ {
+ "image": "110100/6_0opasevzoomb30f33221206030na.nii.gz",
+ "pseudo_label": "110100/6_0opasevzoomb30f33221206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110100/6_0opasevzoomb30f33221206030na/6_0opasevzoomb30f33221206030na_seg.nii.gz"
+ },
+ {
+ "image": "103658/2_1opagehsqxstandard39025120560115.nii.gz",
+ "pseudo_label": "103658/2_1opagehsqxstandard39025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103658/2_1opagehsqxstandard39025120560115/2_1opagehsqxstandard39025120560115_seg.nii.gz"
+ },
+ {
+ "image": "103658/2_0opagehsqxstandard39025120560115.nii.gz",
+ "pseudo_label": "103658/2_0opagehsqxstandard39025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103658/2_0opagehsqxstandard39025120560115/2_0opagehsqxstandard39025120560115_seg.nii.gz"
+ },
+ {
+ "image": "103658/2_2opagehsqxstandard39025120560115.nii.gz",
+ "pseudo_label": "103658/2_2opagehsqxstandard39025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103658/2_2opagehsqxstandard39025120560115/2_2opagehsqxstandard39025120560115_seg.nii.gz"
+ },
+ {
+ "image": "104071/2_0opagels16bone34025120520114.nii.gz",
+ "pseudo_label": "104071/2_0opagels16bone34025120520114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104071/2_0opagels16bone34025120520114/2_0opagels16bone34025120520114_seg.nii.gz"
+ },
+ {
+ "image": "104071/2_1opagels16bone34025120600114.nii.gz",
+ "pseudo_label": "104071/2_1opagels16bone34025120600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104071/2_1opagels16bone34025120600114/2_1opagels16bone34025120600114_seg.nii.gz"
+ },
+ {
+ "image": "105515/3_2opasesen16b30f33021204530na.nii.gz",
+ "pseudo_label": "105515/3_2opasesen16b30f33021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105515/3_2opasesen16b30f33021204530na/3_2opasesen16b30f33021204530na_seg.nii.gz"
+ },
+ {
+ "image": "111475/3_1opasesen16b30f40351204530na.nii.gz",
+ "pseudo_label": "111475/3_1opasesen16b30f40351204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111475/3_1opasesen16b30f40351204530na/3_1opasesen16b30f40351204530na_seg.nii.gz"
+ },
+ {
+ "image": "111475/6_0opasevzoomb30f35621206030na.nii.gz",
+ "pseudo_label": "111475/6_0opasevzoomb30f35621206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111475/6_0opasevzoomb30f35621206030na/6_0opasevzoomb30f35621206030na_seg.nii.gz"
+ },
+ {
+ "image": "111475/5_1opasesen16b50f40351204530na.nii.gz",
+ "pseudo_label": "111475/5_1opasesen16b50f40351204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111475/5_1opasesen16b50f40351204530na/5_1opasesen16b50f40351204530na_seg.nii.gz"
+ },
+ {
+ "image": "111475/3_2opasevzoomb30f380512012060na.nii.gz",
+ "pseudo_label": "111475/3_2opasevzoomb30f380512012060na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111475/3_2opasevzoomb30f380512012060na/3_2opasevzoomb30f380512012060na_seg.nii.gz"
+ },
+ {
+ "image": "111475/5_2opasevzoomb50f380212012060na.nii.gz",
+ "pseudo_label": "111475/5_2opasevzoomb50f380212012060na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111475/5_2opasevzoomb50f380212012060na/5_2opasevzoomb50f380212012060na_seg.nii.gz"
+ },
+ {
+ "image": "111475/4_0opasevzoomb50f35651206030na.nii.gz",
+ "pseudo_label": "111475/4_0opasevzoomb50f35651206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111475/4_0opasevzoomb50f35651206030na/4_0opasevzoomb50f35651206030na_seg.nii.gz"
+ },
+ {
+ "image": "111475/3_0opasevzoomb30f39151206030na.nii.gz",
+ "pseudo_label": "111475/3_0opasevzoomb30f39151206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111475/3_0opasevzoomb30f39151206030na/3_0opasevzoomb30f39151206030na_seg.nii.gz"
+ },
+ {
+ "image": "111475/4_1opasesen16b30f40321204530na.nii.gz",
+ "pseudo_label": "111475/4_1opasesen16b30f40321204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111475/4_1opasesen16b30f40321204530na/4_1opasesen16b30f40321204530na_seg.nii.gz"
+ },
+ {
+ "image": "111475/6_1opasesen16b50f40321204530na.nii.gz",
+ "pseudo_label": "111475/6_1opasesen16b50f40321204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111475/6_1opasesen16b50f40321204530na/6_1opasesen16b50f40321204530na_seg.nii.gz"
+ },
+ {
+ "image": "105373/4_0opasevzoomb50f39051206030na.nii.gz",
+ "pseudo_label": "105373/4_0opasevzoomb50f39051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105373/4_0opasevzoomb50f39051206030na/4_0opasevzoomb50f39051206030na_seg.nii.gz"
+ },
+ {
+ "image": "105373/4_2opasevzoomb50f36051206030na.nii.gz",
+ "pseudo_label": "105373/4_2opasevzoomb50f36051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105373/4_2opasevzoomb50f36051206030na/4_2opasevzoomb50f36051206030na_seg.nii.gz"
+ },
+ {
+ "image": "105373/5_0opasevzoomb30f39051206030na.nii.gz",
+ "pseudo_label": "105373/5_0opasevzoomb30f39051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105373/5_0opasevzoomb30f39051206030na/5_0opasevzoomb30f39051206030na_seg.nii.gz"
+ },
+ {
+ "image": "105373/3_1opasevzoomb50f38021206030na.nii.gz",
+ "pseudo_label": "105373/3_1opasevzoomb50f38021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105373/3_1opasevzoomb50f38021206030na/3_1opasevzoomb50f38021206030na_seg.nii.gz"
+ },
+ {
+ "image": "105373/4_1opasevzoomb50f38051206030na.nii.gz",
+ "pseudo_label": "105373/4_1opasevzoomb50f38051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105373/4_1opasevzoomb50f38051206030na/4_1opasevzoomb50f38051206030na_seg.nii.gz"
+ },
+ {
+ "image": "105373/5_1opasevzoomb30f38051206030na.nii.gz",
+ "pseudo_label": "105373/5_1opasevzoomb30f38051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105373/5_1opasevzoomb30f38051206030na/5_1opasevzoomb30f38051206030na_seg.nii.gz"
+ },
+ {
+ "image": "105373/5_2opasevzoomb30f36051206030na.nii.gz",
+ "pseudo_label": "105373/5_2opasevzoomb30f36051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105373/5_2opasevzoomb30f36051206030na/5_2opasevzoomb30f36051206030na_seg.nii.gz"
+ },
+ {
+ "image": "100852/2_0opagelsqxstandard4012514048015.nii.gz",
+ "pseudo_label": "100852/2_0opagelsqxstandard4012514048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100852/2_0opagelsqxstandard4012514048015/2_0opagelsqxstandard4012514048015_seg.nii.gz"
+ },
+ {
+ "image": "100852/2_1opagelsqxstandard4002514048015.nii.gz",
+ "pseudo_label": "100852/2_1opagelsqxstandard4002514048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100852/2_1opagelsqxstandard4002514048015/2_1opagelsqxstandard4002514048015_seg.nii.gz"
+ },
+ {
+ "image": "105708/2_2opagels16standard340251208001na.nii.gz",
+ "pseudo_label": "105708/2_2opagels16standard340251208001na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105708/2_2opagels16standard340251208001na/2_2opagels16standard340251208001na_seg.nii.gz"
+ },
+ {
+ "image": "108996/2_1opagels16bone34025120600114.nii.gz",
+ "pseudo_label": "108996/2_1opagels16bone34025120600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108996/2_1opagels16bone34025120600114/2_1opagels16bone34025120600114_seg.nii.gz"
+ },
+ {
+ "image": "100619/3_1opagels16standard35025120600114.nii.gz",
+ "pseudo_label": "100619/3_1opagels16standard35025120600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100619/3_1opagels16standard35025120600114/3_1opagels16standard35025120600114_seg.nii.gz"
+ },
+ {
+ "image": "100619/4_2opagels16standard35025120600114.nii.gz",
+ "pseudo_label": "100619/4_2opagels16standard35025120600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100619/4_2opagels16standard35025120600114/4_2opagels16standard35025120600114_seg.nii.gz"
+ },
+ {
+ "image": "100619/2_1opagels16bone35025120600114.nii.gz",
+ "pseudo_label": "100619/2_1opagels16bone35025120600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100619/2_1opagels16bone35025120600114/2_1opagels16bone35025120600114_seg.nii.gz"
+ },
+ {
+ "image": "100619/3_0opagels16standard36025120780114.nii.gz",
+ "pseudo_label": "100619/3_0opagels16standard36025120780114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100619/3_0opagels16standard36025120780114/3_0opagels16standard36025120780114_seg.nii.gz"
+ },
+ {
+ "image": "100253/3_2opasesen16b30f34021204530na.nii.gz",
+ "pseudo_label": "100253/3_2opasesen16b30f34021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100253/3_2opasesen16b30f34021204530na/3_2opasesen16b30f34021204530na_seg.nii.gz"
+ },
+ {
+ "image": "108335/2_1opasevzoomb50f28821206030na.nii.gz",
+ "pseudo_label": "108335/2_1opasevzoomb50f28821206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108335/2_1opasevzoomb50f28821206030na/2_1opasevzoomb50f28821206030na_seg.nii.gz"
+ },
+ {
+ "image": "108335/2_2opasesen16b50f29021204530na.nii.gz",
+ "pseudo_label": "108335/2_2opasesen16b50f29021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108335/2_2opasesen16b50f29021204530na/2_2opasesen16b50f29021204530na_seg.nii.gz"
+ },
+ {
+ "image": "108783/3_1opasevzoomb30f29221206030na.nii.gz",
+ "pseudo_label": "108783/3_1opasevzoomb30f29221206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108783/3_1opasevzoomb30f29221206030na/3_1opasevzoomb30f29221206030na_seg.nii.gz"
+ },
+ {
+ "image": "108783/2_0opasevzoomb50f29821206030na.nii.gz",
+ "pseudo_label": "108783/2_0opasevzoomb50f29821206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108783/2_0opasevzoomb50f29821206030na/2_0opasevzoomb50f29821206030na_seg.nii.gz"
+ },
+ {
+ "image": "107868/2_0opagehsqxstandard35025120560115.nii.gz",
+ "pseudo_label": "107868/2_0opagehsqxstandard35025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107868/2_0opagehsqxstandard35025120560115/2_0opagehsqxstandard35025120560115_seg.nii.gz"
+ },
+ {
+ "image": "107868/3_0opagehsqxbone35025120560115.nii.gz",
+ "pseudo_label": "107868/3_0opagehsqxbone35025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107868/3_0opagehsqxbone35025120560115/3_0opagehsqxbone35025120560115_seg.nii.gz"
+ },
+ {
+ "image": "108024/3_0opasesen16b30f41251206040na.nii.gz",
+ "pseudo_label": "108024/3_0opasesen16b30f41251206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108024/3_0opasesen16b30f41251206040na/3_0opasesen16b30f41251206040na_seg.nii.gz"
+ },
+ {
+ "image": "113008/1_0opagelsplusstandard32925120800115.nii.gz",
+ "pseudo_label": "113008/1_0opagelsplusstandard32925120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113008/1_0opagelsplusstandard32925120800115/1_0opagelsplusstandard32925120800115_seg.nii.gz"
+ },
+ {
+ "image": "113008/1_0opagelspluslung32925120800115.nii.gz",
+ "pseudo_label": "113008/1_0opagelspluslung32925120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113008/1_0opagelspluslung32925120800115/1_0opagelspluslung32925120800115_seg.nii.gz"
+ },
+ {
+ "image": "113008/1_1opagelspluslung33025120800115.nii.gz",
+ "pseudo_label": "113008/1_1opagelspluslung33025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113008/1_1opagelspluslung33025120800115/1_1opagelspluslung33025120800115_seg.nii.gz"
+ },
+ {
+ "image": "113008/1_2opagelsplusstandard33025120800115.nii.gz",
+ "pseudo_label": "113008/1_2opagelsplusstandard33025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113008/1_2opagelsplusstandard33025120800115/1_2opagelsplusstandard33025120800115_seg.nii.gz"
+ },
+ {
+ "image": "113143/3_2opasesen16b30f34021204530na.nii.gz",
+ "pseudo_label": "113143/3_2opasesen16b30f34021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113143/3_2opasesen16b30f34021204530na/3_2opasesen16b30f34021204530na_seg.nii.gz"
+ },
+ {
+ "image": "108465/2_1opagelsqxstandard33025120560115.nii.gz",
+ "pseudo_label": "108465/2_1opagelsqxstandard33025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108465/2_1opagelsqxstandard33025120560115/2_1opagelsqxstandard33025120560115_seg.nii.gz"
+ },
+ {
+ "image": "107988/1_1opagelsplusstandard36025120800115.nii.gz",
+ "pseudo_label": "107988/1_1opagelsplusstandard36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107988/1_1opagelsplusstandard36025120800115/1_1opagelsplusstandard36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "107988/1_0opagelspluslung36025120800108.nii.gz",
+ "pseudo_label": "107988/1_0opagelspluslung36025120800108.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107988/1_0opagelspluslung36025120800108/1_0opagelspluslung36025120800108_seg.nii.gz"
+ },
+ {
+ "image": "107988/1_1opagelspluslung36025120800115.nii.gz",
+ "pseudo_label": "107988/1_1opagelspluslung36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107988/1_1opagelspluslung36025120800115/1_1opagelspluslung36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "107988/1_2opatoaqul4fc013594212080nana.nii.gz",
+ "pseudo_label": "107988/1_2opatoaqul4fc013594212080nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107988/1_2opatoaqul4fc013594212080nana/1_2opatoaqul4fc013594212080nana_seg.nii.gz"
+ },
+ {
+ "image": "107988/1_0opagelsplusstandard36025120800108.nii.gz",
+ "pseudo_label": "107988/1_0opagelsplusstandard36025120800108.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107988/1_0opagelsplusstandard36025120800108/1_0opagelsplusstandard36025120800108_seg.nii.gz"
+ },
+ {
+ "image": "104860/5_1opasevzoomb30f40851206030na.nii.gz",
+ "pseudo_label": "104860/5_1opasevzoomb30f40851206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104860/5_1opasevzoomb30f40851206030na/5_1opasevzoomb30f40851206030na_seg.nii.gz"
+ },
+ {
+ "image": "104860/4_2opasevzoomb50f36051206030na.nii.gz",
+ "pseudo_label": "104860/4_2opasevzoomb50f36051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104860/4_2opasevzoomb50f36051206030na/4_2opasevzoomb50f36051206030na_seg.nii.gz"
+ },
+ {
+ "image": "104860/3_1opasevzoomb50f40821206030na.nii.gz",
+ "pseudo_label": "104860/3_1opasevzoomb50f40821206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104860/3_1opasevzoomb50f40821206030na/3_1opasevzoomb50f40821206030na_seg.nii.gz"
+ },
+ {
+ "image": "104860/4_0opasevzoomb50f35651206030na.nii.gz",
+ "pseudo_label": "104860/4_0opasevzoomb50f35651206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104860/4_0opasevzoomb50f35651206030na/4_0opasevzoomb50f35651206030na_seg.nii.gz"
+ },
+ {
+ "image": "104860/5_0opasevzoomb30f35651206030na.nii.gz",
+ "pseudo_label": "104860/5_0opasevzoomb30f35651206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104860/5_0opasevzoomb30f35651206030na/5_0opasevzoomb30f35651206030na_seg.nii.gz"
+ },
+ {
+ "image": "104860/5_2opasevzoomb30f36051206030na.nii.gz",
+ "pseudo_label": "104860/5_2opasevzoomb30f36051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104860/5_2opasevzoomb30f36051206030na/5_2opasevzoomb30f36051206030na_seg.nii.gz"
+ },
+ {
+ "image": "104860/4_1opasevzoomb50f40851206030na.nii.gz",
+ "pseudo_label": "104860/4_1opasevzoomb50f40851206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104860/4_1opasevzoomb50f40851206030na/4_1opasevzoomb50f40851206030na_seg.nii.gz"
+ },
+ {
+ "image": "104860/3_2opasevzoomb50f36021206030na.nii.gz",
+ "pseudo_label": "104860/3_2opasevzoomb50f36021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104860/3_2opasevzoomb50f36021206030na/3_2opasevzoomb50f36021206030na_seg.nii.gz"
+ },
+ {
+ "image": "108867/2_0opagels16bone32025120600114.nii.gz",
+ "pseudo_label": "108867/2_0opagels16bone32025120600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108867/2_0opagels16bone32025120600114/2_0opagels16bone32025120600114_seg.nii.gz"
+ },
+ {
+ "image": "108867/3_0opagels16standard32025120600114.nii.gz",
+ "pseudo_label": "108867/3_0opagels16standard32025120600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108867/3_0opagels16standard32025120600114/3_0opagels16standard32025120600114_seg.nii.gz"
+ },
+ {
+ "image": "113288/2_1opagels16standard32025120nanana.nii.gz",
+ "pseudo_label": "113288/2_1opagels16standard32025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113288/2_1opagels16standard32025120nanana/2_1opagels16standard32025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "113288/2_2opagels16standard32025120nanana.nii.gz",
+ "pseudo_label": "113288/2_2opagels16standard32025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113288/2_2opagels16standard32025120nanana/2_2opagels16standard32025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "113288/3_1opagels16bone32025120nanana.nii.gz",
+ "pseudo_label": "113288/3_1opagels16bone32025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113288/3_1opagels16bone32025120nanana/3_1opagels16bone32025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "113288/3_2opagels16bone32025120nanana.nii.gz",
+ "pseudo_label": "113288/3_2opagels16bone32025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113288/3_2opagels16bone32025120nanana/3_2opagels16bone32025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "113288/4_0opagelsqxbone32025120nanana.nii.gz",
+ "pseudo_label": "113288/4_0opagelsqxbone32025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113288/4_0opagelsqxbone32025120nanana/4_0opagelsqxbone32025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "113288/3_0opagelsqxstandard32025120nanana.nii.gz",
+ "pseudo_label": "113288/3_0opagelsqxstandard32025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113288/3_0opagelsqxstandard32025120nanana/3_0opagelsqxstandard32025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "105530/2_0opagelsqxstandard34025120800115.nii.gz",
+ "pseudo_label": "105530/2_0opagelsqxstandard34025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105530/2_0opagelsqxstandard34025120800115/2_0opagelsqxstandard34025120800115_seg.nii.gz"
+ },
+ {
+ "image": "105530/2_2opagelsqxstandard36025120720115.nii.gz",
+ "pseudo_label": "105530/2_2opagelsqxstandard36025120720115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105530/2_2opagelsqxstandard36025120720115/2_2opagelsqxstandard36025120720115_seg.nii.gz"
+ },
+ {
+ "image": "105530/3_1opagelsqxbone32625120640115.nii.gz",
+ "pseudo_label": "105530/3_1opagelsqxbone32625120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105530/3_1opagelsqxbone32625120640115/3_1opagelsqxbone32625120640115_seg.nii.gz"
+ },
+ {
+ "image": "105530/2_1opagelsqxstandard32625120640115.nii.gz",
+ "pseudo_label": "105530/2_1opagelsqxstandard32625120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105530/2_1opagelsqxstandard32625120640115/2_1opagelsqxstandard32625120640115_seg.nii.gz"
+ },
+ {
+ "image": "109779/4_2opasesen16b30f31721204530na.nii.gz",
+ "pseudo_label": "109779/4_2opasesen16b30f31721204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109779/4_2opasesen16b30f31721204530na/4_2opasesen16b30f31721204530na_seg.nii.gz"
+ },
+ {
+ "image": "109779/5_1opasesen16b50f34651204530na.nii.gz",
+ "pseudo_label": "109779/5_1opasesen16b50f34651204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109779/5_1opasesen16b50f34651204530na/5_1opasesen16b50f34651204530na_seg.nii.gz"
+ },
+ {
+ "image": "109779/3_2opasesen16b30f31851204530na.nii.gz",
+ "pseudo_label": "109779/3_2opasesen16b30f31851204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109779/3_2opasesen16b30f31851204530na/3_2opasesen16b30f31851204530na_seg.nii.gz"
+ },
+ {
+ "image": "109779/3_0opasesen16b30f36551206040na.nii.gz",
+ "pseudo_label": "109779/3_0opasesen16b30f36551206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109779/3_0opasesen16b30f36551206040na/3_0opasesen16b30f36551206040na_seg.nii.gz"
+ },
+ {
+ "image": "109779/4_0opasesen16b50f38051206040na.nii.gz",
+ "pseudo_label": "109779/4_0opasesen16b50f38051206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109779/4_0opasesen16b50f38051206040na/4_0opasesen16b50f38051206040na_seg.nii.gz"
+ },
+ {
+ "image": "109779/6_0opasesen16b30f36521206040na.nii.gz",
+ "pseudo_label": "109779/6_0opasesen16b30f36521206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109779/6_0opasesen16b30f36521206040na/6_0opasesen16b30f36521206040na_seg.nii.gz"
+ },
+ {
+ "image": "109779/6_2opasesen16b50f31821204530na.nii.gz",
+ "pseudo_label": "109779/6_2opasesen16b50f31821204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109779/6_2opasesen16b50f31821204530na/6_2opasesen16b50f31821204530na_seg.nii.gz"
+ },
+ {
+ "image": "109779/5_2opasesen16b50f31851204530na.nii.gz",
+ "pseudo_label": "109779/5_2opasesen16b50f31851204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109779/5_2opasesen16b50f31851204530na/5_2opasesen16b50f31851204530na_seg.nii.gz"
+ },
+ {
+ "image": "109779/3_1opasesen16b30f34651204530na.nii.gz",
+ "pseudo_label": "109779/3_1opasesen16b30f34651204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109779/3_1opasesen16b30f34651204530na/3_1opasesen16b30f34651204530na_seg.nii.gz"
+ },
+ {
+ "image": "102971/2_0opagelsqxstandard3602514048015.nii.gz",
+ "pseudo_label": "102971/2_0opagelsqxstandard3602514048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102971/2_0opagelsqxstandard3602514048015/2_0opagelsqxstandard3602514048015_seg.nii.gz"
+ },
+ {
+ "image": "102971/2_1opagelsqxstandard3402514040015.nii.gz",
+ "pseudo_label": "102971/2_1opagelsqxstandard3402514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102971/2_1opagelsqxstandard3402514040015/2_1opagelsqxstandard3402514040015_seg.nii.gz"
+ },
+ {
+ "image": "107646/2_2opasesen16b50f28021204530na.nii.gz",
+ "pseudo_label": "107646/2_2opasesen16b50f28021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107646/2_2opasesen16b50f28021204530na/2_2opasesen16b50f28021204530na_seg.nii.gz"
+ },
+ {
+ "image": "107646/3_1opasevzoomb50f28021206030na.nii.gz",
+ "pseudo_label": "107646/3_1opasevzoomb50f28021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107646/3_1opasevzoomb50f28021206030na/3_1opasevzoomb50f28021206030na_seg.nii.gz"
+ },
+ {
+ "image": "107646/3_0opasevzoomb30f28621206030na.nii.gz",
+ "pseudo_label": "107646/3_0opasevzoomb30f28621206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107646/3_0opasevzoomb30f28621206030na/3_0opasevzoomb30f28621206030na_seg.nii.gz"
+ },
+ {
+ "image": "106612/3_2opatoaqul4fc513203212060nana.nii.gz",
+ "pseudo_label": "106612/3_2opatoaqul4fc513203212060nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106612/3_2opatoaqul4fc513203212060nana/3_2opatoaqul4fc513203212060nana_seg.nii.gz"
+ },
+ {
+ "image": "111038/3_0opasevzoomb30f32821206030na.nii.gz",
+ "pseudo_label": "111038/3_0opasevzoomb30f32821206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111038/3_0opasevzoomb30f32821206030na/3_0opasevzoomb30f32821206030na_seg.nii.gz"
+ },
+ {
+ "image": "111038/2_1opasevzoomb50f30621206030na.nii.gz",
+ "pseudo_label": "111038/2_1opasevzoomb50f30621206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111038/2_1opasevzoomb50f30621206030na/2_1opasevzoomb50f30621206030na_seg.nii.gz"
+ },
+ {
+ "image": "109758/2_0opasesen16b30f34621204032na.nii.gz",
+ "pseudo_label": "109758/2_0opasesen16b30f34621204032na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109758/2_0opasesen16b30f34621204032na/2_0opasesen16b30f34621204032na_seg.nii.gz"
+ },
+ {
+ "image": "109758/2_1opasesen16b30f36021206048na.nii.gz",
+ "pseudo_label": "109758/2_1opasesen16b30f36021206048na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109758/2_1opasesen16b30f36021206048na/2_1opasesen16b30f36021206048na_seg.nii.gz"
+ },
+ {
+ "image": "109758/2_2opasesen16b30f34721204032na.nii.gz",
+ "pseudo_label": "109758/2_2opasesen16b30f34721204032na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109758/2_2opasesen16b30f34721204032na/2_2opasesen16b30f34721204032na_seg.nii.gz"
+ },
+ {
+ "image": "105282/5_2opasevzoomb30f38451206030na.nii.gz",
+ "pseudo_label": "105282/5_2opasevzoomb30f38451206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105282/5_2opasevzoomb30f38451206030na/5_2opasevzoomb30f38451206030na_seg.nii.gz"
+ },
+ {
+ "image": "105282/4_2opasevzoomb50f38451206030na.nii.gz",
+ "pseudo_label": "105282/4_2opasevzoomb50f38451206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105282/4_2opasevzoomb50f38451206030na/4_2opasevzoomb50f38451206030na_seg.nii.gz"
+ },
+ {
+ "image": "105282/5_0opasevzoomb30f41651206030na.nii.gz",
+ "pseudo_label": "105282/5_0opasevzoomb30f41651206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105282/5_0opasevzoomb30f41651206030na/5_0opasevzoomb30f41651206030na_seg.nii.gz"
+ },
+ {
+ "image": "105282/4_1opasevzoomb50f38051206030na.nii.gz",
+ "pseudo_label": "105282/4_1opasevzoomb50f38051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105282/4_1opasevzoomb50f38051206030na/4_1opasevzoomb50f38051206030na_seg.nii.gz"
+ },
+ {
+ "image": "105282/4_0opasevzoomb50f41651206030na.nii.gz",
+ "pseudo_label": "105282/4_0opasevzoomb50f41651206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105282/4_0opasevzoomb50f41651206030na/4_0opasevzoomb50f41651206030na_seg.nii.gz"
+ },
+ {
+ "image": "105282/5_1opasevzoomb30f38051206030na.nii.gz",
+ "pseudo_label": "105282/5_1opasevzoomb30f38051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105282/5_1opasevzoomb30f38051206030na/5_1opasevzoomb30f38051206030na_seg.nii.gz"
+ },
+ {
+ "image": "107118/2_0opagelsqxbone38225120640115.nii.gz",
+ "pseudo_label": "107118/2_0opagelsqxbone38225120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107118/2_0opagelsqxbone38225120640115/2_0opagelsqxbone38225120640115_seg.nii.gz"
+ },
+ {
+ "image": "107118/3_1opagels16standard35025120640114.nii.gz",
+ "pseudo_label": "107118/3_1opagels16standard35025120640114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107118/3_1opagels16standard35025120640114/3_1opagels16standard35025120640114_seg.nii.gz"
+ },
+ {
+ "image": "107118/2_2opagelspr16bone3802512048014.nii.gz",
+ "pseudo_label": "107118/2_2opagelspr16bone3802512048014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107118/2_2opagelspr16bone3802512048014/2_2opagelspr16bone3802512048014_seg.nii.gz"
+ },
+ {
+ "image": "107118/2_1opagels16bone35025120640114.nii.gz",
+ "pseudo_label": "107118/2_1opagels16bone35025120640114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107118/2_1opagels16bone35025120640114/2_1opagels16bone35025120640114_seg.nii.gz"
+ },
+ {
+ "image": "110715/3_2opasevzoomb50f30021206030na.nii.gz",
+ "pseudo_label": "110715/3_2opasevzoomb50f30021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110715/3_2opasevzoomb50f30021206030na/3_2opasevzoomb50f30021206030na_seg.nii.gz"
+ },
+ {
+ "image": "108718/2_1opasesen16b50f30021204530na.nii.gz",
+ "pseudo_label": "108718/2_1opasesen16b50f30021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108718/2_1opasesen16b50f30021204530na/2_1opasesen16b50f30021204530na_seg.nii.gz"
+ },
+ {
+ "image": "106924/2_1opagelsqxstandard33025120560115.nii.gz",
+ "pseudo_label": "106924/2_1opagelsqxstandard33025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106924/2_1opagelsqxstandard33025120560115/2_1opagelsqxstandard33025120560115_seg.nii.gz"
+ },
+ {
+ "image": "106924/3_2opagelsqxbone32025120640115.nii.gz",
+ "pseudo_label": "106924/3_2opagelsqxbone32025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106924/3_2opagelsqxbone32025120640115/3_2opagelsqxbone32025120640115_seg.nii.gz"
+ },
+ {
+ "image": "106924/2_0opagelsqxstandard32025120560115.nii.gz",
+ "pseudo_label": "106924/2_0opagelsqxstandard32025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106924/2_0opagelsqxstandard32025120560115/2_0opagelsqxstandard32025120560115_seg.nii.gz"
+ },
+ {
+ "image": "106924/3_0opagelsqxbone32025120560115.nii.gz",
+ "pseudo_label": "106924/3_0opagelsqxbone32025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106924/3_0opagelsqxbone32025120560115/3_0opagelsqxbone32025120560115_seg.nii.gz"
+ },
+ {
+ "image": "106924/2_2opagelsqxstandard32025120640115.nii.gz",
+ "pseudo_label": "106924/2_2opagelsqxstandard32025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106924/2_2opagelsqxstandard32025120640115/2_2opagelsqxstandard32025120640115_seg.nii.gz"
+ },
+ {
+ "image": "106177/3_0opasesen16b30f27821204032na.nii.gz",
+ "pseudo_label": "106177/3_0opasesen16b30f27821204032na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106177/3_0opasesen16b30f27821204032na/3_0opasesen16b30f27821204032na_seg.nii.gz"
+ },
+ {
+ "image": "106177/3_2opasesen16b30f28221204032na.nii.gz",
+ "pseudo_label": "106177/3_2opasesen16b30f28221204032na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106177/3_2opasesen16b30f28221204032na/3_2opasesen16b30f28221204032na_seg.nii.gz"
+ },
+ {
+ "image": "106177/2_0opasesen16b30f27821204032na.nii.gz",
+ "pseudo_label": "106177/2_0opasesen16b30f27821204032na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106177/2_0opasesen16b30f27821204032na/2_0opasesen16b30f27821204032na_seg.nii.gz"
+ },
+ {
+ "image": "106177/2_2opasesen16b30f28221204032na.nii.gz",
+ "pseudo_label": "106177/2_2opasesen16b30f28221204032na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106177/2_2opasesen16b30f28221204032na/2_2opasesen16b30f28221204032na_seg.nii.gz"
+ },
+ {
+ "image": "106177/2_1opasesen16b30f30221206048na.nii.gz",
+ "pseudo_label": "106177/2_1opasesen16b30f30221206048na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106177/2_1opasesen16b30f30221206048na/2_1opasesen16b30f30221206048na_seg.nii.gz"
+ },
+ {
+ "image": "106123/4_0opatoaqul4fc513484212040nana.nii.gz",
+ "pseudo_label": "106123/4_0opatoaqul4fc513484212040nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106123/4_0opatoaqul4fc513484212040nana/4_0opatoaqul4fc513484212040nana_seg.nii.gz"
+ },
+ {
+ "image": "105987/6_2opasesen16b50f34251204530na.nii.gz",
+ "pseudo_label": "105987/6_2opasesen16b50f34251204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105987/6_2opasesen16b50f34251204530na/6_2opasesen16b50f34251204530na_seg.nii.gz"
+ },
+ {
+ "image": "105987/5_1opasesen16b30f35051204530na.nii.gz",
+ "pseudo_label": "105987/5_1opasesen16b30f35051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105987/5_1opasesen16b30f35051204530na/5_1opasesen16b30f35051204530na_seg.nii.gz"
+ },
+ {
+ "image": "105987/7_1opasesen16b50f35051204530na.nii.gz",
+ "pseudo_label": "105987/7_1opasesen16b50f35051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105987/7_1opasesen16b50f35051204530na/7_1opasesen16b50f35051204530na_seg.nii.gz"
+ },
+ {
+ "image": "105987/4_0opasesen16b50f38051204530na.nii.gz",
+ "pseudo_label": "105987/4_0opasesen16b50f38051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105987/4_0opasesen16b50f38051204530na/4_0opasesen16b50f38051204530na_seg.nii.gz"
+ },
+ {
+ "image": "105987/4_2opasesen16b30f34251204530na.nii.gz",
+ "pseudo_label": "105987/4_2opasesen16b30f34251204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105987/4_2opasesen16b30f34251204530na/4_2opasesen16b30f34251204530na_seg.nii.gz"
+ },
+ {
+ "image": "105987/3_0opasesen16b30f38051204530na.nii.gz",
+ "pseudo_label": "105987/3_0opasesen16b30f38051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105987/3_0opasesen16b30f38051204530na/3_0opasesen16b30f38051204530na_seg.nii.gz"
+ },
+ {
+ "image": "100746/3_1opagels16standard42025140600114.nii.gz",
+ "pseudo_label": "100746/3_1opagels16standard42025140600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100746/3_1opagels16standard42025140600114/3_1opagels16standard42025140600114_seg.nii.gz"
+ },
+ {
+ "image": "100746/3_2opagels16standard42025140600114.nii.gz",
+ "pseudo_label": "100746/3_2opagels16standard42025140600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100746/3_2opagels16standard42025140600114/3_2opagels16standard42025140600114_seg.nii.gz"
+ },
+ {
+ "image": "100746/2_1opagels16bone42025140600114.nii.gz",
+ "pseudo_label": "100746/2_1opagels16bone42025140600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100746/2_1opagels16bone42025140600114/2_1opagels16bone42025140600114_seg.nii.gz"
+ },
+ {
+ "image": "113338/4_0opatoaqul4fc513062212060nana.nii.gz",
+ "pseudo_label": "113338/4_0opatoaqul4fc513062212060nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113338/4_0opatoaqul4fc513062212060nana/4_0opatoaqul4fc513062212060nana_seg.nii.gz"
+ },
+ {
+ "image": "105986/3_2opagelsplusstandard32025140688nana.nii.gz",
+ "pseudo_label": "105986/3_2opagelsplusstandard32025140688nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105986/3_2opagelsplusstandard32025140688nana/3_2opagelsplusstandard32025140688nana_seg.nii.gz"
+ },
+ {
+ "image": "105986/2_0opagelsplusstandard32025140400na.nii.gz",
+ "pseudo_label": "105986/2_0opagelsplusstandard32025140400na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105986/2_0opagelsplusstandard32025140400na/2_0opagelsplusstandard32025140400na_seg.nii.gz"
+ },
+ {
+ "image": "105986/2_1opagelsqxstandard32025140400na.nii.gz",
+ "pseudo_label": "105986/2_1opagelsqxstandard32025140400na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105986/2_1opagelsqxstandard32025140400na/2_1opagelsqxstandard32025140400na_seg.nii.gz"
+ },
+ {
+ "image": "105611/4_0opatoaqul4fc51350212060nana.nii.gz",
+ "pseudo_label": "105611/4_0opatoaqul4fc51350212060nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105611/4_0opatoaqul4fc51350212060nana/4_0opatoaqul4fc51350212060nana_seg.nii.gz"
+ },
+ {
+ "image": "107520/4_2opasevzoomb50f26851206030na.nii.gz",
+ "pseudo_label": "107520/4_2opasevzoomb50f26851206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107520/4_2opasevzoomb50f26851206030na/4_2opasevzoomb50f26851206030na_seg.nii.gz"
+ },
+ {
+ "image": "107520/3_1opasevzoomb30f28651206030na.nii.gz",
+ "pseudo_label": "107520/3_1opasevzoomb30f28651206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107520/3_1opasevzoomb30f28651206030na/3_1opasevzoomb30f28651206030na_seg.nii.gz"
+ },
+ {
+ "image": "107520/3_0opasesen16b30f29651206040na.nii.gz",
+ "pseudo_label": "107520/3_0opasesen16b30f29651206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107520/3_0opasesen16b30f29651206040na/3_0opasesen16b30f29651206040na_seg.nii.gz"
+ },
+ {
+ "image": "107520/4_0opasesen16b50f29651206040na.nii.gz",
+ "pseudo_label": "107520/4_0opasesen16b50f29651206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107520/4_0opasesen16b50f29651206040na/4_0opasesen16b50f29651206040na_seg.nii.gz"
+ },
+ {
+ "image": "107520/6_0opasesen16b50f29651206040na.nii.gz",
+ "pseudo_label": "107520/6_0opasesen16b50f29651206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107520/6_0opasesen16b50f29651206040na/6_0opasesen16b50f29651206040na_seg.nii.gz"
+ },
+ {
+ "image": "107520/4_1opasevzoomb50f28651206030na.nii.gz",
+ "pseudo_label": "107520/4_1opasevzoomb50f28651206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107520/4_1opasevzoomb50f28651206030na/4_1opasevzoomb50f28651206030na_seg.nii.gz"
+ },
+ {
+ "image": "107520/5_2opasevzoomb50f26821206030na.nii.gz",
+ "pseudo_label": "107520/5_2opasevzoomb50f26821206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107520/5_2opasevzoomb50f26821206030na/5_2opasevzoomb50f26821206030na_seg.nii.gz"
+ },
+ {
+ "image": "108694/2_2opagels16standard31025120418nana.nii.gz",
+ "pseudo_label": "108694/2_2opagels16standard31025120418nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108694/2_2opagels16standard31025120418nana/2_2opagels16standard31025120418nana_seg.nii.gz"
+ },
+ {
+ "image": "101169/2_2opasevzoomb30f38021207540na.nii.gz",
+ "pseudo_label": "101169/2_2opasevzoomb30f38021207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101169/2_2opasevzoomb30f38021207540na/2_2opasevzoomb30f38021207540na_seg.nii.gz"
+ },
+ {
+ "image": "101098/8_2opasesen16b50f30021204530na.nii.gz",
+ "pseudo_label": "101098/8_2opasesen16b50f30021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101098/8_2opasesen16b50f30021204530na/8_2opasesen16b50f30021204530na_seg.nii.gz"
+ },
+ {
+ "image": "101098/2_0opasevzoomb50f29021206030na.nii.gz",
+ "pseudo_label": "101098/2_0opasevzoomb50f29021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101098/2_0opasevzoomb50f29021206030na/2_0opasevzoomb50f29021206030na_seg.nii.gz"
+ },
+ {
+ "image": "101098/3_1opasevzoomb30f29221206030na.nii.gz",
+ "pseudo_label": "101098/3_1opasevzoomb30f29221206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101098/3_1opasevzoomb30f29221206030na/3_1opasevzoomb30f29221206030na_seg.nii.gz"
+ },
+ {
+ "image": "109395/2_0opagelsqxstandard31025120640115.nii.gz",
+ "pseudo_label": "109395/2_0opagelsqxstandard31025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109395/2_0opagelsqxstandard31025120640115/2_0opagelsqxstandard31025120640115_seg.nii.gz"
+ },
+ {
+ "image": "113110/2_2opasevzoomb30f37021207040na.nii.gz",
+ "pseudo_label": "113110/2_2opasevzoomb30f37021207040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113110/2_2opasevzoomb30f37021207040na/2_2opasevzoomb30f37021207040na_seg.nii.gz"
+ },
+ {
+ "image": "113110/3_0opasevzoomb50f38021208040na.nii.gz",
+ "pseudo_label": "113110/3_0opasevzoomb50f38021208040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113110/3_0opasevzoomb50f38021208040na/3_0opasevzoomb50f38021208040na_seg.nii.gz"
+ },
+ {
+ "image": "106498/3_1opasevzoomb50f29021207540na.nii.gz",
+ "pseudo_label": "106498/3_1opasevzoomb50f29021207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106498/3_1opasevzoomb50f29021207540na/3_1opasevzoomb50f29021207540na_seg.nii.gz"
+ },
+ {
+ "image": "106498/3_0opasevzoomb50f31021207540na.nii.gz",
+ "pseudo_label": "106498/3_0opasevzoomb50f31021207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106498/3_0opasevzoomb50f31021207540na/3_0opasevzoomb50f31021207540na_seg.nii.gz"
+ },
+ {
+ "image": "107702/4_0opasevzoomb30f380512012060na.nii.gz",
+ "pseudo_label": "107702/4_0opasevzoomb30f380512012060na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107702/4_0opasevzoomb30f380512012060na/4_0opasevzoomb30f380512012060na_seg.nii.gz"
+ },
+ {
+ "image": "107702/5_2opasesen16b50f34851204530na.nii.gz",
+ "pseudo_label": "107702/5_2opasesen16b50f34851204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107702/5_2opasesen16b50f34851204530na/5_2opasesen16b50f34851204530na_seg.nii.gz"
+ },
+ {
+ "image": "107702/6_2opasesen16b60f34821204530na.nii.gz",
+ "pseudo_label": "107702/6_2opasesen16b60f34821204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107702/6_2opasesen16b60f34821204530na/6_2opasesen16b60f34821204530na_seg.nii.gz"
+ },
+ {
+ "image": "107702/5_0opasevzoomb50f380212012060na.nii.gz",
+ "pseudo_label": "107702/5_0opasevzoomb50f380212012060na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107702/5_0opasevzoomb50f380212012060na/5_0opasevzoomb50f380212012060na_seg.nii.gz"
+ },
+ {
+ "image": "107702/3_2opasesen16b30f34851204530na.nii.gz",
+ "pseudo_label": "107702/3_2opasesen16b30f34851204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107702/3_2opasesen16b30f34851204530na/3_2opasesen16b30f34851204530na_seg.nii.gz"
+ },
+ {
+ "image": "107702/6_1opasesen16b50f38221204530na.nii.gz",
+ "pseudo_label": "107702/6_1opasesen16b50f38221204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107702/6_1opasesen16b50f38221204530na/6_1opasesen16b50f38221204530na_seg.nii.gz"
+ },
+ {
+ "image": "107702/6_0opasevzoomb50f380512012060na.nii.gz",
+ "pseudo_label": "107702/6_0opasevzoomb50f380512012060na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107702/6_0opasevzoomb50f380512012060na/6_0opasevzoomb50f380512012060na_seg.nii.gz"
+ },
+ {
+ "image": "107702/5_1opasesen16b50f38251204530na.nii.gz",
+ "pseudo_label": "107702/5_1opasesen16b50f38251204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107702/5_1opasesen16b50f38251204530na/5_1opasesen16b50f38251204530na_seg.nii.gz"
+ },
+ {
+ "image": "107702/3_1opasesen16b30f38051204530na.nii.gz",
+ "pseudo_label": "107702/3_1opasesen16b30f38051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107702/3_1opasesen16b30f38051204530na/3_1opasesen16b30f38051204530na_seg.nii.gz"
+ },
+ {
+ "image": "106304/3_0opasevzoomb50f33021207540na.nii.gz",
+ "pseudo_label": "106304/3_0opasevzoomb50f33021207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106304/3_0opasevzoomb50f33021207540na/3_0opasevzoomb50f33021207540na_seg.nii.gz"
+ },
+ {
+ "image": "104377/5_1opasevzoomb30f38031201475120na.nii.gz",
+ "pseudo_label": "104377/5_1opasevzoomb30f38031201475120na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104377/5_1opasevzoomb30f38031201475120na/5_1opasevzoomb30f38031201475120na_seg.nii.gz"
+ },
+ {
+ "image": "104377/2_1opasevzoomb40f38051201475120na.nii.gz",
+ "pseudo_label": "104377/2_1opasevzoomb40f38051201475120na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104377/2_1opasevzoomb40f38051201475120na/2_1opasevzoomb40f38051201475120na_seg.nii.gz"
+ },
+ {
+ "image": "104377/4_1opasevzoomb70f38071201475120na.nii.gz",
+ "pseudo_label": "104377/4_1opasevzoomb70f38071201475120na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104377/4_1opasevzoomb70f38071201475120na/4_1opasevzoomb70f38071201475120na_seg.nii.gz"
+ },
+ {
+ "image": "104377/3_1opasevzoomb70f38051201475120na.nii.gz",
+ "pseudo_label": "104377/3_1opasevzoomb70f38051201475120na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104377/3_1opasevzoomb70f38051201475120na/3_1opasevzoomb70f38051201475120na_seg.nii.gz"
+ },
+ {
+ "image": "104377/6_1opasevzoomb50f38031201475120na.nii.gz",
+ "pseudo_label": "104377/6_1opasevzoomb50f38031201475120na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104377/6_1opasevzoomb50f38031201475120na/6_1opasevzoomb50f38031201475120na_seg.nii.gz"
+ },
+ {
+ "image": "106421/2_0opagelsqxstandard3502512048015.nii.gz",
+ "pseudo_label": "106421/2_0opagelsqxstandard3502512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106421/2_0opagelsqxstandard3502512048015/2_0opagelsqxstandard3502512048015_seg.nii.gz"
+ },
+ {
+ "image": "112564/2_2opagels16bone33025120600114.nii.gz",
+ "pseudo_label": "112564/2_2opagels16bone33025120600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112564/2_2opagels16bone33025120600114/2_2opagels16bone33025120600114_seg.nii.gz"
+ },
+ {
+ "image": "112564/2_1opagels16bone35025120600114.nii.gz",
+ "pseudo_label": "112564/2_1opagels16bone35025120600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112564/2_1opagels16bone35025120600114/2_1opagels16bone35025120600114_seg.nii.gz"
+ },
+ {
+ "image": "108183/4116_0opaphmx8000c351321208787012.nii.gz",
+ "pseudo_label": "108183/4116_0opaphmx8000c351321208787012.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108183/4116_0opaphmx8000c351321208787012/4116_0opaphmx8000c351321208787012_seg.nii.gz"
+ },
+ {
+ "image": "110749/3_0opagehsqxbone31025120640115.nii.gz",
+ "pseudo_label": "110749/3_0opagehsqxbone31025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110749/3_0opagehsqxbone31025120640115/3_0opagehsqxbone31025120640115_seg.nii.gz"
+ },
+ {
+ "image": "106990/2_2opagelsqxstandard3602514048015.nii.gz",
+ "pseudo_label": "106990/2_2opagelsqxstandard3602514048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106990/2_2opagelsqxstandard3602514048015/2_2opagelsqxstandard3602514048015_seg.nii.gz"
+ },
+ {
+ "image": "106990/2_0opagelsqxstandard3622514048015.nii.gz",
+ "pseudo_label": "106990/2_0opagelsqxstandard3622514048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106990/2_0opagelsqxstandard3622514048015/2_0opagelsqxstandard3622514048015_seg.nii.gz"
+ },
+ {
+ "image": "101879/0_0opaphmx8000c36332120790112.nii.gz",
+ "pseudo_label": "101879/0_0opaphmx8000c36332120790112.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101879/0_0opaphmx8000c36332120790112/0_0opaphmx8000c36332120790112_seg.nii.gz"
+ },
+ {
+ "image": "109439/2_0opagelsplusstandard3002514040015.nii.gz",
+ "pseudo_label": "109439/2_0opagelsplusstandard3002514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109439/2_0opagelsplusstandard3002514040015/2_0opagelsplusstandard3002514040015_seg.nii.gz"
+ },
+ {
+ "image": "109439/2_1opagelsplusstandard3002514040015.nii.gz",
+ "pseudo_label": "109439/2_1opagelsplusstandard3002514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109439/2_1opagelsplusstandard3002514040015/2_1opagelsplusstandard3002514040015_seg.nii.gz"
+ },
+ {
+ "image": "109439/2_2opagelsplusstandard3302514040015.nii.gz",
+ "pseudo_label": "109439/2_2opagelsplusstandard3302514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109439/2_2opagelsplusstandard3302514040015/2_2opagelsplusstandard3302514040015_seg.nii.gz"
+ },
+ {
+ "image": "107228/2_0opagelsqxstandard3602512000na.nii.gz",
+ "pseudo_label": "107228/2_0opagelsqxstandard3602512000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107228/2_0opagelsqxstandard3602512000na/2_0opagelsqxstandard3602512000na_seg.nii.gz"
+ },
+ {
+ "image": "100485/2_1opasesen16b50f31021204530na.nii.gz",
+ "pseudo_label": "100485/2_1opasesen16b50f31021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100485/2_1opasesen16b50f31021204530na/2_1opasesen16b50f31021204530na_seg.nii.gz"
+ },
+ {
+ "image": "102410/2_2opagels16standard36025120nanana.nii.gz",
+ "pseudo_label": "102410/2_2opagels16standard36025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102410/2_2opagels16standard36025120nanana/2_2opagels16standard36025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "102410/2_1opagels16standard36025120nanana.nii.gz",
+ "pseudo_label": "102410/2_1opagels16standard36025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102410/2_1opagels16standard36025120nanana/2_1opagels16standard36025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "102410/3_2opagels16bone36025120nanana.nii.gz",
+ "pseudo_label": "102410/3_2opagels16bone36025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102410/3_2opagels16bone36025120nanana/3_2opagels16bone36025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "102410/3_0opagelsqxbone36025120nanana.nii.gz",
+ "pseudo_label": "102410/3_0opagelsqxbone36025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102410/3_0opagelsqxbone36025120nanana/3_0opagelsqxbone36025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "101375/3_2opasevzoomb50f36221207540na.nii.gz",
+ "pseudo_label": "101375/3_2opasevzoomb50f36221207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101375/3_2opasevzoomb50f36221207540na/3_2opasevzoomb50f36221207540na_seg.nii.gz"
+ },
+ {
+ "image": "101375/3_0opasevzoomb50f34021207540na.nii.gz",
+ "pseudo_label": "101375/3_0opasevzoomb50f34021207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101375/3_0opasevzoomb50f34021207540na/3_0opasevzoomb50f34021207540na_seg.nii.gz"
+ },
+ {
+ "image": "101375/2_0opasevzoomb30f34021207540na.nii.gz",
+ "pseudo_label": "101375/2_0opasevzoomb30f34021207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101375/2_0opasevzoomb30f34021207540na/2_0opasevzoomb30f34021207540na_seg.nii.gz"
+ },
+ {
+ "image": "112761/3_2opagelspr16standard29025120560114.nii.gz",
+ "pseudo_label": "112761/3_2opagelspr16standard29025120560114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112761/3_2opagelspr16standard29025120560114/3_2opagelspr16standard29025120560114_seg.nii.gz"
+ },
+ {
+ "image": "112761/2_0opagelsqxbone31825120640115.nii.gz",
+ "pseudo_label": "112761/2_0opagelsqxbone31825120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112761/2_0opagelsqxbone31825120640115/2_0opagelsqxbone31825120640115_seg.nii.gz"
+ },
+ {
+ "image": "112761/3_0opagelsqxstandard31825120640115.nii.gz",
+ "pseudo_label": "112761/3_0opagelsqxstandard31825120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112761/3_0opagelsqxstandard31825120640115/3_0opagelsqxstandard31825120640115_seg.nii.gz"
+ },
+ {
+ "image": "112761/3_1opagels16standard29025120640114.nii.gz",
+ "pseudo_label": "112761/3_1opagels16standard29025120640114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112761/3_1opagels16standard29025120640114/3_1opagels16standard29025120640114_seg.nii.gz"
+ },
+ {
+ "image": "102962/2_0opagelsqxstandard4002512048015.nii.gz",
+ "pseudo_label": "102962/2_0opagelsqxstandard4002512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102962/2_0opagelsqxstandard4002512048015/2_0opagelsqxstandard4002512048015_seg.nii.gz"
+ },
+ {
+ "image": "111132/2_0opagelsqxstandard34225120640115.nii.gz",
+ "pseudo_label": "111132/2_0opagelsqxstandard34225120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111132/2_0opagelsqxstandard34225120640115/2_0opagelsqxstandard34225120640115_seg.nii.gz"
+ },
+ {
+ "image": "111132/3_0opagelsqxbone34225120640115.nii.gz",
+ "pseudo_label": "111132/3_0opagelsqxbone34225120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111132/3_0opagelsqxbone34225120640115/3_0opagelsqxbone34225120640115_seg.nii.gz"
+ },
+ {
+ "image": "111132/2_2opagelsqxstandard34425120640115.nii.gz",
+ "pseudo_label": "111132/2_2opagelsqxstandard34425120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111132/2_2opagelsqxstandard34425120640115/2_2opagelsqxstandard34425120640115_seg.nii.gz"
+ },
+ {
+ "image": "111132/2_1opagelsqxstandard33425120640115.nii.gz",
+ "pseudo_label": "111132/2_1opagelsqxstandard33425120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111132/2_1opagelsqxstandard33425120640115/2_1opagelsqxstandard33425120640115_seg.nii.gz"
+ },
+ {
+ "image": "111132/5_2opagelsqxbone34425120640115.nii.gz",
+ "pseudo_label": "111132/5_2opagelsqxbone34425120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111132/5_2opagelsqxbone34425120640115/5_2opagelsqxbone34425120640115_seg.nii.gz"
+ },
+ {
+ "image": "105526/2_1opagelsqxstandard37125120720115.nii.gz",
+ "pseudo_label": "105526/2_1opagelsqxstandard37125120720115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105526/2_1opagelsqxstandard37125120720115/2_1opagelsqxstandard37125120720115_seg.nii.gz"
+ },
+ {
+ "image": "105526/3_0opagelsqxbone37725120720115.nii.gz",
+ "pseudo_label": "105526/3_0opagelsqxbone37725120720115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105526/3_0opagelsqxbone37725120720115/3_0opagelsqxbone37725120720115_seg.nii.gz"
+ },
+ {
+ "image": "105526/3_2opagelsqxbone36825120640115.nii.gz",
+ "pseudo_label": "105526/3_2opagelsqxbone36825120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105526/3_2opagelsqxbone36825120640115/3_2opagelsqxbone36825120640115_seg.nii.gz"
+ },
+ {
+ "image": "105526/2_2opagelsqxstandard36825120640115.nii.gz",
+ "pseudo_label": "105526/2_2opagelsqxstandard36825120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105526/2_2opagelsqxstandard36825120640115/2_2opagelsqxstandard36825120640115_seg.nii.gz"
+ },
+ {
+ "image": "107500/1_0opagelspluslung33025120800115.nii.gz",
+ "pseudo_label": "107500/1_0opagelspluslung33025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107500/1_0opagelspluslung33025120800115/1_0opagelspluslung33025120800115_seg.nii.gz"
+ },
+ {
+ "image": "107500/1_0opagelsplusstandard33025120800115.nii.gz",
+ "pseudo_label": "107500/1_0opagelsplusstandard33025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107500/1_0opagelsplusstandard33025120800115/1_0opagelsplusstandard33025120800115_seg.nii.gz"
+ },
+ {
+ "image": "107500/1_2opagelsplusstandard33025120800115.nii.gz",
+ "pseudo_label": "107500/1_2opagelsplusstandard33025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107500/1_2opagelsplusstandard33025120800115/1_2opagelsplusstandard33025120800115_seg.nii.gz"
+ },
+ {
+ "image": "107500/1_2opagelspluslung33025120800115.nii.gz",
+ "pseudo_label": "107500/1_2opagelspluslung33025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107500/1_2opagelspluslung33025120800115/1_2opagelspluslung33025120800115_seg.nii.gz"
+ },
+ {
+ "image": "110969/3_2opagehsqxbone34025120560115.nii.gz",
+ "pseudo_label": "110969/3_2opagehsqxbone34025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110969/3_2opagehsqxbone34025120560115/3_2opagehsqxbone34025120560115_seg.nii.gz"
+ },
+ {
+ "image": "110969/2_0opagehsqxstandard34025120640115.nii.gz",
+ "pseudo_label": "110969/2_0opagehsqxstandard34025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110969/2_0opagehsqxstandard34025120640115/2_0opagehsqxstandard34025120640115_seg.nii.gz"
+ },
+ {
+ "image": "110969/3_1opagehsqxbone34025120560115.nii.gz",
+ "pseudo_label": "110969/3_1opagehsqxbone34025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110969/3_1opagehsqxbone34025120560115/3_1opagehsqxbone34025120560115_seg.nii.gz"
+ },
+ {
+ "image": "110969/2_2opagehsqxstandard34025120560115.nii.gz",
+ "pseudo_label": "110969/2_2opagehsqxstandard34025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110969/2_2opagehsqxstandard34025120560115/2_2opagehsqxstandard34025120560115_seg.nii.gz"
+ },
+ {
+ "image": "110969/2_1opagehsqxstandard34025120560115.nii.gz",
+ "pseudo_label": "110969/2_1opagehsqxstandard34025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110969/2_1opagehsqxstandard34025120560115/2_1opagehsqxstandard34025120560115_seg.nii.gz"
+ },
+ {
+ "image": "103417/2_1opagelsplusstandard33725120600115.nii.gz",
+ "pseudo_label": "103417/2_1opagelsplusstandard33725120600115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103417/2_1opagelsplusstandard33725120600115/2_1opagelsplusstandard33725120600115_seg.nii.gz"
+ },
+ {
+ "image": "106439/3_0opagehsqxbone34025120560115.nii.gz",
+ "pseudo_label": "106439/3_0opagehsqxbone34025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106439/3_0opagehsqxbone34025120560115/3_0opagehsqxbone34025120560115_seg.nii.gz"
+ },
+ {
+ "image": "106439/2_2opagehsqxstandard34025120560115.nii.gz",
+ "pseudo_label": "106439/2_2opagehsqxstandard34025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106439/2_2opagehsqxstandard34025120560115/2_2opagehsqxstandard34025120560115_seg.nii.gz"
+ },
+ {
+ "image": "106439/2_1opagehsqxstandard34025120560115.nii.gz",
+ "pseudo_label": "106439/2_1opagehsqxstandard34025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106439/2_1opagehsqxstandard34025120560115/2_1opagehsqxstandard34025120560115_seg.nii.gz"
+ },
+ {
+ "image": "102095/2_1opasevzoomb50f31621206030na.nii.gz",
+ "pseudo_label": "102095/2_1opasevzoomb50f31621206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102095/2_1opasevzoomb50f31621206030na/2_1opasevzoomb50f31621206030na_seg.nii.gz"
+ },
+ {
+ "image": "102095/3_1opasevzoomb30f31621206030na.nii.gz",
+ "pseudo_label": "102095/3_1opasevzoomb30f31621206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102095/3_1opasevzoomb30f31621206030na/3_1opasevzoomb30f31621206030na_seg.nii.gz"
+ },
+ {
+ "image": "102095/3_2opasesen16b30f31021204530na.nii.gz",
+ "pseudo_label": "102095/3_2opasesen16b30f31021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102095/3_2opasesen16b30f31021204530na/3_2opasesen16b30f31021204530na_seg.nii.gz"
+ },
+ {
+ "image": "102216/2_2opagehsqxstandard36025120560115.nii.gz",
+ "pseudo_label": "102216/2_2opagehsqxstandard36025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102216/2_2opagehsqxstandard36025120560115/2_2opagehsqxstandard36025120560115_seg.nii.gz"
+ },
+ {
+ "image": "102216/2_0opagehsqxstandard36025120560115.nii.gz",
+ "pseudo_label": "102216/2_0opagehsqxstandard36025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102216/2_0opagehsqxstandard36025120560115/2_0opagehsqxstandard36025120560115_seg.nii.gz"
+ },
+ {
+ "image": "102216/3_2opagehsqxbone36025120560115.nii.gz",
+ "pseudo_label": "102216/3_2opagehsqxbone36025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102216/3_2opagehsqxbone36025120560115/3_2opagehsqxbone36025120560115_seg.nii.gz"
+ },
+ {
+ "image": "100539/3068_1opaphmx8000c3383212039018.nii.gz",
+ "pseudo_label": "100539/3068_1opaphmx8000c3383212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100539/3068_1opaphmx8000c3383212039018/3068_1opaphmx8000c3383212039018_seg.nii.gz"
+ },
+ {
+ "image": "112956/3_0opasevzoomb50f360212016080na.nii.gz",
+ "pseudo_label": "112956/3_0opasevzoomb50f360212016080na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112956/3_0opasevzoomb50f360212016080na/3_0opasevzoomb50f360212016080na_seg.nii.gz"
+ },
+ {
+ "image": "112983/4_2opatoaqul4fc513281212075nana.nii.gz",
+ "pseudo_label": "112983/4_2opatoaqul4fc513281212075nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112983/4_2opatoaqul4fc513281212075nana/4_2opatoaqul4fc513281212075nana_seg.nii.gz"
+ },
+ {
+ "image": "104403/3_1opagelspr16standard36425120640114.nii.gz",
+ "pseudo_label": "104403/3_1opagelspr16standard36425120640114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104403/3_1opagelspr16standard36425120640114/3_1opagelspr16standard36425120640114_seg.nii.gz"
+ },
+ {
+ "image": "104403/3_0opagels16standard3502512000na.nii.gz",
+ "pseudo_label": "104403/3_0opagels16standard3502512000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104403/3_0opagels16standard3502512000na/3_0opagels16standard3502512000na_seg.nii.gz"
+ },
+ {
+ "image": "104403/3_2opagelspr16standard3202512048014.nii.gz",
+ "pseudo_label": "104403/3_2opagelspr16standard3202512048014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104403/3_2opagelspr16standard3202512048014/3_2opagelspr16standard3202512048014_seg.nii.gz"
+ },
+ {
+ "image": "104403/2_2opagelspr16bone3202512048014.nii.gz",
+ "pseudo_label": "104403/2_2opagelspr16bone3202512048014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104403/2_2opagelspr16bone3202512048014/2_2opagelspr16bone3202512048014_seg.nii.gz"
+ },
+ {
+ "image": "104403/2_0opagels16bone3502512000na.nii.gz",
+ "pseudo_label": "104403/2_0opagels16bone3502512000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104403/2_0opagels16bone3502512000na/2_0opagels16bone3502512000na_seg.nii.gz"
+ },
+ {
+ "image": "104403/2_1opagelspr16bone36425120640114.nii.gz",
+ "pseudo_label": "104403/2_1opagelspr16bone36425120640114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104403/2_1opagelspr16bone36425120640114/2_1opagelspr16bone36425120640114_seg.nii.gz"
+ },
+ {
+ "image": "111074/2_0opasevzoomb50f30221206030na.nii.gz",
+ "pseudo_label": "111074/2_0opasevzoomb50f30221206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111074/2_0opasevzoomb50f30221206030na/2_0opasevzoomb50f30221206030na_seg.nii.gz"
+ },
+ {
+ "image": "103452/2_2opagels16standard4002514040014.nii.gz",
+ "pseudo_label": "103452/2_2opagels16standard4002514040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103452/2_2opagels16standard4002514040014/2_2opagels16standard4002514040014_seg.nii.gz"
+ },
+ {
+ "image": "103452/2_1opagels16standard3402514040014.nii.gz",
+ "pseudo_label": "103452/2_1opagels16standard3402514040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103452/2_1opagels16standard3402514040014/2_1opagels16standard3402514040014_seg.nii.gz"
+ },
+ {
+ "image": "103452/2_0opagelsqxstandard2922514040015.nii.gz",
+ "pseudo_label": "103452/2_0opagelsqxstandard2922514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103452/2_0opagelsqxstandard2922514040015/2_0opagelsqxstandard2922514040015_seg.nii.gz"
+ },
+ {
+ "image": "101070/2_1opagels16standard29025120381nana.nii.gz",
+ "pseudo_label": "101070/2_1opagels16standard29025120381nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101070/2_1opagels16standard29025120381nana/2_1opagels16standard29025120381nana_seg.nii.gz"
+ },
+ {
+ "image": "101070/2_2opagels16standard29025120476nana.nii.gz",
+ "pseudo_label": "101070/2_2opagels16standard29025120476nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101070/2_2opagels16standard29025120476nana/2_2opagels16standard29025120476nana_seg.nii.gz"
+ },
+ {
+ "image": "112921/2_1opasevzoomb30f34021206030na.nii.gz",
+ "pseudo_label": "112921/2_1opasevzoomb30f34021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112921/2_1opasevzoomb30f34021206030na/2_1opasevzoomb30f34021206030na_seg.nii.gz"
+ },
+ {
+ "image": "112921/3_2opasevzoomb50f33021208040na.nii.gz",
+ "pseudo_label": "112921/3_2opasevzoomb50f33021208040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112921/3_2opasevzoomb50f33021208040na/3_2opasevzoomb50f33021208040na_seg.nii.gz"
+ },
+ {
+ "image": "112921/2_0opasevzoomb30f33021408040na.nii.gz",
+ "pseudo_label": "112921/2_0opasevzoomb30f33021408040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112921/2_0opasevzoomb30f33021408040na/2_0opasevzoomb30f33021408040na_seg.nii.gz"
+ },
+ {
+ "image": "108655/2_1opasevzoomb30f36021207540na.nii.gz",
+ "pseudo_label": "108655/2_1opasevzoomb30f36021207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108655/2_1opasevzoomb30f36021207540na/2_1opasevzoomb30f36021207540na_seg.nii.gz"
+ },
+ {
+ "image": "108655/3_2opasevzoomb50f35821207540na.nii.gz",
+ "pseudo_label": "108655/3_2opasevzoomb50f35821207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108655/3_2opasevzoomb50f35821207540na/3_2opasevzoomb50f35821207540na_seg.nii.gz"
+ },
+ {
+ "image": "108655/2_2opasevzoomb30f35821207540na.nii.gz",
+ "pseudo_label": "108655/2_2opasevzoomb30f35821207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108655/2_2opasevzoomb30f35821207540na/2_2opasevzoomb30f35821207540na_seg.nii.gz"
+ },
+ {
+ "image": "108655/3_0opasevzoomb50f36821207540na.nii.gz",
+ "pseudo_label": "108655/3_0opasevzoomb50f36821207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108655/3_0opasevzoomb50f36821207540na/3_0opasevzoomb50f36821207540na_seg.nii.gz"
+ },
+ {
+ "image": "108655/3_1opasevzoomb50f36021207540na.nii.gz",
+ "pseudo_label": "108655/3_1opasevzoomb50f36021207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108655/3_1opasevzoomb50f36021207540na/3_1opasevzoomb50f36021207540na_seg.nii.gz"
+ },
+ {
+ "image": "112986/2_1opagelsplusstandard29825140814nana.nii.gz",
+ "pseudo_label": "112986/2_1opagelsplusstandard29825140814nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112986/2_1opagelsplusstandard29825140814nana/2_1opagelsplusstandard29825140814nana_seg.nii.gz"
+ },
+ {
+ "image": "112986/2_0opagelsplusstandard3102514040015.nii.gz",
+ "pseudo_label": "112986/2_0opagelsplusstandard3102514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112986/2_0opagelsplusstandard3102514040015/2_0opagelsplusstandard3102514040015_seg.nii.gz"
+ },
+ {
+ "image": "101056/2_2opagelsqxstandard318251406401na.nii.gz",
+ "pseudo_label": "101056/2_2opagelsqxstandard318251406401na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101056/2_2opagelsqxstandard318251406401na/2_2opagelsqxstandard318251406401na_seg.nii.gz"
+ },
+ {
+ "image": "111565/3639_2opaphmx8000c37932120453612.nii.gz",
+ "pseudo_label": "111565/3639_2opaphmx8000c37932120453612.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111565/3639_2opaphmx8000c37932120453612/3639_2opaphmx8000c37932120453612_seg.nii.gz"
+ },
+ {
+ "image": "112506/3_1opasevzoomb50f35021206030na.nii.gz",
+ "pseudo_label": "112506/3_1opasevzoomb50f35021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112506/3_1opasevzoomb50f35021206030na/3_1opasevzoomb50f35021206030na_seg.nii.gz"
+ },
+ {
+ "image": "112506/5_2opasevzoomb30f31651206030na.nii.gz",
+ "pseudo_label": "112506/5_2opasevzoomb30f31651206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112506/5_2opasevzoomb30f31651206030na/5_2opasevzoomb30f31651206030na_seg.nii.gz"
+ },
+ {
+ "image": "112506/4_2opasevzoomb50f31651206030na.nii.gz",
+ "pseudo_label": "112506/4_2opasevzoomb50f31651206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112506/4_2opasevzoomb50f31651206030na/4_2opasevzoomb50f31651206030na_seg.nii.gz"
+ },
+ {
+ "image": "112506/4_0opasevzoomb50f36651206030na.nii.gz",
+ "pseudo_label": "112506/4_0opasevzoomb50f36651206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112506/4_0opasevzoomb50f36651206030na/4_0opasevzoomb50f36651206030na_seg.nii.gz"
+ },
+ {
+ "image": "112506/4_1opasevzoomb50f35051206030na.nii.gz",
+ "pseudo_label": "112506/4_1opasevzoomb50f35051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112506/4_1opasevzoomb50f35051206030na/4_1opasevzoomb50f35051206030na_seg.nii.gz"
+ },
+ {
+ "image": "112506/6_1opasevzoomb30f35021206030na.nii.gz",
+ "pseudo_label": "112506/6_1opasevzoomb30f35021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112506/6_1opasevzoomb30f35021206030na/6_1opasevzoomb30f35021206030na_seg.nii.gz"
+ },
+ {
+ "image": "112506/3_2opasevzoomb50f31621206030na.nii.gz",
+ "pseudo_label": "112506/3_2opasevzoomb50f31621206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112506/3_2opasevzoomb50f31621206030na/3_2opasevzoomb50f31621206030na_seg.nii.gz"
+ },
+ {
+ "image": "112506/5_0opasevzoomb30f36651206030na.nii.gz",
+ "pseudo_label": "112506/5_0opasevzoomb30f36651206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112506/5_0opasevzoomb30f36651206030na/5_0opasevzoomb30f36651206030na_seg.nii.gz"
+ },
+ {
+ "image": "112506/5_1opasevzoomb30f35051206030na.nii.gz",
+ "pseudo_label": "112506/5_1opasevzoomb30f35051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112506/5_1opasevzoomb30f35051206030na/5_1opasevzoomb30f35051206030na_seg.nii.gz"
+ },
+ {
+ "image": "101693/3_0opagels16standard4002512000na.nii.gz",
+ "pseudo_label": "101693/3_0opagels16standard4002512000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101693/3_0opagels16standard4002512000na/3_0opagels16standard4002512000na_seg.nii.gz"
+ },
+ {
+ "image": "101693/3_2opagelspr16standard3102512040014.nii.gz",
+ "pseudo_label": "101693/3_2opagelspr16standard3102512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101693/3_2opagelspr16standard3102512040014/3_2opagelspr16standard3102512040014_seg.nii.gz"
+ },
+ {
+ "image": "101693/2_2opagelspr16bone3102512040014.nii.gz",
+ "pseudo_label": "101693/2_2opagelspr16bone3102512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101693/2_2opagelspr16bone3102512040014/2_2opagelspr16bone3102512040014_seg.nii.gz"
+ },
+ {
+ "image": "101693/3_1opagelspr16standard3202512040014.nii.gz",
+ "pseudo_label": "101693/3_1opagelspr16standard3202512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101693/3_1opagelspr16standard3202512040014/3_1opagelspr16standard3202512040014_seg.nii.gz"
+ },
+ {
+ "image": "103972/13_0opasevzoomb30f37051206030na.nii.gz",
+ "pseudo_label": "103972/13_0opasevzoomb30f37051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103972/13_0opasevzoomb30f37051206030na/13_0opasevzoomb30f37051206030na_seg.nii.gz"
+ },
+ {
+ "image": "103972/8_0opasevzoomb30f37051206030na.nii.gz",
+ "pseudo_label": "103972/8_0opasevzoomb30f37051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103972/8_0opasevzoomb30f37051206030na/8_0opasevzoomb30f37051206030na_seg.nii.gz"
+ },
+ {
+ "image": "103972/6_0opasevzoomb30f35021206030na.nii.gz",
+ "pseudo_label": "103972/6_0opasevzoomb30f35021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103972/6_0opasevzoomb30f35021206030na/6_0opasevzoomb30f35021206030na_seg.nii.gz"
+ },
+ {
+ "image": "103972/11_0opasevzoomb50f37021206030na.nii.gz",
+ "pseudo_label": "103972/11_0opasevzoomb50f37021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103972/11_0opasevzoomb50f37021206030na/11_0opasevzoomb50f37021206030na_seg.nii.gz"
+ },
+ {
+ "image": "103972/3_2opasevzoomb30f37551206030na.nii.gz",
+ "pseudo_label": "103972/3_2opasevzoomb30f37551206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103972/3_2opasevzoomb30f37551206030na/3_2opasevzoomb30f37551206030na_seg.nii.gz"
+ },
+ {
+ "image": "103972/4_2opasevzoomb50f37551206030na.nii.gz",
+ "pseudo_label": "103972/4_2opasevzoomb50f37551206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103972/4_2opasevzoomb50f37551206030na/4_2opasevzoomb50f37551206030na_seg.nii.gz"
+ },
+ {
+ "image": "103972/3_1opasesen16b30f36651204530na.nii.gz",
+ "pseudo_label": "103972/3_1opasesen16b30f36651204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103972/3_1opasesen16b30f36651204530na/3_1opasesen16b30f36651204530na_seg.nii.gz"
+ },
+ {
+ "image": "103972/9_0opasevzoomb30f37021206030na.nii.gz",
+ "pseudo_label": "103972/9_0opasevzoomb30f37021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103972/9_0opasevzoomb30f37021206030na/9_0opasevzoomb30f37021206030na_seg.nii.gz"
+ },
+ {
+ "image": "103972/5_1opasesen16b50f36651204530na.nii.gz",
+ "pseudo_label": "103972/5_1opasesen16b50f36651204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103972/5_1opasesen16b50f36651204530na/5_1opasesen16b50f36651204530na_seg.nii.gz"
+ },
+ {
+ "image": "104460/5_2opasevzoomb30f36251206030na.nii.gz",
+ "pseudo_label": "104460/5_2opasevzoomb30f36251206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104460/5_2opasevzoomb30f36251206030na/5_2opasevzoomb30f36251206030na_seg.nii.gz"
+ },
+ {
+ "image": "104460/4_0opasevzoomb50f36251206030na.nii.gz",
+ "pseudo_label": "104460/4_0opasevzoomb50f36251206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104460/4_0opasevzoomb50f36251206030na/4_0opasevzoomb50f36251206030na_seg.nii.gz"
+ },
+ {
+ "image": "104460/4_2opasevzoomb50f36251206030na.nii.gz",
+ "pseudo_label": "104460/4_2opasevzoomb50f36251206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104460/4_2opasevzoomb50f36251206030na/4_2opasevzoomb50f36251206030na_seg.nii.gz"
+ },
+ {
+ "image": "104460/5_1opasevzoomb30f35051206030na.nii.gz",
+ "pseudo_label": "104460/5_1opasevzoomb30f35051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104460/5_1opasevzoomb30f35051206030na/5_1opasevzoomb30f35051206030na_seg.nii.gz"
+ },
+ {
+ "image": "104460/5_0opasevzoomb30f36251206030na.nii.gz",
+ "pseudo_label": "104460/5_0opasevzoomb30f36251206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104460/5_0opasevzoomb30f36251206030na/5_0opasevzoomb30f36251206030na_seg.nii.gz"
+ },
+ {
+ "image": "109510/2_0opagelsqxstandard3202514040015.nii.gz",
+ "pseudo_label": "109510/2_0opagelsqxstandard3202514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109510/2_0opagelsqxstandard3202514040015/2_0opagelsqxstandard3202514040015_seg.nii.gz"
+ },
+ {
+ "image": "104590/2_0opasevzoomb30f330212016080na.nii.gz",
+ "pseudo_label": "104590/2_0opasevzoomb30f330212016080na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104590/2_0opasevzoomb30f330212016080na/2_0opasevzoomb30f330212016080na_seg.nii.gz"
+ },
+ {
+ "image": "101289/2_1opagelsplusstandard34525120nanana.nii.gz",
+ "pseudo_label": "101289/2_1opagelsplusstandard34525120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101289/2_1opagelsplusstandard34525120nanana/2_1opagelsplusstandard34525120nanana_seg.nii.gz"
+ },
+ {
+ "image": "109900/0_0opaphmx8000d32032120390na.nii.gz",
+ "pseudo_label": "109900/0_0opaphmx8000d32032120390na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109900/0_0opaphmx8000d32032120390na/0_0opaphmx8000d32032120390na_seg.nii.gz"
+ },
+ {
+ "image": "109900/9597_2opaphmx8000c2853212039018.nii.gz",
+ "pseudo_label": "109900/9597_2opaphmx8000c2853212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109900/9597_2opaphmx8000c2853212039018/9597_2opaphmx8000c2853212039018_seg.nii.gz"
+ },
+ {
+ "image": "102713/4_0opasevzoomb50f34021207540na.nii.gz",
+ "pseudo_label": "102713/4_0opasevzoomb50f34021207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102713/4_0opasevzoomb50f34021207540na/4_0opasevzoomb50f34021207540na_seg.nii.gz"
+ },
+ {
+ "image": "108190/3_2opasesen16b30f33051204530na.nii.gz",
+ "pseudo_label": "108190/3_2opasesen16b30f33051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108190/3_2opasesen16b30f33051204530na/3_2opasesen16b30f33051204530na_seg.nii.gz"
+ },
+ {
+ "image": "108190/4_0opasevzoomb50f38051206030na.nii.gz",
+ "pseudo_label": "108190/4_0opasevzoomb50f38051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108190/4_0opasevzoomb50f38051206030na/4_0opasevzoomb50f38051206030na_seg.nii.gz"
+ },
+ {
+ "image": "108190/9_1opasesen16b50f34051204530na.nii.gz",
+ "pseudo_label": "108190/9_1opasesen16b50f34051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108190/9_1opasesen16b50f34051204530na/9_1opasesen16b50f34051204530na_seg.nii.gz"
+ },
+ {
+ "image": "108190/3_0opasevzoomb30f38051206030na.nii.gz",
+ "pseudo_label": "108190/3_0opasevzoomb30f38051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108190/3_0opasevzoomb30f38051206030na/3_0opasevzoomb30f38051206030na_seg.nii.gz"
+ },
+ {
+ "image": "108190/5_2opasesen16b50f33051204530na.nii.gz",
+ "pseudo_label": "108190/5_2opasesen16b50f33051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108190/5_2opasesen16b50f33051204530na/5_2opasesen16b50f33051204530na_seg.nii.gz"
+ },
+ {
+ "image": "108190/7_1opasesen16b30f34051204530na.nii.gz",
+ "pseudo_label": "108190/7_1opasesen16b30f34051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108190/7_1opasesen16b30f34051204530na/7_1opasesen16b30f34051204530na_seg.nii.gz"
+ },
+ {
+ "image": "107848/2_1opagels16bone3592512048014.nii.gz",
+ "pseudo_label": "107848/2_1opagels16bone3592512048014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107848/2_1opagels16bone3592512048014/2_1opagels16bone3592512048014_seg.nii.gz"
+ },
+ {
+ "image": "107848/2_2opagelspr16bone36025120560114.nii.gz",
+ "pseudo_label": "107848/2_2opagelspr16bone36025120560114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107848/2_2opagelspr16bone36025120560114/2_2opagelspr16bone36025120560114_seg.nii.gz"
+ },
+ {
+ "image": "107848/3_2opagelspr16standard36025120560114.nii.gz",
+ "pseudo_label": "107848/3_2opagelspr16standard36025120560114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107848/3_2opagelspr16standard36025120560114/3_2opagelspr16standard36025120560114_seg.nii.gz"
+ },
+ {
+ "image": "107848/3_0opagelsqxstandard36725120800115.nii.gz",
+ "pseudo_label": "107848/3_0opagelsqxstandard36725120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107848/3_0opagelsqxstandard36725120800115/3_0opagelsqxstandard36725120800115_seg.nii.gz"
+ },
+ {
+ "image": "102271/2_0opagels16bone34025120600114.nii.gz",
+ "pseudo_label": "102271/2_0opagels16bone34025120600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102271/2_0opagels16bone34025120600114/2_0opagels16bone34025120600114_seg.nii.gz"
+ },
+ {
+ "image": "102271/3_2opagels16standard34025120600114.nii.gz",
+ "pseudo_label": "102271/3_2opagels16standard34025120600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102271/3_2opagels16standard34025120600114/3_2opagels16standard34025120600114_seg.nii.gz"
+ },
+ {
+ "image": "106769/2_0opasevzoomb30f28621204020na.nii.gz",
+ "pseudo_label": "106769/2_0opasevzoomb30f28621204020na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106769/2_0opasevzoomb30f28621204020na/2_0opasevzoomb30f28621204020na_seg.nii.gz"
+ },
+ {
+ "image": "106769/2_1opasesen16b30f27421207056na.nii.gz",
+ "pseudo_label": "106769/2_1opasesen16b30f27421207056na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106769/2_1opasesen16b30f27421207056na/2_1opasesen16b30f27421207056na_seg.nii.gz"
+ },
+ {
+ "image": "110162/2_0opagelsqxstandard3402514040015.nii.gz",
+ "pseudo_label": "110162/2_0opagelsqxstandard3402514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110162/2_0opagelsqxstandard3402514040015/2_0opagelsqxstandard3402514040015_seg.nii.gz"
+ },
+ {
+ "image": "110162/3_2opagels16standard3402514040014.nii.gz",
+ "pseudo_label": "110162/3_2opagels16standard3402514040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110162/3_2opagels16standard3402514040014/3_2opagels16standard3402514040014_seg.nii.gz"
+ },
+ {
+ "image": "110162/2_1opagels16standard3412514040014.nii.gz",
+ "pseudo_label": "110162/2_1opagels16standard3412514040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110162/2_1opagels16standard3412514040014/2_1opagels16standard3412514040014_seg.nii.gz"
+ },
+ {
+ "image": "101486/7412_1opaphmx8000d2963212039018.nii.gz",
+ "pseudo_label": "101486/7412_1opaphmx8000d2963212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101486/7412_1opaphmx8000d2963212039018/7412_1opaphmx8000d2963212039018_seg.nii.gz"
+ },
+ {
+ "image": "101486/7413_1opaphmx8000c2963212039018.nii.gz",
+ "pseudo_label": "101486/7413_1opaphmx8000c2963212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101486/7413_1opaphmx8000c2963212039018/7413_1opaphmx8000c2963212039018_seg.nii.gz"
+ },
+ {
+ "image": "101486/7242_0opaphmx8000d2973212039018.nii.gz",
+ "pseudo_label": "101486/7242_0opaphmx8000d2973212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101486/7242_0opaphmx8000d2973212039018/7242_0opaphmx8000d2973212039018_seg.nii.gz"
+ },
+ {
+ "image": "109378/3_1opagehsqxbone28025120560115.nii.gz",
+ "pseudo_label": "109378/3_1opagehsqxbone28025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109378/3_1opagehsqxbone28025120560115/3_1opagehsqxbone28025120560115_seg.nii.gz"
+ },
+ {
+ "image": "109378/2_1opagehsqxstandard28025120560115.nii.gz",
+ "pseudo_label": "109378/2_1opagehsqxstandard28025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109378/2_1opagehsqxstandard28025120560115/2_1opagehsqxstandard28025120560115_seg.nii.gz"
+ },
+ {
+ "image": "109378/3_0opagehsqxbone28025120560115.nii.gz",
+ "pseudo_label": "109378/3_0opagehsqxbone28025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109378/3_0opagehsqxbone28025120560115/3_0opagehsqxbone28025120560115_seg.nii.gz"
+ },
+ {
+ "image": "109378/3_2opagehsqxbone28025120560115.nii.gz",
+ "pseudo_label": "109378/3_2opagehsqxbone28025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109378/3_2opagehsqxbone28025120560115/3_2opagehsqxbone28025120560115_seg.nii.gz"
+ },
+ {
+ "image": "109378/2_0opagehsqxstandard28025120560115.nii.gz",
+ "pseudo_label": "109378/2_0opagehsqxstandard28025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109378/2_0opagehsqxstandard28025120560115/2_0opagehsqxstandard28025120560115_seg.nii.gz"
+ },
+ {
+ "image": "108587/2_0opagels16bone34025120600114.nii.gz",
+ "pseudo_label": "108587/2_0opagels16bone34025120600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108587/2_0opagels16bone34025120600114/2_0opagels16bone34025120600114_seg.nii.gz"
+ },
+ {
+ "image": "106608/2_1opagelsqxstandard36025120640115.nii.gz",
+ "pseudo_label": "106608/2_1opagelsqxstandard36025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106608/2_1opagelsqxstandard36025120640115/2_1opagelsqxstandard36025120640115_seg.nii.gz"
+ },
+ {
+ "image": "102568/3_2opasesen16b30f37021204530na.nii.gz",
+ "pseudo_label": "102568/3_2opasesen16b30f37021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102568/3_2opasesen16b30f37021204530na/3_2opasesen16b30f37021204530na_seg.nii.gz"
+ },
+ {
+ "image": "102568/2_2opasesen16b50f37021204530na.nii.gz",
+ "pseudo_label": "102568/2_2opasesen16b50f37021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102568/2_2opasesen16b50f37021204530na/2_2opasesen16b50f37021204530na_seg.nii.gz"
+ },
+ {
+ "image": "103453/2_0opagelsplusstandard37025140400na.nii.gz",
+ "pseudo_label": "103453/2_0opagelsplusstandard37025140400na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103453/2_0opagelsplusstandard37025140400na/2_0opagelsplusstandard37025140400na_seg.nii.gz"
+ },
+ {
+ "image": "103453/2_2opagelsplusstandard36925140954nana.nii.gz",
+ "pseudo_label": "103453/2_2opagelsplusstandard36925140954nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103453/2_2opagelsplusstandard36925140954nana/2_2opagelsplusstandard36925140954nana_seg.nii.gz"
+ },
+ {
+ "image": "103453/2_1opagelsqxstandard38025140400na.nii.gz",
+ "pseudo_label": "103453/2_1opagelsqxstandard38025140400na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103453/2_1opagelsqxstandard38025140400na/2_1opagelsqxstandard38025140400na_seg.nii.gz"
+ },
+ {
+ "image": "108749/2_1opagelsplusstandard3202514040015.nii.gz",
+ "pseudo_label": "108749/2_1opagelsplusstandard3202514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108749/2_1opagelsplusstandard3202514040015/2_1opagelsplusstandard3202514040015_seg.nii.gz"
+ },
+ {
+ "image": "108749/2_2opagelsplusstandard3202514040015.nii.gz",
+ "pseudo_label": "108749/2_2opagelsplusstandard3202514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108749/2_2opagelsplusstandard3202514040015/2_2opagelsplusstandard3202514040015_seg.nii.gz"
+ },
+ {
+ "image": "108749/3_0opagelsplusstandard3202514040015.nii.gz",
+ "pseudo_label": "108749/3_0opagelsplusstandard3202514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108749/3_0opagelsplusstandard3202514040015/3_0opagelsplusstandard3202514040015_seg.nii.gz"
+ },
+ {
+ "image": "108749/4_0opagelsplusstandard3202514040015.nii.gz",
+ "pseudo_label": "108749/4_0opagelsplusstandard3202514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108749/4_0opagelsplusstandard3202514040015/4_0opagelsplusstandard3202514040015_seg.nii.gz"
+ },
+ {
+ "image": "108749/2_0opagelsplusstandard3202514040015.nii.gz",
+ "pseudo_label": "108749/2_0opagelsplusstandard3202514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108749/2_0opagelsplusstandard3202514040015/2_0opagelsplusstandard3202514040015_seg.nii.gz"
+ },
+ {
+ "image": "105076/3_2opagels16standard3602514040014.nii.gz",
+ "pseudo_label": "105076/3_2opagels16standard3602514040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105076/3_2opagels16standard3602514040014/3_2opagels16standard3602514040014_seg.nii.gz"
+ },
+ {
+ "image": "105076/2_2opagels16standard3402514040014.nii.gz",
+ "pseudo_label": "105076/2_2opagels16standard3402514040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105076/2_2opagels16standard3402514040014/2_2opagels16standard3402514040014_seg.nii.gz"
+ },
+ {
+ "image": "106661/2_1opagelsqxstandard3502512048015.nii.gz",
+ "pseudo_label": "106661/2_1opagelsqxstandard3502512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106661/2_1opagelsqxstandard3502512048015/2_1opagelsqxstandard3502512048015_seg.nii.gz"
+ },
+ {
+ "image": "106540/3_1opasevzoomb30f31021206030na.nii.gz",
+ "pseudo_label": "106540/3_1opasevzoomb30f31021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106540/3_1opasevzoomb30f31021206030na/3_1opasevzoomb30f31021206030na_seg.nii.gz"
+ },
+ {
+ "image": "106540/2_1opasevzoomb50f31021206030na.nii.gz",
+ "pseudo_label": "106540/2_1opasevzoomb50f31021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106540/2_1opasevzoomb50f31021206030na/2_1opasevzoomb50f31021206030na_seg.nii.gz"
+ },
+ {
+ "image": "106540/2_2opasesen16b50f31021204530na.nii.gz",
+ "pseudo_label": "106540/2_2opasesen16b50f31021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106540/2_2opasesen16b50f31021204530na/2_2opasesen16b50f31021204530na_seg.nii.gz"
+ },
+ {
+ "image": "106057/6_2opasevzoomb30f32421206030na.nii.gz",
+ "pseudo_label": "106057/6_2opasevzoomb30f32421206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106057/6_2opasevzoomb30f32421206030na/6_2opasevzoomb30f32421206030na_seg.nii.gz"
+ },
+ {
+ "image": "106057/5_0opasesen16b50f33551205454na.nii.gz",
+ "pseudo_label": "106057/5_0opasesen16b50f33551205454na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106057/5_0opasesen16b50f33551205454na/5_0opasesen16b50f33551205454na_seg.nii.gz"
+ },
+ {
+ "image": "106057/3_2opasevzoomb30f32451206030na.nii.gz",
+ "pseudo_label": "106057/3_2opasevzoomb30f32451206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106057/3_2opasevzoomb30f32451206030na/3_2opasevzoomb30f32451206030na_seg.nii.gz"
+ },
+ {
+ "image": "106057/5_1opasesen16b50f35851204530na.nii.gz",
+ "pseudo_label": "106057/5_1opasesen16b50f35851204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106057/5_1opasesen16b50f35851204530na/5_1opasesen16b50f35851204530na_seg.nii.gz"
+ },
+ {
+ "image": "106057/4_2opasevzoomb50f32451206030na.nii.gz",
+ "pseudo_label": "106057/4_2opasevzoomb50f32451206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106057/4_2opasevzoomb50f32451206030na/4_2opasevzoomb50f32451206030na_seg.nii.gz"
+ },
+ {
+ "image": "106057/5_2opasevzoomb50f32221206030na.nii.gz",
+ "pseudo_label": "106057/5_2opasevzoomb50f32221206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106057/5_2opasevzoomb50f32221206030na/5_2opasevzoomb50f32221206030na_seg.nii.gz"
+ },
+ {
+ "image": "106057/6_0opasesen16b30f33521205454na.nii.gz",
+ "pseudo_label": "106057/6_0opasesen16b30f33521205454na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106057/6_0opasesen16b30f33521205454na/6_0opasesen16b30f33521205454na_seg.nii.gz"
+ },
+ {
+ "image": "106057/3_0opasesen16b30f34051205454na.nii.gz",
+ "pseudo_label": "106057/3_0opasesen16b30f34051205454na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106057/3_0opasesen16b30f34051205454na/3_0opasesen16b30f34051205454na_seg.nii.gz"
+ },
+ {
+ "image": "106057/6_1opasesen16b60f35821204530na.nii.gz",
+ "pseudo_label": "106057/6_1opasesen16b60f35821204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106057/6_1opasesen16b60f35821204530na/6_1opasesen16b60f35821204530na_seg.nii.gz"
+ },
+ {
+ "image": "106057/3_1opasesen16b30f35851204530na.nii.gz",
+ "pseudo_label": "106057/3_1opasesen16b30f35851204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106057/3_1opasesen16b30f35851204530na/3_1opasesen16b30f35851204530na_seg.nii.gz"
+ },
+ {
+ "image": "112183/5_2opasevzoomb50f30221206030na.nii.gz",
+ "pseudo_label": "112183/5_2opasevzoomb50f30221206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112183/5_2opasevzoomb50f30221206030na/5_2opasevzoomb50f30221206030na_seg.nii.gz"
+ },
+ {
+ "image": "112183/3_2opasevzoomb30f30251206030na.nii.gz",
+ "pseudo_label": "112183/3_2opasevzoomb30f30251206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112183/3_2opasevzoomb30f30251206030na/3_2opasevzoomb30f30251206030na_seg.nii.gz"
+ },
+ {
+ "image": "112183/4_0opasesen16b30f306212025551na.nii.gz",
+ "pseudo_label": "112183/4_0opasesen16b30f306212025551na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112183/4_0opasesen16b30f306212025551na/4_0opasesen16b30f306212025551na_seg.nii.gz"
+ },
+ {
+ "image": "112183/4_2opasevzoomb50f30251206030na.nii.gz",
+ "pseudo_label": "112183/4_2opasevzoomb50f30251206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112183/4_2opasevzoomb50f30251206030na/4_2opasevzoomb50f30251206030na_seg.nii.gz"
+ },
+ {
+ "image": "112183/5_0opasesen16b50f306512025551na.nii.gz",
+ "pseudo_label": "112183/5_0opasesen16b50f306512025551na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112183/5_0opasesen16b50f306512025551na/5_0opasesen16b50f306512025551na_seg.nii.gz"
+ },
+ {
+ "image": "112183/3_0opasesen16b30f306512025551na.nii.gz",
+ "pseudo_label": "112183/3_0opasesen16b30f306512025551na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112183/3_0opasesen16b30f306512025551na/3_0opasesen16b30f306512025551na_seg.nii.gz"
+ },
+ {
+ "image": "112183/4_1opasesen16b50f36251204530na.nii.gz",
+ "pseudo_label": "112183/4_1opasesen16b50f36251204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112183/4_1opasesen16b50f36251204530na/4_1opasesen16b50f36251204530na_seg.nii.gz"
+ },
+ {
+ "image": "112183/3_1opasesen16b30f36251204530na.nii.gz",
+ "pseudo_label": "112183/3_1opasesen16b30f36251204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112183/3_1opasesen16b30f36251204530na/3_1opasesen16b30f36251204530na_seg.nii.gz"
+ },
+ {
+ "image": "103344/2_1opagelsqxstandard36025120640115.nii.gz",
+ "pseudo_label": "103344/2_1opagelsqxstandard36025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103344/2_1opagelsqxstandard36025120640115/2_1opagelsqxstandard36025120640115_seg.nii.gz"
+ },
+ {
+ "image": "100470/4_2opasesen16b30f37221204032na.nii.gz",
+ "pseudo_label": "100470/4_2opasesen16b30f37221204032na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100470/4_2opasesen16b30f37221204032na/4_2opasesen16b30f37221204032na_seg.nii.gz"
+ },
+ {
+ "image": "100470/3_2opasesen16b30f37221204032na.nii.gz",
+ "pseudo_label": "100470/3_2opasesen16b30f37221204032na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100470/3_2opasesen16b30f37221204032na/3_2opasesen16b30f37221204032na_seg.nii.gz"
+ },
+ {
+ "image": "100470/2_0opasevzoomb30f37621204020na.nii.gz",
+ "pseudo_label": "100470/2_0opasevzoomb30f37621204020na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100470/2_0opasevzoomb30f37621204020na/2_0opasevzoomb30f37621204020na_seg.nii.gz"
+ },
+ {
+ "image": "103530/2_0opasevzoomb30f31021208040na.nii.gz",
+ "pseudo_label": "103530/2_0opasevzoomb30f31021208040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103530/2_0opasevzoomb30f31021208040na/2_0opasevzoomb30f31021208040na_seg.nii.gz"
+ },
+ {
+ "image": "100346/2_1opagehsqxstandard36025120560115.nii.gz",
+ "pseudo_label": "100346/2_1opagehsqxstandard36025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100346/2_1opagehsqxstandard36025120560115/2_1opagehsqxstandard36025120560115_seg.nii.gz"
+ },
+ {
+ "image": "100346/2_2opagehsqxstandard36025120560115.nii.gz",
+ "pseudo_label": "100346/2_2opagehsqxstandard36025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100346/2_2opagehsqxstandard36025120560115/2_2opagehsqxstandard36025120560115_seg.nii.gz"
+ },
+ {
+ "image": "100346/2_0opagehsqxstandard36025120560115.nii.gz",
+ "pseudo_label": "100346/2_0opagehsqxstandard36025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100346/2_0opagehsqxstandard36025120560115/2_0opagehsqxstandard36025120560115_seg.nii.gz"
+ },
+ {
+ "image": "100346/3_1opagehsqxbone36025120560115.nii.gz",
+ "pseudo_label": "100346/3_1opagehsqxbone36025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100346/3_1opagehsqxbone36025120560115/3_1opagehsqxbone36025120560115_seg.nii.gz"
+ },
+ {
+ "image": "100400/5_0opasevzoomb50f33021206030na.nii.gz",
+ "pseudo_label": "100400/5_0opasevzoomb50f33021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100400/5_0opasevzoomb50f33021206030na/5_0opasevzoomb50f33021206030na_seg.nii.gz"
+ },
+ {
+ "image": "100400/6_0opasevzoomb50f33051206030na.nii.gz",
+ "pseudo_label": "100400/6_0opasevzoomb50f33051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100400/6_0opasevzoomb50f33051206030na/6_0opasevzoomb50f33051206030na_seg.nii.gz"
+ },
+ {
+ "image": "100400/5_2opasesen16b50f34051204530na.nii.gz",
+ "pseudo_label": "100400/5_2opasesen16b50f34051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100400/5_2opasesen16b50f34051204530na/5_2opasesen16b50f34051204530na_seg.nii.gz"
+ },
+ {
+ "image": "100400/3_2opasesen16b30f32051204530na.nii.gz",
+ "pseudo_label": "100400/3_2opasesen16b30f32051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100400/3_2opasesen16b30f32051204530na/3_2opasesen16b30f32051204530na_seg.nii.gz"
+ },
+ {
+ "image": "100400/3_1opasevzoomb30f34051206030na.nii.gz",
+ "pseudo_label": "100400/3_1opasevzoomb30f34051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100400/3_1opasevzoomb30f34051206030na/3_1opasevzoomb30f34051206030na_seg.nii.gz"
+ },
+ {
+ "image": "100400/4_0opasevzoomb30f33051206030na.nii.gz",
+ "pseudo_label": "100400/4_0opasevzoomb30f33051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100400/4_0opasevzoomb30f33051206030na/4_0opasevzoomb30f33051206030na_seg.nii.gz"
+ },
+ {
+ "image": "100400/4_1opasevzoomb50f34051206030na.nii.gz",
+ "pseudo_label": "100400/4_1opasevzoomb50f34051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100400/4_1opasevzoomb50f34051206030na/4_1opasevzoomb50f34051206030na_seg.nii.gz"
+ },
+ {
+ "image": "105972/3_2opagelsqxbone30925120560115.nii.gz",
+ "pseudo_label": "105972/3_2opagelsqxbone30925120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105972/3_2opagelsqxbone30925120560115/3_2opagelsqxbone30925120560115_seg.nii.gz"
+ },
+ {
+ "image": "105972/2_0opagelsqxstandard30025120560115.nii.gz",
+ "pseudo_label": "105972/2_0opagelsqxstandard30025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105972/2_0opagelsqxstandard30025120560115/2_0opagelsqxstandard30025120560115_seg.nii.gz"
+ },
+ {
+ "image": "105972/2_2opagelsqxstandard30925120560115.nii.gz",
+ "pseudo_label": "105972/2_2opagelsqxstandard30925120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105972/2_2opagelsqxstandard30925120560115/2_2opagelsqxstandard30925120560115_seg.nii.gz"
+ },
+ {
+ "image": "105972/3_0opagelsqxbone30025120560115.nii.gz",
+ "pseudo_label": "105972/3_0opagelsqxbone30025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105972/3_0opagelsqxbone30025120560115/3_0opagelsqxbone30025120560115_seg.nii.gz"
+ },
+ {
+ "image": "108726/2_0opagelsqxbone37625120640115.nii.gz",
+ "pseudo_label": "108726/2_0opagelsqxbone37625120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108726/2_0opagelsqxbone37625120640115/2_0opagelsqxbone37625120640115_seg.nii.gz"
+ },
+ {
+ "image": "108726/2_2opagelspr16bone3502512040014.nii.gz",
+ "pseudo_label": "108726/2_2opagelspr16bone3502512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108726/2_2opagelspr16bone3502512040014/2_2opagelspr16bone3502512040014_seg.nii.gz"
+ },
+ {
+ "image": "108726/3_1opagels16standard34025120640114.nii.gz",
+ "pseudo_label": "108726/3_1opagels16standard34025120640114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108726/3_1opagels16standard34025120640114/3_1opagels16standard34025120640114_seg.nii.gz"
+ },
+ {
+ "image": "108726/3_0opagelsqxstandard37625120640115.nii.gz",
+ "pseudo_label": "108726/3_0opagelsqxstandard37625120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108726/3_0opagelsqxstandard37625120640115/3_0opagelsqxstandard37625120640115_seg.nii.gz"
+ },
+ {
+ "image": "108726/2_1opagels16bone34025120640114.nii.gz",
+ "pseudo_label": "108726/2_1opagels16bone34025120640114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108726/2_1opagels16bone34025120640114/2_1opagels16bone34025120640114_seg.nii.gz"
+ },
+ {
+ "image": "102370/2_1opasesen16b50f28021204530na.nii.gz",
+ "pseudo_label": "102370/2_1opasesen16b50f28021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102370/2_1opasesen16b50f28021204530na/2_1opasesen16b50f28021204530na_seg.nii.gz"
+ },
+ {
+ "image": "102370/3_1opasesen16b30f28021204530na.nii.gz",
+ "pseudo_label": "102370/3_1opasesen16b30f28021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102370/3_1opasesen16b30f28021204530na/3_1opasesen16b30f28021204530na_seg.nii.gz"
+ },
+ {
+ "image": "102370/2_2opasesen16b50f28021204530na.nii.gz",
+ "pseudo_label": "102370/2_2opasesen16b50f28021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102370/2_2opasesen16b50f28021204530na/2_2opasesen16b50f28021204530na_seg.nii.gz"
+ },
+ {
+ "image": "104585/2_2opagels16standard3402514040014.nii.gz",
+ "pseudo_label": "104585/2_2opagels16standard3402514040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104585/2_2opagels16standard3402514040014/2_2opagels16standard3402514040014_seg.nii.gz"
+ },
+ {
+ "image": "104585/2_1opagels16standard3702514040014.nii.gz",
+ "pseudo_label": "104585/2_1opagels16standard3702514040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104585/2_1opagels16standard3702514040014/2_1opagels16standard3702514040014_seg.nii.gz"
+ },
+ {
+ "image": "104585/2_0opagelsqxstandard3242514040015.nii.gz",
+ "pseudo_label": "104585/2_0opagelsqxstandard3242514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104585/2_0opagelsqxstandard3242514040015/2_0opagelsqxstandard3242514040015_seg.nii.gz"
+ },
+ {
+ "image": "111373/5_1opasevzoomb30f33051206030na.nii.gz",
+ "pseudo_label": "111373/5_1opasevzoomb30f33051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111373/5_1opasevzoomb30f33051206030na/5_1opasevzoomb30f33051206030na_seg.nii.gz"
+ },
+ {
+ "image": "111373/4_1opasevzoomb50f33051206030na.nii.gz",
+ "pseudo_label": "111373/4_1opasevzoomb50f33051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111373/4_1opasevzoomb50f33051206030na/4_1opasevzoomb50f33051206030na_seg.nii.gz"
+ },
+ {
+ "image": "111373/4_2opasevzoomb50f35451206030na.nii.gz",
+ "pseudo_label": "111373/4_2opasevzoomb50f35451206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111373/4_2opasevzoomb50f35451206030na/4_2opasevzoomb50f35451206030na_seg.nii.gz"
+ },
+ {
+ "image": "111373/5_0opasevzoomb30f34651206030na.nii.gz",
+ "pseudo_label": "111373/5_0opasevzoomb30f34651206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111373/5_0opasevzoomb30f34651206030na/5_0opasevzoomb30f34651206030na_seg.nii.gz"
+ },
+ {
+ "image": "111373/5_2opasevzoomb30f35451206030na.nii.gz",
+ "pseudo_label": "111373/5_2opasevzoomb30f35451206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111373/5_2opasevzoomb30f35451206030na/5_2opasevzoomb30f35451206030na_seg.nii.gz"
+ },
+ {
+ "image": "111373/6_0opasevzoomb30f34621206030na.nii.gz",
+ "pseudo_label": "111373/6_0opasevzoomb30f34621206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111373/6_0opasevzoomb30f34621206030na/6_0opasevzoomb30f34621206030na_seg.nii.gz"
+ },
+ {
+ "image": "111373/6_2opasevzoomb30f35421206030na.nii.gz",
+ "pseudo_label": "111373/6_2opasevzoomb30f35421206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111373/6_2opasevzoomb30f35421206030na/6_2opasevzoomb30f35421206030na_seg.nii.gz"
+ },
+ {
+ "image": "111373/4_0opasevzoomb50f34651206030na.nii.gz",
+ "pseudo_label": "111373/4_0opasevzoomb50f34651206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111373/4_0opasevzoomb50f34651206030na/4_0opasevzoomb50f34651206030na_seg.nii.gz"
+ },
+ {
+ "image": "101937/2_0opasevzoomb30f45051207540na.nii.gz",
+ "pseudo_label": "101937/2_0opasevzoomb30f45051207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101937/2_0opasevzoomb30f45051207540na/2_0opasevzoomb30f45051207540na_seg.nii.gz"
+ },
+ {
+ "image": "101937/4_0opasevzoomb50f45021207540na.nii.gz",
+ "pseudo_label": "101937/4_0opasevzoomb50f45021207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101937/4_0opasevzoomb50f45021207540na/4_0opasevzoomb50f45021207540na_seg.nii.gz"
+ },
+ {
+ "image": "101937/3_1opasevzoomb50f42021207540na.nii.gz",
+ "pseudo_label": "101937/3_1opasevzoomb50f42021207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101937/3_1opasevzoomb50f42021207540na/3_1opasevzoomb50f42021207540na_seg.nii.gz"
+ },
+ {
+ "image": "101937/2_1opasevzoomb30f42021207540na.nii.gz",
+ "pseudo_label": "101937/2_1opasevzoomb30f42021207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101937/2_1opasevzoomb30f42021207540na/2_1opasevzoomb30f42021207540na_seg.nii.gz"
+ },
+ {
+ "image": "102317/2_2opagelsqxstandard36025120640115.nii.gz",
+ "pseudo_label": "102317/2_2opagelsqxstandard36025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102317/2_2opagelsqxstandard36025120640115/2_2opagelsqxstandard36025120640115_seg.nii.gz"
+ },
+ {
+ "image": "102317/2_0opagelsqxstandard36025120640115.nii.gz",
+ "pseudo_label": "102317/2_0opagelsqxstandard36025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102317/2_0opagelsqxstandard36025120640115/2_0opagelsqxstandard36025120640115_seg.nii.gz"
+ },
+ {
+ "image": "106005/0_0opaphmx8000d2953212039018.nii.gz",
+ "pseudo_label": "106005/0_0opaphmx8000d2953212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106005/0_0opaphmx8000d2953212039018/0_0opaphmx8000d2953212039018_seg.nii.gz"
+ },
+ {
+ "image": "106005/8342_2opaphmx8000d2993212039018.nii.gz",
+ "pseudo_label": "106005/8342_2opaphmx8000d2993212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106005/8342_2opaphmx8000d2993212039018/8342_2opaphmx8000d2993212039018_seg.nii.gz"
+ },
+ {
+ "image": "107795/7386_1opaphmx8000c29732120390na.nii.gz",
+ "pseudo_label": "107795/7386_1opaphmx8000c29732120390na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107795/7386_1opaphmx8000c29732120390na/7386_1opaphmx8000c29732120390na_seg.nii.gz"
+ },
+ {
+ "image": "103458/3_2opagelspr16standard39725120640114.nii.gz",
+ "pseudo_label": "103458/3_2opagelspr16standard39725120640114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103458/3_2opagelspr16standard39725120640114/3_2opagelspr16standard39725120640114_seg.nii.gz"
+ },
+ {
+ "image": "103458/3_0opagelsqxbone36025120640115.nii.gz",
+ "pseudo_label": "103458/3_0opagelsqxbone36025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103458/3_0opagelsqxbone36025120640115/3_0opagelsqxbone36025120640115_seg.nii.gz"
+ },
+ {
+ "image": "103458/2_1opagels16bone3842512048014.nii.gz",
+ "pseudo_label": "103458/2_1opagels16bone3842512048014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103458/2_1opagels16bone3842512048014/2_1opagels16bone3842512048014_seg.nii.gz"
+ },
+ {
+ "image": "103458/2_2opagelspr16bone39725120640114.nii.gz",
+ "pseudo_label": "103458/2_2opagelspr16bone39725120640114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103458/2_2opagelspr16bone39725120640114/2_2opagelspr16bone39725120640114_seg.nii.gz"
+ },
+ {
+ "image": "100051/2_1opasevzoomb50f28021206030na.nii.gz",
+ "pseudo_label": "100051/2_1opasevzoomb50f28021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100051/2_1opasevzoomb50f28021206030na/2_1opasevzoomb50f28021206030na_seg.nii.gz"
+ },
+ {
+ "image": "100051/3_2opasesen16b30f27021204530na.nii.gz",
+ "pseudo_label": "100051/3_2opasesen16b30f27021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100051/3_2opasesen16b30f27021204530na/3_2opasesen16b30f27021204530na_seg.nii.gz"
+ },
+ {
+ "image": "111865/3_0opatoaqul4fc512953212060nana.nii.gz",
+ "pseudo_label": "111865/3_0opatoaqul4fc512953212060nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111865/3_0opatoaqul4fc512953212060nana/3_0opatoaqul4fc512953212060nana_seg.nii.gz"
+ },
+ {
+ "image": "111865/3_1opatoaqul4fc512828212040nana.nii.gz",
+ "pseudo_label": "111865/3_1opatoaqul4fc512828212040nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111865/3_1opatoaqul4fc512828212040nana/3_1opatoaqul4fc512828212040nana_seg.nii.gz"
+ },
+ {
+ "image": "109237/5_2opasevzoomb30f35351206030na.nii.gz",
+ "pseudo_label": "109237/5_2opasevzoomb30f35351206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109237/5_2opasevzoomb30f35351206030na/5_2opasevzoomb30f35351206030na_seg.nii.gz"
+ },
+ {
+ "image": "109237/4_0opasevzoomb50f36451206030na.nii.gz",
+ "pseudo_label": "109237/4_0opasevzoomb50f36451206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109237/4_0opasevzoomb50f36451206030na/4_0opasevzoomb50f36451206030na_seg.nii.gz"
+ },
+ {
+ "image": "109237/4_1opasevzoomb50f38051206030na.nii.gz",
+ "pseudo_label": "109237/4_1opasevzoomb50f38051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109237/4_1opasevzoomb50f38051206030na/4_1opasevzoomb50f38051206030na_seg.nii.gz"
+ },
+ {
+ "image": "109237/4_2opasevzoomb50f35351206030na.nii.gz",
+ "pseudo_label": "109237/4_2opasevzoomb50f35351206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109237/4_2opasevzoomb50f35351206030na/4_2opasevzoomb50f35351206030na_seg.nii.gz"
+ },
+ {
+ "image": "109237/6_2opasevzoomb30f35321206030na.nii.gz",
+ "pseudo_label": "109237/6_2opasevzoomb30f35321206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109237/6_2opasevzoomb30f35321206030na/6_2opasevzoomb30f35321206030na_seg.nii.gz"
+ },
+ {
+ "image": "109237/5_1opasevzoomb30f38051206030na.nii.gz",
+ "pseudo_label": "109237/5_1opasevzoomb30f38051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109237/5_1opasevzoomb30f38051206030na/5_1opasevzoomb30f38051206030na_seg.nii.gz"
+ },
+ {
+ "image": "109237/6_0opasevzoomb30f36421206030na.nii.gz",
+ "pseudo_label": "109237/6_0opasevzoomb30f36421206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109237/6_0opasevzoomb30f36421206030na/6_0opasevzoomb30f36421206030na_seg.nii.gz"
+ },
+ {
+ "image": "108121/2_1opasevzoomb50f35221206030na.nii.gz",
+ "pseudo_label": "108121/2_1opasevzoomb50f35221206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108121/2_1opasevzoomb50f35221206030na/2_1opasevzoomb50f35221206030na_seg.nii.gz"
+ },
+ {
+ "image": "108121/2_0opasevzoomb50f33021206030na.nii.gz",
+ "pseudo_label": "108121/2_0opasevzoomb50f33021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108121/2_0opasevzoomb50f33021206030na/2_0opasevzoomb50f33021206030na_seg.nii.gz"
+ },
+ {
+ "image": "105144/3_0opasevzoomb30f36021207540na.nii.gz",
+ "pseudo_label": "105144/3_0opasevzoomb30f36021207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105144/3_0opasevzoomb30f36021207540na/3_0opasevzoomb30f36021207540na_seg.nii.gz"
+ },
+ {
+ "image": "111011/2_0opagelsqxstandard36025120640115.nii.gz",
+ "pseudo_label": "111011/2_0opagelsqxstandard36025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111011/2_0opagelsqxstandard36025120640115/2_0opagelsqxstandard36025120640115_seg.nii.gz"
+ },
+ {
+ "image": "111011/2_2opagelsqxstandard3602512000na.nii.gz",
+ "pseudo_label": "111011/2_2opagelsqxstandard3602512000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111011/2_2opagelsqxstandard3602512000na/2_2opagelsqxstandard3602512000na_seg.nii.gz"
+ },
+ {
+ "image": "102025/5_2opasesen16b50f38051204530na.nii.gz",
+ "pseudo_label": "102025/5_2opasesen16b50f38051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102025/5_2opasesen16b50f38051204530na/5_2opasesen16b50f38051204530na_seg.nii.gz"
+ },
+ {
+ "image": "102025/3_0opasesen16b30f42951206040na.nii.gz",
+ "pseudo_label": "102025/3_0opasesen16b30f42951206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102025/3_0opasesen16b30f42951206040na/3_0opasesen16b30f42951206040na_seg.nii.gz"
+ },
+ {
+ "image": "102025/6_0opasesen16b30f42921206040na.nii.gz",
+ "pseudo_label": "102025/6_0opasesen16b30f42921206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102025/6_0opasesen16b30f42921206040na/6_0opasesen16b30f42921206040na_seg.nii.gz"
+ },
+ {
+ "image": "102025/3_1opasevzoomb30f40451206030na.nii.gz",
+ "pseudo_label": "102025/3_1opasevzoomb30f40451206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102025/3_1opasevzoomb30f40451206030na/3_1opasevzoomb30f40451206030na_seg.nii.gz"
+ },
+ {
+ "image": "102025/4_1opasevzoomb50f40451206030na.nii.gz",
+ "pseudo_label": "102025/4_1opasevzoomb50f40451206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102025/4_1opasevzoomb50f40451206030na/4_1opasevzoomb50f40451206030na_seg.nii.gz"
+ },
+ {
+ "image": "102025/4_0opasesen16b50f42951206040na.nii.gz",
+ "pseudo_label": "102025/4_0opasesen16b50f42951206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102025/4_0opasesen16b50f42951206040na/4_0opasesen16b50f42951206040na_seg.nii.gz"
+ },
+ {
+ "image": "109398/2_1opagelsqxstandard29225120560115.nii.gz",
+ "pseudo_label": "109398/2_1opagelsqxstandard29225120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109398/2_1opagelsqxstandard29225120560115/2_1opagelsqxstandard29225120560115_seg.nii.gz"
+ },
+ {
+ "image": "100925/1_2opagelspluslung34025120800115.nii.gz",
+ "pseudo_label": "100925/1_2opagelspluslung34025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100925/1_2opagelspluslung34025120800115/1_2opagelspluslung34025120800115_seg.nii.gz"
+ },
+ {
+ "image": "100925/1_2opagelsplusstandard34025120800115.nii.gz",
+ "pseudo_label": "100925/1_2opagelsplusstandard34025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100925/1_2opagelsplusstandard34025120800115/1_2opagelsplusstandard34025120800115_seg.nii.gz"
+ },
+ {
+ "image": "100925/1_1opagelspluslung34025120800115.nii.gz",
+ "pseudo_label": "100925/1_1opagelspluslung34025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100925/1_1opagelspluslung34025120800115/1_1opagelspluslung34025120800115_seg.nii.gz"
+ },
+ {
+ "image": "100925/1_1opagelsplusstandard34025120800115.nii.gz",
+ "pseudo_label": "100925/1_1opagelsplusstandard34025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100925/1_1opagelsplusstandard34025120800115/1_1opagelsplusstandard34025120800115_seg.nii.gz"
+ },
+ {
+ "image": "100925/1_0opagelspluslung34025120800108.nii.gz",
+ "pseudo_label": "100925/1_0opagelspluslung34025120800108.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100925/1_0opagelspluslung34025120800108/1_0opagelspluslung34025120800108_seg.nii.gz"
+ },
+ {
+ "image": "103164/3786_1opaphmx8000c3473212039018.nii.gz",
+ "pseudo_label": "103164/3786_1opaphmx8000c3473212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103164/3786_1opaphmx8000c3473212039018/3786_1opaphmx8000c3473212039018_seg.nii.gz"
+ },
+ {
+ "image": "107038/2_0opagels16bone3112512000na.nii.gz",
+ "pseudo_label": "107038/2_0opagels16bone3112512000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107038/2_0opagels16bone3112512000na/2_0opagels16bone3112512000na_seg.nii.gz"
+ },
+ {
+ "image": "107038/2_1opagelspr16bone3002512040014.nii.gz",
+ "pseudo_label": "107038/2_1opagelspr16bone3002512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107038/2_1opagelspr16bone3002512040014/2_1opagelspr16bone3002512040014_seg.nii.gz"
+ },
+ {
+ "image": "107038/3_2opagelspr16standard2802512040014.nii.gz",
+ "pseudo_label": "107038/3_2opagelspr16standard2802512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107038/3_2opagelspr16standard2802512040014/3_2opagelspr16standard2802512040014_seg.nii.gz"
+ },
+ {
+ "image": "107038/3_1opagelspr16standard3002512040014.nii.gz",
+ "pseudo_label": "107038/3_1opagelspr16standard3002512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107038/3_1opagelspr16standard3002512040014/3_1opagelspr16standard3002512040014_seg.nii.gz"
+ },
+ {
+ "image": "107038/2_2opagelspr16bone2802512040014.nii.gz",
+ "pseudo_label": "107038/2_2opagelspr16bone2802512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107038/2_2opagelspr16bone2802512040014/2_2opagelspr16bone2802512040014_seg.nii.gz"
+ },
+ {
+ "image": "107038/3_0opagels16standard3112512000na.nii.gz",
+ "pseudo_label": "107038/3_0opagels16standard3112512000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107038/3_0opagels16standard3112512000na/3_0opagels16standard3112512000na_seg.nii.gz"
+ },
+ {
+ "image": "100165/2_0opagelsqxstandard3042512000na.nii.gz",
+ "pseudo_label": "100165/2_0opagelsqxstandard3042512000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100165/2_0opagelsqxstandard3042512000na/2_0opagelsqxstandard3042512000na_seg.nii.gz"
+ },
+ {
+ "image": "112682/2_2opagelspr16bone3402512048014.nii.gz",
+ "pseudo_label": "112682/2_2opagelspr16bone3402512048014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112682/2_2opagelspr16bone3402512048014/2_2opagelspr16bone3402512048014_seg.nii.gz"
+ },
+ {
+ "image": "112682/2_1opagels16bone3702512000na.nii.gz",
+ "pseudo_label": "112682/2_1opagels16bone3702512000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112682/2_1opagels16bone3702512000na/2_1opagels16bone3702512000na_seg.nii.gz"
+ },
+ {
+ "image": "112682/2_0opagelsqxbone36025120800115.nii.gz",
+ "pseudo_label": "112682/2_0opagelsqxbone36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112682/2_0opagelsqxbone36025120800115/2_0opagelsqxbone36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "105612/3_1opagels16standard33025120600114.nii.gz",
+ "pseudo_label": "105612/3_1opagels16standard33025120600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105612/3_1opagels16standard33025120600114/3_1opagels16standard33025120600114_seg.nii.gz"
+ },
+ {
+ "image": "105612/3_2opagels16standard32025120720114.nii.gz",
+ "pseudo_label": "105612/3_2opagels16standard32025120720114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105612/3_2opagels16standard32025120720114/3_2opagels16standard32025120720114_seg.nii.gz"
+ },
+ {
+ "image": "105612/3_0opagels16standard32025120600114.nii.gz",
+ "pseudo_label": "105612/3_0opagels16standard32025120600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105612/3_0opagels16standard32025120600114/3_0opagels16standard32025120600114_seg.nii.gz"
+ },
+ {
+ "image": "106158/3_1opagels16standard37025120800114.nii.gz",
+ "pseudo_label": "106158/3_1opagels16standard37025120800114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106158/3_1opagels16standard37025120800114/3_1opagels16standard37025120800114_seg.nii.gz"
+ },
+ {
+ "image": "106158/2_1opagels16bone37025120800114.nii.gz",
+ "pseudo_label": "106158/2_1opagels16bone37025120800114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106158/2_1opagels16bone37025120800114/2_1opagels16bone37025120800114_seg.nii.gz"
+ },
+ {
+ "image": "107742/2_0opasevzoomb30f362212016080na.nii.gz",
+ "pseudo_label": "107742/2_0opasevzoomb30f362212016080na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107742/2_0opasevzoomb30f362212016080na/2_0opasevzoomb30f362212016080na_seg.nii.gz"
+ },
+ {
+ "image": "107209/2_0opagelsqxstandard3662514048015.nii.gz",
+ "pseudo_label": "107209/2_0opagelsqxstandard3662514048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107209/2_0opagelsqxstandard3662514048015/2_0opagelsqxstandard3662514048015_seg.nii.gz"
+ },
+ {
+ "image": "107526/2_1opagels16standard33025120nanana.nii.gz",
+ "pseudo_label": "107526/2_1opagels16standard33025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107526/2_1opagels16standard33025120nanana/2_1opagels16standard33025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "107526/4_2opagels16bone33025120nanana.nii.gz",
+ "pseudo_label": "107526/4_2opagels16bone33025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107526/4_2opagels16bone33025120nanana/4_2opagels16bone33025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "107526/3_2opagels16standard33025120nanana.nii.gz",
+ "pseudo_label": "107526/3_2opagels16standard33025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107526/3_2opagels16standard33025120nanana/3_2opagels16standard33025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "110716/3_1opasevzoomb50f37021207540na.nii.gz",
+ "pseudo_label": "110716/3_1opasevzoomb50f37021207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110716/3_1opasevzoomb50f37021207540na/3_1opasevzoomb50f37021207540na_seg.nii.gz"
+ },
+ {
+ "image": "110716/2_1opasevzoomb30f37021207540na.nii.gz",
+ "pseudo_label": "110716/2_1opasevzoomb30f37021207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110716/2_1opasevzoomb30f37021207540na/2_1opasevzoomb30f37021207540na_seg.nii.gz"
+ },
+ {
+ "image": "110716/2_2opasevzoomb30f37221207540na.nii.gz",
+ "pseudo_label": "110716/2_2opasevzoomb30f37221207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110716/2_2opasevzoomb30f37221207540na/2_2opasevzoomb30f37221207540na_seg.nii.gz"
+ },
+ {
+ "image": "110716/3_2opasevzoomb50f37221207540na.nii.gz",
+ "pseudo_label": "110716/3_2opasevzoomb50f37221207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110716/3_2opasevzoomb50f37221207540na/3_2opasevzoomb50f37221207540na_seg.nii.gz"
+ },
+ {
+ "image": "102360/2_1opagehsqxstandard36025120560115.nii.gz",
+ "pseudo_label": "102360/2_1opagehsqxstandard36025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102360/2_1opagehsqxstandard36025120560115/2_1opagehsqxstandard36025120560115_seg.nii.gz"
+ },
+ {
+ "image": "102360/2_2opagehsqxstandard36025120560115.nii.gz",
+ "pseudo_label": "102360/2_2opagehsqxstandard36025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102360/2_2opagehsqxstandard36025120560115/2_2opagehsqxstandard36025120560115_seg.nii.gz"
+ },
+ {
+ "image": "102360/2_0opagehsqxstandard36025120560115.nii.gz",
+ "pseudo_label": "102360/2_0opagehsqxstandard36025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102360/2_0opagehsqxstandard36025120560115/2_0opagehsqxstandard36025120560115_seg.nii.gz"
+ },
+ {
+ "image": "102360/3_2opagehsqxbone36025120560115.nii.gz",
+ "pseudo_label": "102360/3_2opagehsqxbone36025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102360/3_2opagehsqxbone36025120560115/3_2opagehsqxbone36025120560115_seg.nii.gz"
+ },
+ {
+ "image": "102360/3_1opagehsqxbone36025120560115.nii.gz",
+ "pseudo_label": "102360/3_1opagehsqxbone36025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102360/3_1opagehsqxbone36025120560115/3_1opagehsqxbone36025120560115_seg.nii.gz"
+ },
+ {
+ "image": "101766/3_2opasevzoomb50f30021208040na.nii.gz",
+ "pseudo_label": "101766/3_2opasevzoomb50f30021208040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101766/3_2opasevzoomb50f30021208040na/3_2opasevzoomb50f30021208040na_seg.nii.gz"
+ },
+ {
+ "image": "101766/2_2opasevzoomb30f30021208040na.nii.gz",
+ "pseudo_label": "101766/2_2opasevzoomb30f30021208040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101766/2_2opasevzoomb30f30021208040na/2_2opasevzoomb30f30021208040na_seg.nii.gz"
+ },
+ {
+ "image": "113012/3_2opasesen16b30f32021204530na.nii.gz",
+ "pseudo_label": "113012/3_2opasesen16b30f32021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113012/3_2opasesen16b30f32021204530na/3_2opasesen16b30f32021204530na_seg.nii.gz"
+ },
+ {
+ "image": "103998/2_0opagels16bone29025120600114.nii.gz",
+ "pseudo_label": "103998/2_0opagels16bone29025120600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103998/2_0opagels16bone29025120600114/2_0opagels16bone29025120600114_seg.nii.gz"
+ },
+ {
+ "image": "108364/2_0opagelsqxstandard34025120640115.nii.gz",
+ "pseudo_label": "108364/2_0opagelsqxstandard34025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108364/2_0opagelsqxstandard34025120640115/2_0opagelsqxstandard34025120640115_seg.nii.gz"
+ },
+ {
+ "image": "111785/2_1opasesen16b30f30321204032na.nii.gz",
+ "pseudo_label": "111785/2_1opasesen16b30f30321204032na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111785/2_1opasesen16b30f30321204032na/2_1opasesen16b30f30321204032na_seg.nii.gz"
+ },
+ {
+ "image": "106700/10_2opasevzoomb30f27021206030na.nii.gz",
+ "pseudo_label": "106700/10_2opasevzoomb30f27021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106700/10_2opasevzoomb30f27021206030na/10_2opasevzoomb30f27021206030na_seg.nii.gz"
+ },
+ {
+ "image": "106700/4_1opasesen16b50f27021204530na.nii.gz",
+ "pseudo_label": "106700/4_1opasesen16b50f27021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106700/4_1opasesen16b50f27021204530na/4_1opasesen16b50f27021204530na_seg.nii.gz"
+ },
+ {
+ "image": "106011/2_0opagelsqxstandard33025120nanana.nii.gz",
+ "pseudo_label": "106011/2_0opagelsqxstandard33025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106011/2_0opagelsqxstandard33025120nanana/2_0opagelsqxstandard33025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "106011/2_2opagels16standard33025120nanana.nii.gz",
+ "pseudo_label": "106011/2_2opagels16standard33025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106011/2_2opagels16standard33025120nanana/2_2opagels16standard33025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "106011/2_1opagels16standard33025120nanana.nii.gz",
+ "pseudo_label": "106011/2_1opagels16standard33025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106011/2_1opagels16standard33025120nanana/2_1opagels16standard33025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "106011/3_1opagels16bone33025120nanana.nii.gz",
+ "pseudo_label": "106011/3_1opagels16bone33025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106011/3_1opagels16bone33025120nanana/3_1opagels16bone33025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "108854/5_1opasesen16b50f38051204530na.nii.gz",
+ "pseudo_label": "108854/5_1opasesen16b50f38051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108854/5_1opasesen16b50f38051204530na/5_1opasesen16b50f38051204530na_seg.nii.gz"
+ },
+ {
+ "image": "108854/5_2opasesen16b50f39451204530na.nii.gz",
+ "pseudo_label": "108854/5_2opasesen16b50f39451204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108854/5_2opasesen16b50f39451204530na/5_2opasesen16b50f39451204530na_seg.nii.gz"
+ },
+ {
+ "image": "108854/3_2opasesen16b30f39451204530na.nii.gz",
+ "pseudo_label": "108854/3_2opasesen16b30f39451204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108854/3_2opasesen16b30f39451204530na/3_2opasesen16b30f39451204530na_seg.nii.gz"
+ },
+ {
+ "image": "108854/6_1opasesen16b50f38021204530na.nii.gz",
+ "pseudo_label": "108854/6_1opasesen16b50f38021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108854/6_1opasesen16b50f38021204530na/6_1opasesen16b50f38021204530na_seg.nii.gz"
+ },
+ {
+ "image": "108854/4_0opasevzoomb30f408512012060na.nii.gz",
+ "pseudo_label": "108854/4_0opasevzoomb30f408512012060na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108854/4_0opasevzoomb30f408512012060na/4_0opasevzoomb30f408512012060na_seg.nii.gz"
+ },
+ {
+ "image": "108854/6_2opasesen16b50f39421204530na.nii.gz",
+ "pseudo_label": "108854/6_2opasesen16b50f39421204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108854/6_2opasesen16b50f39421204530na/6_2opasesen16b50f39421204530na_seg.nii.gz"
+ },
+ {
+ "image": "108854/6_0opasevzoomb50f408512012060na.nii.gz",
+ "pseudo_label": "108854/6_0opasevzoomb50f408512012060na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108854/6_0opasevzoomb50f408512012060na/6_0opasevzoomb50f408512012060na_seg.nii.gz"
+ },
+ {
+ "image": "108854/3_1opasesen16b30f38051204530na.nii.gz",
+ "pseudo_label": "108854/3_1opasesen16b30f38051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108854/3_1opasesen16b30f38051204530na/3_1opasesen16b30f38051204530na_seg.nii.gz"
+ },
+ {
+ "image": "103321/1_2opagelspluslung32025120800115.nii.gz",
+ "pseudo_label": "103321/1_2opagelspluslung32025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103321/1_2opagelspluslung32025120800115/1_2opagelspluslung32025120800115_seg.nii.gz"
+ },
+ {
+ "image": "103321/1_1opatoaqul4fc103203312080nana.nii.gz",
+ "pseudo_label": "103321/1_1opatoaqul4fc103203312080nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103321/1_1opatoaqul4fc103203312080nana/1_1opatoaqul4fc103203312080nana_seg.nii.gz"
+ },
+ {
+ "image": "103321/1_1opatoaqul4fc303203312080nana.nii.gz",
+ "pseudo_label": "103321/1_1opatoaqul4fc303203312080nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103321/1_1opatoaqul4fc303203312080nana/1_1opatoaqul4fc303203312080nana_seg.nii.gz"
+ },
+ {
+ "image": "103321/1_2opagelsplusstandard32025120800115.nii.gz",
+ "pseudo_label": "103321/1_2opagelsplusstandard32025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103321/1_2opagelsplusstandard32025120800115/1_2opagelsplusstandard32025120800115_seg.nii.gz"
+ },
+ {
+ "image": "112725/3_2opasevzoomb50f40221207540na.nii.gz",
+ "pseudo_label": "112725/3_2opasevzoomb50f40221207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112725/3_2opasevzoomb50f40221207540na/3_2opasevzoomb50f40221207540na_seg.nii.gz"
+ },
+ {
+ "image": "110271/2_0opagelsqxstandard3202514040015.nii.gz",
+ "pseudo_label": "110271/2_0opagelsqxstandard3202514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110271/2_0opagelsqxstandard3202514040015/2_0opagelsqxstandard3202514040015_seg.nii.gz"
+ },
+ {
+ "image": "110271/2_2opagelsqxstandard3402514040015.nii.gz",
+ "pseudo_label": "110271/2_2opagelsqxstandard3402514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110271/2_2opagelsqxstandard3402514040015/2_2opagelsqxstandard3402514040015_seg.nii.gz"
+ },
+ {
+ "image": "108900/1_0opagelsplusstandard32025120800115.nii.gz",
+ "pseudo_label": "108900/1_0opagelsplusstandard32025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108900/1_0opagelsplusstandard32025120800115/1_0opagelsplusstandard32025120800115_seg.nii.gz"
+ },
+ {
+ "image": "108900/1_0opagelspluslung32025120800115.nii.gz",
+ "pseudo_label": "108900/1_0opagelspluslung32025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108900/1_0opagelspluslung32025120800115/1_0opagelspluslung32025120800115_seg.nii.gz"
+ },
+ {
+ "image": "111515/2_2opagelsqxstandard36025120560115.nii.gz",
+ "pseudo_label": "111515/2_2opagelsqxstandard36025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111515/2_2opagelsqxstandard36025120560115/2_2opagelsqxstandard36025120560115_seg.nii.gz"
+ },
+ {
+ "image": "111515/3_0opagelsqxbone34025120720115.nii.gz",
+ "pseudo_label": "111515/3_0opagelsqxbone34025120720115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111515/3_0opagelsqxbone34025120720115/3_0opagelsqxbone34025120720115_seg.nii.gz"
+ },
+ {
+ "image": "111515/2_1opagelsqxstandard32725120720115.nii.gz",
+ "pseudo_label": "111515/2_1opagelsqxstandard32725120720115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111515/2_1opagelsqxstandard32725120720115/2_1opagelsqxstandard32725120720115_seg.nii.gz"
+ },
+ {
+ "image": "111515/3_2opagelsqxbone36025120560115.nii.gz",
+ "pseudo_label": "111515/3_2opagelsqxbone36025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111515/3_2opagelsqxbone36025120560115/3_2opagelsqxbone36025120560115_seg.nii.gz"
+ },
+ {
+ "image": "111515/2_0opagelsqxstandard34025120720115.nii.gz",
+ "pseudo_label": "111515/2_0opagelsqxstandard34025120720115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111515/2_0opagelsqxstandard34025120720115/2_0opagelsqxstandard34025120720115_seg.nii.gz"
+ },
+ {
+ "image": "104513/7_0opasesen16b30f31021204530na.nii.gz",
+ "pseudo_label": "104513/7_0opasesen16b30f31021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104513/7_0opasesen16b30f31021204530na/7_0opasesen16b30f31021204530na_seg.nii.gz"
+ },
+ {
+ "image": "104513/5_1opasesen16b30f31621204530na.nii.gz",
+ "pseudo_label": "104513/5_1opasesen16b30f31621204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104513/5_1opasesen16b30f31621204530na/5_1opasesen16b30f31621204530na_seg.nii.gz"
+ },
+ {
+ "image": "104513/4_1opasesen16b30f31651204530na.nii.gz",
+ "pseudo_label": "104513/4_1opasesen16b30f31651204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104513/4_1opasesen16b30f31651204530na/4_1opasesen16b30f31651204530na_seg.nii.gz"
+ },
+ {
+ "image": "104513/5_0opasesen16b50f31051204530na.nii.gz",
+ "pseudo_label": "104513/5_0opasesen16b50f31051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104513/5_0opasesen16b50f31051204530na/5_0opasesen16b50f31051204530na_seg.nii.gz"
+ },
+ {
+ "image": "104513/6_0opasesen16b50f31021204530na.nii.gz",
+ "pseudo_label": "104513/6_0opasesen16b50f31021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104513/6_0opasesen16b50f31021204530na/6_0opasesen16b50f31021204530na_seg.nii.gz"
+ },
+ {
+ "image": "104513/6_1opasesen16b50f31651204530na.nii.gz",
+ "pseudo_label": "104513/6_1opasesen16b50f31651204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104513/6_1opasesen16b50f31651204530na/6_1opasesen16b50f31651204530na_seg.nii.gz"
+ },
+ {
+ "image": "104513/5_2opasesen16b50f30251204530na.nii.gz",
+ "pseudo_label": "104513/5_2opasesen16b50f30251204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104513/5_2opasesen16b50f30251204530na/5_2opasesen16b50f30251204530na_seg.nii.gz"
+ },
+ {
+ "image": "104513/3_2opasesen16b30f30251204530na.nii.gz",
+ "pseudo_label": "104513/3_2opasesen16b30f30251204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104513/3_2opasesen16b30f30251204530na/3_2opasesen16b30f30251204530na_seg.nii.gz"
+ },
+ {
+ "image": "104513/4_0opasesen16b30f31051204530na.nii.gz",
+ "pseudo_label": "104513/4_0opasesen16b30f31051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104513/4_0opasesen16b30f31051204530na/4_0opasesen16b30f31051204530na_seg.nii.gz"
+ },
+ {
+ "image": "112280/4_2opasevzoomb50f33151206030na.nii.gz",
+ "pseudo_label": "112280/4_2opasevzoomb50f33151206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112280/4_2opasevzoomb50f33151206030na/4_2opasevzoomb50f33151206030na_seg.nii.gz"
+ },
+ {
+ "image": "112280/5_2opasevzoomb30f33151206030na.nii.gz",
+ "pseudo_label": "112280/5_2opasevzoomb30f33151206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112280/5_2opasevzoomb30f33151206030na/5_2opasevzoomb30f33151206030na_seg.nii.gz"
+ },
+ {
+ "image": "112280/3_0opasevzoomb50f35521206030na.nii.gz",
+ "pseudo_label": "112280/3_0opasevzoomb50f35521206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112280/3_0opasevzoomb50f35521206030na/3_0opasevzoomb50f35521206030na_seg.nii.gz"
+ },
+ {
+ "image": "112280/4_1opasevzoomb50f35051206030na.nii.gz",
+ "pseudo_label": "112280/4_1opasevzoomb50f35051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112280/4_1opasevzoomb50f35051206030na/4_1opasevzoomb50f35051206030na_seg.nii.gz"
+ },
+ {
+ "image": "112280/4_0opasevzoomb50f33051206030na.nii.gz",
+ "pseudo_label": "112280/4_0opasevzoomb50f33051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112280/4_0opasevzoomb50f33051206030na/4_0opasevzoomb50f33051206030na_seg.nii.gz"
+ },
+ {
+ "image": "112280/5_0opasevzoomb30f33051206030na.nii.gz",
+ "pseudo_label": "112280/5_0opasevzoomb30f33051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112280/5_0opasevzoomb30f33051206030na/5_0opasevzoomb30f33051206030na_seg.nii.gz"
+ },
+ {
+ "image": "112280/5_1opasevzoomb30f35051206030na.nii.gz",
+ "pseudo_label": "112280/5_1opasevzoomb30f35051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112280/5_1opasevzoomb30f35051206030na/5_1opasevzoomb30f35051206030na_seg.nii.gz"
+ },
+ {
+ "image": "112280/6_2opasevzoomb30f33121206030na.nii.gz",
+ "pseudo_label": "112280/6_2opasevzoomb30f33121206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112280/6_2opasevzoomb30f33121206030na/6_2opasevzoomb30f33121206030na_seg.nii.gz"
+ },
+ {
+ "image": "101821/2_2opagels16standard37025120666nana.nii.gz",
+ "pseudo_label": "101821/2_2opagels16standard37025120666nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101821/2_2opagels16standard37025120666nana/2_2opagels16standard37025120666nana_seg.nii.gz"
+ },
+ {
+ "image": "104056/6_1opasevzoomb30f33821206030na.nii.gz",
+ "pseudo_label": "104056/6_1opasevzoomb30f33821206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104056/6_1opasevzoomb30f33821206030na/6_1opasevzoomb30f33821206030na_seg.nii.gz"
+ },
+ {
+ "image": "104056/4_2opasevzoomb50f30051206030na.nii.gz",
+ "pseudo_label": "104056/4_2opasevzoomb50f30051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104056/4_2opasevzoomb50f30051206030na/4_2opasevzoomb50f30051206030na_seg.nii.gz"
+ },
+ {
+ "image": "104056/5_0opasevzoomb30f29051206030na.nii.gz",
+ "pseudo_label": "104056/5_0opasevzoomb30f29051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104056/5_0opasevzoomb30f29051206030na/5_0opasevzoomb30f29051206030na_seg.nii.gz"
+ },
+ {
+ "image": "104056/5_2opasevzoomb30f30051206030na.nii.gz",
+ "pseudo_label": "104056/5_2opasevzoomb30f30051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104056/5_2opasevzoomb30f30051206030na/5_2opasevzoomb30f30051206030na_seg.nii.gz"
+ },
+ {
+ "image": "104056/6_2opasevzoomb30f30021206030na.nii.gz",
+ "pseudo_label": "104056/6_2opasevzoomb30f30021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104056/6_2opasevzoomb30f30021206030na/6_2opasevzoomb30f30021206030na_seg.nii.gz"
+ },
+ {
+ "image": "104056/4_0opasevzoomb50f29051206030na.nii.gz",
+ "pseudo_label": "104056/4_0opasevzoomb50f29051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104056/4_0opasevzoomb50f29051206030na/4_0opasevzoomb50f29051206030na_seg.nii.gz"
+ },
+ {
+ "image": "104056/4_1opasevzoomb50f33851206030na.nii.gz",
+ "pseudo_label": "104056/4_1opasevzoomb50f33851206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104056/4_1opasevzoomb50f33851206030na/4_1opasevzoomb50f33851206030na_seg.nii.gz"
+ },
+ {
+ "image": "104056/3_0opasevzoomb50f29021206030na.nii.gz",
+ "pseudo_label": "104056/3_0opasevzoomb50f29021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104056/3_0opasevzoomb50f29021206030na/3_0opasevzoomb50f29021206030na_seg.nii.gz"
+ },
+ {
+ "image": "104056/5_1opasevzoomb30f33851206030na.nii.gz",
+ "pseudo_label": "104056/5_1opasevzoomb30f33851206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104056/5_1opasevzoomb30f33851206030na/5_1opasevzoomb30f33851206030na_seg.nii.gz"
+ },
+ {
+ "image": "104056/6_0opasevzoomb30f29021206030na.nii.gz",
+ "pseudo_label": "104056/6_0opasevzoomb30f29021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104056/6_0opasevzoomb30f29021206030na/6_0opasevzoomb30f29021206030na_seg.nii.gz"
+ },
+ {
+ "image": "112945/2_2opagelsplusstandard34025140828nana.nii.gz",
+ "pseudo_label": "112945/2_2opagelsplusstandard34025140828nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112945/2_2opagelsplusstandard34025140828nana/2_2opagelsplusstandard34025140828nana_seg.nii.gz"
+ },
+ {
+ "image": "104595/6_0opasesen16b50f32021204530na.nii.gz",
+ "pseudo_label": "104595/6_0opasesen16b50f32021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104595/6_0opasesen16b50f32021204530na/6_0opasesen16b50f32021204530na_seg.nii.gz"
+ },
+ {
+ "image": "104595/5_0opasesen16b50f32051204530na.nii.gz",
+ "pseudo_label": "104595/5_0opasesen16b50f32051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104595/5_0opasesen16b50f32051204530na/5_0opasesen16b50f32051204530na_seg.nii.gz"
+ },
+ {
+ "image": "104595/4_0opasesen16b30f32021204530na.nii.gz",
+ "pseudo_label": "104595/4_0opasesen16b30f32021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104595/4_0opasesen16b30f32021204530na/4_0opasesen16b30f32021204530na_seg.nii.gz"
+ },
+ {
+ "image": "112448/3_1opatoaqul4fc513027212080nana.nii.gz",
+ "pseudo_label": "112448/3_1opatoaqul4fc513027212080nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112448/3_1opatoaqul4fc513027212080nana/3_1opatoaqul4fc513027212080nana_seg.nii.gz"
+ },
+ {
+ "image": "112448/3_2opatoaqul4fc513078212060nana.nii.gz",
+ "pseudo_label": "112448/3_2opatoaqul4fc513078212060nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112448/3_2opatoaqul4fc513078212060nana/3_2opatoaqul4fc513078212060nana_seg.nii.gz"
+ },
+ {
+ "image": "112448/5_0opatoaqul4fc513422212080nana.nii.gz",
+ "pseudo_label": "112448/5_0opatoaqul4fc513422212080nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112448/5_0opatoaqul4fc513422212080nana/5_0opatoaqul4fc513422212080nana_seg.nii.gz"
+ },
+ {
+ "image": "113340/693_2opaphmx8000c3173212039018.nii.gz",
+ "pseudo_label": "113340/693_2opaphmx8000c3173212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113340/693_2opaphmx8000c3173212039018/693_2opaphmx8000c3173212039018_seg.nii.gz"
+ },
+ {
+ "image": "113340/0_0opaphmx8000c32932120600112.nii.gz",
+ "pseudo_label": "113340/0_0opaphmx8000c32932120600112.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113340/0_0opaphmx8000c32932120600112/0_0opaphmx8000c32932120600112_seg.nii.gz"
+ },
+ {
+ "image": "108507/6_2opasesen16b50f36221204530na.nii.gz",
+ "pseudo_label": "108507/6_2opasesen16b50f36221204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108507/6_2opasesen16b50f36221204530na/6_2opasesen16b50f36221204530na_seg.nii.gz"
+ },
+ {
+ "image": "108507/3_1opasesen16b30f34851204530na.nii.gz",
+ "pseudo_label": "108507/3_1opasesen16b30f34851204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108507/3_1opasesen16b30f34851204530na/3_1opasesen16b30f34851204530na_seg.nii.gz"
+ },
+ {
+ "image": "108507/6_1opasesen16b50f34821204530na.nii.gz",
+ "pseudo_label": "108507/6_1opasesen16b50f34821204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108507/6_1opasesen16b50f34821204530na/6_1opasesen16b50f34821204530na_seg.nii.gz"
+ },
+ {
+ "image": "108507/3_2opasesen16b30f36251204530na.nii.gz",
+ "pseudo_label": "108507/3_2opasesen16b30f36251204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108507/3_2opasesen16b30f36251204530na/3_2opasesen16b30f36251204530na_seg.nii.gz"
+ },
+ {
+ "image": "108507/1_0opasesen16b50f38021206040na.nii.gz",
+ "pseudo_label": "108507/1_0opasesen16b50f38021206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108507/1_0opasesen16b50f38021206040na/1_0opasesen16b50f38021206040na_seg.nii.gz"
+ },
+ {
+ "image": "108507/1_0opasesen16b30f38051206040na.nii.gz",
+ "pseudo_label": "108507/1_0opasesen16b30f38051206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108507/1_0opasesen16b30f38051206040na/1_0opasesen16b30f38051206040na_seg.nii.gz"
+ },
+ {
+ "image": "108507/1_0opasesen16b50f38051206040na.nii.gz",
+ "pseudo_label": "108507/1_0opasesen16b50f38051206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108507/1_0opasesen16b50f38051206040na/1_0opasesen16b50f38051206040na_seg.nii.gz"
+ },
+ {
+ "image": "109155/2_0opagelsqxstandard36025120640115.nii.gz",
+ "pseudo_label": "109155/2_0opagelsqxstandard36025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109155/2_0opagelsqxstandard36025120640115/2_0opagelsqxstandard36025120640115_seg.nii.gz"
+ },
+ {
+ "image": "102416/2_0opasevzoomb50f27021206030na.nii.gz",
+ "pseudo_label": "102416/2_0opasevzoomb50f27021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102416/2_0opasevzoomb50f27021206030na/2_0opasevzoomb50f27021206030na_seg.nii.gz"
+ },
+ {
+ "image": "108830/3_2opagels16standard39025120600114.nii.gz",
+ "pseudo_label": "108830/3_2opagels16standard39025120600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108830/3_2opagels16standard39025120600114/3_2opagels16standard39025120600114_seg.nii.gz"
+ },
+ {
+ "image": "108830/3_0opagels16standard39025140600114.nii.gz",
+ "pseudo_label": "108830/3_0opagels16standard39025140600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108830/3_0opagels16standard39025140600114/3_0opagels16standard39025140600114_seg.nii.gz"
+ },
+ {
+ "image": "100012/3_1opasevzoomb50f28021207040na.nii.gz",
+ "pseudo_label": "100012/3_1opasevzoomb50f28021207040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100012/3_1opasevzoomb50f28021207040na/3_1opasevzoomb50f28021207040na_seg.nii.gz"
+ },
+ {
+ "image": "100971/2_1opagels16bone4262512000na.nii.gz",
+ "pseudo_label": "100971/2_1opagels16bone4262512000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100971/2_1opagels16bone4262512000na/2_1opagels16bone4262512000na_seg.nii.gz"
+ },
+ {
+ "image": "100971/2_0opagelsqxbone40025120560115.nii.gz",
+ "pseudo_label": "100971/2_0opagelsqxbone40025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100971/2_0opagelsqxbone40025120560115/2_0opagelsqxbone40025120560115_seg.nii.gz"
+ },
+ {
+ "image": "100971/3_2opagelspr16standard3902512048014.nii.gz",
+ "pseudo_label": "100971/3_2opagelspr16standard3902512048014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100971/3_2opagelspr16standard3902512048014/3_2opagelspr16standard3902512048014_seg.nii.gz"
+ },
+ {
+ "image": "100971/3_0opagelsqxstandard40025120560115.nii.gz",
+ "pseudo_label": "100971/3_0opagelsqxstandard40025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100971/3_0opagelsqxstandard40025120560115/3_0opagelsqxstandard40025120560115_seg.nii.gz"
+ },
+ {
+ "image": "100971/2_2opagelspr16bone3902512048014.nii.gz",
+ "pseudo_label": "100971/2_2opagelspr16bone3902512048014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100971/2_2opagelspr16bone3902512048014/2_2opagelspr16bone3902512048014_seg.nii.gz"
+ },
+ {
+ "image": "100971/3_1opagels16standard4262512000na.nii.gz",
+ "pseudo_label": "100971/3_1opagels16standard4262512000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100971/3_1opagels16standard4262512000na/3_1opagels16standard4262512000na_seg.nii.gz"
+ },
+ {
+ "image": "107722/4_0opatoaqul4fc513094212040nana.nii.gz",
+ "pseudo_label": "107722/4_0opatoaqul4fc513094212040nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107722/4_0opatoaqul4fc513094212040nana/4_0opatoaqul4fc513094212040nana_seg.nii.gz"
+ },
+ {
+ "image": "107722/3_2opatoaqul4fc513281212040nana.nii.gz",
+ "pseudo_label": "107722/3_2opatoaqul4fc513281212040nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107722/3_2opatoaqul4fc513281212040nana/3_2opatoaqul4fc513281212040nana_seg.nii.gz"
+ },
+ {
+ "image": "108570/2_2opagelsqxstandard3802514048015.nii.gz",
+ "pseudo_label": "108570/2_2opagelsqxstandard3802514048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108570/2_2opagelsqxstandard3802514048015/2_2opagelsqxstandard3802514048015_seg.nii.gz"
+ },
+ {
+ "image": "108570/2_1opagelsqxstandard3802514048015.nii.gz",
+ "pseudo_label": "108570/2_1opagelsqxstandard3802514048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108570/2_1opagelsqxstandard3802514048015/2_1opagelsqxstandard3802514048015_seg.nii.gz"
+ },
+ {
+ "image": "108570/2_0opagelsqxstandard3792514048015.nii.gz",
+ "pseudo_label": "108570/2_0opagelsqxstandard3792514048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108570/2_0opagelsqxstandard3792514048015/2_0opagelsqxstandard3792514048015_seg.nii.gz"
+ },
+ {
+ "image": "104073/2_1opagelsqxstandard32525120640115.nii.gz",
+ "pseudo_label": "104073/2_1opagelsqxstandard32525120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104073/2_1opagelsqxstandard32525120640115/2_1opagelsqxstandard32525120640115_seg.nii.gz"
+ },
+ {
+ "image": "104073/3_1opagelsqxbone32525120640115.nii.gz",
+ "pseudo_label": "104073/3_1opagelsqxbone32525120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104073/3_1opagelsqxbone32525120640115/3_1opagelsqxbone32525120640115_seg.nii.gz"
+ },
+ {
+ "image": "104073/2_0opagelsqxstandard32025120560115.nii.gz",
+ "pseudo_label": "104073/2_0opagelsqxstandard32025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104073/2_0opagelsqxstandard32025120560115/2_0opagelsqxstandard32025120560115_seg.nii.gz"
+ },
+ {
+ "image": "104073/2_2opagelsqxstandard30225120560115.nii.gz",
+ "pseudo_label": "104073/2_2opagelsqxstandard30225120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104073/2_2opagelsqxstandard30225120560115/2_2opagelsqxstandard30225120560115_seg.nii.gz"
+ },
+ {
+ "image": "104073/3_2opagelsqxbone30225120560115.nii.gz",
+ "pseudo_label": "104073/3_2opagelsqxbone30225120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104073/3_2opagelsqxbone30225120560115/3_2opagelsqxbone30225120560115_seg.nii.gz"
+ },
+ {
+ "image": "104073/3_0opagelsqxbone32025120560115.nii.gz",
+ "pseudo_label": "104073/3_0opagelsqxbone32025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104073/3_0opagelsqxbone32025120560115/3_0opagelsqxbone32025120560115_seg.nii.gz"
+ },
+ {
+ "image": "103259/5_2opasesen16b50f34851204530na.nii.gz",
+ "pseudo_label": "103259/5_2opasesen16b50f34851204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103259/5_2opasesen16b50f34851204530na/5_2opasesen16b50f34851204530na_seg.nii.gz"
+ },
+ {
+ "image": "103259/3_2opasesen16b30f34851204530na.nii.gz",
+ "pseudo_label": "103259/3_2opasesen16b30f34851204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103259/3_2opasesen16b30f34851204530na/3_2opasesen16b30f34851204530na_seg.nii.gz"
+ },
+ {
+ "image": "103259/3_1opasesen16b30f38251204530na.nii.gz",
+ "pseudo_label": "103259/3_1opasesen16b30f38251204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103259/3_1opasesen16b30f38251204530na/3_1opasesen16b30f38251204530na_seg.nii.gz"
+ },
+ {
+ "image": "103259/6_1opasesen16b50f38221204530na.nii.gz",
+ "pseudo_label": "103259/6_1opasesen16b50f38221204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103259/6_1opasesen16b50f38221204530na/6_1opasesen16b50f38221204530na_seg.nii.gz"
+ },
+ {
+ "image": "103259/6_2opasesen16b50f34821204530na.nii.gz",
+ "pseudo_label": "103259/6_2opasesen16b50f34821204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103259/6_2opasesen16b50f34821204530na/6_2opasesen16b50f34821204530na_seg.nii.gz"
+ },
+ {
+ "image": "103259/4_0opasesen16b50f38051206040na.nii.gz",
+ "pseudo_label": "103259/4_0opasesen16b50f38051206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103259/4_0opasesen16b50f38051206040na/4_0opasesen16b50f38051206040na_seg.nii.gz"
+ },
+ {
+ "image": "103259/6_0opasesen16b30f38021206040na.nii.gz",
+ "pseudo_label": "103259/6_0opasesen16b30f38021206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103259/6_0opasesen16b30f38021206040na/6_0opasesen16b30f38021206040na_seg.nii.gz"
+ },
+ {
+ "image": "103259/5_1opasesen16b50f38251204530na.nii.gz",
+ "pseudo_label": "103259/5_1opasesen16b50f38251204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103259/5_1opasesen16b50f38251204530na/5_1opasesen16b50f38251204530na_seg.nii.gz"
+ },
+ {
+ "image": "103259/3_0opasesen16b30f38051206040na.nii.gz",
+ "pseudo_label": "103259/3_0opasesen16b30f38051206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103259/3_0opasesen16b30f38051206040na/3_0opasesen16b30f38051206040na_seg.nii.gz"
+ },
+ {
+ "image": "107679/3_2opasesen16b30f34051204530na.nii.gz",
+ "pseudo_label": "107679/3_2opasesen16b30f34051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107679/3_2opasesen16b30f34051204530na/3_2opasesen16b30f34051204530na_seg.nii.gz"
+ },
+ {
+ "image": "107679/3_1opasesen16b30f37051204530na.nii.gz",
+ "pseudo_label": "107679/3_1opasesen16b30f37051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107679/3_1opasesen16b30f37051204530na/3_1opasesen16b30f37051204530na_seg.nii.gz"
+ },
+ {
+ "image": "107679/4_2opasesen16b30f34021204530na.nii.gz",
+ "pseudo_label": "107679/4_2opasesen16b30f34021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107679/4_2opasesen16b30f34021204530na/4_2opasesen16b30f34021204530na_seg.nii.gz"
+ },
+ {
+ "image": "107679/6_0opasesen16b30f38051206040na.nii.gz",
+ "pseudo_label": "107679/6_0opasesen16b30f38051206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107679/6_0opasesen16b30f38051206040na/6_0opasesen16b30f38051206040na_seg.nii.gz"
+ },
+ {
+ "image": "107679/5_2opasesen16b50f34051204530na.nii.gz",
+ "pseudo_label": "107679/5_2opasesen16b50f34051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107679/5_2opasesen16b50f34051204530na/5_2opasesen16b50f34051204530na_seg.nii.gz"
+ },
+ {
+ "image": "107679/5_1opasesen16b50f37051204530na.nii.gz",
+ "pseudo_label": "107679/5_1opasesen16b50f37051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107679/5_1opasesen16b50f37051204530na/5_1opasesen16b50f37051204530na_seg.nii.gz"
+ },
+ {
+ "image": "107679/3_0opasesen16b30f38051206040na.nii.gz",
+ "pseudo_label": "107679/3_0opasesen16b30f38051206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107679/3_0opasesen16b30f38051206040na/3_0opasesen16b30f38051206040na_seg.nii.gz"
+ },
+ {
+ "image": "113183/3_2opagehsqxbone37025120560115.nii.gz",
+ "pseudo_label": "113183/3_2opagehsqxbone37025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113183/3_2opagehsqxbone37025120560115/3_2opagehsqxbone37025120560115_seg.nii.gz"
+ },
+ {
+ "image": "113183/2_2opagehsqxstandard37025120560115.nii.gz",
+ "pseudo_label": "113183/2_2opagehsqxstandard37025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113183/2_2opagehsqxstandard37025120560115/2_2opagehsqxstandard37025120560115_seg.nii.gz"
+ },
+ {
+ "image": "113183/2_1opagehsqxstandard37025120560115.nii.gz",
+ "pseudo_label": "113183/2_1opagehsqxstandard37025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113183/2_1opagehsqxstandard37025120560115/2_1opagehsqxstandard37025120560115_seg.nii.gz"
+ },
+ {
+ "image": "106389/2_2opagels16standard34425120695nana.nii.gz",
+ "pseudo_label": "106389/2_2opagels16standard34425120695nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106389/2_2opagels16standard34425120695nana/2_2opagels16standard34425120695nana_seg.nii.gz"
+ },
+ {
+ "image": "106389/2_1opagelsqxstandard34425120700115.nii.gz",
+ "pseudo_label": "106389/2_1opagelsqxstandard34425120700115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106389/2_1opagelsqxstandard34425120700115/2_1opagelsqxstandard34425120700115_seg.nii.gz"
+ },
+ {
+ "image": "103149/2_0opagelsqxstandard3422514048015.nii.gz",
+ "pseudo_label": "103149/2_0opagelsqxstandard3422514048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103149/2_0opagelsqxstandard3422514048015/2_0opagelsqxstandard3422514048015_seg.nii.gz"
+ },
+ {
+ "image": "103149/2_1opagelsqxstandard3402514048015.nii.gz",
+ "pseudo_label": "103149/2_1opagelsqxstandard3402514048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103149/2_1opagelsqxstandard3402514048015/2_1opagelsqxstandard3402514048015_seg.nii.gz"
+ },
+ {
+ "image": "103149/2_2opagelsqxstandard3402514048015.nii.gz",
+ "pseudo_label": "103149/2_2opagelsqxstandard3402514048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103149/2_2opagelsqxstandard3402514048015/2_2opagelsqxstandard3402514048015_seg.nii.gz"
+ },
+ {
+ "image": "105046/2_1opasevzoomb50f34421206030na.nii.gz",
+ "pseudo_label": "105046/2_1opasevzoomb50f34421206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105046/2_1opasevzoomb50f34421206030na/2_1opasevzoomb50f34421206030na_seg.nii.gz"
+ },
+ {
+ "image": "105046/2_0opasevzoomb50f35021208040na.nii.gz",
+ "pseudo_label": "105046/2_0opasevzoomb50f35021208040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105046/2_0opasevzoomb50f35021208040na/2_0opasevzoomb50f35021208040na_seg.nii.gz"
+ },
+ {
+ "image": "108673/1_1opagelspluslung34025120800115.nii.gz",
+ "pseudo_label": "108673/1_1opagelspluslung34025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108673/1_1opagelspluslung34025120800115/1_1opagelspluslung34025120800115_seg.nii.gz"
+ },
+ {
+ "image": "108673/1_0opagelsplusstandard34025120800115.nii.gz",
+ "pseudo_label": "108673/1_0opagelsplusstandard34025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108673/1_0opagelsplusstandard34025120800115/1_0opagelsplusstandard34025120800115_seg.nii.gz"
+ },
+ {
+ "image": "108673/1_1opagelsplusstandard34025120800115.nii.gz",
+ "pseudo_label": "108673/1_1opagelsplusstandard34025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108673/1_1opagelsplusstandard34025120800115/1_1opagelsplusstandard34025120800115_seg.nii.gz"
+ },
+ {
+ "image": "108673/1_2opagelsplusstandard36025120800115.nii.gz",
+ "pseudo_label": "108673/1_2opagelsplusstandard36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108673/1_2opagelsplusstandard36025120800115/1_2opagelsplusstandard36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "108673/1_0opagelspluslung34025120800115.nii.gz",
+ "pseudo_label": "108673/1_0opagelspluslung34025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108673/1_0opagelspluslung34025120800115/1_0opagelspluslung34025120800115_seg.nii.gz"
+ },
+ {
+ "image": "111575/2_1opasevzoomb30f33621207540na.nii.gz",
+ "pseudo_label": "111575/2_1opasevzoomb30f33621207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111575/2_1opasevzoomb30f33621207540na/2_1opasevzoomb30f33621207540na_seg.nii.gz"
+ },
+ {
+ "image": "111575/2_2opasevzoomb30f35021207540na.nii.gz",
+ "pseudo_label": "111575/2_2opasevzoomb30f35021207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111575/2_2opasevzoomb30f35021207540na/2_2opasevzoomb30f35021207540na_seg.nii.gz"
+ },
+ {
+ "image": "111575/3_0opasevzoomb50f350212010560na.nii.gz",
+ "pseudo_label": "111575/3_0opasevzoomb50f350212010560na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111575/3_0opasevzoomb50f350212010560na/3_0opasevzoomb50f350212010560na_seg.nii.gz"
+ },
+ {
+ "image": "105767/2_0opasevzoomb50f35221206030na.nii.gz",
+ "pseudo_label": "105767/2_0opasevzoomb50f35221206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105767/2_0opasevzoomb50f35221206030na/2_0opasevzoomb50f35221206030na_seg.nii.gz"
+ },
+ {
+ "image": "101680/6_0opasesen16b30f40021204530na.nii.gz",
+ "pseudo_label": "101680/6_0opasesen16b30f40021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101680/6_0opasesen16b30f40021204530na/6_0opasesen16b30f40021204530na_seg.nii.gz"
+ },
+ {
+ "image": "101680/5_1opasesen16b50f35451204530na.nii.gz",
+ "pseudo_label": "101680/5_1opasesen16b50f35451204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101680/5_1opasesen16b50f35451204530na/5_1opasesen16b50f35451204530na_seg.nii.gz"
+ },
+ {
+ "image": "101680/4_0opasesen16b50f40051204530na.nii.gz",
+ "pseudo_label": "101680/4_0opasesen16b50f40051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101680/4_0opasesen16b50f40051204530na/4_0opasesen16b50f40051204530na_seg.nii.gz"
+ },
+ {
+ "image": "101680/3_2opasesen16b30f37051204530na.nii.gz",
+ "pseudo_label": "101680/3_2opasesen16b30f37051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101680/3_2opasesen16b30f37051204530na/3_2opasesen16b30f37051204530na_seg.nii.gz"
+ },
+ {
+ "image": "101680/3_1opasesen16b30f35451204530na.nii.gz",
+ "pseudo_label": "101680/3_1opasesen16b30f35451204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101680/3_1opasesen16b30f35451204530na/3_1opasesen16b30f35451204530na_seg.nii.gz"
+ },
+ {
+ "image": "101680/5_2opasesen16b50f37051204530na.nii.gz",
+ "pseudo_label": "101680/5_2opasesen16b50f37051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101680/5_2opasesen16b50f37051204530na/5_2opasesen16b50f37051204530na_seg.nii.gz"
+ },
+ {
+ "image": "101680/6_2opasesen16b50f37021204530na.nii.gz",
+ "pseudo_label": "101680/6_2opasesen16b50f37021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101680/6_2opasesen16b50f37021204530na/6_2opasesen16b50f37021204530na_seg.nii.gz"
+ },
+ {
+ "image": "104563/1_1opagelspluslung36025120800115.nii.gz",
+ "pseudo_label": "104563/1_1opagelspluslung36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104563/1_1opagelspluslung36025120800115/1_1opagelspluslung36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "104563/1_2opagelsplusstandard36025120800115.nii.gz",
+ "pseudo_label": "104563/1_2opagelsplusstandard36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104563/1_2opagelsplusstandard36025120800115/1_2opagelsplusstandard36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "104563/1_2opagelspluslung36025120800115.nii.gz",
+ "pseudo_label": "104563/1_2opagelspluslung36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104563/1_2opagelspluslung36025120800115/1_2opagelspluslung36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "105315/2_0opagels16bone3282512040014.nii.gz",
+ "pseudo_label": "105315/2_0opagels16bone3282512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105315/2_0opagels16bone3282512040014/2_0opagels16bone3282512040014_seg.nii.gz"
+ },
+ {
+ "image": "105315/2_1opagelspr16bone3002512040014.nii.gz",
+ "pseudo_label": "105315/2_1opagelspr16bone3002512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105315/2_1opagelspr16bone3002512040014/2_1opagelspr16bone3002512040014_seg.nii.gz"
+ },
+ {
+ "image": "105315/3_0opagels16standard3282512040014.nii.gz",
+ "pseudo_label": "105315/3_0opagels16standard3282512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105315/3_0opagels16standard3282512040014/3_0opagels16standard3282512040014_seg.nii.gz"
+ },
+ {
+ "image": "105315/3_1opagelspr16standard3002512040014.nii.gz",
+ "pseudo_label": "105315/3_1opagelspr16standard3002512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105315/3_1opagelspr16standard3002512040014/3_1opagelspr16standard3002512040014_seg.nii.gz"
+ },
+ {
+ "image": "102058/1_0opagelspluslung3782512010250115.nii.gz",
+ "pseudo_label": "102058/1_0opagelspluslung3782512010250115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102058/1_0opagelspluslung3782512010250115/1_0opagelspluslung3782512010250115_seg.nii.gz"
+ },
+ {
+ "image": "102058/1_1opagelspluslung37825120800115.nii.gz",
+ "pseudo_label": "102058/1_1opagelspluslung37825120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102058/1_1opagelspluslung37825120800115/1_1opagelspluslung37825120800115_seg.nii.gz"
+ },
+ {
+ "image": "102058/1_2opatoaqul4fc013809212080nana.nii.gz",
+ "pseudo_label": "102058/1_2opatoaqul4fc013809212080nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102058/1_2opatoaqul4fc013809212080nana/1_2opatoaqul4fc013809212080nana_seg.nii.gz"
+ },
+ {
+ "image": "102058/1_1opagelsplusstandard37825120800115.nii.gz",
+ "pseudo_label": "102058/1_1opagelsplusstandard37825120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102058/1_1opagelsplusstandard37825120800115/1_1opagelsplusstandard37825120800115_seg.nii.gz"
+ },
+ {
+ "image": "101224/1120_1opaphmx8000d34532120390na.nii.gz",
+ "pseudo_label": "101224/1120_1opaphmx8000d34532120390na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101224/1120_1opaphmx8000d34532120390na/1120_1opaphmx8000d34532120390na_seg.nii.gz"
+ },
+ {
+ "image": "101224/169_0opaphmx8000d3503212039018.nii.gz",
+ "pseudo_label": "101224/169_0opaphmx8000d3503212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101224/169_0opaphmx8000d3503212039018/169_0opaphmx8000d3503212039018_seg.nii.gz"
+ },
+ {
+ "image": "102020/3_1opagehsqxbone37025120560115.nii.gz",
+ "pseudo_label": "102020/3_1opagehsqxbone37025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102020/3_1opagehsqxbone37025120560115/3_1opagehsqxbone37025120560115_seg.nii.gz"
+ },
+ {
+ "image": "102020/2_2opagehsqxstandard37025120560115.nii.gz",
+ "pseudo_label": "102020/2_2opagehsqxstandard37025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102020/2_2opagehsqxstandard37025120560115/2_2opagehsqxstandard37025120560115_seg.nii.gz"
+ },
+ {
+ "image": "102020/2_1opagehsqxstandard37025120560115.nii.gz",
+ "pseudo_label": "102020/2_1opagehsqxstandard37025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102020/2_1opagehsqxstandard37025120560115/2_1opagehsqxstandard37025120560115_seg.nii.gz"
+ },
+ {
+ "image": "102020/2_0opagehsqxstandard37025120560115.nii.gz",
+ "pseudo_label": "102020/2_0opagehsqxstandard37025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102020/2_0opagehsqxstandard37025120560115/2_0opagehsqxstandard37025120560115_seg.nii.gz"
+ },
+ {
+ "image": "113132/2_0opasevzoomb50f29021206030na.nii.gz",
+ "pseudo_label": "113132/2_0opasevzoomb50f29021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113132/2_0opasevzoomb50f29021206030na/2_0opasevzoomb50f29021206030na_seg.nii.gz"
+ },
+ {
+ "image": "100252/2_0opagehsqxstandard26025120560115.nii.gz",
+ "pseudo_label": "100252/2_0opagehsqxstandard26025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100252/2_0opagehsqxstandard26025120560115/2_0opagehsqxstandard26025120560115_seg.nii.gz"
+ },
+ {
+ "image": "100252/2_2opagehsqxstandard26025120560115.nii.gz",
+ "pseudo_label": "100252/2_2opagehsqxstandard26025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100252/2_2opagehsqxstandard26025120560115/2_2opagehsqxstandard26025120560115_seg.nii.gz"
+ },
+ {
+ "image": "102764/2_0opasevzoomb50f32021206030na.nii.gz",
+ "pseudo_label": "102764/2_0opasevzoomb50f32021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102764/2_0opasevzoomb50f32021206030na/2_0opasevzoomb50f32021206030na_seg.nii.gz"
+ },
+ {
+ "image": "102764/3_0opasevzoomb30f32021206030na.nii.gz",
+ "pseudo_label": "102764/3_0opasevzoomb30f32021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102764/3_0opasevzoomb30f32021206030na/3_0opasevzoomb30f32021206030na_seg.nii.gz"
+ },
+ {
+ "image": "112612/3_2opagehsqxbone34025120560115.nii.gz",
+ "pseudo_label": "112612/3_2opagehsqxbone34025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112612/3_2opagehsqxbone34025120560115/3_2opagehsqxbone34025120560115_seg.nii.gz"
+ },
+ {
+ "image": "112612/2_1opagehsqxstandard33025120560115.nii.gz",
+ "pseudo_label": "112612/2_1opagehsqxstandard33025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112612/2_1opagehsqxstandard33025120560115/2_1opagehsqxstandard33025120560115_seg.nii.gz"
+ },
+ {
+ "image": "112612/3_0opagehsqxbone33025120560115.nii.gz",
+ "pseudo_label": "112612/3_0opagehsqxbone33025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112612/3_0opagehsqxbone33025120560115/3_0opagehsqxbone33025120560115_seg.nii.gz"
+ },
+ {
+ "image": "112612/2_2opagehsqxstandard34025120560115.nii.gz",
+ "pseudo_label": "112612/2_2opagehsqxstandard34025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112612/2_2opagehsqxstandard34025120560115/2_2opagehsqxstandard34025120560115_seg.nii.gz"
+ },
+ {
+ "image": "113139/367_0opaphmx8000d3293212039018.nii.gz",
+ "pseudo_label": "113139/367_0opaphmx8000d3293212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113139/367_0opaphmx8000d3293212039018/367_0opaphmx8000d3293212039018_seg.nii.gz"
+ },
+ {
+ "image": "111161/2_0opagelsplusstandard37025140400na.nii.gz",
+ "pseudo_label": "111161/2_0opagelsplusstandard37025140400na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111161/2_0opagelsplusstandard37025140400na/2_0opagelsplusstandard37025140400na_seg.nii.gz"
+ },
+ {
+ "image": "111161/2_1opagelsplusstandard3492514040015.nii.gz",
+ "pseudo_label": "111161/2_1opagelsplusstandard3492514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111161/2_1opagelsplusstandard3492514040015/2_1opagelsplusstandard3492514040015_seg.nii.gz"
+ },
+ {
+ "image": "111161/2_2opagelsplusstandard38025140400na.nii.gz",
+ "pseudo_label": "111161/2_2opagelsplusstandard38025140400na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111161/2_2opagelsplusstandard38025140400na/2_2opagelsplusstandard38025140400na_seg.nii.gz"
+ },
+ {
+ "image": "106554/5_1opasesen16b30f38021204530na.nii.gz",
+ "pseudo_label": "106554/5_1opasesen16b30f38021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106554/5_1opasesen16b30f38021204530na/5_1opasesen16b30f38021204530na_seg.nii.gz"
+ },
+ {
+ "image": "106554/2_2opasevzoomb50f41621206030na.nii.gz",
+ "pseudo_label": "106554/2_2opasevzoomb50f41621206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106554/2_2opasevzoomb50f41621206030na/2_2opasevzoomb50f41621206030na_seg.nii.gz"
+ },
+ {
+ "image": "106554/4_1opasesen16b50f38021204530na.nii.gz",
+ "pseudo_label": "106554/4_1opasesen16b50f38021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106554/4_1opasesen16b50f38021204530na/4_1opasesen16b50f38021204530na_seg.nii.gz"
+ },
+ {
+ "image": "102208/3_0opatoaqul4fc512578212080nana.nii.gz",
+ "pseudo_label": "102208/3_0opatoaqul4fc512578212080nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102208/3_0opatoaqul4fc512578212080nana/3_0opatoaqul4fc512578212080nana_seg.nii.gz"
+ },
+ {
+ "image": "102208/3_2opatoaqul4fc512922212040nana.nii.gz",
+ "pseudo_label": "102208/3_2opatoaqul4fc512922212040nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102208/3_2opatoaqul4fc512922212040nana/3_2opatoaqul4fc512922212040nana_seg.nii.gz"
+ },
+ {
+ "image": "103055/2_0opagelsqxstandard2932514040015.nii.gz",
+ "pseudo_label": "103055/2_0opagelsqxstandard2932514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103055/2_0opagelsqxstandard2932514040015/2_0opagelsqxstandard2932514040015_seg.nii.gz"
+ },
+ {
+ "image": "100136/2_1opagels16bone31025120600114.nii.gz",
+ "pseudo_label": "100136/2_1opagels16bone31025120600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100136/2_1opagels16bone31025120600114/2_1opagels16bone31025120600114_seg.nii.gz"
+ },
+ {
+ "image": "100136/3_1opagels16standard31025120600114.nii.gz",
+ "pseudo_label": "100136/3_1opagels16standard31025120600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100136/3_1opagels16standard31025120600114/3_1opagels16standard31025120600114_seg.nii.gz"
+ },
+ {
+ "image": "102879/2_0opagelsqxstandard3342514040015.nii.gz",
+ "pseudo_label": "102879/2_0opagelsqxstandard3342514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102879/2_0opagelsqxstandard3342514040015/2_0opagelsqxstandard3342514040015_seg.nii.gz"
+ },
+ {
+ "image": "102879/2_2opagels16standard3502514040014.nii.gz",
+ "pseudo_label": "102879/2_2opagels16standard3502514040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102879/2_2opagels16standard3502514040014/2_2opagels16standard3502514040014_seg.nii.gz"
+ },
+ {
+ "image": "102879/2_1opagelsqxstandard3502514040015.nii.gz",
+ "pseudo_label": "102879/2_1opagelsqxstandard3502514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102879/2_1opagelsqxstandard3502514040015/2_1opagelsqxstandard3502514040015_seg.nii.gz"
+ },
+ {
+ "image": "108362/2_0opagelsqxstandard3992514040015.nii.gz",
+ "pseudo_label": "108362/2_0opagelsqxstandard3992514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108362/2_0opagelsqxstandard3992514040015/2_0opagelsqxstandard3992514040015_seg.nii.gz"
+ },
+ {
+ "image": "108362/2_2opagels16standard4282514040014.nii.gz",
+ "pseudo_label": "108362/2_2opagels16standard4282514040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108362/2_2opagels16standard4282514040014/2_2opagels16standard4282514040014_seg.nii.gz"
+ },
+ {
+ "image": "108362/2_1opagels16standard3752514040014.nii.gz",
+ "pseudo_label": "108362/2_1opagels16standard3752514040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108362/2_1opagels16standard3752514040014/2_1opagels16standard3752514040014_seg.nii.gz"
+ },
+ {
+ "image": "101319/2_0opagelsplusstandard36725140640115.nii.gz",
+ "pseudo_label": "101319/2_0opagelsplusstandard36725140640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101319/2_0opagelsplusstandard36725140640115/2_0opagelsplusstandard36725140640115_seg.nii.gz"
+ },
+ {
+ "image": "101319/2_2opagelsplusstandard3902514040015.nii.gz",
+ "pseudo_label": "101319/2_2opagelsplusstandard3902514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101319/2_2opagelsplusstandard3902514040015/2_2opagelsplusstandard3902514040015_seg.nii.gz"
+ },
+ {
+ "image": "101319/2_1opagelsplusstandard3542514040015.nii.gz",
+ "pseudo_label": "101319/2_1opagelsplusstandard3542514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101319/2_1opagelsplusstandard3542514040015/2_1opagelsplusstandard3542514040015_seg.nii.gz"
+ },
+ {
+ "image": "101488/2_0opagelsqxstandard3302512048015.nii.gz",
+ "pseudo_label": "101488/2_0opagelsqxstandard3302512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101488/2_0opagelsqxstandard3302512048015/2_0opagelsqxstandard3302512048015_seg.nii.gz"
+ },
+ {
+ "image": "106723/2_1opagelsplusstandard3602514040015.nii.gz",
+ "pseudo_label": "106723/2_1opagelsplusstandard3602514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106723/2_1opagelsplusstandard3602514040015/2_1opagelsplusstandard3602514040015_seg.nii.gz"
+ },
+ {
+ "image": "106723/2_0opagelsplusstandard36025140800115.nii.gz",
+ "pseudo_label": "106723/2_0opagelsplusstandard36025140800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106723/2_0opagelsplusstandard36025140800115/2_0opagelsplusstandard36025140800115_seg.nii.gz"
+ },
+ {
+ "image": "106723/2_2opagelsplusstandard3502514040015.nii.gz",
+ "pseudo_label": "106723/2_2opagelsplusstandard3502514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106723/2_2opagelsplusstandard3502514040015/2_2opagelsplusstandard3502514040015_seg.nii.gz"
+ },
+ {
+ "image": "105438/2_2opagelsqxstandard3602512048015.nii.gz",
+ "pseudo_label": "105438/2_2opagelsqxstandard3602512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105438/2_2opagelsqxstandard3602512048015/2_2opagelsqxstandard3602512048015_seg.nii.gz"
+ },
+ {
+ "image": "105438/2_0opagelsqxstandard32225120640115.nii.gz",
+ "pseudo_label": "105438/2_0opagelsqxstandard32225120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105438/2_0opagelsqxstandard32225120640115/2_0opagelsqxstandard32225120640115_seg.nii.gz"
+ },
+ {
+ "image": "105438/2_1opagelsqxstandard37025120640115.nii.gz",
+ "pseudo_label": "105438/2_1opagelsqxstandard37025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105438/2_1opagelsqxstandard37025120640115/2_1opagelsqxstandard37025120640115_seg.nii.gz"
+ },
+ {
+ "image": "110161/3_1opasesen16b30f31021204530na.nii.gz",
+ "pseudo_label": "110161/3_1opasesen16b30f31021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110161/3_1opasesen16b30f31021204530na/3_1opasesen16b30f31021204530na_seg.nii.gz"
+ },
+ {
+ "image": "107432/2_1opagelsqxstandard3402512048015.nii.gz",
+ "pseudo_label": "107432/2_1opagelsqxstandard3402512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107432/2_1opagelsqxstandard3402512048015/2_1opagelsqxstandard3402512048015_seg.nii.gz"
+ },
+ {
+ "image": "107432/2_0opagelsqxstandard2902512048015.nii.gz",
+ "pseudo_label": "107432/2_0opagelsqxstandard2902512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107432/2_0opagelsqxstandard2902512048015/2_0opagelsqxstandard2902512048015_seg.nii.gz"
+ },
+ {
+ "image": "111999/2_2opagelsqxstandard36025120640115.nii.gz",
+ "pseudo_label": "111999/2_2opagelsqxstandard36025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111999/2_2opagelsqxstandard36025120640115/2_2opagelsqxstandard36025120640115_seg.nii.gz"
+ },
+ {
+ "image": "102300/2_0opagelsplusstandard3302514040015.nii.gz",
+ "pseudo_label": "102300/2_0opagelsplusstandard3302514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102300/2_0opagelsplusstandard3302514040015/2_0opagelsplusstandard3302514040015_seg.nii.gz"
+ },
+ {
+ "image": "102300/2_2opagelsplusstandard35725140974nana.nii.gz",
+ "pseudo_label": "102300/2_2opagelsplusstandard35725140974nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102300/2_2opagelsplusstandard35725140974nana/2_2opagelsplusstandard35725140974nana_seg.nii.gz"
+ },
+ {
+ "image": "102088/1_2opagelsplusstandard38725120800115.nii.gz",
+ "pseudo_label": "102088/1_2opagelsplusstandard38725120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102088/1_2opagelsplusstandard38725120800115/1_2opagelsplusstandard38725120800115_seg.nii.gz"
+ },
+ {
+ "image": "102088/1_0opagelspluslung38725120800108.nii.gz",
+ "pseudo_label": "102088/1_0opagelspluslung38725120800108.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102088/1_0opagelspluslung38725120800108/1_0opagelspluslung38725120800108_seg.nii.gz"
+ },
+ {
+ "image": "102088/1_1opagelsplusstandard38725120800115.nii.gz",
+ "pseudo_label": "102088/1_1opagelsplusstandard38725120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102088/1_1opagelsplusstandard38725120800115/1_1opagelsplusstandard38725120800115_seg.nii.gz"
+ },
+ {
+ "image": "102088/1_2opagelspluslung38725120800115.nii.gz",
+ "pseudo_label": "102088/1_2opagelspluslung38725120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102088/1_2opagelspluslung38725120800115/1_2opagelspluslung38725120800115_seg.nii.gz"
+ },
+ {
+ "image": "102088/1_0opagelsplusstandard39025120800108.nii.gz",
+ "pseudo_label": "102088/1_0opagelsplusstandard39025120800108.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102088/1_0opagelsplusstandard39025120800108/1_0opagelsplusstandard39025120800108_seg.nii.gz"
+ },
+ {
+ "image": "102088/1_1opagelspluslung38725120800115.nii.gz",
+ "pseudo_label": "102088/1_1opagelspluslung38725120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102088/1_1opagelspluslung38725120800115/1_1opagelspluslung38725120800115_seg.nii.gz"
+ },
+ {
+ "image": "108020/5_1opagelspr16standard42225120800114.nii.gz",
+ "pseudo_label": "108020/5_1opagelspr16standard42225120800114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108020/5_1opagelspr16standard42225120800114/5_1opagelspr16standard42225120800114_seg.nii.gz"
+ },
+ {
+ "image": "108020/4_1opagelspr16bone42225120800114.nii.gz",
+ "pseudo_label": "108020/4_1opagelspr16bone42225120800114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108020/4_1opagelspr16bone42225120800114/4_1opagelspr16bone42225120800114_seg.nii.gz"
+ },
+ {
+ "image": "108020/3_1opagelspr16standard42225120800114.nii.gz",
+ "pseudo_label": "108020/3_1opagelspr16standard42225120800114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108020/3_1opagelspr16standard42225120800114/3_1opagelspr16standard42225120800114_seg.nii.gz"
+ },
+ {
+ "image": "108020/3_2opagelspr16standard39025120640114.nii.gz",
+ "pseudo_label": "108020/3_2opagelspr16standard39025120640114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108020/3_2opagelspr16standard39025120640114/3_2opagelspr16standard39025120640114_seg.nii.gz"
+ },
+ {
+ "image": "108020/4_0opagels16standard3902512000na.nii.gz",
+ "pseudo_label": "108020/4_0opagels16standard3902512000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108020/4_0opagels16standard3902512000na/4_0opagels16standard3902512000na_seg.nii.gz"
+ },
+ {
+ "image": "108020/2_2opagelspr16bone39025120640114.nii.gz",
+ "pseudo_label": "108020/2_2opagelspr16bone39025120640114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108020/2_2opagelspr16bone39025120640114/2_2opagelspr16bone39025120640114_seg.nii.gz"
+ },
+ {
+ "image": "108020/3_0opagels16bone3902512000na.nii.gz",
+ "pseudo_label": "108020/3_0opagels16bone3902512000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108020/3_0opagels16bone3902512000na/3_0opagels16bone3902512000na_seg.nii.gz"
+ },
+ {
+ "image": "108020/2_1opagelspr16bone42225120800114.nii.gz",
+ "pseudo_label": "108020/2_1opagelspr16bone42225120800114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108020/2_1opagelspr16bone42225120800114/2_1opagelspr16bone42225120800114_seg.nii.gz"
+ },
+ {
+ "image": "107367/2083_2opaphmx8000d2663212039018.nii.gz",
+ "pseudo_label": "107367/2083_2opaphmx8000d2663212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107367/2083_2opaphmx8000d2663212039018/2083_2opaphmx8000d2663212039018_seg.nii.gz"
+ },
+ {
+ "image": "101928/1_1opagelspluslung39025120800115.nii.gz",
+ "pseudo_label": "101928/1_1opagelspluslung39025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101928/1_1opagelspluslung39025120800115/1_1opagelspluslung39025120800115_seg.nii.gz"
+ },
+ {
+ "image": "101928/1_2opatoaqul4fc303906212080nana.nii.gz",
+ "pseudo_label": "101928/1_2opatoaqul4fc303906212080nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101928/1_2opatoaqul4fc303906212080nana/1_2opatoaqul4fc303906212080nana_seg.nii.gz"
+ },
+ {
+ "image": "101928/1_0opagelspluslung39025120800108.nii.gz",
+ "pseudo_label": "101928/1_0opagelspluslung39025120800108.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101928/1_0opagelspluslung39025120800108/1_0opagelspluslung39025120800108_seg.nii.gz"
+ },
+ {
+ "image": "101928/1_2opatoaqul4fc013906212080nana.nii.gz",
+ "pseudo_label": "101928/1_2opatoaqul4fc013906212080nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101928/1_2opatoaqul4fc013906212080nana/1_2opatoaqul4fc013906212080nana_seg.nii.gz"
+ },
+ {
+ "image": "101928/1_1opagelsplusstandard39025120800115.nii.gz",
+ "pseudo_label": "101928/1_1opagelsplusstandard39025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101928/1_1opagelsplusstandard39025120800115/1_1opagelsplusstandard39025120800115_seg.nii.gz"
+ },
+ {
+ "image": "106274/2_2opagelspr16bone36025120560114.nii.gz",
+ "pseudo_label": "106274/2_2opagelspr16bone36025120560114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106274/2_2opagelspr16bone36025120560114/2_2opagelspr16bone36025120560114_seg.nii.gz"
+ },
+ {
+ "image": "106274/3_2opagelspr16standard36025120560114.nii.gz",
+ "pseudo_label": "106274/3_2opagelspr16standard36025120560114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106274/3_2opagelspr16standard36025120560114/3_2opagelspr16standard36025120560114_seg.nii.gz"
+ },
+ {
+ "image": "106274/2_1opagels16bone35225120560114.nii.gz",
+ "pseudo_label": "106274/2_1opagels16bone35225120560114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106274/2_1opagels16bone35225120560114/2_1opagels16bone35225120560114_seg.nii.gz"
+ },
+ {
+ "image": "106274/3_0opagelsqxstandard36025120800115.nii.gz",
+ "pseudo_label": "106274/3_0opagelsqxstandard36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106274/3_0opagelsqxstandard36025120800115/3_0opagelsqxstandard36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "106274/3_1opagels16standard35225120560114.nii.gz",
+ "pseudo_label": "106274/3_1opagels16standard35225120560114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106274/3_1opagels16standard35225120560114/3_1opagels16standard35225120560114_seg.nii.gz"
+ },
+ {
+ "image": "101633/2_0opasevzoomb50f36021206030na.nii.gz",
+ "pseudo_label": "101633/2_0opasevzoomb50f36021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101633/2_0opasevzoomb50f36021206030na/2_0opasevzoomb50f36021206030na_seg.nii.gz"
+ },
+ {
+ "image": "101633/3_0opasevzoomb30f36021206030na.nii.gz",
+ "pseudo_label": "101633/3_0opasevzoomb30f36021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101633/3_0opasevzoomb30f36021206030na/3_0opasevzoomb30f36021206030na_seg.nii.gz"
+ },
+ {
+ "image": "110490/1103_2opaphmx8000d3313212039018.nii.gz",
+ "pseudo_label": "110490/1103_2opaphmx8000d3313212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110490/1103_2opaphmx8000d3313212039018/1103_2opaphmx8000d3313212039018_seg.nii.gz"
+ },
+ {
+ "image": "110490/2655_1opaphmx8000c3223212039018.nii.gz",
+ "pseudo_label": "110490/2655_1opaphmx8000c3223212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110490/2655_1opaphmx8000c3223212039018/2655_1opaphmx8000c3223212039018_seg.nii.gz"
+ },
+ {
+ "image": "104773/3_1opasesen16b30f38251204530na.nii.gz",
+ "pseudo_label": "104773/3_1opasesen16b30f38251204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104773/3_1opasesen16b30f38251204530na/3_1opasesen16b30f38251204530na_seg.nii.gz"
+ },
+ {
+ "image": "104773/5_1opasesen16b50f38851204530na.nii.gz",
+ "pseudo_label": "104773/5_1opasesen16b50f38851204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104773/5_1opasesen16b50f38851204530na/5_1opasesen16b50f38851204530na_seg.nii.gz"
+ },
+ {
+ "image": "104773/4_0opasesen16b50f38051206040na.nii.gz",
+ "pseudo_label": "104773/4_0opasesen16b50f38051206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104773/4_0opasesen16b50f38051206040na/4_0opasesen16b50f38051206040na_seg.nii.gz"
+ },
+ {
+ "image": "104773/3_0opasesen16b30f38051206040na.nii.gz",
+ "pseudo_label": "104773/3_0opasesen16b30f38051206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104773/3_0opasesen16b30f38051206040na/3_0opasesen16b30f38051206040na_seg.nii.gz"
+ },
+ {
+ "image": "104773/5_2opasesen16b50f37351204530na.nii.gz",
+ "pseudo_label": "104773/5_2opasesen16b50f37351204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104773/5_2opasesen16b50f37351204530na/5_2opasesen16b50f37351204530na_seg.nii.gz"
+ },
+ {
+ "image": "104773/3_2opasesen16b30f37351204530na.nii.gz",
+ "pseudo_label": "104773/3_2opasesen16b30f37351204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104773/3_2opasesen16b30f37351204530na/3_2opasesen16b30f37351204530na_seg.nii.gz"
+ },
+ {
+ "image": "103489/1_1opagelsplusstandard36025120800115.nii.gz",
+ "pseudo_label": "103489/1_1opagelsplusstandard36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103489/1_1opagelsplusstandard36025120800115/1_1opagelsplusstandard36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "103489/1_1opagelspluslung36025120800115.nii.gz",
+ "pseudo_label": "103489/1_1opagelspluslung36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103489/1_1opagelspluslung36025120800115/1_1opagelspluslung36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "103489/1_0opagelsplusstandard36025120800115.nii.gz",
+ "pseudo_label": "103489/1_0opagelsplusstandard36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103489/1_0opagelsplusstandard36025120800115/1_0opagelsplusstandard36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "103489/1_2opagelsplusstandard36025120800115.nii.gz",
+ "pseudo_label": "103489/1_2opagelsplusstandard36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103489/1_2opagelsplusstandard36025120800115/1_2opagelsplusstandard36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "103489/1_2opagelspluslung36025120800115.nii.gz",
+ "pseudo_label": "103489/1_2opagelspluslung36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103489/1_2opagelspluslung36025120800115/1_2opagelspluslung36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "103489/1_0opagelspluslung36025120800115.nii.gz",
+ "pseudo_label": "103489/1_0opagelspluslung36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103489/1_0opagelspluslung36025120800115/1_0opagelspluslung36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "100906/0_0opaphmx8000c38632120790112.nii.gz",
+ "pseudo_label": "100906/0_0opaphmx8000c38632120790112.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100906/0_0opaphmx8000c38632120790112/0_0opaphmx8000c38632120790112_seg.nii.gz"
+ },
+ {
+ "image": "100906/2312_1opaphmx8000c4003212039018.nii.gz",
+ "pseudo_label": "100906/2312_1opaphmx8000c4003212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100906/2312_1opaphmx8000c4003212039018/2312_1opaphmx8000c4003212039018_seg.nii.gz"
+ },
+ {
+ "image": "112347/2_0opagelsqxstandard38025120600115.nii.gz",
+ "pseudo_label": "112347/2_0opagelsqxstandard38025120600115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112347/2_0opagelsqxstandard38025120600115/2_0opagelsqxstandard38025120600115_seg.nii.gz"
+ },
+ {
+ "image": "112347/2_2opagels16standard38025120683nana.nii.gz",
+ "pseudo_label": "112347/2_2opagels16standard38025120683nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112347/2_2opagels16standard38025120683nana/2_2opagels16standard38025120683nana_seg.nii.gz"
+ },
+ {
+ "image": "108041/2_2opagelsqxstandard38525120640115.nii.gz",
+ "pseudo_label": "108041/2_2opagelsqxstandard38525120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108041/2_2opagelsqxstandard38525120640115/2_2opagelsqxstandard38525120640115_seg.nii.gz"
+ },
+ {
+ "image": "108537/1_1opagelspluslung39025120800115.nii.gz",
+ "pseudo_label": "108537/1_1opagelspluslung39025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108537/1_1opagelspluslung39025120800115/1_1opagelspluslung39025120800115_seg.nii.gz"
+ },
+ {
+ "image": "108537/1_2opatoaqul4fc303906312080nana.nii.gz",
+ "pseudo_label": "108537/1_2opatoaqul4fc303906312080nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108537/1_2opatoaqul4fc303906312080nana/1_2opatoaqul4fc303906312080nana_seg.nii.gz"
+ },
+ {
+ "image": "108537/1_0opagelsplusstandard38825120800108.nii.gz",
+ "pseudo_label": "108537/1_0opagelsplusstandard38825120800108.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108537/1_0opagelsplusstandard38825120800108/1_0opagelsplusstandard38825120800108_seg.nii.gz"
+ },
+ {
+ "image": "108537/1_0opagelspluslung38825120800108.nii.gz",
+ "pseudo_label": "108537/1_0opagelspluslung38825120800108.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108537/1_0opagelspluslung38825120800108/1_0opagelspluslung38825120800108_seg.nii.gz"
+ },
+ {
+ "image": "108537/1_1opagelsplusstandard39025120800115.nii.gz",
+ "pseudo_label": "108537/1_1opagelsplusstandard39025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108537/1_1opagelsplusstandard39025120800115/1_1opagelsplusstandard39025120800115_seg.nii.gz"
+ },
+ {
+ "image": "105189/2_2opagelsplusstandard3302514000na.nii.gz",
+ "pseudo_label": "105189/2_2opagelsplusstandard3302514000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105189/2_2opagelsplusstandard3302514000na/2_2opagelsplusstandard3302514000na_seg.nii.gz"
+ },
+ {
+ "image": "105189/2_0opagelsplusstandard3302514000na.nii.gz",
+ "pseudo_label": "105189/2_0opagelsplusstandard3302514000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105189/2_0opagelsplusstandard3302514000na/2_0opagelsplusstandard3302514000na_seg.nii.gz"
+ },
+ {
+ "image": "105189/2_1opagelsplusstandard3302514000na.nii.gz",
+ "pseudo_label": "105189/2_1opagelsplusstandard3302514000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105189/2_1opagelsplusstandard3302514000na/2_1opagelsplusstandard3302514000na_seg.nii.gz"
+ },
+ {
+ "image": "100870/2_2opagels16standard30025120383nana.nii.gz",
+ "pseudo_label": "100870/2_2opagels16standard30025120383nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100870/2_2opagels16standard30025120383nana/2_2opagels16standard30025120383nana_seg.nii.gz"
+ },
+ {
+ "image": "100870/2_1opagelsqxstandard30025120700115.nii.gz",
+ "pseudo_label": "100870/2_1opagelsqxstandard30025120700115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100870/2_1opagelsqxstandard30025120700115/2_1opagelsqxstandard30025120700115_seg.nii.gz"
+ },
+ {
+ "image": "100870/2_0opagelsqxstandard29525120700115.nii.gz",
+ "pseudo_label": "100870/2_0opagelsqxstandard29525120700115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100870/2_0opagelsqxstandard29525120700115/2_0opagelsqxstandard29525120700115_seg.nii.gz"
+ },
+ {
+ "image": "100611/3_0opasevzoomb30f33021206030na.nii.gz",
+ "pseudo_label": "100611/3_0opasevzoomb30f33021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100611/3_0opasevzoomb30f33021206030na/3_0opasevzoomb30f33021206030na_seg.nii.gz"
+ },
+ {
+ "image": "100528/2_0opasevzoomb30f35021208040na.nii.gz",
+ "pseudo_label": "100528/2_0opasevzoomb30f35021208040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100528/2_0opasevzoomb30f35021208040na/2_0opasevzoomb30f35021208040na_seg.nii.gz"
+ },
+ {
+ "image": "100528/2_1opasevzoomb30f36021408040na.nii.gz",
+ "pseudo_label": "100528/2_1opasevzoomb30f36021408040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100528/2_1opasevzoomb30f36021408040na/2_1opasevzoomb30f36021408040na_seg.nii.gz"
+ },
+ {
+ "image": "103261/2_2opagelsqxstandard3102512048015.nii.gz",
+ "pseudo_label": "103261/2_2opagelsqxstandard3102512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103261/2_2opagelsqxstandard3102512048015/2_2opagelsqxstandard3102512048015_seg.nii.gz"
+ },
+ {
+ "image": "103261/2_0opagelsqxstandard3102512048015.nii.gz",
+ "pseudo_label": "103261/2_0opagelsqxstandard3102512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103261/2_0opagelsqxstandard3102512048015/2_0opagelsqxstandard3102512048015_seg.nii.gz"
+ },
+ {
+ "image": "103561/3_2opasevzoomb50f36021208040na.nii.gz",
+ "pseudo_label": "103561/3_2opasevzoomb50f36021208040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103561/3_2opasevzoomb50f36021208040na/3_2opasevzoomb50f36021208040na_seg.nii.gz"
+ },
+ {
+ "image": "110922/2_1opagelsplusstandard38025140640115.nii.gz",
+ "pseudo_label": "110922/2_1opagelsplusstandard38025140640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110922/2_1opagelsplusstandard38025140640115/2_1opagelsplusstandard38025140640115_seg.nii.gz"
+ },
+ {
+ "image": "108161/6_2opasesen16b50f29921204530na.nii.gz",
+ "pseudo_label": "108161/6_2opasesen16b50f29921204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108161/6_2opasesen16b50f29921204530na/6_2opasesen16b50f29921204530na_seg.nii.gz"
+ },
+ {
+ "image": "108161/6_0opasevzoomb20f38021206030na.nii.gz",
+ "pseudo_label": "108161/6_0opasevzoomb20f38021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108161/6_0opasevzoomb20f38021206030na/6_0opasevzoomb20f38021206030na_seg.nii.gz"
+ },
+ {
+ "image": "108161/3_1opasesen16b30f28451204530na.nii.gz",
+ "pseudo_label": "108161/3_1opasesen16b30f28451204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108161/3_1opasesen16b30f28451204530na/3_1opasesen16b30f28451204530na_seg.nii.gz"
+ },
+ {
+ "image": "108161/4_0opasevzoomb50f38051206030na.nii.gz",
+ "pseudo_label": "108161/4_0opasevzoomb50f38051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108161/4_0opasevzoomb50f38051206030na/4_0opasevzoomb50f38051206030na_seg.nii.gz"
+ },
+ {
+ "image": "108161/3_0opasevzoomb30f38051206030na.nii.gz",
+ "pseudo_label": "108161/3_0opasevzoomb30f38051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108161/3_0opasevzoomb30f38051206030na/3_0opasevzoomb30f38051206030na_seg.nii.gz"
+ },
+ {
+ "image": "108161/5_2opasesen16b50f29951204530na.nii.gz",
+ "pseudo_label": "108161/5_2opasesen16b50f29951204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108161/5_2opasesen16b50f29951204530na/5_2opasesen16b50f29951204530na_seg.nii.gz"
+ },
+ {
+ "image": "108161/5_1opasesen16b30f28421204530na.nii.gz",
+ "pseudo_label": "108161/5_1opasesen16b30f28421204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108161/5_1opasesen16b30f28421204530na/5_1opasesen16b30f28421204530na_seg.nii.gz"
+ },
+ {
+ "image": "108161/3_2opasesen16b30f29951204530na.nii.gz",
+ "pseudo_label": "108161/3_2opasesen16b30f29951204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108161/3_2opasesen16b30f29951204530na/3_2opasesen16b30f29951204530na_seg.nii.gz"
+ },
+ {
+ "image": "108161/4_1opasesen16b50f28451204530na.nii.gz",
+ "pseudo_label": "108161/4_1opasesen16b50f28451204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108161/4_1opasesen16b50f28451204530na/4_1opasesen16b50f28451204530na_seg.nii.gz"
+ },
+ {
+ "image": "110320/2_0opagehsqxstandard34025120560115.nii.gz",
+ "pseudo_label": "110320/2_0opagehsqxstandard34025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110320/2_0opagehsqxstandard34025120560115/2_0opagehsqxstandard34025120560115_seg.nii.gz"
+ },
+ {
+ "image": "110320/3_1opagehsqxbone34025120560115.nii.gz",
+ "pseudo_label": "110320/3_1opagehsqxbone34025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110320/3_1opagehsqxbone34025120560115/3_1opagehsqxbone34025120560115_seg.nii.gz"
+ },
+ {
+ "image": "110320/2_2opagehsqxstandard34025120560115.nii.gz",
+ "pseudo_label": "110320/2_2opagehsqxstandard34025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110320/2_2opagehsqxstandard34025120560115/2_2opagehsqxstandard34025120560115_seg.nii.gz"
+ },
+ {
+ "image": "110166/4760_2opaphmx8000c3733212039018.nii.gz",
+ "pseudo_label": "110166/4760_2opaphmx8000c3733212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110166/4760_2opaphmx8000c3733212039018/4760_2opaphmx8000c3733212039018_seg.nii.gz"
+ },
+ {
+ "image": "110166/2596_1opaphmx8000d336321206001na.nii.gz",
+ "pseudo_label": "110166/2596_1opaphmx8000d336321206001na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110166/2596_1opaphmx8000d336321206001na/2596_1opaphmx8000d336321206001na_seg.nii.gz"
+ },
+ {
+ "image": "104148/2_1opagels16bone31025120600114.nii.gz",
+ "pseudo_label": "104148/2_1opagels16bone31025120600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104148/2_1opagels16bone31025120600114/2_1opagels16bone31025120600114_seg.nii.gz"
+ },
+ {
+ "image": "100200/3_1opatoaqul4fc513711212060nana.nii.gz",
+ "pseudo_label": "100200/3_1opatoaqul4fc513711212060nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100200/3_1opatoaqul4fc513711212060nana/3_1opatoaqul4fc513711212060nana_seg.nii.gz"
+ },
+ {
+ "image": "112224/2_2opagelsqxstandard33025120640115.nii.gz",
+ "pseudo_label": "112224/2_2opagelsqxstandard33025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112224/2_2opagelsqxstandard33025120640115/2_2opagelsqxstandard33025120640115_seg.nii.gz"
+ },
+ {
+ "image": "106848/2_1opasevzoomb30f32021208040na.nii.gz",
+ "pseudo_label": "106848/2_1opasevzoomb30f32021208040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106848/2_1opasevzoomb30f32021208040na/2_1opasevzoomb30f32021208040na_seg.nii.gz"
+ },
+ {
+ "image": "106848/3_0opasevzoomb50f330214016080na.nii.gz",
+ "pseudo_label": "106848/3_0opasevzoomb50f330214016080na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106848/3_0opasevzoomb50f330214016080na/3_0opasevzoomb50f330214016080na_seg.nii.gz"
+ },
+ {
+ "image": "109574/2_2opasesen16b30f27421204032na.nii.gz",
+ "pseudo_label": "109574/2_2opasesen16b30f27421204032na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109574/2_2opasesen16b30f27421204032na/2_2opasesen16b30f27421204032na_seg.nii.gz"
+ },
+ {
+ "image": "100469/2_0opasesen16b30f29621206048na.nii.gz",
+ "pseudo_label": "100469/2_0opasesen16b30f29621206048na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100469/2_0opasesen16b30f29621206048na/2_0opasesen16b30f29621206048na_seg.nii.gz"
+ },
+ {
+ "image": "100469/2_2opasesen16b30f281212032nana.nii.gz",
+ "pseudo_label": "100469/2_2opasesen16b30f281212032nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100469/2_2opasesen16b30f281212032nana/2_2opasesen16b30f281212032nana_seg.nii.gz"
+ },
+ {
+ "image": "103637/4_0opagels16bone35025120600114.nii.gz",
+ "pseudo_label": "103637/4_0opagels16bone35025120600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103637/4_0opagels16bone35025120600114/4_0opagels16bone35025120600114_seg.nii.gz"
+ },
+ {
+ "image": "107877/3_0opagels16standard3602512040014.nii.gz",
+ "pseudo_label": "107877/3_0opagels16standard3602512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107877/3_0opagels16standard3602512040014/3_0opagels16standard3602512040014_seg.nii.gz"
+ },
+ {
+ "image": "107877/3_1opagelspr16standard3202512040014.nii.gz",
+ "pseudo_label": "107877/3_1opagelspr16standard3202512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107877/3_1opagelspr16standard3202512040014/3_1opagelspr16standard3202512040014_seg.nii.gz"
+ },
+ {
+ "image": "107877/2_1opagelspr16bone3202512040014.nii.gz",
+ "pseudo_label": "107877/2_1opagelspr16bone3202512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107877/2_1opagelspr16bone3202512040014/2_1opagelspr16bone3202512040014_seg.nii.gz"
+ },
+ {
+ "image": "107877/4_0opagels16standard360512040014.nii.gz",
+ "pseudo_label": "107877/4_0opagels16standard360512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107877/4_0opagels16standard360512040014/4_0opagels16standard360512040014_seg.nii.gz"
+ },
+ {
+ "image": "101986/2_2opagelsplusstandard36025140994nana.nii.gz",
+ "pseudo_label": "101986/2_2opagelsplusstandard36025140994nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101986/2_2opagelsplusstandard36025140994nana/2_2opagelsplusstandard36025140994nana_seg.nii.gz"
+ },
+ {
+ "image": "108054/2_1opagels16bone28025120600114.nii.gz",
+ "pseudo_label": "108054/2_1opagels16bone28025120600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108054/2_1opagels16bone28025120600114/2_1opagels16bone28025120600114_seg.nii.gz"
+ },
+ {
+ "image": "108054/3_0opagels16standard28025120600114.nii.gz",
+ "pseudo_label": "108054/3_0opagels16standard28025120600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108054/3_0opagels16standard28025120600114/3_0opagels16standard28025120600114_seg.nii.gz"
+ },
+ {
+ "image": "101806/2_1opagelsqxstandard3602514048015.nii.gz",
+ "pseudo_label": "101806/2_1opagelsqxstandard3602514048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101806/2_1opagelsqxstandard3602514048015/2_1opagelsqxstandard3602514048015_seg.nii.gz"
+ },
+ {
+ "image": "101806/2_2opagelsqxstandard3602514048015.nii.gz",
+ "pseudo_label": "101806/2_2opagelsqxstandard3602514048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101806/2_2opagelsqxstandard3602514048015/2_2opagelsqxstandard3602514048015_seg.nii.gz"
+ },
+ {
+ "image": "109646/1_0opagelspluslung35025120800115.nii.gz",
+ "pseudo_label": "109646/1_0opagelspluslung35025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109646/1_0opagelspluslung35025120800115/1_0opagelspluslung35025120800115_seg.nii.gz"
+ },
+ {
+ "image": "109646/1_0opagelsplusstandard35025120800115.nii.gz",
+ "pseudo_label": "109646/1_0opagelsplusstandard35025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109646/1_0opagelsplusstandard35025120800115/1_0opagelsplusstandard35025120800115_seg.nii.gz"
+ },
+ {
+ "image": "110503/4_2opagels16standard34025120600114.nii.gz",
+ "pseudo_label": "110503/4_2opagels16standard34025120600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110503/4_2opagels16standard34025120600114/4_2opagels16standard34025120600114_seg.nii.gz"
+ },
+ {
+ "image": "108945/2_0opagels16bone37025120780114.nii.gz",
+ "pseudo_label": "108945/2_0opagels16bone37025120780114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108945/2_0opagels16bone37025120780114/2_0opagels16bone37025120780114_seg.nii.gz"
+ },
+ {
+ "image": "107411/2_0opagelsqxstandard28025120nanana.nii.gz",
+ "pseudo_label": "107411/2_0opagelsqxstandard28025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107411/2_0opagelsqxstandard28025120nanana/2_0opagelsqxstandard28025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "107411/3_0opagelsqxbone28025120nanana.nii.gz",
+ "pseudo_label": "107411/3_0opagelsqxbone28025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107411/3_0opagelsqxbone28025120nanana/3_0opagelsqxbone28025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "107411/2_1opagels16standard28025120nanana.nii.gz",
+ "pseudo_label": "107411/2_1opagels16standard28025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107411/2_1opagels16standard28025120nanana/2_1opagels16standard28025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "107411/2_2opagels16standard28025120nanana.nii.gz",
+ "pseudo_label": "107411/2_2opagels16standard28025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107411/2_2opagels16standard28025120nanana/2_2opagels16standard28025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "107411/3_2opagels16bone28025120nanana.nii.gz",
+ "pseudo_label": "107411/3_2opagels16bone28025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107411/3_2opagels16bone28025120nanana/3_2opagels16bone28025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "107411/3_1opagels16bone28025120nanana.nii.gz",
+ "pseudo_label": "107411/3_1opagels16bone28025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107411/3_1opagels16bone28025120nanana/3_1opagels16bone28025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "108275/2_1opagelsqxstandard3402514048015.nii.gz",
+ "pseudo_label": "108275/2_1opagelsqxstandard3402514048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108275/2_1opagelsqxstandard3402514048015/2_1opagelsqxstandard3402514048015_seg.nii.gz"
+ },
+ {
+ "image": "108275/2_2opagelsqxstandard3402514048015.nii.gz",
+ "pseudo_label": "108275/2_2opagelsqxstandard3402514048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108275/2_2opagelsqxstandard3402514048015/2_2opagelsqxstandard3402514048015_seg.nii.gz"
+ },
+ {
+ "image": "113217/3_1opasevzoomb30f27051206030na.nii.gz",
+ "pseudo_label": "113217/3_1opasevzoomb30f27051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113217/3_1opasevzoomb30f27051206030na/3_1opasevzoomb30f27051206030na_seg.nii.gz"
+ },
+ {
+ "image": "113217/3_2opasesen16b30f25851204530na.nii.gz",
+ "pseudo_label": "113217/3_2opasesen16b30f25851204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113217/3_2opasesen16b30f25851204530na/3_2opasesen16b30f25851204530na_seg.nii.gz"
+ },
+ {
+ "image": "113217/5_0opasesen16b50f27621204530na.nii.gz",
+ "pseudo_label": "113217/5_0opasesen16b50f27621204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113217/5_0opasesen16b50f27621204530na/5_0opasesen16b50f27621204530na_seg.nii.gz"
+ },
+ {
+ "image": "113217/5_2opasesen16b50f25851204530na.nii.gz",
+ "pseudo_label": "113217/5_2opasesen16b50f25851204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113217/5_2opasesen16b50f25851204530na/5_2opasesen16b50f25851204530na_seg.nii.gz"
+ },
+ {
+ "image": "113217/6_2opasesen16b50f25821204530na.nii.gz",
+ "pseudo_label": "113217/6_2opasesen16b50f25821204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113217/6_2opasesen16b50f25821204530na/6_2opasesen16b50f25821204530na_seg.nii.gz"
+ },
+ {
+ "image": "113217/4_1opasevzoomb50f30651206030na.nii.gz",
+ "pseudo_label": "113217/4_1opasevzoomb50f30651206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113217/4_1opasevzoomb50f30651206030na/4_1opasevzoomb50f30651206030na_seg.nii.gz"
+ },
+ {
+ "image": "113217/3_0opasesen16b30f27051204530na.nii.gz",
+ "pseudo_label": "113217/3_0opasesen16b30f27051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113217/3_0opasesen16b30f27051204530na/3_0opasesen16b30f27051204530na_seg.nii.gz"
+ },
+ {
+ "image": "113217/4_0opasesen16b50f27051204530na.nii.gz",
+ "pseudo_label": "113217/4_0opasesen16b50f27051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113217/4_0opasesen16b50f27051204530na/4_0opasesen16b50f27051204530na_seg.nii.gz"
+ },
+ {
+ "image": "104143/7186_1opaphmx8000a3403212060nana.nii.gz",
+ "pseudo_label": "104143/7186_1opaphmx8000a3403212060nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104143/7186_1opaphmx8000a3403212060nana/7186_1opaphmx8000a3403212060nana_seg.nii.gz"
+ },
+ {
+ "image": "104143/597_0opaphmx8000d3343212060nana.nii.gz",
+ "pseudo_label": "104143/597_0opaphmx8000d3343212060nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104143/597_0opaphmx8000d3343212060nana/597_0opaphmx8000d3343212060nana_seg.nii.gz"
+ },
+ {
+ "image": "104143/3952_2opaphmx8000a3403212060nana.nii.gz",
+ "pseudo_label": "104143/3952_2opaphmx8000a3403212060nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104143/3952_2opaphmx8000a3403212060nana/3952_2opaphmx8000a3403212060nana_seg.nii.gz"
+ },
+ {
+ "image": "104143/3953_2opaphmx8000d3403212060nana.nii.gz",
+ "pseudo_label": "104143/3953_2opaphmx8000d3403212060nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104143/3953_2opaphmx8000d3403212060nana/3953_2opaphmx8000d3403212060nana_seg.nii.gz"
+ },
+ {
+ "image": "104143/596_0opaphmx8000b3343212060nana.nii.gz",
+ "pseudo_label": "104143/596_0opaphmx8000b3343212060nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104143/596_0opaphmx8000b3343212060nana/596_0opaphmx8000b3343212060nana_seg.nii.gz"
+ },
+ {
+ "image": "109059/2_0opagelsqxstandard3702512048015.nii.gz",
+ "pseudo_label": "109059/2_0opagelsqxstandard3702512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109059/2_0opagelsqxstandard3702512048015/2_0opagelsqxstandard3702512048015_seg.nii.gz"
+ },
+ {
+ "image": "111284/5_0opasevzoomb30f38051206030na.nii.gz",
+ "pseudo_label": "111284/5_0opasevzoomb30f38051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111284/5_0opasevzoomb30f38051206030na/5_0opasevzoomb30f38051206030na_seg.nii.gz"
+ },
+ {
+ "image": "111284/3_0opasevzoomb50f38021206030na.nii.gz",
+ "pseudo_label": "111284/3_0opasevzoomb50f38021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111284/3_0opasevzoomb50f38021206030na/3_0opasevzoomb50f38021206030na_seg.nii.gz"
+ },
+ {
+ "image": "111284/4_0opasevzoomb50f38051206030na.nii.gz",
+ "pseudo_label": "111284/4_0opasevzoomb50f38051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111284/4_0opasevzoomb50f38051206030na/4_0opasevzoomb50f38051206030na_seg.nii.gz"
+ },
+ {
+ "image": "111284/6_0opasevzoomb30f38021206030na.nii.gz",
+ "pseudo_label": "111284/6_0opasevzoomb30f38021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111284/6_0opasevzoomb30f38021206030na/6_0opasevzoomb30f38021206030na_seg.nii.gz"
+ },
+ {
+ "image": "109637/5888_2opaphmx8000c31832120453612.nii.gz",
+ "pseudo_label": "109637/5888_2opaphmx8000c31832120453612.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109637/5888_2opaphmx8000c31832120453612/5888_2opaphmx8000c31832120453612_seg.nii.gz"
+ },
+ {
+ "image": "109637/8087_1opaphmx8000c30532120453612.nii.gz",
+ "pseudo_label": "109637/8087_1opaphmx8000c30532120453612.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109637/8087_1opaphmx8000c30532120453612/8087_1opaphmx8000c30532120453612_seg.nii.gz"
+ },
+ {
+ "image": "101347/2_2opagelsqxstandard40025120800115.nii.gz",
+ "pseudo_label": "101347/2_2opagelsqxstandard40025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101347/2_2opagelsqxstandard40025120800115/2_2opagelsqxstandard40025120800115_seg.nii.gz"
+ },
+ {
+ "image": "101347/2_0opagelsqxstandard3602512048015.nii.gz",
+ "pseudo_label": "101347/2_0opagelsqxstandard3602512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101347/2_0opagelsqxstandard3602512048015/2_0opagelsqxstandard3602512048015_seg.nii.gz"
+ },
+ {
+ "image": "101347/2_1opagelsqxstandard4002514048015.nii.gz",
+ "pseudo_label": "101347/2_1opagelsqxstandard4002514048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101347/2_1opagelsqxstandard4002514048015/2_1opagelsqxstandard4002514048015_seg.nii.gz"
+ },
+ {
+ "image": "100459/7_2opasesen16b50f363512013590na.nii.gz",
+ "pseudo_label": "100459/7_2opasesen16b50f363512013590na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100459/7_2opasesen16b50f363512013590na/7_2opasesen16b50f363512013590na_seg.nii.gz"
+ },
+ {
+ "image": "100459/5_1opasesen16b50f38151204530na.nii.gz",
+ "pseudo_label": "100459/5_1opasesen16b50f38151204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100459/5_1opasesen16b50f38151204530na/5_1opasesen16b50f38151204530na_seg.nii.gz"
+ },
+ {
+ "image": "100459/6_0opasevzoomb30f44421206030na.nii.gz",
+ "pseudo_label": "100459/6_0opasevzoomb30f44421206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100459/6_0opasevzoomb30f44421206030na/6_0opasevzoomb30f44421206030na_seg.nii.gz"
+ },
+ {
+ "image": "100459/5_0opasevzoomb50f44421206030na.nii.gz",
+ "pseudo_label": "100459/5_0opasevzoomb50f44421206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100459/5_0opasevzoomb50f44421206030na/5_0opasevzoomb50f44421206030na_seg.nii.gz"
+ },
+ {
+ "image": "100459/3_0opasevzoomb30f44451206030na.nii.gz",
+ "pseudo_label": "100459/3_0opasevzoomb30f44451206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100459/3_0opasevzoomb30f44451206030na/3_0opasevzoomb30f44451206030na_seg.nii.gz"
+ },
+ {
+ "image": "100459/7_1opasesen16b50f38121204530na.nii.gz",
+ "pseudo_label": "100459/7_1opasesen16b50f38121204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100459/7_1opasesen16b50f38121204530na/7_1opasesen16b50f38121204530na_seg.nii.gz"
+ },
+ {
+ "image": "100459/3_1opasesen16b30f38151204530na.nii.gz",
+ "pseudo_label": "100459/3_1opasesen16b30f38151204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100459/3_1opasesen16b30f38151204530na/3_1opasesen16b30f38151204530na_seg.nii.gz"
+ },
+ {
+ "image": "100459/4_0opasevzoomb50f44451206030na.nii.gz",
+ "pseudo_label": "100459/4_0opasevzoomb50f44451206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100459/4_0opasevzoomb50f44451206030na/4_0opasevzoomb50f44451206030na_seg.nii.gz"
+ },
+ {
+ "image": "100660/2_0opagehsqxstandard33025120560115.nii.gz",
+ "pseudo_label": "100660/2_0opagehsqxstandard33025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100660/2_0opagehsqxstandard33025120560115/2_0opagehsqxstandard33025120560115_seg.nii.gz"
+ },
+ {
+ "image": "100660/2_1opagehsqxstandard33025120560115.nii.gz",
+ "pseudo_label": "100660/2_1opagehsqxstandard33025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100660/2_1opagehsqxstandard33025120560115/2_1opagehsqxstandard33025120560115_seg.nii.gz"
+ },
+ {
+ "image": "100660/3_0opagehsqxbone33025120560115.nii.gz",
+ "pseudo_label": "100660/3_0opagehsqxbone33025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100660/3_0opagehsqxbone33025120560115/3_0opagehsqxbone33025120560115_seg.nii.gz"
+ },
+ {
+ "image": "105937/4_2opasesen16b30f31121204530na.nii.gz",
+ "pseudo_label": "105937/4_2opasesen16b30f31121204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105937/4_2opasesen16b30f31121204530na/4_2opasesen16b30f31121204530na_seg.nii.gz"
+ },
+ {
+ "image": "105937/6_1opasesen16b50f30021204530na.nii.gz",
+ "pseudo_label": "105937/6_1opasesen16b50f30021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105937/6_1opasesen16b50f30021204530na/6_1opasesen16b50f30021204530na_seg.nii.gz"
+ },
+ {
+ "image": "105937/6_0opasesen16b30f32021206040na.nii.gz",
+ "pseudo_label": "105937/6_0opasesen16b30f32021206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105937/6_0opasesen16b30f32021206040na/6_0opasesen16b30f32021206040na_seg.nii.gz"
+ },
+ {
+ "image": "105937/5_2opasesen16b50f31151204530na.nii.gz",
+ "pseudo_label": "105937/5_2opasesen16b50f31151204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105937/5_2opasesen16b50f31151204530na/5_2opasesen16b50f31151204530na_seg.nii.gz"
+ },
+ {
+ "image": "105937/4_1opasesen16b30f30021204530na.nii.gz",
+ "pseudo_label": "105937/4_1opasesen16b30f30021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105937/4_1opasesen16b30f30021204530na/4_1opasesen16b30f30021204530na_seg.nii.gz"
+ },
+ {
+ "image": "105937/4_0opasesen16b50f38051206040na.nii.gz",
+ "pseudo_label": "105937/4_0opasesen16b50f38051206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105937/4_0opasesen16b50f38051206040na/4_0opasesen16b50f38051206040na_seg.nii.gz"
+ },
+ {
+ "image": "105937/6_2opasesen16b50f31121204530na.nii.gz",
+ "pseudo_label": "105937/6_2opasesen16b50f31121204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105937/6_2opasesen16b50f31121204530na/6_2opasesen16b50f31121204530na_seg.nii.gz"
+ },
+ {
+ "image": "105937/3_1opasesen16b30f30051204530na.nii.gz",
+ "pseudo_label": "105937/3_1opasesen16b30f30051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105937/3_1opasesen16b30f30051204530na/3_1opasesen16b30f30051204530na_seg.nii.gz"
+ },
+ {
+ "image": "100010/2_0opagelsqxstandard3542514048015.nii.gz",
+ "pseudo_label": "100010/2_0opagelsqxstandard3542514048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100010/2_0opagelsqxstandard3542514048015/2_0opagelsqxstandard3542514048015_seg.nii.gz"
+ },
+ {
+ "image": "100010/2_1opagelsqxstandard3502514048015.nii.gz",
+ "pseudo_label": "100010/2_1opagelsqxstandard3502514048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100010/2_1opagelsqxstandard3502514048015/2_1opagelsqxstandard3502514048015_seg.nii.gz"
+ },
+ {
+ "image": "108635/1_0opagelsplusstandard3172512010250115.nii.gz",
+ "pseudo_label": "108635/1_0opagelsplusstandard3172512010250115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108635/1_0opagelsplusstandard3172512010250115/1_0opagelsplusstandard3172512010250115_seg.nii.gz"
+ },
+ {
+ "image": "108635/1_2opagelspluslung32025120800115.nii.gz",
+ "pseudo_label": "108635/1_2opagelspluslung32025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108635/1_2opagelspluslung32025120800115/1_2opagelspluslung32025120800115_seg.nii.gz"
+ },
+ {
+ "image": "108635/1_1opagelsplusstandard32025120800115.nii.gz",
+ "pseudo_label": "108635/1_1opagelsplusstandard32025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108635/1_1opagelsplusstandard32025120800115/1_1opagelsplusstandard32025120800115_seg.nii.gz"
+ },
+ {
+ "image": "108635/1_1opagelspluslung32025120800115.nii.gz",
+ "pseudo_label": "108635/1_1opagelspluslung32025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108635/1_1opagelspluslung32025120800115/1_1opagelspluslung32025120800115_seg.nii.gz"
+ },
+ {
+ "image": "108635/1_2opagelsplusstandard32025120800115.nii.gz",
+ "pseudo_label": "108635/1_2opagelsplusstandard32025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108635/1_2opagelsplusstandard32025120800115/1_2opagelsplusstandard32025120800115_seg.nii.gz"
+ },
+ {
+ "image": "108635/1_0opagelspluslung3172512010250115.nii.gz",
+ "pseudo_label": "108635/1_0opagelspluslung3172512010250115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108635/1_0opagelspluslung3172512010250115/1_0opagelspluslung3172512010250115_seg.nii.gz"
+ },
+ {
+ "image": "106059/4_1opasesen16b30f32121204530na.nii.gz",
+ "pseudo_label": "106059/4_1opasesen16b30f32121204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106059/4_1opasesen16b30f32121204530na/4_1opasesen16b30f32121204530na_seg.nii.gz"
+ },
+ {
+ "image": "106059/6_1opasesen16b50f32121204530na.nii.gz",
+ "pseudo_label": "106059/6_1opasesen16b50f32121204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106059/6_1opasesen16b50f32121204530na/6_1opasesen16b50f32121204530na_seg.nii.gz"
+ },
+ {
+ "image": "106059/4_0opasevzoomb50f38051206030na.nii.gz",
+ "pseudo_label": "106059/4_0opasevzoomb50f38051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106059/4_0opasevzoomb50f38051206030na/4_0opasevzoomb50f38051206030na_seg.nii.gz"
+ },
+ {
+ "image": "106059/3_0opasevzoomb30f38051206030na.nii.gz",
+ "pseudo_label": "106059/3_0opasevzoomb30f38051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106059/3_0opasevzoomb30f38051206030na/3_0opasevzoomb30f38051206030na_seg.nii.gz"
+ },
+ {
+ "image": "106059/6_0opasevzoomb30f38021206030na.nii.gz",
+ "pseudo_label": "106059/6_0opasevzoomb30f38021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106059/6_0opasevzoomb30f38021206030na/6_0opasevzoomb30f38021206030na_seg.nii.gz"
+ },
+ {
+ "image": "106059/5_2opasesen16b50f32251204530na.nii.gz",
+ "pseudo_label": "106059/5_2opasesen16b50f32251204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106059/5_2opasesen16b50f32251204530na/5_2opasesen16b50f32251204530na_seg.nii.gz"
+ },
+ {
+ "image": "110358/6_1opasesen16b50f38051204530na.nii.gz",
+ "pseudo_label": "110358/6_1opasesen16b50f38051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110358/6_1opasesen16b50f38051204530na/6_1opasesen16b50f38051204530na_seg.nii.gz"
+ },
+ {
+ "image": "110358/6_0opasevzoomb50f372512012060na.nii.gz",
+ "pseudo_label": "110358/6_0opasevzoomb50f372512012060na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110358/6_0opasevzoomb50f372512012060na/6_0opasevzoomb50f372512012060na_seg.nii.gz"
+ },
+ {
+ "image": "110358/4_2opasevzoomb50f38051206030na.nii.gz",
+ "pseudo_label": "110358/4_2opasevzoomb50f38051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110358/4_2opasevzoomb50f38051206030na/4_2opasevzoomb50f38051206030na_seg.nii.gz"
+ },
+ {
+ "image": "110358/3_2opasevzoomb30f38051206030na.nii.gz",
+ "pseudo_label": "110358/3_2opasevzoomb30f38051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110358/3_2opasevzoomb30f38051206030na/3_2opasevzoomb30f38051206030na_seg.nii.gz"
+ },
+ {
+ "image": "110358/4_1opasesen16b30f38051204530na.nii.gz",
+ "pseudo_label": "110358/4_1opasesen16b30f38051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110358/4_1opasesen16b30f38051204530na/4_1opasesen16b30f38051204530na_seg.nii.gz"
+ },
+ {
+ "image": "110358/4_0opasevzoomb30f372512012060na.nii.gz",
+ "pseudo_label": "110358/4_0opasevzoomb30f372512012060na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110358/4_0opasevzoomb30f372512012060na/4_0opasevzoomb30f372512012060na_seg.nii.gz"
+ },
+ {
+ "image": "110432/2_1opagelsqxstandard3402512048015.nii.gz",
+ "pseudo_label": "110432/2_1opagelsqxstandard3402512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110432/2_1opagelsqxstandard3402512048015/2_1opagelsqxstandard3402512048015_seg.nii.gz"
+ },
+ {
+ "image": "110432/2_0opagelsqxstandard3102512048015.nii.gz",
+ "pseudo_label": "110432/2_0opagelsqxstandard3102512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110432/2_0opagelsqxstandard3102512048015/2_0opagelsqxstandard3102512048015_seg.nii.gz"
+ },
+ {
+ "image": "105178/4_2opatoaqul4fc513156212060nana.nii.gz",
+ "pseudo_label": "105178/4_2opatoaqul4fc513156212060nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105178/4_2opatoaqul4fc513156212060nana/4_2opatoaqul4fc513156212060nana_seg.nii.gz"
+ },
+ {
+ "image": "105178/4_0opatoaqul4fc513125212040nana.nii.gz",
+ "pseudo_label": "105178/4_0opatoaqul4fc513125212040nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105178/4_0opatoaqul4fc513125212040nana/4_0opatoaqul4fc513125212040nana_seg.nii.gz"
+ },
+ {
+ "image": "102587/2_0opagelsqxstandard37625120640115.nii.gz",
+ "pseudo_label": "102587/2_0opagelsqxstandard37625120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102587/2_0opagelsqxstandard37625120640115/2_0opagelsqxstandard37625120640115_seg.nii.gz"
+ },
+ {
+ "image": "102744/5_0opasesen16b50f32551204530na.nii.gz",
+ "pseudo_label": "102744/5_0opasesen16b50f32551204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102744/5_0opasesen16b50f32551204530na/5_0opasesen16b50f32551204530na_seg.nii.gz"
+ },
+ {
+ "image": "102744/6_2opasesen16b30f33851204530na.nii.gz",
+ "pseudo_label": "102744/6_2opasesen16b30f33851204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102744/6_2opasesen16b30f33851204530na/6_2opasesen16b30f33851204530na_seg.nii.gz"
+ },
+ {
+ "image": "102744/4_0opasesen16b30f32521204530na.nii.gz",
+ "pseudo_label": "102744/4_0opasesen16b30f32521204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102744/4_0opasesen16b30f32521204530na/4_0opasesen16b30f32521204530na_seg.nii.gz"
+ },
+ {
+ "image": "102744/5_1opasesen16b50f32051204530na.nii.gz",
+ "pseudo_label": "102744/5_1opasesen16b50f32051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102744/5_1opasesen16b50f32051204530na/5_1opasesen16b50f32051204530na_seg.nii.gz"
+ },
+ {
+ "image": "102744/5_2opasesen16b50f33851204530na.nii.gz",
+ "pseudo_label": "102744/5_2opasesen16b50f33851204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102744/5_2opasesen16b50f33851204530na/5_2opasesen16b50f33851204530na_seg.nii.gz"
+ },
+ {
+ "image": "102744/3_2opasesen16b30f30651204530na.nii.gz",
+ "pseudo_label": "102744/3_2opasesen16b30f30651204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102744/3_2opasesen16b30f30651204530na/3_2opasesen16b30f30651204530na_seg.nii.gz"
+ },
+ {
+ "image": "102744/3_0opasesen16b30f28451204530na.nii.gz",
+ "pseudo_label": "102744/3_0opasesen16b30f28451204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102744/3_0opasesen16b30f28451204530na/3_0opasesen16b30f28451204530na_seg.nii.gz"
+ },
+ {
+ "image": "102744/6_1opasesen16b30f32051204530na.nii.gz",
+ "pseudo_label": "102744/6_1opasesen16b30f32051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102744/6_1opasesen16b30f32051204530na/6_1opasesen16b30f32051204530na_seg.nii.gz"
+ },
+ {
+ "image": "102744/7_0opasesen16b30f32551204530na.nii.gz",
+ "pseudo_label": "102744/7_0opasesen16b30f32551204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102744/7_0opasesen16b30f32551204530na/7_0opasesen16b30f32551204530na_seg.nii.gz"
+ },
+ {
+ "image": "110175/2_1opagehsqxstandard29025120560115.nii.gz",
+ "pseudo_label": "110175/2_1opagehsqxstandard29025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110175/2_1opagehsqxstandard29025120560115/2_1opagehsqxstandard29025120560115_seg.nii.gz"
+ },
+ {
+ "image": "110175/2_0opagehsqxstandard29025120640115.nii.gz",
+ "pseudo_label": "110175/2_0opagehsqxstandard29025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110175/2_0opagehsqxstandard29025120640115/2_0opagehsqxstandard29025120640115_seg.nii.gz"
+ },
+ {
+ "image": "110175/3_2opagehsqxstandard29025120560115.nii.gz",
+ "pseudo_label": "110175/3_2opagehsqxstandard29025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110175/3_2opagehsqxstandard29025120560115/3_2opagehsqxstandard29025120560115_seg.nii.gz"
+ },
+ {
+ "image": "109000/2_2opagelsqxstandard3502514048015.nii.gz",
+ "pseudo_label": "109000/2_2opagelsqxstandard3502514048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109000/2_2opagelsqxstandard3502514048015/2_2opagelsqxstandard3502514048015_seg.nii.gz"
+ },
+ {
+ "image": "105346/2_2opagelspr16bone3602512048014.nii.gz",
+ "pseudo_label": "105346/2_2opagelspr16bone3602512048014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105346/2_2opagelspr16bone3602512048014/2_2opagelspr16bone3602512048014_seg.nii.gz"
+ },
+ {
+ "image": "105346/3_2opagelspr16standard3602512048014.nii.gz",
+ "pseudo_label": "105346/3_2opagelspr16standard3602512048014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105346/3_2opagelspr16standard3602512048014/3_2opagelspr16standard3602512048014_seg.nii.gz"
+ },
+ {
+ "image": "109880/2_2opagelsqxstandard3402512048015.nii.gz",
+ "pseudo_label": "109880/2_2opagelsqxstandard3402512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109880/2_2opagelsqxstandard3402512048015/2_2opagelsqxstandard3402512048015_seg.nii.gz"
+ },
+ {
+ "image": "109880/2_0opagelsqxstandard3102512048015.nii.gz",
+ "pseudo_label": "109880/2_0opagelsqxstandard3102512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109880/2_0opagelsqxstandard3102512048015/2_0opagelsqxstandard3102512048015_seg.nii.gz"
+ },
+ {
+ "image": "102716/3_2opatoaqul4fc513125212040nana.nii.gz",
+ "pseudo_label": "102716/3_2opatoaqul4fc513125212040nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102716/3_2opatoaqul4fc513125212040nana/3_2opatoaqul4fc513125212040nana_seg.nii.gz"
+ },
+ {
+ "image": "102716/3_1opatoaqul4fc513105212050nana.nii.gz",
+ "pseudo_label": "102716/3_1opatoaqul4fc513105212050nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102716/3_1opatoaqul4fc513105212050nana/3_1opatoaqul4fc513105212050nana_seg.nii.gz"
+ },
+ {
+ "image": "102716/4_0opatoaqul4fc513031212075nana.nii.gz",
+ "pseudo_label": "102716/4_0opatoaqul4fc513031212075nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102716/4_0opatoaqul4fc513031212075nana/4_0opatoaqul4fc513031212075nana_seg.nii.gz"
+ },
+ {
+ "image": "106845/3_2opagelspr16standard3702512048014.nii.gz",
+ "pseudo_label": "106845/3_2opagelspr16standard3702512048014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106845/3_2opagelspr16standard3702512048014/3_2opagelspr16standard3702512048014_seg.nii.gz"
+ },
+ {
+ "image": "106845/3_0opagels16standard3852512000na.nii.gz",
+ "pseudo_label": "106845/3_0opagels16standard3852512000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106845/3_0opagels16standard3852512000na/3_0opagels16standard3852512000na_seg.nii.gz"
+ },
+ {
+ "image": "106845/2_2opagelspr16bone3702512048014.nii.gz",
+ "pseudo_label": "106845/2_2opagelspr16bone3702512048014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106845/2_2opagelspr16bone3702512048014/2_2opagelspr16bone3702512048014_seg.nii.gz"
+ },
+ {
+ "image": "106845/3_1opagelspr16standard39125120560114.nii.gz",
+ "pseudo_label": "106845/3_1opagelspr16standard39125120560114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106845/3_1opagelspr16standard39125120560114/3_1opagelspr16standard39125120560114_seg.nii.gz"
+ },
+ {
+ "image": "106845/2_0opagels16bone3852512000na.nii.gz",
+ "pseudo_label": "106845/2_0opagels16bone3852512000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106845/2_0opagels16bone3852512000na/2_0opagels16bone3852512000na_seg.nii.gz"
+ },
+ {
+ "image": "113052/2016_2opaphmx8000d3293212039018.nii.gz",
+ "pseudo_label": "113052/2016_2opaphmx8000d3293212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113052/2016_2opaphmx8000d3293212039018/2016_2opaphmx8000d3293212039018_seg.nii.gz"
+ },
+ {
+ "image": "101188/4_1opasevzoomb50f36651206030na.nii.gz",
+ "pseudo_label": "101188/4_1opasevzoomb50f36651206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101188/4_1opasevzoomb50f36651206030na/4_1opasevzoomb50f36651206030na_seg.nii.gz"
+ },
+ {
+ "image": "101188/3_2opasesen16b30f37051204530na.nii.gz",
+ "pseudo_label": "101188/3_2opasesen16b30f37051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101188/3_2opasesen16b30f37051204530na/3_2opasesen16b30f37051204530na_seg.nii.gz"
+ },
+ {
+ "image": "101188/7_2opasesen16b50f37051204530na.nii.gz",
+ "pseudo_label": "101188/7_2opasesen16b50f37051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101188/7_2opasesen16b50f37051204530na/7_2opasesen16b50f37051204530na_seg.nii.gz"
+ },
+ {
+ "image": "101188/5_2opasesen16b30f37021204530na.nii.gz",
+ "pseudo_label": "101188/5_2opasesen16b30f37021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101188/5_2opasesen16b30f37021204530na/5_2opasesen16b30f37021204530na_seg.nii.gz"
+ },
+ {
+ "image": "101188/4_0opasesen16b50f38051206040na.nii.gz",
+ "pseudo_label": "101188/4_0opasesen16b50f38051206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101188/4_0opasesen16b50f38051206040na/4_0opasesen16b50f38051206040na_seg.nii.gz"
+ },
+ {
+ "image": "101188/6_2opasesen16b50f37021204530na.nii.gz",
+ "pseudo_label": "101188/6_2opasesen16b50f37021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101188/6_2opasesen16b50f37021204530na/6_2opasesen16b50f37021204530na_seg.nii.gz"
+ },
+ {
+ "image": "101188/3_1opasevzoomb30f36651206030na.nii.gz",
+ "pseudo_label": "101188/3_1opasevzoomb30f36651206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101188/3_1opasevzoomb30f36651206030na/3_1opasevzoomb30f36651206030na_seg.nii.gz"
+ },
+ {
+ "image": "101188/3_0opasesen16b30f38051206040na.nii.gz",
+ "pseudo_label": "101188/3_0opasesen16b30f38051206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101188/3_0opasesen16b30f38051206040na/3_0opasesen16b30f38051206040na_seg.nii.gz"
+ },
+ {
+ "image": "102435/2_2opagelsqxstandard4302512048015.nii.gz",
+ "pseudo_label": "102435/2_2opagelsqxstandard4302512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102435/2_2opagelsqxstandard4302512048015/2_2opagelsqxstandard4302512048015_seg.nii.gz"
+ },
+ {
+ "image": "106157/2_2opasesen16b30f30421204032na.nii.gz",
+ "pseudo_label": "106157/2_2opasesen16b30f30421204032na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106157/2_2opasesen16b30f30421204032na/2_2opasesen16b30f30421204032na_seg.nii.gz"
+ },
+ {
+ "image": "103958/2_0opagelsqxstandard4202514040015.nii.gz",
+ "pseudo_label": "103958/2_0opagelsqxstandard4202514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103958/2_0opagelsqxstandard4202514040015/2_0opagelsqxstandard4202514040015_seg.nii.gz"
+ },
+ {
+ "image": "103958/2_2opagelsqxstandard3402514040015.nii.gz",
+ "pseudo_label": "103958/2_2opagelsqxstandard3402514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103958/2_2opagelsqxstandard3402514040015/2_2opagelsqxstandard3402514040015_seg.nii.gz"
+ },
+ {
+ "image": "105906/2_0opagelsqxbone3402512048015.nii.gz",
+ "pseudo_label": "105906/2_0opagelsqxbone3402512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105906/2_0opagelsqxbone3402512048015/2_0opagelsqxbone3402512048015_seg.nii.gz"
+ },
+ {
+ "image": "105906/3_0opagelsqxstandard3402512048015.nii.gz",
+ "pseudo_label": "105906/3_0opagelsqxstandard3402512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105906/3_0opagelsqxstandard3402512048015/3_0opagelsqxstandard3402512048015_seg.nii.gz"
+ },
+ {
+ "image": "103995/2_1opasesen16b30f35021204032na.nii.gz",
+ "pseudo_label": "103995/2_1opasesen16b30f35021204032na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103995/2_1opasesen16b30f35021204032na/2_1opasesen16b30f35021204032na_seg.nii.gz"
+ },
+ {
+ "image": "110507/3_0opagehsqxbone34025120560115.nii.gz",
+ "pseudo_label": "110507/3_0opagehsqxbone34025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110507/3_0opagehsqxbone34025120560115/3_0opagehsqxbone34025120560115_seg.nii.gz"
+ },
+ {
+ "image": "110507/3_2opagehsqxbone34025120560115.nii.gz",
+ "pseudo_label": "110507/3_2opagehsqxbone34025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110507/3_2opagehsqxbone34025120560115/3_2opagehsqxbone34025120560115_seg.nii.gz"
+ },
+ {
+ "image": "110507/2_0opagehsqxstandard34025120560115.nii.gz",
+ "pseudo_label": "110507/2_0opagehsqxstandard34025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110507/2_0opagehsqxstandard34025120560115/2_0opagehsqxstandard34025120560115_seg.nii.gz"
+ },
+ {
+ "image": "110507/2_2opagehsqxstandard34025120560115.nii.gz",
+ "pseudo_label": "110507/2_2opagehsqxstandard34025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110507/2_2opagehsqxstandard34025120560115/2_2opagehsqxstandard34025120560115_seg.nii.gz"
+ },
+ {
+ "image": "110821/3_2opasevzoomb30f35621206030na.nii.gz",
+ "pseudo_label": "110821/3_2opasevzoomb30f35621206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110821/3_2opasevzoomb30f35621206030na/3_2opasevzoomb30f35621206030na_seg.nii.gz"
+ },
+ {
+ "image": "103341/3_1opasevzoomb50f35021408040na.nii.gz",
+ "pseudo_label": "103341/3_1opasevzoomb50f35021408040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103341/3_1opasevzoomb50f35021408040na/3_1opasevzoomb50f35021408040na_seg.nii.gz"
+ },
+ {
+ "image": "103341/2_1opasevzoomb30f35021408040na.nii.gz",
+ "pseudo_label": "103341/2_1opasevzoomb30f35021408040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103341/2_1opasevzoomb30f35021408040na/2_1opasevzoomb30f35021408040na_seg.nii.gz"
+ },
+ {
+ "image": "108597/2_1opagelspr16bone3102512040014.nii.gz",
+ "pseudo_label": "108597/2_1opagelspr16bone3102512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108597/2_1opagelspr16bone3102512040014/2_1opagelspr16bone3102512040014_seg.nii.gz"
+ },
+ {
+ "image": "108597/3_1opagelspr16standard3102512040014.nii.gz",
+ "pseudo_label": "108597/3_1opagelspr16standard3102512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108597/3_1opagelspr16standard3102512040014/3_1opagelspr16standard3102512040014_seg.nii.gz"
+ },
+ {
+ "image": "108597/3_0opagels16standard3602512000na.nii.gz",
+ "pseudo_label": "108597/3_0opagels16standard3602512000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108597/3_0opagels16standard3602512000na/3_0opagels16standard3602512000na_seg.nii.gz"
+ },
+ {
+ "image": "108597/2_2opagels16bone3312512040014.nii.gz",
+ "pseudo_label": "108597/2_2opagels16bone3312512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108597/2_2opagels16bone3312512040014/2_2opagels16bone3312512040014_seg.nii.gz"
+ },
+ {
+ "image": "103371/101_0opasevzoomb30f37821207540na.nii.gz",
+ "pseudo_label": "103371/101_0opasevzoomb30f37821207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103371/101_0opasevzoomb30f37821207540na/101_0opasevzoomb30f37821207540na_seg.nii.gz"
+ },
+ {
+ "image": "103371/2_1opasevzoomb30f37221207540na.nii.gz",
+ "pseudo_label": "103371/2_1opasevzoomb30f37221207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103371/2_1opasevzoomb30f37221207540na/2_1opasevzoomb30f37221207540na_seg.nii.gz"
+ },
+ {
+ "image": "103371/3_2opasevzoomb50f38621207540na.nii.gz",
+ "pseudo_label": "103371/3_2opasevzoomb50f38621207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103371/3_2opasevzoomb50f38621207540na/3_2opasevzoomb50f38621207540na_seg.nii.gz"
+ },
+ {
+ "image": "110273/4_1opatoaqul4fc513535212080nana.nii.gz",
+ "pseudo_label": "110273/4_1opatoaqul4fc513535212080nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110273/4_1opatoaqul4fc513535212080nana/4_1opatoaqul4fc513535212080nana_seg.nii.gz"
+ },
+ {
+ "image": "103959/6_0opasesen16b30f31621206040na.nii.gz",
+ "pseudo_label": "103959/6_0opasesen16b30f31621206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103959/6_0opasesen16b30f31621206040na/6_0opasesen16b30f31621206040na_seg.nii.gz"
+ },
+ {
+ "image": "103959/6_2opasesen16b50f30051204530na.nii.gz",
+ "pseudo_label": "103959/6_2opasesen16b50f30051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103959/6_2opasesen16b50f30051204530na/6_2opasesen16b50f30051204530na_seg.nii.gz"
+ },
+ {
+ "image": "103959/5_2opasesen16b30f30021204530na.nii.gz",
+ "pseudo_label": "103959/5_2opasesen16b30f30021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103959/5_2opasesen16b30f30021204530na/5_2opasesen16b30f30021204530na_seg.nii.gz"
+ },
+ {
+ "image": "103959/6_1opasesen16b50f30021204530na.nii.gz",
+ "pseudo_label": "103959/6_1opasesen16b50f30021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103959/6_1opasesen16b50f30021204530na/6_1opasesen16b50f30021204530na_seg.nii.gz"
+ },
+ {
+ "image": "103959/4_2opasesen16b30f30051204530na.nii.gz",
+ "pseudo_label": "103959/4_2opasesen16b30f30051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103959/4_2opasesen16b30f30051204530na/4_2opasesen16b30f30051204530na_seg.nii.gz"
+ },
+ {
+ "image": "103959/5_1opasesen16b50f30051204530na.nii.gz",
+ "pseudo_label": "103959/5_1opasesen16b50f30051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103959/5_1opasesen16b50f30051204530na/5_1opasesen16b50f30051204530na_seg.nii.gz"
+ },
+ {
+ "image": "103959/7_2opasesen16b50f30021204530na.nii.gz",
+ "pseudo_label": "103959/7_2opasesen16b50f30021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103959/7_2opasesen16b50f30021204530na/7_2opasesen16b50f30021204530na_seg.nii.gz"
+ },
+ {
+ "image": "103959/3_1opasesen16b30f30051204530na.nii.gz",
+ "pseudo_label": "103959/3_1opasesen16b30f30051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103959/3_1opasesen16b30f30051204530na/3_1opasesen16b30f30051204530na_seg.nii.gz"
+ },
+ {
+ "image": "103959/4_0opasesen16b50f31651206040na.nii.gz",
+ "pseudo_label": "103959/4_0opasesen16b50f31651206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103959/4_0opasesen16b50f31651206040na/4_0opasesen16b50f31651206040na_seg.nii.gz"
+ },
+ {
+ "image": "103959/3_0opasesen16b30f31651206040na.nii.gz",
+ "pseudo_label": "103959/3_0opasesen16b30f31651206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103959/3_0opasesen16b30f31651206040na/3_0opasesen16b30f31651206040na_seg.nii.gz"
+ },
+ {
+ "image": "107250/0_0opaphmx8000d36532120600112.nii.gz",
+ "pseudo_label": "107250/0_0opaphmx8000d36532120600112.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107250/0_0opaphmx8000d36532120600112/0_0opaphmx8000d36532120600112_seg.nii.gz"
+ },
+ {
+ "image": "107250/510_2opaphmx8000c3243212039018.nii.gz",
+ "pseudo_label": "107250/510_2opaphmx8000c3243212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107250/510_2opaphmx8000c3243212039018/510_2opaphmx8000c3243212039018_seg.nii.gz"
+ },
+ {
+ "image": "107250/509_2opaphmx8000d3243212039018.nii.gz",
+ "pseudo_label": "107250/509_2opaphmx8000d3243212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107250/509_2opaphmx8000d3243212039018/509_2opaphmx8000d3243212039018_seg.nii.gz"
+ },
+ {
+ "image": "107475/4220_2opaphmx8000d3083212039018.nii.gz",
+ "pseudo_label": "107475/4220_2opaphmx8000d3083212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107475/4220_2opaphmx8000d3083212039018/4220_2opaphmx8000d3083212039018_seg.nii.gz"
+ },
+ {
+ "image": "107475/4221_2opaphmx8000c3083212039018.nii.gz",
+ "pseudo_label": "107475/4221_2opaphmx8000c3083212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107475/4221_2opaphmx8000c3083212039018/4221_2opaphmx8000c3083212039018_seg.nii.gz"
+ },
+ {
+ "image": "107475/305_1opaphmx8000c3133212039018.nii.gz",
+ "pseudo_label": "107475/305_1opaphmx8000c3133212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107475/305_1opaphmx8000c3133212039018/305_1opaphmx8000c3133212039018_seg.nii.gz"
+ },
+ {
+ "image": "107885/2_1opagelsplusstandard3202514000na.nii.gz",
+ "pseudo_label": "107885/2_1opagelsplusstandard3202514000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107885/2_1opagelsplusstandard3202514000na/2_1opagelsplusstandard3202514000na_seg.nii.gz"
+ },
+ {
+ "image": "107885/2_2opagelsqxstandard3402514000na.nii.gz",
+ "pseudo_label": "107885/2_2opagelsqxstandard3402514000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107885/2_2opagelsqxstandard3402514000na/2_2opagelsqxstandard3402514000na_seg.nii.gz"
+ },
+ {
+ "image": "107885/2_0opagelsqxstandard3432514000na.nii.gz",
+ "pseudo_label": "107885/2_0opagelsqxstandard3432514000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107885/2_0opagelsqxstandard3432514000na/2_0opagelsqxstandard3432514000na_seg.nii.gz"
+ },
+ {
+ "image": "108601/2_0opasevzoomb30f36221207540na.nii.gz",
+ "pseudo_label": "108601/2_0opasevzoomb30f36221207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108601/2_0opasevzoomb30f36221207540na/2_0opasevzoomb30f36221207540na_seg.nii.gz"
+ },
+ {
+ "image": "108601/3_0opasevzoomb50f36221207540na.nii.gz",
+ "pseudo_label": "108601/3_0opasevzoomb50f36221207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108601/3_0opasevzoomb50f36221207540na/3_0opasevzoomb50f36221207540na_seg.nii.gz"
+ },
+ {
+ "image": "102796/2_2opagels16standard32025120nanana.nii.gz",
+ "pseudo_label": "102796/2_2opagels16standard32025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102796/2_2opagels16standard32025120nanana/2_2opagels16standard32025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "102796/3_1opagels16bone32025120nanana.nii.gz",
+ "pseudo_label": "102796/3_1opagels16bone32025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102796/3_1opagels16bone32025120nanana/3_1opagels16bone32025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "102796/3_0opagelsqxbone32025120nanana.nii.gz",
+ "pseudo_label": "102796/3_0opagelsqxbone32025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102796/3_0opagelsqxbone32025120nanana/3_0opagelsqxbone32025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "102796/3_2opagels16bone32025120nanana.nii.gz",
+ "pseudo_label": "102796/3_2opagels16bone32025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102796/3_2opagels16bone32025120nanana/3_2opagels16bone32025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "106050/2_0opagelsplusstandard27525120600115.nii.gz",
+ "pseudo_label": "106050/2_0opagelsplusstandard27525120600115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106050/2_0opagelsplusstandard27525120600115/2_0opagelsplusstandard27525120600115_seg.nii.gz"
+ },
+ {
+ "image": "104428/2_2opagelsqxstandard36025120640115.nii.gz",
+ "pseudo_label": "104428/2_2opagelsqxstandard36025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104428/2_2opagelsqxstandard36025120640115/2_2opagelsqxstandard36025120640115_seg.nii.gz"
+ },
+ {
+ "image": "104428/2_1opagelsqxstandard33125120640115.nii.gz",
+ "pseudo_label": "104428/2_1opagelsqxstandard33125120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104428/2_1opagelsqxstandard33125120640115/2_1opagelsqxstandard33125120640115_seg.nii.gz"
+ },
+ {
+ "image": "103600/2_0opagelsqxstandard36025120640115.nii.gz",
+ "pseudo_label": "103600/2_0opagelsqxstandard36025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103600/2_0opagelsqxstandard36025120640115/2_0opagelsqxstandard36025120640115_seg.nii.gz"
+ },
+ {
+ "image": "105903/3_2opasevzoomb30f32021206030na.nii.gz",
+ "pseudo_label": "105903/3_2opasevzoomb30f32021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105903/3_2opasevzoomb30f32021206030na/3_2opasevzoomb30f32021206030na_seg.nii.gz"
+ },
+ {
+ "image": "106012/4_2opasevzoomb50f38051206030na.nii.gz",
+ "pseudo_label": "106012/4_2opasevzoomb50f38051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106012/4_2opasevzoomb50f38051206030na/4_2opasevzoomb50f38051206030na_seg.nii.gz"
+ },
+ {
+ "image": "108116/3_1opatoaqul4fc513094212040nana.nii.gz",
+ "pseudo_label": "108116/3_1opatoaqul4fc513094212040nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108116/3_1opatoaqul4fc513094212040nana/3_1opatoaqul4fc513094212040nana_seg.nii.gz"
+ },
+ {
+ "image": "108116/3_2opatoaqul4fc513109212040nana.nii.gz",
+ "pseudo_label": "108116/3_2opatoaqul4fc513109212040nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108116/3_2opatoaqul4fc513109212040nana/3_2opatoaqul4fc513109212040nana_seg.nii.gz"
+ },
+ {
+ "image": "100955/2_2opagels16bone36025140720114.nii.gz",
+ "pseudo_label": "100955/2_2opagels16bone36025140720114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100955/2_2opagels16bone36025140720114/2_2opagels16bone36025140720114_seg.nii.gz"
+ },
+ {
+ "image": "104305/2_2opasevzoomb50f36021206030na.nii.gz",
+ "pseudo_label": "104305/2_2opasevzoomb50f36021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104305/2_2opasevzoomb50f36021206030na/2_2opasevzoomb50f36021206030na_seg.nii.gz"
+ },
+ {
+ "image": "101946/2_1opagels16bone2702512000na.nii.gz",
+ "pseudo_label": "101946/2_1opagels16bone2702512000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101946/2_1opagels16bone2702512000na/2_1opagels16bone2702512000na_seg.nii.gz"
+ },
+ {
+ "image": "112202/2_0opagelsqxstandard37025120nanana.nii.gz",
+ "pseudo_label": "112202/2_0opagelsqxstandard37025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112202/2_0opagelsqxstandard37025120nanana/2_0opagelsqxstandard37025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "106025/1_1opagelsplusstandard36025120800115.nii.gz",
+ "pseudo_label": "106025/1_1opagelsplusstandard36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106025/1_1opagelsplusstandard36025120800115/1_1opagelsplusstandard36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "103039/2_0opagelsqxstandard30025120nanana.nii.gz",
+ "pseudo_label": "103039/2_0opagelsqxstandard30025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103039/2_0opagelsqxstandard30025120nanana/2_0opagelsqxstandard30025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "111642/5542_1opaphmx8000c34132120453612.nii.gz",
+ "pseudo_label": "111642/5542_1opaphmx8000c34132120453612.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111642/5542_1opaphmx8000c34132120453612/5542_1opaphmx8000c34132120453612_seg.nii.gz"
+ },
+ {
+ "image": "109731/5_1opasesen16b50f35451204530na.nii.gz",
+ "pseudo_label": "109731/5_1opasesen16b50f35451204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109731/5_1opasesen16b50f35451204530na/5_1opasesen16b50f35451204530na_seg.nii.gz"
+ },
+ {
+ "image": "109731/5_2opasesen16b30f35621204530na.nii.gz",
+ "pseudo_label": "109731/5_2opasesen16b30f35621204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109731/5_2opasesen16b30f35621204530na/5_2opasesen16b30f35621204530na_seg.nii.gz"
+ },
+ {
+ "image": "107758/2_1opagelsplusstandard34025140861nana.nii.gz",
+ "pseudo_label": "107758/2_1opagelsplusstandard34025140861nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107758/2_1opagelsplusstandard34025140861nana/2_1opagelsplusstandard34025140861nana_seg.nii.gz"
+ },
+ {
+ "image": "111230/1_2opagelspluslung34025120800115.nii.gz",
+ "pseudo_label": "111230/1_2opagelspluslung34025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111230/1_2opagelspluslung34025120800115/1_2opagelspluslung34025120800115_seg.nii.gz"
+ },
+ {
+ "image": "107341/2_0opasevzoomb50f33021206030na.nii.gz",
+ "pseudo_label": "107341/2_0opasevzoomb50f33021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107341/2_0opasevzoomb50f33021206030na/2_0opasevzoomb50f33021206030na_seg.nii.gz"
+ },
+ {
+ "image": "109135/7954_0opaphmx8000d3403212039018.nii.gz",
+ "pseudo_label": "109135/7954_0opaphmx8000d3403212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109135/7954_0opaphmx8000d3403212039018/7954_0opaphmx8000d3403212039018_seg.nii.gz"
+ },
+ {
+ "image": "106204/2_0opasesen16b30f28221206048na.nii.gz",
+ "pseudo_label": "106204/2_0opasesen16b30f28221206048na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106204/2_0opasesen16b30f28221206048na/2_0opasesen16b30f28221206048na_seg.nii.gz"
+ },
+ {
+ "image": "109965/5_1opasevzoomb30f27451206030na.nii.gz",
+ "pseudo_label": "109965/5_1opasevzoomb30f27451206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109965/5_1opasevzoomb30f27451206030na/5_1opasevzoomb30f27451206030na_seg.nii.gz"
+ },
+ {
+ "image": "105749/6_0opasesen16b30f29821206040na.nii.gz",
+ "pseudo_label": "105749/6_0opasesen16b30f29821206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105749/6_0opasesen16b30f29821206040na/6_0opasesen16b30f29821206040na_seg.nii.gz"
+ },
+ {
+ "image": "103416/7712_2opaphmx8000c3353212039018.nii.gz",
+ "pseudo_label": "103416/7712_2opaphmx8000c3353212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103416/7712_2opaphmx8000c3353212039018/7712_2opaphmx8000c3353212039018_seg.nii.gz"
+ },
+ {
+ "image": "113307/1_1opagelsplusstandard34025120800115.nii.gz",
+ "pseudo_label": "113307/1_1opagelsplusstandard34025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113307/1_1opagelsplusstandard34025120800115/1_1opagelsplusstandard34025120800115_seg.nii.gz"
+ },
+ {
+ "image": "102000/2_2opagelsqxstandard36025120640115.nii.gz",
+ "pseudo_label": "102000/2_2opagelsqxstandard36025120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102000/2_2opagelsqxstandard36025120640115/2_2opagelsqxstandard36025120640115_seg.nii.gz"
+ },
+ {
+ "image": "110461/4_2opasesen16b30f32821204530na.nii.gz",
+ "pseudo_label": "110461/4_2opasesen16b30f32821204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110461/4_2opasesen16b30f32821204530na/4_2opasesen16b30f32821204530na_seg.nii.gz"
+ },
+ {
+ "image": "110461/6_2opasesen16b60f32821204530na.nii.gz",
+ "pseudo_label": "110461/6_2opasesen16b60f32821204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110461/6_2opasesen16b60f32821204530na/6_2opasesen16b60f32821204530na_seg.nii.gz"
+ },
+ {
+ "image": "107524/5_0opasesen16b30f30021204530na.nii.gz",
+ "pseudo_label": "107524/5_0opasesen16b30f30021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107524/5_0opasesen16b30f30021204530na/5_0opasesen16b30f30021204530na_seg.nii.gz"
+ },
+ {
+ "image": "100224/3_0opagelsqxstandard3632512048015.nii.gz",
+ "pseudo_label": "100224/3_0opagelsqxstandard3632512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100224/3_0opagelsqxstandard3632512048015/3_0opagelsqxstandard3632512048015_seg.nii.gz"
+ },
+ {
+ "image": "111712/77_2opaphmx8000c3293212039018.nii.gz",
+ "pseudo_label": "111712/77_2opaphmx8000c3293212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111712/77_2opaphmx8000c3293212039018/77_2opaphmx8000c3293212039018_seg.nii.gz"
+ },
+ {
+ "image": "109142/3_2opasevzoomb50f34021207540na.nii.gz",
+ "pseudo_label": "109142/3_2opasevzoomb50f34021207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109142/3_2opasevzoomb50f34021207540na/3_2opasevzoomb50f34021207540na_seg.nii.gz"
+ },
+ {
+ "image": "107188/2_2opagels16standard3502514040014.nii.gz",
+ "pseudo_label": "107188/2_2opagels16standard3502514040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107188/2_2opagels16standard3502514040014/2_2opagels16standard3502514040014_seg.nii.gz"
+ },
+ {
+ "image": "107861/5_2opasevzoomb30f40051206030na.nii.gz",
+ "pseudo_label": "107861/5_2opasevzoomb30f40051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107861/5_2opasevzoomb30f40051206030na/5_2opasevzoomb30f40051206030na_seg.nii.gz"
+ },
+ {
+ "image": "107639/3_2opagelsqxbone35225120640115.nii.gz",
+ "pseudo_label": "107639/3_2opagelsqxbone35225120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107639/3_2opagelsqxbone35225120640115/3_2opagelsqxbone35225120640115_seg.nii.gz"
+ },
+ {
+ "image": "106647/2_1opagelsqxstandard3602512048015.nii.gz",
+ "pseudo_label": "106647/2_1opagelsqxstandard3602512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106647/2_1opagelsqxstandard3602512048015/2_1opagelsqxstandard3602512048015_seg.nii.gz"
+ },
+ {
+ "image": "106663/2_1opagelsqxstandard3502514040015.nii.gz",
+ "pseudo_label": "106663/2_1opagelsqxstandard3502514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106663/2_1opagelsqxstandard3502514040015/2_1opagelsqxstandard3502514040015_seg.nii.gz"
+ },
+ {
+ "image": "102749/3_1opasevzoomb30f37021206030na.nii.gz",
+ "pseudo_label": "102749/3_1opasevzoomb30f37021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102749/3_1opasevzoomb30f37021206030na/3_1opasevzoomb30f37021206030na_seg.nii.gz"
+ },
+ {
+ "image": "109113/2_0opasevzoomb50f360212012060na.nii.gz",
+ "pseudo_label": "109113/2_0opasevzoomb50f360212012060na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109113/2_0opasevzoomb50f360212012060na/2_0opasevzoomb50f360212012060na_seg.nii.gz"
+ },
+ {
+ "image": "106552/4_0opasevzoomb50f35021208040na.nii.gz",
+ "pseudo_label": "106552/4_0opasevzoomb50f35021208040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106552/4_0opasevzoomb50f35021208040na/4_0opasevzoomb50f35021208040na_seg.nii.gz"
+ },
+ {
+ "image": "112302/3_2opagelspr16standard2802512040014.nii.gz",
+ "pseudo_label": "112302/3_2opagelspr16standard2802512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112302/3_2opagelspr16standard2802512040014/3_2opagelspr16standard2802512040014_seg.nii.gz"
+ },
+ {
+ "image": "102808/2_1opasesen16b30f35621204032na.nii.gz",
+ "pseudo_label": "102808/2_1opasesen16b30f35621204032na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102808/2_1opasesen16b30f35621204032na/2_1opasesen16b30f35621204032na_seg.nii.gz"
+ },
+ {
+ "image": "105302/2_2opasevzoomb30f38021206030na.nii.gz",
+ "pseudo_label": "105302/2_2opasevzoomb30f38021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105302/2_2opasevzoomb30f38021206030na/2_2opasevzoomb30f38021206030na_seg.nii.gz"
+ },
+ {
+ "image": "110017/2_2opagelsqxstandard3702512048015.nii.gz",
+ "pseudo_label": "110017/2_2opagelsqxstandard3702512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110017/2_2opagelsqxstandard3702512048015/2_2opagelsqxstandard3702512048015_seg.nii.gz"
+ },
+ {
+ "image": "106800/3_1opagehsqxbone35025120560115.nii.gz",
+ "pseudo_label": "106800/3_1opagehsqxbone35025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106800/3_1opagehsqxbone35025120560115/3_1opagehsqxbone35025120560115_seg.nii.gz"
+ },
+ {
+ "image": "106811/3_1opasevzoomb50f26021206030na.nii.gz",
+ "pseudo_label": "106811/3_1opasevzoomb50f26021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106811/3_1opasevzoomb50f26021206030na/3_1opasevzoomb50f26021206030na_seg.nii.gz"
+ },
+ {
+ "image": "103519/526_1opaphmx8000d3633212039018.nii.gz",
+ "pseudo_label": "103519/526_1opaphmx8000d3633212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103519/526_1opaphmx8000d3633212039018/526_1opaphmx8000d3633212039018_seg.nii.gz"
+ },
+ {
+ "image": "105211/6_0opasevzoomb30f41421206030na.nii.gz",
+ "pseudo_label": "105211/6_0opasevzoomb30f41421206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105211/6_0opasevzoomb30f41421206030na/6_0opasevzoomb30f41421206030na_seg.nii.gz"
+ },
+ {
+ "image": "108547/3_1opagels16standard30025120600114.nii.gz",
+ "pseudo_label": "108547/3_1opagels16standard30025120600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108547/3_1opagels16standard30025120600114/3_1opagels16standard30025120600114_seg.nii.gz"
+ },
+ {
+ "image": "101190/3_0opagels16standard3792512000na.nii.gz",
+ "pseudo_label": "101190/3_0opagels16standard3792512000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101190/3_0opagels16standard3792512000na/3_0opagels16standard3792512000na_seg.nii.gz"
+ },
+ {
+ "image": "101972/2_1opasevzoomb30f34221207540na.nii.gz",
+ "pseudo_label": "101972/2_1opasevzoomb30f34221207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101972/2_1opasevzoomb30f34221207540na/2_1opasevzoomb30f34221207540na_seg.nii.gz"
+ },
+ {
+ "image": "109999/3_1opagehsqxbone31025120560115.nii.gz",
+ "pseudo_label": "109999/3_1opagehsqxbone31025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109999/3_1opagehsqxbone31025120560115/3_1opagehsqxbone31025120560115_seg.nii.gz"
+ },
+ {
+ "image": "103996/3_1opagels16bone29025120600114.nii.gz",
+ "pseudo_label": "103996/3_1opagels16bone29025120600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103996/3_1opagels16bone29025120600114/3_1opagels16bone29025120600114_seg.nii.gz"
+ },
+ {
+ "image": "108878/2_2opasesen16b30f30021204032na.nii.gz",
+ "pseudo_label": "108878/2_2opasesen16b30f30021204032na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108878/2_2opasesen16b30f30021204032na/2_2opasesen16b30f30021204032na_seg.nii.gz"
+ },
+ {
+ "image": "112583/2_1opagelsqxstandard36525120640115.nii.gz",
+ "pseudo_label": "112583/2_1opagelsqxstandard36525120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112583/2_1opagelsqxstandard36525120640115/2_1opagelsqxstandard36525120640115_seg.nii.gz"
+ },
+ {
+ "image": "112693/3_1opatoaqul4fc513418212080nana.nii.gz",
+ "pseudo_label": "112693/3_1opatoaqul4fc513418212080nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112693/3_1opatoaqul4fc513418212080nana/3_1opatoaqul4fc513418212080nana_seg.nii.gz"
+ },
+ {
+ "image": "112575/4_0opasevzoomb50f36651206030na.nii.gz",
+ "pseudo_label": "112575/4_0opasevzoomb50f36651206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112575/4_0opasevzoomb50f36651206030na/4_0opasevzoomb50f36651206030na_seg.nii.gz"
+ },
+ {
+ "image": "109906/2_0opagelsplusstandard3002514040015.nii.gz",
+ "pseudo_label": "109906/2_0opagelsplusstandard3002514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109906/2_0opagelsplusstandard3002514040015/2_0opagelsplusstandard3002514040015_seg.nii.gz"
+ },
+ {
+ "image": "101845/3_2opatoaqul4fc51300212045nana.nii.gz",
+ "pseudo_label": "101845/3_2opatoaqul4fc51300212045nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101845/3_2opatoaqul4fc51300212045nana/3_2opatoaqul4fc51300212045nana_seg.nii.gz"
+ },
+ {
+ "image": "102821/3_1opatoaqul4fc513203212050nana.nii.gz",
+ "pseudo_label": "102821/3_1opatoaqul4fc513203212050nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102821/3_1opatoaqul4fc513203212050nana/3_1opatoaqul4fc513203212050nana_seg.nii.gz"
+ },
+ {
+ "image": "108580/2_0opagels16standard3302512048014.nii.gz",
+ "pseudo_label": "108580/2_0opagels16standard3302512048014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108580/2_0opagels16standard3302512048014/2_0opagels16standard3302512048014_seg.nii.gz"
+ },
+ {
+ "image": "100530/2_0opagehsqxstandard30025120560115.nii.gz",
+ "pseudo_label": "100530/2_0opagehsqxstandard30025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100530/2_0opagehsqxstandard30025120560115/2_0opagehsqxstandard30025120560115_seg.nii.gz"
+ },
+ {
+ "image": "112697/3_0opasesen16b30f36251206040na.nii.gz",
+ "pseudo_label": "112697/3_0opasesen16b30f36251206040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112697/3_0opasesen16b30f36251206040na/3_0opasesen16b30f36251206040na_seg.nii.gz"
+ },
+ {
+ "image": "112697/4_1opasesen16b30f32021204530na.nii.gz",
+ "pseudo_label": "112697/4_1opasesen16b30f32021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112697/4_1opasesen16b30f32021204530na/4_1opasesen16b30f32021204530na_seg.nii.gz"
+ },
+ {
+ "image": "100064/3_0opatoaqul4fc512793212050nana.nii.gz",
+ "pseudo_label": "100064/3_0opatoaqul4fc512793212050nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100064/3_0opatoaqul4fc512793212050nana/3_0opatoaqul4fc512793212050nana_seg.nii.gz"
+ },
+ {
+ "image": "103685/3_0opasevzoomb30f31021206030na.nii.gz",
+ "pseudo_label": "103685/3_0opasevzoomb30f31021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103685/3_0opasevzoomb30f31021206030na/3_0opasevzoomb30f31021206030na_seg.nii.gz"
+ },
+ {
+ "image": "111047/2_2opagels16standard32025120464nana.nii.gz",
+ "pseudo_label": "111047/2_2opagels16standard32025120464nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111047/2_2opagels16standard32025120464nana/2_2opagels16standard32025120464nana_seg.nii.gz"
+ },
+ {
+ "image": "103662/2_1opagelsqxstandard3102514048015.nii.gz",
+ "pseudo_label": "103662/2_1opagelsqxstandard3102514048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103662/2_1opagelsqxstandard3102514048015/2_1opagelsqxstandard3102514048015_seg.nii.gz"
+ },
+ {
+ "image": "101483/3_2opatoaqul4fc513105212060nana.nii.gz",
+ "pseudo_label": "101483/3_2opatoaqul4fc513105212060nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101483/3_2opatoaqul4fc513105212060nana/3_2opatoaqul4fc513105212060nana_seg.nii.gz"
+ },
+ {
+ "image": "102756/2_0opagelsplusstandard3202514040015.nii.gz",
+ "pseudo_label": "102756/2_0opagelsplusstandard3202514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102756/2_0opagelsplusstandard3202514040015/2_0opagelsplusstandard3202514040015_seg.nii.gz"
+ },
+ {
+ "image": "102910/1_1opagelsplusstandard32025120800115.nii.gz",
+ "pseudo_label": "102910/1_1opagelsplusstandard32025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102910/1_1opagelsplusstandard32025120800115/1_1opagelsplusstandard32025120800115_seg.nii.gz"
+ },
+ {
+ "image": "112474/2_0opagehsqxstandard37025120560115.nii.gz",
+ "pseudo_label": "112474/2_0opagehsqxstandard37025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112474/2_0opagehsqxstandard37025120560115/2_0opagehsqxstandard37025120560115_seg.nii.gz"
+ },
+ {
+ "image": "112707/3_2opasevzoomb50f34421207540na.nii.gz",
+ "pseudo_label": "112707/3_2opasevzoomb50f34421207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112707/3_2opasevzoomb50f34421207540na/3_2opasevzoomb50f34421207540na_seg.nii.gz"
+ },
+ {
+ "image": "108279/5_1opasevzoomb30f35851206030na.nii.gz",
+ "pseudo_label": "108279/5_1opasevzoomb30f35851206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108279/5_1opasevzoomb30f35851206030na/5_1opasevzoomb30f35851206030na_seg.nii.gz"
+ },
+ {
+ "image": "108279/4_1opasevzoomb50f35851206030na.nii.gz",
+ "pseudo_label": "108279/4_1opasevzoomb50f35851206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108279/4_1opasevzoomb50f35851206030na/4_1opasevzoomb50f35851206030na_seg.nii.gz"
+ },
+ {
+ "image": "103680/2_0opagels16bone34025120600114.nii.gz",
+ "pseudo_label": "103680/2_0opagels16bone34025120600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103680/2_0opagels16bone34025120600114/2_0opagels16bone34025120600114_seg.nii.gz"
+ },
+ {
+ "image": "105676/2_2opasevzoomb50f33021206030na.nii.gz",
+ "pseudo_label": "105676/2_2opasevzoomb50f33021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105676/2_2opasevzoomb50f33021206030na/2_2opasevzoomb50f33021206030na_seg.nii.gz"
+ },
+ {
+ "image": "110519/1_1opagelsplusstandard39025120800115.nii.gz",
+ "pseudo_label": "110519/1_1opagelsplusstandard39025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110519/1_1opagelsplusstandard39025120800115/1_1opagelsplusstandard39025120800115_seg.nii.gz"
+ },
+ {
+ "image": "108936/5_0opasevzoomb30f36051206030na.nii.gz",
+ "pseudo_label": "108936/5_0opasevzoomb30f36051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108936/5_0opasevzoomb30f36051206030na/5_0opasevzoomb30f36051206030na_seg.nii.gz"
+ },
+ {
+ "image": "108936/3_1opasevzoomb50f39021206030na.nii.gz",
+ "pseudo_label": "108936/3_1opasevzoomb50f39021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108936/3_1opasevzoomb50f39021206030na/3_1opasevzoomb50f39021206030na_seg.nii.gz"
+ },
+ {
+ "image": "111202/2_1opagelsplusstandard27425120600115.nii.gz",
+ "pseudo_label": "111202/2_1opagelsplusstandard27425120600115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111202/2_1opagelsplusstandard27425120600115/2_1opagelsplusstandard27425120600115_seg.nii.gz"
+ },
+ {
+ "image": "105996/1_0opagelsplusstandard33025120800108.nii.gz",
+ "pseudo_label": "105996/1_0opagelsplusstandard33025120800108.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105996/1_0opagelsplusstandard33025120800108/1_0opagelsplusstandard33025120800108_seg.nii.gz"
+ },
+ {
+ "image": "111438/4_2opasesen16b30f33821204530na.nii.gz",
+ "pseudo_label": "111438/4_2opasesen16b30f33821204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111438/4_2opasesen16b30f33821204530na/4_2opasesen16b30f33821204530na_seg.nii.gz"
+ },
+ {
+ "image": "101536/2_1opagels16bone36025120560114.nii.gz",
+ "pseudo_label": "101536/2_1opagels16bone36025120560114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101536/2_1opagels16bone36025120560114/2_1opagels16bone36025120560114_seg.nii.gz"
+ },
+ {
+ "image": "100856/2_0opagelsplusstandard3202514040015.nii.gz",
+ "pseudo_label": "100856/2_0opagelsplusstandard3202514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100856/2_0opagelsplusstandard3202514040015/2_0opagelsplusstandard3202514040015_seg.nii.gz"
+ },
+ {
+ "image": "111204/3_0opasevzoomb30f35021206030na.nii.gz",
+ "pseudo_label": "111204/3_0opasevzoomb30f35021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111204/3_0opasevzoomb30f35021206030na/3_0opasevzoomb30f35021206030na_seg.nii.gz"
+ },
+ {
+ "image": "102023/5_0opasevzoomb30f370212012060na.nii.gz",
+ "pseudo_label": "102023/5_0opasevzoomb30f370212012060na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102023/5_0opasevzoomb30f370212012060na/5_0opasevzoomb30f370212012060na_seg.nii.gz"
+ },
+ {
+ "image": "108316/3_0opagels16standard33025140600114.nii.gz",
+ "pseudo_label": "108316/3_0opagels16standard33025140600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108316/3_0opagels16standard33025140600114/3_0opagels16standard33025140600114_seg.nii.gz"
+ },
+ {
+ "image": "110265/2_0opasevzoomb50f32021206030na.nii.gz",
+ "pseudo_label": "110265/2_0opasevzoomb50f32021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110265/2_0opasevzoomb50f32021206030na/2_0opasevzoomb50f32021206030na_seg.nii.gz"
+ },
+ {
+ "image": "109107/2_0opagelsplusstandard33025140400na.nii.gz",
+ "pseudo_label": "109107/2_0opagelsplusstandard33025140400na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109107/2_0opagelsplusstandard33025140400na/2_0opagelsplusstandard33025140400na_seg.nii.gz"
+ },
+ {
+ "image": "109445/2_1opagels16bone3522512000na.nii.gz",
+ "pseudo_label": "109445/2_1opagels16bone3522512000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109445/2_1opagels16bone3522512000na/2_1opagels16bone3522512000na_seg.nii.gz"
+ },
+ {
+ "image": "108178/2_2opagehsqxstandard31025120560115.nii.gz",
+ "pseudo_label": "108178/2_2opagehsqxstandard31025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108178/2_2opagehsqxstandard31025120560115/2_2opagehsqxstandard31025120560115_seg.nii.gz"
+ },
+ {
+ "image": "100877/4_0opasevzoomb50f40021207540na.nii.gz",
+ "pseudo_label": "100877/4_0opasevzoomb50f40021207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100877/4_0opasevzoomb50f40021207540na/4_0opasevzoomb50f40021207540na_seg.nii.gz"
+ },
+ {
+ "image": "102522/3_2opatoaqul4fc513094212040nana.nii.gz",
+ "pseudo_label": "102522/3_2opatoaqul4fc513094212040nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102522/3_2opatoaqul4fc513094212040nana/3_2opatoaqul4fc513094212040nana_seg.nii.gz"
+ },
+ {
+ "image": "104136/2_0opasesen16b30f35021204032na.nii.gz",
+ "pseudo_label": "104136/2_0opasesen16b30f35021204032na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104136/2_0opasesen16b30f35021204032na/2_0opasesen16b30f35021204032na_seg.nii.gz"
+ },
+ {
+ "image": "106884/2_2opasevzoomb30f37621207540na.nii.gz",
+ "pseudo_label": "106884/2_2opasevzoomb30f37621207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106884/2_2opasevzoomb30f37621207540na/2_2opasevzoomb30f37621207540na_seg.nii.gz"
+ },
+ {
+ "image": "105843/3_2opasesen16b30f38021204530na.nii.gz",
+ "pseudo_label": "105843/3_2opasesen16b30f38021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105843/3_2opasesen16b30f38021204530na/3_2opasesen16b30f38021204530na_seg.nii.gz"
+ },
+ {
+ "image": "105905/3_0opagels16standard36025120800114.nii.gz",
+ "pseudo_label": "105905/3_0opagels16standard36025120800114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105905/3_0opagels16standard36025120800114/3_0opagels16standard36025120800114_seg.nii.gz"
+ },
+ {
+ "image": "105778/3_1opagels16standard40025120600114.nii.gz",
+ "pseudo_label": "105778/3_1opagels16standard40025120600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105778/3_1opagels16standard40025120600114/3_1opagels16standard40025120600114_seg.nii.gz"
+ },
+ {
+ "image": "105304/6_0opasevzoomb30f38021206030na.nii.gz",
+ "pseudo_label": "105304/6_0opasevzoomb30f38021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105304/6_0opasevzoomb30f38021206030na/6_0opasevzoomb30f38021206030na_seg.nii.gz"
+ },
+ {
+ "image": "110279/3_2opasevzoomb50f35421207540na.nii.gz",
+ "pseudo_label": "110279/3_2opasevzoomb50f35421207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110279/3_2opasevzoomb50f35421207540na/3_2opasevzoomb50f35421207540na_seg.nii.gz"
+ },
+ {
+ "image": "103528/2_1opasevzoomb30f38021207540na.nii.gz",
+ "pseudo_label": "103528/2_1opasevzoomb30f38021207540na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103528/2_1opasevzoomb30f38021207540na/2_1opasevzoomb30f38021207540na_seg.nii.gz"
+ },
+ {
+ "image": "107921/2_2opagelsqxstandard3602514048015.nii.gz",
+ "pseudo_label": "107921/2_2opagelsqxstandard3602514048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107921/2_2opagelsqxstandard3602514048015/2_2opagelsqxstandard3602514048015_seg.nii.gz"
+ },
+ {
+ "image": "103540/2_1opasevzoomb30f36021208040na.nii.gz",
+ "pseudo_label": "103540/2_1opasevzoomb30f36021208040na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103540/2_1opasevzoomb30f36021208040na/2_1opasevzoomb30f36021208040na_seg.nii.gz"
+ },
+ {
+ "image": "107695/2_2opagelsqxstandard32725120640115.nii.gz",
+ "pseudo_label": "107695/2_2opagelsqxstandard32725120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107695/2_2opagelsqxstandard32725120640115/2_2opagelsqxstandard32725120640115_seg.nii.gz"
+ },
+ {
+ "image": "106509/5_1opasesen16b30f33021204530na.nii.gz",
+ "pseudo_label": "106509/5_1opasesen16b30f33021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106509/5_1opasesen16b30f33021204530na/5_1opasesen16b30f33021204530na_seg.nii.gz"
+ },
+ {
+ "image": "109442/4_1opasevzoomb50f35251206030na.nii.gz",
+ "pseudo_label": "109442/4_1opasevzoomb50f35251206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109442/4_1opasevzoomb50f35251206030na/4_1opasevzoomb50f35251206030na_seg.nii.gz"
+ },
+ {
+ "image": "104623/2_2opasesen16b50f35021204530na.nii.gz",
+ "pseudo_label": "104623/2_2opasesen16b50f35021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104623/2_2opasesen16b50f35021204530na/2_2opasesen16b50f35021204530na_seg.nii.gz"
+ },
+ {
+ "image": "103495/2_0opasevzoomb50f31021206030na.nii.gz",
+ "pseudo_label": "103495/2_0opasevzoomb50f31021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103495/2_0opasevzoomb50f31021206030na/2_0opasevzoomb50f31021206030na_seg.nii.gz"
+ },
+ {
+ "image": "108729/3_2opasesen16b30f33551204530na.nii.gz",
+ "pseudo_label": "108729/3_2opasesen16b30f33551204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108729/3_2opasesen16b30f33551204530na/3_2opasesen16b30f33551204530na_seg.nii.gz"
+ },
+ {
+ "image": "111221/2_0opasevzoomb30f33021206030na.nii.gz",
+ "pseudo_label": "111221/2_0opasevzoomb30f33021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111221/2_0opasevzoomb30f33021206030na/2_0opasevzoomb30f33021206030na_seg.nii.gz"
+ },
+ {
+ "image": "102899/3_1opasevzoomb50f38021206030na.nii.gz",
+ "pseudo_label": "102899/3_1opasevzoomb50f38021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102899/3_1opasevzoomb50f38021206030na/3_1opasevzoomb50f38021206030na_seg.nii.gz"
+ },
+ {
+ "image": "113170/5_2opasevzoomb30f29051206030na.nii.gz",
+ "pseudo_label": "113170/5_2opasevzoomb30f29051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113170/5_2opasevzoomb30f29051206030na/5_2opasevzoomb30f29051206030na_seg.nii.gz"
+ },
+ {
+ "image": "101271/2_1opasesen16b30f34221204032na.nii.gz",
+ "pseudo_label": "101271/2_1opasesen16b30f34221204032na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101271/2_1opasesen16b30f34221204032na/2_1opasesen16b30f34221204032na_seg.nii.gz"
+ },
+ {
+ "image": "100783/2_2opagehsqxstandard35025120560115.nii.gz",
+ "pseudo_label": "100783/2_2opagehsqxstandard35025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100783/2_2opagehsqxstandard35025120560115/2_2opagehsqxstandard35025120560115_seg.nii.gz"
+ },
+ {
+ "image": "104436/2_2opagelsqxstandard2602512048015.nii.gz",
+ "pseudo_label": "104436/2_2opagelsqxstandard2602512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104436/2_2opagelsqxstandard2602512048015/2_2opagelsqxstandard2602512048015_seg.nii.gz"
+ },
+ {
+ "image": "105054/3_2opagelspr16standard39025120640114.nii.gz",
+ "pseudo_label": "105054/3_2opagelspr16standard39025120640114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105054/3_2opagelspr16standard39025120640114/3_2opagelspr16standard39025120640114_seg.nii.gz"
+ },
+ {
+ "image": "109801/5_2opasevzoomb50f38021206030na.nii.gz",
+ "pseudo_label": "109801/5_2opasevzoomb50f38021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109801/5_2opasevzoomb50f38021206030na/5_2opasevzoomb50f38021206030na_seg.nii.gz"
+ },
+ {
+ "image": "109801/5_1opasesen16b50f36251204530na.nii.gz",
+ "pseudo_label": "109801/5_1opasesen16b50f36251204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109801/5_1opasesen16b50f36251204530na/5_1opasesen16b50f36251204530na_seg.nii.gz"
+ },
+ {
+ "image": "102332/3_0opagelsqxbone31925120640115.nii.gz",
+ "pseudo_label": "102332/3_0opagelsqxbone31925120640115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102332/3_0opagelsqxbone31925120640115/3_0opagelsqxbone31925120640115_seg.nii.gz"
+ },
+ {
+ "image": "112000/3_0opagelsqxbone36425120720115.nii.gz",
+ "pseudo_label": "112000/3_0opagelsqxbone36425120720115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112000/3_0opagelsqxbone36425120720115/3_0opagelsqxbone36425120720115_seg.nii.gz"
+ },
+ {
+ "image": "101470/2_0opagelsqxstandard3322514040015.nii.gz",
+ "pseudo_label": "101470/2_0opagelsqxstandard3322514040015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101470/2_0opagelsqxstandard3322514040015/2_0opagelsqxstandard3322514040015_seg.nii.gz"
+ },
+ {
+ "image": "111604/3_0opasesen16b30f38451204530na.nii.gz",
+ "pseudo_label": "111604/3_0opasesen16b30f38451204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111604/3_0opasesen16b30f38451204530na/3_0opasesen16b30f38451204530na_seg.nii.gz"
+ },
+ {
+ "image": "111604/3_1opasesen16b30f35851204530na.nii.gz",
+ "pseudo_label": "111604/3_1opasesen16b30f35851204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111604/3_1opasesen16b30f35851204530na/3_1opasesen16b30f35851204530na_seg.nii.gz"
+ },
+ {
+ "image": "105805/2_1opagehsqxstandard32025120560115.nii.gz",
+ "pseudo_label": "105805/2_1opagehsqxstandard32025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105805/2_1opagehsqxstandard32025120560115/2_1opagehsqxstandard32025120560115_seg.nii.gz"
+ },
+ {
+ "image": "109414/2_2opagels16standard31025120500114.nii.gz",
+ "pseudo_label": "109414/2_2opagels16standard31025120500114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109414/2_2opagels16standard31025120500114/2_2opagels16standard31025120500114_seg.nii.gz"
+ },
+ {
+ "image": "109566/5_1opasesen16b50f30851204530na.nii.gz",
+ "pseudo_label": "109566/5_1opasesen16b50f30851204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109566/5_1opasesen16b50f30851204530na/5_1opasesen16b50f30851204530na_seg.nii.gz"
+ },
+ {
+ "image": "107744/6239_1opaphmx8000c30532120453612.nii.gz",
+ "pseudo_label": "107744/6239_1opaphmx8000c30532120453612.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107744/6239_1opaphmx8000c30532120453612/6239_1opaphmx8000c30532120453612_seg.nii.gz"
+ },
+ {
+ "image": "100205/4715_1opaphmx8000d3503212039018.nii.gz",
+ "pseudo_label": "100205/4715_1opaphmx8000d3503212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100205/4715_1opaphmx8000d3503212039018/4715_1opaphmx8000d3503212039018_seg.nii.gz"
+ },
+ {
+ "image": "103866/102_1osagehsqxstandard33025120560115.nii.gz",
+ "pseudo_label": "103866/102_1osagehsqxstandard33025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103866/102_1osagehsqxstandard33025120560115/102_1osagehsqxstandard33025120560115_seg.nii.gz"
+ },
+ {
+ "image": "102704/2_0opagelsqxstandard3292514048015.nii.gz",
+ "pseudo_label": "102704/2_0opagelsqxstandard3292514048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102704/2_0opagelsqxstandard3292514048015/2_0opagelsqxstandard3292514048015_seg.nii.gz"
+ },
+ {
+ "image": "102896/0_0opaphmx8000c33632120600112.nii.gz",
+ "pseudo_label": "102896/0_0opaphmx8000c33632120600112.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102896/0_0opaphmx8000c33632120600112/0_0opaphmx8000c33632120600112_seg.nii.gz"
+ },
+ {
+ "image": "113153/3_2opasesen16b30f32051204530na.nii.gz",
+ "pseudo_label": "113153/3_2opasesen16b30f32051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/113153/3_2opasesen16b30f32051204530na/3_2opasesen16b30f32051204530na_seg.nii.gz"
+ },
+ {
+ "image": "106948/4_0opatoaqul4fc512891212040nana.nii.gz",
+ "pseudo_label": "106948/4_0opatoaqul4fc512891212040nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106948/4_0opatoaqul4fc512891212040nana/4_0opatoaqul4fc512891212040nana_seg.nii.gz"
+ },
+ {
+ "image": "100480/1_2opagelsplusstandard34025120800115.nii.gz",
+ "pseudo_label": "100480/1_2opagelsplusstandard34025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100480/1_2opagelsplusstandard34025120800115/1_2opagelsplusstandard34025120800115_seg.nii.gz"
+ },
+ {
+ "image": "110109/7239_2opaphmx8000c3193212039018.nii.gz",
+ "pseudo_label": "110109/7239_2opaphmx8000c3193212039018.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110109/7239_2opaphmx8000c3193212039018/7239_2opaphmx8000c3193212039018_seg.nii.gz"
+ },
+ {
+ "image": "104008/2_0opagehsqxstandard36025120560115.nii.gz",
+ "pseudo_label": "104008/2_0opagehsqxstandard36025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/104008/2_0opagehsqxstandard36025120560115/2_0opagehsqxstandard36025120560115_seg.nii.gz"
+ },
+ {
+ "image": "101477/2_0opasevzoomb50f31021206030na.nii.gz",
+ "pseudo_label": "101477/2_0opasevzoomb50f31021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101477/2_0opasevzoomb50f31021206030na/2_0opasevzoomb50f31021206030na_seg.nii.gz"
+ },
+ {
+ "image": "109648/3_1opasevzoomb30f33621206030na.nii.gz",
+ "pseudo_label": "109648/3_1opasevzoomb30f33621206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109648/3_1opasevzoomb30f33621206030na/3_1opasevzoomb30f33621206030na_seg.nii.gz"
+ },
+ {
+ "image": "108461/2_0opagelsqxstandard2702512048015.nii.gz",
+ "pseudo_label": "108461/2_0opagelsqxstandard2702512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108461/2_0opagelsqxstandard2702512048015/2_0opagelsqxstandard2702512048015_seg.nii.gz"
+ },
+ {
+ "image": "110943/2_2opasesen16b50f31021204530na.nii.gz",
+ "pseudo_label": "110943/2_2opasesen16b50f31021204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/110943/2_2opasesen16b50f31021204530na/2_2opasesen16b50f31021204530na_seg.nii.gz"
+ },
+ {
+ "image": "106970/3_0opasevzoomb50f330512012060na.nii.gz",
+ "pseudo_label": "106970/3_0opasevzoomb50f330512012060na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106970/3_0opasevzoomb50f330512012060na/3_0opasevzoomb50f330512012060na_seg.nii.gz"
+ },
+ {
+ "image": "105459/2_1opagelsplusstandard36025140nanana.nii.gz",
+ "pseudo_label": "105459/2_1opagelsplusstandard36025140nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105459/2_1opagelsplusstandard36025140nanana/2_1opagelsplusstandard36025140nanana_seg.nii.gz"
+ },
+ {
+ "image": "106205/2_0opagelsqxbone3302512048015.nii.gz",
+ "pseudo_label": "106205/2_0opagelsqxbone3302512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106205/2_0opagelsqxbone3302512048015/2_0opagelsqxbone3302512048015_seg.nii.gz"
+ },
+ {
+ "image": "109147/2_0opagels16bone32025120600114.nii.gz",
+ "pseudo_label": "109147/2_0opagels16bone32025120600114.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109147/2_0opagels16bone32025120600114/2_0opagels16bone32025120600114_seg.nii.gz"
+ },
+ {
+ "image": "112886/4_0opasevzoomb50f38051206030na.nii.gz",
+ "pseudo_label": "112886/4_0opasevzoomb50f38051206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112886/4_0opasevzoomb50f38051206030na/4_0opasevzoomb50f38051206030na_seg.nii.gz"
+ },
+ {
+ "image": "111984/2_0opasevzoomb50f33021206030na.nii.gz",
+ "pseudo_label": "111984/2_0opasevzoomb50f33021206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/111984/2_0opasevzoomb50f33021206030na/2_0opasevzoomb50f33021206030na_seg.nii.gz"
+ },
+ {
+ "image": "103462/2_1opagels16standard28025120nanana.nii.gz",
+ "pseudo_label": "103462/2_1opagels16standard28025120nanana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103462/2_1opagels16standard28025120nanana/2_1opagels16standard28025120nanana_seg.nii.gz"
+ },
+ {
+ "image": "105129/2_1opagels16bone3302512040014.nii.gz",
+ "pseudo_label": "105129/2_1opagels16bone3302512040014.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105129/2_1opagels16bone3302512040014/2_1opagels16bone3302512040014_seg.nii.gz"
+ },
+ {
+ "image": "101725/2_0opagehsqxstandard29025120560115.nii.gz",
+ "pseudo_label": "101725/2_0opagehsqxstandard29025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/101725/2_0opagehsqxstandard29025120560115/2_0opagehsqxstandard29025120560115_seg.nii.gz"
+ },
+ {
+ "image": "102434/2_0opagelsqxstandard3102512048015.nii.gz",
+ "pseudo_label": "102434/2_0opagelsqxstandard3102512048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/102434/2_0opagelsqxstandard3102512048015/2_0opagelsqxstandard3102512048015_seg.nii.gz"
+ },
+ {
+ "image": "103923/2_1opagelsplusstandard3742514000na.nii.gz",
+ "pseudo_label": "103923/2_1opagelsplusstandard3742514000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/103923/2_1opagelsplusstandard3742514000na/2_1opagelsplusstandard3742514000na_seg.nii.gz"
+ },
+ {
+ "image": "105915/4_2opasesen16b30f34051204530na.nii.gz",
+ "pseudo_label": "105915/4_2opasesen16b30f34051204530na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105915/4_2opasesen16b30f34051204530na/4_2opasesen16b30f34051204530na_seg.nii.gz"
+ },
+ {
+ "image": "107186/2_0opagelsqxstandard3282514000na.nii.gz",
+ "pseudo_label": "107186/2_0opagelsqxstandard3282514000na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/107186/2_0opagelsqxstandard3282514000na/2_0opagelsqxstandard3282514000na_seg.nii.gz"
+ },
+ {
+ "image": "106181/1_1opagelsplusstandard36025120800115.nii.gz",
+ "pseudo_label": "106181/1_1opagelsplusstandard36025120800115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/106181/1_1opagelsplusstandard36025120800115/1_1opagelsplusstandard36025120800115_seg.nii.gz"
+ },
+ {
+ "image": "109143/4_1opasevzoomb50f28851206030na.nii.gz",
+ "pseudo_label": "109143/4_1opasevzoomb50f28851206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109143/4_1opasevzoomb50f28851206030na/4_1opasevzoomb50f28851206030na_seg.nii.gz"
+ },
+ {
+ "image": "109143/6_1opasevzoomb30f28821206030na.nii.gz",
+ "pseudo_label": "109143/6_1opasevzoomb30f28821206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109143/6_1opasevzoomb30f28821206030na/6_1opasevzoomb30f28821206030na_seg.nii.gz"
+ },
+ {
+ "image": "109725/3_0opasevzoomb30f45251206030na.nii.gz",
+ "pseudo_label": "109725/3_0opasevzoomb30f45251206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/109725/3_0opasevzoomb30f45251206030na/3_0opasevzoomb30f45251206030na_seg.nii.gz"
+ },
+ {
+ "image": "105358/2_1opagehsqxstandard30025120560115.nii.gz",
+ "pseudo_label": "105358/2_1opagehsqxstandard30025120560115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105358/2_1opagehsqxstandard30025120560115/2_1opagehsqxstandard30025120560115_seg.nii.gz"
+ },
+ {
+ "image": "112808/2_1opagelsqxstandard32725120720115.nii.gz",
+ "pseudo_label": "112808/2_1opagelsqxstandard32725120720115.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/112808/2_1opagelsqxstandard32725120720115/2_1opagelsqxstandard32725120720115_seg.nii.gz"
+ },
+ {
+ "image": "105010/1_1opatoaqul4fc103301312080nana.nii.gz",
+ "pseudo_label": "105010/1_1opatoaqul4fc103301312080nana.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/105010/1_1opatoaqul4fc103301312080nana/1_1opatoaqul4fc103301312080nana_seg.nii.gz"
+ },
+ {
+ "image": "100282/5_2opasevzoomb50f28721206030na.nii.gz",
+ "pseudo_label": "100282/5_2opasevzoomb50f28721206030na.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/100282/5_2opasevzoomb50f28721206030na/5_2opasevzoomb50f28721206030na_seg.nii.gz"
+ },
+ {
+ "image": "108698/1_0opagelspluslung36025120800108.nii.gz",
+ "pseudo_label": "108698/1_0opagelspluslung36025120800108.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108698/1_0opagelspluslung36025120800108/1_0opagelspluslung36025120800108_seg.nii.gz"
+ },
+ {
+ "image": "108470/2_0opagelsqxstandard2852514048015.nii.gz",
+ "pseudo_label": "108470/2_0opagelsqxstandard2852514048015.nii.gz",
+ "dataset": "/data/NLST/NLST",
+ "region": "/data/NLST/chest",
+ "label_sv": "/workspace_infer/supervoxel_sam/nlst/108470/2_0opagelsqxstandard2852514048015/2_0opagelsqxstandard2852514048015_seg.nii.gz"
+ }
+ ],
+ "training_transform": [
+ {
+ "_target_": "RandCropByLabelClassesd",
+ "keys": [
+ "@image_key",
+ "@label_key",
+ "@pseudo_label_key",
+ "@label_sv_key"
+ ],
+ "label_key": "@pseudo_label_key",
+ "num_classes": 133,
+ "num_samples": "@num_patches_per_image",
+ "spatial_size": "@patch_size",
+ "ratios": "$tuple(float(i >= 0) for i in range(133))",
+ "warn": false,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandZoomd",
+ "keys": [
+ "@image_key",
+ "@label_key",
+ "@pseudo_label_key",
+ "@label_sv_key"
+ ],
+ "min_zoom": 0.8,
+ "max_zoom": 1.2,
+ "mode": [
+ "trilinear",
+ "nearest",
+ "nearest",
+ "nearest"
+ ],
+ "prob": 0.2,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandSimulateLowResolutiond",
+ "keys": [
+ "@image_key"
+ ],
+ "zoom_range": [
+ 0.3,
+ 1
+ ],
+ "prob": 0.2,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandGaussianSmoothd",
+ "keys": [
+ "@image_key"
+ ],
+ "prob": 0.2,
+ "sigma_x": [
+ 0.5,
+ 1.0
+ ],
+ "sigma_y": [
+ 0.5,
+ 1.0
+ ],
+ "sigma_z": [
+ 0.5,
+ 1.0
+ ]
+ },
+ {
+ "_target_": "RandScaleIntensityd",
+ "keys": [
+ "@image_key"
+ ],
+ "factors": 0.1,
+ "prob": 0.2
+ },
+ {
+ "_target_": "RandShiftIntensityd",
+ "keys": [
+ "@image_key"
+ ],
+ "offsets": 0.1,
+ "prob": 0.2
+ },
+ {
+ "_target_": "RandGaussianNoised",
+ "keys": [
+ "@image_key"
+ ],
+ "prob": 0.2,
+ "mean": 0.0,
+ "std": 0.2
+ }
+ ]
+}
diff --git a/vista3d/data/jsons/Pancreas-CT_5_folds.json b/vista3d/data/jsons/Pancreas-CT_5_folds.json
new file mode 100644
index 0000000..81772c5
--- /dev/null
+++ b/vista3d/data/jsons/Pancreas-CT_5_folds.json
@@ -0,0 +1,667 @@
+{
+ "training": [
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0008.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0008.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0008.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0019.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0019.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0019.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0068.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0068.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0068.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0067.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0067.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0067.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0031.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0031.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0031.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0072.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0072.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0072.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0005.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0005.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0005.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0006.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0006.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0006.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0014.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0014.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0014.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0017.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0017.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0017.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0002.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0002.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0002.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0079.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0079.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0079.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0028.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0028.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0028.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0004.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0004.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0004.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0004/PANCREAS_0004_seg.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0077.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0077.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0077.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0077/PANCREAS_0077_seg.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0020.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0020.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0020.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0020/PANCREAS_0020_seg.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0054.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0054.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0054.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0054/PANCREAS_0054_seg.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0052.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0052.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0052.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0052/PANCREAS_0052_seg.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0081.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0081.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0081.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0081/PANCREAS_0081_seg.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0034.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0034.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0034.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0034/PANCREAS_0034_seg.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0041.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0041.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0041.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0041/PANCREAS_0041_seg.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0033.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0033.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0033.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0033/PANCREAS_0033_seg.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0001.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0001.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0001.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0001/PANCREAS_0001_seg.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0064.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0064.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0064.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0064/PANCREAS_0064_seg.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0040.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0040.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0040.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0040/PANCREAS_0040_seg.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0011.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0011.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0011.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0011/PANCREAS_0011_seg.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0059.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0059.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0059.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0059/PANCREAS_0059_seg.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0046.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0046.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0046.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0046/PANCREAS_0046_seg.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0024.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0024.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0024.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0024/PANCREAS_0024_seg.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0039.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0039.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0039.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0039/PANCREAS_0039_seg.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0074.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0074.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0074.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0074/PANCREAS_0074_seg.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0010.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0010.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0010.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0010/PANCREAS_0010_seg.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0012.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0012.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0012.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0012/PANCREAS_0012_seg.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0078.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0078.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0078.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0078/PANCREAS_0078_seg.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0066.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0066.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0066.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0066/PANCREAS_0066_seg.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0003.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0003.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0003.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0003/PANCREAS_0003_seg.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0071.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0071.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0071.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0071/PANCREAS_0071_seg.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0026.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0026.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0026.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0026/PANCREAS_0026_seg.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0063.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0063.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0063.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0063/PANCREAS_0063_seg.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0069.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0069.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0069.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0069/PANCREAS_0069_seg.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0042.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0042.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0042.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0042/PANCREAS_0042_seg.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0037.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0037.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0037.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0053.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0053.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0053.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0053/PANCREAS_0053_seg.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0050.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0050.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0050.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0050/PANCREAS_0050_seg.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0007.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0007.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0007.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0007/PANCREAS_0007_seg.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0009.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0009.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0009.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0009/PANCREAS_0009_seg.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0049.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0049.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0049.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0049/PANCREAS_0049_seg.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0036.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0036.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0036.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0036/PANCREAS_0036_seg.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0051.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0051.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0051.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0051/PANCREAS_0051_seg.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0035.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0035.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0035.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0035/PANCREAS_0035_seg.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0061.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0061.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0061.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0061/PANCREAS_0061_seg.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0013.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0013.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0013.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0013/PANCREAS_0013_seg.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0057.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0057.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0057.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0057/PANCREAS_0057_seg.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0015.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0015.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0015.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0015/PANCREAS_0015_seg.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0055.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0055.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0055.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0055/PANCREAS_0055_seg.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0030.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0030.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0030.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0030/PANCREAS_0030_seg.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0062.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0062.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0062.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0062/PANCREAS_0062_seg.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0021.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0021.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0021.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0021/PANCREAS_0021_seg.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0038.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0038.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0038.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0038/PANCREAS_0038_seg.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0065.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0065.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0065.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0065/PANCREAS_0065_seg.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0032.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0032.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0032.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0032/PANCREAS_0032_seg.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0016.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0016.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0016.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0016/PANCREAS_0016_seg.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0080.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0080.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0080.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0080/PANCREAS_0080_seg.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0023.nii.gz",
+ "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0023.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0023.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0023/PANCREAS_0023_seg.nii.gz"
+ }
+ ],
+ "training_transform": [
+ {
+ "_target_": "RandCropByLabelClassesd",
+ "keys": [
+ "@image_key",
+ "@label_key",
+ "@pseudo_label_key",
+ "@label_sv_key"
+ ],
+ "label_key": "@pseudo_label_key",
+ "num_classes": 133,
+ "num_samples": "@num_patches_per_image",
+ "spatial_size": "@patch_size",
+ "ratios": "$tuple(float(i >= 0) for i in range(133))",
+ "warn": false,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandZoomd",
+ "keys": [
+ "@image_key",
+ "@label_key",
+ "@pseudo_label_key",
+ "@label_sv_key"
+ ],
+ "min_zoom": 0.8,
+ "max_zoom": 1.2,
+ "mode": [
+ "trilinear",
+ "nearest",
+ "nearest",
+ "nearest"
+ ],
+ "prob": 0.2,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandSimulateLowResolutiond",
+ "keys": [
+ "@image_key"
+ ],
+ "zoom_range": [
+ 0.3,
+ 1
+ ],
+ "prob": 0.2,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandGaussianSmoothd",
+ "keys": [
+ "@image_key"
+ ],
+ "prob": 0.2,
+ "sigma_x": [
+ 0.5,
+ 1.0
+ ],
+ "sigma_y": [
+ 0.5,
+ 1.0
+ ],
+ "sigma_z": [
+ 0.5,
+ 1.0
+ ]
+ },
+ {
+ "_target_": "RandScaleIntensityd",
+ "keys": [
+ "@image_key"
+ ],
+ "factors": 0.1,
+ "prob": 0.2
+ },
+ {
+ "_target_": "RandShiftIntensityd",
+ "keys": [
+ "@image_key"
+ ],
+ "offsets": 0.1,
+ "prob": 0.2
+ },
+ {
+ "_target_": "RandGaussianNoised",
+ "keys": [
+ "@image_key"
+ ],
+ "prob": 0.2,
+ "mean": 0.0,
+ "std": 0.2
+ }
+ ],
+ "label_dict": {
+ "1": "pancreas"
+ },
+ "original_label_dict": {
+ "1": "pancreas"
+ },
+ "testing": [
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0082.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0082.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0060.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0060.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0073.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0073.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0043.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0043.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0058.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0058.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0027.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0027.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0076.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0076.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0075.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0075.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0018.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0018.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0056.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0056.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0044.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0044.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0029.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0029.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0045.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0045.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0048.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0048.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0047.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0047.nii.gz"
+ },
+ {
+ "image": "manifest-1599750808610/nifti/PANCREAS_0022.nii.gz",
+ "label": "TCIA_pancreas_labels-02-05-2017/label0022.nii.gz"
+ }
+ ]
+}
diff --git a/vista3d/data/jsons/StonyBrook-CT_5_folds.json b/vista3d/data/jsons/StonyBrook-CT_5_folds.json
new file mode 100644
index 0000000..bb8614d
--- /dev/null
+++ b/vista3d/data/jsons/StonyBrook-CT_5_folds.json
@@ -0,0 +1,9008 @@
+{
+ "training": [
+ {
+ "image": "A724565/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A724565/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A724565/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A574632/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A574632/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A574632/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A574632/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A574632/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A574632/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A574632/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A574632/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A574632/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A943106/2_abdpel_25_mm.nii.gz",
+ "pseudo_label": "A943106/2_abdpel_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A943106/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A981814/2_body_50.nii.gz",
+ "pseudo_label": "A981814/2_body_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A981814/2_body_50/2_body_50_seg.nii.gz"
+ },
+ {
+ "image": "A981814/4_lung_10.nii.gz",
+ "pseudo_label": "A981814/4_lung_10.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A981814/4_lung_10/4_lung_10_seg.nii.gz"
+ },
+ {
+ "image": "A981814/3_lung_50.nii.gz",
+ "pseudo_label": "A981814/3_lung_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A981814/3_lung_50/3_lung_50_seg.nii.gz"
+ },
+ {
+ "image": "A492240/2_chest_25_mmabdpel_25mm.nii.gz",
+ "pseudo_label": "A492240/2_chest_25_mmabdpel_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A492240/2_chest_25_mmabdpel_25mm/2_chest_25_mmabdpel_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A492240/2_standard_25mm.nii.gz",
+ "pseudo_label": "A492240/2_standard_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A492240/2_standard_25mm/2_standard_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A504423/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A504423/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A504423/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A504423/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A504423/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A504423/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A504423/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A504423/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A504423/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A382814/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A382814/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A382814/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A382814/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A382814/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A382814/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A382814/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A382814/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A382814/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A877538/2_standard.nii.gz",
+ "pseudo_label": "A877538/2_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A877538/2_standard/2_standard_seg.nii.gz"
+ },
+ {
+ "image": "A923527/105_ref.nii.gz",
+ "pseudo_label": "A923527/105_ref.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A923527/105_ref/105_ref_seg.nii.gz"
+ },
+ {
+ "image": "A923527/100_axiallung_reconhres_recon.nii.gz",
+ "pseudo_label": "A923527/100_axiallung_reconhres_recon.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A923527/100_axiallung_reconhres_recon/100_axiallung_reconhres_recon_seg.nii.gz"
+ },
+ {
+ "image": "A920434/2_body_30_ce.nii.gz",
+ "pseudo_label": "A920434/2_body_30_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A920434/2_body_30_ce/2_body_30_ce_seg.nii.gz"
+ },
+ {
+ "image": "A120022/2_standard_25mm.nii.gz",
+ "pseudo_label": "A120022/2_standard_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A120022/2_standard_25mm/2_standard_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A120022/2_abdpel_25_mm.nii.gz",
+ "pseudo_label": "A120022/2_abdpel_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A120022/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A843974/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A843974/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A843974/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A843974/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A843974/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A843974/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A843974/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A843974/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A843974/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A729169/8_cta_05_ce.nii.gz",
+ "pseudo_label": "A729169/8_cta_05_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A729169/8_cta_05_ce/8_cta_05_ce_seg.nii.gz"
+ },
+ {
+ "image": "A729169/4_lung_10_ce.nii.gz",
+ "pseudo_label": "A729169/4_lung_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A729169/4_lung_10_ce/4_lung_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A729169/5_cta_50_ce.nii.gz",
+ "pseudo_label": "A729169/5_cta_50_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A729169/5_cta_50_ce/5_cta_50_ce_seg.nii.gz"
+ },
+ {
+ "image": "A729169/3_cta_10_ce.nii.gz",
+ "pseudo_label": "A729169/3_cta_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A729169/3_cta_10_ce/3_cta_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A096081/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A096081/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A096081/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A096081/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A096081/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A096081/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A096081/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A096081/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A096081/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A649144/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A649144/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A649144/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A649144/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A649144/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A649144/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A649144/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A649144/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A649144/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A944071/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A944071/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A944071/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A944071/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A944071/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A944071/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A944071/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A944071/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A944071/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A417830/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A417830/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A417830/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A417830/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A417830/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A417830/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A417830/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A417830/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A417830/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A002304/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A002304/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A002304/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A002304/2_chest_25_mmabdpel_25mm.nii.gz",
+ "pseudo_label": "A002304/2_chest_25_mmabdpel_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A002304/2_chest_25_mmabdpel_25mm/2_chest_25_mmabdpel_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A002304/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A002304/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A002304/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A002304/2_body_30_ce.nii.gz",
+ "pseudo_label": "A002304/2_body_30_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A002304/2_body_30_ce/2_body_30_ce_seg.nii.gz"
+ },
+ {
+ "image": "A002304/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A002304/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A002304/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A951599/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A951599/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A951599/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A951599/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A951599/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A951599/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A951599/2_body_30_ce.nii.gz",
+ "pseudo_label": "A951599/2_body_30_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A951599/2_body_30_ce/2_body_30_ce_seg.nii.gz"
+ },
+ {
+ "image": "A951599/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A951599/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A951599/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A665943/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A665943/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A665943/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A665943/2_body_50.nii.gz",
+ "pseudo_label": "A665943/2_body_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A665943/2_body_50/2_body_50_seg.nii.gz"
+ },
+ {
+ "image": "A665943/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A665943/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A665943/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A665943/4_lung_10.nii.gz",
+ "pseudo_label": "A665943/4_lung_10.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A665943/4_lung_10/4_lung_10_seg.nii.gz"
+ },
+ {
+ "image": "A665943/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A665943/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A665943/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A665943/3_lung_50.nii.gz",
+ "pseudo_label": "A665943/3_lung_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A665943/3_lung_50/3_lung_50_seg.nii.gz"
+ },
+ {
+ "image": "A225093/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A225093/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A225093/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A225093/2_chest_25_mm.nii.gz",
+ "pseudo_label": "A225093/2_chest_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A225093/2_chest_25_mm/2_chest_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A225093/6_abdpel_25_mm.nii.gz",
+ "pseudo_label": "A225093/6_abdpel_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A225093/6_abdpel_25_mm/6_abdpel_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A225093/603_ct_thick_axials_5mm.nii.gz",
+ "pseudo_label": "A225093/603_ct_thick_axials_5mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A225093/603_ct_thick_axials_5mm/603_ct_thick_axials_5mm_seg.nii.gz"
+ },
+ {
+ "image": "A225093/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A225093/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A225093/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A851902/4_hi_res_chest.nii.gz",
+ "pseudo_label": "A851902/4_hi_res_chest.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A851902/4_hi_res_chest/4_hi_res_chest_seg.nii.gz"
+ },
+ {
+ "image": "A851902/2_chest_5x5.nii.gz",
+ "pseudo_label": "A851902/2_chest_5x5.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A851902/2_chest_5x5/2_chest_5x5_seg.nii.gz"
+ },
+ {
+ "image": "A851902/3_lung_5x5.nii.gz",
+ "pseudo_label": "A851902/3_lung_5x5.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A851902/3_lung_5x5/3_lung_5x5_seg.nii.gz"
+ },
+ {
+ "image": "A851902/603_3x3_axial.nii.gz",
+ "pseudo_label": "A851902/603_3x3_axial.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A851902/603_3x3_axial/603_3x3_axial_seg.nii.gz"
+ },
+ {
+ "image": "A349708/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A349708/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A349708/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A349708/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A349708/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A349708/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A349708/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A349708/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A349708/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A785523/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A785523/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A785523/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A785523/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A785523/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A785523/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A785523/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A785523/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A785523/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A836342/2_abdpel_25_mm.nii.gz",
+ "pseudo_label": "A836342/2_abdpel_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A836342/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A038694/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A038694/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A038694/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A038694/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A038694/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A038694/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A038694/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A038694/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A038694/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A358446/3_chest__50__b30s.nii.gz",
+ "pseudo_label": "A358446/3_chest__50__b30s.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A358446/3_chest__50__b30s/3_chest__50__b30s_seg.nii.gz"
+ },
+ {
+ "image": "A358446/2_body_30_ce.nii.gz",
+ "pseudo_label": "A358446/2_body_30_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A358446/2_body_30_ce/2_body_30_ce_seg.nii.gz"
+ },
+ {
+ "image": "A358446/5_chest__30__b70s_lung.nii.gz",
+ "pseudo_label": "A358446/5_chest__30__b70s_lung.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A358446/5_chest__30__b70s_lung/5_chest__30__b70s_lung_seg.nii.gz"
+ },
+ {
+ "image": "A302988/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A302988/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A302988/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A302988/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A302988/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A302988/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A302988/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A302988/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A302988/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A475550/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A475550/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A475550/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A475550/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A475550/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A475550/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A475550/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A475550/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A475550/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A811941/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A811941/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A811941/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A811941/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A811941/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A811941/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A811941/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A811941/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A811941/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A062576/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A062576/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A062576/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A062576/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A062576/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A062576/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A062576/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A062576/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A062576/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A264703/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A264703/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A264703/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A264703/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A264703/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A264703/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A264703/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A264703/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A264703/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A434920/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A434920/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A434920/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A434920/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A434920/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A434920/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A434920/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A434920/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A434920/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A291463/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A291463/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A291463/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A291463/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A291463/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A291463/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A291463/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A291463/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A291463/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A104425/2_standard_25mm.nii.gz",
+ "pseudo_label": "A104425/2_standard_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A104425/2_standard_25mm/2_standard_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A104810/8_cta_05_ce.nii.gz",
+ "pseudo_label": "A104810/8_cta_05_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A104810/8_cta_05_ce/8_cta_05_ce_seg.nii.gz"
+ },
+ {
+ "image": "A104810/4_lung_10_ce.nii.gz",
+ "pseudo_label": "A104810/4_lung_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A104810/4_lung_10_ce/4_lung_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A104810/5_cta_50_ce.nii.gz",
+ "pseudo_label": "A104810/5_cta_50_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A104810/5_cta_50_ce/5_cta_50_ce_seg.nii.gz"
+ },
+ {
+ "image": "A104810/3_cta_10_ce.nii.gz",
+ "pseudo_label": "A104810/3_cta_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A104810/3_cta_10_ce/3_cta_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A670621/2_chest_25_mmabdpel_25mm.nii.gz",
+ "pseudo_label": "A670621/2_chest_25_mmabdpel_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A670621/2_chest_25_mmabdpel_25mm/2_chest_25_mmabdpel_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A670621/2_body_50.nii.gz",
+ "pseudo_label": "A670621/2_body_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A670621/2_body_50/2_body_50_seg.nii.gz"
+ },
+ {
+ "image": "A670621/4_lung_10.nii.gz",
+ "pseudo_label": "A670621/4_lung_10.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A670621/4_lung_10/4_lung_10_seg.nii.gz"
+ },
+ {
+ "image": "A670621/3_lung_50.nii.gz",
+ "pseudo_label": "A670621/3_lung_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A670621/3_lung_50/3_lung_50_seg.nii.gz"
+ },
+ {
+ "image": "A981055/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A981055/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A981055/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A981055/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A981055/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A981055/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A981055/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A981055/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A981055/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A243970/2_chest_25_mmabdpel_25mm.nii.gz",
+ "pseudo_label": "A243970/2_chest_25_mmabdpel_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A243970/2_chest_25_mmabdpel_25mm/2_chest_25_mmabdpel_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A515953/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A515953/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A515953/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A515953/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A515953/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A515953/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A515953/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A515953/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A515953/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A515953/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A515953/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A515953/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A515953/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A515953/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A515953/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A515953/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A515953/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A515953/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A123434/2_abdpel_25_mm.nii.gz",
+ "pseudo_label": "A123434/2_abdpel_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A123434/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A942131/2_chest_25_mmabdpel_25mm.nii.gz",
+ "pseudo_label": "A942131/2_chest_25_mmabdpel_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A942131/2_chest_25_mmabdpel_25mm/2_chest_25_mmabdpel_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A438102/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A438102/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A438102/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A438102/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A438102/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A438102/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A438102/4_hr_chest_125x125.nii.gz",
+ "pseudo_label": "A438102/4_hr_chest_125x125.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A438102/4_hr_chest_125x125/4_hr_chest_125x125_seg.nii.gz"
+ },
+ {
+ "image": "A438102/3_lung_5x5.nii.gz",
+ "pseudo_label": "A438102/3_lung_5x5.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A438102/3_lung_5x5/3_lung_5x5_seg.nii.gz"
+ },
+ {
+ "image": "A438102/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A438102/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A438102/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A438102/2_axiallung_reconhres_recon.nii.gz",
+ "pseudo_label": "A438102/2_axiallung_reconhres_recon.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A438102/2_axiallung_reconhres_recon/2_axiallung_reconhres_recon_seg.nii.gz"
+ },
+ {
+ "image": "A915677/8_cta_05_ce.nii.gz",
+ "pseudo_label": "A915677/8_cta_05_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A915677/8_cta_05_ce/8_cta_05_ce_seg.nii.gz"
+ },
+ {
+ "image": "A915677/4_lung_10_ce.nii.gz",
+ "pseudo_label": "A915677/4_lung_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A915677/4_lung_10_ce/4_lung_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A915677/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A915677/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A915677/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A915677/2_chest_25_mm.nii.gz",
+ "pseudo_label": "A915677/2_chest_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A915677/2_chest_25_mm/2_chest_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A915677/5_cta_50_ce.nii.gz",
+ "pseudo_label": "A915677/5_cta_50_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A915677/5_cta_50_ce/5_cta_50_ce_seg.nii.gz"
+ },
+ {
+ "image": "A915677/3_cta_10_ce.nii.gz",
+ "pseudo_label": "A915677/3_cta_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A915677/3_cta_10_ce/3_cta_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A915677/603_ct_thick_axials_5mm.nii.gz",
+ "pseudo_label": "A915677/603_ct_thick_axials_5mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A915677/603_ct_thick_axials_5mm/603_ct_thick_axials_5mm_seg.nii.gz"
+ },
+ {
+ "image": "A915677/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A915677/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A915677/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A315352/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A315352/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A315352/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A315352/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A315352/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A315352/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A315352/2_body_50.nii.gz",
+ "pseudo_label": "A315352/2_body_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A315352/2_body_50/2_body_50_seg.nii.gz"
+ },
+ {
+ "image": "A315352/4_lung_10.nii.gz",
+ "pseudo_label": "A315352/4_lung_10.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A315352/4_lung_10/4_lung_10_seg.nii.gz"
+ },
+ {
+ "image": "A315352/3_lung_50.nii.gz",
+ "pseudo_label": "A315352/3_lung_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A315352/3_lung_50/3_lung_50_seg.nii.gz"
+ },
+ {
+ "image": "A315352/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A315352/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A315352/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A368647/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A368647/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A368647/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A368647/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A368647/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A368647/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A368647/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A368647/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A368647/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A056396/5_wb_standard_25.nii.gz",
+ "pseudo_label": "A056396/5_wb_standard_25.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A056396/5_wb_standard_25/5_wb_standard_25_seg.nii.gz"
+ },
+ {
+ "image": "A056396/3_lung.nii.gz",
+ "pseudo_label": "A056396/3_lung.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A056396/3_lung/3_lung_seg.nii.gz"
+ },
+ {
+ "image": "A630027/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A630027/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A630027/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A630027/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A630027/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A630027/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A630027/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A630027/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A630027/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A178769/4_body_10_ce.nii.gz",
+ "pseudo_label": "A178769/4_body_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A178769/4_body_10_ce/4_body_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A178769/2_body_10_ce.nii.gz",
+ "pseudo_label": "A178769/2_body_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A178769/2_body_10_ce/2_body_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A370011/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A370011/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A370011/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A370011/2_chest_25_mmabdpel_25mm.nii.gz",
+ "pseudo_label": "A370011/2_chest_25_mmabdpel_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A370011/2_chest_25_mmabdpel_25mm/2_chest_25_mmabdpel_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A370011/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A370011/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A370011/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A370011/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A370011/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A370011/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A138356/2_body_30_ce.nii.gz",
+ "pseudo_label": "A138356/2_body_30_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A138356/2_body_30_ce/2_body_30_ce_seg.nii.gz"
+ },
+ {
+ "image": "A670597/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A670597/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A670597/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A670597/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A670597/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A670597/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A670597/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A670597/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A670597/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A822542/2_body_30.nii.gz",
+ "pseudo_label": "A822542/2_body_30.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A822542/2_body_30/2_body_30_seg.nii.gz"
+ },
+ {
+ "image": "A822542/14_body_05_ce.nii.gz",
+ "pseudo_label": "A822542/14_body_05_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A822542/14_body_05_ce/14_body_05_ce_seg.nii.gz"
+ },
+ {
+ "image": "A822542/6_body_10_ce.nii.gz",
+ "pseudo_label": "A822542/6_body_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A822542/6_body_10_ce/6_body_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A822542/5_body_10_ce.nii.gz",
+ "pseudo_label": "A822542/5_body_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A822542/5_body_10_ce/5_body_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A883692/601_chest_ax.nii.gz",
+ "pseudo_label": "A883692/601_chest_ax.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A883692/601_chest_ax/601_chest_ax_seg.nii.gz"
+ },
+ {
+ "image": "A883692/606_abdomen_ax.nii.gz",
+ "pseudo_label": "A883692/606_abdomen_ax.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A883692/606_abdomen_ax/606_abdomen_ax_seg.nii.gz"
+ },
+ {
+ "image": "A113004/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A113004/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A113004/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A113004/3_ct_wb__40__b30f.nii.gz",
+ "pseudo_label": "A113004/3_ct_wb__40__b30f.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A113004/3_ct_wb__40__b30f/3_ct_wb__40__b30f_seg.nii.gz"
+ },
+ {
+ "image": "A113004/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A113004/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A113004/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A113004/5_ct_lung_recon.nii.gz",
+ "pseudo_label": "A113004/5_ct_lung_recon.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A113004/5_ct_lung_recon/5_ct_lung_recon_seg.nii.gz"
+ },
+ {
+ "image": "A113004/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A113004/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A113004/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A340955/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A340955/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A340955/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A340955/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A340955/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A340955/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A340955/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A340955/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A340955/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A485953/2_abdomenpelvis_25_mm.nii.gz",
+ "pseudo_label": "A485953/2_abdomenpelvis_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A485953/2_abdomenpelvis_25_mm/2_abdomenpelvis_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A257013/5_body_10_ce.nii.gz",
+ "pseudo_label": "A257013/5_body_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A257013/5_body_10_ce/5_body_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A257013/3_body_10_ce.nii.gz",
+ "pseudo_label": "A257013/3_body_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A257013/3_body_10_ce/3_body_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A817311/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A817311/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A817311/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A817311/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A817311/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A817311/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A817311/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A817311/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A817311/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A316058/2_body_30_ce.nii.gz",
+ "pseudo_label": "A316058/2_body_30_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A316058/2_body_30_ce/2_body_30_ce_seg.nii.gz"
+ },
+ {
+ "image": "A035815/601_chest_ax.nii.gz",
+ "pseudo_label": "A035815/601_chest_ax.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A035815/601_chest_ax/601_chest_ax_seg.nii.gz"
+ },
+ {
+ "image": "A035815/606_abdomen_ax.nii.gz",
+ "pseudo_label": "A035815/606_abdomen_ax.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A035815/606_abdomen_ax/606_abdomen_ax_seg.nii.gz"
+ },
+ {
+ "image": "A770557/5_lung_10.nii.gz",
+ "pseudo_label": "A770557/5_lung_10.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A770557/5_lung_10/5_lung_10_seg.nii.gz"
+ },
+ {
+ "image": "A770557/4_lung_50.nii.gz",
+ "pseudo_label": "A770557/4_lung_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A770557/4_lung_50/4_lung_50_seg.nii.gz"
+ },
+ {
+ "image": "A770557/3_body_50.nii.gz",
+ "pseudo_label": "A770557/3_body_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A770557/3_body_50/3_body_50_seg.nii.gz"
+ },
+ {
+ "image": "A770557/2_standard.nii.gz",
+ "pseudo_label": "A770557/2_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A770557/2_standard/2_standard_seg.nii.gz"
+ },
+ {
+ "image": "A770557/2_abdpel_25_mm.nii.gz",
+ "pseudo_label": "A770557/2_abdpel_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A770557/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A642580/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A642580/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A642580/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A642580/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A642580/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A642580/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A642580/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A642580/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A642580/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A969170/2_body_50.nii.gz",
+ "pseudo_label": "A969170/2_body_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A969170/2_body_50/2_body_50_seg.nii.gz"
+ },
+ {
+ "image": "A969170/4_lung_10.nii.gz",
+ "pseudo_label": "A969170/4_lung_10.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A969170/4_lung_10/4_lung_10_seg.nii.gz"
+ },
+ {
+ "image": "A969170/3_lung_50.nii.gz",
+ "pseudo_label": "A969170/3_lung_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A969170/3_lung_50/3_lung_50_seg.nii.gz"
+ },
+ {
+ "image": "A301444/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A301444/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A301444/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A301444/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A301444/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A301444/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A301444/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A301444/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A301444/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A467564/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A467564/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A467564/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A467564/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A467564/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A467564/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A467564/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A467564/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A467564/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A376320/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A376320/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A376320/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A376320/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A376320/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A376320/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A376320/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A376320/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A376320/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A062055/4_125_chest.nii.gz",
+ "pseudo_label": "A062055/4_125_chest.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A062055/4_125_chest/4_125_chest_seg.nii.gz"
+ },
+ {
+ "image": "A062055/2_chestabdpel_25.nii.gz",
+ "pseudo_label": "A062055/2_chestabdpel_25.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A062055/2_chestabdpel_25/2_chestabdpel_25_seg.nii.gz"
+ },
+ {
+ "image": "A062055/2_chest_25_mmabdpel_25mm.nii.gz",
+ "pseudo_label": "A062055/2_chest_25_mmabdpel_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A062055/2_chest_25_mmabdpel_25mm/2_chest_25_mmabdpel_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A062055/3_lung_5x5.nii.gz",
+ "pseudo_label": "A062055/3_lung_5x5.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A062055/3_lung_5x5/3_lung_5x5_seg.nii.gz"
+ },
+ {
+ "image": "A946381/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A946381/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A946381/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A946381/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A946381/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A946381/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A946381/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A946381/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A946381/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A069414/6_body_10_ce.nii.gz",
+ "pseudo_label": "A069414/6_body_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A069414/6_body_10_ce/6_body_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A069414/2_body_10_ce.nii.gz",
+ "pseudo_label": "A069414/2_body_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A069414/2_body_10_ce/2_body_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A244641/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A244641/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A244641/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A244641/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A244641/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A244641/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A244641/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A244641/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A244641/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A117394/7_abdpel_25_mm.nii.gz",
+ "pseudo_label": "A117394/7_abdpel_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A117394/7_abdpel_25_mm/7_abdpel_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A117394/4_lung_10_ce.nii.gz",
+ "pseudo_label": "A117394/4_lung_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A117394/4_lung_10_ce/4_lung_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A117394/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A117394/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A117394/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A117394/7_body_30_ce.nii.gz",
+ "pseudo_label": "A117394/7_body_30_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A117394/7_body_30_ce/7_body_30_ce_seg.nii.gz"
+ },
+ {
+ "image": "A117394/9_cta_05_ce.nii.gz",
+ "pseudo_label": "A117394/9_cta_05_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A117394/9_cta_05_ce/9_cta_05_ce_seg.nii.gz"
+ },
+ {
+ "image": "A117394/6_chest_125_mm.nii.gz",
+ "pseudo_label": "A117394/6_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A117394/6_chest_125_mm/6_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A117394/5_cta_50_ce.nii.gz",
+ "pseudo_label": "A117394/5_cta_50_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A117394/5_cta_50_ce/5_cta_50_ce_seg.nii.gz"
+ },
+ {
+ "image": "A117394/16_cta_20000_ce.nii.gz",
+ "pseudo_label": "A117394/16_cta_20000_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A117394/16_cta_20000_ce/16_cta_20000_ce_seg.nii.gz"
+ },
+ {
+ "image": "A117394/3_cta_10_ce.nii.gz",
+ "pseudo_label": "A117394/3_cta_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A117394/3_cta_10_ce/3_cta_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A117394/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A117394/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A117394/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A193060/3_lung_5x5.nii.gz",
+ "pseudo_label": "A193060/3_lung_5x5.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A193060/3_lung_5x5/3_lung_5x5_seg.nii.gz"
+ },
+ {
+ "image": "A193060/4_hr_chest_125_x_125.nii.gz",
+ "pseudo_label": "A193060/4_hr_chest_125_x_125.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A193060/4_hr_chest_125_x_125/4_hr_chest_125_x_125_seg.nii.gz"
+ },
+ {
+ "image": "A193060/2_axiallung_reconhres_recon.nii.gz",
+ "pseudo_label": "A193060/2_axiallung_reconhres_recon.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A193060/2_axiallung_reconhres_recon/2_axiallung_reconhres_recon_seg.nii.gz"
+ },
+ {
+ "image": "A046441/2_body_50.nii.gz",
+ "pseudo_label": "A046441/2_body_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A046441/2_body_50/2_body_50_seg.nii.gz"
+ },
+ {
+ "image": "A046441/2_standard_25mm.nii.gz",
+ "pseudo_label": "A046441/2_standard_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A046441/2_standard_25mm/2_standard_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A046441/4_lung_10.nii.gz",
+ "pseudo_label": "A046441/4_lung_10.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A046441/4_lung_10/4_lung_10_seg.nii.gz"
+ },
+ {
+ "image": "A046441/3_lung_50.nii.gz",
+ "pseudo_label": "A046441/3_lung_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A046441/3_lung_50/3_lung_50_seg.nii.gz"
+ },
+ {
+ "image": "A711969/2_standard_25mm.nii.gz",
+ "pseudo_label": "A711969/2_standard_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A711969/2_standard_25mm/2_standard_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A028914/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A028914/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A028914/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A028914/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A028914/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A028914/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A028914/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A028914/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A028914/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A925089/2_body_50.nii.gz",
+ "pseudo_label": "A925089/2_body_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A925089/2_body_50/2_body_50_seg.nii.gz"
+ },
+ {
+ "image": "A925089/4_lung_10.nii.gz",
+ "pseudo_label": "A925089/4_lung_10.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A925089/4_lung_10/4_lung_10_seg.nii.gz"
+ },
+ {
+ "image": "A925089/3_lung_50.nii.gz",
+ "pseudo_label": "A925089/3_lung_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A925089/3_lung_50/3_lung_50_seg.nii.gz"
+ },
+ {
+ "image": "A534059/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A534059/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A534059/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A534059/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A534059/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A534059/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A534059/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A534059/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A534059/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A792369/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A792369/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A792369/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A792369/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A792369/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A792369/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A792369/2_body_30_ce.nii.gz",
+ "pseudo_label": "A792369/2_body_30_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A792369/2_body_30_ce/2_body_30_ce_seg.nii.gz"
+ },
+ {
+ "image": "A792369/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A792369/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A792369/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A980322/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A980322/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A980322/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A980322/601_chest_ax.nii.gz",
+ "pseudo_label": "A980322/601_chest_ax.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A980322/601_chest_ax/601_chest_ax_seg.nii.gz"
+ },
+ {
+ "image": "A980322/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A980322/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A980322/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A980322/6_body_10_ce.nii.gz",
+ "pseudo_label": "A980322/6_body_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A980322/6_body_10_ce/6_body_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A980322/6_abdpel_25_mm.nii.gz",
+ "pseudo_label": "A980322/6_abdpel_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A980322/6_abdpel_25_mm/6_abdpel_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A980322/3_lung_5x5.nii.gz",
+ "pseudo_label": "A980322/3_lung_5x5.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A980322/3_lung_5x5/3_lung_5x5_seg.nii.gz"
+ },
+ {
+ "image": "A980322/4_hr_chest_125_x_125.nii.gz",
+ "pseudo_label": "A980322/4_hr_chest_125_x_125.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A980322/4_hr_chest_125_x_125/4_hr_chest_125_x_125_seg.nii.gz"
+ },
+ {
+ "image": "A980322/2_axiallung_reconhres_recon.nii.gz",
+ "pseudo_label": "A980322/2_axiallung_reconhres_recon.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A980322/2_axiallung_reconhres_recon/2_axiallung_reconhres_recon_seg.nii.gz"
+ },
+ {
+ "image": "A980322/2_body_10_ce.nii.gz",
+ "pseudo_label": "A980322/2_body_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A980322/2_body_10_ce/2_body_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A980322/606_abdomen_ax.nii.gz",
+ "pseudo_label": "A980322/606_abdomen_ax.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A980322/606_abdomen_ax/606_abdomen_ax_seg.nii.gz"
+ },
+ {
+ "image": "A980322/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A980322/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A980322/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A843997/8_cta_05_ce.nii.gz",
+ "pseudo_label": "A843997/8_cta_05_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A843997/8_cta_05_ce/8_cta_05_ce_seg.nii.gz"
+ },
+ {
+ "image": "A843997/4_lung_10_ce.nii.gz",
+ "pseudo_label": "A843997/4_lung_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A843997/4_lung_10_ce/4_lung_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A843997/5_cta_50_ce.nii.gz",
+ "pseudo_label": "A843997/5_cta_50_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A843997/5_cta_50_ce/5_cta_50_ce_seg.nii.gz"
+ },
+ {
+ "image": "A843997/12_cta_15000_ce.nii.gz",
+ "pseudo_label": "A843997/12_cta_15000_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A843997/12_cta_15000_ce/12_cta_15000_ce_seg.nii.gz"
+ },
+ {
+ "image": "A843997/3_cta_10_ce.nii.gz",
+ "pseudo_label": "A843997/3_cta_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A843997/3_cta_10_ce/3_cta_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A821176/2_body_30_ce.nii.gz",
+ "pseudo_label": "A821176/2_body_30_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A821176/2_body_30_ce/2_body_30_ce_seg.nii.gz"
+ },
+ {
+ "image": "A919626/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A919626/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A919626/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A919626/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A919626/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A919626/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A919626/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A919626/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A919626/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A232246/2_body_50.nii.gz",
+ "pseudo_label": "A232246/2_body_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A232246/2_body_50/2_body_50_seg.nii.gz"
+ },
+ {
+ "image": "A232246/4_lung_10.nii.gz",
+ "pseudo_label": "A232246/4_lung_10.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A232246/4_lung_10/4_lung_10_seg.nii.gz"
+ },
+ {
+ "image": "A232246/2_abdomenpelvis_25_mm.nii.gz",
+ "pseudo_label": "A232246/2_abdomenpelvis_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A232246/2_abdomenpelvis_25_mm/2_abdomenpelvis_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A232246/3_lung_50.nii.gz",
+ "pseudo_label": "A232246/3_lung_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A232246/3_lung_50/3_lung_50_seg.nii.gz"
+ },
+ {
+ "image": "A762254/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A762254/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A762254/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A762254/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A762254/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A762254/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A762254/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A762254/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A762254/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A856738/2_standard_25mm.nii.gz",
+ "pseudo_label": "A856738/2_standard_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A856738/2_standard_25mm/2_standard_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A417522/9_cta_3000_ce.nii.gz",
+ "pseudo_label": "A417522/9_cta_3000_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A417522/9_cta_3000_ce/9_cta_3000_ce_seg.nii.gz"
+ },
+ {
+ "image": "A417522/5_cta_15000_ce.nii.gz",
+ "pseudo_label": "A417522/5_cta_15000_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A417522/5_cta_15000_ce/5_cta_15000_ce_seg.nii.gz"
+ },
+ {
+ "image": "A417522/3_cta_10_ce.nii.gz",
+ "pseudo_label": "A417522/3_cta_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A417522/3_cta_10_ce/3_cta_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A751519/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A751519/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A751519/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A751519/9_cta_3000_ce.nii.gz",
+ "pseudo_label": "A751519/9_cta_3000_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A751519/9_cta_3000_ce/9_cta_3000_ce_seg.nii.gz"
+ },
+ {
+ "image": "A751519/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A751519/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A751519/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A751519/5_cta_15000_ce.nii.gz",
+ "pseudo_label": "A751519/5_cta_15000_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A751519/5_cta_15000_ce/5_cta_15000_ce_seg.nii.gz"
+ },
+ {
+ "image": "A751519/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A751519/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A751519/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A751519/3_cta_10_ce.nii.gz",
+ "pseudo_label": "A751519/3_cta_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A751519/3_cta_10_ce/3_cta_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A136789/3_axiallung_reconhres_recon.nii.gz",
+ "pseudo_label": "A136789/3_axiallung_reconhres_recon.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A136789/3_axiallung_reconhres_recon/3_axiallung_reconhres_recon_seg.nii.gz"
+ },
+ {
+ "image": "A136789/5_hr_chest_125_x_125.nii.gz",
+ "pseudo_label": "A136789/5_hr_chest_125_x_125.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A136789/5_hr_chest_125_x_125/5_hr_chest_125_x_125_seg.nii.gz"
+ },
+ {
+ "image": "A136789/106_ref_ax.nii.gz",
+ "pseudo_label": "A136789/106_ref_ax.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A136789/106_ref_ax/106_ref_ax_seg.nii.gz"
+ },
+ {
+ "image": "A136789/4_lung_5x5.nii.gz",
+ "pseudo_label": "A136789/4_lung_5x5.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A136789/4_lung_5x5/4_lung_5x5_seg.nii.gz"
+ },
+ {
+ "image": "A666238/2_standard_25mm.nii.gz",
+ "pseudo_label": "A666238/2_standard_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A666238/2_standard_25mm/2_standard_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A138005/3_lung_5x5.nii.gz",
+ "pseudo_label": "A138005/3_lung_5x5.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A138005/3_lung_5x5/3_lung_5x5_seg.nii.gz"
+ },
+ {
+ "image": "A138005/4_hr_chest_125_x_125.nii.gz",
+ "pseudo_label": "A138005/4_hr_chest_125_x_125.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A138005/4_hr_chest_125_x_125/4_hr_chest_125_x_125_seg.nii.gz"
+ },
+ {
+ "image": "A138005/2_axiallung_reconhres_recon.nii.gz",
+ "pseudo_label": "A138005/2_axiallung_reconhres_recon.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A138005/2_axiallung_reconhres_recon/2_axiallung_reconhres_recon_seg.nii.gz"
+ },
+ {
+ "image": "A172203/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A172203/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A172203/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A172203/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A172203/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A172203/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A172203/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A172203/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A172203/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A221230/2_chest_25_mmabdpel_25mm.nii.gz",
+ "pseudo_label": "A221230/2_chest_25_mmabdpel_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A221230/2_chest_25_mmabdpel_25mm/2_chest_25_mmabdpel_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A221230/2_standard_25mm.nii.gz",
+ "pseudo_label": "A221230/2_standard_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A221230/2_standard_25mm/2_standard_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A111169/2_body_50.nii.gz",
+ "pseudo_label": "A111169/2_body_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A111169/2_body_50/2_body_50_seg.nii.gz"
+ },
+ {
+ "image": "A111169/4_lung_10.nii.gz",
+ "pseudo_label": "A111169/4_lung_10.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A111169/4_lung_10/4_lung_10_seg.nii.gz"
+ },
+ {
+ "image": "A111169/3_lung_50.nii.gz",
+ "pseudo_label": "A111169/3_lung_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A111169/3_lung_50/3_lung_50_seg.nii.gz"
+ },
+ {
+ "image": "A450512/5_lung_10.nii.gz",
+ "pseudo_label": "A450512/5_lung_10.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A450512/5_lung_10/5_lung_10_seg.nii.gz"
+ },
+ {
+ "image": "A450512/4_lung_50.nii.gz",
+ "pseudo_label": "A450512/4_lung_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A450512/4_lung_50/4_lung_50_seg.nii.gz"
+ },
+ {
+ "image": "A450512/3_body_50.nii.gz",
+ "pseudo_label": "A450512/3_body_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A450512/3_body_50/3_body_50_seg.nii.gz"
+ },
+ {
+ "image": "A097839/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A097839/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A097839/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A097839/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A097839/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A097839/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A097839/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A097839/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A097839/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A750765/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A750765/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A750765/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A750765/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A750765/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A750765/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A750765/2_chest_abd_pel_5x5.nii.gz",
+ "pseudo_label": "A750765/2_chest_abd_pel_5x5.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A750765/2_chest_abd_pel_5x5/2_chest_abd_pel_5x5_seg.nii.gz"
+ },
+ {
+ "image": "A750765/2_body_30_ce.nii.gz",
+ "pseudo_label": "A750765/2_body_30_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A750765/2_body_30_ce/2_body_30_ce_seg.nii.gz"
+ },
+ {
+ "image": "A750765/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A750765/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A750765/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A128603/3_lung_5x5.nii.gz",
+ "pseudo_label": "A128603/3_lung_5x5.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A128603/3_lung_5x5/3_lung_5x5_seg.nii.gz"
+ },
+ {
+ "image": "A128603/4_hr_chest_125_x_125.nii.gz",
+ "pseudo_label": "A128603/4_hr_chest_125_x_125.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A128603/4_hr_chest_125_x_125/4_hr_chest_125_x_125_seg.nii.gz"
+ },
+ {
+ "image": "A128603/2_axiallung_reconhres_recon.nii.gz",
+ "pseudo_label": "A128603/2_axiallung_reconhres_recon.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A128603/2_axiallung_reconhres_recon/2_axiallung_reconhres_recon_seg.nii.gz"
+ },
+ {
+ "image": "A943730/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A943730/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A943730/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A943730/3_50_x_50_lung.nii.gz",
+ "pseudo_label": "A943730/3_50_x_50_lung.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A943730/3_50_x_50_lung/3_50_x_50_lung_seg.nii.gz"
+ },
+ {
+ "image": "A943730/4_125_x_125_high_resolution.nii.gz",
+ "pseudo_label": "A943730/4_125_x_125_high_resolution.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A943730/4_125_x_125_high_resolution/4_125_x_125_high_resolution_seg.nii.gz"
+ },
+ {
+ "image": "A943730/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A943730/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A943730/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A943730/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A943730/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A943730/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A943730/2_50_x_50_standard.nii.gz",
+ "pseudo_label": "A943730/2_50_x_50_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A943730/2_50_x_50_standard/2_50_x_50_standard_seg.nii.gz"
+ },
+ {
+ "image": "A653181/2_standard.nii.gz",
+ "pseudo_label": "A653181/2_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A653181/2_standard/2_standard_seg.nii.gz"
+ },
+ {
+ "image": "A843980/2_standard_25mm.nii.gz",
+ "pseudo_label": "A843980/2_standard_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A843980/2_standard_25mm/2_standard_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A599118/2_standard_25mm.nii.gz",
+ "pseudo_label": "A599118/2_standard_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A599118/2_standard_25mm/2_standard_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A979115/5_body_10_ce.nii.gz",
+ "pseudo_label": "A979115/5_body_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A979115/5_body_10_ce/5_body_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A979115/3_body_10_ce.nii.gz",
+ "pseudo_label": "A979115/3_body_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A979115/3_body_10_ce/3_body_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A757672/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A757672/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A757672/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A757672/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A757672/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A757672/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A757672/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A757672/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A757672/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A525539/7_body_10_ce.nii.gz",
+ "pseudo_label": "A525539/7_body_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A525539/7_body_10_ce/7_body_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A525539/3_body_10_ce.nii.gz",
+ "pseudo_label": "A525539/3_body_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A525539/3_body_10_ce/3_body_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A421290/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A421290/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A421290/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A421290/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A421290/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A421290/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A421290/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A421290/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A421290/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A921077/2_body_30_ce.nii.gz",
+ "pseudo_label": "A921077/2_body_30_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A921077/2_body_30_ce/2_body_30_ce_seg.nii.gz"
+ },
+ {
+ "image": "A244589/2_body_50.nii.gz",
+ "pseudo_label": "A244589/2_body_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A244589/2_body_50/2_body_50_seg.nii.gz"
+ },
+ {
+ "image": "A244589/4_lung_10.nii.gz",
+ "pseudo_label": "A244589/4_lung_10.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A244589/4_lung_10/4_lung_10_seg.nii.gz"
+ },
+ {
+ "image": "A244589/3_lung_50.nii.gz",
+ "pseudo_label": "A244589/3_lung_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A244589/3_lung_50/3_lung_50_seg.nii.gz"
+ },
+ {
+ "image": "A424256/2_body_30_ce.nii.gz",
+ "pseudo_label": "A424256/2_body_30_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A424256/2_body_30_ce/2_body_30_ce_seg.nii.gz"
+ },
+ {
+ "image": "A099771/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A099771/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A099771/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A099771/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A099771/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A099771/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A099771/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A099771/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A099771/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A638206/2_chest_25_mmabdpel_25mm.nii.gz",
+ "pseudo_label": "A638206/2_chest_25_mmabdpel_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A638206/2_chest_25_mmabdpel_25mm/2_chest_25_mmabdpel_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A964563/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A964563/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A964563/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A964563/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A964563/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A964563/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A964563/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A964563/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A964563/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A210180/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A210180/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A210180/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A210180/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A210180/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A210180/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A210180/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A210180/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A210180/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A383281/2_chest_25_mmabdpel_25mm.nii.gz",
+ "pseudo_label": "A383281/2_chest_25_mmabdpel_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A383281/2_chest_25_mmabdpel_25mm/2_chest_25_mmabdpel_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A383281/4_chest__30__b70s.nii.gz",
+ "pseudo_label": "A383281/4_chest__30__b70s.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A383281/4_chest__30__b70s/4_chest__30__b70s_seg.nii.gz"
+ },
+ {
+ "image": "A383281/2_ac__chest__50__b08s.nii.gz",
+ "pseudo_label": "A383281/2_ac__chest__50__b08s.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A383281/2_ac__chest__50__b08s/2_ac__chest__50__b08s_seg.nii.gz"
+ },
+ {
+ "image": "A383281/3_chest__50__b30s.nii.gz",
+ "pseudo_label": "A383281/3_chest__50__b30s.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A383281/3_chest__50__b30s/3_chest__50__b30s_seg.nii.gz"
+ },
+ {
+ "image": "A383281/2_abdpel_25_mm.nii.gz",
+ "pseudo_label": "A383281/2_abdpel_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A383281/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A776019/2_body_50.nii.gz",
+ "pseudo_label": "A776019/2_body_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A776019/2_body_50/2_body_50_seg.nii.gz"
+ },
+ {
+ "image": "A776019/4_lung_10.nii.gz",
+ "pseudo_label": "A776019/4_lung_10.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A776019/4_lung_10/4_lung_10_seg.nii.gz"
+ },
+ {
+ "image": "A776019/3_lung_5x5.nii.gz",
+ "pseudo_label": "A776019/3_lung_5x5.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A776019/3_lung_5x5/3_lung_5x5_seg.nii.gz"
+ },
+ {
+ "image": "A776019/4_hr_chest_125_x_125.nii.gz",
+ "pseudo_label": "A776019/4_hr_chest_125_x_125.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A776019/4_hr_chest_125_x_125/4_hr_chest_125_x_125_seg.nii.gz"
+ },
+ {
+ "image": "A776019/2_axiallung_reconhres_recon.nii.gz",
+ "pseudo_label": "A776019/2_axiallung_reconhres_recon.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A776019/2_axiallung_reconhres_recon/2_axiallung_reconhres_recon_seg.nii.gz"
+ },
+ {
+ "image": "A776019/2_abdpel_25_mm.nii.gz",
+ "pseudo_label": "A776019/2_abdpel_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A776019/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A776019/3_lung_50.nii.gz",
+ "pseudo_label": "A776019/3_lung_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A776019/3_lung_50/3_lung_50_seg.nii.gz"
+ },
+ {
+ "image": "A581050/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A581050/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A581050/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A581050/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A581050/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A581050/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A581050/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A581050/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A581050/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A890029/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A890029/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A890029/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A890029/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A890029/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A890029/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A890029/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A890029/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A890029/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A727764/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A727764/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A727764/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A727764/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A727764/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A727764/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A727764/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A727764/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A727764/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A523411/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A523411/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A523411/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A523411/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A523411/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A523411/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A523411/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A523411/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A523411/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A930175/8_cta_05_ce.nii.gz",
+ "pseudo_label": "A930175/8_cta_05_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A930175/8_cta_05_ce/8_cta_05_ce_seg.nii.gz"
+ },
+ {
+ "image": "A930175/4_lung_10_ce.nii.gz",
+ "pseudo_label": "A930175/4_lung_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A930175/4_lung_10_ce/4_lung_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A930175/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A930175/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A930175/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A930175/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A930175/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A930175/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A930175/5_cta_50_ce.nii.gz",
+ "pseudo_label": "A930175/5_cta_50_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A930175/5_cta_50_ce/5_cta_50_ce_seg.nii.gz"
+ },
+ {
+ "image": "A930175/3_cta_10_ce.nii.gz",
+ "pseudo_label": "A930175/3_cta_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A930175/3_cta_10_ce/3_cta_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A930175/2_standard.nii.gz",
+ "pseudo_label": "A930175/2_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A930175/2_standard/2_standard_seg.nii.gz"
+ },
+ {
+ "image": "A930175/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A930175/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A930175/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A758961/601_chest_ax.nii.gz",
+ "pseudo_label": "A758961/601_chest_ax.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A758961/601_chest_ax/601_chest_ax_seg.nii.gz"
+ },
+ {
+ "image": "A758961/606_abdomen_ax.nii.gz",
+ "pseudo_label": "A758961/606_abdomen_ax.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A758961/606_abdomen_ax/606_abdomen_ax_seg.nii.gz"
+ },
+ {
+ "image": "A539716/2_body_30_ce.nii.gz",
+ "pseudo_label": "A539716/2_body_30_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A539716/2_body_30_ce/2_body_30_ce_seg.nii.gz"
+ },
+ {
+ "image": "A024026/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A024026/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A024026/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A024026/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A024026/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A024026/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A024026/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A024026/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A024026/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A695246/601_chest_ax.nii.gz",
+ "pseudo_label": "A695246/601_chest_ax.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A695246/601_chest_ax/601_chest_ax_seg.nii.gz"
+ },
+ {
+ "image": "A695246/606_abdomen_ax.nii.gz",
+ "pseudo_label": "A695246/606_abdomen_ax.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A695246/606_abdomen_ax/606_abdomen_ax_seg.nii.gz"
+ },
+ {
+ "image": "A543432/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A543432/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A543432/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A543432/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A543432/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A543432/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A543432/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A543432/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A543432/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A937798/2_axials.nii.gz",
+ "pseudo_label": "A937798/2_axials.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A937798/2_axials/2_axials_seg.nii.gz"
+ },
+ {
+ "image": "A937798/2_chest_25_mmabdpel_25mm.nii.gz",
+ "pseudo_label": "A937798/2_chest_25_mmabdpel_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A937798/2_chest_25_mmabdpel_25mm/2_chest_25_mmabdpel_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A676609/2_abdpel_25_mm.nii.gz",
+ "pseudo_label": "A676609/2_abdpel_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A676609/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A789646/2_body_50.nii.gz",
+ "pseudo_label": "A789646/2_body_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A789646/2_body_50/2_body_50_seg.nii.gz"
+ },
+ {
+ "image": "A789646/4_lung_10.nii.gz",
+ "pseudo_label": "A789646/4_lung_10.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A789646/4_lung_10/4_lung_10_seg.nii.gz"
+ },
+ {
+ "image": "A789646/3_lung_50.nii.gz",
+ "pseudo_label": "A789646/3_lung_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A789646/3_lung_50/3_lung_50_seg.nii.gz"
+ },
+ {
+ "image": "A057590/2_body_50.nii.gz",
+ "pseudo_label": "A057590/2_body_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A057590/2_body_50/2_body_50_seg.nii.gz"
+ },
+ {
+ "image": "A057590/4_lung_10.nii.gz",
+ "pseudo_label": "A057590/4_lung_10.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A057590/4_lung_10/4_lung_10_seg.nii.gz"
+ },
+ {
+ "image": "A057590/3_lung_50.nii.gz",
+ "pseudo_label": "A057590/3_lung_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A057590/3_lung_50/3_lung_50_seg.nii.gz"
+ },
+ {
+ "image": "A703220/2_25_x_25_standard.nii.gz",
+ "pseudo_label": "A703220/2_25_x_25_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A703220/2_25_x_25_standard/2_25_x_25_standard_seg.nii.gz"
+ },
+ {
+ "image": "A703220/2_body_30_ce.nii.gz",
+ "pseudo_label": "A703220/2_body_30_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A703220/2_body_30_ce/2_body_30_ce_seg.nii.gz"
+ },
+ {
+ "image": "A703220/2_abdomenpelvis_25_mm.nii.gz",
+ "pseudo_label": "A703220/2_abdomenpelvis_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A703220/2_abdomenpelvis_25_mm/2_abdomenpelvis_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A899201/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A899201/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A899201/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A899201/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A899201/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A899201/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A899201/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A899201/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A899201/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A939326/2_abdpel_25_mm.nii.gz",
+ "pseudo_label": "A939326/2_abdpel_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A939326/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A691964/2_body_30_ce.nii.gz",
+ "pseudo_label": "A691964/2_body_30_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A691964/2_body_30_ce/2_body_30_ce_seg.nii.gz"
+ },
+ {
+ "image": "A587516/2_body_50.nii.gz",
+ "pseudo_label": "A587516/2_body_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A587516/2_body_50/2_body_50_seg.nii.gz"
+ },
+ {
+ "image": "A587516/4_lung_10.nii.gz",
+ "pseudo_label": "A587516/4_lung_10.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A587516/4_lung_10/4_lung_10_seg.nii.gz"
+ },
+ {
+ "image": "A587516/3_lung_50.nii.gz",
+ "pseudo_label": "A587516/3_lung_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A587516/3_lung_50/3_lung_50_seg.nii.gz"
+ },
+ {
+ "image": "A802521/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A802521/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A802521/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A802521/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A802521/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A802521/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A802521/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A802521/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A802521/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A086562/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A086562/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A086562/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A086562/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A086562/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A086562/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A086562/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A086562/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A086562/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A747011/2_standard_25mm.nii.gz",
+ "pseudo_label": "A747011/2_standard_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A747011/2_standard_25mm/2_standard_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A530219/2_abdpel_25_mm.nii.gz",
+ "pseudo_label": "A530219/2_abdpel_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A530219/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A179118/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A179118/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A179118/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A179118/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A179118/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A179118/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A179118/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A179118/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A179118/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A635855/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A635855/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A635855/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A635855/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A635855/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A635855/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A635855/6_chest_125_mm.nii.gz",
+ "pseudo_label": "A635855/6_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A635855/6_chest_125_mm/6_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A635855/3_lung_5x5.nii.gz",
+ "pseudo_label": "A635855/3_lung_5x5.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A635855/3_lung_5x5/3_lung_5x5_seg.nii.gz"
+ },
+ {
+ "image": "A635855/4_hr_chest_125_x_125.nii.gz",
+ "pseudo_label": "A635855/4_hr_chest_125_x_125.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A635855/4_hr_chest_125_x_125/4_hr_chest_125_x_125_seg.nii.gz"
+ },
+ {
+ "image": "A635855/9_lung_5_mm.nii.gz",
+ "pseudo_label": "A635855/9_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A635855/9_lung_5_mm/9_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A635855/2_axiallung_reconhres_recon.nii.gz",
+ "pseudo_label": "A635855/2_axiallung_reconhres_recon.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A635855/2_axiallung_reconhres_recon/2_axiallung_reconhres_recon_seg.nii.gz"
+ },
+ {
+ "image": "A635855/8_lung_125_mm.nii.gz",
+ "pseudo_label": "A635855/8_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A635855/8_lung_125_mm/8_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A635855/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A635855/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A635855/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A056642/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A056642/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A056642/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A056642/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A056642/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A056642/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A056642/2_standard_25mm.nii.gz",
+ "pseudo_label": "A056642/2_standard_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A056642/2_standard_25mm/2_standard_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A056642/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A056642/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A056642/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A423765/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A423765/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A423765/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A423765/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A423765/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A423765/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A423765/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A423765/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A423765/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A923411/4_body_30_ce.nii.gz",
+ "pseudo_label": "A923411/4_body_30_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A923411/4_body_30_ce/4_body_30_ce_seg.nii.gz"
+ },
+ {
+ "image": "A114403/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A114403/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A114403/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A114403/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A114403/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A114403/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A114403/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A114403/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A114403/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A034518/4_lung_10_ce.nii.gz",
+ "pseudo_label": "A034518/4_lung_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A034518/4_lung_10_ce/4_lung_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A034518/2_body_50_ce.nii.gz",
+ "pseudo_label": "A034518/2_body_50_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A034518/2_body_50_ce/2_body_50_ce_seg.nii.gz"
+ },
+ {
+ "image": "A034518/3_lung_50_ce.nii.gz",
+ "pseudo_label": "A034518/3_lung_50_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A034518/3_lung_50_ce/3_lung_50_ce_seg.nii.gz"
+ },
+ {
+ "image": "A019464/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A019464/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A019464/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A019464/300_axial_mips.nii.gz",
+ "pseudo_label": "A019464/300_axial_mips.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A019464/300_axial_mips/300_axial_mips_seg.nii.gz"
+ },
+ {
+ "image": "A019464/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A019464/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A019464/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A019464/6_abdpel_25_mm.nii.gz",
+ "pseudo_label": "A019464/6_abdpel_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A019464/6_abdpel_25_mm/6_abdpel_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A019464/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A019464/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A019464/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A501952/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A501952/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A501952/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A501952/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A501952/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A501952/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A501952/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A501952/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A501952/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A418141/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A418141/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A418141/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A418141/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A418141/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A418141/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A418141/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A418141/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A418141/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A402838/6_body_10_ce.nii.gz",
+ "pseudo_label": "A402838/6_body_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A402838/6_body_10_ce/6_body_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A402838/2_body_10_ce.nii.gz",
+ "pseudo_label": "A402838/2_body_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A402838/2_body_10_ce/2_body_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A964207/601_chest_ax.nii.gz",
+ "pseudo_label": "A964207/601_chest_ax.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A964207/601_chest_ax/601_chest_ax_seg.nii.gz"
+ },
+ {
+ "image": "A964207/606_abdomen_ax.nii.gz",
+ "pseudo_label": "A964207/606_abdomen_ax.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A964207/606_abdomen_ax/606_abdomen_ax_seg.nii.gz"
+ },
+ {
+ "image": "A235514/6_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A235514/6_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A235514/6_lung_hr_125_mm/6_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A235514/4_5_mm_standard.nii.gz",
+ "pseudo_label": "A235514/4_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A235514/4_5_mm_standard/4_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A235514/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A235514/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A235514/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A574117/3_body_30_ce.nii.gz",
+ "pseudo_label": "A574117/3_body_30_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A574117/3_body_30_ce/3_body_30_ce_seg.nii.gz"
+ },
+ {
+ "image": "A040293/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A040293/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A040293/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A040293/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A040293/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A040293/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A040293/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A040293/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A040293/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A922673/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A922673/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A922673/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A922673/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A922673/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A922673/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A922673/4_hr_chest_125x125.nii.gz",
+ "pseudo_label": "A922673/4_hr_chest_125x125.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A922673/4_hr_chest_125x125/4_hr_chest_125x125_seg.nii.gz"
+ },
+ {
+ "image": "A922673/3_lung_5x5.nii.gz",
+ "pseudo_label": "A922673/3_lung_5x5.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A922673/3_lung_5x5/3_lung_5x5_seg.nii.gz"
+ },
+ {
+ "image": "A922673/2_axiallung_reconhres_recon.nii.gz",
+ "pseudo_label": "A922673/2_axiallung_reconhres_recon.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A922673/2_axiallung_reconhres_recon/2_axiallung_reconhres_recon_seg.nii.gz"
+ },
+ {
+ "image": "A922673/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A922673/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A922673/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A130302/3_chest__25__b41s.nii.gz",
+ "pseudo_label": "A130302/3_chest__25__b41s.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A130302/3_chest__25__b41s/3_chest__25__b41s_seg.nii.gz"
+ },
+ {
+ "image": "A130302/4_2_min_venous_delay.nii.gz",
+ "pseudo_label": "A130302/4_2_min_venous_delay.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A130302/4_2_min_venous_delay/4_2_min_venous_delay_seg.nii.gz"
+ },
+ {
+ "image": "A130302/5_chest__25__b30s.nii.gz",
+ "pseudo_label": "A130302/5_chest__25__b30s.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A130302/5_chest__25__b30s/5_chest__25__b30s_seg.nii.gz"
+ },
+ {
+ "image": "A130302/6_lung_30__b70s.nii.gz",
+ "pseudo_label": "A130302/6_lung_30__b70s.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A130302/6_lung_30__b70s/6_lung_30__b70s_seg.nii.gz"
+ },
+ {
+ "image": "A130302/4_cardiac_25__b41s.nii.gz",
+ "pseudo_label": "A130302/4_cardiac_25__b41s.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A130302/4_cardiac_25__b41s/4_cardiac_25__b41s_seg.nii.gz"
+ },
+ {
+ "image": "A130302/2_ac__chest__50__b08s.nii.gz",
+ "pseudo_label": "A130302/2_ac__chest__50__b08s.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A130302/2_ac__chest__50__b08s/2_ac__chest__50__b08s_seg.nii.gz"
+ },
+ {
+ "image": "A130302/2_abdomenpelvis_25_mm.nii.gz",
+ "pseudo_label": "A130302/2_abdomenpelvis_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A130302/2_abdomenpelvis_25_mm/2_abdomenpelvis_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A079945/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A079945/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A079945/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A079945/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A079945/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A079945/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A079945/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A079945/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A079945/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A813763/2_25_x_25_standard.nii.gz",
+ "pseudo_label": "A813763/2_25_x_25_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A813763/2_25_x_25_standard/2_25_x_25_standard_seg.nii.gz"
+ },
+ {
+ "image": "A813763/2_abdpel_25_mm.nii.gz",
+ "pseudo_label": "A813763/2_abdpel_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A813763/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A963786/2_standard_25mm.nii.gz",
+ "pseudo_label": "A963786/2_standard_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A963786/2_standard_25mm/2_standard_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A728722/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A728722/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A728722/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A728722/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A728722/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A728722/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A728722/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A728722/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A728722/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A329601/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A329601/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A329601/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A329601/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A329601/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A329601/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A329601/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A329601/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A329601/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A431574/2_standard_25mm.nii.gz",
+ "pseudo_label": "A431574/2_standard_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A431574/2_standard_25mm/2_standard_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A292777/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A292777/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A292777/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A292777/7_abdpel_25_mm.nii.gz",
+ "pseudo_label": "A292777/7_abdpel_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A292777/7_abdpel_25_mm/7_abdpel_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A292777/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A292777/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A292777/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A292777/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A292777/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A292777/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A292777/6_chest_125_mm.nii.gz",
+ "pseudo_label": "A292777/6_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A292777/6_chest_125_mm/6_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A292777/3_lung_5x5.nii.gz",
+ "pseudo_label": "A292777/3_lung_5x5.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A292777/3_lung_5x5/3_lung_5x5_seg.nii.gz"
+ },
+ {
+ "image": "A292777/4_hr_chest_125_x_125.nii.gz",
+ "pseudo_label": "A292777/4_hr_chest_125_x_125.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A292777/4_hr_chest_125_x_125/4_hr_chest_125_x_125_seg.nii.gz"
+ },
+ {
+ "image": "A292777/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A292777/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A292777/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A292777/2_axiallung_reconhres_recon.nii.gz",
+ "pseudo_label": "A292777/2_axiallung_reconhres_recon.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A292777/2_axiallung_reconhres_recon/2_axiallung_reconhres_recon_seg.nii.gz"
+ },
+ {
+ "image": "A292777/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A292777/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A292777/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A784270/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A784270/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A784270/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A784270/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A784270/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A784270/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A784270/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A784270/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A784270/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A221570/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A221570/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A221570/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A221570/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A221570/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A221570/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A221570/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A221570/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A221570/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A221570/2_body_10_ce.nii.gz",
+ "pseudo_label": "A221570/2_body_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A221570/2_body_10_ce/2_body_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A201130/4_chest__30__b70s.nii.gz",
+ "pseudo_label": "A201130/4_chest__30__b70s.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A201130/4_chest__30__b70s/4_chest__30__b70s_seg.nii.gz"
+ },
+ {
+ "image": "A201130/3_chest__50__b30s.nii.gz",
+ "pseudo_label": "A201130/3_chest__50__b30s.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A201130/3_chest__50__b30s/3_chest__50__b30s_seg.nii.gz"
+ },
+ {
+ "image": "A201130/2_standard.nii.gz",
+ "pseudo_label": "A201130/2_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A201130/2_standard/2_standard_seg.nii.gz"
+ },
+ {
+ "image": "A321377/3_lung_5x5.nii.gz",
+ "pseudo_label": "A321377/3_lung_5x5.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A321377/3_lung_5x5/3_lung_5x5_seg.nii.gz"
+ },
+ {
+ "image": "A321377/4_hr_chest_125_x_125.nii.gz",
+ "pseudo_label": "A321377/4_hr_chest_125_x_125.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A321377/4_hr_chest_125_x_125/4_hr_chest_125_x_125_seg.nii.gz"
+ },
+ {
+ "image": "A321377/2_axiallung_reconhres_recon.nii.gz",
+ "pseudo_label": "A321377/2_axiallung_reconhres_recon.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A321377/2_axiallung_reconhres_recon/2_axiallung_reconhres_recon_seg.nii.gz"
+ },
+ {
+ "image": "A321377/2_abdomenpelvis_25_mm.nii.gz",
+ "pseudo_label": "A321377/2_abdomenpelvis_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A321377/2_abdomenpelvis_25_mm/2_abdomenpelvis_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A563909/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A563909/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A563909/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A563909/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A563909/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A563909/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A563909/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A563909/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A563909/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A802005/2_body_50.nii.gz",
+ "pseudo_label": "A802005/2_body_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A802005/2_body_50/2_body_50_seg.nii.gz"
+ },
+ {
+ "image": "A802005/4_lung_10.nii.gz",
+ "pseudo_label": "A802005/4_lung_10.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A802005/4_lung_10/4_lung_10_seg.nii.gz"
+ },
+ {
+ "image": "A802005/3_lung_50.nii.gz",
+ "pseudo_label": "A802005/3_lung_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A802005/3_lung_50/3_lung_50_seg.nii.gz"
+ },
+ {
+ "image": "A179258/2_body_50.nii.gz",
+ "pseudo_label": "A179258/2_body_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A179258/2_body_50/2_body_50_seg.nii.gz"
+ },
+ {
+ "image": "A179258/4_lung_10.nii.gz",
+ "pseudo_label": "A179258/4_lung_10.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A179258/4_lung_10/4_lung_10_seg.nii.gz"
+ },
+ {
+ "image": "A179258/3_lung_50.nii.gz",
+ "pseudo_label": "A179258/3_lung_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A179258/3_lung_50/3_lung_50_seg.nii.gz"
+ },
+ {
+ "image": "A059254/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A059254/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A059254/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A059254/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A059254/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A059254/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A059254/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A059254/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A059254/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A457364/9_cta_3000_ce.nii.gz",
+ "pseudo_label": "A457364/9_cta_3000_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A457364/9_cta_3000_ce/9_cta_3000_ce_seg.nii.gz"
+ },
+ {
+ "image": "A457364/5_cta_15000_ce.nii.gz",
+ "pseudo_label": "A457364/5_cta_15000_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A457364/5_cta_15000_ce/5_cta_15000_ce_seg.nii.gz"
+ },
+ {
+ "image": "A457364/3_cta_10_ce.nii.gz",
+ "pseudo_label": "A457364/3_cta_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A457364/3_cta_10_ce/3_cta_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A829297/6_cta_50_ce.nii.gz",
+ "pseudo_label": "A829297/6_cta_50_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A829297/6_cta_50_ce/6_cta_50_ce_seg.nii.gz"
+ },
+ {
+ "image": "A829297/5_lung_10_ce.nii.gz",
+ "pseudo_label": "A829297/5_lung_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A829297/5_lung_10_ce/5_lung_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A829297/9_cta_05_ce.nii.gz",
+ "pseudo_label": "A829297/9_cta_05_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A829297/9_cta_05_ce/9_cta_05_ce_seg.nii.gz"
+ },
+ {
+ "image": "A829297/4_cta_10_ce.nii.gz",
+ "pseudo_label": "A829297/4_cta_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A829297/4_cta_10_ce/4_cta_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A878506/2_standard_25mm.nii.gz",
+ "pseudo_label": "A878506/2_standard_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A878506/2_standard_25mm/2_standard_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A192022/2_body_50.nii.gz",
+ "pseudo_label": "A192022/2_body_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A192022/2_body_50/2_body_50_seg.nii.gz"
+ },
+ {
+ "image": "A192022/4_lung_10.nii.gz",
+ "pseudo_label": "A192022/4_lung_10.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A192022/4_lung_10/4_lung_10_seg.nii.gz"
+ },
+ {
+ "image": "A192022/3_lung_50.nii.gz",
+ "pseudo_label": "A192022/3_lung_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A192022/3_lung_50/3_lung_50_seg.nii.gz"
+ },
+ {
+ "image": "A296336/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A296336/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A296336/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A296336/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A296336/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A296336/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A296336/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A296336/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A296336/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A072894/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A072894/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A072894/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A072894/601_chest_ax.nii.gz",
+ "pseudo_label": "A072894/601_chest_ax.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A072894/601_chest_ax/601_chest_ax_seg.nii.gz"
+ },
+ {
+ "image": "A072894/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A072894/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A072894/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A072894/618_2_mm_t_spine_axial.nii.gz",
+ "pseudo_label": "A072894/618_2_mm_t_spine_axial.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A072894/618_2_mm_t_spine_axial/618_2_mm_t_spine_axial_seg.nii.gz"
+ },
+ {
+ "image": "A072894/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A072894/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A072894/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A072894/622_2_mm__lumbar_axial.nii.gz",
+ "pseudo_label": "A072894/622_2_mm__lumbar_axial.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A072894/622_2_mm__lumbar_axial/622_2_mm__lumbar_axial_seg.nii.gz"
+ },
+ {
+ "image": "A072894/606_abdomen_ax.nii.gz",
+ "pseudo_label": "A072894/606_abdomen_ax.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A072894/606_abdomen_ax/606_abdomen_ax_seg.nii.gz"
+ },
+ {
+ "image": "A464604/7_abdpel_25_mm.nii.gz",
+ "pseudo_label": "A464604/7_abdpel_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A464604/7_abdpel_25_mm/7_abdpel_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A464604/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A464604/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A464604/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A464604/6_chest_125_mm.nii.gz",
+ "pseudo_label": "A464604/6_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A464604/6_chest_125_mm/6_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A464604/2_body_30_ce.nii.gz",
+ "pseudo_label": "A464604/2_body_30_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A464604/2_body_30_ce/2_body_30_ce_seg.nii.gz"
+ },
+ {
+ "image": "A464604/2_abdpel_25_mm.nii.gz",
+ "pseudo_label": "A464604/2_abdpel_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A464604/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A464604/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A464604/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A464604/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A670367/2_body_50.nii.gz",
+ "pseudo_label": "A670367/2_body_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A670367/2_body_50/2_body_50_seg.nii.gz"
+ },
+ {
+ "image": "A670367/4_lung_10.nii.gz",
+ "pseudo_label": "A670367/4_lung_10.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A670367/4_lung_10/4_lung_10_seg.nii.gz"
+ },
+ {
+ "image": "A670367/3_lung_50.nii.gz",
+ "pseudo_label": "A670367/3_lung_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A670367/3_lung_50/3_lung_50_seg.nii.gz"
+ },
+ {
+ "image": "A536105/2_chest_25_mmabdpel_25mm.nii.gz",
+ "pseudo_label": "A536105/2_chest_25_mmabdpel_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A536105/2_chest_25_mmabdpel_25mm/2_chest_25_mmabdpel_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A783752/2_body_50.nii.gz",
+ "pseudo_label": "A783752/2_body_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A783752/2_body_50/2_body_50_seg.nii.gz"
+ },
+ {
+ "image": "A783752/4_lung_10.nii.gz",
+ "pseudo_label": "A783752/4_lung_10.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A783752/4_lung_10/4_lung_10_seg.nii.gz"
+ },
+ {
+ "image": "A783752/3_lung_50.nii.gz",
+ "pseudo_label": "A783752/3_lung_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A783752/3_lung_50/3_lung_50_seg.nii.gz"
+ },
+ {
+ "image": "A048383/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A048383/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A048383/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A048383/4_hi_res_chest.nii.gz",
+ "pseudo_label": "A048383/4_hi_res_chest.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A048383/4_hi_res_chest/4_hi_res_chest_seg.nii.gz"
+ },
+ {
+ "image": "A048383/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A048383/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A048383/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A048383/2_chest_5x5.nii.gz",
+ "pseudo_label": "A048383/2_chest_5x5.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A048383/2_chest_5x5/2_chest_5x5_seg.nii.gz"
+ },
+ {
+ "image": "A048383/3_lung_5x5.nii.gz",
+ "pseudo_label": "A048383/3_lung_5x5.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A048383/3_lung_5x5/3_lung_5x5_seg.nii.gz"
+ },
+ {
+ "image": "A048383/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A048383/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A048383/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A048383/603_3x3_axial.nii.gz",
+ "pseudo_label": "A048383/603_3x3_axial.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A048383/603_3x3_axial/603_3x3_axial_seg.nii.gz"
+ },
+ {
+ "image": "A099036/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A099036/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A099036/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A099036/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A099036/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A099036/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A099036/2_abdpel_25_mm.nii.gz",
+ "pseudo_label": "A099036/2_abdpel_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A099036/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A099036/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A099036/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A099036/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A346398/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A346398/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A346398/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A346398/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A346398/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A346398/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A346398/6_chest_125_mm.nii.gz",
+ "pseudo_label": "A346398/6_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A346398/6_chest_125_mm/6_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A346398/9_lung_5_mm.nii.gz",
+ "pseudo_label": "A346398/9_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A346398/9_lung_5_mm/9_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A346398/8_lung_125_mm.nii.gz",
+ "pseudo_label": "A346398/8_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A346398/8_lung_125_mm/8_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A346398/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A346398/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A346398/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A776010/2_abdpel_25_mm.nii.gz",
+ "pseudo_label": "A776010/2_abdpel_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A776010/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A152200/9_cta_3000_ce.nii.gz",
+ "pseudo_label": "A152200/9_cta_3000_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A152200/9_cta_3000_ce/9_cta_3000_ce_seg.nii.gz"
+ },
+ {
+ "image": "A152200/5_cta_15000_ce.nii.gz",
+ "pseudo_label": "A152200/5_cta_15000_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A152200/5_cta_15000_ce/5_cta_15000_ce_seg.nii.gz"
+ },
+ {
+ "image": "A152200/3_cta_10_ce.nii.gz",
+ "pseudo_label": "A152200/3_cta_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A152200/3_cta_10_ce/3_cta_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A799184/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A799184/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A799184/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A799184/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A799184/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A799184/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A799184/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A799184/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A799184/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A920949/2_abdomenpelvis_25_mm.nii.gz",
+ "pseudo_label": "A920949/2_abdomenpelvis_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A920949/2_abdomenpelvis_25_mm/2_abdomenpelvis_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A027914/601_chest_ax.nii.gz",
+ "pseudo_label": "A027914/601_chest_ax.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A027914/601_chest_ax/601_chest_ax_seg.nii.gz"
+ },
+ {
+ "image": "A027914/606_abdomen_ax.nii.gz",
+ "pseudo_label": "A027914/606_abdomen_ax.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A027914/606_abdomen_ax/606_abdomen_ax_seg.nii.gz"
+ },
+ {
+ "image": "A382815/2_standard_25mm.nii.gz",
+ "pseudo_label": "A382815/2_standard_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A382815/2_standard_25mm/2_standard_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A643986/2_body_50.nii.gz",
+ "pseudo_label": "A643986/2_body_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A643986/2_body_50/2_body_50_seg.nii.gz"
+ },
+ {
+ "image": "A643986/4_lung_10.nii.gz",
+ "pseudo_label": "A643986/4_lung_10.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A643986/4_lung_10/4_lung_10_seg.nii.gz"
+ },
+ {
+ "image": "A643986/3_lung_50.nii.gz",
+ "pseudo_label": "A643986/3_lung_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A643986/3_lung_50/3_lung_50_seg.nii.gz"
+ },
+ {
+ "image": "A494186/2_standard_25mm.nii.gz",
+ "pseudo_label": "A494186/2_standard_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A494186/2_standard_25mm/2_standard_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A329548/8_cta_05_ce.nii.gz",
+ "pseudo_label": "A329548/8_cta_05_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A329548/8_cta_05_ce/8_cta_05_ce_seg.nii.gz"
+ },
+ {
+ "image": "A329548/4_lung_10_ce.nii.gz",
+ "pseudo_label": "A329548/4_lung_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A329548/4_lung_10_ce/4_lung_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A329548/5_cta_50_ce.nii.gz",
+ "pseudo_label": "A329548/5_cta_50_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A329548/5_cta_50_ce/5_cta_50_ce_seg.nii.gz"
+ },
+ {
+ "image": "A329548/3_cta_10_ce.nii.gz",
+ "pseudo_label": "A329548/3_cta_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A329548/3_cta_10_ce/3_cta_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A619214/4_lung_10_ce.nii.gz",
+ "pseudo_label": "A619214/4_lung_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A619214/4_lung_10_ce/4_lung_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A619214/2_body_50_ce.nii.gz",
+ "pseudo_label": "A619214/2_body_50_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A619214/2_body_50_ce/2_body_50_ce_seg.nii.gz"
+ },
+ {
+ "image": "A619214/3_lung_50_ce.nii.gz",
+ "pseudo_label": "A619214/3_lung_50_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A619214/3_lung_50_ce/3_lung_50_ce_seg.nii.gz"
+ },
+ {
+ "image": "A095019/8_cta_05_ce.nii.gz",
+ "pseudo_label": "A095019/8_cta_05_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A095019/8_cta_05_ce/8_cta_05_ce_seg.nii.gz"
+ },
+ {
+ "image": "A095019/2_body_30.nii.gz",
+ "pseudo_label": "A095019/2_body_30.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A095019/2_body_30/2_body_30_seg.nii.gz"
+ },
+ {
+ "image": "A095019/4_lung_10_ce.nii.gz",
+ "pseudo_label": "A095019/4_lung_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A095019/4_lung_10_ce/4_lung_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A095019/5_cta_50_ce.nii.gz",
+ "pseudo_label": "A095019/5_cta_50_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A095019/5_cta_50_ce/5_cta_50_ce_seg.nii.gz"
+ },
+ {
+ "image": "A695805/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A695805/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A695805/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A695805/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A695805/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A695805/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A695805/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A695805/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A695805/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A281009/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A281009/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A281009/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A281009/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A281009/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A281009/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A281009/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A281009/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A281009/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A966468/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A966468/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A966468/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A966468/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A966468/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A966468/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A966468/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A966468/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A966468/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A968829/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A968829/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A968829/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A968829/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A968829/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A968829/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A968829/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A968829/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A968829/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A274818/2_standard_25mm.nii.gz",
+ "pseudo_label": "A274818/2_standard_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A274818/2_standard_25mm/2_standard_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A305147/2_25.nii.gz",
+ "pseudo_label": "A305147/2_25.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A305147/2_25/2_25_seg.nii.gz"
+ },
+ {
+ "image": "A918899/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A918899/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A918899/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A918899/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A918899/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A918899/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A918899/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A918899/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A918899/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A973227/3_stone_study_5mm.nii.gz",
+ "pseudo_label": "A973227/3_stone_study_5mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A973227/3_stone_study_5mm/3_stone_study_5mm_seg.nii.gz"
+ },
+ {
+ "image": "A973227/2_stone_study_25.nii.gz",
+ "pseudo_label": "A973227/2_stone_study_25.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A973227/2_stone_study_25/2_stone_study_25_seg.nii.gz"
+ },
+ {
+ "image": "A973227/2_standard.nii.gz",
+ "pseudo_label": "A973227/2_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A973227/2_standard/2_standard_seg.nii.gz"
+ },
+ {
+ "image": "A973227/102_stone_study_25.nii.gz",
+ "pseudo_label": "A973227/102_stone_study_25.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A973227/102_stone_study_25/102_stone_study_25_seg.nii.gz"
+ },
+ {
+ "image": "A992004/5_body_10_ce.nii.gz",
+ "pseudo_label": "A992004/5_body_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A992004/5_body_10_ce/5_body_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A992004/2_body_10_ce.nii.gz",
+ "pseudo_label": "A992004/2_body_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A992004/2_body_10_ce/2_body_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A368474/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A368474/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A368474/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A368474/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A368474/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A368474/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A368474/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A368474/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A368474/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A114381/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A114381/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A114381/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A114381/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A114381/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A114381/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A114381/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A114381/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A114381/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A840445/9_cta_3000_ce.nii.gz",
+ "pseudo_label": "A840445/9_cta_3000_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A840445/9_cta_3000_ce/9_cta_3000_ce_seg.nii.gz"
+ },
+ {
+ "image": "A840445/5_cta_15000_ce.nii.gz",
+ "pseudo_label": "A840445/5_cta_15000_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A840445/5_cta_15000_ce/5_cta_15000_ce_seg.nii.gz"
+ },
+ {
+ "image": "A840445/3_cta_10_ce.nii.gz",
+ "pseudo_label": "A840445/3_cta_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A840445/3_cta_10_ce/3_cta_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A701295/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A701295/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A701295/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A701295/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A701295/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A701295/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A701295/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A701295/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A701295/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A701295/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A701295/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A701295/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A701295/3_lung_5x5.nii.gz",
+ "pseudo_label": "A701295/3_lung_5x5.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A701295/3_lung_5x5/3_lung_5x5_seg.nii.gz"
+ },
+ {
+ "image": "A701295/4_hr_chest_125_x_125.nii.gz",
+ "pseudo_label": "A701295/4_hr_chest_125_x_125.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A701295/4_hr_chest_125_x_125/4_hr_chest_125_x_125_seg.nii.gz"
+ },
+ {
+ "image": "A701295/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A701295/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A701295/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A701295/2_axiallung_reconhres_recon.nii.gz",
+ "pseudo_label": "A701295/2_axiallung_reconhres_recon.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A701295/2_axiallung_reconhres_recon/2_axiallung_reconhres_recon_seg.nii.gz"
+ },
+ {
+ "image": "A701295/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A701295/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A701295/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A237029/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A237029/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A237029/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A237029/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A237029/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A237029/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A237029/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A237029/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A237029/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A111952/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A111952/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A111952/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A111952/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A111952/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A111952/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A111952/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A111952/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A111952/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A458800/2_body_50.nii.gz",
+ "pseudo_label": "A458800/2_body_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A458800/2_body_50/2_body_50_seg.nii.gz"
+ },
+ {
+ "image": "A458800/4_lung_10.nii.gz",
+ "pseudo_label": "A458800/4_lung_10.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A458800/4_lung_10/4_lung_10_seg.nii.gz"
+ },
+ {
+ "image": "A458800/3_lung_50.nii.gz",
+ "pseudo_label": "A458800/3_lung_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A458800/3_lung_50/3_lung_50_seg.nii.gz"
+ },
+ {
+ "image": "A067967/4_body_10_ce.nii.gz",
+ "pseudo_label": "A067967/4_body_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A067967/4_body_10_ce/4_body_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A067967/3_body_30.nii.gz",
+ "pseudo_label": "A067967/3_body_30.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A067967/3_body_30/3_body_30_seg.nii.gz"
+ },
+ {
+ "image": "A067967/6_body_10_ce.nii.gz",
+ "pseudo_label": "A067967/6_body_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A067967/6_body_10_ce/6_body_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A067967/5_body_10_ce.nii.gz",
+ "pseudo_label": "A067967/5_body_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A067967/5_body_10_ce/5_body_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A067967/2_body_10_ce.nii.gz",
+ "pseudo_label": "A067967/2_body_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A067967/2_body_10_ce/2_body_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A582694/2_abdpel_25_mm.nii.gz",
+ "pseudo_label": "A582694/2_abdpel_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A582694/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A978197/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A978197/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A978197/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A978197/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A978197/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A978197/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A978197/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A978197/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A978197/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A198259/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A198259/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A198259/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A198259/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A198259/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A198259/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A198259/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A198259/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A198259/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A798811/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A798811/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A798811/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A798811/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A798811/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A798811/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A798811/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A798811/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A798811/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A825484/4_hi_res_chest.nii.gz",
+ "pseudo_label": "A825484/4_hi_res_chest.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A825484/4_hi_res_chest/4_hi_res_chest_seg.nii.gz"
+ },
+ {
+ "image": "A825484/2_chest_5x5.nii.gz",
+ "pseudo_label": "A825484/2_chest_5x5.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A825484/2_chest_5x5/2_chest_5x5_seg.nii.gz"
+ },
+ {
+ "image": "A825484/3_lung_5x5.nii.gz",
+ "pseudo_label": "A825484/3_lung_5x5.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A825484/3_lung_5x5/3_lung_5x5_seg.nii.gz"
+ },
+ {
+ "image": "A825484/603_3x3_axial.nii.gz",
+ "pseudo_label": "A825484/603_3x3_axial.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A825484/603_3x3_axial/603_3x3_axial_seg.nii.gz"
+ },
+ {
+ "image": "A919264/2_body_50.nii.gz",
+ "pseudo_label": "A919264/2_body_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A919264/2_body_50/2_body_50_seg.nii.gz"
+ },
+ {
+ "image": "A919264/4_lung_10.nii.gz",
+ "pseudo_label": "A919264/4_lung_10.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A919264/4_lung_10/4_lung_10_seg.nii.gz"
+ },
+ {
+ "image": "A919264/3_lung_50.nii.gz",
+ "pseudo_label": "A919264/3_lung_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A919264/3_lung_50/3_lung_50_seg.nii.gz"
+ },
+ {
+ "image": "A168835/2_body_30_ce.nii.gz",
+ "pseudo_label": "A168835/2_body_30_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A168835/2_body_30_ce/2_body_30_ce_seg.nii.gz"
+ },
+ {
+ "image": "A168835/2_standard.nii.gz",
+ "pseudo_label": "A168835/2_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A168835/2_standard/2_standard_seg.nii.gz"
+ },
+ {
+ "image": "A342350/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A342350/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A342350/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A342350/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A342350/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A342350/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A342350/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A342350/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A342350/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A363549/2_body_50.nii.gz",
+ "pseudo_label": "A363549/2_body_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A363549/2_body_50/2_body_50_seg.nii.gz"
+ },
+ {
+ "image": "A363549/4_lung_10.nii.gz",
+ "pseudo_label": "A363549/4_lung_10.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A363549/4_lung_10/4_lung_10_seg.nii.gz"
+ },
+ {
+ "image": "A363549/3_lung_50.nii.gz",
+ "pseudo_label": "A363549/3_lung_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A363549/3_lung_50/3_lung_50_seg.nii.gz"
+ },
+ {
+ "image": "A317359/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A317359/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A317359/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A317359/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A317359/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A317359/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A317359/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A317359/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A317359/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A548506/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A548506/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A548506/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A548506/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A548506/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A548506/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A548506/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A548506/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A548506/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A158497/2_standard_25mm.nii.gz",
+ "pseudo_label": "A158497/2_standard_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A158497/2_standard_25mm/2_standard_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A374161/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A374161/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A374161/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A374161/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A374161/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A374161/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A374161/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A374161/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A374161/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A181248/103_ref.nii.gz",
+ "pseudo_label": "A181248/103_ref.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A181248/103_ref/103_ref_seg.nii.gz"
+ },
+ {
+ "image": "A181248/2_abdomenpelvis_25_mm.nii.gz",
+ "pseudo_label": "A181248/2_abdomenpelvis_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A181248/2_abdomenpelvis_25_mm/2_abdomenpelvis_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A181248/2_standard.nii.gz",
+ "pseudo_label": "A181248/2_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A181248/2_standard/2_standard_seg.nii.gz"
+ },
+ {
+ "image": "A528910/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A528910/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A528910/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A528910/2_chest_25_mm.nii.gz",
+ "pseudo_label": "A528910/2_chest_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A528910/2_chest_25_mm/2_chest_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A528910/603_ct_thick_axials_5mm.nii.gz",
+ "pseudo_label": "A528910/603_ct_thick_axials_5mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A528910/603_ct_thick_axials_5mm/603_ct_thick_axials_5mm_seg.nii.gz"
+ },
+ {
+ "image": "A528910/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A528910/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A528910/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A918980/2_abdpel_25_mm.nii.gz",
+ "pseudo_label": "A918980/2_abdpel_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A918980/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A878067/2_25_x_25_standard.nii.gz",
+ "pseudo_label": "A878067/2_25_x_25_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A878067/2_25_x_25_standard/2_25_x_25_standard_seg.nii.gz"
+ },
+ {
+ "image": "A878067/2_abdpel_25_mm.nii.gz",
+ "pseudo_label": "A878067/2_abdpel_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A878067/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A263860/2_body_30_ce.nii.gz",
+ "pseudo_label": "A263860/2_body_30_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A263860/2_body_30_ce/2_body_30_ce_seg.nii.gz"
+ },
+ {
+ "image": "A296208/3_50_x_50_lung.nii.gz",
+ "pseudo_label": "A296208/3_50_x_50_lung.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A296208/3_50_x_50_lung/3_50_x_50_lung_seg.nii.gz"
+ },
+ {
+ "image": "A296208/4_125_x_125_high_resolution.nii.gz",
+ "pseudo_label": "A296208/4_125_x_125_high_resolution.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A296208/4_125_x_125_high_resolution/4_125_x_125_high_resolution_seg.nii.gz"
+ },
+ {
+ "image": "A296208/2_50_x_50_standard.nii.gz",
+ "pseudo_label": "A296208/2_50_x_50_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A296208/2_50_x_50_standard/2_50_x_50_standard_seg.nii.gz"
+ },
+ {
+ "image": "A469136/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A469136/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A469136/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A469136/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A469136/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A469136/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A469136/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A469136/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A469136/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A823307/2_body_30.nii.gz",
+ "pseudo_label": "A823307/2_body_30.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A823307/2_body_30/2_body_30_seg.nii.gz"
+ },
+ {
+ "image": "A363883/7_venous.nii.gz",
+ "pseudo_label": "A363883/7_venous.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A363883/7_venous/7_venous_seg.nii.gz"
+ },
+ {
+ "image": "A363883/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A363883/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A363883/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A363883/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A363883/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A363883/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A363883/6_arterial.nii.gz",
+ "pseudo_label": "A363883/6_arterial.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A363883/6_arterial/6_arterial_seg.nii.gz"
+ },
+ {
+ "image": "A363883/2_non_contrast_abd_pel.nii.gz",
+ "pseudo_label": "A363883/2_non_contrast_abd_pel.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A363883/2_non_contrast_abd_pel/2_non_contrast_abd_pel_seg.nii.gz"
+ },
+ {
+ "image": "A363883/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A363883/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A363883/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A399451/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A399451/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A399451/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A399451/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A399451/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A399451/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A399451/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A399451/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A399451/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A945931/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A945931/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A945931/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A945931/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A945931/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A945931/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A945931/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A945931/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A945931/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A945931/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A945931/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A945931/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A945931/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A945931/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A945931/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A945931/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A945931/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A945931/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A948163/3_lung_5x5.nii.gz",
+ "pseudo_label": "A948163/3_lung_5x5.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A948163/3_lung_5x5/3_lung_5x5_seg.nii.gz"
+ },
+ {
+ "image": "A948163/4_hr_chest_125_x_125.nii.gz",
+ "pseudo_label": "A948163/4_hr_chest_125_x_125.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A948163/4_hr_chest_125_x_125/4_hr_chest_125_x_125_seg.nii.gz"
+ },
+ {
+ "image": "A948163/2_axiallung_reconhres_recon.nii.gz",
+ "pseudo_label": "A948163/2_axiallung_reconhres_recon.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A948163/2_axiallung_reconhres_recon/2_axiallung_reconhres_recon_seg.nii.gz"
+ },
+ {
+ "image": "A296112/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A296112/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A296112/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A296112/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A296112/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A296112/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A296112/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A296112/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A296112/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A918856/5_arterial_125mm.nii.gz",
+ "pseudo_label": "A918856/5_arterial_125mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A918856/5_arterial_125mm/5_arterial_125mm_seg.nii.gz"
+ },
+ {
+ "image": "A918856/6_5_mm_delay.nii.gz",
+ "pseudo_label": "A918856/6_5_mm_delay.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A918856/6_5_mm_delay/6_5_mm_delay_seg.nii.gz"
+ },
+ {
+ "image": "A918856/2_pre_contrast.nii.gz",
+ "pseudo_label": "A918856/2_pre_contrast.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A918856/2_pre_contrast/2_pre_contrast_seg.nii.gz"
+ },
+ {
+ "image": "A783230/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A783230/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A783230/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A783230/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A783230/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A783230/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A783230/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A783230/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A783230/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A765481/7_abdpel_25_mm.nii.gz",
+ "pseudo_label": "A765481/7_abdpel_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A765481/7_abdpel_25_mm/7_abdpel_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A765481/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A765481/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A765481/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A765481/6_chest_125_mm.nii.gz",
+ "pseudo_label": "A765481/6_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A765481/6_chest_125_mm/6_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A765481/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A765481/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A765481/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A528780/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A528780/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A528780/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A528780/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A528780/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A528780/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A528780/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A528780/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A528780/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A703838/2_abdpel_25_mm.nii.gz",
+ "pseudo_label": "A703838/2_abdpel_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A703838/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A713279/2_standard_25mm.nii.gz",
+ "pseudo_label": "A713279/2_standard_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A713279/2_standard_25mm/2_standard_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A713279/2_abdpel_25_mm.nii.gz",
+ "pseudo_label": "A713279/2_abdpel_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A713279/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A437957/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A437957/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A437957/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A437957/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A437957/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A437957/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A437957/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A437957/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A437957/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A148030/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A148030/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A148030/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A148030/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A148030/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A148030/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A148030/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A148030/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A148030/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A926330/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A926330/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A926330/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A926330/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A926330/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A926330/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A926330/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A926330/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A926330/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A926330/2_abdpel_25_mm.nii.gz",
+ "pseudo_label": "A926330/2_abdpel_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A926330/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A326684/2_chest_abd_pel_5x5.nii.gz",
+ "pseudo_label": "A326684/2_chest_abd_pel_5x5.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A326684/2_chest_abd_pel_5x5/2_chest_abd_pel_5x5_seg.nii.gz"
+ },
+ {
+ "image": "A845985/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A845985/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A845985/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A845985/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A845985/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A845985/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A845985/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A845985/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A845985/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A288451/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A288451/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A288451/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A288451/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A288451/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A288451/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A288451/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A288451/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A288451/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A297208/7_lung_5_mm.nii.gz",
+ "pseudo_label": "A297208/7_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A297208/7_lung_5_mm/7_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A297208/8_chest_125_mm.nii.gz",
+ "pseudo_label": "A297208/8_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A297208/8_chest_125_mm/8_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A297208/6_lung_125_mm.nii.gz",
+ "pseudo_label": "A297208/6_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A297208/6_lung_125_mm/6_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A297208/2_abdpel_25_mm.nii.gz",
+ "pseudo_label": "A297208/2_abdpel_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A297208/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A577419/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A577419/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A577419/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A577419/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A577419/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A577419/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A577419/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A577419/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A577419/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A603249/2_body_50.nii.gz",
+ "pseudo_label": "A603249/2_body_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A603249/2_body_50/2_body_50_seg.nii.gz"
+ },
+ {
+ "image": "A603249/4_lung_10.nii.gz",
+ "pseudo_label": "A603249/4_lung_10.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A603249/4_lung_10/4_lung_10_seg.nii.gz"
+ },
+ {
+ "image": "A603249/3_lung_50.nii.gz",
+ "pseudo_label": "A603249/3_lung_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A603249/3_lung_50/3_lung_50_seg.nii.gz"
+ },
+ {
+ "image": "A679473/2_abdpel_25_mm.nii.gz",
+ "pseudo_label": "A679473/2_abdpel_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A679473/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A810286/3_body_30_ce.nii.gz",
+ "pseudo_label": "A810286/3_body_30_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A810286/3_body_30_ce/3_body_30_ce_seg.nii.gz"
+ },
+ {
+ "image": "A389295/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A389295/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A389295/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A389295/5_wb_standard_25.nii.gz",
+ "pseudo_label": "A389295/5_wb_standard_25.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A389295/5_wb_standard_25/5_wb_standard_25_seg.nii.gz"
+ },
+ {
+ "image": "A389295/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A389295/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A389295/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A389295/102_ctac_70cm_fov.nii.gz",
+ "pseudo_label": "A389295/102_ctac_70cm_fov.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A389295/102_ctac_70cm_fov/102_ctac_70cm_fov_seg.nii.gz"
+ },
+ {
+ "image": "A389295/3_lung_delay.nii.gz",
+ "pseudo_label": "A389295/3_lung_delay.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A389295/3_lung_delay/3_lung_delay_seg.nii.gz"
+ },
+ {
+ "image": "A389295/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A389295/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A389295/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A389295/3_lung.nii.gz",
+ "pseudo_label": "A389295/3_lung.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A389295/3_lung/3_lung_seg.nii.gz"
+ },
+ {
+ "image": "A389295/2_abdpel_25_mm.nii.gz",
+ "pseudo_label": "A389295/2_abdpel_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A389295/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A389295/2_ct_delay.nii.gz",
+ "pseudo_label": "A389295/2_ct_delay.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A389295/2_ct_delay/2_ct_delay_seg.nii.gz"
+ },
+ {
+ "image": "A760933/4_lung_10_ce.nii.gz",
+ "pseudo_label": "A760933/4_lung_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A760933/4_lung_10_ce/4_lung_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A760933/7_body_30_ce.nii.gz",
+ "pseudo_label": "A760933/7_body_30_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A760933/7_body_30_ce/7_body_30_ce_seg.nii.gz"
+ },
+ {
+ "image": "A760933/9_cta_05_ce.nii.gz",
+ "pseudo_label": "A760933/9_cta_05_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A760933/9_cta_05_ce/9_cta_05_ce_seg.nii.gz"
+ },
+ {
+ "image": "A760933/5_cta_50_ce.nii.gz",
+ "pseudo_label": "A760933/5_cta_50_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A760933/5_cta_50_ce/5_cta_50_ce_seg.nii.gz"
+ },
+ {
+ "image": "A760933/3_cta_10_ce.nii.gz",
+ "pseudo_label": "A760933/3_cta_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A760933/3_cta_10_ce/3_cta_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A358591/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A358591/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A358591/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A358591/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A358591/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A358591/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A358591/2_chest_abd_pel_5x5.nii.gz",
+ "pseudo_label": "A358591/2_chest_abd_pel_5x5.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A358591/2_chest_abd_pel_5x5/2_chest_abd_pel_5x5_seg.nii.gz"
+ },
+ {
+ "image": "A358591/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A358591/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A358591/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A777561/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A777561/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A777561/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A777561/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A777561/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A777561/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A777561/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A777561/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A777561/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A617583/2_body_30_ce.nii.gz",
+ "pseudo_label": "A617583/2_body_30_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A617583/2_body_30_ce/2_body_30_ce_seg.nii.gz"
+ },
+ {
+ "image": "A340910/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A340910/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A340910/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A340910/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A340910/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A340910/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A340910/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A340910/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A340910/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A652157/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A652157/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A652157/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A652157/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A652157/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A652157/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A652157/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A652157/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A652157/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A976899/2_standard_25mm.nii.gz",
+ "pseudo_label": "A976899/2_standard_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A976899/2_standard_25mm/2_standard_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A255554/8_cta_05_ce.nii.gz",
+ "pseudo_label": "A255554/8_cta_05_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A255554/8_cta_05_ce/8_cta_05_ce_seg.nii.gz"
+ },
+ {
+ "image": "A255554/4_lung_10_ce.nii.gz",
+ "pseudo_label": "A255554/4_lung_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A255554/4_lung_10_ce/4_lung_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A255554/5_cta_50_ce.nii.gz",
+ "pseudo_label": "A255554/5_cta_50_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A255554/5_cta_50_ce/5_cta_50_ce_seg.nii.gz"
+ },
+ {
+ "image": "A255554/3_cta_10_ce.nii.gz",
+ "pseudo_label": "A255554/3_cta_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A255554/3_cta_10_ce/3_cta_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A998879/2_body_30_ce.nii.gz",
+ "pseudo_label": "A998879/2_body_30_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A998879/2_body_30_ce/2_body_30_ce_seg.nii.gz"
+ },
+ {
+ "image": "A183655/4_body_10_ce.nii.gz",
+ "pseudo_label": "A183655/4_body_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A183655/4_body_10_ce/4_body_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A183655/2_body_10_ce.nii.gz",
+ "pseudo_label": "A183655/2_body_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A183655/2_body_10_ce/2_body_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A352169/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A352169/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A352169/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A352169/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A352169/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A352169/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A352169/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A352169/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A352169/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A089940/3_50_x_50_lung.nii.gz",
+ "pseudo_label": "A089940/3_50_x_50_lung.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A089940/3_50_x_50_lung/3_50_x_50_lung_seg.nii.gz"
+ },
+ {
+ "image": "A089940/4_125_x_125_high_resolution.nii.gz",
+ "pseudo_label": "A089940/4_125_x_125_high_resolution.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A089940/4_125_x_125_high_resolution/4_125_x_125_high_resolution_seg.nii.gz"
+ },
+ {
+ "image": "A089940/2_50_x_50_standard.nii.gz",
+ "pseudo_label": "A089940/2_50_x_50_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A089940/2_50_x_50_standard/2_50_x_50_standard_seg.nii.gz"
+ },
+ {
+ "image": "A576685/7_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A576685/7_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A576685/7_lung_hr_125_mm/7_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A576685/5_5_mm_standard.nii.gz",
+ "pseudo_label": "A576685/5_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A576685/5_5_mm_standard/5_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A576685/2_chest_25_mmabdpel_25mm.nii.gz",
+ "pseudo_label": "A576685/2_chest_25_mmabdpel_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A576685/2_chest_25_mmabdpel_25mm/2_chest_25_mmabdpel_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A576685/6_lung_5_mm.nii.gz",
+ "pseudo_label": "A576685/6_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A576685/6_lung_5_mm/6_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A793685/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A793685/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A793685/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A793685/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A793685/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A793685/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A793685/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A793685/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A793685/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A789647/2_body_30_ce.nii.gz",
+ "pseudo_label": "A789647/2_body_30_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A789647/2_body_30_ce/2_body_30_ce_seg.nii.gz"
+ },
+ {
+ "image": "A700420/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A700420/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A700420/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A700420/3_50_x_50_lung.nii.gz",
+ "pseudo_label": "A700420/3_50_x_50_lung.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A700420/3_50_x_50_lung/3_50_x_50_lung_seg.nii.gz"
+ },
+ {
+ "image": "A700420/4_125_x_125_high_resolution.nii.gz",
+ "pseudo_label": "A700420/4_125_x_125_high_resolution.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A700420/4_125_x_125_high_resolution/4_125_x_125_high_resolution_seg.nii.gz"
+ },
+ {
+ "image": "A700420/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A700420/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A700420/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A700420/2_standard_25mm.nii.gz",
+ "pseudo_label": "A700420/2_standard_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A700420/2_standard_25mm/2_standard_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A700420/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A700420/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A700420/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A700420/2_50_x_50_standard.nii.gz",
+ "pseudo_label": "A700420/2_50_x_50_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A700420/2_50_x_50_standard/2_50_x_50_standard_seg.nii.gz"
+ },
+ {
+ "image": "A700420/2_abdpel_25_mm.nii.gz",
+ "pseudo_label": "A700420/2_abdpel_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A700420/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A201660/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A201660/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A201660/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A201660/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A201660/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A201660/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A201660/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A201660/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A201660/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A831693/2_standard_25mm.nii.gz",
+ "pseudo_label": "A831693/2_standard_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A831693/2_standard_25mm/2_standard_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A111874/2_abdpel_25_mm.nii.gz",
+ "pseudo_label": "A111874/2_abdpel_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A111874/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A222465/2_standard_25mm.nii.gz",
+ "pseudo_label": "A222465/2_standard_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A222465/2_standard_25mm/2_standard_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A704496/2_chest_25_mmabdpel_25mm.nii.gz",
+ "pseudo_label": "A704496/2_chest_25_mmabdpel_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A704496/2_chest_25_mmabdpel_25mm/2_chest_25_mmabdpel_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A704496/6_body_10_ce.nii.gz",
+ "pseudo_label": "A704496/6_body_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A704496/6_body_10_ce/6_body_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A704496/2_body_10_ce.nii.gz",
+ "pseudo_label": "A704496/2_body_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A704496/2_body_10_ce/2_body_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A704496/2_abdpel_25_mm.nii.gz",
+ "pseudo_label": "A704496/2_abdpel_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A704496/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A524254/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A524254/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A524254/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A524254/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A524254/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A524254/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A524254/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A524254/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A524254/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A524254/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A524254/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A524254/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A524254/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A524254/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A524254/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A524254/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A524254/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A524254/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A079927/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A079927/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A079927/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A079927/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A079927/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A079927/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A079927/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A079927/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A079927/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A207560/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A207560/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A207560/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A207560/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A207560/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A207560/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A207560/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A207560/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A207560/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A130408/7_abdpel_25_mm.nii.gz",
+ "pseudo_label": "A130408/7_abdpel_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A130408/7_abdpel_25_mm/7_abdpel_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A130408/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A130408/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A130408/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A130408/6_chest_125_mm.nii.gz",
+ "pseudo_label": "A130408/6_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A130408/6_chest_125_mm/6_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A130408/2_standard_25mm.nii.gz",
+ "pseudo_label": "A130408/2_standard_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A130408/2_standard_25mm/2_standard_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A130408/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A130408/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A130408/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A199199/2_body_30_ce.nii.gz",
+ "pseudo_label": "A199199/2_body_30_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A199199/2_body_30_ce/2_body_30_ce_seg.nii.gz"
+ },
+ {
+ "image": "A056206/2_chest_25_mmabdpel_25mm.nii.gz",
+ "pseudo_label": "A056206/2_chest_25_mmabdpel_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A056206/2_chest_25_mmabdpel_25mm/2_chest_25_mmabdpel_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A768042/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A768042/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A768042/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A768042/7_abdpel_25_mm.nii.gz",
+ "pseudo_label": "A768042/7_abdpel_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A768042/7_abdpel_25_mm/7_abdpel_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A768042/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A768042/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A768042/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A768042/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A768042/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A768042/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A768042/6_chest_125_mm.nii.gz",
+ "pseudo_label": "A768042/6_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A768042/6_chest_125_mm/6_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A768042/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A768042/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A768042/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A768042/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A768042/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A768042/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A387558/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A387558/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A387558/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A387558/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A387558/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A387558/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A387558/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A387558/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A387558/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A531622/4_body_10_ce.nii.gz",
+ "pseudo_label": "A531622/4_body_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A531622/4_body_10_ce/4_body_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A531622/2_body_10_ce.nii.gz",
+ "pseudo_label": "A531622/2_body_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A531622/2_body_10_ce/2_body_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A929180/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A929180/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A929180/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A929180/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A929180/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A929180/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A929180/6_body_10_ce.nii.gz",
+ "pseudo_label": "A929180/6_body_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A929180/6_body_10_ce/6_body_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A929180/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A929180/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A929180/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A929180/2_body_10_ce.nii.gz",
+ "pseudo_label": "A929180/2_body_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A929180/2_body_10_ce/2_body_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A540132/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A540132/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A540132/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A540132/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A540132/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A540132/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A540132/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A540132/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A540132/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A540132/2_abdpel_25_mm.nii.gz",
+ "pseudo_label": "A540132/2_abdpel_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A540132/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A763364/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A763364/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A763364/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A763364/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A763364/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A763364/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A763364/4_chest__30__b70s.nii.gz",
+ "pseudo_label": "A763364/4_chest__30__b70s.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A763364/4_chest__30__b70s/4_chest__30__b70s_seg.nii.gz"
+ },
+ {
+ "image": "A763364/3_chest__50__b30s.nii.gz",
+ "pseudo_label": "A763364/3_chest__50__b30s.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A763364/3_chest__50__b30s/3_chest__50__b30s_seg.nii.gz"
+ },
+ {
+ "image": "A763364/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A763364/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A763364/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A041535/2_chest_abd_pel_5x5.nii.gz",
+ "pseudo_label": "A041535/2_chest_abd_pel_5x5.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A041535/2_chest_abd_pel_5x5/2_chest_abd_pel_5x5_seg.nii.gz"
+ },
+ {
+ "image": "A443780/2_standard_25mm.nii.gz",
+ "pseudo_label": "A443780/2_standard_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A443780/2_standard_25mm/2_standard_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A313717/601_chest_ax.nii.gz",
+ "pseudo_label": "A313717/601_chest_ax.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A313717/601_chest_ax/601_chest_ax_seg.nii.gz"
+ },
+ {
+ "image": "A313717/606_abdomen_ax.nii.gz",
+ "pseudo_label": "A313717/606_abdomen_ax.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A313717/606_abdomen_ax/606_abdomen_ax_seg.nii.gz"
+ },
+ {
+ "image": "A761147/6_body_10_ce.nii.gz",
+ "pseudo_label": "A761147/6_body_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A761147/6_body_10_ce/6_body_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A761147/2_body_10_ce.nii.gz",
+ "pseudo_label": "A761147/2_body_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A761147/2_body_10_ce/2_body_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A803165/2_chest_25_mmabdpel_25mm.nii.gz",
+ "pseudo_label": "A803165/2_chest_25_mmabdpel_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A803165/2_chest_25_mmabdpel_25mm/2_chest_25_mmabdpel_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A803165/4_arterial.nii.gz",
+ "pseudo_label": "A803165/4_arterial.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A803165/4_arterial/4_arterial_seg.nii.gz"
+ },
+ {
+ "image": "A803165/2_chest_25_mm_abd_pel_25_mm.nii.gz",
+ "pseudo_label": "A803165/2_chest_25_mm_abd_pel_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A803165/2_chest_25_mm_abd_pel_25_mm/2_chest_25_mm_abd_pel_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A803165/5_venous.nii.gz",
+ "pseudo_label": "A803165/5_venous.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A803165/5_venous/5_venous_seg.nii.gz"
+ },
+ {
+ "image": "A680757/2_standard.nii.gz",
+ "pseudo_label": "A680757/2_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A680757/2_standard/2_standard_seg.nii.gz"
+ },
+ {
+ "image": "A342688/601_chest_ax.nii.gz",
+ "pseudo_label": "A342688/601_chest_ax.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A342688/601_chest_ax/601_chest_ax_seg.nii.gz"
+ },
+ {
+ "image": "A342688/606_abdomen_ax.nii.gz",
+ "pseudo_label": "A342688/606_abdomen_ax.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A342688/606_abdomen_ax/606_abdomen_ax_seg.nii.gz"
+ },
+ {
+ "image": "A093786/2_abdpel_25_mm.nii.gz",
+ "pseudo_label": "A093786/2_abdpel_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A093786/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A720956/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A720956/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A720956/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A720956/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A720956/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A720956/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A720956/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A720956/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A720956/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A605679/2_standard_25mm.nii.gz",
+ "pseudo_label": "A605679/2_standard_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A605679/2_standard_25mm/2_standard_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A166885/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A166885/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A166885/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A166885/2_chest_25_mm.nii.gz",
+ "pseudo_label": "A166885/2_chest_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A166885/2_chest_25_mm/2_chest_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A166885/603_ct_thick_axials_5mm.nii.gz",
+ "pseudo_label": "A166885/603_ct_thick_axials_5mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A166885/603_ct_thick_axials_5mm/603_ct_thick_axials_5mm_seg.nii.gz"
+ },
+ {
+ "image": "A166885/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A166885/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A166885/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A812385/5_lung_10.nii.gz",
+ "pseudo_label": "A812385/5_lung_10.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A812385/5_lung_10/5_lung_10_seg.nii.gz"
+ },
+ {
+ "image": "A812385/4_lung_50.nii.gz",
+ "pseudo_label": "A812385/4_lung_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A812385/4_lung_50/4_lung_50_seg.nii.gz"
+ },
+ {
+ "image": "A812385/3_body_50.nii.gz",
+ "pseudo_label": "A812385/3_body_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A812385/3_body_50/3_body_50_seg.nii.gz"
+ },
+ {
+ "image": "A627834/3_50_x_50_lung.nii.gz",
+ "pseudo_label": "A627834/3_50_x_50_lung.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A627834/3_50_x_50_lung/3_50_x_50_lung_seg.nii.gz"
+ },
+ {
+ "image": "A627834/4_125_x_125_high_resolution.nii.gz",
+ "pseudo_label": "A627834/4_125_x_125_high_resolution.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A627834/4_125_x_125_high_resolution/4_125_x_125_high_resolution_seg.nii.gz"
+ },
+ {
+ "image": "A627834/2_50_x_50_mm_standard.nii.gz",
+ "pseudo_label": "A627834/2_50_x_50_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A627834/2_50_x_50_mm_standard/2_50_x_50_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A725719/2_body_50.nii.gz",
+ "pseudo_label": "A725719/2_body_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A725719/2_body_50/2_body_50_seg.nii.gz"
+ },
+ {
+ "image": "A725719/4_lung_10.nii.gz",
+ "pseudo_label": "A725719/4_lung_10.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A725719/4_lung_10/4_lung_10_seg.nii.gz"
+ },
+ {
+ "image": "A725719/3_lung_50.nii.gz",
+ "pseudo_label": "A725719/3_lung_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A725719/3_lung_50/3_lung_50_seg.nii.gz"
+ },
+ {
+ "image": "A656786/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A656786/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A656786/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A656786/6_chest_125_mm.nii.gz",
+ "pseudo_label": "A656786/6_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A656786/6_chest_125_mm/6_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A656786/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A656786/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A656786/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A480571/2_standard.nii.gz",
+ "pseudo_label": "A480571/2_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A480571/2_standard/2_standard_seg.nii.gz"
+ },
+ {
+ "image": "A136951/9_cta_3000_ce.nii.gz",
+ "pseudo_label": "A136951/9_cta_3000_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A136951/9_cta_3000_ce/9_cta_3000_ce_seg.nii.gz"
+ },
+ {
+ "image": "A136951/5_cta_15000_ce.nii.gz",
+ "pseudo_label": "A136951/5_cta_15000_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A136951/5_cta_15000_ce/5_cta_15000_ce_seg.nii.gz"
+ },
+ {
+ "image": "A136951/3_cta_10_ce.nii.gz",
+ "pseudo_label": "A136951/3_cta_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A136951/3_cta_10_ce/3_cta_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A518486/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A518486/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A518486/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A518486/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A518486/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A518486/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A518486/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A518486/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A518486/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A768565/7_body_10_ce.nii.gz",
+ "pseudo_label": "A768565/7_body_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A768565/7_body_10_ce/7_body_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A768565/4_body_30.nii.gz",
+ "pseudo_label": "A768565/4_body_30.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A768565/4_body_30/4_body_30_seg.nii.gz"
+ },
+ {
+ "image": "A768565/4_arterial.nii.gz",
+ "pseudo_label": "A768565/4_arterial.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A768565/4_arterial/4_arterial_seg.nii.gz"
+ },
+ {
+ "image": "A768565/6_body_10_ce.nii.gz",
+ "pseudo_label": "A768565/6_body_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A768565/6_body_10_ce/6_body_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A768565/15_body_05_ce.nii.gz",
+ "pseudo_label": "A768565/15_body_05_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A768565/15_body_05_ce/15_body_05_ce_seg.nii.gz"
+ },
+ {
+ "image": "A768565/5_venous.nii.gz",
+ "pseudo_label": "A768565/5_venous.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A768565/5_venous/5_venous_seg.nii.gz"
+ },
+ {
+ "image": "A157352/2_body_50.nii.gz",
+ "pseudo_label": "A157352/2_body_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A157352/2_body_50/2_body_50_seg.nii.gz"
+ },
+ {
+ "image": "A157352/4_lung_10.nii.gz",
+ "pseudo_label": "A157352/4_lung_10.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A157352/4_lung_10/4_lung_10_seg.nii.gz"
+ },
+ {
+ "image": "A157352/3_lung_50.nii.gz",
+ "pseudo_label": "A157352/3_lung_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A157352/3_lung_50/3_lung_50_seg.nii.gz"
+ },
+ {
+ "image": "A390754/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A390754/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A390754/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A390754/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A390754/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A390754/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A390754/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A390754/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A390754/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A973206/2_chest_abd_pel_5x5.nii.gz",
+ "pseudo_label": "A973206/2_chest_abd_pel_5x5.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A973206/2_chest_abd_pel_5x5/2_chest_abd_pel_5x5_seg.nii.gz"
+ },
+ {
+ "image": "A647750/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A647750/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A647750/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A647750/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A647750/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A647750/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A647750/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A647750/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A647750/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A398126/6_125mm_venous.nii.gz",
+ "pseudo_label": "A398126/6_125mm_venous.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A398126/6_125mm_venous/6_125mm_venous_seg.nii.gz"
+ },
+ {
+ "image": "A398126/5_125_mm_arterial.nii.gz",
+ "pseudo_label": "A398126/5_125_mm_arterial.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A398126/5_125_mm_arterial/5_125_mm_arterial_seg.nii.gz"
+ },
+ {
+ "image": "A398126/2_pre_contrast.nii.gz",
+ "pseudo_label": "A398126/2_pre_contrast.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A398126/2_pre_contrast/2_pre_contrast_seg.nii.gz"
+ },
+ {
+ "image": "A684870/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A684870/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A684870/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A684870/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A684870/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A684870/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A684870/300_mips.nii.gz",
+ "pseudo_label": "A684870/300_mips.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A684870/300_mips/300_mips_seg.nii.gz"
+ },
+ {
+ "image": "A684870/6_abdpel_25_mm.nii.gz",
+ "pseudo_label": "A684870/6_abdpel_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A684870/6_abdpel_25_mm/6_abdpel_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A684870/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A684870/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A684870/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A146146/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A146146/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A146146/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A146146/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A146146/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A146146/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A146146/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A146146/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A146146/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A636688/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A636688/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A636688/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A636688/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A636688/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A636688/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A636688/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A636688/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A636688/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A636688/3_ct_wb__40__b30f.nii.gz",
+ "pseudo_label": "A636688/3_ct_wb__40__b30f.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A636688/3_ct_wb__40__b30f/3_ct_wb__40__b30f_seg.nii.gz"
+ },
+ {
+ "image": "A636688/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A636688/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A636688/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A636688/5_ct_lung_recon.nii.gz",
+ "pseudo_label": "A636688/5_ct_lung_recon.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A636688/5_ct_lung_recon/5_ct_lung_recon_seg.nii.gz"
+ },
+ {
+ "image": "A636688/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A636688/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A636688/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A636688/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A636688/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A636688/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A572854/2_body_50.nii.gz",
+ "pseudo_label": "A572854/2_body_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A572854/2_body_50/2_body_50_seg.nii.gz"
+ },
+ {
+ "image": "A572854/4_lung_10.nii.gz",
+ "pseudo_label": "A572854/4_lung_10.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A572854/4_lung_10/4_lung_10_seg.nii.gz"
+ },
+ {
+ "image": "A572854/3_lung_50.nii.gz",
+ "pseudo_label": "A572854/3_lung_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A572854/3_lung_50/3_lung_50_seg.nii.gz"
+ },
+ {
+ "image": "A482525/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A482525/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A482525/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A482525/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A482525/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A482525/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A482525/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A482525/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A482525/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A744067/2_body_30_ce.nii.gz",
+ "pseudo_label": "A744067/2_body_30_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A744067/2_body_30_ce/2_body_30_ce_seg.nii.gz"
+ },
+ {
+ "image": "A085151/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A085151/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A085151/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A085151/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A085151/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A085151/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A085151/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A085151/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A085151/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A098752/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A098752/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A098752/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A098752/3_125_x_125_lung.nii.gz",
+ "pseudo_label": "A098752/3_125_x_125_lung.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A098752/3_125_x_125_lung/3_125_x_125_lung_seg.nii.gz"
+ },
+ {
+ "image": "A098752/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A098752/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A098752/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A098752/2_125_x_125_standard.nii.gz",
+ "pseudo_label": "A098752/2_125_x_125_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A098752/2_125_x_125_standard/2_125_x_125_standard_seg.nii.gz"
+ },
+ {
+ "image": "A098752/4_50_x_50_standard.nii.gz",
+ "pseudo_label": "A098752/4_50_x_50_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A098752/4_50_x_50_standard/4_50_x_50_standard_seg.nii.gz"
+ },
+ {
+ "image": "A098752/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A098752/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A098752/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A098752/2_body_50.nii.gz",
+ "pseudo_label": "A098752/2_body_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A098752/2_body_50/2_body_50_seg.nii.gz"
+ },
+ {
+ "image": "A098752/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A098752/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A098752/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A098752/4_lung_10.nii.gz",
+ "pseudo_label": "A098752/4_lung_10.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A098752/4_lung_10/4_lung_10_seg.nii.gz"
+ },
+ {
+ "image": "A098752/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A098752/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A098752/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A098752/3_lung_50.nii.gz",
+ "pseudo_label": "A098752/3_lung_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A098752/3_lung_50/3_lung_50_seg.nii.gz"
+ },
+ {
+ "image": "A098752/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A098752/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A098752/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A610315/2_body_50.nii.gz",
+ "pseudo_label": "A610315/2_body_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A610315/2_body_50/2_body_50_seg.nii.gz"
+ },
+ {
+ "image": "A610315/4_lung_10.nii.gz",
+ "pseudo_label": "A610315/4_lung_10.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A610315/4_lung_10/4_lung_10_seg.nii.gz"
+ },
+ {
+ "image": "A610315/3_lung_50.nii.gz",
+ "pseudo_label": "A610315/3_lung_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A610315/3_lung_50/3_lung_50_seg.nii.gz"
+ },
+ {
+ "image": "A616705/601_chest_ax.nii.gz",
+ "pseudo_label": "A616705/601_chest_ax.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A616705/601_chest_ax/601_chest_ax_seg.nii.gz"
+ },
+ {
+ "image": "A616705/2_standard_25mm.nii.gz",
+ "pseudo_label": "A616705/2_standard_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A616705/2_standard_25mm/2_standard_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A616705/606_abdomen_ax.nii.gz",
+ "pseudo_label": "A616705/606_abdomen_ax.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A616705/606_abdomen_ax/606_abdomen_ax_seg.nii.gz"
+ },
+ {
+ "image": "A190935/2_chest_25_mmabdpel_25mm.nii.gz",
+ "pseudo_label": "A190935/2_chest_25_mmabdpel_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A190935/2_chest_25_mmabdpel_25mm/2_chest_25_mmabdpel_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A143943/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A143943/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A143943/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A143943/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A143943/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A143943/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A143943/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A143943/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A143943/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A211654/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A211654/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A211654/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A211654/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A211654/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A211654/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A211654/3_chest_125_mm.nii.gz",
+ "pseudo_label": "A211654/3_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A211654/3_chest_125_mm/3_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A211654/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A211654/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A211654/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A211654/6_lung_5_mm.nii.gz",
+ "pseudo_label": "A211654/6_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A211654/6_lung_5_mm/6_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A211654/5_lung_125_mm.nii.gz",
+ "pseudo_label": "A211654/5_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A211654/5_lung_125_mm/5_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A701587/5_body_10_ce.nii.gz",
+ "pseudo_label": "A701587/5_body_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A701587/5_body_10_ce/5_body_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A701587/3_body_10_ce.nii.gz",
+ "pseudo_label": "A701587/3_body_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A701587/3_body_10_ce/3_body_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A230707/3_lung_5x5.nii.gz",
+ "pseudo_label": "A230707/3_lung_5x5.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A230707/3_lung_5x5/3_lung_5x5_seg.nii.gz"
+ },
+ {
+ "image": "A230707/2_axiallung_reconhres_recon.nii.gz",
+ "pseudo_label": "A230707/2_axiallung_reconhres_recon.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A230707/2_axiallung_reconhres_recon/2_axiallung_reconhres_recon_seg.nii.gz"
+ },
+ {
+ "image": "A399216/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A399216/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A399216/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A399216/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A399216/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A399216/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A399216/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A399216/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A399216/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A806933/2_body_50.nii.gz",
+ "pseudo_label": "A806933/2_body_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A806933/2_body_50/2_body_50_seg.nii.gz"
+ },
+ {
+ "image": "A806933/4_lung_10.nii.gz",
+ "pseudo_label": "A806933/4_lung_10.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A806933/4_lung_10/4_lung_10_seg.nii.gz"
+ },
+ {
+ "image": "A806933/3_lung_50.nii.gz",
+ "pseudo_label": "A806933/3_lung_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A806933/3_lung_50/3_lung_50_seg.nii.gz"
+ },
+ {
+ "image": "A711426/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A711426/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A711426/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A711426/2_chest_25_mm.nii.gz",
+ "pseudo_label": "A711426/2_chest_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A711426/2_chest_25_mm/2_chest_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A711426/603_ct_thick_axials_5mm.nii.gz",
+ "pseudo_label": "A711426/603_ct_thick_axials_5mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A711426/603_ct_thick_axials_5mm/603_ct_thick_axials_5mm_seg.nii.gz"
+ },
+ {
+ "image": "A711426/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A711426/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A711426/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A766483/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A766483/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A766483/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A766483/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A766483/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A766483/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A766483/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A766483/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A766483/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A562171/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A562171/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A562171/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A562171/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A562171/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A562171/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A562171/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A562171/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A562171/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A145968/2_body_30_ce.nii.gz",
+ "pseudo_label": "A145968/2_body_30_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A145968/2_body_30_ce/2_body_30_ce_seg.nii.gz"
+ },
+ {
+ "image": "A293330/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A293330/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A293330/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A293330/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A293330/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A293330/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A293330/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A293330/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A293330/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A353550/2_standard_25mm.nii.gz",
+ "pseudo_label": "A353550/2_standard_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A353550/2_standard_25mm/2_standard_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A405246/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A405246/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A405246/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A405246/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A405246/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A405246/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A405246/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A405246/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A405246/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A457297/2_standard_25mm.nii.gz",
+ "pseudo_label": "A457297/2_standard_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A457297/2_standard_25mm/2_standard_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A921742/2_abdpel_25_mm.nii.gz",
+ "pseudo_label": "A921742/2_abdpel_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A921742/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A301237/2_chest_25_mmabdpel_25mm.nii.gz",
+ "pseudo_label": "A301237/2_chest_25_mmabdpel_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A301237/2_chest_25_mmabdpel_25mm/2_chest_25_mmabdpel_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A408220/2_body_50.nii.gz",
+ "pseudo_label": "A408220/2_body_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A408220/2_body_50/2_body_50_seg.nii.gz"
+ },
+ {
+ "image": "A408220/4_lung_10.nii.gz",
+ "pseudo_label": "A408220/4_lung_10.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A408220/4_lung_10/4_lung_10_seg.nii.gz"
+ },
+ {
+ "image": "A408220/3_lung_50.nii.gz",
+ "pseudo_label": "A408220/3_lung_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A408220/3_lung_50/3_lung_50_seg.nii.gz"
+ },
+ {
+ "image": "A526021/3_lung_5x5.nii.gz",
+ "pseudo_label": "A526021/3_lung_5x5.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A526021/3_lung_5x5/3_lung_5x5_seg.nii.gz"
+ },
+ {
+ "image": "A526021/4_hr_chest_125_x_125.nii.gz",
+ "pseudo_label": "A526021/4_hr_chest_125_x_125.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A526021/4_hr_chest_125_x_125/4_hr_chest_125_x_125_seg.nii.gz"
+ },
+ {
+ "image": "A526021/2_axiallung_reconhres_recon.nii.gz",
+ "pseudo_label": "A526021/2_axiallung_reconhres_recon.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A526021/2_axiallung_reconhres_recon/2_axiallung_reconhres_recon_seg.nii.gz"
+ },
+ {
+ "image": "A689562/2_body_30_ce.nii.gz",
+ "pseudo_label": "A689562/2_body_30_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A689562/2_body_30_ce/2_body_30_ce_seg.nii.gz"
+ },
+ {
+ "image": "A111996/7_cta_15000_ce.nii.gz",
+ "pseudo_label": "A111996/7_cta_15000_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A111996/7_cta_15000_ce/7_cta_15000_ce_seg.nii.gz"
+ },
+ {
+ "image": "A111996/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A111996/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A111996/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A111996/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A111996/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A111996/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A111996/12_cta_3000_ce.nii.gz",
+ "pseudo_label": "A111996/12_cta_3000_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A111996/12_cta_3000_ce/12_cta_3000_ce_seg.nii.gz"
+ },
+ {
+ "image": "A111996/11_body_30_ce.nii.gz",
+ "pseudo_label": "A111996/11_body_30_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A111996/11_body_30_ce/11_body_30_ce_seg.nii.gz"
+ },
+ {
+ "image": "A111996/5_cta_10_ce.nii.gz",
+ "pseudo_label": "A111996/5_cta_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A111996/5_cta_10_ce/5_cta_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A111996/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A111996/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A111996/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A832393/7_abdpel_25_mm.nii.gz",
+ "pseudo_label": "A832393/7_abdpel_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A832393/7_abdpel_25_mm/7_abdpel_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A832393/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A832393/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A832393/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A832393/6_chest_125_mm.nii.gz",
+ "pseudo_label": "A832393/6_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A832393/6_chest_125_mm/6_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A832393/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A832393/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A832393/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A466369/2_abdpel_25_mm.nii.gz",
+ "pseudo_label": "A466369/2_abdpel_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A466369/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A820804/2_abdpel_25_mm.nii.gz",
+ "pseudo_label": "A820804/2_abdpel_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A820804/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A780880/3_50_x_50_lung.nii.gz",
+ "pseudo_label": "A780880/3_50_x_50_lung.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A780880/3_50_x_50_lung/3_50_x_50_lung_seg.nii.gz"
+ },
+ {
+ "image": "A780880/4_125_x_125_high_resolution.nii.gz",
+ "pseudo_label": "A780880/4_125_x_125_high_resolution.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A780880/4_125_x_125_high_resolution/4_125_x_125_high_resolution_seg.nii.gz"
+ },
+ {
+ "image": "A780880/2_body_50.nii.gz",
+ "pseudo_label": "A780880/2_body_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A780880/2_body_50/2_body_50_seg.nii.gz"
+ },
+ {
+ "image": "A780880/4_lung_10.nii.gz",
+ "pseudo_label": "A780880/4_lung_10.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A780880/4_lung_10/4_lung_10_seg.nii.gz"
+ },
+ {
+ "image": "A780880/2_50_x_50_standard.nii.gz",
+ "pseudo_label": "A780880/2_50_x_50_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A780880/2_50_x_50_standard/2_50_x_50_standard_seg.nii.gz"
+ },
+ {
+ "image": "A780880/3_lung_50.nii.gz",
+ "pseudo_label": "A780880/3_lung_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A780880/3_lung_50/3_lung_50_seg.nii.gz"
+ },
+ {
+ "image": "A257079/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A257079/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A257079/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A257079/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A257079/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A257079/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A257079/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A257079/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A257079/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A192601/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A192601/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A192601/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A192601/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A192601/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A192601/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A192601/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A192601/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A192601/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A458393/2_body_30_ce.nii.gz",
+ "pseudo_label": "A458393/2_body_30_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A458393/2_body_30_ce/2_body_30_ce_seg.nii.gz"
+ },
+ {
+ "image": "A780838/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A780838/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A780838/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A780838/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A780838/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A780838/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A780838/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A780838/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A780838/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A469587/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A469587/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A469587/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A469587/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A469587/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A469587/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A469587/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A469587/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A469587/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A058062/2_25_x_25_standard.nii.gz",
+ "pseudo_label": "A058062/2_25_x_25_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A058062/2_25_x_25_standard/2_25_x_25_standard_seg.nii.gz"
+ },
+ {
+ "image": "A058062/2_abdpel_25_mm.nii.gz",
+ "pseudo_label": "A058062/2_abdpel_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A058062/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A824589/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A824589/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A824589/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A824589/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A824589/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A824589/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A824589/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A824589/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A824589/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A160394/2_standard_25mm.nii.gz",
+ "pseudo_label": "A160394/2_standard_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A160394/2_standard_25mm/2_standard_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A955704/2_standard.nii.gz",
+ "pseudo_label": "A955704/2_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A955704/2_standard/2_standard_seg.nii.gz"
+ },
+ {
+ "image": "A955704/2_abdpel_25_mm.nii.gz",
+ "pseudo_label": "A955704/2_abdpel_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A955704/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A565890/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A565890/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A565890/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A565890/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A565890/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A565890/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A565890/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A565890/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A565890/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A546520/9_cta_3000_ce.nii.gz",
+ "pseudo_label": "A546520/9_cta_3000_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A546520/9_cta_3000_ce/9_cta_3000_ce_seg.nii.gz"
+ },
+ {
+ "image": "A546520/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A546520/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A546520/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A546520/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A546520/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A546520/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A546520/5_cta_15000_ce.nii.gz",
+ "pseudo_label": "A546520/5_cta_15000_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A546520/5_cta_15000_ce/5_cta_15000_ce_seg.nii.gz"
+ },
+ {
+ "image": "A546520/3_cta_10_ce.nii.gz",
+ "pseudo_label": "A546520/3_cta_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A546520/3_cta_10_ce/3_cta_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A546520/12_body_30_ce.nii.gz",
+ "pseudo_label": "A546520/12_body_30_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A546520/12_body_30_ce/12_body_30_ce_seg.nii.gz"
+ },
+ {
+ "image": "A546520/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A546520/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A546520/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A534946/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A534946/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A534946/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A534946/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A534946/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A534946/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A534946/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A534946/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A534946/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A910807/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A910807/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A910807/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A910807/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A910807/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A910807/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A910807/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A910807/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A910807/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A473308/2_body_30_ce.nii.gz",
+ "pseudo_label": "A473308/2_body_30_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A473308/2_body_30_ce/2_body_30_ce_seg.nii.gz"
+ },
+ {
+ "image": "A362446/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A362446/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A362446/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A362446/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A362446/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A362446/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A362446/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A362446/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A362446/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A727037/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A727037/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A727037/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A727037/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A727037/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A727037/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A727037/2_standard_25mm.nii.gz",
+ "pseudo_label": "A727037/2_standard_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A727037/2_standard_25mm/2_standard_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A727037/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A727037/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A727037/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A767767/2_abdpel_25_mm.nii.gz",
+ "pseudo_label": "A767767/2_abdpel_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A767767/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A858373/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A858373/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A858373/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A858373/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A858373/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A858373/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A858373/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A858373/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A858373/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A561224/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A561224/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A561224/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A561224/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A561224/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A561224/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A561224/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A561224/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A561224/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A485373/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A485373/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A485373/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A485373/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A485373/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A485373/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A485373/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A485373/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A485373/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A485648/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A485648/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A485648/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A485648/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A485648/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A485648/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A485648/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A485648/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A485648/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A902510/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A902510/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A902510/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A902510/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A902510/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A902510/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A902510/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A902510/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A902510/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A951074/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A951074/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A951074/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A951074/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A951074/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A951074/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A951074/2_body_30_ce.nii.gz",
+ "pseudo_label": "A951074/2_body_30_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A951074/2_body_30_ce/2_body_30_ce_seg.nii.gz"
+ },
+ {
+ "image": "A951074/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A951074/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A951074/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A106133/4_body_10_ce.nii.gz",
+ "pseudo_label": "A106133/4_body_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A106133/4_body_10_ce/4_body_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A106133/2_body_10_ce.nii.gz",
+ "pseudo_label": "A106133/2_body_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A106133/2_body_10_ce/2_body_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A055532/2_abdomenpelvis_25_mm.nii.gz",
+ "pseudo_label": "A055532/2_abdomenpelvis_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A055532/2_abdomenpelvis_25_mm/2_abdomenpelvis_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A841860/2_body_50.nii.gz",
+ "pseudo_label": "A841860/2_body_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A841860/2_body_50/2_body_50_seg.nii.gz"
+ },
+ {
+ "image": "A841860/4_lung_10.nii.gz",
+ "pseudo_label": "A841860/4_lung_10.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A841860/4_lung_10/4_lung_10_seg.nii.gz"
+ },
+ {
+ "image": "A841860/3_lung_50.nii.gz",
+ "pseudo_label": "A841860/3_lung_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A841860/3_lung_50/3_lung_50_seg.nii.gz"
+ },
+ {
+ "image": "A619772/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A619772/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A619772/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A619772/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A619772/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A619772/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A619772/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A619772/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A619772/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A027284/5_arterial_125mm.nii.gz",
+ "pseudo_label": "A027284/5_arterial_125mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A027284/5_arterial_125mm/5_arterial_125mm_seg.nii.gz"
+ },
+ {
+ "image": "A027284/2_standard_25mm.nii.gz",
+ "pseudo_label": "A027284/2_standard_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A027284/2_standard_25mm/2_standard_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A027284/6_5_mm_delay.nii.gz",
+ "pseudo_label": "A027284/6_5_mm_delay.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A027284/6_5_mm_delay/6_5_mm_delay_seg.nii.gz"
+ },
+ {
+ "image": "A027284/2_pre_contrast.nii.gz",
+ "pseudo_label": "A027284/2_pre_contrast.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A027284/2_pre_contrast/2_pre_contrast_seg.nii.gz"
+ },
+ {
+ "image": "A968238/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A968238/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A968238/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A968238/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A968238/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A968238/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A968238/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A968238/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A968238/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A045825/2_abdpel_25_mm.nii.gz",
+ "pseudo_label": "A045825/2_abdpel_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A045825/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A751818/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A751818/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A751818/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A751818/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A751818/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A751818/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A751818/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A751818/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A751818/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A962025/2_abdpel_25_mm.nii.gz",
+ "pseudo_label": "A962025/2_abdpel_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A962025/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A597975/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A597975/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A597975/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A597975/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A597975/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A597975/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A597975/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A597975/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A597975/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A549020/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A549020/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A549020/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A549020/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A549020/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A549020/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A549020/6_abdpel_25_mm.nii.gz",
+ "pseudo_label": "A549020/6_abdpel_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A549020/6_abdpel_25_mm/6_abdpel_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A549020/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A549020/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A549020/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A404063/2_body_30.nii.gz",
+ "pseudo_label": "A404063/2_body_30.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A404063/2_body_30/2_body_30_seg.nii.gz"
+ },
+ {
+ "image": "A104964/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A104964/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A104964/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A104964/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A104964/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A104964/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A104964/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A104964/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A104964/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A660468/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A660468/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A660468/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A660468/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A660468/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A660468/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A660468/6_body_10_ce.nii.gz",
+ "pseudo_label": "A660468/6_body_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A660468/6_body_10_ce/6_body_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A660468/2_body_10_ce.nii.gz",
+ "pseudo_label": "A660468/2_body_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A660468/2_body_10_ce/2_body_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A660468/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A660468/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A660468/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A083074/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A083074/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A083074/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A083074/2_chest_25_mm.nii.gz",
+ "pseudo_label": "A083074/2_chest_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A083074/2_chest_25_mm/2_chest_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A083074/603_ct_thick_axials_5mm.nii.gz",
+ "pseudo_label": "A083074/603_ct_thick_axials_5mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A083074/603_ct_thick_axials_5mm/603_ct_thick_axials_5mm_seg.nii.gz"
+ },
+ {
+ "image": "A083074/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A083074/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A083074/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A516538/601_chest_ax.nii.gz",
+ "pseudo_label": "A516538/601_chest_ax.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A516538/601_chest_ax/601_chest_ax_seg.nii.gz"
+ },
+ {
+ "image": "A516538/606_abdomen_ax.nii.gz",
+ "pseudo_label": "A516538/606_abdomen_ax.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A516538/606_abdomen_ax/606_abdomen_ax_seg.nii.gz"
+ },
+ {
+ "image": "A239706/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A239706/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A239706/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A239706/2_body_30.nii.gz",
+ "pseudo_label": "A239706/2_body_30.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A239706/2_body_30/2_body_30_seg.nii.gz"
+ },
+ {
+ "image": "A239706/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A239706/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A239706/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A239706/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A239706/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A239706/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A368055/2_standard_25mm.nii.gz",
+ "pseudo_label": "A368055/2_standard_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A368055/2_standard_25mm/2_standard_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A223205/8_cta_05_ce.nii.gz",
+ "pseudo_label": "A223205/8_cta_05_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A223205/8_cta_05_ce/8_cta_05_ce_seg.nii.gz"
+ },
+ {
+ "image": "A223205/4_lung_10_ce.nii.gz",
+ "pseudo_label": "A223205/4_lung_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A223205/4_lung_10_ce/4_lung_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A223205/5_cta_50_ce.nii.gz",
+ "pseudo_label": "A223205/5_cta_50_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A223205/5_cta_50_ce/5_cta_50_ce_seg.nii.gz"
+ },
+ {
+ "image": "A223205/3_cta_10_ce.nii.gz",
+ "pseudo_label": "A223205/3_cta_10_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A223205/3_cta_10_ce/3_cta_10_ce_seg.nii.gz"
+ },
+ {
+ "image": "A698900/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A698900/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A698900/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A698900/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A698900/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A698900/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A698900/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A698900/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A698900/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A551607/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A551607/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A551607/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A551607/601_chest_ax.nii.gz",
+ "pseudo_label": "A551607/601_chest_ax.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A551607/601_chest_ax/601_chest_ax_seg.nii.gz"
+ },
+ {
+ "image": "A551607/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A551607/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A551607/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A551607/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A551607/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A551607/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A551607/606_abdomen_ax.nii.gz",
+ "pseudo_label": "A551607/606_abdomen_ax.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A551607/606_abdomen_ax/606_abdomen_ax_seg.nii.gz"
+ },
+ {
+ "image": "A799695/5_lung_10.nii.gz",
+ "pseudo_label": "A799695/5_lung_10.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A799695/5_lung_10/5_lung_10_seg.nii.gz"
+ },
+ {
+ "image": "A799695/4_lung_50.nii.gz",
+ "pseudo_label": "A799695/4_lung_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A799695/4_lung_50/4_lung_50_seg.nii.gz"
+ },
+ {
+ "image": "A799695/4_hr_chest_125x125.nii.gz",
+ "pseudo_label": "A799695/4_hr_chest_125x125.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A799695/4_hr_chest_125x125/4_hr_chest_125x125_seg.nii.gz"
+ },
+ {
+ "image": "A799695/3_body_50.nii.gz",
+ "pseudo_label": "A799695/3_body_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A799695/3_body_50/3_body_50_seg.nii.gz"
+ },
+ {
+ "image": "A799695/3_lung_5x5.nii.gz",
+ "pseudo_label": "A799695/3_lung_5x5.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A799695/3_lung_5x5/3_lung_5x5_seg.nii.gz"
+ },
+ {
+ "image": "A799695/2_axiallung_reconhres_recon.nii.gz",
+ "pseudo_label": "A799695/2_axiallung_reconhres_recon.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A799695/2_axiallung_reconhres_recon/2_axiallung_reconhres_recon_seg.nii.gz"
+ },
+ {
+ "image": "A799695/2_abdpel_25_mm.nii.gz",
+ "pseudo_label": "A799695/2_abdpel_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A799695/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A862000/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A862000/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A862000/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A862000/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A862000/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A862000/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A862000/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A862000/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A862000/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A347680/6_venous.nii.gz",
+ "pseudo_label": "A347680/6_venous.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A347680/6_venous/6_venous_seg.nii.gz"
+ },
+ {
+ "image": "A347680/2_chest_25_mmabdpel_25mm.nii.gz",
+ "pseudo_label": "A347680/2_chest_25_mmabdpel_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A347680/2_chest_25_mmabdpel_25mm/2_chest_25_mmabdpel_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A347680/5_arterial.nii.gz",
+ "pseudo_label": "A347680/5_arterial.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A347680/5_arterial/5_arterial_seg.nii.gz"
+ },
+ {
+ "image": "A347680/2_standard_25mm.nii.gz",
+ "pseudo_label": "A347680/2_standard_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A347680/2_standard_25mm/2_standard_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A347680/2_chest_abd_pel_5x5.nii.gz",
+ "pseudo_label": "A347680/2_chest_abd_pel_5x5.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A347680/2_chest_abd_pel_5x5/2_chest_abd_pel_5x5_seg.nii.gz"
+ },
+ {
+ "image": "A347680/2_pre_contrast.nii.gz",
+ "pseudo_label": "A347680/2_pre_contrast.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A347680/2_pre_contrast/2_pre_contrast_seg.nii.gz"
+ },
+ {
+ "image": "A994393/2_body_50.nii.gz",
+ "pseudo_label": "A994393/2_body_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A994393/2_body_50/2_body_50_seg.nii.gz"
+ },
+ {
+ "image": "A994393/4_lung_10.nii.gz",
+ "pseudo_label": "A994393/4_lung_10.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A994393/4_lung_10/4_lung_10_seg.nii.gz"
+ },
+ {
+ "image": "A994393/3_lung_50.nii.gz",
+ "pseudo_label": "A994393/3_lung_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A994393/3_lung_50/3_lung_50_seg.nii.gz"
+ },
+ {
+ "image": "A766547/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A766547/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A766547/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A766547/3_abdpel_25_mm.nii.gz",
+ "pseudo_label": "A766547/3_abdpel_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A766547/3_abdpel_25_mm/3_abdpel_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A766547/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A766547/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A766547/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A766547/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A766547/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A766547/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A766547/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A766547/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A766547/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A766547/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A766547/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A766547/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A766547/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A766547/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A766547/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A735124/102_chest_25_mmabdpel_25mm.nii.gz",
+ "pseudo_label": "A735124/102_chest_25_mmabdpel_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A735124/102_chest_25_mmabdpel_25mm/102_chest_25_mmabdpel_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A735124/2_chest_25_mmabdpel_25mm.nii.gz",
+ "pseudo_label": "A735124/2_chest_25_mmabdpel_25mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A735124/2_chest_25_mmabdpel_25mm/2_chest_25_mmabdpel_25mm_seg.nii.gz"
+ },
+ {
+ "image": "A110373/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A110373/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A110373/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A110373/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A110373/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A110373/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A110373/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A110373/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A110373/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A872440/2_body_30_ce.nii.gz",
+ "pseudo_label": "A872440/2_body_30_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A872440/2_body_30_ce/2_body_30_ce_seg.nii.gz"
+ },
+ {
+ "image": "A087492/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A087492/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A087492/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A087492/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A087492/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A087492/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A087492/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A087492/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A087492/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A790978/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A790978/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A790978/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A790978/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A790978/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A790978/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A790978/4_arterial_125_mm.nii.gz",
+ "pseudo_label": "A790978/4_arterial_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all"
+ },
+ {
+ "image": "A790978/5_venous_125_mm.nii.gz",
+ "pseudo_label": "A790978/5_venous_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A790978/5_venous_125_mm/5_venous_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A790978/6_delay_125_mm.nii.gz",
+ "pseudo_label": "A790978/6_delay_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A790978/6_delay_125_mm/6_delay_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A790978/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A790978/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A790978/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A531756/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A531756/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A531756/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A531756/5_lung_10.nii.gz",
+ "pseudo_label": "A531756/5_lung_10.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A531756/5_lung_10/5_lung_10_seg.nii.gz"
+ },
+ {
+ "image": "A531756/4_lung_50.nii.gz",
+ "pseudo_label": "A531756/4_lung_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A531756/4_lung_50/4_lung_50_seg.nii.gz"
+ },
+ {
+ "image": "A531756/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A531756/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A531756/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A531756/3_body_50.nii.gz",
+ "pseudo_label": "A531756/3_body_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all"
+ },
+ {
+ "image": "A531756/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A531756/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A531756/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A531756/2_abdomenpelvis_25_mm.nii.gz",
+ "pseudo_label": "A531756/2_abdomenpelvis_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A531756/2_abdomenpelvis_25_mm/2_abdomenpelvis_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A602816/2_body_50.nii.gz",
+ "pseudo_label": "A602816/2_body_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A602816/2_body_50/2_body_50_seg.nii.gz"
+ },
+ {
+ "image": "A602816/4_lung_10.nii.gz",
+ "pseudo_label": "A602816/4_lung_10.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A602816/4_lung_10/4_lung_10_seg.nii.gz"
+ },
+ {
+ "image": "A602816/3_lung_50.nii.gz",
+ "pseudo_label": "A602816/3_lung_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A602816/3_lung_50/3_lung_50_seg.nii.gz"
+ },
+ {
+ "image": "A792765/2_abdpel_25_mm.nii.gz",
+ "pseudo_label": "A792765/2_abdpel_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A792765/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A654746/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A654746/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A654746/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A654746/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A654746/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all"
+ },
+ {
+ "image": "A654746/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A654746/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A654746/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A654746/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A654746/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A654746/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A654746/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A654746/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A654746/2_5_mm_standard/2_5_mm_standard_seg.nii.gz"
+ },
+ {
+ "image": "A654746/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A654746/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A654746/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A214994/4_lung_hr_125_mm.nii.gz",
+ "pseudo_label": "A214994/4_lung_hr_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A214994/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A214994/3_body_30_ce.nii.gz",
+ "pseudo_label": "A214994/3_body_30_ce.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A214994/3_body_30_ce/3_body_30_ce_seg.nii.gz"
+ },
+ {
+ "image": "A214994/3_lung_5_mm.nii.gz",
+ "pseudo_label": "A214994/3_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A214994/3_lung_5_mm/3_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A214994/2_5_mm_standard.nii.gz",
+ "pseudo_label": "A214994/2_5_mm_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all"
+ },
+ {
+ "image": "A214994/2_abdpel_25_mm.nii.gz",
+ "pseudo_label": "A214994/2_abdpel_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A214994/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz"
+ },
+ {
+ "image": "A237035/601_chest_ax.nii.gz",
+ "pseudo_label": "A237035/601_chest_ax.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A237035/601_chest_ax/601_chest_ax_seg.nii.gz"
+ },
+ {
+ "image": "A237035/606_abdomen_ax.nii.gz",
+ "pseudo_label": "A237035/606_abdomen_ax.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A237035/606_abdomen_ax/606_abdomen_ax_seg.nii.gz"
+ },
+ {
+ "image": "A230732/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A230732/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A230732/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A230732/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A230732/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A230732/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A230732/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A230732/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A230732/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A103074/3_50_x_50_lung.nii.gz",
+ "pseudo_label": "A103074/3_50_x_50_lung.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A103074/3_50_x_50_lung/3_50_x_50_lung_seg.nii.gz"
+ },
+ {
+ "image": "A103074/4_hi_res_chest.nii.gz",
+ "pseudo_label": "A103074/4_hi_res_chest.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all"
+ },
+ {
+ "image": "A103074/4_125_x_125_high_resolution.nii.gz",
+ "pseudo_label": "A103074/4_125_x_125_high_resolution.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A103074/4_125_x_125_high_resolution/4_125_x_125_high_resolution_seg.nii.gz"
+ },
+ {
+ "image": "A103074/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A103074/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A103074/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A103074/2_chest_125_mm.nii.gz",
+ "pseudo_label": "A103074/2_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A103074/2_chest_125_mm/2_chest_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A103074/2_chest_5x5.nii.gz",
+ "pseudo_label": "A103074/2_chest_5x5.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A103074/2_chest_5x5/2_chest_5x5_seg.nii.gz"
+ },
+ {
+ "image": "A103074/3_lung_5x5.nii.gz",
+ "pseudo_label": "A103074/3_lung_5x5.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A103074/3_lung_5x5/3_lung_5x5_seg.nii.gz"
+ },
+ {
+ "image": "A103074/603_3x3_axial.nii.gz",
+ "pseudo_label": "A103074/603_3x3_axial.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A103074/603_3x3_axial/603_3x3_axial_seg.nii.gz"
+ },
+ {
+ "image": "A103074/2_50_x_50_standard.nii.gz",
+ "pseudo_label": "A103074/2_50_x_50_standard.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A103074/2_50_x_50_standard/2_50_x_50_standard_seg.nii.gz"
+ },
+ {
+ "image": "A103074/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A103074/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all"
+ },
+ {
+ "image": "A811401/2_body_50.nii.gz",
+ "pseudo_label": "A811401/2_body_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A811401/2_body_50/2_body_50_seg.nii.gz"
+ },
+ {
+ "image": "A811401/4_lung_10.nii.gz",
+ "pseudo_label": "A811401/4_lung_10.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A811401/4_lung_10/4_lung_10_seg.nii.gz"
+ },
+ {
+ "image": "A811401/3_lung_50.nii.gz",
+ "pseudo_label": "A811401/3_lung_50.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A811401/3_lung_50/3_lung_50_seg.nii.gz"
+ },
+ {
+ "image": "A993649/3_lung_5x5.nii.gz",
+ "pseudo_label": "A993649/3_lung_5x5.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A993649/3_lung_5x5/3_lung_5x5_seg.nii.gz"
+ },
+ {
+ "image": "A993649/4_hr_chest_125_x_125.nii.gz",
+ "pseudo_label": "A993649/4_hr_chest_125_x_125.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A993649/4_hr_chest_125_x_125/4_hr_chest_125_x_125_seg.nii.gz"
+ },
+ {
+ "image": "A993649/2_axiallung_reconhres_recon.nii.gz",
+ "pseudo_label": "A993649/2_axiallung_reconhres_recon.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A993649/2_axiallung_reconhres_recon/2_axiallung_reconhres_recon_seg.nii.gz"
+ },
+ {
+ "image": "A735762/4_lung_125_mm.nii.gz",
+ "pseudo_label": "A735762/4_lung_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A735762/4_lung_125_mm/4_lung_125_mm_seg.nii.gz"
+ },
+ {
+ "image": "A735762/6_chest_125_mm.nii.gz",
+ "pseudo_label": "A735762/6_chest_125_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all"
+ },
+ {
+ "image": "A735762/5_lung_5_mm.nii.gz",
+ "pseudo_label": "A735762/5_lung_5_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A735762/5_lung_5_mm/5_lung_5_mm_seg.nii.gz"
+ },
+ {
+ "image": "A714137/2_abdpel_25_mm.nii.gz",
+ "pseudo_label": "A714137/2_abdpel_25_mm.nii.gz",
+ "dataset": "/data/StonyBrook-CT/Stony_Brook",
+ "region": "/data/StonyBrook-CT/all",
+ "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A714137/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz"
+ }
+ ],
+ "training_transform": [
+ {
+ "_target_": "RandCropByLabelClassesd",
+ "keys": [
+ "@image_key",
+ "@label_key",
+ "@pseudo_label_key",
+ "@label_sv_key"
+ ],
+ "label_key": "@pseudo_label_key",
+ "num_classes": 133,
+ "num_samples": "@num_patches_per_image",
+ "spatial_size": "@patch_size",
+ "ratios": "$tuple(float(i >= 0) for i in range(133))",
+ "warn": false,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandZoomd",
+ "keys": [
+ "@image_key",
+ "@label_key",
+ "@pseudo_label_key",
+ "@label_sv_key"
+ ],
+ "min_zoom": 0.8,
+ "max_zoom": 1.2,
+ "mode": [
+ "trilinear",
+ "nearest",
+ "nearest",
+ "nearest"
+ ],
+ "prob": 0.2,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandSimulateLowResolutiond",
+ "keys": [
+ "@image_key"
+ ],
+ "zoom_range": [
+ 0.3,
+ 1
+ ],
+ "prob": 0.2,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandGaussianSmoothd",
+ "keys": [
+ "@image_key"
+ ],
+ "prob": 0.2,
+ "sigma_x": [
+ 0.5,
+ 1.0
+ ],
+ "sigma_y": [
+ 0.5,
+ 1.0
+ ],
+ "sigma_z": [
+ 0.5,
+ 1.0
+ ]
+ },
+ {
+ "_target_": "RandScaleIntensityd",
+ "keys": [
+ "@image_key"
+ ],
+ "factors": 0.1,
+ "prob": 0.2
+ },
+ {
+ "_target_": "RandShiftIntensityd",
+ "keys": [
+ "@image_key"
+ ],
+ "offsets": 0.1,
+ "prob": 0.2
+ },
+ {
+ "_target_": "RandGaussianNoised",
+ "keys": [
+ "@image_key"
+ ],
+ "prob": 0.2,
+ "mean": 0.0,
+ "std": 0.2
+ }
+ ]
+}
diff --git a/vista3d/data/jsons/TCIA_Colon_5_folds.json b/vista3d/data/jsons/TCIA_Colon_5_folds.json
new file mode 100644
index 0000000..1be8ef3
--- /dev/null
+++ b/vista3d/data/jsons/TCIA_Colon_5_folds.json
@@ -0,0 +1,9751 @@
+{
+ "training": [
+ {
+ "image": "images/img_2701.nii.gz",
+ "pseudo_label": "images/img_2701.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2701/img_2701_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2500.nii.gz",
+ "pseudo_label": "images/img_2500.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2500/img_2500_seg.nii.gz"
+ },
+ {
+ "image": "images/img_279.nii.gz",
+ "pseudo_label": "images/img_279.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_279/img_279_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3034.nii.gz",
+ "pseudo_label": "images/img_3034.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3034/img_3034_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2733.nii.gz",
+ "pseudo_label": "images/img_2733.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2733/img_2733_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2042.nii.gz",
+ "pseudo_label": "images/img_2042.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2042/img_2042_seg.nii.gz"
+ },
+ {
+ "image": "images/img_548.nii.gz",
+ "pseudo_label": "images/img_548.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_548/img_548_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2717.nii.gz",
+ "pseudo_label": "images/img_2717.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2717/img_2717_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3406.nii.gz",
+ "pseudo_label": "images/img_3406.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3406/img_3406_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2865.nii.gz",
+ "pseudo_label": "images/img_2865.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2865/img_2865_seg.nii.gz"
+ },
+ {
+ "image": "images/img_454.nii.gz",
+ "pseudo_label": "images/img_454.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_454/img_454_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2307.nii.gz",
+ "pseudo_label": "images/img_2307.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2307/img_2307_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2468.nii.gz",
+ "pseudo_label": "images/img_2468.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2468/img_2468_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2416.nii.gz",
+ "pseudo_label": "images/img_2416.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2416/img_2416_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1005.nii.gz",
+ "pseudo_label": "images/img_1005.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1005/img_1005_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2632.nii.gz",
+ "pseudo_label": "images/img_2632.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2632/img_2632_seg.nii.gz"
+ },
+ {
+ "image": "images/img_667.nii.gz",
+ "pseudo_label": "images/img_667.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_667/img_667_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2622.nii.gz",
+ "pseudo_label": "images/img_2622.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2622/img_2622_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2727.nii.gz",
+ "pseudo_label": "images/img_2727.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2727/img_2727_seg.nii.gz"
+ },
+ {
+ "image": "images/img_394.nii.gz",
+ "pseudo_label": "images/img_394.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_394/img_394_seg.nii.gz"
+ },
+ {
+ "image": "images/img_941.nii.gz",
+ "pseudo_label": "images/img_941.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_941/img_941_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2048.nii.gz",
+ "pseudo_label": "images/img_2048.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2048/img_2048_seg.nii.gz"
+ },
+ {
+ "image": "images/img_127.nii.gz",
+ "pseudo_label": "images/img_127.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_127/img_127_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2050.nii.gz",
+ "pseudo_label": "images/img_2050.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2050/img_2050_seg.nii.gz"
+ },
+ {
+ "image": "images/img_256.nii.gz",
+ "pseudo_label": "images/img_256.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_256/img_256_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1977.nii.gz",
+ "pseudo_label": "images/img_1977.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1977/img_1977_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3016.nii.gz",
+ "pseudo_label": "images/img_3016.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3016/img_3016_seg.nii.gz"
+ },
+ {
+ "image": "images/img_386.nii.gz",
+ "pseudo_label": "images/img_386.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_386/img_386_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3337.nii.gz",
+ "pseudo_label": "images/img_3337.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3337/img_3337_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3305.nii.gz",
+ "pseudo_label": "images/img_3305.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3305/img_3305_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2424.nii.gz",
+ "pseudo_label": "images/img_2424.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2424/img_2424_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2569.nii.gz",
+ "pseudo_label": "images/img_2569.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2569/img_2569_seg.nii.gz"
+ },
+ {
+ "image": "images/img_536.nii.gz",
+ "pseudo_label": "images/img_536.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_536/img_536_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1132.nii.gz",
+ "pseudo_label": "images/img_1132.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1132/img_1132_seg.nii.gz"
+ },
+ {
+ "image": "images/img_96.nii.gz",
+ "pseudo_label": "images/img_96.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_96/img_96_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1073.nii.gz",
+ "pseudo_label": "images/img_1073.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1073/img_1073_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1512.nii.gz",
+ "pseudo_label": "images/img_1512.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1512/img_1512_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2618.nii.gz",
+ "pseudo_label": "images/img_2618.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2618/img_2618_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2247.nii.gz",
+ "pseudo_label": "images/img_2247.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2247/img_2247_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2690.nii.gz",
+ "pseudo_label": "images/img_2690.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2690/img_2690_seg.nii.gz"
+ },
+ {
+ "image": "images/img_457.nii.gz",
+ "pseudo_label": "images/img_457.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_457/img_457_seg.nii.gz"
+ },
+ {
+ "image": "images/img_426.nii.gz",
+ "pseudo_label": "images/img_426.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_426/img_426_seg.nii.gz"
+ },
+ {
+ "image": "images/img_501.nii.gz",
+ "pseudo_label": "images/img_501.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_501/img_501_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2268.nii.gz",
+ "pseudo_label": "images/img_2268.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2268/img_2268_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2276.nii.gz",
+ "pseudo_label": "images/img_2276.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2276/img_2276_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3188.nii.gz",
+ "pseudo_label": "images/img_3188.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3188/img_3188_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2710.nii.gz",
+ "pseudo_label": "images/img_2710.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2710/img_2710_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1542.nii.gz",
+ "pseudo_label": "images/img_1542.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1542/img_1542_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1006.nii.gz",
+ "pseudo_label": "images/img_1006.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1006/img_1006_seg.nii.gz"
+ },
+ {
+ "image": "images/img_483.nii.gz",
+ "pseudo_label": "images/img_483.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_483/img_483_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1537.nii.gz",
+ "pseudo_label": "images/img_1537.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1537/img_1537_seg.nii.gz"
+ },
+ {
+ "image": "images/img_15.nii.gz",
+ "pseudo_label": "images/img_15.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_15/img_15_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1761.nii.gz",
+ "pseudo_label": "images/img_1761.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1761/img_1761_seg.nii.gz"
+ },
+ {
+ "image": "images/img_283.nii.gz",
+ "pseudo_label": "images/img_283.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_283/img_283_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2125.nii.gz",
+ "pseudo_label": "images/img_2125.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2125/img_2125_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2109.nii.gz",
+ "pseudo_label": "images/img_2109.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2109/img_2109_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2807.nii.gz",
+ "pseudo_label": "images/img_2807.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2807/img_2807_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2154.nii.gz",
+ "pseudo_label": "images/img_2154.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2154/img_2154_seg.nii.gz"
+ },
+ {
+ "image": "images/img_442.nii.gz",
+ "pseudo_label": "images/img_442.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_442/img_442_seg.nii.gz"
+ },
+ {
+ "image": "images/img_447.nii.gz",
+ "pseudo_label": "images/img_447.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_447/img_447_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1614.nii.gz",
+ "pseudo_label": "images/img_1614.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1614/img_1614_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2095.nii.gz",
+ "pseudo_label": "images/img_2095.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2095/img_2095_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3401.nii.gz",
+ "pseudo_label": "images/img_3401.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3401/img_3401_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1859.nii.gz",
+ "pseudo_label": "images/img_1859.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1859/img_1859_seg.nii.gz"
+ },
+ {
+ "image": "images/img_492.nii.gz",
+ "pseudo_label": "images/img_492.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_492/img_492_seg.nii.gz"
+ },
+ {
+ "image": "images/img_513.nii.gz",
+ "pseudo_label": "images/img_513.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_513/img_513_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2473.nii.gz",
+ "pseudo_label": "images/img_2473.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2473/img_2473_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2446.nii.gz",
+ "pseudo_label": "images/img_2446.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2446/img_2446_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1777.nii.gz",
+ "pseudo_label": "images/img_1777.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1777/img_1777_seg.nii.gz"
+ },
+ {
+ "image": "images/img_799.nii.gz",
+ "pseudo_label": "images/img_799.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_799/img_799_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3004.nii.gz",
+ "pseudo_label": "images/img_3004.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3004/img_3004_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1945.nii.gz",
+ "pseudo_label": "images/img_1945.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1945/img_1945_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1107.nii.gz",
+ "pseudo_label": "images/img_1107.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1107/img_1107_seg.nii.gz"
+ },
+ {
+ "image": "images/img_68.nii.gz",
+ "pseudo_label": "images/img_68.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_68/img_68_seg.nii.gz"
+ },
+ {
+ "image": "images/img_215.nii.gz",
+ "pseudo_label": "images/img_215.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_215/img_215_seg.nii.gz"
+ },
+ {
+ "image": "images/img_340.nii.gz",
+ "pseudo_label": "images/img_340.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_340/img_340_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2361.nii.gz",
+ "pseudo_label": "images/img_2361.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2361/img_2361_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2179.nii.gz",
+ "pseudo_label": "images/img_2179.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2179/img_2179_seg.nii.gz"
+ },
+ {
+ "image": "images/img_789.nii.gz",
+ "pseudo_label": "images/img_789.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_789/img_789_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1180.nii.gz",
+ "pseudo_label": "images/img_1180.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1180/img_1180_seg.nii.gz"
+ },
+ {
+ "image": "images/img_736.nii.gz",
+ "pseudo_label": "images/img_736.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_736/img_736_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1129.nii.gz",
+ "pseudo_label": "images/img_1129.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1129/img_1129_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2559.nii.gz",
+ "pseudo_label": "images/img_2559.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2559/img_2559_seg.nii.gz"
+ },
+ {
+ "image": "images/img_344.nii.gz",
+ "pseudo_label": "images/img_344.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_344/img_344_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1075.nii.gz",
+ "pseudo_label": "images/img_1075.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1075/img_1075_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2737.nii.gz",
+ "pseudo_label": "images/img_2737.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2737/img_2737_seg.nii.gz"
+ },
+ {
+ "image": "images/img_564.nii.gz",
+ "pseudo_label": "images/img_564.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_564/img_564_seg.nii.gz"
+ },
+ {
+ "image": "images/img_271.nii.gz",
+ "pseudo_label": "images/img_271.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_271/img_271_seg.nii.gz"
+ },
+ {
+ "image": "images/img_318.nii.gz",
+ "pseudo_label": "images/img_318.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_318/img_318_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2177.nii.gz",
+ "pseudo_label": "images/img_2177.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2177/img_2177_seg.nii.gz"
+ },
+ {
+ "image": "images/img_729.nii.gz",
+ "pseudo_label": "images/img_729.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_729/img_729_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2749.nii.gz",
+ "pseudo_label": "images/img_2749.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2749/img_2749_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2317.nii.gz",
+ "pseudo_label": "images/img_2317.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2317/img_2317_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2567.nii.gz",
+ "pseudo_label": "images/img_2567.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2567/img_2567_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1905.nii.gz",
+ "pseudo_label": "images/img_1905.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1905/img_1905_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1885.nii.gz",
+ "pseudo_label": "images/img_1885.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1885/img_1885_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1916.nii.gz",
+ "pseudo_label": "images/img_1916.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1916/img_1916_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3248.nii.gz",
+ "pseudo_label": "images/img_3248.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3248/img_3248_seg.nii.gz"
+ },
+ {
+ "image": "images/img_358.nii.gz",
+ "pseudo_label": "images/img_358.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_358/img_358_seg.nii.gz"
+ },
+ {
+ "image": "images/img_89.nii.gz",
+ "pseudo_label": "images/img_89.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_89/img_89_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1199.nii.gz",
+ "pseudo_label": "images/img_1199.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1199/img_1199_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1590.nii.gz",
+ "pseudo_label": "images/img_1590.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1590/img_1590_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3094.nii.gz",
+ "pseudo_label": "images/img_3094.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3094/img_3094_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1684.nii.gz",
+ "pseudo_label": "images/img_1684.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1684/img_1684_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2895.nii.gz",
+ "pseudo_label": "images/img_2895.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2895/img_2895_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2003.nii.gz",
+ "pseudo_label": "images/img_2003.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2003/img_2003_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1769.nii.gz",
+ "pseudo_label": "images/img_1769.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1769/img_1769_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1706.nii.gz",
+ "pseudo_label": "images/img_1706.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1706/img_1706_seg.nii.gz"
+ },
+ {
+ "image": "images/img_928.nii.gz",
+ "pseudo_label": "images/img_928.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_928/img_928_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3110.nii.gz",
+ "pseudo_label": "images/img_3110.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3110/img_3110_seg.nii.gz"
+ },
+ {
+ "image": "images/img_681.nii.gz",
+ "pseudo_label": "images/img_681.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_681/img_681_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2353.nii.gz",
+ "pseudo_label": "images/img_2353.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2353/img_2353_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1530.nii.gz",
+ "pseudo_label": "images/img_1530.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1530/img_1530_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3162.nii.gz",
+ "pseudo_label": "images/img_3162.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3162/img_3162_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2208.nii.gz",
+ "pseudo_label": "images/img_2208.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2208/img_2208_seg.nii.gz"
+ },
+ {
+ "image": "images/img_26.nii.gz",
+ "pseudo_label": "images/img_26.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_26/img_26_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1545.nii.gz",
+ "pseudo_label": "images/img_1545.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1545/img_1545_seg.nii.gz"
+ },
+ {
+ "image": "images/img_750.nii.gz",
+ "pseudo_label": "images/img_750.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_750/img_750_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2407.nii.gz",
+ "pseudo_label": "images/img_2407.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2407/img_2407_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1604.nii.gz",
+ "pseudo_label": "images/img_1604.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1604/img_1604_seg.nii.gz"
+ },
+ {
+ "image": "images/img_94.nii.gz",
+ "pseudo_label": "images/img_94.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_94/img_94_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1079.nii.gz",
+ "pseudo_label": "images/img_1079.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1079/img_1079_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3212.nii.gz",
+ "pseudo_label": "images/img_3212.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3212/img_3212_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2973.nii.gz",
+ "pseudo_label": "images/img_2973.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2973/img_2973_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2045.nii.gz",
+ "pseudo_label": "images/img_2045.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2045/img_2045_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3182.nii.gz",
+ "pseudo_label": "images/img_3182.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3182/img_3182_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3347.nii.gz",
+ "pseudo_label": "images/img_3347.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3347/img_3347_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2351.nii.gz",
+ "pseudo_label": "images/img_2351.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2351/img_2351_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3147.nii.gz",
+ "pseudo_label": "images/img_3147.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3147/img_3147_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3104.nii.gz",
+ "pseudo_label": "images/img_3104.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3104/img_3104_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3301.nii.gz",
+ "pseudo_label": "images/img_3301.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3301/img_3301_seg.nii.gz"
+ },
+ {
+ "image": "images/img_154.nii.gz",
+ "pseudo_label": "images/img_154.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_154/img_154_seg.nii.gz"
+ },
+ {
+ "image": "images/img_298.nii.gz",
+ "pseudo_label": "images/img_298.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_298/img_298_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2751.nii.gz",
+ "pseudo_label": "images/img_2751.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2751/img_2751_seg.nii.gz"
+ },
+ {
+ "image": "images/img_638.nii.gz",
+ "pseudo_label": "images/img_638.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_638/img_638_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3365.nii.gz",
+ "pseudo_label": "images/img_3365.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3365/img_3365_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1529.nii.gz",
+ "pseudo_label": "images/img_1529.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1529/img_1529_seg.nii.gz"
+ },
+ {
+ "image": "images/img_947.nii.gz",
+ "pseudo_label": "images/img_947.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_947/img_947_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2373.nii.gz",
+ "pseudo_label": "images/img_2373.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2373/img_2373_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1739.nii.gz",
+ "pseudo_label": "images/img_1739.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1739/img_1739_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1978.nii.gz",
+ "pseudo_label": "images/img_1978.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1978/img_1978_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1840.nii.gz",
+ "pseudo_label": "images/img_1840.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1840/img_1840_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1937.nii.gz",
+ "pseudo_label": "images/img_1937.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1937/img_1937_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2670.nii.gz",
+ "pseudo_label": "images/img_2670.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2670/img_2670_seg.nii.gz"
+ },
+ {
+ "image": "images/img_631.nii.gz",
+ "pseudo_label": "images/img_631.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_631/img_631_seg.nii.gz"
+ },
+ {
+ "image": "images/img_946.nii.gz",
+ "pseudo_label": "images/img_946.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_946/img_946_seg.nii.gz"
+ },
+ {
+ "image": "images/img_829.nii.gz",
+ "pseudo_label": "images/img_829.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_829/img_829_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1164.nii.gz",
+ "pseudo_label": "images/img_1164.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1164/img_1164_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3076.nii.gz",
+ "pseudo_label": "images/img_3076.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3076/img_3076_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1646.nii.gz",
+ "pseudo_label": "images/img_1646.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1646/img_1646_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2436.nii.gz",
+ "pseudo_label": "images/img_2436.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2436/img_2436_seg.nii.gz"
+ },
+ {
+ "image": "images/img_465.nii.gz",
+ "pseudo_label": "images/img_465.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_465/img_465_seg.nii.gz"
+ },
+ {
+ "image": "images/img_960.nii.gz",
+ "pseudo_label": "images/img_960.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_960/img_960_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2800.nii.gz",
+ "pseudo_label": "images/img_2800.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2800/img_2800_seg.nii.gz"
+ },
+ {
+ "image": "images/img_746.nii.gz",
+ "pseudo_label": "images/img_746.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_746/img_746_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2824.nii.gz",
+ "pseudo_label": "images/img_2824.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2824/img_2824_seg.nii.gz"
+ },
+ {
+ "image": "images/img_770.nii.gz",
+ "pseudo_label": "images/img_770.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_770/img_770_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2601.nii.gz",
+ "pseudo_label": "images/img_2601.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2601/img_2601_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1832.nii.gz",
+ "pseudo_label": "images/img_1832.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1832/img_1832_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1877.nii.gz",
+ "pseudo_label": "images/img_1877.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1877/img_1877_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2588.nii.gz",
+ "pseudo_label": "images/img_2588.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2588/img_2588_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2531.nii.gz",
+ "pseudo_label": "images/img_2531.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2531/img_2531_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3278.nii.gz",
+ "pseudo_label": "images/img_3278.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3278/img_3278_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1671.nii.gz",
+ "pseudo_label": "images/img_1671.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1671/img_1671_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2992.nii.gz",
+ "pseudo_label": "images/img_2992.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2992/img_2992_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1507.nii.gz",
+ "pseudo_label": "images/img_1507.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1507/img_1507_seg.nii.gz"
+ },
+ {
+ "image": "images/img_957.nii.gz",
+ "pseudo_label": "images/img_957.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_957/img_957_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1062.nii.gz",
+ "pseudo_label": "images/img_1062.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1062/img_1062_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1690.nii.gz",
+ "pseudo_label": "images/img_1690.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1690/img_1690_seg.nii.gz"
+ },
+ {
+ "image": "images/img_985.nii.gz",
+ "pseudo_label": "images/img_985.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_985/img_985_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1973.nii.gz",
+ "pseudo_label": "images/img_1973.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1973/img_1973_seg.nii.gz"
+ },
+ {
+ "image": "images/img_903.nii.gz",
+ "pseudo_label": "images/img_903.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_903/img_903_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2999.nii.gz",
+ "pseudo_label": "images/img_2999.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2999/img_2999_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1508.nii.gz",
+ "pseudo_label": "images/img_1508.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1508/img_1508_seg.nii.gz"
+ },
+ {
+ "image": "images/img_368.nii.gz",
+ "pseudo_label": "images/img_368.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_368/img_368_seg.nii.gz"
+ },
+ {
+ "image": "images/img_820.nii.gz",
+ "pseudo_label": "images/img_820.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_820/img_820_seg.nii.gz"
+ },
+ {
+ "image": "images/img_882.nii.gz",
+ "pseudo_label": "images/img_882.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_882/img_882_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2656.nii.gz",
+ "pseudo_label": "images/img_2656.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2656/img_2656_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1897.nii.gz",
+ "pseudo_label": "images/img_1897.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1897/img_1897_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3160.nii.gz",
+ "pseudo_label": "images/img_3160.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3160/img_3160_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1063.nii.gz",
+ "pseudo_label": "images/img_1063.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1063/img_1063_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1133.nii.gz",
+ "pseudo_label": "images/img_1133.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1133/img_1133_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2391.nii.gz",
+ "pseudo_label": "images/img_2391.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2391/img_2391_seg.nii.gz"
+ },
+ {
+ "image": "images/img_474.nii.gz",
+ "pseudo_label": "images/img_474.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_474/img_474_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2256.nii.gz",
+ "pseudo_label": "images/img_2256.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2256/img_2256_seg.nii.gz"
+ },
+ {
+ "image": "images/img_413.nii.gz",
+ "pseudo_label": "images/img_413.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_413/img_413_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2123.nii.gz",
+ "pseudo_label": "images/img_2123.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2123/img_2123_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1985.nii.gz",
+ "pseudo_label": "images/img_1985.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1985/img_1985_seg.nii.gz"
+ },
+ {
+ "image": "images/img_204.nii.gz",
+ "pseudo_label": "images/img_204.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_204/img_204_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1191.nii.gz",
+ "pseudo_label": "images/img_1191.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1191/img_1191_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2069.nii.gz",
+ "pseudo_label": "images/img_2069.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2069/img_2069_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2911.nii.gz",
+ "pseudo_label": "images/img_2911.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2911/img_2911_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1197.nii.gz",
+ "pseudo_label": "images/img_1197.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1197/img_1197_seg.nii.gz"
+ },
+ {
+ "image": "images/img_682.nii.gz",
+ "pseudo_label": "images/img_682.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_682/img_682_seg.nii.gz"
+ },
+ {
+ "image": "images/img_812.nii.gz",
+ "pseudo_label": "images/img_812.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_812/img_812_seg.nii.gz"
+ },
+ {
+ "image": "images/img_833.nii.gz",
+ "pseudo_label": "images/img_833.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_833/img_833_seg.nii.gz"
+ },
+ {
+ "image": "images/img_372.nii.gz",
+ "pseudo_label": "images/img_372.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_372/img_372_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3129.nii.gz",
+ "pseudo_label": "images/img_3129.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3129/img_3129_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2272.nii.gz",
+ "pseudo_label": "images/img_2272.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2272/img_2272_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3433.nii.gz",
+ "pseudo_label": "images/img_3433.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3433/img_3433_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2164.nii.gz",
+ "pseudo_label": "images/img_2164.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2164/img_2164_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1755.nii.gz",
+ "pseudo_label": "images/img_1755.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1755/img_1755_seg.nii.gz"
+ },
+ {
+ "image": "images/img_432.nii.gz",
+ "pseudo_label": "images/img_432.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_432/img_432_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3017.nii.gz",
+ "pseudo_label": "images/img_3017.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3017/img_3017_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2937.nii.gz",
+ "pseudo_label": "images/img_2937.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2937/img_2937_seg.nii.gz"
+ },
+ {
+ "image": "images/img_521.nii.gz",
+ "pseudo_label": "images/img_521.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_521/img_521_seg.nii.gz"
+ },
+ {
+ "image": "images/img_196.nii.gz",
+ "pseudo_label": "images/img_196.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_196/img_196_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2945.nii.gz",
+ "pseudo_label": "images/img_2945.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2945/img_2945_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1731.nii.gz",
+ "pseudo_label": "images/img_1731.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1731/img_1731_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2591.nii.gz",
+ "pseudo_label": "images/img_2591.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2591/img_2591_seg.nii.gz"
+ },
+ {
+ "image": "images/img_237.nii.gz",
+ "pseudo_label": "images/img_237.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_237/img_237_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1045.nii.gz",
+ "pseudo_label": "images/img_1045.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1045/img_1045_seg.nii.gz"
+ },
+ {
+ "image": "images/img_792.nii.gz",
+ "pseudo_label": "images/img_792.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_792/img_792_seg.nii.gz"
+ },
+ {
+ "image": "images/img_843.nii.gz",
+ "pseudo_label": "images/img_843.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_843/img_843_seg.nii.gz"
+ },
+ {
+ "image": "images/img_809.nii.gz",
+ "pseudo_label": "images/img_809.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_809/img_809_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3022.nii.gz",
+ "pseudo_label": "images/img_3022.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3022/img_3022_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1002.nii.gz",
+ "pseudo_label": "images/img_1002.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1002/img_1002_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3065.nii.gz",
+ "pseudo_label": "images/img_3065.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3065/img_3065_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1616.nii.gz",
+ "pseudo_label": "images/img_1616.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1616/img_1616_seg.nii.gz"
+ },
+ {
+ "image": "images/img_998.nii.gz",
+ "pseudo_label": "images/img_998.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_998/img_998_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1183.nii.gz",
+ "pseudo_label": "images/img_1183.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1183/img_1183_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1056.nii.gz",
+ "pseudo_label": "images/img_1056.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1056/img_1056_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1855.nii.gz",
+ "pseudo_label": "images/img_1855.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1855/img_1855_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2693.nii.gz",
+ "pseudo_label": "images/img_2693.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2693/img_2693_seg.nii.gz"
+ },
+ {
+ "image": "images/img_683.nii.gz",
+ "pseudo_label": "images/img_683.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_683/img_683_seg.nii.gz"
+ },
+ {
+ "image": "images/img_802.nii.gz",
+ "pseudo_label": "images/img_802.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_802/img_802_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2729.nii.gz",
+ "pseudo_label": "images/img_2729.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2729/img_2729_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2160.nii.gz",
+ "pseudo_label": "images/img_2160.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2160/img_2160_seg.nii.gz"
+ },
+ {
+ "image": "images/img_499.nii.gz",
+ "pseudo_label": "images/img_499.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_499/img_499_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3226.nii.gz",
+ "pseudo_label": "images/img_3226.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3226/img_3226_seg.nii.gz"
+ },
+ {
+ "image": "images/img_757.nii.gz",
+ "pseudo_label": "images/img_757.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_757/img_757_seg.nii.gz"
+ },
+ {
+ "image": "images/img_927.nii.gz",
+ "pseudo_label": "images/img_927.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_927/img_927_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2484.nii.gz",
+ "pseudo_label": "images/img_2484.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2484/img_2484_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2515.nii.gz",
+ "pseudo_label": "images/img_2515.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2515/img_2515_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2579.nii.gz",
+ "pseudo_label": "images/img_2579.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2579/img_2579_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1184.nii.gz",
+ "pseudo_label": "images/img_1184.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1184/img_1184_seg.nii.gz"
+ },
+ {
+ "image": "images/img_741.nii.gz",
+ "pseudo_label": "images/img_741.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_741/img_741_seg.nii.gz"
+ },
+ {
+ "image": "images/img_244.nii.gz",
+ "pseudo_label": "images/img_244.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_244/img_244_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2427.nii.gz",
+ "pseudo_label": "images/img_2427.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2427/img_2427_seg.nii.gz"
+ },
+ {
+ "image": "images/img_248.nii.gz",
+ "pseudo_label": "images/img_248.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_248/img_248_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3132.nii.gz",
+ "pseudo_label": "images/img_3132.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3132/img_3132_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2761.nii.gz",
+ "pseudo_label": "images/img_2761.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2761/img_2761_seg.nii.gz"
+ },
+ {
+ "image": "images/img_961.nii.gz",
+ "pseudo_label": "images/img_961.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_961/img_961_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2722.nii.gz",
+ "pseudo_label": "images/img_2722.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2722/img_2722_seg.nii.gz"
+ },
+ {
+ "image": "images/img_38.nii.gz",
+ "pseudo_label": "images/img_38.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_38/img_38_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1516.nii.gz",
+ "pseudo_label": "images/img_1516.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1516/img_1516_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1863.nii.gz",
+ "pseudo_label": "images/img_1863.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1863/img_1863_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2853.nii.gz",
+ "pseudo_label": "images/img_2853.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2853/img_2853_seg.nii.gz"
+ },
+ {
+ "image": "images/img_87.nii.gz",
+ "pseudo_label": "images/img_87.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_87/img_87_seg.nii.gz"
+ },
+ {
+ "image": "images/img_195.nii.gz",
+ "pseudo_label": "images/img_195.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_195/img_195_seg.nii.gz"
+ },
+ {
+ "image": "images/img_626.nii.gz",
+ "pseudo_label": "images/img_626.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_626/img_626_seg.nii.gz"
+ },
+ {
+ "image": "images/img_529.nii.gz",
+ "pseudo_label": "images/img_529.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_529/img_529_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1951.nii.gz",
+ "pseudo_label": "images/img_1951.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1951/img_1951_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1122.nii.gz",
+ "pseudo_label": "images/img_1122.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1122/img_1122_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2235.nii.gz",
+ "pseudo_label": "images/img_2235.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2235/img_2235_seg.nii.gz"
+ },
+ {
+ "image": "images/img_92.nii.gz",
+ "pseudo_label": "images/img_92.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_92/img_92_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1518.nii.gz",
+ "pseudo_label": "images/img_1518.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1518/img_1518_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3363.nii.gz",
+ "pseudo_label": "images/img_3363.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3363/img_3363_seg.nii.gz"
+ },
+ {
+ "image": "images/img_647.nii.gz",
+ "pseudo_label": "images/img_647.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_647/img_647_seg.nii.gz"
+ },
+ {
+ "image": "images/img_714.nii.gz",
+ "pseudo_label": "images/img_714.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_714/img_714_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2833.nii.gz",
+ "pseudo_label": "images/img_2833.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2833/img_2833_seg.nii.gz"
+ },
+ {
+ "image": "images/img_798.nii.gz",
+ "pseudo_label": "images/img_798.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_798/img_798_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2605.nii.gz",
+ "pseudo_label": "images/img_2605.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2605/img_2605_seg.nii.gz"
+ },
+ {
+ "image": "images/img_98.nii.gz",
+ "pseudo_label": "images/img_98.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_98/img_98_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2731.nii.gz",
+ "pseudo_label": "images/img_2731.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2731/img_2731_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2283.nii.gz",
+ "pseudo_label": "images/img_2283.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2283/img_2283_seg.nii.gz"
+ },
+ {
+ "image": "images/img_497.nii.gz",
+ "pseudo_label": "images/img_497.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_497/img_497_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2344.nii.gz",
+ "pseudo_label": "images/img_2344.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2344/img_2344_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3283.nii.gz",
+ "pseudo_label": "images/img_3283.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3283/img_3283_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3179.nii.gz",
+ "pseudo_label": "images/img_3179.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3179/img_3179_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2869.nii.gz",
+ "pseudo_label": "images/img_2869.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2869/img_2869_seg.nii.gz"
+ },
+ {
+ "image": "images/img_338.nii.gz",
+ "pseudo_label": "images/img_338.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_338/img_338_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2794.nii.gz",
+ "pseudo_label": "images/img_2794.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2794/img_2794_seg.nii.gz"
+ },
+ {
+ "image": "images/img_854.nii.gz",
+ "pseudo_label": "images/img_854.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_854/img_854_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2991.nii.gz",
+ "pseudo_label": "images/img_2991.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2991/img_2991_seg.nii.gz"
+ },
+ {
+ "image": "images/img_780.nii.gz",
+ "pseudo_label": "images/img_780.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_780/img_780_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2964.nii.gz",
+ "pseudo_label": "images/img_2964.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2964/img_2964_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2518.nii.gz",
+ "pseudo_label": "images/img_2518.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2518/img_2518_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3145.nii.gz",
+ "pseudo_label": "images/img_3145.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3145/img_3145_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1772.nii.gz",
+ "pseudo_label": "images/img_1772.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1772/img_1772_seg.nii.gz"
+ },
+ {
+ "image": "images/img_598.nii.gz",
+ "pseudo_label": "images/img_598.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_598/img_598_seg.nii.gz"
+ },
+ {
+ "image": "images/img_944.nii.gz",
+ "pseudo_label": "images/img_944.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_944/img_944_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2066.nii.gz",
+ "pseudo_label": "images/img_2066.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2066/img_2066_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2476.nii.gz",
+ "pseudo_label": "images/img_2476.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2476/img_2476_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3024.nii.gz",
+ "pseudo_label": "images/img_3024.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3024/img_3024_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2181.nii.gz",
+ "pseudo_label": "images/img_2181.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2181/img_2181_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3423.nii.gz",
+ "pseudo_label": "images/img_3423.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3423/img_3423_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2036.nii.gz",
+ "pseudo_label": "images/img_2036.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2036/img_2036_seg.nii.gz"
+ },
+ {
+ "image": "images/img_176.nii.gz",
+ "pseudo_label": "images/img_176.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_176/img_176_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3233.nii.gz",
+ "pseudo_label": "images/img_3233.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3233/img_3233_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1583.nii.gz",
+ "pseudo_label": "images/img_1583.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1583/img_1583_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2713.nii.gz",
+ "pseudo_label": "images/img_2713.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2713/img_2713_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1179.nii.gz",
+ "pseudo_label": "images/img_1179.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1179/img_1179_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1026.nii.gz",
+ "pseudo_label": "images/img_1026.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1026/img_1026_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1501.nii.gz",
+ "pseudo_label": "images/img_1501.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1501/img_1501_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2698.nii.gz",
+ "pseudo_label": "images/img_2698.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2698/img_2698_seg.nii.gz"
+ },
+ {
+ "image": "images/img_541.nii.gz",
+ "pseudo_label": "images/img_541.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_541/img_541_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3080.nii.gz",
+ "pseudo_label": "images/img_3080.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3080/img_3080_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3443.nii.gz",
+ "pseudo_label": "images/img_3443.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3443/img_3443_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2551.nii.gz",
+ "pseudo_label": "images/img_2551.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2551/img_2551_seg.nii.gz"
+ },
+ {
+ "image": "images/img_376.nii.gz",
+ "pseudo_label": "images/img_376.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_376/img_376_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1057.nii.gz",
+ "pseudo_label": "images/img_1057.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1057/img_1057_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1506.nii.gz",
+ "pseudo_label": "images/img_1506.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1506/img_1506_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1665.nii.gz",
+ "pseudo_label": "images/img_1665.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1665/img_1665_seg.nii.gz"
+ },
+ {
+ "image": "images/img_147.nii.gz",
+ "pseudo_label": "images/img_147.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_147/img_147_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2388.nii.gz",
+ "pseudo_label": "images/img_2388.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2388/img_2388_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1917.nii.gz",
+ "pseudo_label": "images/img_1917.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1917/img_1917_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1912.nii.gz",
+ "pseudo_label": "images/img_1912.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1912/img_1912_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3378.nii.gz",
+ "pseudo_label": "images/img_3378.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3378/img_3378_seg.nii.gz"
+ },
+ {
+ "image": "images/img_982.nii.gz",
+ "pseudo_label": "images/img_982.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_982/img_982_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3049.nii.gz",
+ "pseudo_label": "images/img_3049.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3049/img_3049_seg.nii.gz"
+ },
+ {
+ "image": "images/img_378.nii.gz",
+ "pseudo_label": "images/img_378.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_378/img_378_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3243.nii.gz",
+ "pseudo_label": "images/img_3243.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3243/img_3243_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2102.nii.gz",
+ "pseudo_label": "images/img_2102.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2102/img_2102_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2565.nii.gz",
+ "pseudo_label": "images/img_2565.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2565/img_2565_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2952.nii.gz",
+ "pseudo_label": "images/img_2952.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2952/img_2952_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3050.nii.gz",
+ "pseudo_label": "images/img_3050.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3050/img_3050_seg.nii.gz"
+ },
+ {
+ "image": "images/img_733.nii.gz",
+ "pseudo_label": "images/img_733.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_733/img_733_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1820.nii.gz",
+ "pseudo_label": "images/img_1820.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1820/img_1820_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2828.nii.gz",
+ "pseudo_label": "images/img_2828.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2828/img_2828_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1033.nii.gz",
+ "pseudo_label": "images/img_1033.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1033/img_1033_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3008.nii.gz",
+ "pseudo_label": "images/img_3008.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3008/img_3008_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1619.nii.gz",
+ "pseudo_label": "images/img_1619.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1619/img_1619_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1533.nii.gz",
+ "pseudo_label": "images/img_1533.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1533/img_1533_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2271.nii.gz",
+ "pseudo_label": "images/img_2271.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2271/img_2271_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1872.nii.gz",
+ "pseudo_label": "images/img_1872.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1872/img_1872_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1968.nii.gz",
+ "pseudo_label": "images/img_1968.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1968/img_1968_seg.nii.gz"
+ },
+ {
+ "image": "images/img_60.nii.gz",
+ "pseudo_label": "images/img_60.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_60/img_60_seg.nii.gz"
+ },
+ {
+ "image": "images/img_102.nii.gz",
+ "pseudo_label": "images/img_102.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_102/img_102_seg.nii.gz"
+ },
+ {
+ "image": "images/img_199.nii.gz",
+ "pseudo_label": "images/img_199.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_199/img_199_seg.nii.gz"
+ },
+ {
+ "image": "images/img_458.nii.gz",
+ "pseudo_label": "images/img_458.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_458/img_458_seg.nii.gz"
+ },
+ {
+ "image": "images/img_453.nii.gz",
+ "pseudo_label": "images/img_453.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_453/img_453_seg.nii.gz"
+ },
+ {
+ "image": "images/img_731.nii.gz",
+ "pseudo_label": "images/img_731.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_731/img_731_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3339.nii.gz",
+ "pseudo_label": "images/img_3339.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3339/img_3339_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2319.nii.gz",
+ "pseudo_label": "images/img_2319.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2319/img_2319_seg.nii.gz"
+ },
+ {
+ "image": "images/img_614.nii.gz",
+ "pseudo_label": "images/img_614.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_614/img_614_seg.nii.gz"
+ },
+ {
+ "image": "images/img_303.nii.gz",
+ "pseudo_label": "images/img_303.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_303/img_303_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1952.nii.gz",
+ "pseudo_label": "images/img_1952.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1952/img_1952_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3230.nii.gz",
+ "pseudo_label": "images/img_3230.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3230/img_3230_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3012.nii.gz",
+ "pseudo_label": "images/img_3012.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3012/img_3012_seg.nii.gz"
+ },
+ {
+ "image": "images/img_981.nii.gz",
+ "pseudo_label": "images/img_981.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_981/img_981_seg.nii.gz"
+ },
+ {
+ "image": "images/img_188.nii.gz",
+ "pseudo_label": "images/img_188.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_188/img_188_seg.nii.gz"
+ },
+ {
+ "image": "images/img_867.nii.gz",
+ "pseudo_label": "images/img_867.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_867/img_867_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2977.nii.gz",
+ "pseudo_label": "images/img_2977.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2977/img_2977_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1629.nii.gz",
+ "pseudo_label": "images/img_1629.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1629/img_1629_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3083.nii.gz",
+ "pseudo_label": "images/img_3083.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3083/img_3083_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2057.nii.gz",
+ "pseudo_label": "images/img_2057.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2057/img_2057_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3205.nii.gz",
+ "pseudo_label": "images/img_3205.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3205/img_3205_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3128.nii.gz",
+ "pseudo_label": "images/img_3128.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3128/img_3128_seg.nii.gz"
+ },
+ {
+ "image": "images/img_352.nii.gz",
+ "pseudo_label": "images/img_352.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_352/img_352_seg.nii.gz"
+ },
+ {
+ "image": "images/img_76.nii.gz",
+ "pseudo_label": "images/img_76.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_76/img_76_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2547.nii.gz",
+ "pseudo_label": "images/img_2547.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2547/img_2547_seg.nii.gz"
+ },
+ {
+ "image": "images/img_687.nii.gz",
+ "pseudo_label": "images/img_687.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_687/img_687_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3021.nii.gz",
+ "pseudo_label": "images/img_3021.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3021/img_3021_seg.nii.gz"
+ },
+ {
+ "image": "images/img_404.nii.gz",
+ "pseudo_label": "images/img_404.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_404/img_404_seg.nii.gz"
+ },
+ {
+ "image": "images/img_382.nii.gz",
+ "pseudo_label": "images/img_382.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_382/img_382_seg.nii.gz"
+ },
+ {
+ "image": "images/img_743.nii.gz",
+ "pseudo_label": "images/img_743.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_743/img_743_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2878.nii.gz",
+ "pseudo_label": "images/img_2878.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2878/img_2878_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1515.nii.gz",
+ "pseudo_label": "images/img_1515.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1515/img_1515_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2778.nii.gz",
+ "pseudo_label": "images/img_2778.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2778/img_2778_seg.nii.gz"
+ },
+ {
+ "image": "images/img_134.nii.gz",
+ "pseudo_label": "images/img_134.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_134/img_134_seg.nii.gz"
+ },
+ {
+ "image": "images/img_508.nii.gz",
+ "pseudo_label": "images/img_508.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_508/img_508_seg.nii.gz"
+ },
+ {
+ "image": "images/img_650.nii.gz",
+ "pseudo_label": "images/img_650.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_650/img_650_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2819.nii.gz",
+ "pseudo_label": "images/img_2819.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2819/img_2819_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2034.nii.gz",
+ "pseudo_label": "images/img_2034.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2034/img_2034_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1964.nii.gz",
+ "pseudo_label": "images/img_1964.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1964/img_1964_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3029.nii.gz",
+ "pseudo_label": "images/img_3029.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3029/img_3029_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1190.nii.gz",
+ "pseudo_label": "images/img_1190.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1190/img_1190_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1085.nii.gz",
+ "pseudo_label": "images/img_1085.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1085/img_1085_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2995.nii.gz",
+ "pseudo_label": "images/img_2995.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2995/img_2995_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2222.nii.gz",
+ "pseudo_label": "images/img_2222.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2222/img_2222_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2280.nii.gz",
+ "pseudo_label": "images/img_2280.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2280/img_2280_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1692.nii.gz",
+ "pseudo_label": "images/img_1692.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1692/img_1692_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2415.nii.gz",
+ "pseudo_label": "images/img_2415.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2415/img_2415_seg.nii.gz"
+ },
+ {
+ "image": "images/img_618.nii.gz",
+ "pseudo_label": "images/img_618.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_618/img_618_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1049.nii.gz",
+ "pseudo_label": "images/img_1049.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1049/img_1049_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3154.nii.gz",
+ "pseudo_label": "images/img_3154.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3154/img_3154_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2575.nii.gz",
+ "pseudo_label": "images/img_2575.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2575/img_2575_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3157.nii.gz",
+ "pseudo_label": "images/img_3157.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3157/img_3157_seg.nii.gz"
+ },
+ {
+ "image": "images/img_319.nii.gz",
+ "pseudo_label": "images/img_319.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_319/img_319_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2304.nii.gz",
+ "pseudo_label": "images/img_2304.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2304/img_2304_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2779.nii.gz",
+ "pseudo_label": "images/img_2779.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2779/img_2779_seg.nii.gz"
+ },
+ {
+ "image": "images/img_401.nii.gz",
+ "pseudo_label": "images/img_401.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_401/img_401_seg.nii.gz"
+ },
+ {
+ "image": "images/img_807.nii.gz",
+ "pseudo_label": "images/img_807.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_807/img_807_seg.nii.gz"
+ },
+ {
+ "image": "images/img_220.nii.gz",
+ "pseudo_label": "images/img_220.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_220/img_220_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1121.nii.gz",
+ "pseudo_label": "images/img_1121.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1121/img_1121_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1159.nii.gz",
+ "pseudo_label": "images/img_1159.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1159/img_1159_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2702.nii.gz",
+ "pseudo_label": "images/img_2702.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2702/img_2702_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2861.nii.gz",
+ "pseudo_label": "images/img_2861.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2861/img_2861_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2968.nii.gz",
+ "pseudo_label": "images/img_2968.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2968/img_2968_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1800.nii.gz",
+ "pseudo_label": "images/img_1800.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1800/img_1800_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3087.nii.gz",
+ "pseudo_label": "images/img_3087.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3087/img_3087_seg.nii.gz"
+ },
+ {
+ "image": "images/img_120.nii.gz",
+ "pseudo_label": "images/img_120.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_120/img_120_seg.nii.gz"
+ },
+ {
+ "image": "images/img_988.nii.gz",
+ "pseudo_label": "images/img_988.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_988/img_988_seg.nii.gz"
+ },
+ {
+ "image": "images/img_380.nii.gz",
+ "pseudo_label": "images/img_380.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_380/img_380_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2739.nii.gz",
+ "pseudo_label": "images/img_2739.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2739/img_2739_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2093.nii.gz",
+ "pseudo_label": "images/img_2093.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2093/img_2093_seg.nii.gz"
+ },
+ {
+ "image": "images/img_572.nii.gz",
+ "pseudo_label": "images/img_572.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_572/img_572_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1816.nii.gz",
+ "pseudo_label": "images/img_1816.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1816/img_1816_seg.nii.gz"
+ },
+ {
+ "image": "images/img_356.nii.gz",
+ "pseudo_label": "images/img_356.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_356/img_356_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1860.nii.gz",
+ "pseudo_label": "images/img_1860.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1860/img_1860_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2882.nii.gz",
+ "pseudo_label": "images/img_2882.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2882/img_2882_seg.nii.gz"
+ },
+ {
+ "image": "images/img_593.nii.gz",
+ "pseudo_label": "images/img_593.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_593/img_593_seg.nii.gz"
+ },
+ {
+ "image": "images/img_56.nii.gz",
+ "pseudo_label": "images/img_56.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_56/img_56_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2982.nii.gz",
+ "pseudo_label": "images/img_2982.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2982/img_2982_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2775.nii.gz",
+ "pseudo_label": "images/img_2775.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2775/img_2775_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1643.nii.gz",
+ "pseudo_label": "images/img_1643.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1643/img_1643_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1839.nii.gz",
+ "pseudo_label": "images/img_1839.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1839/img_1839_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2030.nii.gz",
+ "pseudo_label": "images/img_2030.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2030/img_2030_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2480.nii.gz",
+ "pseudo_label": "images/img_2480.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2480/img_2480_seg.nii.gz"
+ },
+ {
+ "image": "images/img_52.nii.gz",
+ "pseudo_label": "images/img_52.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_52/img_52_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3088.nii.gz",
+ "pseudo_label": "images/img_3088.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3088/img_3088_seg.nii.gz"
+ },
+ {
+ "image": "images/img_671.nii.gz",
+ "pseudo_label": "images/img_671.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_671/img_671_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2210.nii.gz",
+ "pseudo_label": "images/img_2210.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2210/img_2210_seg.nii.gz"
+ },
+ {
+ "image": "images/img_191.nii.gz",
+ "pseudo_label": "images/img_191.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_191/img_191_seg.nii.gz"
+ },
+ {
+ "image": "images/img_334.nii.gz",
+ "pseudo_label": "images/img_334.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_334/img_334_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3213.nii.gz",
+ "pseudo_label": "images/img_3213.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3213/img_3213_seg.nii.gz"
+ },
+ {
+ "image": "images/img_839.nii.gz",
+ "pseudo_label": "images/img_839.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_839/img_839_seg.nii.gz"
+ },
+ {
+ "image": "images/img_336.nii.gz",
+ "pseudo_label": "images/img_336.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_336/img_336_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1525.nii.gz",
+ "pseudo_label": "images/img_1525.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1525/img_1525_seg.nii.gz"
+ },
+ {
+ "image": "images/img_136.nii.gz",
+ "pseudo_label": "images/img_136.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_136/img_136_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2390.nii.gz",
+ "pseudo_label": "images/img_2390.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2390/img_2390_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2523.nii.gz",
+ "pseudo_label": "images/img_2523.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2523/img_2523_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3409.nii.gz",
+ "pseudo_label": "images/img_3409.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3409/img_3409_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2456.nii.gz",
+ "pseudo_label": "images/img_2456.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2456/img_2456_seg.nii.gz"
+ },
+ {
+ "image": "images/img_450.nii.gz",
+ "pseudo_label": "images/img_450.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_450/img_450_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3371.nii.gz",
+ "pseudo_label": "images/img_3371.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3371/img_3371_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2435.nii.gz",
+ "pseudo_label": "images/img_2435.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2435/img_2435_seg.nii.gz"
+ },
+ {
+ "image": "images/img_838.nii.gz",
+ "pseudo_label": "images/img_838.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_838/img_838_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2519.nii.gz",
+ "pseudo_label": "images/img_2519.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2519/img_2519_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2284.nii.gz",
+ "pseudo_label": "images/img_2284.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2284/img_2284_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2916.nii.gz",
+ "pseudo_label": "images/img_2916.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2916/img_2916_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1606.nii.gz",
+ "pseudo_label": "images/img_1606.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1606/img_1606_seg.nii.gz"
+ },
+ {
+ "image": "images/img_70.nii.gz",
+ "pseudo_label": "images/img_70.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_70/img_70_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2404.nii.gz",
+ "pseudo_label": "images/img_2404.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2404/img_2404_seg.nii.gz"
+ },
+ {
+ "image": "images/img_485.nii.gz",
+ "pseudo_label": "images/img_485.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_485/img_485_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1675.nii.gz",
+ "pseudo_label": "images/img_1675.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1675/img_1675_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1892.nii.gz",
+ "pseudo_label": "images/img_1892.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1892/img_1892_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3161.nii.gz",
+ "pseudo_label": "images/img_3161.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3161/img_3161_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3042.nii.gz",
+ "pseudo_label": "images/img_3042.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3042/img_3042_seg.nii.gz"
+ },
+ {
+ "image": "images/img_384.nii.gz",
+ "pseudo_label": "images/img_384.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_384/img_384_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2251.nii.gz",
+ "pseudo_label": "images/img_2251.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2251/img_2251_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2439.nii.gz",
+ "pseudo_label": "images/img_2439.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2439/img_2439_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2419.nii.gz",
+ "pseudo_label": "images/img_2419.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2419/img_2419_seg.nii.gz"
+ },
+ {
+ "image": "images/img_37.nii.gz",
+ "pseudo_label": "images/img_37.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_37/img_37_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2019.nii.gz",
+ "pseudo_label": "images/img_2019.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2019/img_2019_seg.nii.gz"
+ },
+ {
+ "image": "images/img_635.nii.gz",
+ "pseudo_label": "images/img_635.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_635/img_635_seg.nii.gz"
+ },
+ {
+ "image": "images/img_505.nii.gz",
+ "pseudo_label": "images/img_505.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_505/img_505_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1946.nii.gz",
+ "pseudo_label": "images/img_1946.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1946/img_1946_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1784.nii.gz",
+ "pseudo_label": "images/img_1784.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1784/img_1784_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3046.nii.gz",
+ "pseudo_label": "images/img_3046.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3046/img_3046_seg.nii.gz"
+ },
+ {
+ "image": "images/img_226.nii.gz",
+ "pseudo_label": "images/img_226.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_226/img_226_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2303.nii.gz",
+ "pseudo_label": "images/img_2303.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2303/img_2303_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2343.nii.gz",
+ "pseudo_label": "images/img_2343.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2343/img_2343_seg.nii.gz"
+ },
+ {
+ "image": "images/img_72.nii.gz",
+ "pseudo_label": "images/img_72.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_72/img_72_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1070.nii.gz",
+ "pseudo_label": "images/img_1070.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1070/img_1070_seg.nii.gz"
+ },
+ {
+ "image": "images/img_517.nii.gz",
+ "pseudo_label": "images/img_517.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_517/img_517_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2613.nii.gz",
+ "pseudo_label": "images/img_2613.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2613/img_2613_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2321.nii.gz",
+ "pseudo_label": "images/img_2321.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2321/img_2321_seg.nii.gz"
+ },
+ {
+ "image": "images/img_406.nii.gz",
+ "pseudo_label": "images/img_406.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_406/img_406_seg.nii.gz"
+ },
+ {
+ "image": "images/img_482.nii.gz",
+ "pseudo_label": "images/img_482.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_482/img_482_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2214.nii.gz",
+ "pseudo_label": "images/img_2214.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2214/img_2214_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2543.nii.gz",
+ "pseudo_label": "images/img_2543.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2543/img_2543_seg.nii.gz"
+ },
+ {
+ "image": "images/img_895.nii.gz",
+ "pseudo_label": "images/img_895.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_895/img_895_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2459.nii.gz",
+ "pseudo_label": "images/img_2459.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2459/img_2459_seg.nii.gz"
+ },
+ {
+ "image": "images/img_349.nii.gz",
+ "pseudo_label": "images/img_349.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_349/img_349_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1038.nii.gz",
+ "pseudo_label": "images/img_1038.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1038/img_1038_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3361.nii.gz",
+ "pseudo_label": "images/img_3361.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3361/img_3361_seg.nii.gz"
+ },
+ {
+ "image": "images/img_658.nii.gz",
+ "pseudo_label": "images/img_658.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_658/img_658_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2504.nii.gz",
+ "pseudo_label": "images/img_2504.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2504/img_2504_seg.nii.gz"
+ },
+ {
+ "image": "images/img_160.nii.gz",
+ "pseudo_label": "images/img_160.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_160/img_160_seg.nii.gz"
+ },
+ {
+ "image": "images/img_268.nii.gz",
+ "pseudo_label": "images/img_268.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_268/img_268_seg.nii.gz"
+ },
+ {
+ "image": "images/img_42.nii.gz",
+ "pseudo_label": "images/img_42.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_42/img_42_seg.nii.gz"
+ },
+ {
+ "image": "images/img_691.nii.gz",
+ "pseudo_label": "images/img_691.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_691/img_691_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1999.nii.gz",
+ "pseudo_label": "images/img_1999.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1999/img_1999_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2078.nii.gz",
+ "pseudo_label": "images/img_2078.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2078/img_2078_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3239.nii.gz",
+ "pseudo_label": "images/img_3239.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3239/img_3239_seg.nii.gz"
+ },
+ {
+ "image": "images/img_606.nii.gz",
+ "pseudo_label": "images/img_606.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_606/img_606_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1751.nii.gz",
+ "pseudo_label": "images/img_1751.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1751/img_1751_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2689.nii.gz",
+ "pseudo_label": "images/img_2689.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2689/img_2689_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2790.nii.gz",
+ "pseudo_label": "images/img_2790.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2790/img_2790_seg.nii.gz"
+ },
+ {
+ "image": "images/img_4.nii.gz",
+ "pseudo_label": "images/img_4.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_4/img_4_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2651.nii.gz",
+ "pseudo_label": "images/img_2651.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2651/img_2651_seg.nii.gz"
+ },
+ {
+ "image": "images/img_740.nii.gz",
+ "pseudo_label": "images/img_740.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_740/img_740_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2753.nii.gz",
+ "pseudo_label": "images/img_2753.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2753/img_2753_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1160.nii.gz",
+ "pseudo_label": "images/img_1160.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1160/img_1160_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1696.nii.gz",
+ "pseudo_label": "images/img_1696.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1696/img_1696_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2557.nii.gz",
+ "pseudo_label": "images/img_2557.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2557/img_2557_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2553.nii.gz",
+ "pseudo_label": "images/img_2553.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2553/img_2553_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3092.nii.gz",
+ "pseudo_label": "images/img_3092.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3092/img_3092_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2820.nii.gz",
+ "pseudo_label": "images/img_2820.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2820/img_2820_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1521.nii.gz",
+ "pseudo_label": "images/img_1521.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1521/img_1521_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2587.nii.gz",
+ "pseudo_label": "images/img_2587.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2587/img_2587_seg.nii.gz"
+ },
+ {
+ "image": "images/img_255.nii.gz",
+ "pseudo_label": "images/img_255.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_255/img_255_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2884.nii.gz",
+ "pseudo_label": "images/img_2884.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2884/img_2884_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3351.nii.gz",
+ "pseudo_label": "images/img_3351.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3351/img_3351_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1718.nii.gz",
+ "pseudo_label": "images/img_1718.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1718/img_1718_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2110.nii.gz",
+ "pseudo_label": "images/img_2110.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2110/img_2110_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1763.nii.gz",
+ "pseudo_label": "images/img_1763.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1763/img_1763_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2805.nii.gz",
+ "pseudo_label": "images/img_2805.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2805/img_2805_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1711.nii.gz",
+ "pseudo_label": "images/img_1711.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1711/img_1711_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1001.nii.gz",
+ "pseudo_label": "images/img_1001.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1001/img_1001_seg.nii.gz"
+ },
+ {
+ "image": "images/img_389.nii.gz",
+ "pseudo_label": "images/img_389.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_389/img_389_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2440.nii.gz",
+ "pseudo_label": "images/img_2440.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2440/img_2440_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3153.nii.gz",
+ "pseudo_label": "images/img_3153.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3153/img_3153_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2431.nii.gz",
+ "pseudo_label": "images/img_2431.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2431/img_2431_seg.nii.gz"
+ },
+ {
+ "image": "images/img_462.nii.gz",
+ "pseudo_label": "images/img_462.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_462/img_462_seg.nii.gz"
+ },
+ {
+ "image": "images/img_576.nii.gz",
+ "pseudo_label": "images/img_576.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_576/img_576_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1908.nii.gz",
+ "pseudo_label": "images/img_1908.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1908/img_1908_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2371.nii.gz",
+ "pseudo_label": "images/img_2371.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2371/img_2371_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3062.nii.gz",
+ "pseudo_label": "images/img_3062.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3062/img_3062_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2635.nii.gz",
+ "pseudo_label": "images/img_2635.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2635/img_2635_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3007.nii.gz",
+ "pseudo_label": "images/img_3007.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3007/img_3007_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1922.nii.gz",
+ "pseudo_label": "images/img_1922.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1922/img_1922_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3294.nii.gz",
+ "pseudo_label": "images/img_3294.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3294/img_3294_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3244.nii.gz",
+ "pseudo_label": "images/img_3244.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3244/img_3244_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3202.nii.gz",
+ "pseudo_label": "images/img_3202.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3202/img_3202_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2129.nii.gz",
+ "pseudo_label": "images/img_2129.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2129/img_2129_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2899.nii.gz",
+ "pseudo_label": "images/img_2899.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2899/img_2899_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2481.nii.gz",
+ "pseudo_label": "images/img_2481.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2481/img_2481_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3397.nii.gz",
+ "pseudo_label": "images/img_3397.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3397/img_3397_seg.nii.gz"
+ },
+ {
+ "image": "images/img_105.nii.gz",
+ "pseudo_label": "images/img_105.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_105/img_105_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3444.nii.gz",
+ "pseudo_label": "images/img_3444.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3444/img_3444_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2428.nii.gz",
+ "pseudo_label": "images/img_2428.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2428/img_2428_seg.nii.gz"
+ },
+ {
+ "image": "images/img_846.nii.gz",
+ "pseudo_label": "images/img_846.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_846/img_846_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2024.nii.gz",
+ "pseudo_label": "images/img_2024.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2024/img_2024_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2150.nii.gz",
+ "pseudo_label": "images/img_2150.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2150/img_2150_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3297.nii.gz",
+ "pseudo_label": "images/img_3297.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3297/img_3297_seg.nii.gz"
+ },
+ {
+ "image": "images/img_977.nii.gz",
+ "pseudo_label": "images/img_977.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_977/img_977_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2665.nii.gz",
+ "pseudo_label": "images/img_2665.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2665/img_2665_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1732.nii.gz",
+ "pseudo_label": "images/img_1732.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1732/img_1732_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1044.nii.gz",
+ "pseudo_label": "images/img_1044.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1044/img_1044_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1655.nii.gz",
+ "pseudo_label": "images/img_1655.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1655/img_1655_seg.nii.gz"
+ },
+ {
+ "image": "images/img_813.nii.gz",
+ "pseudo_label": "images/img_813.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_813/img_813_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2114.nii.gz",
+ "pseudo_label": "images/img_2114.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2114/img_2114_seg.nii.gz"
+ },
+ {
+ "image": "images/img_332.nii.gz",
+ "pseudo_label": "images/img_332.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_332/img_332_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1686.nii.gz",
+ "pseudo_label": "images/img_1686.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1686/img_1686_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1927.nii.gz",
+ "pseudo_label": "images/img_1927.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1927/img_1927_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2640.nii.gz",
+ "pseudo_label": "images/img_2640.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2640/img_2640_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3249.nii.gz",
+ "pseudo_label": "images/img_3249.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3249/img_3249_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1810.nii.gz",
+ "pseudo_label": "images/img_1810.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1810/img_1810_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1673.nii.gz",
+ "pseudo_label": "images/img_1673.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1673/img_1673_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2327.nii.gz",
+ "pseudo_label": "images/img_2327.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2327/img_2327_seg.nii.gz"
+ },
+ {
+ "image": "images/img_175.nii.gz",
+ "pseudo_label": "images/img_175.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_175/img_175_seg.nii.gz"
+ },
+ {
+ "image": "images/img_764.nii.gz",
+ "pseudo_label": "images/img_764.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_764/img_764_seg.nii.gz"
+ },
+ {
+ "image": "images/img_292.nii.gz",
+ "pseudo_label": "images/img_292.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_292/img_292_seg.nii.gz"
+ },
+ {
+ "image": "images/img_594.nii.gz",
+ "pseudo_label": "images/img_594.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_594/img_594_seg.nii.gz"
+ },
+ {
+ "image": "images/img_148.nii.gz",
+ "pseudo_label": "images/img_148.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_148/img_148_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3426.nii.gz",
+ "pseudo_label": "images/img_3426.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3426/img_3426_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2593.nii.gz",
+ "pseudo_label": "images/img_2593.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2593/img_2593_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2870.nii.gz",
+ "pseudo_label": "images/img_2870.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2870/img_2870_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1994.nii.gz",
+ "pseudo_label": "images/img_1994.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1994/img_1994_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2852.nii.gz",
+ "pseudo_label": "images/img_2852.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2852/img_2852_seg.nii.gz"
+ },
+ {
+ "image": "images/img_124.nii.gz",
+ "pseudo_label": "images/img_124.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_124/img_124_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2025.nii.gz",
+ "pseudo_label": "images/img_2025.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2025/img_2025_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1953.nii.gz",
+ "pseudo_label": "images/img_1953.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1953/img_1953_seg.nii.gz"
+ },
+ {
+ "image": "images/img_858.nii.gz",
+ "pseudo_label": "images/img_858.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_858/img_858_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2653.nii.gz",
+ "pseudo_label": "images/img_2653.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2653/img_2653_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3445.nii.gz",
+ "pseudo_label": "images/img_3445.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3445/img_3445_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3259.nii.gz",
+ "pseudo_label": "images/img_3259.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3259/img_3259_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1592.nii.gz",
+ "pseudo_label": "images/img_1592.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1592/img_1592_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1198.nii.gz",
+ "pseudo_label": "images/img_1198.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1198/img_1198_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2967.nii.gz",
+ "pseudo_label": "images/img_2967.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2967/img_2967_seg.nii.gz"
+ },
+ {
+ "image": "images/img_345.nii.gz",
+ "pseudo_label": "images/img_345.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_345/img_345_seg.nii.gz"
+ },
+ {
+ "image": "images/img_588.nii.gz",
+ "pseudo_label": "images/img_588.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_588/img_588_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2919.nii.gz",
+ "pseudo_label": "images/img_2919.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2919/img_2919_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2469.nii.gz",
+ "pseudo_label": "images/img_2469.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2469/img_2469_seg.nii.gz"
+ },
+ {
+ "image": "images/img_718.nii.gz",
+ "pseudo_label": "images/img_718.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_718/img_718_seg.nii.gz"
+ },
+ {
+ "image": "images/img_203.nii.gz",
+ "pseudo_label": "images/img_203.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_203/img_203_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1083.nii.gz",
+ "pseudo_label": "images/img_1083.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1083/img_1083_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1502.nii.gz",
+ "pseudo_label": "images/img_1502.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1502/img_1502_seg.nii.gz"
+ },
+ {
+ "image": "images/img_509.nii.gz",
+ "pseudo_label": "images/img_509.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_509/img_509_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2735.nii.gz",
+ "pseudo_label": "images/img_2735.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2735/img_2735_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2216.nii.gz",
+ "pseudo_label": "images/img_2216.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2216/img_2216_seg.nii.gz"
+ },
+ {
+ "image": "images/img_902.nii.gz",
+ "pseudo_label": "images/img_902.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_902/img_902_seg.nii.gz"
+ },
+ {
+ "image": "images/img_599.nii.gz",
+ "pseudo_label": "images/img_599.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_599/img_599_seg.nii.gz"
+ },
+ {
+ "image": "images/img_164.nii.gz",
+ "pseudo_label": "images/img_164.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_164/img_164_seg.nii.gz"
+ },
+ {
+ "image": "images/img_654.nii.gz",
+ "pseudo_label": "images/img_654.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_654/img_654_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3019.nii.gz",
+ "pseudo_label": "images/img_3019.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3019/img_3019_seg.nii.gz"
+ },
+ {
+ "image": "images/img_932.nii.gz",
+ "pseudo_label": "images/img_932.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_932/img_932_seg.nii.gz"
+ },
+ {
+ "image": "images/img_116.nii.gz",
+ "pseudo_label": "images/img_116.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_116/img_116_seg.nii.gz"
+ },
+ {
+ "image": "images/img_580.nii.gz",
+ "pseudo_label": "images/img_580.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_580/img_580_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3173.nii.gz",
+ "pseudo_label": "images/img_3173.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3173/img_3173_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1137.nii.gz",
+ "pseudo_label": "images/img_1137.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1137/img_1137_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1550.nii.gz",
+ "pseudo_label": "images/img_1550.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1550/img_1550_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3245.nii.gz",
+ "pseudo_label": "images/img_3245.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3245/img_3245_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2488.nii.gz",
+ "pseudo_label": "images/img_2488.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2488/img_2488_seg.nii.gz"
+ },
+ {
+ "image": "images/img_803.nii.gz",
+ "pseudo_label": "images/img_803.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_803/img_803_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3123.nii.gz",
+ "pseudo_label": "images/img_3123.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3123/img_3123_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3276.nii.gz",
+ "pseudo_label": "images/img_3276.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3276/img_3276_seg.nii.gz"
+ },
+ {
+ "image": "images/img_30.nii.gz",
+ "pseudo_label": "images/img_30.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_30/img_30_seg.nii.gz"
+ },
+ {
+ "image": "images/img_140.nii.gz",
+ "pseudo_label": "images/img_140.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_140/img_140_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1136.nii.gz",
+ "pseudo_label": "images/img_1136.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1136/img_1136_seg.nii.gz"
+ },
+ {
+ "image": "images/img_646.nii.gz",
+ "pseudo_label": "images/img_646.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_646/img_646_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1118.nii.gz",
+ "pseudo_label": "images/img_1118.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1118/img_1118_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1814.nii.gz",
+ "pseudo_label": "images/img_1814.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1814/img_1814_seg.nii.gz"
+ },
+ {
+ "image": "images/img_19.nii.gz",
+ "pseudo_label": "images/img_19.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_19/img_19_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2677.nii.gz",
+ "pseudo_label": "images/img_2677.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2677/img_2677_seg.nii.gz"
+ },
+ {
+ "image": "images/img_552.nii.gz",
+ "pseudo_label": "images/img_552.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_552/img_552_seg.nii.gz"
+ },
+ {
+ "image": "images/img_545.nii.gz",
+ "pseudo_label": "images/img_545.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_545/img_545_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2092.nii.gz",
+ "pseudo_label": "images/img_2092.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2092/img_2092_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3155.nii.gz",
+ "pseudo_label": "images/img_3155.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3155/img_3155_seg.nii.gz"
+ },
+ {
+ "image": "images/img_179.nii.gz",
+ "pseudo_label": "images/img_179.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_179/img_179_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2173.nii.gz",
+ "pseudo_label": "images/img_2173.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2173/img_2173_seg.nii.gz"
+ },
+ {
+ "image": "images/img_993.nii.gz",
+ "pseudo_label": "images/img_993.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_993/img_993_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3067.nii.gz",
+ "pseudo_label": "images/img_3067.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3067/img_3067_seg.nii.gz"
+ },
+ {
+ "image": "images/img_130.nii.gz",
+ "pseudo_label": "images/img_130.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_130/img_130_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2759.nii.gz",
+ "pseudo_label": "images/img_2759.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2759/img_2759_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2652.nii.gz",
+ "pseudo_label": "images/img_2652.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2652/img_2652_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1681.nii.gz",
+ "pseudo_label": "images/img_1681.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1681/img_1681_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2983.nii.gz",
+ "pseudo_label": "images/img_2983.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2983/img_2983_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1602.nii.gz",
+ "pseudo_label": "images/img_1602.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1602/img_1602_seg.nii.gz"
+ },
+ {
+ "image": "images/img_864.nii.gz",
+ "pseudo_label": "images/img_864.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_864/img_864_seg.nii.gz"
+ },
+ {
+ "image": "images/img_118.nii.gz",
+ "pseudo_label": "images/img_118.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_118/img_118_seg.nii.gz"
+ },
+ {
+ "image": "images/img_581.nii.gz",
+ "pseudo_label": "images/img_581.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_581/img_581_seg.nii.gz"
+ },
+ {
+ "image": "images/img_738.nii.gz",
+ "pseudo_label": "images/img_738.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_738/img_738_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3279.nii.gz",
+ "pseudo_label": "images/img_3279.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3279/img_3279_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3134.nii.gz",
+ "pseudo_label": "images/img_3134.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3134/img_3134_seg.nii.gz"
+ },
+ {
+ "image": "images/img_304.nii.gz",
+ "pseudo_label": "images/img_304.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_304/img_304_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2432.nii.gz",
+ "pseudo_label": "images/img_2432.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2432/img_2432_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1549.nii.gz",
+ "pseudo_label": "images/img_1549.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1549/img_1549_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2666.nii.gz",
+ "pseudo_label": "images/img_2666.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2666/img_2666_seg.nii.gz"
+ },
+ {
+ "image": "images/img_284.nii.gz",
+ "pseudo_label": "images/img_284.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_284/img_284_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1202.nii.gz",
+ "pseudo_label": "images/img_1202.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1202/img_1202_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2798.nii.gz",
+ "pseudo_label": "images/img_2798.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2798/img_2798_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1712.nii.gz",
+ "pseudo_label": "images/img_1712.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1712/img_1712_seg.nii.gz"
+ },
+ {
+ "image": "images/img_836.nii.gz",
+ "pseudo_label": "images/img_836.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_836/img_836_seg.nii.gz"
+ },
+ {
+ "image": "images/img_704.nii.gz",
+ "pseudo_label": "images/img_704.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_704/img_704_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2139.nii.gz",
+ "pseudo_label": "images/img_2139.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2139/img_2139_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1534.nii.gz",
+ "pseudo_label": "images/img_1534.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1534/img_1534_seg.nii.gz"
+ },
+ {
+ "image": "images/img_161.nii.gz",
+ "pseudo_label": "images/img_161.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_161/img_161_seg.nii.gz"
+ },
+ {
+ "image": "images/img_561.nii.gz",
+ "pseudo_label": "images/img_561.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_561/img_561_seg.nii.gz"
+ },
+ {
+ "image": "images/img_280.nii.gz",
+ "pseudo_label": "images/img_280.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_280/img_280_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2888.nii.gz",
+ "pseudo_label": "images/img_2888.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2888/img_2888_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2187.nii.gz",
+ "pseudo_label": "images/img_2187.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2187/img_2187_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3419.nii.gz",
+ "pseudo_label": "images/img_3419.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3419/img_3419_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2472.nii.gz",
+ "pseudo_label": "images/img_2472.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2472/img_2472_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1624.nii.gz",
+ "pseudo_label": "images/img_1624.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1624/img_1624_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2014.nii.gz",
+ "pseudo_label": "images/img_2014.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2014/img_2014_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1555.nii.gz",
+ "pseudo_label": "images/img_1555.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1555/img_1555_seg.nii.gz"
+ },
+ {
+ "image": "images/img_276.nii.gz",
+ "pseudo_label": "images/img_276.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_276/img_276_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2398.nii.gz",
+ "pseudo_label": "images/img_2398.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2398/img_2398_seg.nii.gz"
+ },
+ {
+ "image": "images/img_679.nii.gz",
+ "pseudo_label": "images/img_679.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_679/img_679_seg.nii.gz"
+ },
+ {
+ "image": "images/img_34.nii.gz",
+ "pseudo_label": "images/img_34.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_34/img_34_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1081.nii.gz",
+ "pseudo_label": "images/img_1081.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1081/img_1081_seg.nii.gz"
+ },
+ {
+ "image": "images/img_299.nii.gz",
+ "pseudo_label": "images/img_299.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_299/img_299_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2637.nii.gz",
+ "pseudo_label": "images/img_2637.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2637/img_2637_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2844.nii.gz",
+ "pseudo_label": "images/img_2844.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2844/img_2844_seg.nii.gz"
+ },
+ {
+ "image": "images/img_595.nii.gz",
+ "pseudo_label": "images/img_595.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_595/img_595_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1933.nii.gz",
+ "pseudo_label": "images/img_1933.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1933/img_1933_seg.nii.gz"
+ },
+ {
+ "image": "images/img_808.nii.gz",
+ "pseudo_label": "images/img_808.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_808/img_808_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1093.nii.gz",
+ "pseudo_label": "images/img_1093.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1093/img_1093_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1931.nii.gz",
+ "pseudo_label": "images/img_1931.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1931/img_1931_seg.nii.gz"
+ },
+ {
+ "image": "images/img_863.nii.gz",
+ "pseudo_label": "images/img_863.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_863/img_863_seg.nii.gz"
+ },
+ {
+ "image": "images/img_990.nii.gz",
+ "pseudo_label": "images/img_990.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_990/img_990_seg.nii.gz"
+ },
+ {
+ "image": "images/img_183.nii.gz",
+ "pseudo_label": "images/img_183.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_183/img_183_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2924.nii.gz",
+ "pseudo_label": "images/img_2924.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2924/img_2924_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1561.nii.gz",
+ "pseudo_label": "images/img_1561.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1561/img_1561_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1558.nii.gz",
+ "pseudo_label": "images/img_1558.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1558/img_1558_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1171.nii.gz",
+ "pseudo_label": "images/img_1171.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1171/img_1171_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2313.nii.gz",
+ "pseudo_label": "images/img_2313.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2313/img_2313_seg.nii.gz"
+ },
+ {
+ "image": "images/img_263.nii.gz",
+ "pseudo_label": "images/img_263.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_263/img_263_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1650.nii.gz",
+ "pseudo_label": "images/img_1650.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1650/img_1650_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2455.nii.gz",
+ "pseudo_label": "images/img_2455.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2455/img_2455_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3452.nii.gz",
+ "pseudo_label": "images/img_3452.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3452/img_3452_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3258.nii.gz",
+ "pseudo_label": "images/img_3258.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3258/img_3258_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3342.nii.gz",
+ "pseudo_label": "images/img_3342.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3342/img_3342_seg.nii.gz"
+ },
+ {
+ "image": "images/img_940.nii.gz",
+ "pseudo_label": "images/img_940.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_940/img_940_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2325.nii.gz",
+ "pseudo_label": "images/img_2325.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2325/img_2325_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1016.nii.gz",
+ "pseudo_label": "images/img_1016.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1016/img_1016_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1538.nii.gz",
+ "pseudo_label": "images/img_1538.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1538/img_1538_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3265.nii.gz",
+ "pseudo_label": "images/img_3265.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3265/img_3265_seg.nii.gz"
+ },
+ {
+ "image": "images/img_295.nii.gz",
+ "pseudo_label": "images/img_295.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_295/img_295_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3033.nii.gz",
+ "pseudo_label": "images/img_3033.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3033/img_3033_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2927.nii.gz",
+ "pseudo_label": "images/img_2927.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2927/img_2927_seg.nii.gz"
+ },
+ {
+ "image": "images/img_966.nii.gz",
+ "pseudo_label": "images/img_966.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_966/img_966_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3.nii.gz",
+ "pseudo_label": "images/img_3.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3/img_3_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2907.nii.gz",
+ "pseudo_label": "images/img_2907.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2907/img_2907_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1913.nii.gz",
+ "pseudo_label": "images/img_1913.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1913/img_1913_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3389.nii.gz",
+ "pseudo_label": "images/img_3389.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3389/img_3389_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1052.nii.gz",
+ "pseudo_label": "images/img_1052.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1052/img_1052_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2203.nii.gz",
+ "pseudo_label": "images/img_2203.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2203/img_2203_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1105.nii.gz",
+ "pseudo_label": "images/img_1105.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1105/img_1105_seg.nii.gz"
+ },
+ {
+ "image": "images/img_560.nii.gz",
+ "pseudo_label": "images/img_560.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_560/img_560_seg.nii.gz"
+ },
+ {
+ "image": "images/img_422.nii.gz",
+ "pseudo_label": "images/img_422.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_422/img_422_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1505.nii.gz",
+ "pseudo_label": "images/img_1505.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1505/img_1505_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2636.nii.gz",
+ "pseudo_label": "images/img_2636.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2636/img_2636_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2380.nii.gz",
+ "pseudo_label": "images/img_2380.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2380/img_2380_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2193.nii.gz",
+ "pseudo_label": "images/img_2193.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2193/img_2193_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1658.nii.gz",
+ "pseudo_label": "images/img_1658.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1658/img_1658_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2990.nii.gz",
+ "pseudo_label": "images/img_2990.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2990/img_2990_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1722.nii.gz",
+ "pseudo_label": "images/img_1722.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1722/img_1722_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2972.nii.gz",
+ "pseudo_label": "images/img_2972.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2972/img_2972_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3438.nii.gz",
+ "pseudo_label": "images/img_3438.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3438/img_3438_seg.nii.gz"
+ },
+ {
+ "image": "images/img_122.nii.gz",
+ "pseudo_label": "images/img_122.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_122/img_122_seg.nii.gz"
+ },
+ {
+ "image": "images/img_685.nii.gz",
+ "pseudo_label": "images/img_685.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_685/img_685_seg.nii.gz"
+ },
+ {
+ "image": "images/img_524.nii.gz",
+ "pseudo_label": "images/img_524.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_524/img_524_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1517.nii.gz",
+ "pseudo_label": "images/img_1517.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1517/img_1517_seg.nii.gz"
+ },
+ {
+ "image": "images/img_152.nii.gz",
+ "pseudo_label": "images/img_152.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_152/img_152_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2976.nii.gz",
+ "pseudo_label": "images/img_2976.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2976/img_2976_seg.nii.gz"
+ },
+ {
+ "image": "images/img_187.nii.gz",
+ "pseudo_label": "images/img_187.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_187/img_187_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1708.nii.gz",
+ "pseudo_label": "images/img_1708.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1708/img_1708_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3274.nii.gz",
+ "pseudo_label": "images/img_3274.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3274/img_3274_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2773.nii.gz",
+ "pseudo_label": "images/img_2773.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2773/img_2773_seg.nii.gz"
+ },
+ {
+ "image": "images/img_481.nii.gz",
+ "pseudo_label": "images/img_481.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_481/img_481_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1948.nii.gz",
+ "pseudo_label": "images/img_1948.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1948/img_1948_seg.nii.gz"
+ },
+ {
+ "image": "images/img_466.nii.gz",
+ "pseudo_label": "images/img_466.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_466/img_466_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3000.nii.gz",
+ "pseudo_label": "images/img_3000.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3000/img_3000_seg.nii.gz"
+ },
+ {
+ "image": "images/img_589.nii.gz",
+ "pseudo_label": "images/img_589.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_589/img_589_seg.nii.gz"
+ },
+ {
+ "image": "images/img_235.nii.gz",
+ "pseudo_label": "images/img_235.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_235/img_235_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3408.nii.gz",
+ "pseudo_label": "images/img_3408.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3408/img_3408_seg.nii.gz"
+ },
+ {
+ "image": "images/img_855.nii.gz",
+ "pseudo_label": "images/img_855.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_855/img_855_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2080.nii.gz",
+ "pseudo_label": "images/img_2080.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2080/img_2080_seg.nii.gz"
+ },
+ {
+ "image": "images/img_302.nii.gz",
+ "pseudo_label": "images/img_302.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_302/img_302_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1035.nii.gz",
+ "pseudo_label": "images/img_1035.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1035/img_1035_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3332.nii.gz",
+ "pseudo_label": "images/img_3332.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3332/img_3332_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3290.nii.gz",
+ "pseudo_label": "images/img_3290.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3290/img_3290_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1659.nii.gz",
+ "pseudo_label": "images/img_1659.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1659/img_1659_seg.nii.gz"
+ },
+ {
+ "image": "images/img_911.nii.gz",
+ "pseudo_label": "images/img_911.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_911/img_911_seg.nii.gz"
+ },
+ {
+ "image": "images/img_702.nii.gz",
+ "pseudo_label": "images/img_702.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_702/img_702_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2142.nii.gz",
+ "pseudo_label": "images/img_2142.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2142/img_2142_seg.nii.gz"
+ },
+ {
+ "image": "images/img_311.nii.gz",
+ "pseudo_label": "images/img_311.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_311/img_311_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2489.nii.gz",
+ "pseudo_label": "images/img_2489.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2489/img_2489_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1901.nii.gz",
+ "pseudo_label": "images/img_1901.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1901/img_1901_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1733.nii.gz",
+ "pseudo_label": "images/img_1733.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1733/img_1733_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2369.nii.gz",
+ "pseudo_label": "images/img_2369.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2369/img_2369_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1754.nii.gz",
+ "pseudo_label": "images/img_1754.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1754/img_1754_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3149.nii.gz",
+ "pseudo_label": "images/img_3149.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3149/img_3149_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2007.nii.gz",
+ "pseudo_label": "images/img_2007.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2007/img_2007_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3331.nii.gz",
+ "pseudo_label": "images/img_3331.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3331/img_3331_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1667.nii.gz",
+ "pseudo_label": "images/img_1667.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1667/img_1667_seg.nii.gz"
+ },
+ {
+ "image": "images/img_630.nii.gz",
+ "pseudo_label": "images/img_630.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_630/img_630_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1864.nii.gz",
+ "pseudo_label": "images/img_1864.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1864/img_1864_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1576.nii.gz",
+ "pseudo_label": "images/img_1576.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1576/img_1576_seg.nii.gz"
+ },
+ {
+ "image": "images/img_12.nii.gz",
+ "pseudo_label": "images/img_12.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_12/img_12_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2941.nii.gz",
+ "pseudo_label": "images/img_2941.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2941/img_2941_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3448.nii.gz",
+ "pseudo_label": "images/img_3448.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3448/img_3448_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1669.nii.gz",
+ "pseudo_label": "images/img_1669.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1669/img_1669_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3267.nii.gz",
+ "pseudo_label": "images/img_3267.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3267/img_3267_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3282.nii.gz",
+ "pseudo_label": "images/img_3282.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3282/img_3282_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2442.nii.gz",
+ "pseudo_label": "images/img_2442.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2442/img_2442_seg.nii.gz"
+ },
+ {
+ "image": "images/img_793.nii.gz",
+ "pseudo_label": "images/img_793.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_793/img_793_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2900.nii.gz",
+ "pseudo_label": "images/img_2900.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2900/img_2900_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3315.nii.gz",
+ "pseudo_label": "images/img_3315.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3315/img_3315_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2023.nii.gz",
+ "pseudo_label": "images/img_2023.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2023/img_2023_seg.nii.gz"
+ },
+ {
+ "image": "images/img_890.nii.gz",
+ "pseudo_label": "images/img_890.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_890/img_890_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2673.nii.gz",
+ "pseudo_label": "images/img_2673.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2673/img_2673_seg.nii.gz"
+ },
+ {
+ "image": "images/img_20.nii.gz",
+ "pseudo_label": "images/img_20.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_20/img_20_seg.nii.gz"
+ },
+ {
+ "image": "images/img_565.nii.gz",
+ "pseudo_label": "images/img_565.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_565/img_565_seg.nii.gz"
+ },
+ {
+ "image": "images/img_623.nii.gz",
+ "pseudo_label": "images/img_623.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_623/img_623_seg.nii.gz"
+ },
+ {
+ "image": "images/img_720.nii.gz",
+ "pseudo_label": "images/img_720.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_720/img_720_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1780.nii.gz",
+ "pseudo_label": "images/img_1780.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1780/img_1780_seg.nii.gz"
+ },
+ {
+ "image": "images/img_783.nii.gz",
+ "pseudo_label": "images/img_783.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_783/img_783_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2511.nii.gz",
+ "pseudo_label": "images/img_2511.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2511/img_2511_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1827.nii.gz",
+ "pseudo_label": "images/img_1827.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1827/img_1827_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2083.nii.gz",
+ "pseudo_label": "images/img_2083.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2083/img_2083_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1541.nii.gz",
+ "pseudo_label": "images/img_1541.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1541/img_1541_seg.nii.gz"
+ },
+ {
+ "image": "images/img_48.nii.gz",
+ "pseudo_label": "images/img_48.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_48/img_48_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1824.nii.gz",
+ "pseudo_label": "images/img_1824.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1824/img_1824_seg.nii.gz"
+ },
+ {
+ "image": "images/img_710.nii.gz",
+ "pseudo_label": "images/img_710.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_710/img_710_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1522.nii.gz",
+ "pseudo_label": "images/img_1522.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1522/img_1522_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3057.nii.gz",
+ "pseudo_label": "images/img_3057.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3057/img_3057_seg.nii.gz"
+ },
+ {
+ "image": "images/img_914.nii.gz",
+ "pseudo_label": "images/img_914.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_914/img_914_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3254.nii.gz",
+ "pseudo_label": "images/img_3254.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3254/img_3254_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1746.nii.gz",
+ "pseudo_label": "images/img_1746.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1746/img_1746_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1101.nii.gz",
+ "pseudo_label": "images/img_1101.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1101/img_1101_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2661.nii.gz",
+ "pseudo_label": "images/img_2661.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2661/img_2661_seg.nii.gz"
+ },
+ {
+ "image": "images/img_622.nii.gz",
+ "pseudo_label": "images/img_622.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_622/img_622_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3447.nii.gz",
+ "pseudo_label": "images/img_3447.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3447/img_3447_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3422.nii.gz",
+ "pseudo_label": "images/img_3422.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3422/img_3422_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1623.nii.gz",
+ "pseudo_label": "images/img_1623.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1623/img_1623_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2718.nii.gz",
+ "pseudo_label": "images/img_2718.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2718/img_2718_seg.nii.gz"
+ },
+ {
+ "image": "images/img_640.nii.gz",
+ "pseudo_label": "images/img_640.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_640/img_640_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1758.nii.gz",
+ "pseudo_label": "images/img_1758.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1758/img_1758_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1788.nii.gz",
+ "pseudo_label": "images/img_1788.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1788/img_1788_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2942.nii.gz",
+ "pseudo_label": "images/img_2942.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2942/img_2942_seg.nii.gz"
+ },
+ {
+ "image": "images/img_430.nii.gz",
+ "pseudo_label": "images/img_430.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_430/img_430_seg.nii.gz"
+ },
+ {
+ "image": "images/img_659.nii.gz",
+ "pseudo_label": "images/img_659.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_659/img_659_seg.nii.gz"
+ },
+ {
+ "image": "images/img_997.nii.gz",
+ "pseudo_label": "images/img_997.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_997/img_997_seg.nii.gz"
+ },
+ {
+ "image": "images/img_484.nii.gz",
+ "pseudo_label": "images/img_484.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_484/img_484_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2378.nii.gz",
+ "pseudo_label": "images/img_2378.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2378/img_2378_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2597.nii.gz",
+ "pseudo_label": "images/img_2597.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2597/img_2597_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2155.nii.gz",
+ "pseudo_label": "images/img_2155.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2155/img_2155_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3376.nii.gz",
+ "pseudo_label": "images/img_3376.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3376/img_3376_seg.nii.gz"
+ },
+ {
+ "image": "images/img_887.nii.gz",
+ "pseudo_label": "images/img_887.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_887/img_887_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2608.nii.gz",
+ "pseudo_label": "images/img_2608.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2608/img_2608_seg.nii.gz"
+ },
+ {
+ "image": "images/img_842.nii.gz",
+ "pseudo_label": "images/img_842.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_842/img_842_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3068.nii.gz",
+ "pseudo_label": "images/img_3068.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3068/img_3068_seg.nii.gz"
+ },
+ {
+ "image": "images/img_525.nii.gz",
+ "pseudo_label": "images/img_525.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_525/img_525_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1147.nii.gz",
+ "pseudo_label": "images/img_1147.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1147/img_1147_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2464.nii.gz",
+ "pseudo_label": "images/img_2464.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2464/img_2464_seg.nii.gz"
+ },
+ {
+ "image": "images/img_445.nii.gz",
+ "pseudo_label": "images/img_445.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_445/img_445_seg.nii.gz"
+ },
+ {
+ "image": "images/img_983.nii.gz",
+ "pseudo_label": "images/img_983.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_983/img_983_seg.nii.gz"
+ },
+ {
+ "image": "images/img_784.nii.gz",
+ "pseudo_label": "images/img_784.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_784/img_784_seg.nii.gz"
+ },
+ {
+ "image": "images/img_259.nii.gz",
+ "pseudo_label": "images/img_259.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_259/img_259_seg.nii.gz"
+ },
+ {
+ "image": "images/img_252.nii.gz",
+ "pseudo_label": "images/img_252.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_252/img_252_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1067.nii.gz",
+ "pseudo_label": "images/img_1067.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1067/img_1067_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2441.nii.gz",
+ "pseudo_label": "images/img_2441.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2441/img_2441_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2452.nii.gz",
+ "pseudo_label": "images/img_2452.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2452/img_2452_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1867.nii.gz",
+ "pseudo_label": "images/img_1867.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1867/img_1867_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2153.nii.gz",
+ "pseudo_label": "images/img_2153.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2153/img_2153_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2403.nii.gz",
+ "pseudo_label": "images/img_2403.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2403/img_2403_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2227.nii.gz",
+ "pseudo_label": "images/img_2227.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2227/img_2227_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2860.nii.gz",
+ "pseudo_label": "images/img_2860.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2860/img_2860_seg.nii.gz"
+ },
+ {
+ "image": "images/img_965.nii.gz",
+ "pseudo_label": "images/img_965.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_965/img_965_seg.nii.gz"
+ },
+ {
+ "image": "images/img_112.nii.gz",
+ "pseudo_label": "images/img_112.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_112/img_112_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2746.nii.gz",
+ "pseudo_label": "images/img_2746.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2746/img_2746_seg.nii.gz"
+ },
+ {
+ "image": "images/img_207.nii.gz",
+ "pseudo_label": "images/img_207.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_207/img_207_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2106.nii.gz",
+ "pseudo_label": "images/img_2106.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2106/img_2106_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1982.nii.gz",
+ "pseudo_label": "images/img_1982.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1982/img_1982_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1806.nii.gz",
+ "pseudo_label": "images/img_1806.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1806/img_1806_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1014.nii.gz",
+ "pseudo_label": "images/img_1014.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1014/img_1014_seg.nii.gz"
+ },
+ {
+ "image": "images/img_247.nii.gz",
+ "pseudo_label": "images/img_247.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_247/img_247_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2549.nii.gz",
+ "pseudo_label": "images/img_2549.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2549/img_2549_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3382.nii.gz",
+ "pseudo_label": "images/img_3382.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3382/img_3382_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1734.nii.gz",
+ "pseudo_label": "images/img_1734.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1734/img_1734_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1637.nii.gz",
+ "pseudo_label": "images/img_1637.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1637/img_1637_seg.nii.gz"
+ },
+ {
+ "image": "images/img_469.nii.gz",
+ "pseudo_label": "images/img_469.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_469/img_469_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1738.nii.gz",
+ "pseudo_label": "images/img_1738.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1738/img_1738_seg.nii.gz"
+ },
+ {
+ "image": "images/img_90.nii.gz",
+ "pseudo_label": "images/img_90.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_90/img_90_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3324.nii.gz",
+ "pseudo_label": "images/img_3324.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3324/img_3324_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2928.nii.gz",
+ "pseudo_label": "images/img_2928.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2928/img_2928_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1936.nii.gz",
+ "pseudo_label": "images/img_1936.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1936/img_1936_seg.nii.gz"
+ },
+ {
+ "image": "images/img_851.nii.gz",
+ "pseudo_label": "images/img_851.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_851/img_851_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2387.nii.gz",
+ "pseudo_label": "images/img_2387.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2387/img_2387_seg.nii.gz"
+ },
+ {
+ "image": "images/img_760.nii.gz",
+ "pseudo_label": "images/img_760.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_760/img_760_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1680.nii.gz",
+ "pseudo_label": "images/img_1680.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1680/img_1680_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2603.nii.gz",
+ "pseudo_label": "images/img_2603.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2603/img_2603_seg.nii.gz"
+ },
+ {
+ "image": "images/img_8.nii.gz",
+ "pseudo_label": "images/img_8.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_8/img_8_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2340.nii.gz",
+ "pseudo_label": "images/img_2340.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2340/img_2340_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1112.nii.gz",
+ "pseudo_label": "images/img_1112.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1112/img_1112_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2397.nii.gz",
+ "pseudo_label": "images/img_2397.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2397/img_2397_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2185.nii.gz",
+ "pseudo_label": "images/img_2185.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2185/img_2185_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2996.nii.gz",
+ "pseudo_label": "images/img_2996.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2996/img_2996_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2963.nii.gz",
+ "pseudo_label": "images/img_2963.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2963/img_2963_seg.nii.gz"
+ },
+ {
+ "image": "images/img_57.nii.gz",
+ "pseudo_label": "images/img_57.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_57/img_57_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2175.nii.gz",
+ "pseudo_label": "images/img_2175.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2175/img_2175_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2688.nii.gz",
+ "pseudo_label": "images/img_2688.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2688/img_2688_seg.nii.gz"
+ },
+ {
+ "image": "images/img_837.nii.gz",
+ "pseudo_label": "images/img_837.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_837/img_837_seg.nii.gz"
+ },
+ {
+ "image": "images/img_260.nii.gz",
+ "pseudo_label": "images/img_260.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_260/img_260_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1510.nii.gz",
+ "pseudo_label": "images/img_1510.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1510/img_1510_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2958.nii.gz",
+ "pseudo_label": "images/img_2958.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2958/img_2958_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2444.nii.gz",
+ "pseudo_label": "images/img_2444.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2444/img_2444_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3288.nii.gz",
+ "pseudo_label": "images/img_3288.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3288/img_3288_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2138.nii.gz",
+ "pseudo_label": "images/img_2138.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2138/img_2138_seg.nii.gz"
+ },
+ {
+ "image": "images/img_184.nii.gz",
+ "pseudo_label": "images/img_184.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_184/img_184_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2105.nii.gz",
+ "pseudo_label": "images/img_2105.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2105/img_2105_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1574.nii.gz",
+ "pseudo_label": "images/img_1574.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1574/img_1574_seg.nii.gz"
+ },
+ {
+ "image": "images/img_878.nii.gz",
+ "pseudo_label": "images/img_878.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_878/img_878_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2520.nii.gz",
+ "pseudo_label": "images/img_2520.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2520/img_2520_seg.nii.gz"
+ },
+ {
+ "image": "images/img_745.nii.gz",
+ "pseudo_label": "images/img_745.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_745/img_745_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2072.nii.gz",
+ "pseudo_label": "images/img_2072.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2072/img_2072_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3120.nii.gz",
+ "pseudo_label": "images/img_3120.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3120/img_3120_seg.nii.gz"
+ },
+ {
+ "image": "images/img_370.nii.gz",
+ "pseudo_label": "images/img_370.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_370/img_370_seg.nii.gz"
+ },
+ {
+ "image": "images/img_824.nii.gz",
+ "pseudo_label": "images/img_824.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_824/img_824_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3333.nii.gz",
+ "pseudo_label": "images/img_3333.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3333/img_3333_seg.nii.gz"
+ },
+ {
+ "image": "images/img_236.nii.gz",
+ "pseudo_label": "images/img_236.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_236/img_236_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3417.nii.gz",
+ "pseudo_label": "images/img_3417.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3417/img_3417_seg.nii.gz"
+ },
+ {
+ "image": "images/img_192.nii.gz",
+ "pseudo_label": "images/img_192.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_192/img_192_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3434.nii.gz",
+ "pseudo_label": "images/img_3434.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3434/img_3434_seg.nii.gz"
+ },
+ {
+ "image": "images/img_891.nii.gz",
+ "pseudo_label": "images/img_891.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_891/img_891_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3413.nii.gz",
+ "pseudo_label": "images/img_3413.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3413/img_3413_seg.nii.gz"
+ },
+ {
+ "image": "images/img_212.nii.gz",
+ "pseudo_label": "images/img_212.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_212/img_212_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3200.nii.gz",
+ "pseudo_label": "images/img_3200.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3200/img_3200_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2573.nii.gz",
+ "pseudo_label": "images/img_2573.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2573/img_2573_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2913.nii.gz",
+ "pseudo_label": "images/img_2913.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2913/img_2913_seg.nii.gz"
+ },
+ {
+ "image": "images/img_528.nii.gz",
+ "pseudo_label": "images/img_528.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_528/img_528_seg.nii.gz"
+ },
+ {
+ "image": "images/img_706.nii.gz",
+ "pseudo_label": "images/img_706.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_706/img_706_seg.nii.gz"
+ },
+ {
+ "image": "images/img_307.nii.gz",
+ "pseudo_label": "images/img_307.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_307/img_307_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3038.nii.gz",
+ "pseudo_label": "images/img_3038.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3038/img_3038_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2264.nii.gz",
+ "pseudo_label": "images/img_2264.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2264/img_2264_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2815.nii.gz",
+ "pseudo_label": "images/img_2815.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2815/img_2815_seg.nii.gz"
+ },
+ {
+ "image": "images/img_850.nii.gz",
+ "pseudo_label": "images/img_850.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_850/img_850_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2253.nii.gz",
+ "pseudo_label": "images/img_2253.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2253/img_2253_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2955.nii.gz",
+ "pseudo_label": "images/img_2955.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2955/img_2955_seg.nii.gz"
+ },
+ {
+ "image": "images/img_785.nii.gz",
+ "pseudo_label": "images/img_785.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_785/img_785_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1560.nii.gz",
+ "pseudo_label": "images/img_1560.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1560/img_1560_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2923.nii.gz",
+ "pseudo_label": "images/img_2923.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2923/img_2923_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1569.nii.gz",
+ "pseudo_label": "images/img_1569.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1569/img_1569_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1956.nii.gz",
+ "pseudo_label": "images/img_1956.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1956/img_1956_seg.nii.gz"
+ },
+ {
+ "image": "images/img_107.nii.gz",
+ "pseudo_label": "images/img_107.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_107/img_107_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2674.nii.gz",
+ "pseudo_label": "images/img_2674.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2674/img_2674_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3026.nii.gz",
+ "pseudo_label": "images/img_3026.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3026/img_3026_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2866.nii.gz",
+ "pseudo_label": "images/img_2866.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2866/img_2866_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1103.nii.gz",
+ "pseudo_label": "images/img_1103.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1103/img_1103_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2127.nii.gz",
+ "pseudo_label": "images/img_2127.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2127/img_2127_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3206.nii.gz",
+ "pseudo_label": "images/img_3206.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3206/img_3206_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2357.nii.gz",
+ "pseudo_label": "images/img_2357.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2357/img_2357_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3066.nii.gz",
+ "pseudo_label": "images/img_3066.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3066/img_3066_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2896.nii.gz",
+ "pseudo_label": "images/img_2896.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2896/img_2896_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2682.nii.gz",
+ "pseudo_label": "images/img_2682.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2682/img_2682_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1612.nii.gz",
+ "pseudo_label": "images/img_1612.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1612/img_1612_seg.nii.gz"
+ },
+ {
+ "image": "images/img_828.nii.gz",
+ "pseudo_label": "images/img_828.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_828/img_828_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3003.nii.gz",
+ "pseudo_label": "images/img_3003.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3003/img_3003_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1747.nii.gz",
+ "pseudo_label": "images/img_1747.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1747/img_1747_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2535.nii.gz",
+ "pseudo_label": "images/img_2535.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2535/img_2535_seg.nii.gz"
+ },
+ {
+ "image": "images/img_488.nii.gz",
+ "pseudo_label": "images/img_488.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_488/img_488_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3191.nii.gz",
+ "pseudo_label": "images/img_3191.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3191/img_3191_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1812.nii.gz",
+ "pseudo_label": "images/img_1812.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1812/img_1812_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2260.nii.gz",
+ "pseudo_label": "images/img_2260.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2260/img_2260_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2626.nii.gz",
+ "pseudo_label": "images/img_2626.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2626/img_2626_seg.nii.gz"
+ },
+ {
+ "image": "images/img_776.nii.gz",
+ "pseudo_label": "images/img_776.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_776/img_776_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1960.nii.gz",
+ "pseudo_label": "images/img_1960.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1960/img_1960_seg.nii.gz"
+ },
+ {
+ "image": "images/img_920.nii.gz",
+ "pseudo_label": "images/img_920.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_920/img_920_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2892.nii.gz",
+ "pseudo_label": "images/img_2892.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2892/img_2892_seg.nii.gz"
+ },
+ {
+ "image": "images/img_978.nii.gz",
+ "pseudo_label": "images/img_978.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_978/img_978_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2183.nii.gz",
+ "pseudo_label": "images/img_2183.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2183/img_2183_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3084.nii.gz",
+ "pseudo_label": "images/img_3084.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3084/img_3084_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3135.nii.gz",
+ "pseudo_label": "images/img_3135.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3135/img_3135_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3295.nii.gz",
+ "pseudo_label": "images/img_3295.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3295/img_3295_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1940.nii.gz",
+ "pseudo_label": "images/img_1940.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1940/img_1940_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1628.nii.gz",
+ "pseudo_label": "images/img_1628.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1628/img_1628_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1040.nii.gz",
+ "pseudo_label": "images/img_1040.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1040/img_1040_seg.nii.gz"
+ },
+ {
+ "image": "images/img_956.nii.gz",
+ "pseudo_label": "images/img_956.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_956/img_956_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2339.nii.gz",
+ "pseudo_label": "images/img_2339.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2339/img_2339_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1727.nii.gz",
+ "pseudo_label": "images/img_1727.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1727/img_1727_seg.nii.gz"
+ },
+ {
+ "image": "images/img_756.nii.gz",
+ "pseudo_label": "images/img_756.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_756/img_756_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2599.nii.gz",
+ "pseudo_label": "images/img_2599.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2599/img_2599_seg.nii.gz"
+ },
+ {
+ "image": "images/img_323.nii.gz",
+ "pseudo_label": "images/img_323.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_323/img_323_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1123.nii.gz",
+ "pseudo_label": "images/img_1123.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1123/img_1123_seg.nii.gz"
+ },
+ {
+ "image": "images/img_155.nii.gz",
+ "pseudo_label": "images/img_155.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_155/img_155_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2244.nii.gz",
+ "pseudo_label": "images/img_2244.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2244/img_2244_seg.nii.gz"
+ },
+ {
+ "image": "images/img_937.nii.gz",
+ "pseudo_label": "images/img_937.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_937/img_937_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1022.nii.gz",
+ "pseudo_label": "images/img_1022.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1022/img_1022_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1546.nii.gz",
+ "pseudo_label": "images/img_1546.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1546/img_1546_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2530.nii.gz",
+ "pseudo_label": "images/img_2530.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2530/img_2530_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3141.nii.gz",
+ "pseudo_label": "images/img_3141.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3141/img_3141_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2411.nii.gz",
+ "pseudo_label": "images/img_2411.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2411/img_2411_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2166.nii.gz",
+ "pseudo_label": "images/img_2166.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2166/img_2166_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2461.nii.gz",
+ "pseudo_label": "images/img_2461.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2461/img_2461_seg.nii.gz"
+ },
+ {
+ "image": "images/img_899.nii.gz",
+ "pseudo_label": "images/img_899.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_899/img_899_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1694.nii.gz",
+ "pseudo_label": "images/img_1694.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1694/img_1694_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1030.nii.gz",
+ "pseudo_label": "images/img_1030.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1030/img_1030_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3262.nii.gz",
+ "pseudo_label": "images/img_3262.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3262/img_3262_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1097.nii.gz",
+ "pseudo_label": "images/img_1097.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1097/img_1097_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3183.nii.gz",
+ "pseudo_label": "images/img_3183.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3183/img_3183_seg.nii.gz"
+ },
+ {
+ "image": "images/img_400.nii.gz",
+ "pseudo_label": "images/img_400.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_400/img_400_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3061.nii.gz",
+ "pseudo_label": "images/img_3061.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3061/img_3061_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3159.nii.gz",
+ "pseudo_label": "images/img_3159.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3159/img_3159_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3010.nii.gz",
+ "pseudo_label": "images/img_3010.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3010/img_3010_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2795.nii.gz",
+ "pseudo_label": "images/img_2795.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2795/img_2795_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2374.nii.gz",
+ "pseudo_label": "images/img_2374.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2374/img_2374_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2627.nii.gz",
+ "pseudo_label": "images/img_2627.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2627/img_2627_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1155.nii.gz",
+ "pseudo_label": "images/img_1155.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1155/img_1155_seg.nii.gz"
+ },
+ {
+ "image": "images/img_907.nii.gz",
+ "pseudo_label": "images/img_907.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_907/img_907_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2011.nii.gz",
+ "pseudo_label": "images/img_2011.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2011/img_2011_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2200.nii.gz",
+ "pseudo_label": "images/img_2200.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2200/img_2200_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3313.nii.gz",
+ "pseudo_label": "images/img_3313.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3313/img_3313_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1061.nii.gz",
+ "pseudo_label": "images/img_1061.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1061/img_1061_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1988.nii.gz",
+ "pseudo_label": "images/img_1988.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1988/img_1988_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1911.nii.gz",
+ "pseudo_label": "images/img_1911.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1911/img_1911_seg.nii.gz"
+ },
+ {
+ "image": "images/img_398.nii.gz",
+ "pseudo_label": "images/img_398.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_398/img_398_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2741.nii.gz",
+ "pseudo_label": "images/img_2741.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2741/img_2741_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1620.nii.gz",
+ "pseudo_label": "images/img_1620.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1620/img_1620_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1852.nii.gz",
+ "pseudo_label": "images/img_1852.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1852/img_1852_seg.nii.gz"
+ },
+ {
+ "image": "images/img_374.nii.gz",
+ "pseudo_label": "images/img_374.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_374/img_374_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3385.nii.gz",
+ "pseudo_label": "images/img_3385.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3385/img_3385_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1598.nii.gz",
+ "pseudo_label": "images/img_1598.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1598/img_1598_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1856.nii.gz",
+ "pseudo_label": "images/img_1856.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1856/img_1856_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1896.nii.gz",
+ "pseudo_label": "images/img_1896.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1896/img_1896_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2248.nii.gz",
+ "pseudo_label": "images/img_2248.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2248/img_2248_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1719.nii.gz",
+ "pseudo_label": "images/img_1719.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1719/img_1719_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3405.nii.gz",
+ "pseudo_label": "images/img_3405.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3405/img_3405_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2149.nii.gz",
+ "pseudo_label": "images/img_2149.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2149/img_2149_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2112.nii.gz",
+ "pseudo_label": "images/img_2112.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2112/img_2112_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1742.nii.gz",
+ "pseudo_label": "images/img_1742.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1742/img_1742_seg.nii.gz"
+ },
+ {
+ "image": "images/img_602.nii.gz",
+ "pseudo_label": "images/img_602.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_602/img_602_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2143.nii.gz",
+ "pseudo_label": "images/img_2143.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2143/img_2143_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1792.nii.gz",
+ "pseudo_label": "images/img_1792.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1792/img_1792_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3328.nii.gz",
+ "pseudo_label": "images/img_3328.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3328/img_3328_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3177.nii.gz",
+ "pseudo_label": "images/img_3177.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3177/img_3177_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2595.nii.gz",
+ "pseudo_label": "images/img_2595.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2595/img_2595_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2232.nii.gz",
+ "pseudo_label": "images/img_2232.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2232/img_2232_seg.nii.gz"
+ },
+ {
+ "image": "images/img_994.nii.gz",
+ "pseudo_label": "images/img_994.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_994/img_994_seg.nii.gz"
+ },
+ {
+ "image": "images/img_251.nii.gz",
+ "pseudo_label": "images/img_251.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_251/img_251_seg.nii.gz"
+ },
+ {
+ "image": "images/img_723.nii.gz",
+ "pseudo_label": "images/img_723.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_723/img_723_seg.nii.gz"
+ },
+ {
+ "image": "images/img_405.nii.gz",
+ "pseudo_label": "images/img_405.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_405/img_405_seg.nii.gz"
+ },
+ {
+ "image": "images/img_81.nii.gz",
+ "pseudo_label": "images/img_81.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_81/img_81_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1020.nii.gz",
+ "pseudo_label": "images/img_1020.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1020/img_1020_seg.nii.gz"
+ },
+ {
+ "image": "images/img_847.nii.gz",
+ "pseudo_label": "images/img_847.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_847/img_847_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2877.nii.gz",
+ "pseudo_label": "images/img_2877.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2877/img_2877_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2445.nii.gz",
+ "pseudo_label": "images/img_2445.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2445/img_2445_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1950.nii.gz",
+ "pseudo_label": "images/img_1950.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1950/img_1950_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2097.nii.gz",
+ "pseudo_label": "images/img_2097.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2097/img_2097_seg.nii.gz"
+ },
+ {
+ "image": "images/img_923.nii.gz",
+ "pseudo_label": "images/img_923.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_923/img_923_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1584.nii.gz",
+ "pseudo_label": "images/img_1584.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1584/img_1584_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2394.nii.gz",
+ "pseudo_label": "images/img_2394.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2394/img_2394_seg.nii.gz"
+ },
+ {
+ "image": "images/img_461.nii.gz",
+ "pseudo_label": "images/img_461.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_461/img_461_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2412.nii.gz",
+ "pseudo_label": "images/img_2412.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2412/img_2412_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2767.nii.gz",
+ "pseudo_label": "images/img_2767.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2767/img_2767_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2765.nii.gz",
+ "pseudo_label": "images/img_2765.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2765/img_2765_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3316.nii.gz",
+ "pseudo_label": "images/img_3316.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3316/img_3316_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2423.nii.gz",
+ "pseudo_label": "images/img_2423.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2423/img_2423_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1808.nii.gz",
+ "pseudo_label": "images/img_1808.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1808/img_1808_seg.nii.gz"
+ },
+ {
+ "image": "images/img_910.nii.gz",
+ "pseudo_label": "images/img_910.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_910/img_910_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2845.nii.gz",
+ "pseudo_label": "images/img_2845.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1142.nii.gz",
+ "pseudo_label": "images/img_1142.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1142/img_1142_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1651.nii.gz",
+ "pseudo_label": "images/img_1651.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1651/img_1651_seg.nii.gz"
+ },
+ {
+ "image": "images/img_906.nii.gz",
+ "pseudo_label": "images/img_906.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_906/img_906_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2101.nii.gz",
+ "pseudo_label": "images/img_2101.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2101/img_2101_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2527.nii.gz",
+ "pseudo_label": "images/img_2527.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_762.nii.gz",
+ "pseudo_label": "images/img_762.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_762/img_762_seg.nii.gz"
+ },
+ {
+ "image": "images/img_3221.nii.gz",
+ "pseudo_label": "images/img_3221.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3221/img_3221_seg.nii.gz"
+ },
+ {
+ "image": "images/img_59.nii.gz",
+ "pseudo_label": "images/img_59.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_67.nii.gz",
+ "pseudo_label": "images/img_67.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_67/img_67_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2931.nii.gz",
+ "pseudo_label": "images/img_2931.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2931/img_2931_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1880.nii.gz",
+ "pseudo_label": "images/img_1880.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1880/img_1880_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2204.nii.gz",
+ "pseudo_label": "images/img_2204.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2204/img_2204_seg.nii.gz"
+ },
+ {
+ "image": "images/img_557.nii.gz",
+ "pseudo_label": "images/img_557.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2987.nii.gz",
+ "pseudo_label": "images/img_2987.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2218.nii.gz",
+ "pseudo_label": "images/img_2218.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2956.nii.gz",
+ "pseudo_label": "images/img_2956.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_412.nii.gz",
+ "pseudo_label": "images/img_412.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_412/img_412_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2846.nii.gz",
+ "pseudo_label": "images/img_2846.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2846/img_2846_seg.nii.gz"
+ },
+ {
+ "image": "images/img_540.nii.gz",
+ "pseudo_label": "images/img_540.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_540/img_540_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1526.nii.gz",
+ "pseudo_label": "images/img_1526.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2022.nii.gz",
+ "pseudo_label": "images/img_2022.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_879.nii.gz",
+ "pseudo_label": "images/img_879.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1120.nii.gz",
+ "pseudo_label": "images/img_1120.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2539.nii.gz",
+ "pseudo_label": "images/img_2539.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_696.nii.gz",
+ "pseudo_label": "images/img_696.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_696/img_696_seg.nii.gz"
+ },
+ {
+ "image": "images/img_329.nii.gz",
+ "pseudo_label": "images/img_329.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_329/img_329_seg.nii.gz"
+ },
+ {
+ "image": "images/img_1148.nii.gz",
+ "pseudo_label": "images/img_1148.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1148/img_1148_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2571.nii.gz",
+ "pseudo_label": "images/img_2571.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_767.nii.gz",
+ "pseudo_label": "images/img_767.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2443.nii.gz",
+ "pseudo_label": "images/img_2443.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2465.nii.gz",
+ "pseudo_label": "images/img_2465.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3196.nii.gz",
+ "pseudo_label": "images/img_3196.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_694.nii.gz",
+ "pseudo_label": "images/img_694.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_694/img_694_seg.nii.gz"
+ },
+ {
+ "image": "images/img_2199.nii.gz",
+ "pseudo_label": "images/img_2199.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2199/img_2199_seg.nii.gz"
+ },
+ {
+ "image": "images/img_33.nii.gz",
+ "pseudo_label": "images/img_33.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen",
+ "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_33/img_33_seg.nii.gz"
+ },
+ {
+ "image": "images/img_228.nii.gz",
+ "pseudo_label": "images/img_228.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2932.nii.gz",
+ "pseudo_label": "images/img_2932.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_627.nii.gz",
+ "pseudo_label": "images/img_627.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_859.nii.gz",
+ "pseudo_label": "images/img_859.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2065.nii.gz",
+ "pseudo_label": "images/img_2065.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_615.nii.gz",
+ "pseudo_label": "images/img_615.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_162.nii.gz",
+ "pseudo_label": "images/img_162.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_953.nii.gz",
+ "pseudo_label": "images/img_953.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2836.nii.gz",
+ "pseudo_label": "images/img_2836.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1889.nii.gz",
+ "pseudo_label": "images/img_1889.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_974.nii.gz",
+ "pseudo_label": "images/img_974.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_267.nii.gz",
+ "pseudo_label": "images/img_267.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3281.nii.gz",
+ "pseudo_label": "images/img_3281.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1176.nii.gz",
+ "pseudo_label": "images/img_1176.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_7.nii.gz",
+ "pseudo_label": "images/img_7.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1871.nii.gz",
+ "pseudo_label": "images/img_1871.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1987.nii.gz",
+ "pseudo_label": "images/img_1987.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1726.nii.gz",
+ "pseudo_label": "images/img_1726.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3250.nii.gz",
+ "pseudo_label": "images/img_3250.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_437.nii.gz",
+ "pseudo_label": "images/img_437.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1663.nii.gz",
+ "pseudo_label": "images/img_1663.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2082.nii.gz",
+ "pseudo_label": "images/img_2082.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_788.nii.gz",
+ "pseudo_label": "images/img_788.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_438.nii.gz",
+ "pseudo_label": "images/img_438.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1921.nii.gz",
+ "pseudo_label": "images/img_1921.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2664.nii.gz",
+ "pseudo_label": "images/img_2664.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_945.nii.gz",
+ "pseudo_label": "images/img_945.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_520.nii.gz",
+ "pseudo_label": "images/img_520.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2192.nii.gz",
+ "pseudo_label": "images/img_2192.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_272.nii.gz",
+ "pseudo_label": "images/img_272.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_321.nii.gz",
+ "pseudo_label": "images/img_321.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1029.nii.gz",
+ "pseudo_label": "images/img_1029.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_496.nii.gz",
+ "pseudo_label": "images/img_496.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_585.nii.gz",
+ "pseudo_label": "images/img_585.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_511.nii.gz",
+ "pseudo_label": "images/img_511.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2355.nii.gz",
+ "pseudo_label": "images/img_2355.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2006.nii.gz",
+ "pseudo_label": "images/img_2006.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2823.nii.gz",
+ "pseudo_label": "images/img_2823.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2832.nii.gz",
+ "pseudo_label": "images/img_2832.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3323.nii.gz",
+ "pseudo_label": "images/img_3323.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3082.nii.gz",
+ "pseudo_label": "images/img_3082.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_288.nii.gz",
+ "pseudo_label": "images/img_288.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2039.nii.gz",
+ "pseudo_label": "images/img_2039.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1698.nii.gz",
+ "pseudo_label": "images/img_1698.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_514.nii.gz",
+ "pseudo_label": "images/img_514.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_225.nii.gz",
+ "pseudo_label": "images/img_225.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_894.nii.gz",
+ "pseudo_label": "images/img_894.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2337.nii.gz",
+ "pseudo_label": "images/img_2337.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2206.nii.gz",
+ "pseudo_label": "images/img_2206.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1920.nii.gz",
+ "pseudo_label": "images/img_1920.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2936.nii.gz",
+ "pseudo_label": "images/img_2936.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2811.nii.gz",
+ "pseudo_label": "images/img_2811.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3163.nii.gz",
+ "pseudo_label": "images/img_3163.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2291.nii.gz",
+ "pseudo_label": "images/img_2291.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_544.nii.gz",
+ "pseudo_label": "images/img_544.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2714.nii.gz",
+ "pseudo_label": "images/img_2714.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2490.nii.gz",
+ "pseudo_label": "images/img_2490.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_862.nii.gz",
+ "pseudo_label": "images/img_862.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_100.nii.gz",
+ "pseudo_label": "images/img_100.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2648.nii.gz",
+ "pseudo_label": "images/img_2648.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2158.nii.gz",
+ "pseudo_label": "images/img_2158.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2365.nii.gz",
+ "pseudo_label": "images/img_2365.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2254.nii.gz",
+ "pseudo_label": "images/img_2254.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1794.nii.gz",
+ "pseudo_label": "images/img_1794.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3198.nii.gz",
+ "pseudo_label": "images/img_3198.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_768.nii.gz",
+ "pseudo_label": "images/img_768.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1783.nii.gz",
+ "pseudo_label": "images/img_1783.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1192.nii.gz",
+ "pseudo_label": "images/img_1192.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2376.nii.gz",
+ "pseudo_label": "images/img_2376.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2506.nii.gz",
+ "pseudo_label": "images/img_2506.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1642.nii.gz",
+ "pseudo_label": "images/img_1642.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2856.nii.gz",
+ "pseudo_label": "images/img_2856.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2669.nii.gz",
+ "pseudo_label": "images/img_2669.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_754.nii.gz",
+ "pseudo_label": "images/img_754.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2225.nii.gz",
+ "pseudo_label": "images/img_2225.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2156.nii.gz",
+ "pseudo_label": "images/img_2156.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1841.nii.gz",
+ "pseudo_label": "images/img_1841.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3240.nii.gz",
+ "pseudo_label": "images/img_3240.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2275.nii.gz",
+ "pseudo_label": "images/img_2275.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2526.nii.gz",
+ "pseudo_label": "images/img_2526.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_143.nii.gz",
+ "pseudo_label": "images/img_143.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2841.nii.gz",
+ "pseudo_label": "images/img_2841.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2638.nii.gz",
+ "pseudo_label": "images/img_2638.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1822.nii.gz",
+ "pseudo_label": "images/img_1822.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2134.nii.gz",
+ "pseudo_label": "images/img_2134.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3354.nii.gz",
+ "pseudo_label": "images/img_3354.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2874.nii.gz",
+ "pseudo_label": "images/img_2874.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1851.nii.gz",
+ "pseudo_label": "images/img_1851.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2563.nii.gz",
+ "pseudo_label": "images/img_2563.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2891.nii.gz",
+ "pseudo_label": "images/img_2891.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1798.nii.gz",
+ "pseudo_label": "images/img_1798.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_752.nii.gz",
+ "pseudo_label": "images/img_752.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1089.nii.gz",
+ "pseudo_label": "images/img_1089.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2074.nii.gz",
+ "pseudo_label": "images/img_2074.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2763.nii.gz",
+ "pseudo_label": "images/img_2763.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1703.nii.gz",
+ "pseudo_label": "images/img_1703.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1143.nii.gz",
+ "pseudo_label": "images/img_1143.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2705.nii.gz",
+ "pseudo_label": "images/img_2705.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_239.nii.gz",
+ "pseudo_label": "images/img_239.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1173.nii.gz",
+ "pseudo_label": "images/img_1173.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_898.nii.gz",
+ "pseudo_label": "images/img_898.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1847.nii.gz",
+ "pseudo_label": "images/img_1847.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1638.nii.gz",
+ "pseudo_label": "images/img_1638.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2016.nii.gz",
+ "pseudo_label": "images/img_2016.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_584.nii.gz",
+ "pseudo_label": "images/img_584.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2643.nii.gz",
+ "pseudo_label": "images/img_2643.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2159.nii.gz",
+ "pseudo_label": "images/img_2159.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3058.nii.gz",
+ "pseudo_label": "images/img_3058.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3222.nii.gz",
+ "pseudo_label": "images/img_3222.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_27.nii.gz",
+ "pseudo_label": "images/img_27.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3431.nii.gz",
+ "pseudo_label": "images/img_3431.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1804.nii.gz",
+ "pseudo_label": "images/img_1804.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1970.nii.gz",
+ "pseudo_label": "images/img_1970.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1678.nii.gz",
+ "pseudo_label": "images/img_1678.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2447.nii.gz",
+ "pseudo_label": "images/img_2447.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_610.nii.gz",
+ "pseudo_label": "images/img_610.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_806.nii.gz",
+ "pseudo_label": "images/img_806.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1998.nii.gz",
+ "pseudo_label": "images/img_1998.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_104.nii.gz",
+ "pseudo_label": "images/img_104.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2849.nii.gz",
+ "pseudo_label": "images/img_2849.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2451.nii.gz",
+ "pseudo_label": "images/img_2451.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_227.nii.gz",
+ "pseudo_label": "images/img_227.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2115.nii.gz",
+ "pseudo_label": "images/img_2115.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1587.nii.gz",
+ "pseudo_label": "images/img_1587.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_425.nii.gz",
+ "pseudo_label": "images/img_425.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1579.nii.gz",
+ "pseudo_label": "images/img_1579.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2396.nii.gz",
+ "pseudo_label": "images/img_2396.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2169.nii.gz",
+ "pseudo_label": "images/img_2169.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2438.nii.gz",
+ "pseudo_label": "images/img_2438.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_74.nii.gz",
+ "pseudo_label": "images/img_74.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_973.nii.gz",
+ "pseudo_label": "images/img_973.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_569.nii.gz",
+ "pseudo_label": "images/img_569.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_875.nii.gz",
+ "pseudo_label": "images/img_875.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2577.nii.gz",
+ "pseudo_label": "images/img_2577.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_326.nii.gz",
+ "pseudo_label": "images/img_326.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2061.nii.gz",
+ "pseudo_label": "images/img_2061.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_153.nii.gz",
+ "pseudo_label": "images/img_153.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1759.nii.gz",
+ "pseudo_label": "images/img_1759.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_210.nii.gz",
+ "pseudo_label": "images/img_210.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_817.nii.gz",
+ "pseudo_label": "images/img_817.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_619.nii.gz",
+ "pseudo_label": "images/img_619.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3416.nii.gz",
+ "pseudo_label": "images/img_3416.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_727.nii.gz",
+ "pseudo_label": "images/img_727.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1682.nii.gz",
+ "pseudo_label": "images/img_1682.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_144.nii.gz",
+ "pseudo_label": "images/img_144.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2287.nii.gz",
+ "pseudo_label": "images/img_2287.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3398.nii.gz",
+ "pseudo_label": "images/img_3398.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2294.nii.gz",
+ "pseudo_label": "images/img_2294.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3428.nii.gz",
+ "pseudo_label": "images/img_3428.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_821.nii.gz",
+ "pseudo_label": "images/img_821.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_310.nii.gz",
+ "pseudo_label": "images/img_310.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_434.nii.gz",
+ "pseudo_label": "images/img_434.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_11.nii.gz",
+ "pseudo_label": "images/img_11.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3074.nii.gz",
+ "pseudo_label": "images/img_3074.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2015.nii.gz",
+ "pseudo_label": "images/img_2015.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3041.nii.gz",
+ "pseudo_label": "images/img_3041.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2951.nii.gz",
+ "pseudo_label": "images/img_2951.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1893.nii.gz",
+ "pseudo_label": "images/img_1893.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3321.nii.gz",
+ "pseudo_label": "images/img_3321.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2840.nii.gz",
+ "pseudo_label": "images/img_2840.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3327.nii.gz",
+ "pseudo_label": "images/img_3327.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3192.nii.gz",
+ "pseudo_label": "images/img_3192.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_532.nii.gz",
+ "pseudo_label": "images/img_532.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2119.nii.gz",
+ "pseudo_label": "images/img_2119.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3255.nii.gz",
+ "pseudo_label": "images/img_3255.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_680.nii.gz",
+ "pseudo_label": "images/img_680.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_931.nii.gz",
+ "pseudo_label": "images/img_931.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_670.nii.gz",
+ "pseudo_label": "images/img_670.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3306.nii.gz",
+ "pseudo_label": "images/img_3306.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3238.nii.gz",
+ "pseudo_label": "images/img_3238.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_675.nii.gz",
+ "pseudo_label": "images/img_675.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1771.nii.gz",
+ "pseudo_label": "images/img_1771.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3101.nii.gz",
+ "pseudo_label": "images/img_3101.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_778.nii.gz",
+ "pseudo_label": "images/img_778.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3051.nii.gz",
+ "pseudo_label": "images/img_3051.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3436.nii.gz",
+ "pseudo_label": "images/img_3436.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1596.nii.gz",
+ "pseudo_label": "images/img_1596.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2804.nii.gz",
+ "pseudo_label": "images/img_2804.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2647.nii.gz",
+ "pseudo_label": "images/img_2647.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3358.nii.gz",
+ "pseudo_label": "images/img_3358.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_287.nii.gz",
+ "pseudo_label": "images/img_287.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2935.nii.gz",
+ "pseudo_label": "images/img_2935.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_639.nii.gz",
+ "pseudo_label": "images/img_639.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_936.nii.gz",
+ "pseudo_label": "images/img_936.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1986.nii.gz",
+ "pseudo_label": "images/img_1986.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2619.nii.gz",
+ "pseudo_label": "images/img_2619.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_428.nii.gz",
+ "pseudo_label": "images/img_428.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2121.nii.gz",
+ "pseudo_label": "images/img_2121.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1649.nii.gz",
+ "pseudo_label": "images/img_1649.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1600.nii.gz",
+ "pseudo_label": "images/img_1600.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2288.nii.gz",
+ "pseudo_label": "images/img_2288.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2220.nii.gz",
+ "pseudo_label": "images/img_2220.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_392.nii.gz",
+ "pseudo_label": "images/img_392.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3102.nii.gz",
+ "pseudo_label": "images/img_3102.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3336.nii.gz",
+ "pseudo_label": "images/img_3336.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3119.nii.gz",
+ "pseudo_label": "images/img_3119.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2812.nii.gz",
+ "pseudo_label": "images/img_2812.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1974.nii.gz",
+ "pseudo_label": "images/img_1974.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_391.nii.gz",
+ "pseudo_label": "images/img_391.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_232.nii.gz",
+ "pseudo_label": "images/img_232.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2781.nii.gz",
+ "pseudo_label": "images/img_2781.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_342.nii.gz",
+ "pseudo_label": "images/img_342.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2054.nii.gz",
+ "pseudo_label": "images/img_2054.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2165.nii.gz",
+ "pseudo_label": "images/img_2165.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1989.nii.gz",
+ "pseudo_label": "images/img_1989.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2938.nii.gz",
+ "pseudo_label": "images/img_2938.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1111.nii.gz",
+ "pseudo_label": "images/img_1111.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2607.nii.gz",
+ "pseudo_label": "images/img_2607.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_64.nii.gz",
+ "pseudo_label": "images/img_64.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1941.nii.gz",
+ "pseudo_label": "images/img_1941.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1009.nii.gz",
+ "pseudo_label": "images/img_1009.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1710.nii.gz",
+ "pseudo_label": "images/img_1710.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3298.nii.gz",
+ "pseudo_label": "images/img_3298.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1959.nii.gz",
+ "pseudo_label": "images/img_1959.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_80.nii.gz",
+ "pseudo_label": "images/img_80.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2052.nii.gz",
+ "pseudo_label": "images/img_2052.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2385.nii.gz",
+ "pseudo_label": "images/img_2385.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_869.nii.gz",
+ "pseudo_label": "images/img_869.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3139.nii.gz",
+ "pseudo_label": "images/img_3139.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2634.nii.gz",
+ "pseudo_label": "images/img_2634.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_712.nii.gz",
+ "pseudo_label": "images/img_712.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_533.nii.gz",
+ "pseudo_label": "images/img_533.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1888.nii.gz",
+ "pseudo_label": "images/img_1888.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2785.nii.gz",
+ "pseudo_label": "images/img_2785.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3377.nii.gz",
+ "pseudo_label": "images/img_3377.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_350.nii.gz",
+ "pseudo_label": "images/img_350.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_883.nii.gz",
+ "pseudo_label": "images/img_883.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_735.nii.gz",
+ "pseudo_label": "images/img_735.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1113.nii.gz",
+ "pseudo_label": "images/img_1113.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_410.nii.gz",
+ "pseudo_label": "images/img_410.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_327.nii.gz",
+ "pseudo_label": "images/img_327.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2437.nii.gz",
+ "pseudo_label": "images/img_2437.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1875.nii.gz",
+ "pseudo_label": "images/img_1875.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3309.nii.gz",
+ "pseudo_label": "images/img_3309.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_611.nii.gz",
+ "pseudo_label": "images/img_611.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1779.nii.gz",
+ "pseudo_label": "images/img_1779.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3218.nii.gz",
+ "pseudo_label": "images/img_3218.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1077.nii.gz",
+ "pseudo_label": "images/img_1077.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_416.nii.gz",
+ "pseudo_label": "images/img_416.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3185.nii.gz",
+ "pseudo_label": "images/img_3185.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1559.nii.gz",
+ "pseudo_label": "images/img_1559.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_643.nii.gz",
+ "pseudo_label": "images/img_643.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2791.nii.gz",
+ "pseudo_label": "images/img_2791.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1018.nii.gz",
+ "pseudo_label": "images/img_1018.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2657.nii.gz",
+ "pseudo_label": "images/img_2657.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2639.nii.gz",
+ "pseudo_label": "images/img_2639.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_171.nii.gz",
+ "pseudo_label": "images/img_171.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2857.nii.gz",
+ "pseudo_label": "images/img_2857.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2883.nii.gz",
+ "pseudo_label": "images/img_2883.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2420.nii.gz",
+ "pseudo_label": "images/img_2420.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3374.nii.gz",
+ "pseudo_label": "images/img_3374.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1702.nii.gz",
+ "pseudo_label": "images/img_1702.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_651.nii.gz",
+ "pseudo_label": "images/img_651.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3052.nii.gz",
+ "pseudo_label": "images/img_3052.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_85.nii.gz",
+ "pseudo_label": "images/img_85.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3292.nii.gz",
+ "pseudo_label": "images/img_3292.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2348.nii.gz",
+ "pseudo_label": "images/img_2348.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3311.nii.gz",
+ "pseudo_label": "images/img_3311.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2782.nii.gz",
+ "pseudo_label": "images/img_2782.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1743.nii.gz",
+ "pseudo_label": "images/img_1743.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_419.nii.gz",
+ "pseudo_label": "images/img_419.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3420.nii.gz",
+ "pseudo_label": "images/img_3420.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_219.nii.gz",
+ "pseudo_label": "images/img_219.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3348.nii.gz",
+ "pseudo_label": "images/img_3348.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2448.nii.gz",
+ "pseudo_label": "images/img_2448.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_78.nii.gz",
+ "pseudo_label": "images/img_78.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_919.nii.gz",
+ "pseudo_label": "images/img_919.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1661.nii.gz",
+ "pseudo_label": "images/img_1661.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_832.nii.gz",
+ "pseudo_label": "images/img_832.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1048.nii.gz",
+ "pseudo_label": "images/img_1048.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2723.nii.gz",
+ "pseudo_label": "images/img_2723.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1580.nii.gz",
+ "pseudo_label": "images/img_1580.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1575.nii.gz",
+ "pseudo_label": "images/img_1575.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2382.nii.gz",
+ "pseudo_label": "images/img_2382.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1723.nii.gz",
+ "pseudo_label": "images/img_1723.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3075.nii.gz",
+ "pseudo_label": "images/img_3075.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2912.nii.gz",
+ "pseudo_label": "images/img_2912.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_360.nii.gz",
+ "pseudo_label": "images/img_360.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_157.nii.gz",
+ "pseudo_label": "images/img_157.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2157.nii.gz",
+ "pseudo_label": "images/img_2157.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2148.nii.gz",
+ "pseudo_label": "images/img_2148.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_766.nii.gz",
+ "pseudo_label": "images/img_766.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3318.nii.gz",
+ "pseudo_label": "images/img_3318.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3386.nii.gz",
+ "pseudo_label": "images/img_3386.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_537.nii.gz",
+ "pseudo_label": "images/img_537.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_603.nii.gz",
+ "pseudo_label": "images/img_603.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_478.nii.gz",
+ "pseudo_label": "images/img_478.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1568.nii.gz",
+ "pseudo_label": "images/img_1568.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3030.nii.gz",
+ "pseudo_label": "images/img_3030.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2545.nii.gz",
+ "pseudo_label": "images/img_2545.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2301.nii.gz",
+ "pseudo_label": "images/img_2301.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_264.nii.gz",
+ "pseudo_label": "images/img_264.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_163.nii.gz",
+ "pseudo_label": "images/img_163.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_634.nii.gz",
+ "pseudo_label": "images/img_634.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3344.nii.gz",
+ "pseudo_label": "images/img_3344.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3165.nii.gz",
+ "pseudo_label": "images/img_3165.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_708.nii.gz",
+ "pseudo_label": "images/img_708.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2495.nii.gz",
+ "pseudo_label": "images/img_2495.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1053.nii.gz",
+ "pseudo_label": "images/img_1053.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2581.nii.gz",
+ "pseudo_label": "images/img_2581.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3166.nii.gz",
+ "pseudo_label": "images/img_3166.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1010.nii.gz",
+ "pseudo_label": "images/img_1010.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2263.nii.gz",
+ "pseudo_label": "images/img_2263.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1688.nii.gz",
+ "pseudo_label": "images/img_1688.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2267.nii.gz",
+ "pseudo_label": "images/img_2267.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_489.nii.gz",
+ "pseudo_label": "images/img_489.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_915.nii.gz",
+ "pseudo_label": "images/img_915.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2279.nii.gz",
+ "pseudo_label": "images/img_2279.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3121.nii.gz",
+ "pseudo_label": "images/img_3121.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_577.nii.gz",
+ "pseudo_label": "images/img_577.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2901.nii.gz",
+ "pseudo_label": "images/img_2901.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1926.nii.gz",
+ "pseudo_label": "images/img_1926.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1981.nii.gz",
+ "pseudo_label": "images/img_1981.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1944.nii.gz",
+ "pseudo_label": "images/img_1944.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_291.nii.gz",
+ "pseudo_label": "images/img_291.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2537.nii.gz",
+ "pseudo_label": "images/img_2537.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_314.nii.gz",
+ "pseudo_label": "images/img_314.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_698.nii.gz",
+ "pseudo_label": "images/img_698.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2329.nii.gz",
+ "pseudo_label": "images/img_2329.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_126.nii.gz",
+ "pseudo_label": "images/img_126.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2043.nii.gz",
+ "pseudo_label": "images/img_2043.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2837.nii.gz",
+ "pseudo_label": "images/img_2837.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1109.nii.gz",
+ "pseudo_label": "images/img_1109.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2212.nii.gz",
+ "pseudo_label": "images/img_2212.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3201.nii.gz",
+ "pseudo_label": "images/img_3201.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2333.nii.gz",
+ "pseudo_label": "images/img_2333.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2706.nii.gz",
+ "pseudo_label": "images/img_2706.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_396.nii.gz",
+ "pseudo_label": "images/img_396.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_473.nii.gz",
+ "pseudo_label": "images/img_473.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_573.nii.gz",
+ "pseudo_label": "images/img_573.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1154.nii.gz",
+ "pseudo_label": "images/img_1154.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3072.nii.gz",
+ "pseudo_label": "images/img_3072.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_216.nii.gz",
+ "pseudo_label": "images/img_216.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_315.nii.gz",
+ "pseudo_label": "images/img_315.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2721.nii.gz",
+ "pseudo_label": "images/img_2721.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2697.nii.gz",
+ "pseudo_label": "images/img_2697.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_53.nii.gz",
+ "pseudo_label": "images/img_53.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1775.nii.gz",
+ "pseudo_label": "images/img_1775.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1932.nii.gz",
+ "pseudo_label": "images/img_1932.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1903.nii.gz",
+ "pseudo_label": "images/img_1903.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1641.nii.gz",
+ "pseudo_label": "images/img_1641.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_477.nii.gz",
+ "pseudo_label": "images/img_477.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2829.nii.gz",
+ "pseudo_label": "images/img_2829.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2297.nii.gz",
+ "pseudo_label": "images/img_2297.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2816.nii.gz",
+ "pseudo_label": "images/img_2816.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3037.nii.gz",
+ "pseudo_label": "images/img_3037.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2583.nii.gz",
+ "pseudo_label": "images/img_2583.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2315.nii.gz",
+ "pseudo_label": "images/img_2315.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1060.nii.gz",
+ "pseudo_label": "images/img_1060.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_168.nii.gz",
+ "pseudo_label": "images/img_168.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1969.nii.gz",
+ "pseudo_label": "images/img_1969.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1610.nii.gz",
+ "pseudo_label": "images/img_1610.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1013.nii.gz",
+ "pseudo_label": "images/img_1013.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1868.nii.gz",
+ "pseudo_label": "images/img_1868.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2920.nii.gz",
+ "pseudo_label": "images/img_2920.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1206.nii.gz",
+ "pseudo_label": "images/img_1206.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2249.nii.gz",
+ "pseudo_label": "images/img_2249.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1876.nii.gz",
+ "pseudo_label": "images/img_1876.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2555.nii.gz",
+ "pseudo_label": "images/img_2555.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_63.nii.gz",
+ "pseudo_label": "images/img_63.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1654.nii.gz",
+ "pseudo_label": "images/img_1654.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_590.nii.gz",
+ "pseudo_label": "images/img_590.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2131.nii.gz",
+ "pseudo_label": "images/img_2131.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2349.nii.gz",
+ "pseudo_label": "images/img_2349.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2585.nii.gz",
+ "pseudo_label": "images/img_2585.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2496.nii.gz",
+ "pseudo_label": "images/img_2496.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1068.nii.gz",
+ "pseudo_label": "images/img_1068.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_49.nii.gz",
+ "pseudo_label": "images/img_49.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_666.nii.gz",
+ "pseudo_label": "images/img_666.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2623.nii.gz",
+ "pseudo_label": "images/img_2623.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2058.nii.gz",
+ "pseudo_label": "images/img_2058.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2541.nii.gz",
+ "pseudo_label": "images/img_2541.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3400.nii.gz",
+ "pseudo_label": "images/img_3400.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3133.nii.gz",
+ "pseudo_label": "images/img_3133.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2335.nii.gz",
+ "pseudo_label": "images/img_2335.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_952.nii.gz",
+ "pseudo_label": "images/img_952.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1167.nii.gz",
+ "pseudo_label": "images/img_1167.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_172.nii.gz",
+ "pseudo_label": "images/img_172.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_825.nii.gz",
+ "pseudo_label": "images/img_825.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2505.nii.gz",
+ "pseudo_label": "images/img_2505.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2769.nii.gz",
+ "pseudo_label": "images/img_2769.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2986.nii.gz",
+ "pseudo_label": "images/img_2986.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_924.nii.gz",
+ "pseudo_label": "images/img_924.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2808.nii.gz",
+ "pseudo_label": "images/img_2808.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2609.nii.gz",
+ "pseudo_label": "images/img_2609.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_354.nii.gz",
+ "pseudo_label": "images/img_354.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1848.nii.gz",
+ "pseudo_label": "images/img_1848.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_180.nii.gz",
+ "pseudo_label": "images/img_180.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3151.nii.gz",
+ "pseudo_label": "images/img_3151.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2309.nii.gz",
+ "pseudo_label": "images/img_2309.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2499.nii.gz",
+ "pseudo_label": "images/img_2499.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2681.nii.gz",
+ "pseudo_label": "images/img_2681.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_3270.nii.gz",
+ "pseudo_label": "images/img_3270.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1065.nii.gz",
+ "pseudo_label": "images/img_1065.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2755.nii.gz",
+ "pseudo_label": "images/img_2755.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2292.nii.gz",
+ "pseudo_label": "images/img_2292.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_773.nii.gz",
+ "pseudo_label": "images/img_773.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_114.nii.gz",
+ "pseudo_label": "images/img_114.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1031.nii.gz",
+ "pseudo_label": "images/img_1031.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1090.nii.gz",
+ "pseudo_label": "images/img_1090.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2743.nii.gz",
+ "pseudo_label": "images/img_2743.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_689.nii.gz",
+ "pseudo_label": "images/img_689.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2678.nii.gz",
+ "pseudo_label": "images/img_2678.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_139.nii.gz",
+ "pseudo_label": "images/img_139.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2612.nii.gz",
+ "pseudo_label": "images/img_2612.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_1099.nii.gz",
+ "pseudo_label": "images/img_1099.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2485.nii.gz",
+ "pseudo_label": "images/img_2485.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_2660.nii.gz",
+ "pseudo_label": "images/img_2660.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ },
+ {
+ "image": "images/img_674.nii.gz",
+ "pseudo_label": "images/img_674.nii.gz",
+ "dataset": "/data/TCIA_Colon/tcia_colon",
+ "region": "/data/TCIA_Colon/Abdomen"
+ }
+ ],
+ "training_transform": [
+ {
+ "_target_": "RandCropByLabelClassesd",
+ "keys": [
+ "@image_key",
+ "@label_key",
+ "@pseudo_label_key",
+ "@label_sv_key"
+ ],
+ "label_key": "@pseudo_label_key",
+ "num_classes": 133,
+ "num_samples": "@num_patches_per_image",
+ "spatial_size": "@patch_size",
+ "ratios": "$tuple(float(i >= 0) for i in range(133))",
+ "warn": false,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandZoomd",
+ "keys": [
+ "@image_key",
+ "@label_key",
+ "@pseudo_label_key",
+ "@label_sv_key"
+ ],
+ "min_zoom": 0.8,
+ "max_zoom": 1.2,
+ "mode": [
+ "trilinear",
+ "nearest",
+ "nearest",
+ "nearest"
+ ],
+ "prob": 0.2,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandSimulateLowResolutiond",
+ "keys": [
+ "@image_key"
+ ],
+ "zoom_range": [
+ 0.3,
+ 1
+ ],
+ "prob": 0.2,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandGaussianSmoothd",
+ "keys": [
+ "@image_key"
+ ],
+ "prob": 0.2,
+ "sigma_x": [
+ 0.5,
+ 1.0
+ ],
+ "sigma_y": [
+ 0.5,
+ 1.0
+ ],
+ "sigma_z": [
+ 0.5,
+ 1.0
+ ]
+ },
+ {
+ "_target_": "RandScaleIntensityd",
+ "keys": [
+ "@image_key"
+ ],
+ "factors": 0.1,
+ "prob": 0.2
+ },
+ {
+ "_target_": "RandShiftIntensityd",
+ "keys": [
+ "@image_key"
+ ],
+ "offsets": 0.1,
+ "prob": 0.2
+ },
+ {
+ "_target_": "RandGaussianNoised",
+ "keys": [
+ "@image_key"
+ ],
+ "prob": 0.2,
+ "mean": 0.0,
+ "std": 0.2
+ }
+ ]
+}
diff --git a/vista3d/data/jsons/Task03_5_folds.json b/vista3d/data/jsons/Task03_5_folds.json
new file mode 100644
index 0000000..e2f92e9
--- /dev/null
+++ b/vista3d/data/jsons/Task03_5_folds.json
@@ -0,0 +1,1030 @@
+{
+ "training": [
+ {
+ "image": "imagesTr/liver_84.nii.gz",
+ "pseudo_label": "imagesTr/liver_84.nii.gz",
+ "label": "labelsTr/liver_84.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/liver_85.nii.gz",
+ "pseudo_label": "imagesTr/liver_85.nii.gz",
+ "label": "labelsTr/liver_85.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/liver_14.nii.gz",
+ "pseudo_label": "imagesTr/liver_14.nii.gz",
+ "label": "labelsTr/liver_14.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/liver_7.nii.gz",
+ "pseudo_label": "imagesTr/liver_7.nii.gz",
+ "label": "labelsTr/liver_7.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/liver_68.nii.gz",
+ "pseudo_label": "imagesTr/liver_68.nii.gz",
+ "label": "labelsTr/liver_68.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "imagesTr/liver_27.nii.gz",
+ "pseudo_label": "imagesTr/liver_27.nii.gz",
+ "label": "labelsTr/liver_27.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "imagesTr/liver_13.nii.gz",
+ "pseudo_label": "imagesTr/liver_13.nii.gz",
+ "label": "labelsTr/liver_13.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/liver_124.nii.gz",
+ "pseudo_label": "imagesTr/liver_124.nii.gz",
+ "label": "labelsTr/liver_124.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/liver_46.nii.gz",
+ "pseudo_label": "imagesTr/liver_46.nii.gz",
+ "label": "labelsTr/liver_46.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "imagesTr/liver_25.nii.gz",
+ "pseudo_label": "imagesTr/liver_25.nii.gz",
+ "label": "labelsTr/liver_25.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/liver_71.nii.gz",
+ "pseudo_label": "imagesTr/liver_71.nii.gz",
+ "label": "labelsTr/liver_71.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/liver_26.nii.gz",
+ "pseudo_label": "imagesTr/liver_26.nii.gz",
+ "label": "labelsTr/liver_26.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "imagesTr/liver_75.nii.gz",
+ "pseudo_label": "imagesTr/liver_75.nii.gz",
+ "label": "labelsTr/liver_75.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/liver_86.nii.gz",
+ "pseudo_label": "imagesTr/liver_86.nii.gz",
+ "label": "labelsTr/liver_86.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/liver_123.nii.gz",
+ "pseudo_label": "imagesTr/liver_123.nii.gz",
+ "label": "labelsTr/liver_123.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/liver_44.nii.gz",
+ "pseudo_label": "imagesTr/liver_44.nii.gz",
+ "label": "labelsTr/liver_44.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "imagesTr/liver_21.nii.gz",
+ "pseudo_label": "imagesTr/liver_21.nii.gz",
+ "label": "labelsTr/liver_21.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/liver_24.nii.gz",
+ "pseudo_label": "imagesTr/liver_24.nii.gz",
+ "label": "labelsTr/liver_24.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/liver_23.nii.gz",
+ "pseudo_label": "imagesTr/liver_23.nii.gz",
+ "label": "labelsTr/liver_23.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "imagesTr/liver_49.nii.gz",
+ "pseudo_label": "imagesTr/liver_49.nii.gz",
+ "label": "labelsTr/liver_49.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/liver_12.nii.gz",
+ "pseudo_label": "imagesTr/liver_12.nii.gz",
+ "label": "labelsTr/liver_12.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/liver_87.nii.gz",
+ "pseudo_label": "imagesTr/liver_87.nii.gz",
+ "label": "labelsTr/liver_87.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_87/liver_87_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_50.nii.gz",
+ "pseudo_label": "imagesTr/liver_50.nii.gz",
+ "label": "labelsTr/liver_50.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_50/liver_50_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_20.nii.gz",
+ "pseudo_label": "imagesTr/liver_20.nii.gz",
+ "label": "labelsTr/liver_20.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_20/liver_20_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_32.nii.gz",
+ "pseudo_label": "imagesTr/liver_32.nii.gz",
+ "label": "labelsTr/liver_32.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_32/liver_32_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_98.nii.gz",
+ "pseudo_label": "imagesTr/liver_98.nii.gz",
+ "label": "labelsTr/liver_98.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_98/liver_98_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_64.nii.gz",
+ "pseudo_label": "imagesTr/liver_64.nii.gz",
+ "label": "labelsTr/liver_64.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_64/liver_64_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_83.nii.gz",
+ "pseudo_label": "imagesTr/liver_83.nii.gz",
+ "label": "labelsTr/liver_83.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_83/liver_83_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_15.nii.gz",
+ "pseudo_label": "imagesTr/liver_15.nii.gz",
+ "label": "labelsTr/liver_15.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_15/liver_15_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_22.nii.gz",
+ "pseudo_label": "imagesTr/liver_22.nii.gz",
+ "label": "labelsTr/liver_22.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_22/liver_22_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_35.nii.gz",
+ "pseudo_label": "imagesTr/liver_35.nii.gz",
+ "label": "labelsTr/liver_35.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_35/liver_35_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_16.nii.gz",
+ "pseudo_label": "imagesTr/liver_16.nii.gz",
+ "label": "labelsTr/liver_16.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_16/liver_16_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_126.nii.gz",
+ "pseudo_label": "imagesTr/liver_126.nii.gz",
+ "label": "labelsTr/liver_126.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_126/liver_126_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_38.nii.gz",
+ "pseudo_label": "imagesTr/liver_38.nii.gz",
+ "label": "labelsTr/liver_38.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_38/liver_38_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_121.nii.gz",
+ "pseudo_label": "imagesTr/liver_121.nii.gz",
+ "label": "labelsTr/liver_121.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_121/liver_121_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_76.nii.gz",
+ "pseudo_label": "imagesTr/liver_76.nii.gz",
+ "label": "labelsTr/liver_76.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_76/liver_76_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_45.nii.gz",
+ "pseudo_label": "imagesTr/liver_45.nii.gz",
+ "label": "labelsTr/liver_45.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_45/liver_45_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_53.nii.gz",
+ "pseudo_label": "imagesTr/liver_53.nii.gz",
+ "label": "labelsTr/liver_53.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_53/liver_53_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_110.nii.gz",
+ "pseudo_label": "imagesTr/liver_110.nii.gz",
+ "label": "labelsTr/liver_110.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_110/liver_110_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_37.nii.gz",
+ "pseudo_label": "imagesTr/liver_37.nii.gz",
+ "label": "labelsTr/liver_37.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_37/liver_37_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_100.nii.gz",
+ "pseudo_label": "imagesTr/liver_100.nii.gz",
+ "label": "labelsTr/liver_100.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_100/liver_100_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_95.nii.gz",
+ "pseudo_label": "imagesTr/liver_95.nii.gz",
+ "label": "labelsTr/liver_95.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_95/liver_95_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_80.nii.gz",
+ "pseudo_label": "imagesTr/liver_80.nii.gz",
+ "label": "labelsTr/liver_80.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_80/liver_80_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_11.nii.gz",
+ "pseudo_label": "imagesTr/liver_11.nii.gz",
+ "label": "labelsTr/liver_11.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_11/liver_11_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_62.nii.gz",
+ "pseudo_label": "imagesTr/liver_62.nii.gz",
+ "label": "labelsTr/liver_62.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_62/liver_62_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_73.nii.gz",
+ "pseudo_label": "imagesTr/liver_73.nii.gz",
+ "label": "labelsTr/liver_73.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_73/liver_73_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_119.nii.gz",
+ "pseudo_label": "imagesTr/liver_119.nii.gz",
+ "label": "labelsTr/liver_119.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_119/liver_119_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_55.nii.gz",
+ "pseudo_label": "imagesTr/liver_55.nii.gz",
+ "label": "labelsTr/liver_55.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_55/liver_55_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_103.nii.gz",
+ "pseudo_label": "imagesTr/liver_103.nii.gz",
+ "label": "labelsTr/liver_103.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_103/liver_103_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_39.nii.gz",
+ "pseudo_label": "imagesTr/liver_39.nii.gz",
+ "label": "labelsTr/liver_39.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_39/liver_39_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_74.nii.gz",
+ "pseudo_label": "imagesTr/liver_74.nii.gz",
+ "label": "labelsTr/liver_74.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_74/liver_74_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_57.nii.gz",
+ "pseudo_label": "imagesTr/liver_57.nii.gz",
+ "label": "labelsTr/liver_57.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_57/liver_57_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_81.nii.gz",
+ "pseudo_label": "imagesTr/liver_81.nii.gz",
+ "label": "labelsTr/liver_81.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_81/liver_81_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_105.nii.gz",
+ "pseudo_label": "imagesTr/liver_105.nii.gz",
+ "label": "labelsTr/liver_105.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_105/liver_105_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_9.nii.gz",
+ "pseudo_label": "imagesTr/liver_9.nii.gz",
+ "label": "labelsTr/liver_9.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_9/liver_9_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_8.nii.gz",
+ "pseudo_label": "imagesTr/liver_8.nii.gz",
+ "label": "labelsTr/liver_8.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_8/liver_8_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_97.nii.gz",
+ "pseudo_label": "imagesTr/liver_97.nii.gz",
+ "label": "labelsTr/liver_97.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_97/liver_97_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_42.nii.gz",
+ "pseudo_label": "imagesTr/liver_42.nii.gz",
+ "label": "labelsTr/liver_42.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_42/liver_42_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_111.nii.gz",
+ "pseudo_label": "imagesTr/liver_111.nii.gz",
+ "label": "labelsTr/liver_111.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_111/liver_111_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_116.nii.gz",
+ "pseudo_label": "imagesTr/liver_116.nii.gz",
+ "label": "labelsTr/liver_116.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_116/liver_116_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_130.nii.gz",
+ "pseudo_label": "imagesTr/liver_130.nii.gz",
+ "label": "labelsTr/liver_130.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_130/liver_130_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_52.nii.gz",
+ "pseudo_label": "imagesTr/liver_52.nii.gz",
+ "label": "labelsTr/liver_52.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_52/liver_52_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_47.nii.gz",
+ "pseudo_label": "imagesTr/liver_47.nii.gz",
+ "label": "labelsTr/liver_47.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_47/liver_47_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_61.nii.gz",
+ "pseudo_label": "imagesTr/liver_61.nii.gz",
+ "label": "labelsTr/liver_61.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_61/liver_61_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_109.nii.gz",
+ "pseudo_label": "imagesTr/liver_109.nii.gz",
+ "label": "labelsTr/liver_109.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_109/liver_109_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_108.nii.gz",
+ "pseudo_label": "imagesTr/liver_108.nii.gz",
+ "label": "labelsTr/liver_108.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_108/liver_108_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_102.nii.gz",
+ "pseudo_label": "imagesTr/liver_102.nii.gz",
+ "label": "labelsTr/liver_102.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_102/liver_102_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_101.nii.gz",
+ "pseudo_label": "imagesTr/liver_101.nii.gz",
+ "label": "labelsTr/liver_101.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_101/liver_101_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_4.nii.gz",
+ "pseudo_label": "imagesTr/liver_4.nii.gz",
+ "label": "labelsTr/liver_4.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_4/liver_4_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_29.nii.gz",
+ "pseudo_label": "imagesTr/liver_29.nii.gz",
+ "label": "labelsTr/liver_29.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_29/liver_29_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_28.nii.gz",
+ "pseudo_label": "imagesTr/liver_28.nii.gz",
+ "label": "labelsTr/liver_28.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_28/liver_28_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_41.nii.gz",
+ "pseudo_label": "imagesTr/liver_41.nii.gz",
+ "label": "labelsTr/liver_41.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_41/liver_41_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_58.nii.gz",
+ "pseudo_label": "imagesTr/liver_58.nii.gz",
+ "label": "labelsTr/liver_58.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_58/liver_58_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_36.nii.gz",
+ "pseudo_label": "imagesTr/liver_36.nii.gz",
+ "label": "labelsTr/liver_36.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_36/liver_36_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_69.nii.gz",
+ "pseudo_label": "imagesTr/liver_69.nii.gz",
+ "label": "labelsTr/liver_69.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_69/liver_69_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_0.nii.gz",
+ "pseudo_label": "imagesTr/liver_0.nii.gz",
+ "label": "labelsTr/liver_0.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_0/liver_0_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_1.nii.gz",
+ "pseudo_label": "imagesTr/liver_1.nii.gz",
+ "label": "labelsTr/liver_1.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_1/liver_1_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_40.nii.gz",
+ "pseudo_label": "imagesTr/liver_40.nii.gz",
+ "label": "labelsTr/liver_40.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_40/liver_40_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_17.nii.gz",
+ "pseudo_label": "imagesTr/liver_17.nii.gz",
+ "label": "labelsTr/liver_17.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_17/liver_17_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_128.nii.gz",
+ "pseudo_label": "imagesTr/liver_128.nii.gz",
+ "label": "labelsTr/liver_128.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_128/liver_128_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_107.nii.gz",
+ "pseudo_label": "imagesTr/liver_107.nii.gz",
+ "label": "labelsTr/liver_107.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_107/liver_107_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_104.nii.gz",
+ "pseudo_label": "imagesTr/liver_104.nii.gz",
+ "label": "labelsTr/liver_104.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_104/liver_104_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_56.nii.gz",
+ "pseudo_label": "imagesTr/liver_56.nii.gz",
+ "label": "labelsTr/liver_56.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_56/liver_56_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_115.nii.gz",
+ "pseudo_label": "imagesTr/liver_115.nii.gz",
+ "label": "labelsTr/liver_115.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_115/liver_115_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_2.nii.gz",
+ "pseudo_label": "imagesTr/liver_2.nii.gz",
+ "label": "labelsTr/liver_2.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_2/liver_2_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_93.nii.gz",
+ "pseudo_label": "imagesTr/liver_93.nii.gz",
+ "label": "labelsTr/liver_93.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_93/liver_93_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_30.nii.gz",
+ "pseudo_label": "imagesTr/liver_30.nii.gz",
+ "label": "labelsTr/liver_30.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_30/liver_30_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_10.nii.gz",
+ "pseudo_label": "imagesTr/liver_10.nii.gz",
+ "label": "labelsTr/liver_10.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_10/liver_10_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_65.nii.gz",
+ "pseudo_label": "imagesTr/liver_65.nii.gz",
+ "label": "labelsTr/liver_65.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_65/liver_65_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_112.nii.gz",
+ "pseudo_label": "imagesTr/liver_112.nii.gz",
+ "label": "labelsTr/liver_112.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_112/liver_112_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_5.nii.gz",
+ "pseudo_label": "imagesTr/liver_5.nii.gz",
+ "label": "labelsTr/liver_5.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_5/liver_5_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_78.nii.gz",
+ "pseudo_label": "imagesTr/liver_78.nii.gz",
+ "label": "labelsTr/liver_78.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_78/liver_78_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_82.nii.gz",
+ "pseudo_label": "imagesTr/liver_82.nii.gz",
+ "label": "labelsTr/liver_82.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_82/liver_82_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_43.nii.gz",
+ "pseudo_label": "imagesTr/liver_43.nii.gz",
+ "label": "labelsTr/liver_43.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_43/liver_43_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_79.nii.gz",
+ "pseudo_label": "imagesTr/liver_79.nii.gz",
+ "label": "labelsTr/liver_79.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_79/liver_79_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_60.nii.gz",
+ "pseudo_label": "imagesTr/liver_60.nii.gz",
+ "label": "labelsTr/liver_60.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_60/liver_60_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_88.nii.gz",
+ "pseudo_label": "imagesTr/liver_88.nii.gz",
+ "label": "labelsTr/liver_88.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_88/liver_88_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_6.nii.gz",
+ "pseudo_label": "imagesTr/liver_6.nii.gz",
+ "label": "labelsTr/liver_6.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_6/liver_6_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_34.nii.gz",
+ "pseudo_label": "imagesTr/liver_34.nii.gz",
+ "label": "labelsTr/liver_34.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_34/liver_34_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_106.nii.gz",
+ "pseudo_label": "imagesTr/liver_106.nii.gz",
+ "label": "labelsTr/liver_106.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_106/liver_106_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_127.nii.gz",
+ "pseudo_label": "imagesTr/liver_127.nii.gz",
+ "label": "labelsTr/liver_127.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_127/liver_127_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_118.nii.gz",
+ "pseudo_label": "imagesTr/liver_118.nii.gz",
+ "label": "labelsTr/liver_118.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_118/liver_118_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_63.nii.gz",
+ "pseudo_label": "imagesTr/liver_63.nii.gz",
+ "label": "labelsTr/liver_63.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_63/liver_63_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_96.nii.gz",
+ "pseudo_label": "imagesTr/liver_96.nii.gz",
+ "label": "labelsTr/liver_96.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_96/liver_96_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_91.nii.gz",
+ "pseudo_label": "imagesTr/liver_91.nii.gz",
+ "label": "labelsTr/liver_91.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_91/liver_91_seg.nii.gz"
+ }
+ ],
+ "training_transform": [
+ {
+ "_target_": "RandCropByLabelClassesd",
+ "keys": [
+ "@image_key",
+ "@label_key",
+ "@pseudo_label_key",
+ "@label_sv_key"
+ ],
+ "label_key": "@pseudo_label_key",
+ "num_classes": 133,
+ "num_samples": "@num_patches_per_image",
+ "spatial_size": "@patch_size",
+ "ratios": "$tuple(float(i >= 0) for i in range(133))",
+ "warn": false,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandZoomd",
+ "keys": [
+ "@image_key",
+ "@label_key",
+ "@pseudo_label_key",
+ "@label_sv_key"
+ ],
+ "min_zoom": 0.8,
+ "max_zoom": 1.2,
+ "mode": [
+ "trilinear",
+ "nearest",
+ "nearest",
+ "nearest"
+ ],
+ "prob": 0.2,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandSimulateLowResolutiond",
+ "keys": [
+ "@image_key"
+ ],
+ "zoom_range": [
+ 0.3,
+ 1
+ ],
+ "prob": 0.2,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandGaussianSmoothd",
+ "keys": [
+ "@image_key"
+ ],
+ "prob": 0.2,
+ "sigma_x": [
+ 0.5,
+ 1.0
+ ],
+ "sigma_y": [
+ 0.5,
+ 1.0
+ ],
+ "sigma_z": [
+ 0.5,
+ 1.0
+ ]
+ },
+ {
+ "_target_": "RandScaleIntensityd",
+ "keys": [
+ "@image_key"
+ ],
+ "factors": 0.1,
+ "prob": 0.2
+ },
+ {
+ "_target_": "RandShiftIntensityd",
+ "keys": [
+ "@image_key"
+ ],
+ "offsets": 0.1,
+ "prob": 0.2
+ },
+ {
+ "_target_": "RandGaussianNoised",
+ "keys": [
+ "@image_key"
+ ],
+ "prob": 0.2,
+ "mean": 0.0,
+ "std": 0.2
+ }
+ ],
+ "label_dict": {
+ "1": "liver",
+ "2": "hepatic tumor"
+ },
+ "original_label_dict": {
+ "1": "liver",
+ "2": "cancer"
+ },
+ "testing": [
+ {
+ "image": "imagesTr/liver_114.nii.gz",
+ "label": "labelsTr/liver_114.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_51.nii.gz",
+ "label": "labelsTr/liver_51.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_129.nii.gz",
+ "label": "labelsTr/liver_129.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_54.nii.gz",
+ "label": "labelsTr/liver_54.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_125.nii.gz",
+ "label": "labelsTr/liver_125.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_99.nii.gz",
+ "label": "labelsTr/liver_99.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_33.nii.gz",
+ "label": "labelsTr/liver_33.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_90.nii.gz",
+ "label": "labelsTr/liver_90.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_66.nii.gz",
+ "label": "labelsTr/liver_66.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_77.nii.gz",
+ "label": "labelsTr/liver_77.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_72.nii.gz",
+ "label": "labelsTr/liver_72.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_18.nii.gz",
+ "label": "labelsTr/liver_18.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_31.nii.gz",
+ "label": "labelsTr/liver_31.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_120.nii.gz",
+ "label": "labelsTr/liver_120.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_70.nii.gz",
+ "label": "labelsTr/liver_70.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_48.nii.gz",
+ "label": "labelsTr/liver_48.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_94.nii.gz",
+ "label": "labelsTr/liver_94.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_92.nii.gz",
+ "label": "labelsTr/liver_92.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_113.nii.gz",
+ "label": "labelsTr/liver_113.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_59.nii.gz",
+ "label": "labelsTr/liver_59.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_3.nii.gz",
+ "label": "labelsTr/liver_3.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_19.nii.gz",
+ "label": "labelsTr/liver_19.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_122.nii.gz",
+ "label": "labelsTr/liver_122.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_89.nii.gz",
+ "label": "labelsTr/liver_89.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_67.nii.gz",
+ "label": "labelsTr/liver_67.nii.gz"
+ },
+ {
+ "image": "imagesTr/liver_117.nii.gz",
+ "label": "labelsTr/liver_117.nii.gz"
+ }
+ ]
+}
diff --git a/vista3d/data/jsons/Task06_5_folds.json b/vista3d/data/jsons/Task06_5_folds.json
new file mode 100644
index 0000000..5f1d4ce
--- /dev/null
+++ b/vista3d/data/jsons/Task06_5_folds.json
@@ -0,0 +1,547 @@
+{
+ "training": [
+ {
+ "image": "imagesTr/lung_073.nii.gz",
+ "pseudo_label": "imagesTr/lung_073.nii.gz",
+ "label": "labelsTr/lung_073.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "imagesTr/lung_092.nii.gz",
+ "pseudo_label": "imagesTr/lung_092.nii.gz",
+ "label": "labelsTr/lung_092.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "imagesTr/lung_044.nii.gz",
+ "pseudo_label": "imagesTr/lung_044.nii.gz",
+ "label": "labelsTr/lung_044.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/lung_095.nii.gz",
+ "pseudo_label": "imagesTr/lung_095.nii.gz",
+ "label": "labelsTr/lung_095.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/lung_015.nii.gz",
+ "pseudo_label": "imagesTr/lung_015.nii.gz",
+ "label": "labelsTr/lung_015.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/lung_031.nii.gz",
+ "pseudo_label": "imagesTr/lung_031.nii.gz",
+ "label": "labelsTr/lung_031.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/lung_086.nii.gz",
+ "pseudo_label": "imagesTr/lung_086.nii.gz",
+ "label": "labelsTr/lung_086.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/lung_053.nii.gz",
+ "pseudo_label": "imagesTr/lung_053.nii.gz",
+ "label": "labelsTr/lung_053.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "imagesTr/lung_075.nii.gz",
+ "pseudo_label": "imagesTr/lung_075.nii.gz",
+ "label": "labelsTr/lung_075.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "imagesTr/lung_096.nii.gz",
+ "pseudo_label": "imagesTr/lung_096.nii.gz",
+ "label": "labelsTr/lung_096.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "imagesTr/lung_093.nii.gz",
+ "pseudo_label": "imagesTr/lung_093.nii.gz",
+ "label": "labelsTr/lung_093.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_093/lung_093_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/lung_048.nii.gz",
+ "pseudo_label": "imagesTr/lung_048.nii.gz",
+ "label": "labelsTr/lung_048.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_048/lung_048_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/lung_054.nii.gz",
+ "pseudo_label": "imagesTr/lung_054.nii.gz",
+ "label": "labelsTr/lung_054.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_054/lung_054_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/lung_033.nii.gz",
+ "pseudo_label": "imagesTr/lung_033.nii.gz",
+ "label": "labelsTr/lung_033.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_033/lung_033_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/lung_071.nii.gz",
+ "pseudo_label": "imagesTr/lung_071.nii.gz",
+ "label": "labelsTr/lung_071.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_071/lung_071_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/lung_049.nii.gz",
+ "pseudo_label": "imagesTr/lung_049.nii.gz",
+ "label": "labelsTr/lung_049.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_049/lung_049_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/lung_005.nii.gz",
+ "pseudo_label": "imagesTr/lung_005.nii.gz",
+ "label": "labelsTr/lung_005.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_005/lung_005_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/lung_014.nii.gz",
+ "pseudo_label": "imagesTr/lung_014.nii.gz",
+ "label": "labelsTr/lung_014.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_014/lung_014_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/lung_004.nii.gz",
+ "pseudo_label": "imagesTr/lung_004.nii.gz",
+ "label": "labelsTr/lung_004.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_004/lung_004_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/lung_055.nii.gz",
+ "pseudo_label": "imagesTr/lung_055.nii.gz",
+ "label": "labelsTr/lung_055.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_055/lung_055_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/lung_061.nii.gz",
+ "pseudo_label": "imagesTr/lung_061.nii.gz",
+ "label": "labelsTr/lung_061.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_061/lung_061_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/lung_057.nii.gz",
+ "pseudo_label": "imagesTr/lung_057.nii.gz",
+ "label": "labelsTr/lung_057.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_057/lung_057_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/lung_037.nii.gz",
+ "pseudo_label": "imagesTr/lung_037.nii.gz",
+ "label": "labelsTr/lung_037.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_037/lung_037_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/lung_025.nii.gz",
+ "pseudo_label": "imagesTr/lung_025.nii.gz",
+ "label": "labelsTr/lung_025.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_025/lung_025_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/lung_003.nii.gz",
+ "pseudo_label": "imagesTr/lung_003.nii.gz",
+ "label": "labelsTr/lung_003.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_003/lung_003_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/lung_041.nii.gz",
+ "pseudo_label": "imagesTr/lung_041.nii.gz",
+ "label": "labelsTr/lung_041.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_041/lung_041_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/lung_006.nii.gz",
+ "pseudo_label": "imagesTr/lung_006.nii.gz",
+ "label": "labelsTr/lung_006.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_006/lung_006_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/lung_074.nii.gz",
+ "pseudo_label": "imagesTr/lung_074.nii.gz",
+ "label": "labelsTr/lung_074.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_074/lung_074_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/lung_010.nii.gz",
+ "pseudo_label": "imagesTr/lung_010.nii.gz",
+ "label": "labelsTr/lung_010.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_010/lung_010_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/lung_084.nii.gz",
+ "pseudo_label": "imagesTr/lung_084.nii.gz",
+ "label": "labelsTr/lung_084.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_084/lung_084_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/lung_070.nii.gz",
+ "pseudo_label": "imagesTr/lung_070.nii.gz",
+ "label": "labelsTr/lung_070.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_070/lung_070_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/lung_016.nii.gz",
+ "pseudo_label": "imagesTr/lung_016.nii.gz",
+ "label": "labelsTr/lung_016.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_016/lung_016_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/lung_038.nii.gz",
+ "pseudo_label": "imagesTr/lung_038.nii.gz",
+ "label": "labelsTr/lung_038.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_038/lung_038_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/lung_027.nii.gz",
+ "pseudo_label": "imagesTr/lung_027.nii.gz",
+ "label": "labelsTr/lung_027.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_027/lung_027_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/lung_029.nii.gz",
+ "pseudo_label": "imagesTr/lung_029.nii.gz",
+ "label": "labelsTr/lung_029.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_029/lung_029_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/lung_059.nii.gz",
+ "pseudo_label": "imagesTr/lung_059.nii.gz",
+ "label": "labelsTr/lung_059.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_059/lung_059_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/lung_051.nii.gz",
+ "pseudo_label": "imagesTr/lung_051.nii.gz",
+ "label": "labelsTr/lung_051.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_051/lung_051_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/lung_001.nii.gz",
+ "pseudo_label": "imagesTr/lung_001.nii.gz",
+ "label": "labelsTr/lung_001.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_001/lung_001_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/lung_065.nii.gz",
+ "pseudo_label": "imagesTr/lung_065.nii.gz",
+ "label": "labelsTr/lung_065.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_065/lung_065_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/lung_023.nii.gz",
+ "pseudo_label": "imagesTr/lung_023.nii.gz",
+ "label": "labelsTr/lung_023.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_023/lung_023_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/lung_058.nii.gz",
+ "pseudo_label": "imagesTr/lung_058.nii.gz",
+ "label": "labelsTr/lung_058.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_058/lung_058_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/lung_026.nii.gz",
+ "pseudo_label": "imagesTr/lung_026.nii.gz",
+ "label": "labelsTr/lung_026.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_026/lung_026_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/lung_042.nii.gz",
+ "pseudo_label": "imagesTr/lung_042.nii.gz",
+ "label": "labelsTr/lung_042.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_042/lung_042_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/lung_009.nii.gz",
+ "pseudo_label": "imagesTr/lung_009.nii.gz",
+ "label": "labelsTr/lung_009.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_009/lung_009_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/lung_079.nii.gz",
+ "pseudo_label": "imagesTr/lung_079.nii.gz",
+ "label": "labelsTr/lung_079.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_079/lung_079_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/lung_046.nii.gz",
+ "pseudo_label": "imagesTr/lung_046.nii.gz",
+ "label": "labelsTr/lung_046.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_046/lung_046_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/lung_083.nii.gz",
+ "pseudo_label": "imagesTr/lung_083.nii.gz",
+ "label": "labelsTr/lung_083.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_083/lung_083_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/lung_020.nii.gz",
+ "pseudo_label": "imagesTr/lung_020.nii.gz",
+ "label": "labelsTr/lung_020.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_020/lung_020_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/lung_022.nii.gz",
+ "pseudo_label": "imagesTr/lung_022.nii.gz",
+ "label": "labelsTr/lung_022.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_022/lung_022_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/lung_045.nii.gz",
+ "pseudo_label": "imagesTr/lung_045.nii.gz",
+ "label": "labelsTr/lung_045.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_045/lung_045_seg.nii.gz"
+ }
+ ],
+ "training_transform": [
+ {
+ "_target_": "RandCropByLabelClassesd",
+ "keys": [
+ "@image_key",
+ "@label_key",
+ "@pseudo_label_key",
+ "@label_sv_key"
+ ],
+ "label_key": "@pseudo_label_key",
+ "num_classes": 133,
+ "num_samples": "@num_patches_per_image",
+ "spatial_size": "@patch_size",
+ "ratios": "$tuple(float(i >= 0) for i in range(133))",
+ "warn": false,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandZoomd",
+ "keys": [
+ "@image_key",
+ "@label_key",
+ "@pseudo_label_key",
+ "@label_sv_key"
+ ],
+ "min_zoom": 0.8,
+ "max_zoom": 1.2,
+ "mode": [
+ "trilinear",
+ "nearest",
+ "nearest",
+ "nearest"
+ ],
+ "prob": 0.2,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandSimulateLowResolutiond",
+ "keys": [
+ "@image_key"
+ ],
+ "zoom_range": [
+ 0.3,
+ 1
+ ],
+ "prob": 0.2,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandGaussianSmoothd",
+ "keys": [
+ "@image_key"
+ ],
+ "prob": 0.2,
+ "sigma_x": [
+ 0.5,
+ 1.0
+ ],
+ "sigma_y": [
+ 0.5,
+ 1.0
+ ],
+ "sigma_z": [
+ 0.5,
+ 1.0
+ ]
+ },
+ {
+ "_target_": "RandScaleIntensityd",
+ "keys": [
+ "@image_key"
+ ],
+ "factors": 0.1,
+ "prob": 0.2
+ },
+ {
+ "_target_": "RandShiftIntensityd",
+ "keys": [
+ "@image_key"
+ ],
+ "offsets": 0.1,
+ "prob": 0.2
+ },
+ {
+ "_target_": "RandGaussianNoised",
+ "keys": [
+ "@image_key"
+ ],
+ "prob": 0.2,
+ "mean": 0.0,
+ "std": 0.2
+ }
+ ],
+ "label_dict": {
+ "1": "lung tumor"
+ },
+ "original_label_dict": {
+ "1": "cancer"
+ },
+ "testing": [
+ {
+ "image": "imagesTr/lung_018.nii.gz",
+ "label": "labelsTr/lung_018.nii.gz"
+ },
+ {
+ "image": "imagesTr/lung_078.nii.gz",
+ "label": "labelsTr/lung_078.nii.gz"
+ },
+ {
+ "image": "imagesTr/lung_028.nii.gz",
+ "label": "labelsTr/lung_028.nii.gz"
+ },
+ {
+ "image": "imagesTr/lung_036.nii.gz",
+ "label": "labelsTr/lung_036.nii.gz"
+ },
+ {
+ "image": "imagesTr/lung_080.nii.gz",
+ "label": "labelsTr/lung_080.nii.gz"
+ },
+ {
+ "image": "imagesTr/lung_062.nii.gz",
+ "label": "labelsTr/lung_062.nii.gz"
+ },
+ {
+ "image": "imagesTr/lung_043.nii.gz",
+ "label": "labelsTr/lung_043.nii.gz"
+ },
+ {
+ "image": "imagesTr/lung_081.nii.gz",
+ "label": "labelsTr/lung_081.nii.gz"
+ },
+ {
+ "image": "imagesTr/lung_064.nii.gz",
+ "label": "labelsTr/lung_064.nii.gz"
+ },
+ {
+ "image": "imagesTr/lung_069.nii.gz",
+ "label": "labelsTr/lung_069.nii.gz"
+ },
+ {
+ "image": "imagesTr/lung_066.nii.gz",
+ "label": "labelsTr/lung_066.nii.gz"
+ },
+ {
+ "image": "imagesTr/lung_047.nii.gz",
+ "label": "labelsTr/lung_047.nii.gz"
+ },
+ {
+ "image": "imagesTr/lung_034.nii.gz",
+ "label": "labelsTr/lung_034.nii.gz"
+ }
+ ]
+}
diff --git a/vista3d/data/jsons/Task07_5_folds.json b/vista3d/data/jsons/Task07_5_folds.json
new file mode 100644
index 0000000..83cd67e
--- /dev/null
+++ b/vista3d/data/jsons/Task07_5_folds.json
@@ -0,0 +1,2083 @@
+{
+ "training": [
+ {
+ "image": "imagesTr/pancreas_021.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_021.nii.gz",
+ "label": "labelsTr/pancreas_021.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/pancreas_321.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_321.nii.gz",
+ "label": "labelsTr/pancreas_321.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/pancreas_170.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_170.nii.gz",
+ "label": "labelsTr/pancreas_170.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/pancreas_347.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_347.nii.gz",
+ "label": "labelsTr/pancreas_347.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "imagesTr/pancreas_358.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_358.nii.gz",
+ "label": "labelsTr/pancreas_358.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/pancreas_147.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_147.nii.gz",
+ "label": "labelsTr/pancreas_147.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/pancreas_308.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_308.nii.gz",
+ "label": "labelsTr/pancreas_308.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/pancreas_285.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_285.nii.gz",
+ "label": "labelsTr/pancreas_285.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/pancreas_067.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_067.nii.gz",
+ "label": "labelsTr/pancreas_067.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/pancreas_102.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_102.nii.gz",
+ "label": "labelsTr/pancreas_102.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/pancreas_320.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_320.nii.gz",
+ "label": "labelsTr/pancreas_320.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/pancreas_357.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_357.nii.gz",
+ "label": "labelsTr/pancreas_357.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "imagesTr/pancreas_175.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_175.nii.gz",
+ "label": "labelsTr/pancreas_175.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "imagesTr/pancreas_366.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_366.nii.gz",
+ "label": "labelsTr/pancreas_366.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "imagesTr/pancreas_398.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_398.nii.gz",
+ "label": "labelsTr/pancreas_398.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "imagesTr/pancreas_254.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_254.nii.gz",
+ "label": "labelsTr/pancreas_254.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/pancreas_367.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_367.nii.gz",
+ "label": "labelsTr/pancreas_367.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/pancreas_234.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_234.nii.gz",
+ "label": "labelsTr/pancreas_234.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/pancreas_186.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_186.nii.gz",
+ "label": "labelsTr/pancreas_186.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/pancreas_385.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_385.nii.gz",
+ "label": "labelsTr/pancreas_385.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/pancreas_093.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_093.nii.gz",
+ "label": "labelsTr/pancreas_093.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/pancreas_370.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_370.nii.gz",
+ "label": "labelsTr/pancreas_370.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/pancreas_376.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_376.nii.gz",
+ "label": "labelsTr/pancreas_376.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/pancreas_231.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_231.nii.gz",
+ "label": "labelsTr/pancreas_231.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/pancreas_280.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_280.nii.gz",
+ "label": "labelsTr/pancreas_280.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/pancreas_212.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_212.nii.gz",
+ "label": "labelsTr/pancreas_212.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "imagesTr/pancreas_064.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_064.nii.gz",
+ "label": "labelsTr/pancreas_064.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "imagesTr/pancreas_256.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_256.nii.gz",
+ "label": "labelsTr/pancreas_256.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "imagesTr/pancreas_241.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_241.nii.gz",
+ "label": "labelsTr/pancreas_241.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/pancreas_327.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_327.nii.gz",
+ "label": "labelsTr/pancreas_327.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/pancreas_360.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_360.nii.gz",
+ "label": "labelsTr/pancreas_360.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/pancreas_041.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_041.nii.gz",
+ "label": "labelsTr/pancreas_041.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "imagesTr/pancreas_283.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_283.nii.gz",
+ "label": "labelsTr/pancreas_283.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/pancreas_333.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_333.nii.gz",
+ "label": "labelsTr/pancreas_333.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "imagesTr/pancreas_267.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_267.nii.gz",
+ "label": "labelsTr/pancreas_267.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/pancreas_126.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_126.nii.gz",
+ "label": "labelsTr/pancreas_126.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "imagesTr/pancreas_145.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_145.nii.gz",
+ "label": "labelsTr/pancreas_145.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/pancreas_042.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_042.nii.gz",
+ "label": "labelsTr/pancreas_042.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/pancreas_096.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_096.nii.gz",
+ "label": "labelsTr/pancreas_096.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/pancreas_268.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_268.nii.gz",
+ "label": "labelsTr/pancreas_268.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "imagesTr/pancreas_045.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_045.nii.gz",
+ "label": "labelsTr/pancreas_045.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/pancreas_130.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_130.nii.gz",
+ "label": "labelsTr/pancreas_130.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/pancreas_278.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_278.nii.gz",
+ "label": "labelsTr/pancreas_278.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/pancreas_325.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_325.nii.gz",
+ "label": "labelsTr/pancreas_325.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/pancreas_084.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_084.nii.gz",
+ "label": "labelsTr/pancreas_084.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "imagesTr/pancreas_200.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_200.nii.gz",
+ "label": "labelsTr/pancreas_200.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_200/pancreas_200_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_411.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_411.nii.gz",
+ "label": "labelsTr/pancreas_411.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_411/pancreas_411_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_127.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_127.nii.gz",
+ "label": "labelsTr/pancreas_127.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_127/pancreas_127_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_382.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_382.nii.gz",
+ "label": "labelsTr/pancreas_382.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_382/pancreas_382_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_055.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_055.nii.gz",
+ "label": "labelsTr/pancreas_055.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_055/pancreas_055_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_103.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_103.nii.gz",
+ "label": "labelsTr/pancreas_103.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_103/pancreas_103_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_351.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_351.nii.gz",
+ "label": "labelsTr/pancreas_351.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_351/pancreas_351_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_235.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_235.nii.gz",
+ "label": "labelsTr/pancreas_235.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_235/pancreas_235_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_001.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_001.nii.gz",
+ "label": "labelsTr/pancreas_001.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_001/pancreas_001_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_230.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_230.nii.gz",
+ "label": "labelsTr/pancreas_230.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_230/pancreas_230_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_125.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_125.nii.gz",
+ "label": "labelsTr/pancreas_125.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_125/pancreas_125_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_124.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_124.nii.gz",
+ "label": "labelsTr/pancreas_124.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_124/pancreas_124_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_355.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_355.nii.gz",
+ "label": "labelsTr/pancreas_355.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_355/pancreas_355_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_297.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_297.nii.gz",
+ "label": "labelsTr/pancreas_297.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_297/pancreas_297_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_269.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_269.nii.gz",
+ "label": "labelsTr/pancreas_269.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_269/pancreas_269_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_277.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_277.nii.gz",
+ "label": "labelsTr/pancreas_277.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/pancreas_226.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_226.nii.gz",
+ "label": "labelsTr/pancreas_226.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_226/pancreas_226_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_178.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_178.nii.gz",
+ "label": "labelsTr/pancreas_178.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_178/pancreas_178_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_418.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_418.nii.gz",
+ "label": "labelsTr/pancreas_418.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_418/pancreas_418_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_378.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_378.nii.gz",
+ "label": "labelsTr/pancreas_378.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_378/pancreas_378_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_025.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_025.nii.gz",
+ "label": "labelsTr/pancreas_025.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_025/pancreas_025_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_046.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_046.nii.gz",
+ "label": "labelsTr/pancreas_046.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_046/pancreas_046_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_114.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_114.nii.gz",
+ "label": "labelsTr/pancreas_114.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "imagesTr/pancreas_217.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_217.nii.gz",
+ "label": "labelsTr/pancreas_217.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_217/pancreas_217_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_155.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_155.nii.gz",
+ "label": "labelsTr/pancreas_155.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_155/pancreas_155_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_354.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_354.nii.gz",
+ "label": "labelsTr/pancreas_354.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_354/pancreas_354_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_199.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_199.nii.gz",
+ "label": "labelsTr/pancreas_199.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_199/pancreas_199_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_210.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_210.nii.gz",
+ "label": "labelsTr/pancreas_210.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_210/pancreas_210_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_246.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_246.nii.gz",
+ "label": "labelsTr/pancreas_246.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_246/pancreas_246_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_395.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_395.nii.gz",
+ "label": "labelsTr/pancreas_395.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_395/pancreas_395_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_410.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_410.nii.gz",
+ "label": "labelsTr/pancreas_410.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_410/pancreas_410_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_197.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_197.nii.gz",
+ "label": "labelsTr/pancreas_197.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_197/pancreas_197_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_099.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_099.nii.gz",
+ "label": "labelsTr/pancreas_099.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_099/pancreas_099_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_107.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_107.nii.gz",
+ "label": "labelsTr/pancreas_107.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_107/pancreas_107_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_122.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_122.nii.gz",
+ "label": "labelsTr/pancreas_122.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_122/pancreas_122_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_111.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_111.nii.gz",
+ "label": "labelsTr/pancreas_111.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_111/pancreas_111_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_004.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_004.nii.gz",
+ "label": "labelsTr/pancreas_004.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_004/pancreas_004_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_331.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_331.nii.gz",
+ "label": "labelsTr/pancreas_331.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_331/pancreas_331_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_069.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_069.nii.gz",
+ "label": "labelsTr/pancreas_069.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_069/pancreas_069_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_071.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_071.nii.gz",
+ "label": "labelsTr/pancreas_071.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_071/pancreas_071_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_259.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_259.nii.gz",
+ "label": "labelsTr/pancreas_259.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_259/pancreas_259_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_213.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_213.nii.gz",
+ "label": "labelsTr/pancreas_213.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_213/pancreas_213_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_018.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_018.nii.gz",
+ "label": "labelsTr/pancreas_018.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_018/pancreas_018_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_400.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_400.nii.gz",
+ "label": "labelsTr/pancreas_400.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_400/pancreas_400_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_037.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_037.nii.gz",
+ "label": "labelsTr/pancreas_037.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_037/pancreas_037_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_048.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_048.nii.gz",
+ "label": "labelsTr/pancreas_048.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_048/pancreas_048_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_345.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_345.nii.gz",
+ "label": "labelsTr/pancreas_345.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_345/pancreas_345_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_229.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_229.nii.gz",
+ "label": "labelsTr/pancreas_229.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_229/pancreas_229_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_364.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_364.nii.gz",
+ "label": "labelsTr/pancreas_364.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_364/pancreas_364_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_295.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_295.nii.gz",
+ "label": "labelsTr/pancreas_295.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_295/pancreas_295_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_110.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_110.nii.gz",
+ "label": "labelsTr/pancreas_110.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_110/pancreas_110_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_157.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_157.nii.gz",
+ "label": "labelsTr/pancreas_157.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_157/pancreas_157_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_293.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_293.nii.gz",
+ "label": "labelsTr/pancreas_293.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_293/pancreas_293_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_377.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_377.nii.gz",
+ "label": "labelsTr/pancreas_377.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_377/pancreas_377_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_088.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_088.nii.gz",
+ "label": "labelsTr/pancreas_088.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_088/pancreas_088_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_193.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_193.nii.gz",
+ "label": "labelsTr/pancreas_193.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_193/pancreas_193_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_218.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_218.nii.gz",
+ "label": "labelsTr/pancreas_218.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_218/pancreas_218_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_196.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_196.nii.gz",
+ "label": "labelsTr/pancreas_196.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_196/pancreas_196_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_413.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_413.nii.gz",
+ "label": "labelsTr/pancreas_413.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_413/pancreas_413_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_056.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_056.nii.gz",
+ "label": "labelsTr/pancreas_056.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_056/pancreas_056_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_203.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_203.nii.gz",
+ "label": "labelsTr/pancreas_203.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_203/pancreas_203_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_356.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_356.nii.gz",
+ "label": "labelsTr/pancreas_356.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_356/pancreas_356_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_187.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_187.nii.gz",
+ "label": "labelsTr/pancreas_187.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_187/pancreas_187_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_159.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_159.nii.gz",
+ "label": "labelsTr/pancreas_159.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_159/pancreas_159_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_311.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_311.nii.gz",
+ "label": "labelsTr/pancreas_311.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_311/pancreas_311_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_388.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_388.nii.gz",
+ "label": "labelsTr/pancreas_388.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_388/pancreas_388_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_165.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_165.nii.gz",
+ "label": "labelsTr/pancreas_165.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_165/pancreas_165_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_070.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_070.nii.gz",
+ "label": "labelsTr/pancreas_070.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_070/pancreas_070_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_302.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_302.nii.gz",
+ "label": "labelsTr/pancreas_302.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_302/pancreas_302_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_243.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_243.nii.gz",
+ "label": "labelsTr/pancreas_243.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_243/pancreas_243_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_101.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_101.nii.gz",
+ "label": "labelsTr/pancreas_101.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_101/pancreas_101_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_369.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_369.nii.gz",
+ "label": "labelsTr/pancreas_369.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_369/pancreas_369_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_104.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_104.nii.gz",
+ "label": "labelsTr/pancreas_104.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_104/pancreas_104_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_399.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_399.nii.gz",
+ "label": "labelsTr/pancreas_399.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_399/pancreas_399_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_315.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_315.nii.gz",
+ "label": "labelsTr/pancreas_315.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_315/pancreas_315_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_294.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_294.nii.gz",
+ "label": "labelsTr/pancreas_294.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_294/pancreas_294_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_028.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_028.nii.gz",
+ "label": "labelsTr/pancreas_028.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_028/pancreas_028_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_313.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_313.nii.gz",
+ "label": "labelsTr/pancreas_313.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_313/pancreas_313_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_194.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_194.nii.gz",
+ "label": "labelsTr/pancreas_194.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_194/pancreas_194_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_029.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_029.nii.gz",
+ "label": "labelsTr/pancreas_029.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_029/pancreas_029_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_421.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_421.nii.gz",
+ "label": "labelsTr/pancreas_421.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_421/pancreas_421_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_182.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_182.nii.gz",
+ "label": "labelsTr/pancreas_182.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_182/pancreas_182_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_249.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_249.nii.gz",
+ "label": "labelsTr/pancreas_249.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_249/pancreas_249_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_201.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_201.nii.gz",
+ "label": "labelsTr/pancreas_201.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_201/pancreas_201_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_299.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_299.nii.gz",
+ "label": "labelsTr/pancreas_299.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_299/pancreas_299_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_274.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_274.nii.gz",
+ "label": "labelsTr/pancreas_274.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_274/pancreas_274_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_303.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_303.nii.gz",
+ "label": "labelsTr/pancreas_303.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_303/pancreas_303_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_279.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_279.nii.gz",
+ "label": "labelsTr/pancreas_279.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_279/pancreas_279_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_386.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_386.nii.gz",
+ "label": "labelsTr/pancreas_386.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_386/pancreas_386_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_086.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_086.nii.gz",
+ "label": "labelsTr/pancreas_086.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_086/pancreas_086_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_214.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_214.nii.gz",
+ "label": "labelsTr/pancreas_214.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_214/pancreas_214_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_261.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_261.nii.gz",
+ "label": "labelsTr/pancreas_261.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_261/pancreas_261_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_375.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_375.nii.gz",
+ "label": "labelsTr/pancreas_375.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_375/pancreas_375_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_286.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_286.nii.gz",
+ "label": "labelsTr/pancreas_286.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_286/pancreas_286_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_083.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_083.nii.gz",
+ "label": "labelsTr/pancreas_083.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_083/pancreas_083_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_415.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_415.nii.gz",
+ "label": "labelsTr/pancreas_415.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_415/pancreas_415_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_016.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_016.nii.gz",
+ "label": "labelsTr/pancreas_016.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_016/pancreas_016_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_346.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_346.nii.gz",
+ "label": "labelsTr/pancreas_346.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_346/pancreas_346_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_404.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_404.nii.gz",
+ "label": "labelsTr/pancreas_404.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_404/pancreas_404_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_298.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_298.nii.gz",
+ "label": "labelsTr/pancreas_298.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_298/pancreas_298_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_080.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_080.nii.gz",
+ "label": "labelsTr/pancreas_080.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_080/pancreas_080_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_343.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_343.nii.gz",
+ "label": "labelsTr/pancreas_343.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_343/pancreas_343_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_284.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_284.nii.gz",
+ "label": "labelsTr/pancreas_284.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_284/pancreas_284_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_148.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_148.nii.gz",
+ "label": "labelsTr/pancreas_148.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_148/pancreas_148_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_401.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_401.nii.gz",
+ "label": "labelsTr/pancreas_401.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_401/pancreas_401_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_204.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_204.nii.gz",
+ "label": "labelsTr/pancreas_204.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_204/pancreas_204_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_334.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_334.nii.gz",
+ "label": "labelsTr/pancreas_334.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_334/pancreas_334_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_138.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_138.nii.gz",
+ "label": "labelsTr/pancreas_138.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_138/pancreas_138_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_300.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_300.nii.gz",
+ "label": "labelsTr/pancreas_300.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_300/pancreas_300_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_304.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_304.nii.gz",
+ "label": "labelsTr/pancreas_304.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_304/pancreas_304_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_100.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_100.nii.gz",
+ "label": "labelsTr/pancreas_100.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_100/pancreas_100_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_405.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_405.nii.gz",
+ "label": "labelsTr/pancreas_405.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_405/pancreas_405_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_129.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_129.nii.gz",
+ "label": "labelsTr/pancreas_129.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_129/pancreas_129_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_228.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_228.nii.gz",
+ "label": "labelsTr/pancreas_228.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_228/pancreas_228_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_113.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_113.nii.gz",
+ "label": "labelsTr/pancreas_113.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_113/pancreas_113_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_091.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_091.nii.gz",
+ "label": "labelsTr/pancreas_091.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_091/pancreas_091_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_310.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_310.nii.gz",
+ "label": "labelsTr/pancreas_310.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_310/pancreas_310_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_050.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_050.nii.gz",
+ "label": "labelsTr/pancreas_050.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_050/pancreas_050_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_172.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_172.nii.gz",
+ "label": "labelsTr/pancreas_172.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_172/pancreas_172_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_075.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_075.nii.gz",
+ "label": "labelsTr/pancreas_075.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_075/pancreas_075_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_198.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_198.nii.gz",
+ "label": "labelsTr/pancreas_198.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_198/pancreas_198_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_372.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_372.nii.gz",
+ "label": "labelsTr/pancreas_372.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_372/pancreas_372_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_296.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_296.nii.gz",
+ "label": "labelsTr/pancreas_296.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_296/pancreas_296_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_078.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_078.nii.gz",
+ "label": "labelsTr/pancreas_078.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_078/pancreas_078_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_255.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_255.nii.gz",
+ "label": "labelsTr/pancreas_255.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_255/pancreas_255_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_166.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_166.nii.gz",
+ "label": "labelsTr/pancreas_166.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_166/pancreas_166_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_167.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_167.nii.gz",
+ "label": "labelsTr/pancreas_167.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_167/pancreas_167_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_265.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_265.nii.gz",
+ "label": "labelsTr/pancreas_265.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_265/pancreas_265_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_119.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_119.nii.gz",
+ "label": "labelsTr/pancreas_119.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_119/pancreas_119_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_169.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_169.nii.gz",
+ "label": "labelsTr/pancreas_169.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_169/pancreas_169_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_387.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_387.nii.gz",
+ "label": "labelsTr/pancreas_387.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_387/pancreas_387_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_328.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_328.nii.gz",
+ "label": "labelsTr/pancreas_328.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_328/pancreas_328_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_275.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_275.nii.gz",
+ "label": "labelsTr/pancreas_275.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_275/pancreas_275_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_253.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_253.nii.gz",
+ "label": "labelsTr/pancreas_253.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_253/pancreas_253_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_326.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_326.nii.gz",
+ "label": "labelsTr/pancreas_326.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_326/pancreas_326_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_379.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_379.nii.gz",
+ "label": "labelsTr/pancreas_379.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "imagesTr/pancreas_051.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_051.nii.gz",
+ "label": "labelsTr/pancreas_051.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_051/pancreas_051_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_291.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_291.nii.gz",
+ "label": "labelsTr/pancreas_291.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_291/pancreas_291_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_106.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_106.nii.gz",
+ "label": "labelsTr/pancreas_106.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_106/pancreas_106_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_242.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_242.nii.gz",
+ "label": "labelsTr/pancreas_242.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_242/pancreas_242_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_389.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_389.nii.gz",
+ "label": "labelsTr/pancreas_389.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_389/pancreas_389_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_058.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_058.nii.gz",
+ "label": "labelsTr/pancreas_058.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_058/pancreas_058_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_120.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_120.nii.gz",
+ "label": "labelsTr/pancreas_120.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_120/pancreas_120_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_287.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_287.nii.gz",
+ "label": "labelsTr/pancreas_287.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_287/pancreas_287_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_305.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_305.nii.gz",
+ "label": "labelsTr/pancreas_305.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_305/pancreas_305_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_135.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_135.nii.gz",
+ "label": "labelsTr/pancreas_135.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_135/pancreas_135_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_137.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_137.nii.gz",
+ "label": "labelsTr/pancreas_137.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_137/pancreas_137_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_010.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_010.nii.gz",
+ "label": "labelsTr/pancreas_010.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_010/pancreas_010_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_109.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_109.nii.gz",
+ "label": "labelsTr/pancreas_109.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_109/pancreas_109_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_323.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_323.nii.gz",
+ "label": "labelsTr/pancreas_323.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_323/pancreas_323_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_140.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_140.nii.gz",
+ "label": "labelsTr/pancreas_140.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_140/pancreas_140_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_316.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_316.nii.gz",
+ "label": "labelsTr/pancreas_316.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_316/pancreas_316_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_012.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_012.nii.gz",
+ "label": "labelsTr/pancreas_012.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_012/pancreas_012_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_158.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_158.nii.gz",
+ "label": "labelsTr/pancreas_158.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_158/pancreas_158_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_344.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_344.nii.gz",
+ "label": "labelsTr/pancreas_344.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_344/pancreas_344_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_342.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_342.nii.gz",
+ "label": "labelsTr/pancreas_342.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_342/pancreas_342_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_095.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_095.nii.gz",
+ "label": "labelsTr/pancreas_095.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_095/pancreas_095_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_019.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_019.nii.gz",
+ "label": "labelsTr/pancreas_019.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_019/pancreas_019_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_077.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_077.nii.gz",
+ "label": "labelsTr/pancreas_077.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_077/pancreas_077_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_015.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_015.nii.gz",
+ "label": "labelsTr/pancreas_015.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_015/pancreas_015_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_312.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_312.nii.gz",
+ "label": "labelsTr/pancreas_312.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_312/pancreas_312_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_024.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_024.nii.gz",
+ "label": "labelsTr/pancreas_024.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_024/pancreas_024_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_087.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_087.nii.gz",
+ "label": "labelsTr/pancreas_087.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_087/pancreas_087_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_098.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_098.nii.gz",
+ "label": "labelsTr/pancreas_098.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_098/pancreas_098_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_262.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_262.nii.gz",
+ "label": "labelsTr/pancreas_262.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_262/pancreas_262_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_105.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_105.nii.gz",
+ "label": "labelsTr/pancreas_105.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_105/pancreas_105_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_052.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_052.nii.gz",
+ "label": "labelsTr/pancreas_052.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_052/pancreas_052_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_362.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_362.nii.gz",
+ "label": "labelsTr/pancreas_362.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_362/pancreas_362_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_247.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_247.nii.gz",
+ "label": "labelsTr/pancreas_247.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_247/pancreas_247_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_414.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_414.nii.gz",
+ "label": "labelsTr/pancreas_414.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_414/pancreas_414_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_391.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_391.nii.gz",
+ "label": "labelsTr/pancreas_391.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_391/pancreas_391_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_330.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_330.nii.gz",
+ "label": "labelsTr/pancreas_330.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_330/pancreas_330_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_209.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_209.nii.gz",
+ "label": "labelsTr/pancreas_209.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_209/pancreas_209_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_409.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_409.nii.gz",
+ "label": "labelsTr/pancreas_409.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_409/pancreas_409_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_244.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_244.nii.gz",
+ "label": "labelsTr/pancreas_244.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_244/pancreas_244_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_266.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_266.nii.gz",
+ "label": "labelsTr/pancreas_266.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_266/pancreas_266_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_264.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_264.nii.gz",
+ "label": "labelsTr/pancreas_264.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_264/pancreas_264_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_035.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_035.nii.gz",
+ "label": "labelsTr/pancreas_035.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_035/pancreas_035_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_215.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_215.nii.gz",
+ "label": "labelsTr/pancreas_215.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_215/pancreas_215_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_339.nii.gz",
+ "pseudo_label": "imagesTr/pancreas_339.nii.gz",
+ "label": "labelsTr/pancreas_339.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_339/pancreas_339_seg.nii.gz"
+ }
+ ],
+ "training_transform": [
+ {
+ "_target_": "RandCropByLabelClassesd",
+ "keys": [
+ "@image_key",
+ "@label_key",
+ "@pseudo_label_key",
+ "@label_sv_key"
+ ],
+ "label_key": "@pseudo_label_key",
+ "num_classes": 133,
+ "num_samples": "@num_patches_per_image",
+ "spatial_size": "@patch_size",
+ "ratios": "$tuple(float(i >= 0) for i in range(133))",
+ "warn": false,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandZoomd",
+ "keys": [
+ "@image_key",
+ "@label_key",
+ "@pseudo_label_key",
+ "@label_sv_key"
+ ],
+ "min_zoom": 0.8,
+ "max_zoom": 1.2,
+ "mode": [
+ "trilinear",
+ "nearest",
+ "nearest",
+ "nearest"
+ ],
+ "prob": 0.2,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandSimulateLowResolutiond",
+ "keys": [
+ "@image_key"
+ ],
+ "zoom_range": [
+ 0.3,
+ 1
+ ],
+ "prob": 0.2,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandGaussianSmoothd",
+ "keys": [
+ "@image_key"
+ ],
+ "prob": 0.2,
+ "sigma_x": [
+ 0.5,
+ 1.0
+ ],
+ "sigma_y": [
+ 0.5,
+ 1.0
+ ],
+ "sigma_z": [
+ 0.5,
+ 1.0
+ ]
+ },
+ {
+ "_target_": "RandScaleIntensityd",
+ "keys": [
+ "@image_key"
+ ],
+ "factors": 0.1,
+ "prob": 0.2
+ },
+ {
+ "_target_": "RandShiftIntensityd",
+ "keys": [
+ "@image_key"
+ ],
+ "offsets": 0.1,
+ "prob": 0.2
+ },
+ {
+ "_target_": "RandGaussianNoised",
+ "keys": [
+ "@image_key"
+ ],
+ "prob": 0.2,
+ "mean": 0.0,
+ "std": 0.2
+ }
+ ],
+ "label_dict": {
+ "1": "pancreas",
+ "2": "pancreatic tumor"
+ },
+ "original_label_dict": {
+ "1": "pancreas",
+ "2": "cancer"
+ },
+ "testing": [
+ {
+ "image": "imagesTr/pancreas_207.nii.gz",
+ "label": "labelsTr/pancreas_207.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_040.nii.gz",
+ "label": "labelsTr/pancreas_040.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_081.nii.gz",
+ "label": "labelsTr/pancreas_081.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_179.nii.gz",
+ "label": "labelsTr/pancreas_179.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_289.nii.gz",
+ "label": "labelsTr/pancreas_289.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_402.nii.gz",
+ "label": "labelsTr/pancreas_402.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_032.nii.gz",
+ "label": "labelsTr/pancreas_032.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_270.nii.gz",
+ "label": "labelsTr/pancreas_270.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_089.nii.gz",
+ "label": "labelsTr/pancreas_089.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_191.nii.gz",
+ "label": "labelsTr/pancreas_191.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_365.nii.gz",
+ "label": "labelsTr/pancreas_365.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_061.nii.gz",
+ "label": "labelsTr/pancreas_061.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_222.nii.gz",
+ "label": "labelsTr/pancreas_222.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_393.nii.gz",
+ "label": "labelsTr/pancreas_393.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_419.nii.gz",
+ "label": "labelsTr/pancreas_419.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_301.nii.gz",
+ "label": "labelsTr/pancreas_301.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_350.nii.gz",
+ "label": "labelsTr/pancreas_350.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_074.nii.gz",
+ "label": "labelsTr/pancreas_074.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_380.nii.gz",
+ "label": "labelsTr/pancreas_380.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_005.nii.gz",
+ "label": "labelsTr/pancreas_005.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_006.nii.gz",
+ "label": "labelsTr/pancreas_006.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_219.nii.gz",
+ "label": "labelsTr/pancreas_219.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_092.nii.gz",
+ "label": "labelsTr/pancreas_092.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_225.nii.gz",
+ "label": "labelsTr/pancreas_225.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_392.nii.gz",
+ "label": "labelsTr/pancreas_392.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_211.nii.gz",
+ "label": "labelsTr/pancreas_211.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_173.nii.gz",
+ "label": "labelsTr/pancreas_173.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_329.nii.gz",
+ "label": "labelsTr/pancreas_329.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_117.nii.gz",
+ "label": "labelsTr/pancreas_117.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_227.nii.gz",
+ "label": "labelsTr/pancreas_227.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_149.nii.gz",
+ "label": "labelsTr/pancreas_149.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_374.nii.gz",
+ "label": "labelsTr/pancreas_374.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_361.nii.gz",
+ "label": "labelsTr/pancreas_361.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_309.nii.gz",
+ "label": "labelsTr/pancreas_309.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_224.nii.gz",
+ "label": "labelsTr/pancreas_224.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_183.nii.gz",
+ "label": "labelsTr/pancreas_183.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_406.nii.gz",
+ "label": "labelsTr/pancreas_406.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_181.nii.gz",
+ "label": "labelsTr/pancreas_181.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_131.nii.gz",
+ "label": "labelsTr/pancreas_131.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_336.nii.gz",
+ "label": "labelsTr/pancreas_336.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_239.nii.gz",
+ "label": "labelsTr/pancreas_239.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_318.nii.gz",
+ "label": "labelsTr/pancreas_318.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_066.nii.gz",
+ "label": "labelsTr/pancreas_066.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_258.nii.gz",
+ "label": "labelsTr/pancreas_258.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_043.nii.gz",
+ "label": "labelsTr/pancreas_043.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_094.nii.gz",
+ "label": "labelsTr/pancreas_094.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_180.nii.gz",
+ "label": "labelsTr/pancreas_180.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_292.nii.gz",
+ "label": "labelsTr/pancreas_292.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_049.nii.gz",
+ "label": "labelsTr/pancreas_049.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_348.nii.gz",
+ "label": "labelsTr/pancreas_348.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_236.nii.gz",
+ "label": "labelsTr/pancreas_236.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_412.nii.gz",
+ "label": "labelsTr/pancreas_412.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_290.nii.gz",
+ "label": "labelsTr/pancreas_290.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_276.nii.gz",
+ "label": "labelsTr/pancreas_276.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_160.nii.gz",
+ "label": "labelsTr/pancreas_160.nii.gz"
+ },
+ {
+ "image": "imagesTr/pancreas_416.nii.gz",
+ "label": "labelsTr/pancreas_416.nii.gz"
+ }
+ ]
+}
diff --git a/vista3d/data/jsons/Task08_5_folds.json b/vista3d/data/jsons/Task08_5_folds.json
new file mode 100644
index 0000000..9c779eb
--- /dev/null
+++ b/vista3d/data/jsons/Task08_5_folds.json
@@ -0,0 +1,2206 @@
+{
+ "training": [
+ {
+ "image": "imagesTr/hepaticvessel_372.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_372.nii.gz",
+ "label": "labelsTr/hepaticvessel_372.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "imagesTr/hepaticvessel_165.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_165.nii.gz",
+ "label": "labelsTr/hepaticvessel_165.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "imagesTr/hepaticvessel_145.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_145.nii.gz",
+ "label": "labelsTr/hepaticvessel_145.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_046.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_046.nii.gz",
+ "label": "labelsTr/hepaticvessel_046.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_379.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_379.nii.gz",
+ "label": "labelsTr/hepaticvessel_379.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "imagesTr/hepaticvessel_214.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_214.nii.gz",
+ "label": "labelsTr/hepaticvessel_214.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_096.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_096.nii.gz",
+ "label": "labelsTr/hepaticvessel_096.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_401.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_401.nii.gz",
+ "label": "labelsTr/hepaticvessel_401.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_350.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_350.nii.gz",
+ "label": "labelsTr/hepaticvessel_350.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_175.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_175.nii.gz",
+ "label": "labelsTr/hepaticvessel_175.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_330.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_330.nii.gz",
+ "label": "labelsTr/hepaticvessel_330.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_378.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_378.nii.gz",
+ "label": "labelsTr/hepaticvessel_378.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_280.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_280.nii.gz",
+ "label": "labelsTr/hepaticvessel_280.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_111.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_111.nii.gz",
+ "label": "labelsTr/hepaticvessel_111.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_384.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_384.nii.gz",
+ "label": "labelsTr/hepaticvessel_384.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "imagesTr/hepaticvessel_097.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_097.nii.gz",
+ "label": "labelsTr/hepaticvessel_097.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_325.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_325.nii.gz",
+ "label": "labelsTr/hepaticvessel_325.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_416.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_416.nii.gz",
+ "label": "labelsTr/hepaticvessel_416.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_215.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_215.nii.gz",
+ "label": "labelsTr/hepaticvessel_215.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_305.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_305.nii.gz",
+ "label": "labelsTr/hepaticvessel_305.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_318.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_318.nii.gz",
+ "label": "labelsTr/hepaticvessel_318.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_236.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_236.nii.gz",
+ "label": "labelsTr/hepaticvessel_236.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_195.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_195.nii.gz",
+ "label": "labelsTr/hepaticvessel_195.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_445.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_445.nii.gz",
+ "label": "labelsTr/hepaticvessel_445.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_203.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_203.nii.gz",
+ "label": "labelsTr/hepaticvessel_203.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_085.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_085.nii.gz",
+ "label": "labelsTr/hepaticvessel_085.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_129.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_129.nii.gz",
+ "label": "labelsTr/hepaticvessel_129.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_307.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_307.nii.gz",
+ "label": "labelsTr/hepaticvessel_307.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_242.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_242.nii.gz",
+ "label": "labelsTr/hepaticvessel_242.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_159.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_159.nii.gz",
+ "label": "labelsTr/hepaticvessel_159.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_263.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_263.nii.gz",
+ "label": "labelsTr/hepaticvessel_263.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "imagesTr/hepaticvessel_285.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_285.nii.gz",
+ "label": "labelsTr/hepaticvessel_285.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_079.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_079.nii.gz",
+ "label": "labelsTr/hepaticvessel_079.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_281.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_281.nii.gz",
+ "label": "labelsTr/hepaticvessel_281.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_362.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_362.nii.gz",
+ "label": "labelsTr/hepaticvessel_362.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "imagesTr/hepaticvessel_256.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_256.nii.gz",
+ "label": "labelsTr/hepaticvessel_256.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "imagesTr/hepaticvessel_164.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_164.nii.gz",
+ "label": "labelsTr/hepaticvessel_164.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_259.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_259.nii.gz",
+ "label": "labelsTr/hepaticvessel_259.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_186.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_186.nii.gz",
+ "label": "labelsTr/hepaticvessel_186.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_104.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_104.nii.gz",
+ "label": "labelsTr/hepaticvessel_104.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_404.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_404.nii.gz",
+ "label": "labelsTr/hepaticvessel_404.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_068.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_068.nii.gz",
+ "label": "labelsTr/hepaticvessel_068.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_333.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_333.nii.gz",
+ "label": "labelsTr/hepaticvessel_333.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_027.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_027.nii.gz",
+ "label": "labelsTr/hepaticvessel_027.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_192.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_192.nii.gz",
+ "label": "labelsTr/hepaticvessel_192.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_262.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_262.nii.gz",
+ "label": "labelsTr/hepaticvessel_262.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_385.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_385.nii.gz",
+ "label": "labelsTr/hepaticvessel_385.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_368.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_368.nii.gz",
+ "label": "labelsTr/hepaticvessel_368.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_112.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_112.nii.gz",
+ "label": "labelsTr/hepaticvessel_112.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_308.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_308.nii.gz",
+ "label": "labelsTr/hepaticvessel_308.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_308/hepaticvessel_308_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_433.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_433.nii.gz",
+ "label": "labelsTr/hepaticvessel_433.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_433/hepaticvessel_433_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_020.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_020.nii.gz",
+ "label": "labelsTr/hepaticvessel_020.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_020/hepaticvessel_020_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_291.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_291.nii.gz",
+ "label": "labelsTr/hepaticvessel_291.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_244.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_244.nii.gz",
+ "label": "labelsTr/hepaticvessel_244.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_244/hepaticvessel_244_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_321.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_321.nii.gz",
+ "label": "labelsTr/hepaticvessel_321.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_321/hepaticvessel_321_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_382.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_382.nii.gz",
+ "label": "labelsTr/hepaticvessel_382.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_382/hepaticvessel_382_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_007.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_007.nii.gz",
+ "label": "labelsTr/hepaticvessel_007.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_007/hepaticvessel_007_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_208.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_208.nii.gz",
+ "label": "labelsTr/hepaticvessel_208.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_208/hepaticvessel_208_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_127.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_127.nii.gz",
+ "label": "labelsTr/hepaticvessel_127.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_127/hepaticvessel_127_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_161.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_161.nii.gz",
+ "label": "labelsTr/hepaticvessel_161.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_161/hepaticvessel_161_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_397.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_397.nii.gz",
+ "label": "labelsTr/hepaticvessel_397.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_425.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_425.nii.gz",
+ "label": "labelsTr/hepaticvessel_425.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_425/hepaticvessel_425_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_039.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_039.nii.gz",
+ "label": "labelsTr/hepaticvessel_039.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_039/hepaticvessel_039_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_166.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_166.nii.gz",
+ "label": "labelsTr/hepaticvessel_166.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_078.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_078.nii.gz",
+ "label": "labelsTr/hepaticvessel_078.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_078/hepaticvessel_078_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_032.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_032.nii.gz",
+ "label": "labelsTr/hepaticvessel_032.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_032/hepaticvessel_032_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_209.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_209.nii.gz",
+ "label": "labelsTr/hepaticvessel_209.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_209/hepaticvessel_209_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_128.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_128.nii.gz",
+ "label": "labelsTr/hepaticvessel_128.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_128/hepaticvessel_128_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_299.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_299.nii.gz",
+ "label": "labelsTr/hepaticvessel_299.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_051.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_051.nii.gz",
+ "label": "labelsTr/hepaticvessel_051.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_051/hepaticvessel_051_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_438.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_438.nii.gz",
+ "label": "labelsTr/hepaticvessel_438.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_438/hepaticvessel_438_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_061.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_061.nii.gz",
+ "label": "labelsTr/hepaticvessel_061.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_061/hepaticvessel_061_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_437.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_437.nii.gz",
+ "label": "labelsTr/hepaticvessel_437.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_018.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_018.nii.gz",
+ "label": "labelsTr/hepaticvessel_018.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_018/hepaticvessel_018_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_167.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_167.nii.gz",
+ "label": "labelsTr/hepaticvessel_167.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_167/hepaticvessel_167_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_062.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_062.nii.gz",
+ "label": "labelsTr/hepaticvessel_062.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_062/hepaticvessel_062_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_144.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_144.nii.gz",
+ "label": "labelsTr/hepaticvessel_144.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_144/hepaticvessel_144_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_183.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_183.nii.gz",
+ "label": "labelsTr/hepaticvessel_183.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_183/hepaticvessel_183_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_150.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_150.nii.gz",
+ "label": "labelsTr/hepaticvessel_150.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "imagesTr/hepaticvessel_030.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_030.nii.gz",
+ "label": "labelsTr/hepaticvessel_030.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_030/hepaticvessel_030_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_067.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_067.nii.gz",
+ "label": "labelsTr/hepaticvessel_067.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_067/hepaticvessel_067_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_142.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_142.nii.gz",
+ "label": "labelsTr/hepaticvessel_142.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_142/hepaticvessel_142_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_332.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_332.nii.gz",
+ "label": "labelsTr/hepaticvessel_332.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_443.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_443.nii.gz",
+ "label": "labelsTr/hepaticvessel_443.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_139.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_139.nii.gz",
+ "label": "labelsTr/hepaticvessel_139.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_139/hepaticvessel_139_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_408.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_408.nii.gz",
+ "label": "labelsTr/hepaticvessel_408.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_408/hepaticvessel_408_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_132.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_132.nii.gz",
+ "label": "labelsTr/hepaticvessel_132.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_132/hepaticvessel_132_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_358.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_358.nii.gz",
+ "label": "labelsTr/hepaticvessel_358.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_335.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_335.nii.gz",
+ "label": "labelsTr/hepaticvessel_335.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_335/hepaticvessel_335_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_398.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_398.nii.gz",
+ "label": "labelsTr/hepaticvessel_398.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_398/hepaticvessel_398_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_412.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_412.nii.gz",
+ "label": "labelsTr/hepaticvessel_412.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_412/hepaticvessel_412_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_447.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_447.nii.gz",
+ "label": "labelsTr/hepaticvessel_447.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_447/hepaticvessel_447_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_409.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_409.nii.gz",
+ "label": "labelsTr/hepaticvessel_409.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_088.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_088.nii.gz",
+ "label": "labelsTr/hepaticvessel_088.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_088/hepaticvessel_088_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_026.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_026.nii.gz",
+ "label": "labelsTr/hepaticvessel_026.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_026/hepaticvessel_026_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_442.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_442.nii.gz",
+ "label": "labelsTr/hepaticvessel_442.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_442/hepaticvessel_442_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_058.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_058.nii.gz",
+ "label": "labelsTr/hepaticvessel_058.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_058/hepaticvessel_058_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_201.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_201.nii.gz",
+ "label": "labelsTr/hepaticvessel_201.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_201/hepaticvessel_201_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_434.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_434.nii.gz",
+ "label": "labelsTr/hepaticvessel_434.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_434/hepaticvessel_434_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_086.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_086.nii.gz",
+ "label": "labelsTr/hepaticvessel_086.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_086/hepaticvessel_086_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_363.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_363.nii.gz",
+ "label": "labelsTr/hepaticvessel_363.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_363/hepaticvessel_363_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_383.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_383.nii.gz",
+ "label": "labelsTr/hepaticvessel_383.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "imagesTr/hepaticvessel_033.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_033.nii.gz",
+ "label": "labelsTr/hepaticvessel_033.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "imagesTr/hepaticvessel_219.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_219.nii.gz",
+ "label": "labelsTr/hepaticvessel_219.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_296.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_296.nii.gz",
+ "label": "labelsTr/hepaticvessel_296.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_296/hepaticvessel_296_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_181.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_181.nii.gz",
+ "label": "labelsTr/hepaticvessel_181.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_181/hepaticvessel_181_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_269.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_269.nii.gz",
+ "label": "labelsTr/hepaticvessel_269.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_269/hepaticvessel_269_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_272.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_272.nii.gz",
+ "label": "labelsTr/hepaticvessel_272.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_272/hepaticvessel_272_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_177.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_177.nii.gz",
+ "label": "labelsTr/hepaticvessel_177.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_177/hepaticvessel_177_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_029.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_029.nii.gz",
+ "label": "labelsTr/hepaticvessel_029.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_029/hepaticvessel_029_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_218.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_218.nii.gz",
+ "label": "labelsTr/hepaticvessel_218.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_218/hepaticvessel_218_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_356.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_356.nii.gz",
+ "label": "labelsTr/hepaticvessel_356.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_356/hepaticvessel_356_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_091.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_091.nii.gz",
+ "label": "labelsTr/hepaticvessel_091.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_091/hepaticvessel_091_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_042.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_042.nii.gz",
+ "label": "labelsTr/hepaticvessel_042.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_042/hepaticvessel_042_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_289.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_289.nii.gz",
+ "label": "labelsTr/hepaticvessel_289.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_289/hepaticvessel_289_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_044.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_044.nii.gz",
+ "label": "labelsTr/hepaticvessel_044.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_044/hepaticvessel_044_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_194.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_194.nii.gz",
+ "label": "labelsTr/hepaticvessel_194.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_194/hepaticvessel_194_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_019.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_019.nii.gz",
+ "label": "labelsTr/hepaticvessel_019.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_019/hepaticvessel_019_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_444.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_444.nii.gz",
+ "label": "labelsTr/hepaticvessel_444.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_322.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_322.nii.gz",
+ "label": "labelsTr/hepaticvessel_322.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_322/hepaticvessel_322_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_222.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_222.nii.gz",
+ "label": "labelsTr/hepaticvessel_222.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_222/hepaticvessel_222_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_258.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_258.nii.gz",
+ "label": "labelsTr/hepaticvessel_258.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_258/hepaticvessel_258_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_237.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_237.nii.gz",
+ "label": "labelsTr/hepaticvessel_237.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_237/hepaticvessel_237_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_223.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_223.nii.gz",
+ "label": "labelsTr/hepaticvessel_223.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_361.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_361.nii.gz",
+ "label": "labelsTr/hepaticvessel_361.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_361/hepaticvessel_361_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_131.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_131.nii.gz",
+ "label": "labelsTr/hepaticvessel_131.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_131/hepaticvessel_131_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_455.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_455.nii.gz",
+ "label": "labelsTr/hepaticvessel_455.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_455/hepaticvessel_455_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_124.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_124.nii.gz",
+ "label": "labelsTr/hepaticvessel_124.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_124/hepaticvessel_124_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_008.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_008.nii.gz",
+ "label": "labelsTr/hepaticvessel_008.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_008/hepaticvessel_008_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_001.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_001.nii.gz",
+ "label": "labelsTr/hepaticvessel_001.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_001/hepaticvessel_001_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_293.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_293.nii.gz",
+ "label": "labelsTr/hepaticvessel_293.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_293/hepaticvessel_293_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_271.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_271.nii.gz",
+ "label": "labelsTr/hepaticvessel_271.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_059.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_059.nii.gz",
+ "label": "labelsTr/hepaticvessel_059.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_059/hepaticvessel_059_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_431.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_431.nii.gz",
+ "label": "labelsTr/hepaticvessel_431.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_431/hepaticvessel_431_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_329.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_329.nii.gz",
+ "label": "labelsTr/hepaticvessel_329.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_329/hepaticvessel_329_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_147.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_147.nii.gz",
+ "label": "labelsTr/hepaticvessel_147.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_147/hepaticvessel_147_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_121.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_121.nii.gz",
+ "label": "labelsTr/hepaticvessel_121.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_121/hepaticvessel_121_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_077.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_077.nii.gz",
+ "label": "labelsTr/hepaticvessel_077.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_077/hepaticvessel_077_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_345.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_345.nii.gz",
+ "label": "labelsTr/hepaticvessel_345.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_117.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_117.nii.gz",
+ "label": "labelsTr/hepaticvessel_117.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_117/hepaticvessel_117_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_174.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_174.nii.gz",
+ "label": "labelsTr/hepaticvessel_174.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_174/hepaticvessel_174_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_224.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_224.nii.gz",
+ "label": "labelsTr/hepaticvessel_224.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_224/hepaticvessel_224_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_199.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_199.nii.gz",
+ "label": "labelsTr/hepaticvessel_199.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_199/hepaticvessel_199_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_217.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_217.nii.gz",
+ "label": "labelsTr/hepaticvessel_217.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_217/hepaticvessel_217_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_179.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_179.nii.gz",
+ "label": "labelsTr/hepaticvessel_179.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_179/hepaticvessel_179_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_274.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_274.nii.gz",
+ "label": "labelsTr/hepaticvessel_274.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_274/hepaticvessel_274_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_148.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_148.nii.gz",
+ "label": "labelsTr/hepaticvessel_148.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_148/hepaticvessel_148_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_371.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_371.nii.gz",
+ "label": "labelsTr/hepaticvessel_371.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_371/hepaticvessel_371_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_458.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_458.nii.gz",
+ "label": "labelsTr/hepaticvessel_458.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_094.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_094.nii.gz",
+ "label": "labelsTr/hepaticvessel_094.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_094/hepaticvessel_094_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_367.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_367.nii.gz",
+ "label": "labelsTr/hepaticvessel_367.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_367/hepaticvessel_367_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_093.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_093.nii.gz",
+ "label": "labelsTr/hepaticvessel_093.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_093/hepaticvessel_093_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_116.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_116.nii.gz",
+ "label": "labelsTr/hepaticvessel_116.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_116/hepaticvessel_116_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_314.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_314.nii.gz",
+ "label": "labelsTr/hepaticvessel_314.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_314/hepaticvessel_314_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_422.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_422.nii.gz",
+ "label": "labelsTr/hepaticvessel_422.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_422/hepaticvessel_422_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_388.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_388.nii.gz",
+ "label": "labelsTr/hepaticvessel_388.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_092.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_092.nii.gz",
+ "label": "labelsTr/hepaticvessel_092.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_092/hepaticvessel_092_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_375.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_375.nii.gz",
+ "label": "labelsTr/hepaticvessel_375.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_419.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_419.nii.gz",
+ "label": "labelsTr/hepaticvessel_419.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_419/hepaticvessel_419_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_072.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_072.nii.gz",
+ "label": "labelsTr/hepaticvessel_072.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_072/hepaticvessel_072_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_400.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_400.nii.gz",
+ "label": "labelsTr/hepaticvessel_400.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_070.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_070.nii.gz",
+ "label": "labelsTr/hepaticvessel_070.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_070/hepaticvessel_070_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_303.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_303.nii.gz",
+ "label": "labelsTr/hepaticvessel_303.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_303/hepaticvessel_303_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_248.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_248.nii.gz",
+ "label": "labelsTr/hepaticvessel_248.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_248/hepaticvessel_248_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_396.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_396.nii.gz",
+ "label": "labelsTr/hepaticvessel_396.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_265.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_265.nii.gz",
+ "label": "labelsTr/hepaticvessel_265.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_265/hepaticvessel_265_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_278.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_278.nii.gz",
+ "label": "labelsTr/hepaticvessel_278.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_278/hepaticvessel_278_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_119.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_119.nii.gz",
+ "label": "labelsTr/hepaticvessel_119.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_119/hepaticvessel_119_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_103.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_103.nii.gz",
+ "label": "labelsTr/hepaticvessel_103.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_103/hepaticvessel_103_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_427.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_427.nii.gz",
+ "label": "labelsTr/hepaticvessel_427.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_427/hepaticvessel_427_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_279.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_279.nii.gz",
+ "label": "labelsTr/hepaticvessel_279.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_002.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_002.nii.gz",
+ "label": "labelsTr/hepaticvessel_002.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_002/hepaticvessel_002_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_344.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_344.nii.gz",
+ "label": "labelsTr/hepaticvessel_344.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "imagesTr/hepaticvessel_432.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_432.nii.gz",
+ "label": "labelsTr/hepaticvessel_432.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_089.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_089.nii.gz",
+ "label": "labelsTr/hepaticvessel_089.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_089/hepaticvessel_089_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_207.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_207.nii.gz",
+ "label": "labelsTr/hepaticvessel_207.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_207/hepaticvessel_207_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_173.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_173.nii.gz",
+ "label": "labelsTr/hepaticvessel_173.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_359.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_359.nii.gz",
+ "label": "labelsTr/hepaticvessel_359.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_359/hepaticvessel_359_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_454.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_454.nii.gz",
+ "label": "labelsTr/hepaticvessel_454.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_454/hepaticvessel_454_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_087.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_087.nii.gz",
+ "label": "labelsTr/hepaticvessel_087.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_087/hepaticvessel_087_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_297.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_297.nii.gz",
+ "label": "labelsTr/hepaticvessel_297.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_297/hepaticvessel_297_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_231.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_231.nii.gz",
+ "label": "labelsTr/hepaticvessel_231.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_231/hepaticvessel_231_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_284.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_284.nii.gz",
+ "label": "labelsTr/hepaticvessel_284.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_284/hepaticvessel_284_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_386.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_386.nii.gz",
+ "label": "labelsTr/hepaticvessel_386.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_386/hepaticvessel_386_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_238.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_238.nii.gz",
+ "label": "labelsTr/hepaticvessel_238.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_221.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_221.nii.gz",
+ "label": "labelsTr/hepaticvessel_221.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_221/hepaticvessel_221_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_100.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_100.nii.gz",
+ "label": "labelsTr/hepaticvessel_100.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_100/hepaticvessel_100_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_050.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_050.nii.gz",
+ "label": "labelsTr/hepaticvessel_050.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_050/hepaticvessel_050_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_234.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_234.nii.gz",
+ "label": "labelsTr/hepaticvessel_234.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_234/hepaticvessel_234_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_320.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_320.nii.gz",
+ "label": "labelsTr/hepaticvessel_320.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_320/hepaticvessel_320_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_110.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_110.nii.gz",
+ "label": "labelsTr/hepaticvessel_110.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_110/hepaticvessel_110_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_200.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_200.nii.gz",
+ "label": "labelsTr/hepaticvessel_200.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_200/hepaticvessel_200_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_136.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_136.nii.gz",
+ "label": "labelsTr/hepaticvessel_136.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_136/hepaticvessel_136_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_028.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_028.nii.gz",
+ "label": "labelsTr/hepaticvessel_028.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_028/hepaticvessel_028_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_146.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_146.nii.gz",
+ "label": "labelsTr/hepaticvessel_146.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_146/hepaticvessel_146_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_011.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_011.nii.gz",
+ "label": "labelsTr/hepaticvessel_011.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_011/hepaticvessel_011_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_185.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_185.nii.gz",
+ "label": "labelsTr/hepaticvessel_185.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_185/hepaticvessel_185_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_225.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_225.nii.gz",
+ "label": "labelsTr/hepaticvessel_225.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_225/hepaticvessel_225_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_171.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_171.nii.gz",
+ "label": "labelsTr/hepaticvessel_171.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_189.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_189.nii.gz",
+ "label": "labelsTr/hepaticvessel_189.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_189/hepaticvessel_189_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_389.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_389.nii.gz",
+ "label": "labelsTr/hepaticvessel_389.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_389/hepaticvessel_389_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_340.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_340.nii.gz",
+ "label": "labelsTr/hepaticvessel_340.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_340/hepaticvessel_340_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_113.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_113.nii.gz",
+ "label": "labelsTr/hepaticvessel_113.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_113/hepaticvessel_113_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_013.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_013.nii.gz",
+ "label": "labelsTr/hepaticvessel_013.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_013/hepaticvessel_013_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_137.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_137.nii.gz",
+ "label": "labelsTr/hepaticvessel_137.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_137/hepaticvessel_137_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_406.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_406.nii.gz",
+ "label": "labelsTr/hepaticvessel_406.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_406/hepaticvessel_406_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_115.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_115.nii.gz",
+ "label": "labelsTr/hepaticvessel_115.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_115/hepaticvessel_115_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_282.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_282.nii.gz",
+ "label": "labelsTr/hepaticvessel_282.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_282/hepaticvessel_282_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_391.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_391.nii.gz",
+ "label": "labelsTr/hepaticvessel_391.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_391/hepaticvessel_391_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_373.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_373.nii.gz",
+ "label": "labelsTr/hepaticvessel_373.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_373/hepaticvessel_373_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_349.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_349.nii.gz",
+ "label": "labelsTr/hepaticvessel_349.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_349/hepaticvessel_349_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_374.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_374.nii.gz",
+ "label": "labelsTr/hepaticvessel_374.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_083.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_083.nii.gz",
+ "label": "labelsTr/hepaticvessel_083.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_083/hepaticvessel_083_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_082.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_082.nii.gz",
+ "label": "labelsTr/hepaticvessel_082.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_082/hepaticvessel_082_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_022.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_022.nii.gz",
+ "label": "labelsTr/hepaticvessel_022.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_022/hepaticvessel_022_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_023.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_023.nii.gz",
+ "label": "labelsTr/hepaticvessel_023.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_023/hepaticvessel_023_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_071.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_071.nii.gz",
+ "label": "labelsTr/hepaticvessel_071.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_071/hepaticvessel_071_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_010.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_010.nii.gz",
+ "label": "labelsTr/hepaticvessel_010.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_010/hepaticvessel_010_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_323.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_323.nii.gz",
+ "label": "labelsTr/hepaticvessel_323.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_323/hepaticvessel_323_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_102.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_102.nii.gz",
+ "label": "labelsTr/hepaticvessel_102.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_102/hepaticvessel_102_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_053.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_053.nii.gz",
+ "label": "labelsTr/hepaticvessel_053.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_053/hepaticvessel_053_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_141.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_141.nii.gz",
+ "label": "labelsTr/hepaticvessel_141.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "imagesTr/hepaticvessel_154.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_154.nii.gz",
+ "label": "labelsTr/hepaticvessel_154.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_154/hepaticvessel_154_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_233.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_233.nii.gz",
+ "label": "labelsTr/hepaticvessel_233.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_233/hepaticvessel_233_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_178.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_178.nii.gz",
+ "label": "labelsTr/hepaticvessel_178.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_178/hepaticvessel_178_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_286.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_286.nii.gz",
+ "label": "labelsTr/hepaticvessel_286.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_286/hepaticvessel_286_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_172.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_172.nii.gz",
+ "label": "labelsTr/hepaticvessel_172.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_172/hepaticvessel_172_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_075.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_075.nii.gz",
+ "label": "labelsTr/hepaticvessel_075.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_075/hepaticvessel_075_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_309.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_309.nii.gz",
+ "label": "labelsTr/hepaticvessel_309.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_309/hepaticvessel_309_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_138.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_138.nii.gz",
+ "label": "labelsTr/hepaticvessel_138.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_138/hepaticvessel_138_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_446.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_446.nii.gz",
+ "label": "labelsTr/hepaticvessel_446.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_446/hepaticvessel_446_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_287.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_287.nii.gz",
+ "label": "labelsTr/hepaticvessel_287.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_108.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_108.nii.gz",
+ "label": "labelsTr/hepaticvessel_108.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_108/hepaticvessel_108_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_453.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_453.nii.gz",
+ "label": "labelsTr/hepaticvessel_453.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_453/hepaticvessel_453_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_206.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_206.nii.gz",
+ "label": "labelsTr/hepaticvessel_206.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_206/hepaticvessel_206_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_393.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_393.nii.gz",
+ "label": "labelsTr/hepaticvessel_393.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_393/hepaticvessel_393_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_229.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_229.nii.gz",
+ "label": "labelsTr/hepaticvessel_229.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_229/hepaticvessel_229_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_441.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_441.nii.gz",
+ "label": "labelsTr/hepaticvessel_441.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_441/hepaticvessel_441_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_294.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_294.nii.gz",
+ "label": "labelsTr/hepaticvessel_294.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_294/hepaticvessel_294_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_151.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_151.nii.gz",
+ "label": "labelsTr/hepaticvessel_151.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_151/hepaticvessel_151_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_275.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_275.nii.gz",
+ "label": "labelsTr/hepaticvessel_275.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/hepaticvessel_424.nii.gz",
+ "pseudo_label": "imagesTr/hepaticvessel_424.nii.gz",
+ "label": "labelsTr/hepaticvessel_424.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_424/hepaticvessel_424_seg.nii.gz"
+ }
+ ],
+ "training_transform": [
+ {
+ "_target_": "RandCropByLabelClassesd",
+ "keys": [
+ "@image_key",
+ "@label_key",
+ "@pseudo_label_key",
+ "@label_sv_key"
+ ],
+ "label_key": "@pseudo_label_key",
+ "num_classes": 133,
+ "num_samples": "@num_patches_per_image",
+ "spatial_size": "@patch_size",
+ "ratios": "$tuple(float(i >= 0) for i in range(133))",
+ "warn": false,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandZoomd",
+ "keys": [
+ "@image_key",
+ "@label_key",
+ "@pseudo_label_key",
+ "@label_sv_key"
+ ],
+ "min_zoom": 0.8,
+ "max_zoom": 1.2,
+ "mode": [
+ "trilinear",
+ "nearest",
+ "nearest",
+ "nearest"
+ ],
+ "prob": 0.2,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandSimulateLowResolutiond",
+ "keys": [
+ "@image_key"
+ ],
+ "zoom_range": [
+ 0.3,
+ 1
+ ],
+ "prob": 0.2,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandGaussianSmoothd",
+ "keys": [
+ "@image_key"
+ ],
+ "prob": 0.2,
+ "sigma_x": [
+ 0.5,
+ 1.0
+ ],
+ "sigma_y": [
+ 0.5,
+ 1.0
+ ],
+ "sigma_z": [
+ 0.5,
+ 1.0
+ ]
+ },
+ {
+ "_target_": "RandScaleIntensityd",
+ "keys": [
+ "@image_key"
+ ],
+ "factors": 0.1,
+ "prob": 0.2
+ },
+ {
+ "_target_": "RandShiftIntensityd",
+ "keys": [
+ "@image_key"
+ ],
+ "offsets": 0.1,
+ "prob": 0.2
+ },
+ {
+ "_target_": "RandGaussianNoised",
+ "keys": [
+ "@image_key"
+ ],
+ "prob": 0.2,
+ "mean": 0.0,
+ "std": 0.2
+ }
+ ],
+ "label_dict": {
+ "1": "hepatic vessel",
+ "2": "hepatic tumor"
+ },
+ "original_label_dict": {
+ "1": "Vessel",
+ "2": "Tumour"
+ },
+ "testing": [
+ {
+ "image": "imagesTr/hepaticvessel_230.nii.gz",
+ "label": "labelsTr/hepaticvessel_230.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_066.nii.gz",
+ "label": "labelsTr/hepaticvessel_066.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_327.nii.gz",
+ "label": "labelsTr/hepaticvessel_327.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_163.nii.gz",
+ "label": "labelsTr/hepaticvessel_163.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_098.nii.gz",
+ "label": "labelsTr/hepaticvessel_098.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_125.nii.gz",
+ "label": "labelsTr/hepaticvessel_125.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_081.nii.gz",
+ "label": "labelsTr/hepaticvessel_081.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_423.nii.gz",
+ "label": "labelsTr/hepaticvessel_423.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_193.nii.gz",
+ "label": "labelsTr/hepaticvessel_193.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_341.nii.gz",
+ "label": "labelsTr/hepaticvessel_341.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_016.nii.gz",
+ "label": "labelsTr/hepaticvessel_016.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_090.nii.gz",
+ "label": "labelsTr/hepaticvessel_090.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_213.nii.gz",
+ "label": "labelsTr/hepaticvessel_213.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_255.nii.gz",
+ "label": "labelsTr/hepaticvessel_255.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_049.nii.gz",
+ "label": "labelsTr/hepaticvessel_049.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_246.nii.gz",
+ "label": "labelsTr/hepaticvessel_246.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_235.nii.gz",
+ "label": "labelsTr/hepaticvessel_235.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_266.nii.gz",
+ "label": "labelsTr/hepaticvessel_266.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_025.nii.gz",
+ "label": "labelsTr/hepaticvessel_025.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_348.nii.gz",
+ "label": "labelsTr/hepaticvessel_348.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_240.nii.gz",
+ "label": "labelsTr/hepaticvessel_240.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_080.nii.gz",
+ "label": "labelsTr/hepaticvessel_080.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_402.nii.gz",
+ "label": "labelsTr/hepaticvessel_402.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_052.nii.gz",
+ "label": "labelsTr/hepaticvessel_052.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_196.nii.gz",
+ "label": "labelsTr/hepaticvessel_196.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_456.nii.gz",
+ "label": "labelsTr/hepaticvessel_456.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_338.nii.gz",
+ "label": "labelsTr/hepaticvessel_338.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_065.nii.gz",
+ "label": "labelsTr/hepaticvessel_065.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_004.nii.gz",
+ "label": "labelsTr/hepaticvessel_004.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_005.nii.gz",
+ "label": "labelsTr/hepaticvessel_005.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_198.nii.gz",
+ "label": "labelsTr/hepaticvessel_198.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_184.nii.gz",
+ "label": "labelsTr/hepaticvessel_184.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_319.nii.gz",
+ "label": "labelsTr/hepaticvessel_319.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_133.nii.gz",
+ "label": "labelsTr/hepaticvessel_133.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_369.nii.gz",
+ "label": "labelsTr/hepaticvessel_369.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_353.nii.gz",
+ "label": "labelsTr/hepaticvessel_353.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_290.nii.gz",
+ "label": "labelsTr/hepaticvessel_290.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_197.nii.gz",
+ "label": "labelsTr/hepaticvessel_197.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_160.nii.gz",
+ "label": "labelsTr/hepaticvessel_160.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_440.nii.gz",
+ "label": "labelsTr/hepaticvessel_440.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_158.nii.gz",
+ "label": "labelsTr/hepaticvessel_158.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_123.nii.gz",
+ "label": "labelsTr/hepaticvessel_123.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_324.nii.gz",
+ "label": "labelsTr/hepaticvessel_324.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_407.nii.gz",
+ "label": "labelsTr/hepaticvessel_407.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_211.nii.gz",
+ "label": "labelsTr/hepaticvessel_211.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_300.nii.gz",
+ "label": "labelsTr/hepaticvessel_300.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_057.nii.gz",
+ "label": "labelsTr/hepaticvessel_057.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_227.nii.gz",
+ "label": "labelsTr/hepaticvessel_227.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_031.nii.gz",
+ "label": "labelsTr/hepaticvessel_031.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_084.nii.gz",
+ "label": "labelsTr/hepaticvessel_084.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_157.nii.gz",
+ "label": "labelsTr/hepaticvessel_157.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_270.nii.gz",
+ "label": "labelsTr/hepaticvessel_270.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_040.nii.gz",
+ "label": "labelsTr/hepaticvessel_040.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_336.nii.gz",
+ "label": "labelsTr/hepaticvessel_336.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_210.nii.gz",
+ "label": "labelsTr/hepaticvessel_210.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_411.nii.gz",
+ "label": "labelsTr/hepaticvessel_411.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_268.nii.gz",
+ "label": "labelsTr/hepaticvessel_268.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_429.nii.gz",
+ "label": "labelsTr/hepaticvessel_429.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_245.nii.gz",
+ "label": "labelsTr/hepaticvessel_245.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_140.nii.gz",
+ "label": "labelsTr/hepaticvessel_140.nii.gz"
+ },
+ {
+ "image": "imagesTr/hepaticvessel_420.nii.gz",
+ "label": "labelsTr/hepaticvessel_420.nii.gz"
+ }
+ ]
+}
diff --git a/vista3d/data/jsons/Task09_5_folds.json b/vista3d/data/jsons/Task09_5_folds.json
new file mode 100644
index 0000000..95d2fc0
--- /dev/null
+++ b/vista3d/data/jsons/Task09_5_folds.json
@@ -0,0 +1,394 @@
+{
+ "training": [
+ {
+ "image": "imagesTr/spleen_12.nii.gz",
+ "pseudo_label": "imagesTr/spleen_12.nii.gz",
+ "label": "labelsTr/spleen_12.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/spleen_63.nii.gz",
+ "pseudo_label": "imagesTr/spleen_63.nii.gz",
+ "label": "labelsTr/spleen_63.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/spleen_2.nii.gz",
+ "pseudo_label": "imagesTr/spleen_2.nii.gz",
+ "label": "labelsTr/spleen_2.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/spleen_9.nii.gz",
+ "pseudo_label": "imagesTr/spleen_9.nii.gz",
+ "label": "labelsTr/spleen_9.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/spleen_20.nii.gz",
+ "pseudo_label": "imagesTr/spleen_20.nii.gz",
+ "label": "labelsTr/spleen_20.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/spleen_59.nii.gz",
+ "pseudo_label": "imagesTr/spleen_59.nii.gz",
+ "label": "labelsTr/spleen_59.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/spleen_41.nii.gz",
+ "pseudo_label": "imagesTr/spleen_41.nii.gz",
+ "label": "labelsTr/spleen_41.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/spleen_27.nii.gz",
+ "pseudo_label": "imagesTr/spleen_27.nii.gz",
+ "label": "labelsTr/spleen_27.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task09_100/spleen_27/spleen_27_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/spleen_40.nii.gz",
+ "pseudo_label": "imagesTr/spleen_40.nii.gz",
+ "label": "labelsTr/spleen_40.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task09_100/spleen_40/spleen_40_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/spleen_17.nii.gz",
+ "pseudo_label": "imagesTr/spleen_17.nii.gz",
+ "label": "labelsTr/spleen_17.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task09_100/spleen_17/spleen_17_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/spleen_32.nii.gz",
+ "pseudo_label": "imagesTr/spleen_32.nii.gz",
+ "label": "labelsTr/spleen_32.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task09_100/spleen_32/spleen_32_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/spleen_26.nii.gz",
+ "pseudo_label": "imagesTr/spleen_26.nii.gz",
+ "label": "labelsTr/spleen_26.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task09_100/spleen_26/spleen_26_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/spleen_49.nii.gz",
+ "pseudo_label": "imagesTr/spleen_49.nii.gz",
+ "label": "labelsTr/spleen_49.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task09_100/spleen_49/spleen_49_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/spleen_62.nii.gz",
+ "pseudo_label": "imagesTr/spleen_62.nii.gz",
+ "label": "labelsTr/spleen_62.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task09_100/spleen_62/spleen_62_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/spleen_56.nii.gz",
+ "pseudo_label": "imagesTr/spleen_56.nii.gz",
+ "label": "labelsTr/spleen_56.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task09_100/spleen_56/spleen_56_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/spleen_28.nii.gz",
+ "pseudo_label": "imagesTr/spleen_28.nii.gz",
+ "label": "labelsTr/spleen_28.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task09_100/spleen_28/spleen_28_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/spleen_31.nii.gz",
+ "pseudo_label": "imagesTr/spleen_31.nii.gz",
+ "label": "labelsTr/spleen_31.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task09_100/spleen_31/spleen_31_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/spleen_52.nii.gz",
+ "pseudo_label": "imagesTr/spleen_52.nii.gz",
+ "label": "labelsTr/spleen_52.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task09_100/spleen_52/spleen_52_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/spleen_13.nii.gz",
+ "pseudo_label": "imagesTr/spleen_13.nii.gz",
+ "label": "labelsTr/spleen_13.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task09_100/spleen_13/spleen_13_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/spleen_10.nii.gz",
+ "pseudo_label": "imagesTr/spleen_10.nii.gz",
+ "label": "labelsTr/spleen_10.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task09_100/spleen_10/spleen_10_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/spleen_22.nii.gz",
+ "pseudo_label": "imagesTr/spleen_22.nii.gz",
+ "label": "labelsTr/spleen_22.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task09_100/spleen_22/spleen_22_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/spleen_25.nii.gz",
+ "pseudo_label": "imagesTr/spleen_25.nii.gz",
+ "label": "labelsTr/spleen_25.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task09_100/spleen_25/spleen_25_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/spleen_19.nii.gz",
+ "pseudo_label": "imagesTr/spleen_19.nii.gz",
+ "label": "labelsTr/spleen_19.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task09_100/spleen_19/spleen_19_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/spleen_60.nii.gz",
+ "pseudo_label": "imagesTr/spleen_60.nii.gz",
+ "label": "labelsTr/spleen_60.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task09_100/spleen_60/spleen_60_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/spleen_14.nii.gz",
+ "pseudo_label": "imagesTr/spleen_14.nii.gz",
+ "label": "labelsTr/spleen_14.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task09_100/spleen_14/spleen_14_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/spleen_8.nii.gz",
+ "pseudo_label": "imagesTr/spleen_8.nii.gz",
+ "label": "labelsTr/spleen_8.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task09_100/spleen_8/spleen_8_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/spleen_18.nii.gz",
+ "pseudo_label": "imagesTr/spleen_18.nii.gz",
+ "label": "labelsTr/spleen_18.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task09_100/spleen_18/spleen_18_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/spleen_45.nii.gz",
+ "pseudo_label": "imagesTr/spleen_45.nii.gz",
+ "label": "labelsTr/spleen_45.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task09_100/spleen_45/spleen_45_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/spleen_16.nii.gz",
+ "pseudo_label": "imagesTr/spleen_16.nii.gz",
+ "label": "labelsTr/spleen_16.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task09_100/spleen_16/spleen_16_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/spleen_24.nii.gz",
+ "pseudo_label": "imagesTr/spleen_24.nii.gz",
+ "label": "labelsTr/spleen_24.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task09_100/spleen_24/spleen_24_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/spleen_47.nii.gz",
+ "pseudo_label": "imagesTr/spleen_47.nii.gz",
+ "label": "labelsTr/spleen_47.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task09_100/spleen_47/spleen_47_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/spleen_3.nii.gz",
+ "pseudo_label": "imagesTr/spleen_3.nii.gz",
+ "label": "labelsTr/spleen_3.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task09_100/spleen_3/spleen_3_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/spleen_6.nii.gz",
+ "pseudo_label": "imagesTr/spleen_6.nii.gz",
+ "label": "labelsTr/spleen_6.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task09_100/spleen_6/spleen_6_seg.nii.gz"
+ }
+ ],
+ "training_transform": [
+ {
+ "_target_": "RandCropByLabelClassesd",
+ "keys": [
+ "@image_key",
+ "@label_key",
+ "@pseudo_label_key",
+ "@label_sv_key"
+ ],
+ "label_key": "@pseudo_label_key",
+ "num_classes": 133,
+ "num_samples": "@num_patches_per_image",
+ "spatial_size": "@patch_size",
+ "ratios": "$tuple(float(i >= 0) for i in range(133))",
+ "warn": false,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandZoomd",
+ "keys": [
+ "@image_key",
+ "@label_key",
+ "@pseudo_label_key",
+ "@label_sv_key"
+ ],
+ "min_zoom": 0.8,
+ "max_zoom": 1.2,
+ "mode": [
+ "trilinear",
+ "nearest",
+ "nearest",
+ "nearest"
+ ],
+ "prob": 0.2,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandSimulateLowResolutiond",
+ "keys": [
+ "@image_key"
+ ],
+ "zoom_range": [
+ 0.3,
+ 1
+ ],
+ "prob": 0.2,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandGaussianSmoothd",
+ "keys": [
+ "@image_key"
+ ],
+ "prob": 0.2,
+ "sigma_x": [
+ 0.5,
+ 1.0
+ ],
+ "sigma_y": [
+ 0.5,
+ 1.0
+ ],
+ "sigma_z": [
+ 0.5,
+ 1.0
+ ]
+ },
+ {
+ "_target_": "RandScaleIntensityd",
+ "keys": [
+ "@image_key"
+ ],
+ "factors": 0.1,
+ "prob": 0.2
+ },
+ {
+ "_target_": "RandShiftIntensityd",
+ "keys": [
+ "@image_key"
+ ],
+ "offsets": 0.1,
+ "prob": 0.2
+ },
+ {
+ "_target_": "RandGaussianNoised",
+ "keys": [
+ "@image_key"
+ ],
+ "prob": 0.2,
+ "mean": 0.0,
+ "std": 0.2
+ }
+ ],
+ "label_dict": {
+ "1": "spleen"
+ },
+ "original_label_dict": {
+ "1": "spleen"
+ },
+ "testing": [
+ {
+ "image": "imagesTr/spleen_44.nii.gz",
+ "label": "labelsTr/spleen_44.nii.gz"
+ },
+ {
+ "image": "imagesTr/spleen_21.nii.gz",
+ "label": "labelsTr/spleen_21.nii.gz"
+ },
+ {
+ "image": "imagesTr/spleen_61.nii.gz",
+ "label": "labelsTr/spleen_61.nii.gz"
+ },
+ {
+ "image": "imagesTr/spleen_29.nii.gz",
+ "label": "labelsTr/spleen_29.nii.gz"
+ },
+ {
+ "image": "imagesTr/spleen_38.nii.gz",
+ "label": "labelsTr/spleen_38.nii.gz"
+ },
+ {
+ "image": "imagesTr/spleen_46.nii.gz",
+ "label": "labelsTr/spleen_46.nii.gz"
+ },
+ {
+ "image": "imagesTr/spleen_53.nii.gz",
+ "label": "labelsTr/spleen_53.nii.gz"
+ },
+ {
+ "image": "imagesTr/spleen_33.nii.gz",
+ "label": "labelsTr/spleen_33.nii.gz"
+ }
+ ]
+}
diff --git a/vista3d/data/jsons/Task10_5_folds.json b/vista3d/data/jsons/Task10_5_folds.json
new file mode 100644
index 0000000..0299fb2
--- /dev/null
+++ b/vista3d/data/jsons/Task10_5_folds.json
@@ -0,0 +1,987 @@
+{
+ "training": [
+ {
+ "image": "imagesTr/colon_045.nii.gz",
+ "pseudo_label": "imagesTr/colon_045.nii.gz",
+ "label": "labelsTr/colon_045.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/colon_007.nii.gz",
+ "pseudo_label": "imagesTr/colon_007.nii.gz",
+ "label": "labelsTr/colon_007.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/colon_028.nii.gz",
+ "pseudo_label": "imagesTr/colon_028.nii.gz",
+ "label": "labelsTr/colon_028.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/colon_117.nii.gz",
+ "pseudo_label": "imagesTr/colon_117.nii.gz",
+ "label": "labelsTr/colon_117.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/colon_009.nii.gz",
+ "pseudo_label": "imagesTr/colon_009.nii.gz",
+ "label": "labelsTr/colon_009.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/colon_214.nii.gz",
+ "pseudo_label": "imagesTr/colon_214.nii.gz",
+ "label": "labelsTr/colon_214.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/colon_108.nii.gz",
+ "pseudo_label": "imagesTr/colon_108.nii.gz",
+ "label": "labelsTr/colon_108.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/colon_157.nii.gz",
+ "pseudo_label": "imagesTr/colon_157.nii.gz",
+ "label": "labelsTr/colon_157.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/colon_217.nii.gz",
+ "pseudo_label": "imagesTr/colon_217.nii.gz",
+ "label": "labelsTr/colon_217.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/colon_006.nii.gz",
+ "pseudo_label": "imagesTr/colon_006.nii.gz",
+ "label": "labelsTr/colon_006.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/colon_129.nii.gz",
+ "pseudo_label": "imagesTr/colon_129.nii.gz",
+ "label": "labelsTr/colon_129.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/colon_137.nii.gz",
+ "pseudo_label": "imagesTr/colon_137.nii.gz",
+ "label": "labelsTr/colon_137.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/colon_092.nii.gz",
+ "pseudo_label": "imagesTr/colon_092.nii.gz",
+ "label": "labelsTr/colon_092.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/colon_192.nii.gz",
+ "pseudo_label": "imagesTr/colon_192.nii.gz",
+ "label": "labelsTr/colon_192.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/colon_207.nii.gz",
+ "pseudo_label": "imagesTr/colon_207.nii.gz",
+ "label": "labelsTr/colon_207.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/colon_011.nii.gz",
+ "pseudo_label": "imagesTr/colon_011.nii.gz",
+ "label": "labelsTr/colon_011.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/colon_139.nii.gz",
+ "pseudo_label": "imagesTr/colon_139.nii.gz",
+ "label": "labelsTr/colon_139.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "imagesTr/colon_202.nii.gz",
+ "pseudo_label": "imagesTr/colon_202.nii.gz",
+ "label": "labelsTr/colon_202.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/colon_103.nii.gz",
+ "pseudo_label": "imagesTr/colon_103.nii.gz",
+ "label": "labelsTr/colon_103.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/colon_001.nii.gz",
+ "pseudo_label": "imagesTr/colon_001.nii.gz",
+ "label": "labelsTr/colon_001.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/colon_119.nii.gz",
+ "pseudo_label": "imagesTr/colon_119.nii.gz",
+ "label": "labelsTr/colon_119.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/colon_026.nii.gz",
+ "pseudo_label": "imagesTr/colon_026.nii.gz",
+ "label": "labelsTr/colon_026.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_026/colon_026_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_061.nii.gz",
+ "pseudo_label": "imagesTr/colon_061.nii.gz",
+ "label": "labelsTr/colon_061.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_061/colon_061_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_124.nii.gz",
+ "pseudo_label": "imagesTr/colon_124.nii.gz",
+ "label": "labelsTr/colon_124.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_124/colon_124_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_134.nii.gz",
+ "pseudo_label": "imagesTr/colon_134.nii.gz",
+ "label": "labelsTr/colon_134.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_134/colon_134_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_032.nii.gz",
+ "pseudo_label": "imagesTr/colon_032.nii.gz",
+ "label": "labelsTr/colon_032.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_032/colon_032_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_064.nii.gz",
+ "pseudo_label": "imagesTr/colon_064.nii.gz",
+ "label": "labelsTr/colon_064.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_064/colon_064_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_162.nii.gz",
+ "pseudo_label": "imagesTr/colon_162.nii.gz",
+ "label": "labelsTr/colon_162.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_162/colon_162_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_066.nii.gz",
+ "pseudo_label": "imagesTr/colon_066.nii.gz",
+ "label": "labelsTr/colon_066.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_066/colon_066_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_216.nii.gz",
+ "pseudo_label": "imagesTr/colon_216.nii.gz",
+ "label": "labelsTr/colon_216.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_216/colon_216_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_176.nii.gz",
+ "pseudo_label": "imagesTr/colon_176.nii.gz",
+ "label": "labelsTr/colon_176.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_176/colon_176_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_120.nii.gz",
+ "pseudo_label": "imagesTr/colon_120.nii.gz",
+ "label": "labelsTr/colon_120.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_120/colon_120_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_065.nii.gz",
+ "pseudo_label": "imagesTr/colon_065.nii.gz",
+ "label": "labelsTr/colon_065.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "imagesTr/colon_041.nii.gz",
+ "pseudo_label": "imagesTr/colon_041.nii.gz",
+ "label": "labelsTr/colon_041.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/colon_091.nii.gz",
+ "pseudo_label": "imagesTr/colon_091.nii.gz",
+ "label": "labelsTr/colon_091.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_091/colon_091_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_100.nii.gz",
+ "pseudo_label": "imagesTr/colon_100.nii.gz",
+ "label": "labelsTr/colon_100.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_100/colon_100_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_126.nii.gz",
+ "pseudo_label": "imagesTr/colon_126.nii.gz",
+ "label": "labelsTr/colon_126.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_126/colon_126_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_005.nii.gz",
+ "pseudo_label": "imagesTr/colon_005.nii.gz",
+ "label": "labelsTr/colon_005.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_005/colon_005_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_144.nii.gz",
+ "pseudo_label": "imagesTr/colon_144.nii.gz",
+ "label": "labelsTr/colon_144.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_144/colon_144_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_050.nii.gz",
+ "pseudo_label": "imagesTr/colon_050.nii.gz",
+ "label": "labelsTr/colon_050.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_050/colon_050_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_215.nii.gz",
+ "pseudo_label": "imagesTr/colon_215.nii.gz",
+ "label": "labelsTr/colon_215.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_215/colon_215_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_155.nii.gz",
+ "pseudo_label": "imagesTr/colon_155.nii.gz",
+ "label": "labelsTr/colon_155.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_155/colon_155_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_075.nii.gz",
+ "pseudo_label": "imagesTr/colon_075.nii.gz",
+ "label": "labelsTr/colon_075.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_075/colon_075_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_140.nii.gz",
+ "pseudo_label": "imagesTr/colon_140.nii.gz",
+ "label": "labelsTr/colon_140.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/colon_033.nii.gz",
+ "pseudo_label": "imagesTr/colon_033.nii.gz",
+ "label": "labelsTr/colon_033.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/colon_069.nii.gz",
+ "pseudo_label": "imagesTr/colon_069.nii.gz",
+ "label": "labelsTr/colon_069.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_069/colon_069_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_185.nii.gz",
+ "pseudo_label": "imagesTr/colon_185.nii.gz",
+ "label": "labelsTr/colon_185.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "imagesTr/colon_127.nii.gz",
+ "pseudo_label": "imagesTr/colon_127.nii.gz",
+ "label": "labelsTr/colon_127.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_127/colon_127_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_059.nii.gz",
+ "pseudo_label": "imagesTr/colon_059.nii.gz",
+ "label": "labelsTr/colon_059.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_059/colon_059_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_051.nii.gz",
+ "pseudo_label": "imagesTr/colon_051.nii.gz",
+ "label": "labelsTr/colon_051.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_051/colon_051_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_030.nii.gz",
+ "pseudo_label": "imagesTr/colon_030.nii.gz",
+ "label": "labelsTr/colon_030.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_030/colon_030_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_131.nii.gz",
+ "pseudo_label": "imagesTr/colon_131.nii.gz",
+ "label": "labelsTr/colon_131.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_131/colon_131_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_138.nii.gz",
+ "pseudo_label": "imagesTr/colon_138.nii.gz",
+ "label": "labelsTr/colon_138.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_138/colon_138_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_194.nii.gz",
+ "pseudo_label": "imagesTr/colon_194.nii.gz",
+ "label": "labelsTr/colon_194.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_194/colon_194_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_161.nii.gz",
+ "pseudo_label": "imagesTr/colon_161.nii.gz",
+ "label": "labelsTr/colon_161.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_161/colon_161_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_025.nii.gz",
+ "pseudo_label": "imagesTr/colon_025.nii.gz",
+ "label": "labelsTr/colon_025.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_025/colon_025_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_111.nii.gz",
+ "pseudo_label": "imagesTr/colon_111.nii.gz",
+ "label": "labelsTr/colon_111.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_111/colon_111_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_141.nii.gz",
+ "pseudo_label": "imagesTr/colon_141.nii.gz",
+ "label": "labelsTr/colon_141.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_141/colon_141_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_201.nii.gz",
+ "pseudo_label": "imagesTr/colon_201.nii.gz",
+ "label": "labelsTr/colon_201.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_201/colon_201_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_024.nii.gz",
+ "pseudo_label": "imagesTr/colon_024.nii.gz",
+ "label": "labelsTr/colon_024.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_024/colon_024_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_165.nii.gz",
+ "pseudo_label": "imagesTr/colon_165.nii.gz",
+ "label": "labelsTr/colon_165.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_165/colon_165_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_175.nii.gz",
+ "pseudo_label": "imagesTr/colon_175.nii.gz",
+ "label": "labelsTr/colon_175.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_175/colon_175_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_122.nii.gz",
+ "pseudo_label": "imagesTr/colon_122.nii.gz",
+ "label": "labelsTr/colon_122.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_122/colon_122_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_022.nii.gz",
+ "pseudo_label": "imagesTr/colon_022.nii.gz",
+ "label": "labelsTr/colon_022.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_022/colon_022_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_095.nii.gz",
+ "pseudo_label": "imagesTr/colon_095.nii.gz",
+ "label": "labelsTr/colon_095.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_095/colon_095_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_145.nii.gz",
+ "pseudo_label": "imagesTr/colon_145.nii.gz",
+ "label": "labelsTr/colon_145.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_145/colon_145_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_106.nii.gz",
+ "pseudo_label": "imagesTr/colon_106.nii.gz",
+ "label": "labelsTr/colon_106.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_106/colon_106_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_114.nii.gz",
+ "pseudo_label": "imagesTr/colon_114.nii.gz",
+ "label": "labelsTr/colon_114.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_114/colon_114_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_115.nii.gz",
+ "pseudo_label": "imagesTr/colon_115.nii.gz",
+ "label": "labelsTr/colon_115.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_115/colon_115_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_112.nii.gz",
+ "pseudo_label": "imagesTr/colon_112.nii.gz",
+ "label": "labelsTr/colon_112.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_112/colon_112_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_118.nii.gz",
+ "pseudo_label": "imagesTr/colon_118.nii.gz",
+ "label": "labelsTr/colon_118.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_118/colon_118_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_171.nii.gz",
+ "pseudo_label": "imagesTr/colon_171.nii.gz",
+ "label": "labelsTr/colon_171.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_171/colon_171_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_008.nii.gz",
+ "pseudo_label": "imagesTr/colon_008.nii.gz",
+ "label": "labelsTr/colon_008.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_008/colon_008_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_027.nii.gz",
+ "pseudo_label": "imagesTr/colon_027.nii.gz",
+ "label": "labelsTr/colon_027.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_027/colon_027_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_029.nii.gz",
+ "pseudo_label": "imagesTr/colon_029.nii.gz",
+ "label": "labelsTr/colon_029.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_029/colon_029_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_099.nii.gz",
+ "pseudo_label": "imagesTr/colon_099.nii.gz",
+ "label": "labelsTr/colon_099.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_099/colon_099_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_205.nii.gz",
+ "pseudo_label": "imagesTr/colon_205.nii.gz",
+ "label": "labelsTr/colon_205.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_205/colon_205_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_072.nii.gz",
+ "pseudo_label": "imagesTr/colon_072.nii.gz",
+ "label": "labelsTr/colon_072.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_072/colon_072_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_096.nii.gz",
+ "pseudo_label": "imagesTr/colon_096.nii.gz",
+ "label": "labelsTr/colon_096.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_096/colon_096_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_036.nii.gz",
+ "pseudo_label": "imagesTr/colon_036.nii.gz",
+ "label": "labelsTr/colon_036.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_036/colon_036_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_136.nii.gz",
+ "pseudo_label": "imagesTr/colon_136.nii.gz",
+ "label": "labelsTr/colon_136.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_136/colon_136_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_218.nii.gz",
+ "pseudo_label": "imagesTr/colon_218.nii.gz",
+ "label": "labelsTr/colon_218.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_218/colon_218_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_143.nii.gz",
+ "pseudo_label": "imagesTr/colon_143.nii.gz",
+ "label": "labelsTr/colon_143.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_143/colon_143_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_154.nii.gz",
+ "pseudo_label": "imagesTr/colon_154.nii.gz",
+ "label": "labelsTr/colon_154.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_154/colon_154_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_168.nii.gz",
+ "pseudo_label": "imagesTr/colon_168.nii.gz",
+ "label": "labelsTr/colon_168.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_168/colon_168_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_166.nii.gz",
+ "pseudo_label": "imagesTr/colon_166.nii.gz",
+ "label": "labelsTr/colon_166.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_166/colon_166_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_181.nii.gz",
+ "pseudo_label": "imagesTr/colon_181.nii.gz",
+ "label": "labelsTr/colon_181.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_181/colon_181_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_039.nii.gz",
+ "pseudo_label": "imagesTr/colon_039.nii.gz",
+ "label": "labelsTr/colon_039.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_039/colon_039_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_086.nii.gz",
+ "pseudo_label": "imagesTr/colon_086.nii.gz",
+ "label": "labelsTr/colon_086.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_086/colon_086_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_149.nii.gz",
+ "pseudo_label": "imagesTr/colon_149.nii.gz",
+ "label": "labelsTr/colon_149.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_149/colon_149_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_193.nii.gz",
+ "pseudo_label": "imagesTr/colon_193.nii.gz",
+ "label": "labelsTr/colon_193.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_193/colon_193_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_015.nii.gz",
+ "pseudo_label": "imagesTr/colon_015.nii.gz",
+ "label": "labelsTr/colon_015.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_015/colon_015_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_040.nii.gz",
+ "pseudo_label": "imagesTr/colon_040.nii.gz",
+ "label": "labelsTr/colon_040.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_040/colon_040_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_196.nii.gz",
+ "pseudo_label": "imagesTr/colon_196.nii.gz",
+ "label": "labelsTr/colon_196.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_196/colon_196_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_054.nii.gz",
+ "pseudo_label": "imagesTr/colon_054.nii.gz",
+ "label": "labelsTr/colon_054.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_054/colon_054_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_098.nii.gz",
+ "pseudo_label": "imagesTr/colon_098.nii.gz",
+ "label": "labelsTr/colon_098.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_098/colon_098_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_074.nii.gz",
+ "pseudo_label": "imagesTr/colon_074.nii.gz",
+ "label": "labelsTr/colon_074.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_074/colon_074_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_012.nii.gz",
+ "pseudo_label": "imagesTr/colon_012.nii.gz",
+ "label": "labelsTr/colon_012.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_012/colon_012_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_142.nii.gz",
+ "pseudo_label": "imagesTr/colon_142.nii.gz",
+ "label": "labelsTr/colon_142.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_142/colon_142_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_212.nii.gz",
+ "pseudo_label": "imagesTr/colon_212.nii.gz",
+ "label": "labelsTr/colon_212.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_212/colon_212_seg.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_159.nii.gz",
+ "pseudo_label": "imagesTr/colon_159.nii.gz",
+ "label": "labelsTr/colon_159.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_159/colon_159_seg.nii.gz"
+ }
+ ],
+ "training_transform": [
+ {
+ "_target_": "RandCropByLabelClassesd",
+ "keys": [
+ "@image_key",
+ "@label_key",
+ "@pseudo_label_key",
+ "@label_sv_key"
+ ],
+ "label_key": "@pseudo_label_key",
+ "num_classes": 133,
+ "num_samples": "@num_patches_per_image",
+ "spatial_size": "@patch_size",
+ "ratios": "$tuple(float(i >= 0) for i in range(133))",
+ "warn": false,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandZoomd",
+ "keys": [
+ "@image_key",
+ "@label_key",
+ "@pseudo_label_key",
+ "@label_sv_key"
+ ],
+ "min_zoom": 0.8,
+ "max_zoom": 1.2,
+ "mode": [
+ "trilinear",
+ "nearest",
+ "nearest",
+ "nearest"
+ ],
+ "prob": 0.2,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandSimulateLowResolutiond",
+ "keys": [
+ "@image_key"
+ ],
+ "zoom_range": [
+ 0.3,
+ 1
+ ],
+ "prob": 0.2,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandGaussianSmoothd",
+ "keys": [
+ "@image_key"
+ ],
+ "prob": 0.2,
+ "sigma_x": [
+ 0.5,
+ 1.0
+ ],
+ "sigma_y": [
+ 0.5,
+ 1.0
+ ],
+ "sigma_z": [
+ 0.5,
+ 1.0
+ ]
+ },
+ {
+ "_target_": "RandScaleIntensityd",
+ "keys": [
+ "@image_key"
+ ],
+ "factors": 0.1,
+ "prob": 0.2
+ },
+ {
+ "_target_": "RandShiftIntensityd",
+ "keys": [
+ "@image_key"
+ ],
+ "offsets": 0.1,
+ "prob": 0.2
+ },
+ {
+ "_target_": "RandGaussianNoised",
+ "keys": [
+ "@image_key"
+ ],
+ "prob": 0.2,
+ "mean": 0.0,
+ "std": 0.2
+ }
+ ],
+ "label_dict": {
+ "1": "colon cancer primaries"
+ },
+ "original_label_dict": {
+ "1": "colon cancer primaries"
+ },
+ "testing": [
+ {
+ "image": "imagesTr/colon_053.nii.gz",
+ "label": "labelsTr/colon_053.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_219.nii.gz",
+ "label": "labelsTr/colon_219.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_107.nii.gz",
+ "label": "labelsTr/colon_107.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_203.nii.gz",
+ "label": "labelsTr/colon_203.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_163.nii.gz",
+ "label": "labelsTr/colon_163.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_187.nii.gz",
+ "label": "labelsTr/colon_187.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_172.nii.gz",
+ "label": "labelsTr/colon_172.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_077.nii.gz",
+ "label": "labelsTr/colon_077.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_104.nii.gz",
+ "label": "labelsTr/colon_104.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_042.nii.gz",
+ "label": "labelsTr/colon_042.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_169.nii.gz",
+ "label": "labelsTr/colon_169.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_133.nii.gz",
+ "label": "labelsTr/colon_133.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_208.nii.gz",
+ "label": "labelsTr/colon_208.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_206.nii.gz",
+ "label": "labelsTr/colon_206.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_031.nii.gz",
+ "label": "labelsTr/colon_031.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_148.nii.gz",
+ "label": "labelsTr/colon_148.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_102.nii.gz",
+ "label": "labelsTr/colon_102.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_078.nii.gz",
+ "label": "labelsTr/colon_078.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_046.nii.gz",
+ "label": "labelsTr/colon_046.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_213.nii.gz",
+ "label": "labelsTr/colon_213.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_081.nii.gz",
+ "label": "labelsTr/colon_081.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_089.nii.gz",
+ "label": "labelsTr/colon_089.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_088.nii.gz",
+ "label": "labelsTr/colon_088.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_164.nii.gz",
+ "label": "labelsTr/colon_164.nii.gz"
+ },
+ {
+ "image": "imagesTr/colon_038.nii.gz",
+ "label": "labelsTr/colon_038.nii.gz"
+ }
+ ]
+}
diff --git a/vista3d/data/jsons/TotalSegmentatorV2_5_folds.json b/vista3d/data/jsons/TotalSegmentatorV2_5_folds.json
new file mode 100644
index 0000000..c359561
--- /dev/null
+++ b/vista3d/data/jsons/TotalSegmentatorV2_5_folds.json
@@ -0,0 +1,7991 @@
+{
+ "training": [
+ {
+ "image": "s0264/ct.nii.gz",
+ "pseudo_label": "s0264/ct.nii.gz",
+ "label": "s0264/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0812/ct.nii.gz",
+ "pseudo_label": "s0812/ct.nii.gz",
+ "label": "s0812/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0953/ct.nii.gz",
+ "pseudo_label": "s0953/ct.nii.gz",
+ "label": "s0953/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0436/ct.nii.gz",
+ "pseudo_label": "s0436/ct.nii.gz",
+ "label": "s0436/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0785/ct.nii.gz",
+ "pseudo_label": "s0785/ct.nii.gz",
+ "label": "s0785/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0316/ct.nii.gz",
+ "pseudo_label": "s0316/ct.nii.gz",
+ "label": "s0316/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1164/ct.nii.gz",
+ "pseudo_label": "s1164/ct.nii.gz",
+ "label": "s1164/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0925/ct.nii.gz",
+ "pseudo_label": "s0925/ct.nii.gz",
+ "label": "s0925/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1243/ct.nii.gz",
+ "pseudo_label": "s1243/ct.nii.gz",
+ "label": "s1243/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0406/ct.nii.gz",
+ "pseudo_label": "s0406/ct.nii.gz",
+ "label": "s0406/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0102/ct.nii.gz",
+ "pseudo_label": "s0102/ct.nii.gz",
+ "label": "s0102/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1046/ct.nii.gz",
+ "pseudo_label": "s1046/ct.nii.gz",
+ "label": "s1046/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0965/ct.nii.gz",
+ "pseudo_label": "s0965/ct.nii.gz",
+ "label": "s0965/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0862/ct.nii.gz",
+ "pseudo_label": "s0862/ct.nii.gz",
+ "label": "s0862/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1194/ct.nii.gz",
+ "pseudo_label": "s1194/ct.nii.gz",
+ "label": "s1194/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0791/ct.nii.gz",
+ "pseudo_label": "s0791/ct.nii.gz",
+ "label": "s0791/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0528/ct.nii.gz",
+ "pseudo_label": "s0528/ct.nii.gz",
+ "label": "s0528/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0667/ct.nii.gz",
+ "pseudo_label": "s0667/ct.nii.gz",
+ "label": "s0667/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0778/ct.nii.gz",
+ "pseudo_label": "s0778/ct.nii.gz",
+ "label": "s0778/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0597/ct.nii.gz",
+ "pseudo_label": "s0597/ct.nii.gz",
+ "label": "s0597/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0301/ct.nii.gz",
+ "pseudo_label": "s0301/ct.nii.gz",
+ "label": "s0301/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1261/ct.nii.gz",
+ "pseudo_label": "s1261/ct.nii.gz",
+ "label": "s1261/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0614/ct.nii.gz",
+ "pseudo_label": "s0614/ct.nii.gz",
+ "label": "s0614/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1299/ct.nii.gz",
+ "pseudo_label": "s1299/ct.nii.gz",
+ "label": "s1299/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0411/ct.nii.gz",
+ "pseudo_label": "s0411/ct.nii.gz",
+ "label": "s0411/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1331/ct.nii.gz",
+ "pseudo_label": "s1331/ct.nii.gz",
+ "label": "s1331/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0605/ct.nii.gz",
+ "pseudo_label": "s0605/ct.nii.gz",
+ "label": "s0605/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0383/ct.nii.gz",
+ "pseudo_label": "s0383/ct.nii.gz",
+ "label": "s0383/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0559/ct.nii.gz",
+ "pseudo_label": "s0559/ct.nii.gz",
+ "label": "s0559/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0921/ct.nii.gz",
+ "pseudo_label": "s0921/ct.nii.gz",
+ "label": "s0921/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0320/ct.nii.gz",
+ "pseudo_label": "s0320/ct.nii.gz",
+ "label": "s0320/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0416/ct.nii.gz",
+ "pseudo_label": "s0416/ct.nii.gz",
+ "label": "s0416/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1321/ct.nii.gz",
+ "pseudo_label": "s1321/ct.nii.gz",
+ "label": "s1321/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1323/ct.nii.gz",
+ "pseudo_label": "s1323/ct.nii.gz",
+ "label": "s1323/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0367/ct.nii.gz",
+ "pseudo_label": "s0367/ct.nii.gz",
+ "label": "s0367/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1298/ct.nii.gz",
+ "pseudo_label": "s1298/ct.nii.gz",
+ "label": "s1298/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1192/ct.nii.gz",
+ "pseudo_label": "s1192/ct.nii.gz",
+ "label": "s1192/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0123/ct.nii.gz",
+ "pseudo_label": "s0123/ct.nii.gz",
+ "label": "s0123/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0217/ct.nii.gz",
+ "pseudo_label": "s0217/ct.nii.gz",
+ "label": "s0217/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1099/ct.nii.gz",
+ "pseudo_label": "s1099/ct.nii.gz",
+ "label": "s1099/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0580/ct.nii.gz",
+ "pseudo_label": "s0580/ct.nii.gz",
+ "label": "s0580/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0119/ct.nii.gz",
+ "pseudo_label": "s0119/ct.nii.gz",
+ "label": "s0119/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0548/ct.nii.gz",
+ "pseudo_label": "s0548/ct.nii.gz",
+ "label": "s0548/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0702/ct.nii.gz",
+ "pseudo_label": "s0702/ct.nii.gz",
+ "label": "s0702/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0943/ct.nii.gz",
+ "pseudo_label": "s0943/ct.nii.gz",
+ "label": "s0943/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0940/ct.nii.gz",
+ "pseudo_label": "s0940/ct.nii.gz",
+ "label": "s0940/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0763/ct.nii.gz",
+ "pseudo_label": "s0763/ct.nii.gz",
+ "label": "s0763/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0253/ct.nii.gz",
+ "pseudo_label": "s0253/ct.nii.gz",
+ "label": "s0253/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1199/ct.nii.gz",
+ "pseudo_label": "s1199/ct.nii.gz",
+ "label": "s1199/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0896/ct.nii.gz",
+ "pseudo_label": "s0896/ct.nii.gz",
+ "label": "s0896/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0059/ct.nii.gz",
+ "pseudo_label": "s0059/ct.nii.gz",
+ "label": "s0059/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0875/ct.nii.gz",
+ "pseudo_label": "s0875/ct.nii.gz",
+ "label": "s0875/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1176/ct.nii.gz",
+ "pseudo_label": "s1176/ct.nii.gz",
+ "label": "s1176/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1115/ct.nii.gz",
+ "pseudo_label": "s1115/ct.nii.gz",
+ "label": "s1115/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0833/ct.nii.gz",
+ "pseudo_label": "s0833/ct.nii.gz",
+ "label": "s0833/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0439/ct.nii.gz",
+ "pseudo_label": "s0439/ct.nii.gz",
+ "label": "s0439/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0245/ct.nii.gz",
+ "pseudo_label": "s0245/ct.nii.gz",
+ "label": "s0245/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0716/ct.nii.gz",
+ "pseudo_label": "s0716/ct.nii.gz",
+ "label": "s0716/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1205/ct.nii.gz",
+ "pseudo_label": "s1205/ct.nii.gz",
+ "label": "s1205/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0961/ct.nii.gz",
+ "pseudo_label": "s0961/ct.nii.gz",
+ "label": "s0961/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0425/ct.nii.gz",
+ "pseudo_label": "s0425/ct.nii.gz",
+ "label": "s0425/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0960/ct.nii.gz",
+ "pseudo_label": "s0960/ct.nii.gz",
+ "label": "s0960/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0068/ct.nii.gz",
+ "pseudo_label": "s0068/ct.nii.gz",
+ "label": "s0068/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0194/ct.nii.gz",
+ "pseudo_label": "s0194/ct.nii.gz",
+ "label": "s0194/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0147/ct.nii.gz",
+ "pseudo_label": "s0147/ct.nii.gz",
+ "label": "s0147/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1152/ct.nii.gz",
+ "pseudo_label": "s1152/ct.nii.gz",
+ "label": "s1152/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1029/ct.nii.gz",
+ "pseudo_label": "s1029/ct.nii.gz",
+ "label": "s1029/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0082/ct.nii.gz",
+ "pseudo_label": "s0082/ct.nii.gz",
+ "label": "s0082/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0930/ct.nii.gz",
+ "pseudo_label": "s0930/ct.nii.gz",
+ "label": "s0930/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0993/ct.nii.gz",
+ "pseudo_label": "s0993/ct.nii.gz",
+ "label": "s0993/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0028/ct.nii.gz",
+ "pseudo_label": "s0028/ct.nii.gz",
+ "label": "s0028/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0899/ct.nii.gz",
+ "pseudo_label": "s0899/ct.nii.gz",
+ "label": "s0899/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0283/ct.nii.gz",
+ "pseudo_label": "s0283/ct.nii.gz",
+ "label": "s0283/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0099/ct.nii.gz",
+ "pseudo_label": "s0099/ct.nii.gz",
+ "label": "s0099/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0772/ct.nii.gz",
+ "pseudo_label": "s0772/ct.nii.gz",
+ "label": "s0772/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0325/ct.nii.gz",
+ "pseudo_label": "s0325/ct.nii.gz",
+ "label": "s0325/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0994/ct.nii.gz",
+ "pseudo_label": "s0994/ct.nii.gz",
+ "label": "s0994/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0816/ct.nii.gz",
+ "pseudo_label": "s0816/ct.nii.gz",
+ "label": "s0816/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0159/ct.nii.gz",
+ "pseudo_label": "s0159/ct.nii.gz",
+ "label": "s0159/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0287/ct.nii.gz",
+ "pseudo_label": "s0287/ct.nii.gz",
+ "label": "s0287/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1035/ct.nii.gz",
+ "pseudo_label": "s1035/ct.nii.gz",
+ "label": "s1035/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0530/ct.nii.gz",
+ "pseudo_label": "s0530/ct.nii.gz",
+ "label": "s0530/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1157/ct.nii.gz",
+ "pseudo_label": "s1157/ct.nii.gz",
+ "label": "s1157/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1408/ct.nii.gz",
+ "pseudo_label": "s1408/ct.nii.gz",
+ "label": "s1408/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0375/ct.nii.gz",
+ "pseudo_label": "s0375/ct.nii.gz",
+ "label": "s0375/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0279/ct.nii.gz",
+ "pseudo_label": "s0279/ct.nii.gz",
+ "label": "s0279/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0956/ct.nii.gz",
+ "pseudo_label": "s0956/ct.nii.gz",
+ "label": "s0956/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0616/ct.nii.gz",
+ "pseudo_label": "s0616/ct.nii.gz",
+ "label": "s0616/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0647/ct.nii.gz",
+ "pseudo_label": "s0647/ct.nii.gz",
+ "label": "s0647/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1269/ct.nii.gz",
+ "pseudo_label": "s1269/ct.nii.gz",
+ "label": "s1269/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1156/ct.nii.gz",
+ "pseudo_label": "s1156/ct.nii.gz",
+ "label": "s1156/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0058/ct.nii.gz",
+ "pseudo_label": "s0058/ct.nii.gz",
+ "label": "s0058/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1161/ct.nii.gz",
+ "pseudo_label": "s1161/ct.nii.gz",
+ "label": "s1161/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0622/ct.nii.gz",
+ "pseudo_label": "s0622/ct.nii.gz",
+ "label": "s0622/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0011/ct.nii.gz",
+ "pseudo_label": "s0011/ct.nii.gz",
+ "label": "s0011/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0517/ct.nii.gz",
+ "pseudo_label": "s0517/ct.nii.gz",
+ "label": "s0517/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0837/ct.nii.gz",
+ "pseudo_label": "s0837/ct.nii.gz",
+ "label": "s0837/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0067/ct.nii.gz",
+ "pseudo_label": "s0067/ct.nii.gz",
+ "label": "s0067/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0660/ct.nii.gz",
+ "pseudo_label": "s0660/ct.nii.gz",
+ "label": "s0660/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0474/ct.nii.gz",
+ "pseudo_label": "s0474/ct.nii.gz",
+ "label": "s0474/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1412/ct.nii.gz",
+ "pseudo_label": "s1412/ct.nii.gz",
+ "label": "s1412/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0607/ct.nii.gz",
+ "pseudo_label": "s0607/ct.nii.gz",
+ "label": "s0607/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0224/ct.nii.gz",
+ "pseudo_label": "s0224/ct.nii.gz",
+ "label": "s0224/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1394/ct.nii.gz",
+ "pseudo_label": "s1394/ct.nii.gz",
+ "label": "s1394/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0046/ct.nii.gz",
+ "pseudo_label": "s0046/ct.nii.gz",
+ "label": "s0046/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0620/ct.nii.gz",
+ "pseudo_label": "s0620/ct.nii.gz",
+ "label": "s0620/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1215/ct.nii.gz",
+ "pseudo_label": "s1215/ct.nii.gz",
+ "label": "s1215/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0765/ct.nii.gz",
+ "pseudo_label": "s0765/ct.nii.gz",
+ "label": "s0765/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0937/ct.nii.gz",
+ "pseudo_label": "s0937/ct.nii.gz",
+ "label": "s0937/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0852/ct.nii.gz",
+ "pseudo_label": "s0852/ct.nii.gz",
+ "label": "s0852/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1346/ct.nii.gz",
+ "pseudo_label": "s1346/ct.nii.gz",
+ "label": "s1346/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0281/ct.nii.gz",
+ "pseudo_label": "s0281/ct.nii.gz",
+ "label": "s0281/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0898/ct.nii.gz",
+ "pseudo_label": "s0898/ct.nii.gz",
+ "label": "s0898/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1358/ct.nii.gz",
+ "pseudo_label": "s1358/ct.nii.gz",
+ "label": "s1358/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0863/ct.nii.gz",
+ "pseudo_label": "s0863/ct.nii.gz",
+ "label": "s0863/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0600/ct.nii.gz",
+ "pseudo_label": "s0600/ct.nii.gz",
+ "label": "s0600/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1057/ct.nii.gz",
+ "pseudo_label": "s1057/ct.nii.gz",
+ "label": "s1057/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0707/ct.nii.gz",
+ "pseudo_label": "s0707/ct.nii.gz",
+ "label": "s0707/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0504/ct.nii.gz",
+ "pseudo_label": "s0504/ct.nii.gz",
+ "label": "s0504/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0234/ct.nii.gz",
+ "pseudo_label": "s0234/ct.nii.gz",
+ "label": "s0234/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1425/ct.nii.gz",
+ "pseudo_label": "s1425/ct.nii.gz",
+ "label": "s1425/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0233/ct.nii.gz",
+ "pseudo_label": "s0233/ct.nii.gz",
+ "label": "s0233/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0519/ct.nii.gz",
+ "pseudo_label": "s0519/ct.nii.gz",
+ "label": "s0519/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1218/ct.nii.gz",
+ "pseudo_label": "s1218/ct.nii.gz",
+ "label": "s1218/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1125/ct.nii.gz",
+ "pseudo_label": "s1125/ct.nii.gz",
+ "label": "s1125/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0438/ct.nii.gz",
+ "pseudo_label": "s0438/ct.nii.gz",
+ "label": "s0438/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1375/ct.nii.gz",
+ "pseudo_label": "s1375/ct.nii.gz",
+ "label": "s1375/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1401/ct.nii.gz",
+ "pseudo_label": "s1401/ct.nii.gz",
+ "label": "s1401/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0939/ct.nii.gz",
+ "pseudo_label": "s0939/ct.nii.gz",
+ "label": "s0939/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0484/ct.nii.gz",
+ "pseudo_label": "s0484/ct.nii.gz",
+ "label": "s0484/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0824/ct.nii.gz",
+ "pseudo_label": "s0824/ct.nii.gz",
+ "label": "s0824/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0135/ct.nii.gz",
+ "pseudo_label": "s0135/ct.nii.gz",
+ "label": "s0135/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0633/ct.nii.gz",
+ "pseudo_label": "s0633/ct.nii.gz",
+ "label": "s0633/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0354/ct.nii.gz",
+ "pseudo_label": "s0354/ct.nii.gz",
+ "label": "s0354/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0108/ct.nii.gz",
+ "pseudo_label": "s0108/ct.nii.gz",
+ "label": "s0108/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0729/ct.nii.gz",
+ "pseudo_label": "s0729/ct.nii.gz",
+ "label": "s0729/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0399/ct.nii.gz",
+ "pseudo_label": "s0399/ct.nii.gz",
+ "label": "s0399/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0151/ct.nii.gz",
+ "pseudo_label": "s0151/ct.nii.gz",
+ "label": "s0151/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0211/ct.nii.gz",
+ "pseudo_label": "s0211/ct.nii.gz",
+ "label": "s0211/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0069/ct.nii.gz",
+ "pseudo_label": "s0069/ct.nii.gz",
+ "label": "s0069/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0401/ct.nii.gz",
+ "pseudo_label": "s0401/ct.nii.gz",
+ "label": "s0401/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0098/ct.nii.gz",
+ "pseudo_label": "s0098/ct.nii.gz",
+ "label": "s0098/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0361/ct.nii.gz",
+ "pseudo_label": "s0361/ct.nii.gz",
+ "label": "s0361/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0049/ct.nii.gz",
+ "pseudo_label": "s0049/ct.nii.gz",
+ "label": "s0049/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0750/ct.nii.gz",
+ "pseudo_label": "s0750/ct.nii.gz",
+ "label": "s0750/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0853/ct.nii.gz",
+ "pseudo_label": "s0853/ct.nii.gz",
+ "label": "s0853/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0709/ct.nii.gz",
+ "pseudo_label": "s0709/ct.nii.gz",
+ "label": "s0709/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0786/ct.nii.gz",
+ "pseudo_label": "s0786/ct.nii.gz",
+ "label": "s0786/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0728/ct.nii.gz",
+ "pseudo_label": "s0728/ct.nii.gz",
+ "label": "s0728/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1159/ct.nii.gz",
+ "pseudo_label": "s1159/ct.nii.gz",
+ "label": "s1159/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0891/ct.nii.gz",
+ "pseudo_label": "s0891/ct.nii.gz",
+ "label": "s0891/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0486/ct.nii.gz",
+ "pseudo_label": "s0486/ct.nii.gz",
+ "label": "s0486/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0220/ct.nii.gz",
+ "pseudo_label": "s0220/ct.nii.gz",
+ "label": "s0220/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1260/ct.nii.gz",
+ "pseudo_label": "s1260/ct.nii.gz",
+ "label": "s1260/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0848/ct.nii.gz",
+ "pseudo_label": "s0848/ct.nii.gz",
+ "label": "s0848/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0419/ct.nii.gz",
+ "pseudo_label": "s0419/ct.nii.gz",
+ "label": "s0419/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1148/ct.nii.gz",
+ "pseudo_label": "s1148/ct.nii.gz",
+ "label": "s1148/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0258/ct.nii.gz",
+ "pseudo_label": "s0258/ct.nii.gz",
+ "label": "s0258/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0991/ct.nii.gz",
+ "pseudo_label": "s0991/ct.nii.gz",
+ "label": "s0991/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1250/ct.nii.gz",
+ "pseudo_label": "s1250/ct.nii.gz",
+ "label": "s1250/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1155/ct.nii.gz",
+ "pseudo_label": "s1155/ct.nii.gz",
+ "label": "s1155/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1236/ct.nii.gz",
+ "pseudo_label": "s1236/ct.nii.gz",
+ "label": "s1236/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1234/ct.nii.gz",
+ "pseudo_label": "s1234/ct.nii.gz",
+ "label": "s1234/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0983/ct.nii.gz",
+ "pseudo_label": "s0983/ct.nii.gz",
+ "label": "s0983/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0681/ct.nii.gz",
+ "pseudo_label": "s0681/ct.nii.gz",
+ "label": "s0681/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0172/ct.nii.gz",
+ "pseudo_label": "s0172/ct.nii.gz",
+ "label": "s0172/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1002/ct.nii.gz",
+ "pseudo_label": "s1002/ct.nii.gz",
+ "label": "s1002/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1085/ct.nii.gz",
+ "pseudo_label": "s1085/ct.nii.gz",
+ "label": "s1085/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0141/ct.nii.gz",
+ "pseudo_label": "s0141/ct.nii.gz",
+ "label": "s0141/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0688/ct.nii.gz",
+ "pseudo_label": "s0688/ct.nii.gz",
+ "label": "s0688/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1367/ct.nii.gz",
+ "pseudo_label": "s1367/ct.nii.gz",
+ "label": "s1367/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0918/ct.nii.gz",
+ "pseudo_label": "s0918/ct.nii.gz",
+ "label": "s0918/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0766/ct.nii.gz",
+ "pseudo_label": "s0766/ct.nii.gz",
+ "label": "s0766/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0472/ct.nii.gz",
+ "pseudo_label": "s0472/ct.nii.gz",
+ "label": "s0472/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1417/ct.nii.gz",
+ "pseudo_label": "s1417/ct.nii.gz",
+ "label": "s1417/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1362/ct.nii.gz",
+ "pseudo_label": "s1362/ct.nii.gz",
+ "label": "s1362/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0054/ct.nii.gz",
+ "pseudo_label": "s0054/ct.nii.gz",
+ "label": "s0054/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1146/ct.nii.gz",
+ "pseudo_label": "s1146/ct.nii.gz",
+ "label": "s1146/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0572/ct.nii.gz",
+ "pseudo_label": "s0572/ct.nii.gz",
+ "label": "s0572/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0330/ct.nii.gz",
+ "pseudo_label": "s0330/ct.nii.gz",
+ "label": "s0330/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0483/ct.nii.gz",
+ "pseudo_label": "s0483/ct.nii.gz",
+ "label": "s0483/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1121/ct.nii.gz",
+ "pseudo_label": "s1121/ct.nii.gz",
+ "label": "s1121/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0711/ct.nii.gz",
+ "pseudo_label": "s0711/ct.nii.gz",
+ "label": "s0711/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0429/ct.nii.gz",
+ "pseudo_label": "s0429/ct.nii.gz",
+ "label": "s0429/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1369/ct.nii.gz",
+ "pseudo_label": "s1369/ct.nii.gz",
+ "label": "s1369/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1347/ct.nii.gz",
+ "pseudo_label": "s1347/ct.nii.gz",
+ "label": "s1347/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0400/ct.nii.gz",
+ "pseudo_label": "s0400/ct.nii.gz",
+ "label": "s0400/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0292/ct.nii.gz",
+ "pseudo_label": "s0292/ct.nii.gz",
+ "label": "s0292/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1145/ct.nii.gz",
+ "pseudo_label": "s1145/ct.nii.gz",
+ "label": "s1145/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0105/ct.nii.gz",
+ "pseudo_label": "s0105/ct.nii.gz",
+ "label": "s0105/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1041/ct.nii.gz",
+ "pseudo_label": "s1041/ct.nii.gz",
+ "label": "s1041/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0715/ct.nii.gz",
+ "pseudo_label": "s0715/ct.nii.gz",
+ "label": "s0715/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0995/ct.nii.gz",
+ "pseudo_label": "s0995/ct.nii.gz",
+ "label": "s0995/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1413/ct.nii.gz",
+ "pseudo_label": "s1413/ct.nii.gz",
+ "label": "s1413/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1350/ct.nii.gz",
+ "pseudo_label": "s1350/ct.nii.gz",
+ "label": "s1350/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s0392/ct.nii.gz",
+ "pseudo_label": "s0392/ct.nii.gz",
+ "label": "s0392/seg.nii.gz",
+ "fold": 0
+ },
+ {
+ "image": "s1101/ct.nii.gz",
+ "pseudo_label": "s1101/ct.nii.gz",
+ "label": "s1101/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1101/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1328/ct.nii.gz",
+ "pseudo_label": "s1328/ct.nii.gz",
+ "label": "s1328/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1328/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0625/ct.nii.gz",
+ "pseudo_label": "s0625/ct.nii.gz",
+ "label": "s0625/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0625/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0915/ct.nii.gz",
+ "pseudo_label": "s0915/ct.nii.gz",
+ "label": "s0915/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0915/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0521/ct.nii.gz",
+ "pseudo_label": "s0521/ct.nii.gz",
+ "label": "s0521/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0521/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1378/ct.nii.gz",
+ "pseudo_label": "s1378/ct.nii.gz",
+ "label": "s1378/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1378/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0669/ct.nii.gz",
+ "pseudo_label": "s0669/ct.nii.gz",
+ "label": "s0669/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0669/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1326/ct.nii.gz",
+ "pseudo_label": "s1326/ct.nii.gz",
+ "label": "s1326/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1326/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0461/ct.nii.gz",
+ "pseudo_label": "s0461/ct.nii.gz",
+ "label": "s0461/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0461/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0613/ct.nii.gz",
+ "pseudo_label": "s0613/ct.nii.gz",
+ "label": "s0613/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0613/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1024/ct.nii.gz",
+ "pseudo_label": "s1024/ct.nii.gz",
+ "label": "s1024/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1024/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0196/ct.nii.gz",
+ "pseudo_label": "s0196/ct.nii.gz",
+ "label": "s0196/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0196/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0642/ct.nii.gz",
+ "pseudo_label": "s0642/ct.nii.gz",
+ "label": "s0642/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0642/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0708/ct.nii.gz",
+ "pseudo_label": "s0708/ct.nii.gz",
+ "label": "s0708/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0708/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0986/ct.nii.gz",
+ "pseudo_label": "s0986/ct.nii.gz",
+ "label": "s0986/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0986/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0578/ct.nii.gz",
+ "pseudo_label": "s0578/ct.nii.gz",
+ "label": "s0578/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0578/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0467/ct.nii.gz",
+ "pseudo_label": "s0467/ct.nii.gz",
+ "label": "s0467/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0467/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0001/ct.nii.gz",
+ "pseudo_label": "s0001/ct.nii.gz",
+ "label": "s0001/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0001/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0372/ct.nii.gz",
+ "pseudo_label": "s0372/ct.nii.gz",
+ "label": "s0372/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0372/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0424/ct.nii.gz",
+ "pseudo_label": "s0424/ct.nii.gz",
+ "label": "s0424/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0424/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0826/ct.nii.gz",
+ "pseudo_label": "s0826/ct.nii.gz",
+ "label": "s0826/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0826/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1289/ct.nii.gz",
+ "pseudo_label": "s1289/ct.nii.gz",
+ "label": "s1289/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1289/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0955/ct.nii.gz",
+ "pseudo_label": "s0955/ct.nii.gz",
+ "label": "s0955/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0955/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0235/ct.nii.gz",
+ "pseudo_label": "s0235/ct.nii.gz",
+ "label": "s0235/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0235/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0610/ct.nii.gz",
+ "pseudo_label": "s0610/ct.nii.gz",
+ "label": "s0610/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0610/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0686/ct.nii.gz",
+ "pseudo_label": "s0686/ct.nii.gz",
+ "label": "s0686/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0686/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0668/ct.nii.gz",
+ "pseudo_label": "s0668/ct.nii.gz",
+ "label": "s0668/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0668/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0074/ct.nii.gz",
+ "pseudo_label": "s0074/ct.nii.gz",
+ "label": "s0074/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0074/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1426/ct.nii.gz",
+ "pseudo_label": "s1426/ct.nii.gz",
+ "label": "s1426/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1426/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1334/ct.nii.gz",
+ "pseudo_label": "s1334/ct.nii.gz",
+ "label": "s1334/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1334/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0428/ct.nii.gz",
+ "pseudo_label": "s0428/ct.nii.gz",
+ "label": "s0428/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0428/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0457/ct.nii.gz",
+ "pseudo_label": "s0457/ct.nii.gz",
+ "label": "s0457/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0457/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1084/ct.nii.gz",
+ "pseudo_label": "s1084/ct.nii.gz",
+ "label": "s1084/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1084/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0341/ct.nii.gz",
+ "pseudo_label": "s0341/ct.nii.gz",
+ "label": "s0341/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0341/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0753/ct.nii.gz",
+ "pseudo_label": "s0753/ct.nii.gz",
+ "label": "s0753/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0753/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0635/ct.nii.gz",
+ "pseudo_label": "s0635/ct.nii.gz",
+ "label": "s0635/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0635/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1283/ct.nii.gz",
+ "pseudo_label": "s1283/ct.nii.gz",
+ "label": "s1283/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1283/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0679/ct.nii.gz",
+ "pseudo_label": "s0679/ct.nii.gz",
+ "label": "s0679/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0679/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0218/ct.nii.gz",
+ "pseudo_label": "s0218/ct.nii.gz",
+ "label": "s0218/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0218/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0445/ct.nii.gz",
+ "pseudo_label": "s0445/ct.nii.gz",
+ "label": "s0445/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0445/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1102/ct.nii.gz",
+ "pseudo_label": "s1102/ct.nii.gz",
+ "label": "s1102/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1102/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0458/ct.nii.gz",
+ "pseudo_label": "s0458/ct.nii.gz",
+ "label": "s0458/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0458/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0386/ct.nii.gz",
+ "pseudo_label": "s0386/ct.nii.gz",
+ "label": "s0386/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0386/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0864/ct.nii.gz",
+ "pseudo_label": "s0864/ct.nii.gz",
+ "label": "s0864/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0864/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0706/ct.nii.gz",
+ "pseudo_label": "s0706/ct.nii.gz",
+ "label": "s0706/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0706/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1366/ct.nii.gz",
+ "pseudo_label": "s1366/ct.nii.gz",
+ "label": "s1366/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1366/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0315/ct.nii.gz",
+ "pseudo_label": "s0315/ct.nii.gz",
+ "label": "s0315/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0315/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0088/ct.nii.gz",
+ "pseudo_label": "s0088/ct.nii.gz",
+ "label": "s0088/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0088/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0449/ct.nii.gz",
+ "pseudo_label": "s0449/ct.nii.gz",
+ "label": "s0449/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0449/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1131/ct.nii.gz",
+ "pseudo_label": "s1131/ct.nii.gz",
+ "label": "s1131/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1131/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0042/ct.nii.gz",
+ "pseudo_label": "s0042/ct.nii.gz",
+ "label": "s0042/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0042/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0897/ct.nii.gz",
+ "pseudo_label": "s0897/ct.nii.gz",
+ "label": "s0897/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0897/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0085/ct.nii.gz",
+ "pseudo_label": "s0085/ct.nii.gz",
+ "label": "s0085/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0085/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0764/ct.nii.gz",
+ "pseudo_label": "s0764/ct.nii.gz",
+ "label": "s0764/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0764/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0104/ct.nii.gz",
+ "pseudo_label": "s0104/ct.nii.gz",
+ "label": "s0104/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0104/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0022/ct.nii.gz",
+ "pseudo_label": "s0022/ct.nii.gz",
+ "label": "s0022/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0022/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0254/ct.nii.gz",
+ "pseudo_label": "s0254/ct.nii.gz",
+ "label": "s0254/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0254/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0395/ct.nii.gz",
+ "pseudo_label": "s0395/ct.nii.gz",
+ "label": "s0395/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0395/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1048/ct.nii.gz",
+ "pseudo_label": "s1048/ct.nii.gz",
+ "label": "s1048/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1048/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0871/ct.nii.gz",
+ "pseudo_label": "s0871/ct.nii.gz",
+ "label": "s0871/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0871/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1301/ct.nii.gz",
+ "pseudo_label": "s1301/ct.nii.gz",
+ "label": "s1301/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1301/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0266/ct.nii.gz",
+ "pseudo_label": "s0266/ct.nii.gz",
+ "label": "s0266/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0266/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1044/ct.nii.gz",
+ "pseudo_label": "s1044/ct.nii.gz",
+ "label": "s1044/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1044/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1395/ct.nii.gz",
+ "pseudo_label": "s1395/ct.nii.gz",
+ "label": "s1395/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1395/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0360/ct.nii.gz",
+ "pseudo_label": "s0360/ct.nii.gz",
+ "label": "s0360/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0360/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1070/ct.nii.gz",
+ "pseudo_label": "s1070/ct.nii.gz",
+ "label": "s1070/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1070/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1257/ct.nii.gz",
+ "pseudo_label": "s1257/ct.nii.gz",
+ "label": "s1257/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1257/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0299/ct.nii.gz",
+ "pseudo_label": "s0299/ct.nii.gz",
+ "label": "s0299/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0299/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0114/ct.nii.gz",
+ "pseudo_label": "s0114/ct.nii.gz",
+ "label": "s0114/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0114/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0293/ct.nii.gz",
+ "pseudo_label": "s0293/ct.nii.gz",
+ "label": "s0293/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0293/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0469/ct.nii.gz",
+ "pseudo_label": "s0469/ct.nii.gz",
+ "label": "s0469/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0469/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1264/ct.nii.gz",
+ "pseudo_label": "s1264/ct.nii.gz",
+ "label": "s1264/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1264/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0958/ct.nii.gz",
+ "pseudo_label": "s0958/ct.nii.gz",
+ "label": "s0958/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0958/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0657/ct.nii.gz",
+ "pseudo_label": "s0657/ct.nii.gz",
+ "label": "s0657/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0657/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0216/ct.nii.gz",
+ "pseudo_label": "s0216/ct.nii.gz",
+ "label": "s0216/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0216/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0034/ct.nii.gz",
+ "pseudo_label": "s0034/ct.nii.gz",
+ "label": "s0034/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0034/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0988/ct.nii.gz",
+ "pseudo_label": "s0988/ct.nii.gz",
+ "label": "s0988/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0988/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0734/ct.nii.gz",
+ "pseudo_label": "s0734/ct.nii.gz",
+ "label": "s0734/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0734/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1212/ct.nii.gz",
+ "pseudo_label": "s1212/ct.nii.gz",
+ "label": "s1212/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1212/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0478/ct.nii.gz",
+ "pseudo_label": "s0478/ct.nii.gz",
+ "label": "s0478/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0478/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1149/ct.nii.gz",
+ "pseudo_label": "s1149/ct.nii.gz",
+ "label": "s1149/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1149/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1177/ct.nii.gz",
+ "pseudo_label": "s1177/ct.nii.gz",
+ "label": "s1177/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1177/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1021/ct.nii.gz",
+ "pseudo_label": "s1021/ct.nii.gz",
+ "label": "s1021/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1021/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0430/ct.nii.gz",
+ "pseudo_label": "s0430/ct.nii.gz",
+ "label": "s0430/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0430/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1038/ct.nii.gz",
+ "pseudo_label": "s1038/ct.nii.gz",
+ "label": "s1038/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1038/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1000/ct.nii.gz",
+ "pseudo_label": "s1000/ct.nii.gz",
+ "label": "s1000/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1000/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0809/ct.nii.gz",
+ "pseudo_label": "s0809/ct.nii.gz",
+ "label": "s0809/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0809/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0733/ct.nii.gz",
+ "pseudo_label": "s0733/ct.nii.gz",
+ "label": "s0733/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0733/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0718/ct.nii.gz",
+ "pseudo_label": "s0718/ct.nii.gz",
+ "label": "s0718/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0718/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0685/ct.nii.gz",
+ "pseudo_label": "s0685/ct.nii.gz",
+ "label": "s0685/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0685/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0405/ct.nii.gz",
+ "pseudo_label": "s0405/ct.nii.gz",
+ "label": "s0405/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0405/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1288/ct.nii.gz",
+ "pseudo_label": "s1288/ct.nii.gz",
+ "label": "s1288/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1288/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0057/ct.nii.gz",
+ "pseudo_label": "s0057/ct.nii.gz",
+ "label": "s0057/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0057/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1128/ct.nii.gz",
+ "pseudo_label": "s1128/ct.nii.gz",
+ "label": "s1128/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1128/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1252/ct.nii.gz",
+ "pseudo_label": "s1252/ct.nii.gz",
+ "label": "s1252/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1252/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0989/ct.nii.gz",
+ "pseudo_label": "s0989/ct.nii.gz",
+ "label": "s0989/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0989/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1305/ct.nii.gz",
+ "pseudo_label": "s1305/ct.nii.gz",
+ "label": "s1305/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1305/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0564/ct.nii.gz",
+ "pseudo_label": "s0564/ct.nii.gz",
+ "label": "s0564/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0564/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0013/ct.nii.gz",
+ "pseudo_label": "s0013/ct.nii.gz",
+ "label": "s0013/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0013/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1184/ct.nii.gz",
+ "pseudo_label": "s1184/ct.nii.gz",
+ "label": "s1184/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1184/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1379/ct.nii.gz",
+ "pseudo_label": "s1379/ct.nii.gz",
+ "label": "s1379/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1379/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0543/ct.nii.gz",
+ "pseudo_label": "s0543/ct.nii.gz",
+ "label": "s0543/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0543/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0575/ct.nii.gz",
+ "pseudo_label": "s0575/ct.nii.gz",
+ "label": "s0575/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0575/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1025/ct.nii.gz",
+ "pseudo_label": "s1025/ct.nii.gz",
+ "label": "s1025/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1025/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0304/ct.nii.gz",
+ "pseudo_label": "s0304/ct.nii.gz",
+ "label": "s0304/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0304/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0314/ct.nii.gz",
+ "pseudo_label": "s0314/ct.nii.gz",
+ "label": "s0314/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0314/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1372/ct.nii.gz",
+ "pseudo_label": "s1372/ct.nii.gz",
+ "label": "s1372/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1372/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0319/ct.nii.gz",
+ "pseudo_label": "s0319/ct.nii.gz",
+ "label": "s0319/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0319/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0741/ct.nii.gz",
+ "pseudo_label": "s0741/ct.nii.gz",
+ "label": "s0741/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0741/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1133/ct.nii.gz",
+ "pseudo_label": "s1133/ct.nii.gz",
+ "label": "s1133/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1133/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0491/ct.nii.gz",
+ "pseudo_label": "s0491/ct.nii.gz",
+ "label": "s0491/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0491/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0815/ct.nii.gz",
+ "pseudo_label": "s0815/ct.nii.gz",
+ "label": "s0815/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0815/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0421/ct.nii.gz",
+ "pseudo_label": "s0421/ct.nii.gz",
+ "label": "s0421/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0421/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0122/ct.nii.gz",
+ "pseudo_label": "s0122/ct.nii.gz",
+ "label": "s0122/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0122/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0079/ct.nii.gz",
+ "pseudo_label": "s0079/ct.nii.gz",
+ "label": "s0079/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0079/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1270/ct.nii.gz",
+ "pseudo_label": "s1270/ct.nii.gz",
+ "label": "s1270/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1270/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0437/ct.nii.gz",
+ "pseudo_label": "s0437/ct.nii.gz",
+ "label": "s0437/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0437/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0132/ct.nii.gz",
+ "pseudo_label": "s0132/ct.nii.gz",
+ "label": "s0132/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0132/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1384/ct.nii.gz",
+ "pseudo_label": "s1384/ct.nii.gz",
+ "label": "s1384/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1384/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1001/ct.nii.gz",
+ "pseudo_label": "s1001/ct.nii.gz",
+ "label": "s1001/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1001/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0231/ct.nii.gz",
+ "pseudo_label": "s0231/ct.nii.gz",
+ "label": "s0231/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0231/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1098/ct.nii.gz",
+ "pseudo_label": "s1098/ct.nii.gz",
+ "label": "s1098/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1098/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1422/ct.nii.gz",
+ "pseudo_label": "s1422/ct.nii.gz",
+ "label": "s1422/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1422/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1332/ct.nii.gz",
+ "pseudo_label": "s1332/ct.nii.gz",
+ "label": "s1332/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1332/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0308/ct.nii.gz",
+ "pseudo_label": "s0308/ct.nii.gz",
+ "label": "s0308/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0308/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1359/ct.nii.gz",
+ "pseudo_label": "s1359/ct.nii.gz",
+ "label": "s1359/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1359/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0169/ct.nii.gz",
+ "pseudo_label": "s0169/ct.nii.gz",
+ "label": "s0169/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0169/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1013/ct.nii.gz",
+ "pseudo_label": "s1013/ct.nii.gz",
+ "label": "s1013/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1013/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1007/ct.nii.gz",
+ "pseudo_label": "s1007/ct.nii.gz",
+ "label": "s1007/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1007/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0628/ct.nii.gz",
+ "pseudo_label": "s0628/ct.nii.gz",
+ "label": "s0628/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0628/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0398/ct.nii.gz",
+ "pseudo_label": "s0398/ct.nii.gz",
+ "label": "s0398/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0398/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0373/ct.nii.gz",
+ "pseudo_label": "s0373/ct.nii.gz",
+ "label": "s0373/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0373/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0903/ct.nii.gz",
+ "pseudo_label": "s0903/ct.nii.gz",
+ "label": "s0903/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0903/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0166/ct.nii.gz",
+ "pseudo_label": "s0166/ct.nii.gz",
+ "label": "s0166/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0166/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0179/ct.nii.gz",
+ "pseudo_label": "s0179/ct.nii.gz",
+ "label": "s0179/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0179/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0550/ct.nii.gz",
+ "pseudo_label": "s0550/ct.nii.gz",
+ "label": "s0550/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0550/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0847/ct.nii.gz",
+ "pseudo_label": "s0847/ct.nii.gz",
+ "label": "s0847/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0847/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0487/ct.nii.gz",
+ "pseudo_label": "s0487/ct.nii.gz",
+ "label": "s0487/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0487/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1348/ct.nii.gz",
+ "pseudo_label": "s1348/ct.nii.gz",
+ "label": "s1348/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1348/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0498/ct.nii.gz",
+ "pseudo_label": "s0498/ct.nii.gz",
+ "label": "s0498/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0498/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0380/ct.nii.gz",
+ "pseudo_label": "s0380/ct.nii.gz",
+ "label": "s0380/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0380/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0210/ct.nii.gz",
+ "pseudo_label": "s0210/ct.nii.gz",
+ "label": "s0210/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0210/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1068/ct.nii.gz",
+ "pseudo_label": "s1068/ct.nii.gz",
+ "label": "s1068/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1068/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0229/ct.nii.gz",
+ "pseudo_label": "s0229/ct.nii.gz",
+ "label": "s0229/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0229/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0128/ct.nii.gz",
+ "pseudo_label": "s0128/ct.nii.gz",
+ "label": "s0128/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0128/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0000/ct.nii.gz",
+ "pseudo_label": "s0000/ct.nii.gz",
+ "label": "s0000/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0000/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0732/ct.nii.gz",
+ "pseudo_label": "s0732/ct.nii.gz",
+ "label": "s0732/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0732/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1183/ct.nii.gz",
+ "pseudo_label": "s1183/ct.nii.gz",
+ "label": "s1183/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1183/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0290/ct.nii.gz",
+ "pseudo_label": "s0290/ct.nii.gz",
+ "label": "s0290/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0290/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0671/ct.nii.gz",
+ "pseudo_label": "s0671/ct.nii.gz",
+ "label": "s0671/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0671/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0695/ct.nii.gz",
+ "pseudo_label": "s0695/ct.nii.gz",
+ "label": "s0695/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0695/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1147/ct.nii.gz",
+ "pseudo_label": "s1147/ct.nii.gz",
+ "label": "s1147/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1147/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1032/ct.nii.gz",
+ "pseudo_label": "s1032/ct.nii.gz",
+ "label": "s1032/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1032/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0627/ct.nii.gz",
+ "pseudo_label": "s0627/ct.nii.gz",
+ "label": "s0627/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0627/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1158/ct.nii.gz",
+ "pseudo_label": "s1158/ct.nii.gz",
+ "label": "s1158/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1158/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0780/ct.nii.gz",
+ "pseudo_label": "s0780/ct.nii.gz",
+ "label": "s0780/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0780/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1240/ct.nii.gz",
+ "pseudo_label": "s1240/ct.nii.gz",
+ "label": "s1240/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1240/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1201/ct.nii.gz",
+ "pseudo_label": "s1201/ct.nii.gz",
+ "label": "s1201/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1201/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0063/ct.nii.gz",
+ "pseudo_label": "s0063/ct.nii.gz",
+ "label": "s0063/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0063/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0500/ct.nii.gz",
+ "pseudo_label": "s0500/ct.nii.gz",
+ "label": "s0500/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0500/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0913/ct.nii.gz",
+ "pseudo_label": "s0913/ct.nii.gz",
+ "label": "s0913/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0913/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0774/ct.nii.gz",
+ "pseudo_label": "s0774/ct.nii.gz",
+ "label": "s0774/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0774/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1179/ct.nii.gz",
+ "pseudo_label": "s1179/ct.nii.gz",
+ "label": "s1179/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1179/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0275/ct.nii.gz",
+ "pseudo_label": "s0275/ct.nii.gz",
+ "label": "s0275/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0275/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0482/ct.nii.gz",
+ "pseudo_label": "s0482/ct.nii.gz",
+ "label": "s0482/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0482/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0454/ct.nii.gz",
+ "pseudo_label": "s0454/ct.nii.gz",
+ "label": "s0454/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0454/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0048/ct.nii.gz",
+ "pseudo_label": "s0048/ct.nii.gz",
+ "label": "s0048/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0048/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0870/ct.nii.gz",
+ "pseudo_label": "s0870/ct.nii.gz",
+ "label": "s0870/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0870/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0585/ct.nii.gz",
+ "pseudo_label": "s0585/ct.nii.gz",
+ "label": "s0585/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0585/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1397/ct.nii.gz",
+ "pseudo_label": "s1397/ct.nii.gz",
+ "label": "s1397/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1397/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1190/ct.nii.gz",
+ "pseudo_label": "s1190/ct.nii.gz",
+ "label": "s1190/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1190/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0676/ct.nii.gz",
+ "pseudo_label": "s0676/ct.nii.gz",
+ "label": "s0676/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0676/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0305/ct.nii.gz",
+ "pseudo_label": "s0305/ct.nii.gz",
+ "label": "s0305/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0305/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0731/ct.nii.gz",
+ "pseudo_label": "s0731/ct.nii.gz",
+ "label": "s0731/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0731/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0138/ct.nii.gz",
+ "pseudo_label": "s0138/ct.nii.gz",
+ "label": "s0138/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0138/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0928/ct.nii.gz",
+ "pseudo_label": "s0928/ct.nii.gz",
+ "label": "s0928/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0928/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0846/ct.nii.gz",
+ "pseudo_label": "s0846/ct.nii.gz",
+ "label": "s0846/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0846/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0895/ct.nii.gz",
+ "pseudo_label": "s0895/ct.nii.gz",
+ "label": "s0895/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0895/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1291/ct.nii.gz",
+ "pseudo_label": "s1291/ct.nii.gz",
+ "label": "s1291/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1291/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0811/ct.nii.gz",
+ "pseudo_label": "s0811/ct.nii.gz",
+ "label": "s0811/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0811/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0349/ct.nii.gz",
+ "pseudo_label": "s0349/ct.nii.gz",
+ "label": "s0349/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0349/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1103/ct.nii.gz",
+ "pseudo_label": "s1103/ct.nii.gz",
+ "label": "s1103/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1103/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0506/ct.nii.gz",
+ "pseudo_label": "s0506/ct.nii.gz",
+ "label": "s0506/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0506/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0389/ct.nii.gz",
+ "pseudo_label": "s0389/ct.nii.gz",
+ "label": "s0389/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0389/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0615/ct.nii.gz",
+ "pseudo_label": "s0615/ct.nii.gz",
+ "label": "s0615/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0615/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0470/ct.nii.gz",
+ "pseudo_label": "s0470/ct.nii.gz",
+ "label": "s0470/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0470/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0187/ct.nii.gz",
+ "pseudo_label": "s0187/ct.nii.gz",
+ "label": "s0187/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0187/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0912/ct.nii.gz",
+ "pseudo_label": "s0912/ct.nii.gz",
+ "label": "s0912/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0912/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0573/ct.nii.gz",
+ "pseudo_label": "s0573/ct.nii.gz",
+ "label": "s0573/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0573/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1175/ct.nii.gz",
+ "pseudo_label": "s1175/ct.nii.gz",
+ "label": "s1175/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1175/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0044/ct.nii.gz",
+ "pseudo_label": "s0044/ct.nii.gz",
+ "label": "s0044/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0044/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0515/ct.nii.gz",
+ "pseudo_label": "s0515/ct.nii.gz",
+ "label": "s0515/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0515/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0363/ct.nii.gz",
+ "pseudo_label": "s0363/ct.nii.gz",
+ "label": "s0363/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0363/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0350/ct.nii.gz",
+ "pseudo_label": "s0350/ct.nii.gz",
+ "label": "s0350/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0350/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0029/ct.nii.gz",
+ "pseudo_label": "s0029/ct.nii.gz",
+ "label": "s0029/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0029/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1285/ct.nii.gz",
+ "pseudo_label": "s1285/ct.nii.gz",
+ "label": "s1285/seg.nii.gz",
+ "fold": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1285/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0954/ct.nii.gz",
+ "pseudo_label": "s0954/ct.nii.gz",
+ "label": "s0954/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0954/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1399/ct.nii.gz",
+ "pseudo_label": "s1399/ct.nii.gz",
+ "label": "s1399/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1399/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0820/ct.nii.gz",
+ "pseudo_label": "s0820/ct.nii.gz",
+ "label": "s0820/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0820/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1276/ct.nii.gz",
+ "pseudo_label": "s1276/ct.nii.gz",
+ "label": "s1276/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1276/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0636/ct.nii.gz",
+ "pseudo_label": "s0636/ct.nii.gz",
+ "label": "s0636/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0636/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0475/ct.nii.gz",
+ "pseudo_label": "s0475/ct.nii.gz",
+ "label": "s0475/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0475/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1008/ct.nii.gz",
+ "pseudo_label": "s1008/ct.nii.gz",
+ "label": "s1008/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1008/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0851/ct.nii.gz",
+ "pseudo_label": "s0851/ct.nii.gz",
+ "label": "s0851/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0851/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1216/ct.nii.gz",
+ "pseudo_label": "s1216/ct.nii.gz",
+ "label": "s1216/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1216/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0735/ct.nii.gz",
+ "pseudo_label": "s0735/ct.nii.gz",
+ "label": "s0735/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0735/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0947/ct.nii.gz",
+ "pseudo_label": "s0947/ct.nii.gz",
+ "label": "s0947/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0947/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1338/ct.nii.gz",
+ "pseudo_label": "s1338/ct.nii.gz",
+ "label": "s1338/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1338/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1339/ct.nii.gz",
+ "pseudo_label": "s1339/ct.nii.gz",
+ "label": "s1339/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1339/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0536/ct.nii.gz",
+ "pseudo_label": "s0536/ct.nii.gz",
+ "label": "s0536/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0536/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0934/ct.nii.gz",
+ "pseudo_label": "s0934/ct.nii.gz",
+ "label": "s0934/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0934/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0408/ct.nii.gz",
+ "pseudo_label": "s0408/ct.nii.gz",
+ "label": "s0408/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0408/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0860/ct.nii.gz",
+ "pseudo_label": "s0860/ct.nii.gz",
+ "label": "s0860/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0860/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0831/ct.nii.gz",
+ "pseudo_label": "s0831/ct.nii.gz",
+ "label": "s0831/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0831/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0935/ct.nii.gz",
+ "pseudo_label": "s0935/ct.nii.gz",
+ "label": "s0935/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0935/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1310/ct.nii.gz",
+ "pseudo_label": "s1310/ct.nii.gz",
+ "label": "s1310/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1310/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0418/ct.nii.gz",
+ "pseudo_label": "s0418/ct.nii.gz",
+ "label": "s0418/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0418/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1018/ct.nii.gz",
+ "pseudo_label": "s1018/ct.nii.gz",
+ "label": "s1018/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1018/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1370/ct.nii.gz",
+ "pseudo_label": "s1370/ct.nii.gz",
+ "label": "s1370/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1370/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0654/ct.nii.gz",
+ "pseudo_label": "s0654/ct.nii.gz",
+ "label": "s0654/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0654/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0452/ct.nii.gz",
+ "pseudo_label": "s0452/ct.nii.gz",
+ "label": "s0452/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0452/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0222/ct.nii.gz",
+ "pseudo_label": "s0222/ct.nii.gz",
+ "label": "s0222/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0222/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1246/ct.nii.gz",
+ "pseudo_label": "s1246/ct.nii.gz",
+ "label": "s1246/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1246/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0800/ct.nii.gz",
+ "pseudo_label": "s0800/ct.nii.gz",
+ "label": "s0800/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0800/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1173/ct.nii.gz",
+ "pseudo_label": "s1173/ct.nii.gz",
+ "label": "s1173/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1173/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0776/ct.nii.gz",
+ "pseudo_label": "s0776/ct.nii.gz",
+ "label": "s0776/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0776/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0655/ct.nii.gz",
+ "pseudo_label": "s0655/ct.nii.gz",
+ "label": "s0655/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0655/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0924/ct.nii.gz",
+ "pseudo_label": "s0924/ct.nii.gz",
+ "label": "s0924/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0924/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0083/ct.nii.gz",
+ "pseudo_label": "s0083/ct.nii.gz",
+ "label": "s0083/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0083/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0775/ct.nii.gz",
+ "pseudo_label": "s0775/ct.nii.gz",
+ "label": "s0775/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0775/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1249/ct.nii.gz",
+ "pseudo_label": "s1249/ct.nii.gz",
+ "label": "s1249/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1249/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0124/ct.nii.gz",
+ "pseudo_label": "s0124/ct.nii.gz",
+ "label": "s0124/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0124/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1004/ct.nii.gz",
+ "pseudo_label": "s1004/ct.nii.gz",
+ "label": "s1004/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1004/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0748/ct.nii.gz",
+ "pseudo_label": "s0748/ct.nii.gz",
+ "label": "s0748/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0748/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1416/ct.nii.gz",
+ "pseudo_label": "s1416/ct.nii.gz",
+ "label": "s1416/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1416/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0183/ct.nii.gz",
+ "pseudo_label": "s0183/ct.nii.gz",
+ "label": "s0183/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0183/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0586/ct.nii.gz",
+ "pseudo_label": "s0586/ct.nii.gz",
+ "label": "s0586/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0586/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1206/ct.nii.gz",
+ "pseudo_label": "s1206/ct.nii.gz",
+ "label": "s1206/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1206/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1389/ct.nii.gz",
+ "pseudo_label": "s1389/ct.nii.gz",
+ "label": "s1389/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1389/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0271/ct.nii.gz",
+ "pseudo_label": "s0271/ct.nii.gz",
+ "label": "s0271/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0271/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0583/ct.nii.gz",
+ "pseudo_label": "s0583/ct.nii.gz",
+ "label": "s0583/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0583/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0877/ct.nii.gz",
+ "pseudo_label": "s0877/ct.nii.gz",
+ "label": "s0877/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0877/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1010/ct.nii.gz",
+ "pseudo_label": "s1010/ct.nii.gz",
+ "label": "s1010/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1010/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1135/ct.nii.gz",
+ "pseudo_label": "s1135/ct.nii.gz",
+ "label": "s1135/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1135/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0091/ct.nii.gz",
+ "pseudo_label": "s0091/ct.nii.gz",
+ "label": "s0091/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0091/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0037/ct.nii.gz",
+ "pseudo_label": "s0037/ct.nii.gz",
+ "label": "s0037/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0037/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0832/ct.nii.gz",
+ "pseudo_label": "s0832/ct.nii.gz",
+ "label": "s0832/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0832/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0736/ct.nii.gz",
+ "pseudo_label": "s0736/ct.nii.gz",
+ "label": "s0736/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0736/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0584/ct.nii.gz",
+ "pseudo_label": "s0584/ct.nii.gz",
+ "label": "s0584/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0584/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0109/ct.nii.gz",
+ "pseudo_label": "s0109/ct.nii.gz",
+ "label": "s0109/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0109/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1031/ct.nii.gz",
+ "pseudo_label": "s1031/ct.nii.gz",
+ "label": "s1031/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1031/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1223/ct.nii.gz",
+ "pseudo_label": "s1223/ct.nii.gz",
+ "label": "s1223/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1223/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1050/ct.nii.gz",
+ "pseudo_label": "s1050/ct.nii.gz",
+ "label": "s1050/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1050/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1110/ct.nii.gz",
+ "pseudo_label": "s1110/ct.nii.gz",
+ "label": "s1110/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1110/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1167/ct.nii.gz",
+ "pseudo_label": "s1167/ct.nii.gz",
+ "label": "s1167/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1167/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0227/ct.nii.gz",
+ "pseudo_label": "s0227/ct.nii.gz",
+ "label": "s0227/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0227/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0985/ct.nii.gz",
+ "pseudo_label": "s0985/ct.nii.gz",
+ "label": "s0985/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0985/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1377/ct.nii.gz",
+ "pseudo_label": "s1377/ct.nii.gz",
+ "label": "s1377/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1377/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0250/ct.nii.gz",
+ "pseudo_label": "s0250/ct.nii.gz",
+ "label": "s0250/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0250/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1003/ct.nii.gz",
+ "pseudo_label": "s1003/ct.nii.gz",
+ "label": "s1003/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1003/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0677/ct.nii.gz",
+ "pseudo_label": "s0677/ct.nii.gz",
+ "label": "s0677/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0677/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0286/ct.nii.gz",
+ "pseudo_label": "s0286/ct.nii.gz",
+ "label": "s0286/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0286/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0185/ct.nii.gz",
+ "pseudo_label": "s0185/ct.nii.gz",
+ "label": "s0185/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0185/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0075/ct.nii.gz",
+ "pseudo_label": "s0075/ct.nii.gz",
+ "label": "s0075/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0075/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1107/ct.nii.gz",
+ "pseudo_label": "s1107/ct.nii.gz",
+ "label": "s1107/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1107/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0746/ct.nii.gz",
+ "pseudo_label": "s0746/ct.nii.gz",
+ "label": "s0746/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0746/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1391/ct.nii.gz",
+ "pseudo_label": "s1391/ct.nii.gz",
+ "label": "s1391/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1391/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0950/ct.nii.gz",
+ "pseudo_label": "s0950/ct.nii.gz",
+ "label": "s0950/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0950/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1275/ct.nii.gz",
+ "pseudo_label": "s1275/ct.nii.gz",
+ "label": "s1275/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1275/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1267/ct.nii.gz",
+ "pseudo_label": "s1267/ct.nii.gz",
+ "label": "s1267/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1267/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0834/ct.nii.gz",
+ "pseudo_label": "s0834/ct.nii.gz",
+ "label": "s0834/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0834/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1015/ct.nii.gz",
+ "pseudo_label": "s1015/ct.nii.gz",
+ "label": "s1015/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1015/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0673/ct.nii.gz",
+ "pseudo_label": "s0673/ct.nii.gz",
+ "label": "s0673/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0673/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1075/ct.nii.gz",
+ "pseudo_label": "s1075/ct.nii.gz",
+ "label": "s1075/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1075/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1005/ct.nii.gz",
+ "pseudo_label": "s1005/ct.nii.gz",
+ "label": "s1005/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1005/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0342/ct.nii.gz",
+ "pseudo_label": "s0342/ct.nii.gz",
+ "label": "s0342/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0342/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1329/ct.nii.gz",
+ "pseudo_label": "s1329/ct.nii.gz",
+ "label": "s1329/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1329/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1182/ct.nii.gz",
+ "pseudo_label": "s1182/ct.nii.gz",
+ "label": "s1182/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1182/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1140/ct.nii.gz",
+ "pseudo_label": "s1140/ct.nii.gz",
+ "label": "s1140/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1140/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0443/ct.nii.gz",
+ "pseudo_label": "s0443/ct.nii.gz",
+ "label": "s0443/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0443/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0788/ct.nii.gz",
+ "pseudo_label": "s0788/ct.nii.gz",
+ "label": "s0788/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0788/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1006/ct.nii.gz",
+ "pseudo_label": "s1006/ct.nii.gz",
+ "label": "s1006/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1006/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1421/ct.nii.gz",
+ "pseudo_label": "s1421/ct.nii.gz",
+ "label": "s1421/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1421/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1065/ct.nii.gz",
+ "pseudo_label": "s1065/ct.nii.gz",
+ "label": "s1065/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1065/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0376/ct.nii.gz",
+ "pseudo_label": "s0376/ct.nii.gz",
+ "label": "s0376/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0376/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1268/ct.nii.gz",
+ "pseudo_label": "s1268/ct.nii.gz",
+ "label": "s1268/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1268/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0374/ct.nii.gz",
+ "pseudo_label": "s0374/ct.nii.gz",
+ "label": "s0374/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0374/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0880/ct.nii.gz",
+ "pseudo_label": "s0880/ct.nii.gz",
+ "label": "s0880/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0880/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0061/ct.nii.gz",
+ "pseudo_label": "s0061/ct.nii.gz",
+ "label": "s0061/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0061/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0149/ct.nii.gz",
+ "pseudo_label": "s0149/ct.nii.gz",
+ "label": "s0149/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0149/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0103/ct.nii.gz",
+ "pseudo_label": "s0103/ct.nii.gz",
+ "label": "s0103/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0103/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1242/ct.nii.gz",
+ "pseudo_label": "s1242/ct.nii.gz",
+ "label": "s1242/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1242/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0653/ct.nii.gz",
+ "pseudo_label": "s0653/ct.nii.gz",
+ "label": "s0653/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0653/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0984/ct.nii.gz",
+ "pseudo_label": "s0984/ct.nii.gz",
+ "label": "s0984/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0984/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0911/ct.nii.gz",
+ "pseudo_label": "s0911/ct.nii.gz",
+ "label": "s0911/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0911/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0009/ct.nii.gz",
+ "pseudo_label": "s0009/ct.nii.gz",
+ "label": "s0009/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0009/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0157/ct.nii.gz",
+ "pseudo_label": "s0157/ct.nii.gz",
+ "label": "s0157/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0157/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1222/ct.nii.gz",
+ "pseudo_label": "s1222/ct.nii.gz",
+ "label": "s1222/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1222/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0391/ct.nii.gz",
+ "pseudo_label": "s0391/ct.nii.gz",
+ "label": "s0391/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0391/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1256/ct.nii.gz",
+ "pseudo_label": "s1256/ct.nii.gz",
+ "label": "s1256/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1256/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0643/ct.nii.gz",
+ "pseudo_label": "s0643/ct.nii.gz",
+ "label": "s0643/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0643/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0243/ct.nii.gz",
+ "pseudo_label": "s0243/ct.nii.gz",
+ "label": "s0243/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0243/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1365/ct.nii.gz",
+ "pseudo_label": "s1365/ct.nii.gz",
+ "label": "s1365/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1365/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0213/ct.nii.gz",
+ "pseudo_label": "s0213/ct.nii.gz",
+ "label": "s0213/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0213/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0130/ct.nii.gz",
+ "pseudo_label": "s0130/ct.nii.gz",
+ "label": "s0130/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0130/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1142/ct.nii.gz",
+ "pseudo_label": "s1142/ct.nii.gz",
+ "label": "s1142/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1142/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0997/ct.nii.gz",
+ "pseudo_label": "s0997/ct.nii.gz",
+ "label": "s0997/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0997/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0938/ct.nii.gz",
+ "pseudo_label": "s0938/ct.nii.gz",
+ "label": "s0938/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0938/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1318/ct.nii.gz",
+ "pseudo_label": "s1318/ct.nii.gz",
+ "label": "s1318/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1318/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0481/ct.nii.gz",
+ "pseudo_label": "s0481/ct.nii.gz",
+ "label": "s0481/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0481/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0197/ct.nii.gz",
+ "pseudo_label": "s0197/ct.nii.gz",
+ "label": "s0197/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0197/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0024/ct.nii.gz",
+ "pseudo_label": "s0024/ct.nii.gz",
+ "label": "s0024/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0024/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1314/ct.nii.gz",
+ "pseudo_label": "s1314/ct.nii.gz",
+ "label": "s1314/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1314/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0819/ct.nii.gz",
+ "pseudo_label": "s0819/ct.nii.gz",
+ "label": "s0819/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0819/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1203/ct.nii.gz",
+ "pseudo_label": "s1203/ct.nii.gz",
+ "label": "s1203/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1203/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0426/ct.nii.gz",
+ "pseudo_label": "s0426/ct.nii.gz",
+ "label": "s0426/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0426/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0693/ct.nii.gz",
+ "pseudo_label": "s0693/ct.nii.gz",
+ "label": "s0693/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0693/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0546/ct.nii.gz",
+ "pseudo_label": "s0546/ct.nii.gz",
+ "label": "s0546/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0546/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0652/ct.nii.gz",
+ "pseudo_label": "s0652/ct.nii.gz",
+ "label": "s0652/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0652/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1255/ct.nii.gz",
+ "pseudo_label": "s1255/ct.nii.gz",
+ "label": "s1255/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1255/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0324/ct.nii.gz",
+ "pseudo_label": "s0324/ct.nii.gz",
+ "label": "s0324/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0324/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0518/ct.nii.gz",
+ "pseudo_label": "s0518/ct.nii.gz",
+ "label": "s0518/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0518/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0345/ct.nii.gz",
+ "pseudo_label": "s0345/ct.nii.gz",
+ "label": "s0345/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0345/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0769/ct.nii.gz",
+ "pseudo_label": "s0769/ct.nii.gz",
+ "label": "s0769/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0769/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1322/ct.nii.gz",
+ "pseudo_label": "s1322/ct.nii.gz",
+ "label": "s1322/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1322/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0032/ct.nii.gz",
+ "pseudo_label": "s0032/ct.nii.gz",
+ "label": "s0032/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0032/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0890/ct.nii.gz",
+ "pseudo_label": "s0890/ct.nii.gz",
+ "label": "s0890/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0890/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1134/ct.nii.gz",
+ "pseudo_label": "s1134/ct.nii.gz",
+ "label": "s1134/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1134/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0313/ct.nii.gz",
+ "pseudo_label": "s0313/ct.nii.gz",
+ "label": "s0313/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0313/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0140/ct.nii.gz",
+ "pseudo_label": "s0140/ct.nii.gz",
+ "label": "s0140/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0140/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1086/ct.nii.gz",
+ "pseudo_label": "s1086/ct.nii.gz",
+ "label": "s1086/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1086/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0658/ct.nii.gz",
+ "pseudo_label": "s0658/ct.nii.gz",
+ "label": "s0658/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0658/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0767/ct.nii.gz",
+ "pseudo_label": "s0767/ct.nii.gz",
+ "label": "s0767/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0767/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0480/ct.nii.gz",
+ "pseudo_label": "s0480/ct.nii.gz",
+ "label": "s0480/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0480/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0078/ct.nii.gz",
+ "pseudo_label": "s0078/ct.nii.gz",
+ "label": "s0078/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0078/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0945/ct.nii.gz",
+ "pseudo_label": "s0945/ct.nii.gz",
+ "label": "s0945/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0945/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1028/ct.nii.gz",
+ "pseudo_label": "s1028/ct.nii.gz",
+ "label": "s1028/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1028/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0565/ct.nii.gz",
+ "pseudo_label": "s0565/ct.nii.gz",
+ "label": "s0565/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0565/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0466/ct.nii.gz",
+ "pseudo_label": "s0466/ct.nii.gz",
+ "label": "s0466/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0466/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0842/ct.nii.gz",
+ "pseudo_label": "s0842/ct.nii.gz",
+ "label": "s0842/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0842/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0549/ct.nii.gz",
+ "pseudo_label": "s0549/ct.nii.gz",
+ "label": "s0549/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0549/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0307/ct.nii.gz",
+ "pseudo_label": "s0307/ct.nii.gz",
+ "label": "s0307/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0307/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0612/ct.nii.gz",
+ "pseudo_label": "s0612/ct.nii.gz",
+ "label": "s0612/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0612/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0016/ct.nii.gz",
+ "pseudo_label": "s0016/ct.nii.gz",
+ "label": "s0016/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0016/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0557/ct.nii.gz",
+ "pseudo_label": "s0557/ct.nii.gz",
+ "label": "s0557/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0557/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1111/ct.nii.gz",
+ "pseudo_label": "s1111/ct.nii.gz",
+ "label": "s1111/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1111/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1077/ct.nii.gz",
+ "pseudo_label": "s1077/ct.nii.gz",
+ "label": "s1077/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1077/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0204/ct.nii.gz",
+ "pseudo_label": "s0204/ct.nii.gz",
+ "label": "s0204/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0204/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1333/ct.nii.gz",
+ "pseudo_label": "s1333/ct.nii.gz",
+ "label": "s1333/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1333/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0829/ct.nii.gz",
+ "pseudo_label": "s0829/ct.nii.gz",
+ "label": "s0829/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0829/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0291/ct.nii.gz",
+ "pseudo_label": "s0291/ct.nii.gz",
+ "label": "s0291/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0291/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1079/ct.nii.gz",
+ "pseudo_label": "s1079/ct.nii.gz",
+ "label": "s1079/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1079/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0977/ct.nii.gz",
+ "pseudo_label": "s0977/ct.nii.gz",
+ "label": "s0977/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0977/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0587/ct.nii.gz",
+ "pseudo_label": "s0587/ct.nii.gz",
+ "label": "s0587/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0587/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0737/ct.nii.gz",
+ "pseudo_label": "s0737/ct.nii.gz",
+ "label": "s0737/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0737/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1089/ct.nii.gz",
+ "pseudo_label": "s1089/ct.nii.gz",
+ "label": "s1089/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1089/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1228/ct.nii.gz",
+ "pseudo_label": "s1228/ct.nii.gz",
+ "label": "s1228/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1228/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0574/ct.nii.gz",
+ "pseudo_label": "s0574/ct.nii.gz",
+ "label": "s0574/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0574/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1023/ct.nii.gz",
+ "pseudo_label": "s1023/ct.nii.gz",
+ "label": "s1023/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1023/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0545/ct.nii.gz",
+ "pseudo_label": "s0545/ct.nii.gz",
+ "label": "s0545/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0545/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1026/ct.nii.gz",
+ "pseudo_label": "s1026/ct.nii.gz",
+ "label": "s1026/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1026/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0086/ct.nii.gz",
+ "pseudo_label": "s0086/ct.nii.gz",
+ "label": "s0086/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0086/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0889/ct.nii.gz",
+ "pseudo_label": "s0889/ct.nii.gz",
+ "label": "s0889/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0889/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1221/ct.nii.gz",
+ "pseudo_label": "s1221/ct.nii.gz",
+ "label": "s1221/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1221/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0252/ct.nii.gz",
+ "pseudo_label": "s0252/ct.nii.gz",
+ "label": "s0252/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0252/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0181/ct.nii.gz",
+ "pseudo_label": "s0181/ct.nii.gz",
+ "label": "s0181/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0181/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0493/ct.nii.gz",
+ "pseudo_label": "s0493/ct.nii.gz",
+ "label": "s0493/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0493/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1258/ct.nii.gz",
+ "pseudo_label": "s1258/ct.nii.gz",
+ "label": "s1258/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1258/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0777/ct.nii.gz",
+ "pseudo_label": "s0777/ct.nii.gz",
+ "label": "s0777/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0777/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0843/ct.nii.gz",
+ "pseudo_label": "s0843/ct.nii.gz",
+ "label": "s0843/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0843/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1325/ct.nii.gz",
+ "pseudo_label": "s1325/ct.nii.gz",
+ "label": "s1325/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1325/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0645/ct.nii.gz",
+ "pseudo_label": "s0645/ct.nii.gz",
+ "label": "s0645/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0645/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1279/ct.nii.gz",
+ "pseudo_label": "s1279/ct.nii.gz",
+ "label": "s1279/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1279/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0987/ct.nii.gz",
+ "pseudo_label": "s0987/ct.nii.gz",
+ "label": "s0987/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0987/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0189/ct.nii.gz",
+ "pseudo_label": "s0189/ct.nii.gz",
+ "label": "s0189/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0189/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0698/ct.nii.gz",
+ "pseudo_label": "s0698/ct.nii.gz",
+ "label": "s0698/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0698/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0505/ct.nii.gz",
+ "pseudo_label": "s0505/ct.nii.gz",
+ "label": "s0505/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0505/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0146/ct.nii.gz",
+ "pseudo_label": "s0146/ct.nii.gz",
+ "label": "s0146/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0146/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1271/ct.nii.gz",
+ "pseudo_label": "s1271/ct.nii.gz",
+ "label": "s1271/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1271/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1119/ct.nii.gz",
+ "pseudo_label": "s1119/ct.nii.gz",
+ "label": "s1119/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1119/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0490/ct.nii.gz",
+ "pseudo_label": "s0490/ct.nii.gz",
+ "label": "s0490/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0490/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0050/ct.nii.gz",
+ "pseudo_label": "s0050/ct.nii.gz",
+ "label": "s0050/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0050/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0462/ct.nii.gz",
+ "pseudo_label": "s0462/ct.nii.gz",
+ "label": "s0462/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0462/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1020/ct.nii.gz",
+ "pseudo_label": "s1020/ct.nii.gz",
+ "label": "s1020/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1020/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0980/ct.nii.gz",
+ "pseudo_label": "s0980/ct.nii.gz",
+ "label": "s0980/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0980/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0869/ct.nii.gz",
+ "pseudo_label": "s0869/ct.nii.gz",
+ "label": "s0869/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0869/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0488/ct.nii.gz",
+ "pseudo_label": "s0488/ct.nii.gz",
+ "label": "s0488/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0488/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0752/ct.nii.gz",
+ "pseudo_label": "s0752/ct.nii.gz",
+ "label": "s0752/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0752/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0288/ct.nii.gz",
+ "pseudo_label": "s0288/ct.nii.gz",
+ "label": "s0288/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0288/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1082/ct.nii.gz",
+ "pseudo_label": "s1082/ct.nii.gz",
+ "label": "s1082/seg.nii.gz",
+ "fold": 2
+ },
+ {
+ "image": "s0256/ct.nii.gz",
+ "pseudo_label": "s0256/ct.nii.gz",
+ "label": "s0256/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0256/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0962/ct.nii.gz",
+ "pseudo_label": "s0962/ct.nii.gz",
+ "label": "s0962/seg.nii.gz",
+ "fold": 2,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0962/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0133/ct.nii.gz",
+ "pseudo_label": "s0133/ct.nii.gz",
+ "label": "s0133/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0133/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1060/ct.nii.gz",
+ "pseudo_label": "s1060/ct.nii.gz",
+ "label": "s1060/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1060/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0261/ct.nii.gz",
+ "pseudo_label": "s0261/ct.nii.gz",
+ "label": "s0261/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0261/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0602/ct.nii.gz",
+ "pseudo_label": "s0602/ct.nii.gz",
+ "label": "s0602/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0602/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0359/ct.nii.gz",
+ "pseudo_label": "s0359/ct.nii.gz",
+ "label": "s0359/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0359/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0814/ct.nii.gz",
+ "pseudo_label": "s0814/ct.nii.gz",
+ "label": "s0814/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0814/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1034/ct.nii.gz",
+ "pseudo_label": "s1034/ct.nii.gz",
+ "label": "s1034/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1034/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0410/ct.nii.gz",
+ "pseudo_label": "s0410/ct.nii.gz",
+ "label": "s0410/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0410/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1357/ct.nii.gz",
+ "pseudo_label": "s1357/ct.nii.gz",
+ "label": "s1357/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1357/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1063/ct.nii.gz",
+ "pseudo_label": "s1063/ct.nii.gz",
+ "label": "s1063/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1063/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0201/ct.nii.gz",
+ "pseudo_label": "s0201/ct.nii.gz",
+ "label": "s0201/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0201/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0672/ct.nii.gz",
+ "pseudo_label": "s0672/ct.nii.gz",
+ "label": "s0672/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0672/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1296/ct.nii.gz",
+ "pseudo_label": "s1296/ct.nii.gz",
+ "label": "s1296/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1296/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1052/ct.nii.gz",
+ "pseudo_label": "s1052/ct.nii.gz",
+ "label": "s1052/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1052/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0038/ct.nii.gz",
+ "pseudo_label": "s0038/ct.nii.gz",
+ "label": "s0038/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0038/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0036/ct.nii.gz",
+ "pseudo_label": "s0036/ct.nii.gz",
+ "label": "s0036/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0036/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0525/ct.nii.gz",
+ "pseudo_label": "s0525/ct.nii.gz",
+ "label": "s0525/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0525/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1262/ct.nii.gz",
+ "pseudo_label": "s1262/ct.nii.gz",
+ "label": "s1262/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1262/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1290/ct.nii.gz",
+ "pseudo_label": "s1290/ct.nii.gz",
+ "label": "s1290/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1290/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1045/ct.nii.gz",
+ "pseudo_label": "s1045/ct.nii.gz",
+ "label": "s1045/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1045/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1153/ct.nii.gz",
+ "pseudo_label": "s1153/ct.nii.gz",
+ "label": "s1153/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1153/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0719/ct.nii.gz",
+ "pseudo_label": "s0719/ct.nii.gz",
+ "label": "s0719/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0719/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1105/ct.nii.gz",
+ "pseudo_label": "s1105/ct.nii.gz",
+ "label": "s1105/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1105/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1340/ct.nii.gz",
+ "pseudo_label": "s1340/ct.nii.gz",
+ "label": "s1340/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1340/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0927/ct.nii.gz",
+ "pseudo_label": "s0927/ct.nii.gz",
+ "label": "s0927/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0927/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0463/ct.nii.gz",
+ "pseudo_label": "s0463/ct.nii.gz",
+ "label": "s0463/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0463/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0021/ct.nii.gz",
+ "pseudo_label": "s0021/ct.nii.gz",
+ "label": "s0021/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0021/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0056/ct.nii.gz",
+ "pseudo_label": "s0056/ct.nii.gz",
+ "label": "s0056/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0056/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0659/ct.nii.gz",
+ "pseudo_label": "s0659/ct.nii.gz",
+ "label": "s0659/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0659/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0904/ct.nii.gz",
+ "pseudo_label": "s0904/ct.nii.gz",
+ "label": "s0904/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0904/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1170/ct.nii.gz",
+ "pseudo_label": "s1170/ct.nii.gz",
+ "label": "s1170/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1170/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1226/ct.nii.gz",
+ "pseudo_label": "s1226/ct.nii.gz",
+ "label": "s1226/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1226/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1220/ct.nii.gz",
+ "pseudo_label": "s1220/ct.nii.gz",
+ "label": "s1220/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1220/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1419/ct.nii.gz",
+ "pseudo_label": "s1419/ct.nii.gz",
+ "label": "s1419/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1419/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1172/ct.nii.gz",
+ "pseudo_label": "s1172/ct.nii.gz",
+ "label": "s1172/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1172/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1309/ct.nii.gz",
+ "pseudo_label": "s1309/ct.nii.gz",
+ "label": "s1309/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1309/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1273/ct.nii.gz",
+ "pseudo_label": "s1273/ct.nii.gz",
+ "label": "s1273/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1273/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1294/ct.nii.gz",
+ "pseudo_label": "s1294/ct.nii.gz",
+ "label": "s1294/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1294/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0139/ct.nii.gz",
+ "pseudo_label": "s0139/ct.nii.gz",
+ "label": "s0139/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0139/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0661/ct.nii.gz",
+ "pseudo_label": "s0661/ct.nii.gz",
+ "label": "s0661/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0661/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0040/ct.nii.gz",
+ "pseudo_label": "s0040/ct.nii.gz",
+ "label": "s0040/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0040/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1239/ct.nii.gz",
+ "pseudo_label": "s1239/ct.nii.gz",
+ "label": "s1239/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1239/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0152/ct.nii.gz",
+ "pseudo_label": "s0152/ct.nii.gz",
+ "label": "s0152/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0152/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0370/ct.nii.gz",
+ "pseudo_label": "s0370/ct.nii.gz",
+ "label": "s0370/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0370/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0883/ct.nii.gz",
+ "pseudo_label": "s0883/ct.nii.gz",
+ "label": "s0883/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0883/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0670/ct.nii.gz",
+ "pseudo_label": "s0670/ct.nii.gz",
+ "label": "s0670/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0670/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0294/ct.nii.gz",
+ "pseudo_label": "s0294/ct.nii.gz",
+ "label": "s0294/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0294/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0081/ct.nii.gz",
+ "pseudo_label": "s0081/ct.nii.gz",
+ "label": "s0081/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0081/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0551/ct.nii.gz",
+ "pseudo_label": "s0551/ct.nii.gz",
+ "label": "s0551/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0551/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0089/ct.nii.gz",
+ "pseudo_label": "s0089/ct.nii.gz",
+ "label": "s0089/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0089/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0393/ct.nii.gz",
+ "pseudo_label": "s0393/ct.nii.gz",
+ "label": "s0393/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0393/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0566/ct.nii.gz",
+ "pseudo_label": "s0566/ct.nii.gz",
+ "label": "s0566/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0566/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1178/ct.nii.gz",
+ "pseudo_label": "s1178/ct.nii.gz",
+ "label": "s1178/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1178/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0456/ct.nii.gz",
+ "pseudo_label": "s0456/ct.nii.gz",
+ "label": "s0456/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0456/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0240/ct.nii.gz",
+ "pseudo_label": "s0240/ct.nii.gz",
+ "label": "s0240/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0240/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0300/ct.nii.gz",
+ "pseudo_label": "s0300/ct.nii.gz",
+ "label": "s0300/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0300/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0306/ct.nii.gz",
+ "pseudo_label": "s0306/ct.nii.gz",
+ "label": "s0306/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0306/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1047/ct.nii.gz",
+ "pseudo_label": "s1047/ct.nii.gz",
+ "label": "s1047/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1047/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0813/ct.nii.gz",
+ "pseudo_label": "s0813/ct.nii.gz",
+ "label": "s0813/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0813/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0111/ct.nii.gz",
+ "pseudo_label": "s0111/ct.nii.gz",
+ "label": "s0111/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0111/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0358/ct.nii.gz",
+ "pseudo_label": "s0358/ct.nii.gz",
+ "label": "s0358/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0358/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0590/ct.nii.gz",
+ "pseudo_label": "s0590/ct.nii.gz",
+ "label": "s0590/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0590/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0096/ct.nii.gz",
+ "pseudo_label": "s0096/ct.nii.gz",
+ "label": "s0096/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0096/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1017/ct.nii.gz",
+ "pseudo_label": "s1017/ct.nii.gz",
+ "label": "s1017/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1017/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0617/ct.nii.gz",
+ "pseudo_label": "s0617/ct.nii.gz",
+ "label": "s0617/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0617/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0690/ct.nii.gz",
+ "pseudo_label": "s0690/ct.nii.gz",
+ "label": "s0690/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0690/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0542/ct.nii.gz",
+ "pseudo_label": "s0542/ct.nii.gz",
+ "label": "s0542/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0542/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0502/ct.nii.gz",
+ "pseudo_label": "s0502/ct.nii.gz",
+ "label": "s0502/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0502/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0012/ct.nii.gz",
+ "pseudo_label": "s0012/ct.nii.gz",
+ "label": "s0012/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0012/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0331/ct.nii.gz",
+ "pseudo_label": "s0331/ct.nii.gz",
+ "label": "s0331/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0331/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0312/ct.nii.gz",
+ "pseudo_label": "s0312/ct.nii.gz",
+ "label": "s0312/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0312/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1123/ct.nii.gz",
+ "pseudo_label": "s1123/ct.nii.gz",
+ "label": "s1123/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1123/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1127/ct.nii.gz",
+ "pseudo_label": "s1127/ct.nii.gz",
+ "label": "s1127/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1127/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0413/ct.nii.gz",
+ "pseudo_label": "s0413/ct.nii.gz",
+ "label": "s0413/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0413/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0236/ct.nii.gz",
+ "pseudo_label": "s0236/ct.nii.gz",
+ "label": "s0236/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0236/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0112/ct.nii.gz",
+ "pseudo_label": "s0112/ct.nii.gz",
+ "label": "s0112/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0112/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0588/ct.nii.gz",
+ "pseudo_label": "s0588/ct.nii.gz",
+ "label": "s0588/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0588/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0073/ct.nii.gz",
+ "pseudo_label": "s0073/ct.nii.gz",
+ "label": "s0073/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0073/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0336/ct.nii.gz",
+ "pseudo_label": "s0336/ct.nii.gz",
+ "label": "s0336/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0336/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0946/ct.nii.gz",
+ "pseudo_label": "s0946/ct.nii.gz",
+ "label": "s0946/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0946/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1352/ct.nii.gz",
+ "pseudo_label": "s1352/ct.nii.gz",
+ "label": "s1352/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1352/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0747/ct.nii.gz",
+ "pseudo_label": "s0747/ct.nii.gz",
+ "label": "s0747/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0747/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1112/ct.nii.gz",
+ "pseudo_label": "s1112/ct.nii.gz",
+ "label": "s1112/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1112/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0165/ct.nii.gz",
+ "pseudo_label": "s0165/ct.nii.gz",
+ "label": "s0165/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0165/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0699/ct.nii.gz",
+ "pseudo_label": "s0699/ct.nii.gz",
+ "label": "s0699/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0699/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0335/ct.nii.gz",
+ "pseudo_label": "s0335/ct.nii.gz",
+ "label": "s0335/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0335/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1319/ct.nii.gz",
+ "pseudo_label": "s1319/ct.nii.gz",
+ "label": "s1319/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1319/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1300/ct.nii.gz",
+ "pseudo_label": "s1300/ct.nii.gz",
+ "label": "s1300/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1300/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0592/ct.nii.gz",
+ "pseudo_label": "s0592/ct.nii.gz",
+ "label": "s0592/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0592/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0781/ct.nii.gz",
+ "pseudo_label": "s0781/ct.nii.gz",
+ "label": "s0781/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0781/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0561/ct.nii.gz",
+ "pseudo_label": "s0561/ct.nii.gz",
+ "label": "s0561/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0561/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0076/ct.nii.gz",
+ "pseudo_label": "s0076/ct.nii.gz",
+ "label": "s0076/seg.nii.gz",
+ "fold": 3
+ },
+ {
+ "image": "s0531/ct.nii.gz",
+ "pseudo_label": "s0531/ct.nii.gz",
+ "label": "s0531/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0531/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0396/ct.nii.gz",
+ "pseudo_label": "s0396/ct.nii.gz",
+ "label": "s0396/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0396/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0221/ct.nii.gz",
+ "pseudo_label": "s0221/ct.nii.gz",
+ "label": "s0221/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0221/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0043/ct.nii.gz",
+ "pseudo_label": "s0043/ct.nii.gz",
+ "label": "s0043/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0043/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1363/ct.nii.gz",
+ "pseudo_label": "s1363/ct.nii.gz",
+ "label": "s1363/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1363/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1387/ct.nii.gz",
+ "pseudo_label": "s1387/ct.nii.gz",
+ "label": "s1387/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1387/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0154/ct.nii.gz",
+ "pseudo_label": "s0154/ct.nii.gz",
+ "label": "s0154/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0154/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1143/ct.nii.gz",
+ "pseudo_label": "s1143/ct.nii.gz",
+ "label": "s1143/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1143/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0787/ct.nii.gz",
+ "pseudo_label": "s0787/ct.nii.gz",
+ "label": "s0787/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0787/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0394/ct.nii.gz",
+ "pseudo_label": "s0394/ct.nii.gz",
+ "label": "s0394/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0394/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0666/ct.nii.gz",
+ "pseudo_label": "s0666/ct.nii.gz",
+ "label": "s0666/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0666/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0712/ct.nii.gz",
+ "pseudo_label": "s0712/ct.nii.gz",
+ "label": "s0712/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0712/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0120/ct.nii.gz",
+ "pseudo_label": "s0120/ct.nii.gz",
+ "label": "s0120/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0120/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0972/ct.nii.gz",
+ "pseudo_label": "s0972/ct.nii.gz",
+ "label": "s0972/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0972/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0595/ct.nii.gz",
+ "pseudo_label": "s0595/ct.nii.gz",
+ "label": "s0595/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0595/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1014/ct.nii.gz",
+ "pseudo_label": "s1014/ct.nii.gz",
+ "label": "s1014/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1014/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1371/ct.nii.gz",
+ "pseudo_label": "s1371/ct.nii.gz",
+ "label": "s1371/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1371/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0981/ct.nii.gz",
+ "pseudo_label": "s0981/ct.nii.gz",
+ "label": "s0981/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0981/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0885/ct.nii.gz",
+ "pseudo_label": "s0885/ct.nii.gz",
+ "label": "s0885/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0885/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0740/ct.nii.gz",
+ "pseudo_label": "s0740/ct.nii.gz",
+ "label": "s0740/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0740/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0364/ct.nii.gz",
+ "pseudo_label": "s0364/ct.nii.gz",
+ "label": "s0364/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0364/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0901/ct.nii.gz",
+ "pseudo_label": "s0901/ct.nii.gz",
+ "label": "s0901/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0901/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0328/ct.nii.gz",
+ "pseudo_label": "s0328/ct.nii.gz",
+ "label": "s0328/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0328/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1343/ct.nii.gz",
+ "pseudo_label": "s1343/ct.nii.gz",
+ "label": "s1343/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1343/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0910/ct.nii.gz",
+ "pseudo_label": "s0910/ct.nii.gz",
+ "label": "s0910/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0910/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0514/ct.nii.gz",
+ "pseudo_label": "s0514/ct.nii.gz",
+ "label": "s0514/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0514/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0447/ct.nii.gz",
+ "pseudo_label": "s0447/ct.nii.gz",
+ "label": "s0447/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0447/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1297/ct.nii.gz",
+ "pseudo_label": "s1297/ct.nii.gz",
+ "label": "s1297/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1297/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0909/ct.nii.gz",
+ "pseudo_label": "s0909/ct.nii.gz",
+ "label": "s0909/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0909/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0420/ct.nii.gz",
+ "pseudo_label": "s0420/ct.nii.gz",
+ "label": "s0420/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0420/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1088/ct.nii.gz",
+ "pseudo_label": "s1088/ct.nii.gz",
+ "label": "s1088/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1088/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0509/ct.nii.gz",
+ "pseudo_label": "s0509/ct.nii.gz",
+ "label": "s0509/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0509/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0806/ct.nii.gz",
+ "pseudo_label": "s0806/ct.nii.gz",
+ "label": "s0806/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0806/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0440/ct.nii.gz",
+ "pseudo_label": "s0440/ct.nii.gz",
+ "label": "s0440/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0440/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0771/ct.nii.gz",
+ "pseudo_label": "s0771/ct.nii.gz",
+ "label": "s0771/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0771/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0390/ct.nii.gz",
+ "pseudo_label": "s0390/ct.nii.gz",
+ "label": "s0390/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0390/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0807/ct.nii.gz",
+ "pseudo_label": "s0807/ct.nii.gz",
+ "label": "s0807/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0807/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0242/ct.nii.gz",
+ "pseudo_label": "s0242/ct.nii.gz",
+ "label": "s0242/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0242/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1315/ct.nii.gz",
+ "pseudo_label": "s1315/ct.nii.gz",
+ "label": "s1315/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1315/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0544/ct.nii.gz",
+ "pseudo_label": "s0544/ct.nii.gz",
+ "label": "s0544/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0544/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0106/ct.nii.gz",
+ "pseudo_label": "s0106/ct.nii.gz",
+ "label": "s0106/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0106/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0516/ct.nii.gz",
+ "pseudo_label": "s0516/ct.nii.gz",
+ "label": "s0516/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0516/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0403/ct.nii.gz",
+ "pseudo_label": "s0403/ct.nii.gz",
+ "label": "s0403/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0403/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0497/ct.nii.gz",
+ "pseudo_label": "s0497/ct.nii.gz",
+ "label": "s0497/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0497/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0662/ct.nii.gz",
+ "pseudo_label": "s0662/ct.nii.gz",
+ "label": "s0662/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0662/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1312/ct.nii.gz",
+ "pseudo_label": "s1312/ct.nii.gz",
+ "label": "s1312/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1312/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0646/ct.nii.gz",
+ "pseudo_label": "s0646/ct.nii.gz",
+ "label": "s0646/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0646/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0295/ct.nii.gz",
+ "pseudo_label": "s0295/ct.nii.gz",
+ "label": "s0295/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0295/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1400/ct.nii.gz",
+ "pseudo_label": "s1400/ct.nii.gz",
+ "label": "s1400/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1400/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1235/ct.nii.gz",
+ "pseudo_label": "s1235/ct.nii.gz",
+ "label": "s1235/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1235/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0963/ct.nii.gz",
+ "pseudo_label": "s0963/ct.nii.gz",
+ "label": "s0963/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0963/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1238/ct.nii.gz",
+ "pseudo_label": "s1238/ct.nii.gz",
+ "label": "s1238/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1238/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0238/ct.nii.gz",
+ "pseudo_label": "s0238/ct.nii.gz",
+ "label": "s0238/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0238/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0006/ct.nii.gz",
+ "pseudo_label": "s0006/ct.nii.gz",
+ "label": "s0006/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0006/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0327/ct.nii.gz",
+ "pseudo_label": "s0327/ct.nii.gz",
+ "label": "s0327/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0327/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0539/ct.nii.gz",
+ "pseudo_label": "s0539/ct.nii.gz",
+ "label": "s0539/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0539/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0855/ct.nii.gz",
+ "pseudo_label": "s0855/ct.nii.gz",
+ "label": "s0855/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0855/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1174/ct.nii.gz",
+ "pseudo_label": "s1174/ct.nii.gz",
+ "label": "s1174/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1174/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1130/ct.nii.gz",
+ "pseudo_label": "s1130/ct.nii.gz",
+ "label": "s1130/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1130/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0878/ct.nii.gz",
+ "pseudo_label": "s0878/ct.nii.gz",
+ "label": "s0878/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0878/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1185/ct.nii.gz",
+ "pseudo_label": "s1185/ct.nii.gz",
+ "label": "s1185/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1185/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0830/ct.nii.gz",
+ "pseudo_label": "s0830/ct.nii.gz",
+ "label": "s0830/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0830/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0720/ct.nii.gz",
+ "pseudo_label": "s0720/ct.nii.gz",
+ "label": "s0720/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0720/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0092/ct.nii.gz",
+ "pseudo_label": "s0092/ct.nii.gz",
+ "label": "s0092/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0092/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1058/ct.nii.gz",
+ "pseudo_label": "s1058/ct.nii.gz",
+ "label": "s1058/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1058/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1083/ct.nii.gz",
+ "pseudo_label": "s1083/ct.nii.gz",
+ "label": "s1083/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1083/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1109/ct.nii.gz",
+ "pseudo_label": "s1109/ct.nii.gz",
+ "label": "s1109/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1109/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0510/ct.nii.gz",
+ "pseudo_label": "s0510/ct.nii.gz",
+ "label": "s0510/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0510/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0931/ct.nii.gz",
+ "pseudo_label": "s0931/ct.nii.gz",
+ "label": "s0931/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0931/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0951/ct.nii.gz",
+ "pseudo_label": "s0951/ct.nii.gz",
+ "label": "s0951/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0951/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1096/ct.nii.gz",
+ "pseudo_label": "s1096/ct.nii.gz",
+ "label": "s1096/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1096/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1251/ct.nii.gz",
+ "pseudo_label": "s1251/ct.nii.gz",
+ "label": "s1251/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1251/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1055/ct.nii.gz",
+ "pseudo_label": "s1055/ct.nii.gz",
+ "label": "s1055/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1055/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0223/ct.nii.gz",
+ "pseudo_label": "s0223/ct.nii.gz",
+ "label": "s0223/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0223/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0077/ct.nii.gz",
+ "pseudo_label": "s0077/ct.nii.gz",
+ "label": "s0077/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0077/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0145/ct.nii.gz",
+ "pseudo_label": "s0145/ct.nii.gz",
+ "label": "s0145/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0145/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0520/ct.nii.gz",
+ "pseudo_label": "s0520/ct.nii.gz",
+ "label": "s0520/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0520/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1208/ct.nii.gz",
+ "pseudo_label": "s1208/ct.nii.gz",
+ "label": "s1208/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1208/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0808/ct.nii.gz",
+ "pseudo_label": "s0808/ct.nii.gz",
+ "label": "s0808/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0808/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0471/ct.nii.gz",
+ "pseudo_label": "s0471/ct.nii.gz",
+ "label": "s0471/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0471/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0626/ct.nii.gz",
+ "pseudo_label": "s0626/ct.nii.gz",
+ "label": "s0626/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0626/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0460/ct.nii.gz",
+ "pseudo_label": "s0460/ct.nii.gz",
+ "label": "s0460/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0460/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1277/ct.nii.gz",
+ "pseudo_label": "s1277/ct.nii.gz",
+ "label": "s1277/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1277/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0378/ct.nii.gz",
+ "pseudo_label": "s0378/ct.nii.gz",
+ "label": "s0378/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0378/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0665/ct.nii.gz",
+ "pseudo_label": "s0665/ct.nii.gz",
+ "label": "s0665/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0665/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1385/ct.nii.gz",
+ "pseudo_label": "s1385/ct.nii.gz",
+ "label": "s1385/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1385/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0604/ct.nii.gz",
+ "pseudo_label": "s0604/ct.nii.gz",
+ "label": "s0604/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0604/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0523/ct.nii.gz",
+ "pseudo_label": "s0523/ct.nii.gz",
+ "label": "s0523/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0523/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0730/ct.nii.gz",
+ "pseudo_label": "s0730/ct.nii.gz",
+ "label": "s0730/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0730/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0356/ct.nii.gz",
+ "pseudo_label": "s0356/ct.nii.gz",
+ "label": "s0356/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0356/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0101/ct.nii.gz",
+ "pseudo_label": "s0101/ct.nii.gz",
+ "label": "s0101/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0101/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0501/ct.nii.gz",
+ "pseudo_label": "s0501/ct.nii.gz",
+ "label": "s0501/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0501/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1418/ct.nii.gz",
+ "pseudo_label": "s1418/ct.nii.gz",
+ "label": "s1418/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1418/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0783/ct.nii.gz",
+ "pseudo_label": "s0783/ct.nii.gz",
+ "label": "s0783/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0783/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0648/ct.nii.gz",
+ "pseudo_label": "s0648/ct.nii.gz",
+ "label": "s0648/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0648/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0072/ct.nii.gz",
+ "pseudo_label": "s0072/ct.nii.gz",
+ "label": "s0072/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0072/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0782/ct.nii.gz",
+ "pseudo_label": "s0782/ct.nii.gz",
+ "label": "s0782/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0782/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1230/ct.nii.gz",
+ "pseudo_label": "s1230/ct.nii.gz",
+ "label": "s1230/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1230/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0161/ct.nii.gz",
+ "pseudo_label": "s0161/ct.nii.gz",
+ "label": "s0161/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0161/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0957/ct.nii.gz",
+ "pseudo_label": "s0957/ct.nii.gz",
+ "label": "s0957/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0957/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0640/ct.nii.gz",
+ "pseudo_label": "s0640/ct.nii.gz",
+ "label": "s0640/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0640/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1066/ct.nii.gz",
+ "pseudo_label": "s1066/ct.nii.gz",
+ "label": "s1066/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1066/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0581/ct.nii.gz",
+ "pseudo_label": "s0581/ct.nii.gz",
+ "label": "s0581/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0581/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0876/ct.nii.gz",
+ "pseudo_label": "s0876/ct.nii.gz",
+ "label": "s0876/seg.nii.gz",
+ "fold": 3,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0876/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1353/ct.nii.gz",
+ "pseudo_label": "s1353/ct.nii.gz",
+ "label": "s1353/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1353/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0215/ct.nii.gz",
+ "pseudo_label": "s0215/ct.nii.gz",
+ "label": "s0215/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0215/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0260/ct.nii.gz",
+ "pseudo_label": "s0260/ct.nii.gz",
+ "label": "s0260/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0260/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1355/ct.nii.gz",
+ "pseudo_label": "s1355/ct.nii.gz",
+ "label": "s1355/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1355/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0178/ct.nii.gz",
+ "pseudo_label": "s0178/ct.nii.gz",
+ "label": "s0178/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0178/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1062/ct.nii.gz",
+ "pseudo_label": "s1062/ct.nii.gz",
+ "label": "s1062/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1062/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0894/ct.nii.gz",
+ "pseudo_label": "s0894/ct.nii.gz",
+ "label": "s0894/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0894/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1337/ct.nii.gz",
+ "pseudo_label": "s1337/ct.nii.gz",
+ "label": "s1337/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1337/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0465/ct.nii.gz",
+ "pseudo_label": "s0465/ct.nii.gz",
+ "label": "s0465/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0465/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1137/ct.nii.gz",
+ "pseudo_label": "s1137/ct.nii.gz",
+ "label": "s1137/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1137/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1374/ct.nii.gz",
+ "pseudo_label": "s1374/ct.nii.gz",
+ "label": "s1374/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1374/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1429/ct.nii.gz",
+ "pseudo_label": "s1429/ct.nii.gz",
+ "label": "s1429/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1429/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1336/ct.nii.gz",
+ "pseudo_label": "s1336/ct.nii.gz",
+ "label": "s1336/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1336/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0158/ct.nii.gz",
+ "pseudo_label": "s0158/ct.nii.gz",
+ "label": "s0158/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0158/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0560/ct.nii.gz",
+ "pseudo_label": "s0560/ct.nii.gz",
+ "label": "s0560/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0560/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1415/ct.nii.gz",
+ "pseudo_label": "s1415/ct.nii.gz",
+ "label": "s1415/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1415/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0477/ct.nii.gz",
+ "pseudo_label": "s0477/ct.nii.gz",
+ "label": "s0477/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0477/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0567/ct.nii.gz",
+ "pseudo_label": "s0567/ct.nii.gz",
+ "label": "s0567/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0567/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0192/ct.nii.gz",
+ "pseudo_label": "s0192/ct.nii.gz",
+ "label": "s0192/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0192/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0697/ct.nii.gz",
+ "pseudo_label": "s0697/ct.nii.gz",
+ "label": "s0697/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0697/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0511/ct.nii.gz",
+ "pseudo_label": "s0511/ct.nii.gz",
+ "label": "s0511/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0511/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0674/ct.nii.gz",
+ "pseudo_label": "s0674/ct.nii.gz",
+ "label": "s0674/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0674/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0329/ct.nii.gz",
+ "pseudo_label": "s0329/ct.nii.gz",
+ "label": "s0329/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0329/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0031/ct.nii.gz",
+ "pseudo_label": "s0031/ct.nii.gz",
+ "label": "s0031/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0031/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0743/ct.nii.gz",
+ "pseudo_label": "s0743/ct.nii.gz",
+ "label": "s0743/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0743/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0594/ct.nii.gz",
+ "pseudo_label": "s0594/ct.nii.gz",
+ "label": "s0594/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0594/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1427/ct.nii.gz",
+ "pseudo_label": "s1427/ct.nii.gz",
+ "label": "s1427/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1427/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1071/ct.nii.gz",
+ "pseudo_label": "s1071/ct.nii.gz",
+ "label": "s1071/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1071/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0650/ct.nii.gz",
+ "pseudo_label": "s0650/ct.nii.gz",
+ "label": "s0650/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0650/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0228/ct.nii.gz",
+ "pseudo_label": "s0228/ct.nii.gz",
+ "label": "s0228/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0228/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1292/ct.nii.gz",
+ "pseudo_label": "s1292/ct.nii.gz",
+ "label": "s1292/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1292/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0407/ct.nii.gz",
+ "pseudo_label": "s0407/ct.nii.gz",
+ "label": "s0407/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0407/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1114/ct.nii.gz",
+ "pseudo_label": "s1114/ct.nii.gz",
+ "label": "s1114/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1114/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0970/ct.nii.gz",
+ "pseudo_label": "s0970/ct.nii.gz",
+ "label": "s0970/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0970/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0333/ct.nii.gz",
+ "pseudo_label": "s0333/ct.nii.gz",
+ "label": "s0333/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0333/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0632/ct.nii.gz",
+ "pseudo_label": "s0632/ct.nii.gz",
+ "label": "s0632/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0632/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0949/ct.nii.gz",
+ "pseudo_label": "s0949/ct.nii.gz",
+ "label": "s0949/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0949/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0344/ct.nii.gz",
+ "pseudo_label": "s0344/ct.nii.gz",
+ "label": "s0344/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0344/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1287/ct.nii.gz",
+ "pseudo_label": "s1287/ct.nii.gz",
+ "label": "s1287/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1287/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0343/ct.nii.gz",
+ "pseudo_label": "s0343/ct.nii.gz",
+ "label": "s0343/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0343/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0874/ct.nii.gz",
+ "pseudo_label": "s0874/ct.nii.gz",
+ "label": "s0874/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0874/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1138/ct.nii.gz",
+ "pseudo_label": "s1138/ct.nii.gz",
+ "label": "s1138/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1138/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0923/ct.nii.gz",
+ "pseudo_label": "s0923/ct.nii.gz",
+ "label": "s0923/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0923/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1043/ct.nii.gz",
+ "pseudo_label": "s1043/ct.nii.gz",
+ "label": "s1043/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1043/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0936/ct.nii.gz",
+ "pseudo_label": "s0936/ct.nii.gz",
+ "label": "s0936/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0936/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1335/ct.nii.gz",
+ "pseudo_label": "s1335/ct.nii.gz",
+ "label": "s1335/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1335/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0303/ct.nii.gz",
+ "pseudo_label": "s0303/ct.nii.gz",
+ "label": "s0303/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0303/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0285/ct.nii.gz",
+ "pseudo_label": "s0285/ct.nii.gz",
+ "label": "s0285/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0285/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1049/ct.nii.gz",
+ "pseudo_label": "s1049/ct.nii.gz",
+ "label": "s1049/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1049/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0739/ct.nii.gz",
+ "pseudo_label": "s0739/ct.nii.gz",
+ "label": "s0739/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0739/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1327/ct.nii.gz",
+ "pseudo_label": "s1327/ct.nii.gz",
+ "label": "s1327/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1327/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1409/ct.nii.gz",
+ "pseudo_label": "s1409/ct.nii.gz",
+ "label": "s1409/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1409/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0579/ct.nii.gz",
+ "pseudo_label": "s0579/ct.nii.gz",
+ "label": "s0579/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0579/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1295/ct.nii.gz",
+ "pseudo_label": "s1295/ct.nii.gz",
+ "label": "s1295/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1295/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0664/ct.nii.gz",
+ "pseudo_label": "s0664/ct.nii.gz",
+ "label": "s0664/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0664/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0385/ct.nii.gz",
+ "pseudo_label": "s0385/ct.nii.gz",
+ "label": "s0385/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0385/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1428/ct.nii.gz",
+ "pseudo_label": "s1428/ct.nii.gz",
+ "label": "s1428/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1428/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0355/ct.nii.gz",
+ "pseudo_label": "s0355/ct.nii.gz",
+ "label": "s0355/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0355/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1424/ct.nii.gz",
+ "pseudo_label": "s1424/ct.nii.gz",
+ "label": "s1424/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1424/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0713/ct.nii.gz",
+ "pseudo_label": "s0713/ct.nii.gz",
+ "label": "s0713/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0713/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0591/ct.nii.gz",
+ "pseudo_label": "s0591/ct.nii.gz",
+ "label": "s0591/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0591/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0790/ct.nii.gz",
+ "pseudo_label": "s0790/ct.nii.gz",
+ "label": "s0790/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0790/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0529/ct.nii.gz",
+ "pseudo_label": "s0529/ct.nii.gz",
+ "label": "s0529/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0529/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0976/ct.nii.gz",
+ "pseudo_label": "s0976/ct.nii.gz",
+ "label": "s0976/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0976/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1245/ct.nii.gz",
+ "pseudo_label": "s1245/ct.nii.gz",
+ "label": "s1245/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1245/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0873/ct.nii.gz",
+ "pseudo_label": "s0873/ct.nii.gz",
+ "label": "s0873/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0873/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0014/ct.nii.gz",
+ "pseudo_label": "s0014/ct.nii.gz",
+ "label": "s0014/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0014/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0805/ct.nii.gz",
+ "pseudo_label": "s0805/ct.nii.gz",
+ "label": "s0805/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0805/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1094/ct.nii.gz",
+ "pseudo_label": "s1094/ct.nii.gz",
+ "label": "s1094/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1094/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1274/ct.nii.gz",
+ "pseudo_label": "s1274/ct.nii.gz",
+ "label": "s1274/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1274/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0442/ct.nii.gz",
+ "pseudo_label": "s0442/ct.nii.gz",
+ "label": "s0442/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0442/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0499/ct.nii.gz",
+ "pseudo_label": "s0499/ct.nii.gz",
+ "label": "s0499/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0499/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1224/ct.nii.gz",
+ "pseudo_label": "s1224/ct.nii.gz",
+ "label": "s1224/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1224/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0071/ct.nii.gz",
+ "pseudo_label": "s0071/ct.nii.gz",
+ "label": "s0071/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0071/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0941/ct.nii.gz",
+ "pseudo_label": "s0941/ct.nii.gz",
+ "label": "s0941/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0941/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0080/ct.nii.gz",
+ "pseudo_label": "s0080/ct.nii.gz",
+ "label": "s0080/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0080/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0310/ct.nii.gz",
+ "pseudo_label": "s0310/ct.nii.gz",
+ "label": "s0310/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0310/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1410/ct.nii.gz",
+ "pseudo_label": "s1410/ct.nii.gz",
+ "label": "s1410/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1410/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0107/ct.nii.gz",
+ "pseudo_label": "s0107/ct.nii.gz",
+ "label": "s0107/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0107/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0065/ct.nii.gz",
+ "pseudo_label": "s0065/ct.nii.gz",
+ "label": "s0065/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0065/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0446/ct.nii.gz",
+ "pseudo_label": "s0446/ct.nii.gz",
+ "label": "s0446/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0446/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0959/ct.nii.gz",
+ "pseudo_label": "s0959/ct.nii.gz",
+ "label": "s0959/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0959/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0835/ct.nii.gz",
+ "pseudo_label": "s0835/ct.nii.gz",
+ "label": "s0835/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0835/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0270/ct.nii.gz",
+ "pseudo_label": "s0270/ct.nii.gz",
+ "label": "s0270/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0270/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1022/ct.nii.gz",
+ "pseudo_label": "s1022/ct.nii.gz",
+ "label": "s1022/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1022/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1361/ct.nii.gz",
+ "pseudo_label": "s1361/ct.nii.gz",
+ "label": "s1361/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1361/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0298/ct.nii.gz",
+ "pseudo_label": "s0298/ct.nii.gz",
+ "label": "s0298/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0298/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0684/ct.nii.gz",
+ "pseudo_label": "s0684/ct.nii.gz",
+ "label": "s0684/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0684/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0858/ct.nii.gz",
+ "pseudo_label": "s0858/ct.nii.gz",
+ "label": "s0858/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0858/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1129/ct.nii.gz",
+ "pseudo_label": "s1129/ct.nii.gz",
+ "label": "s1129/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1129/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0247/ct.nii.gz",
+ "pseudo_label": "s0247/ct.nii.gz",
+ "label": "s0247/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0247/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0346/ct.nii.gz",
+ "pseudo_label": "s0346/ct.nii.gz",
+ "label": "s0346/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0346/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0084/ct.nii.gz",
+ "pseudo_label": "s0084/ct.nii.gz",
+ "label": "s0084/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0084/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0762/ct.nii.gz",
+ "pseudo_label": "s0762/ct.nii.gz",
+ "label": "s0762/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0762/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1225/ct.nii.gz",
+ "pseudo_label": "s1225/ct.nii.gz",
+ "label": "s1225/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1225/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0417/ct.nii.gz",
+ "pseudo_label": "s0417/ct.nii.gz",
+ "label": "s0417/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0417/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1420/ct.nii.gz",
+ "pseudo_label": "s1420/ct.nii.gz",
+ "label": "s1420/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1420/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1106/ct.nii.gz",
+ "pseudo_label": "s1106/ct.nii.gz",
+ "label": "s1106/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1106/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0070/ct.nii.gz",
+ "pseudo_label": "s0070/ct.nii.gz",
+ "label": "s0070/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0070/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0289/ct.nii.gz",
+ "pseudo_label": "s0289/ct.nii.gz",
+ "label": "s0289/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0289/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0859/ct.nii.gz",
+ "pseudo_label": "s0859/ct.nii.gz",
+ "label": "s0859/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0859/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1280/ct.nii.gz",
+ "pseudo_label": "s1280/ct.nii.gz",
+ "label": "s1280/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1280/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1122/ct.nii.gz",
+ "pseudo_label": "s1122/ct.nii.gz",
+ "label": "s1122/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1122/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0749/ct.nii.gz",
+ "pseudo_label": "s0749/ct.nii.gz",
+ "label": "s0749/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0749/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0576/ct.nii.gz",
+ "pseudo_label": "s0576/ct.nii.gz",
+ "label": "s0576/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0576/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0710/ct.nii.gz",
+ "pseudo_label": "s0710/ct.nii.gz",
+ "label": "s0710/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0710/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0840/ct.nii.gz",
+ "pseudo_label": "s0840/ct.nii.gz",
+ "label": "s0840/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0840/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0191/ct.nii.gz",
+ "pseudo_label": "s0191/ct.nii.gz",
+ "label": "s0191/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0191/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0727/ct.nii.gz",
+ "pseudo_label": "s0727/ct.nii.gz",
+ "label": "s0727/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0727/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1380/ct.nii.gz",
+ "pseudo_label": "s1380/ct.nii.gz",
+ "label": "s1380/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1380/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1059/ct.nii.gz",
+ "pseudo_label": "s1059/ct.nii.gz",
+ "label": "s1059/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1059/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1073/ct.nii.gz",
+ "pseudo_label": "s1073/ct.nii.gz",
+ "label": "s1073/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1073/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0618/ct.nii.gz",
+ "pseudo_label": "s0618/ct.nii.gz",
+ "label": "s0618/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0618/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0804/ct.nii.gz",
+ "pseudo_label": "s0804/ct.nii.gz",
+ "label": "s0804/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0804/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0692/ct.nii.gz",
+ "pseudo_label": "s0692/ct.nii.gz",
+ "label": "s0692/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0692/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0476/ct.nii.gz",
+ "pseudo_label": "s0476/ct.nii.gz",
+ "label": "s0476/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0476/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0163/ct.nii.gz",
+ "pseudo_label": "s0163/ct.nii.gz",
+ "label": "s0163/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0163/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0347/ct.nii.gz",
+ "pseudo_label": "s0347/ct.nii.gz",
+ "label": "s0347/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0347/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0278/ct.nii.gz",
+ "pseudo_label": "s0278/ct.nii.gz",
+ "label": "s0278/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0278/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0190/ct.nii.gz",
+ "pseudo_label": "s0190/ct.nii.gz",
+ "label": "s0190/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0190/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1316/ct.nii.gz",
+ "pseudo_label": "s1316/ct.nii.gz",
+ "label": "s1316/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1316/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1406/ct.nii.gz",
+ "pseudo_label": "s1406/ct.nii.gz",
+ "label": "s1406/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1406/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0296/ct.nii.gz",
+ "pseudo_label": "s0296/ct.nii.gz",
+ "label": "s0296/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0296/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1390/ct.nii.gz",
+ "pseudo_label": "s1390/ct.nii.gz",
+ "label": "s1390/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1390/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1169/ct.nii.gz",
+ "pseudo_label": "s1169/ct.nii.gz",
+ "label": "s1169/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1169/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0371/ct.nii.gz",
+ "pseudo_label": "s0371/ct.nii.gz",
+ "label": "s0371/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0371/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0526/ct.nii.gz",
+ "pseudo_label": "s0526/ct.nii.gz",
+ "label": "s0526/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0526/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1344/ct.nii.gz",
+ "pseudo_label": "s1344/ct.nii.gz",
+ "label": "s1344/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1344/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1189/ct.nii.gz",
+ "pseudo_label": "s1189/ct.nii.gz",
+ "label": "s1189/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1189/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1349/ct.nii.gz",
+ "pseudo_label": "s1349/ct.nii.gz",
+ "label": "s1349/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1349/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0340/ct.nii.gz",
+ "pseudo_label": "s0340/ct.nii.gz",
+ "label": "s0340/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0340/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0914/ct.nii.gz",
+ "pseudo_label": "s0914/ct.nii.gz",
+ "label": "s0914/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0914/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0892/ct.nii.gz",
+ "pseudo_label": "s0892/ct.nii.gz",
+ "label": "s0892/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0892/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0455/ct.nii.gz",
+ "pseudo_label": "s0455/ct.nii.gz",
+ "label": "s0455/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0455/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0129/ct.nii.gz",
+ "pseudo_label": "s0129/ct.nii.gz",
+ "label": "s0129/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0129/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0656/ct.nii.gz",
+ "pseudo_label": "s0656/ct.nii.gz",
+ "label": "s0656/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0656/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0321/ct.nii.gz",
+ "pseudo_label": "s0321/ct.nii.gz",
+ "label": "s0321/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0321/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0822/ct.nii.gz",
+ "pseudo_label": "s0822/ct.nii.gz",
+ "label": "s0822/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0822/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1197/ct.nii.gz",
+ "pseudo_label": "s1197/ct.nii.gz",
+ "label": "s1197/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1197/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0682/ct.nii.gz",
+ "pseudo_label": "s0682/ct.nii.gz",
+ "label": "s0682/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0682/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1209/ct.nii.gz",
+ "pseudo_label": "s1209/ct.nii.gz",
+ "label": "s1209/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1209/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0623/ct.nii.gz",
+ "pseudo_label": "s0623/ct.nii.gz",
+ "label": "s0623/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0623/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0975/ct.nii.gz",
+ "pseudo_label": "s0975/ct.nii.gz",
+ "label": "s0975/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0975/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0839/ct.nii.gz",
+ "pseudo_label": "s0839/ct.nii.gz",
+ "label": "s0839/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0839/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1364/ct.nii.gz",
+ "pseudo_label": "s1364/ct.nii.gz",
+ "label": "s1364/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1364/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0015/ct.nii.gz",
+ "pseudo_label": "s0015/ct.nii.gz",
+ "label": "s0015/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0015/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0131/ct.nii.gz",
+ "pseudo_label": "s0131/ct.nii.gz",
+ "label": "s0131/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0131/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0239/ct.nii.gz",
+ "pseudo_label": "s0239/ct.nii.gz",
+ "label": "s0239/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0239/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0230/ct.nii.gz",
+ "pseudo_label": "s0230/ct.nii.gz",
+ "label": "s0230/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0230/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0603/ct.nii.gz",
+ "pseudo_label": "s0603/ct.nii.gz",
+ "label": "s0603/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0603/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0973/ct.nii.gz",
+ "pseudo_label": "s0973/ct.nii.gz",
+ "label": "s0973/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0973/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1308/ct.nii.gz",
+ "pseudo_label": "s1308/ct.nii.gz",
+ "label": "s1308/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1308/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1281/ct.nii.gz",
+ "pseudo_label": "s1281/ct.nii.gz",
+ "label": "s1281/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1281/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0868/ct.nii.gz",
+ "pseudo_label": "s0868/ct.nii.gz",
+ "label": "s0868/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0868/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0649/ct.nii.gz",
+ "pseudo_label": "s0649/ct.nii.gz",
+ "label": "s0649/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0649/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1233/ct.nii.gz",
+ "pseudo_label": "s1233/ct.nii.gz",
+ "label": "s1233/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1233/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0010/ct.nii.gz",
+ "pseudo_label": "s0010/ct.nii.gz",
+ "label": "s0010/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0010/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0691/ct.nii.gz",
+ "pseudo_label": "s0691/ct.nii.gz",
+ "label": "s0691/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0691/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0751/ct.nii.gz",
+ "pseudo_label": "s0751/ct.nii.gz",
+ "label": "s0751/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0751/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0879/ct.nii.gz",
+ "pseudo_label": "s0879/ct.nii.gz",
+ "label": "s0879/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0879/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1423/ct.nii.gz",
+ "pseudo_label": "s1423/ct.nii.gz",
+ "label": "s1423/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1423/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0053/ct.nii.gz",
+ "pseudo_label": "s0053/ct.nii.gz",
+ "label": "s0053/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0053/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0485/ct.nii.gz",
+ "pseudo_label": "s0485/ct.nii.gz",
+ "label": "s0485/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0485/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0744/ct.nii.gz",
+ "pseudo_label": "s0744/ct.nii.gz",
+ "label": "s0744/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0744/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0052/ct.nii.gz",
+ "pseudo_label": "s0052/ct.nii.gz",
+ "label": "s0052/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0052/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0508/ct.nii.gz",
+ "pseudo_label": "s0508/ct.nii.gz",
+ "label": "s0508/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0508/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0381/ct.nii.gz",
+ "pseudo_label": "s0381/ct.nii.gz",
+ "label": "s0381/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0381/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0322/ct.nii.gz",
+ "pseudo_label": "s0322/ct.nii.gz",
+ "label": "s0322/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0322/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1151/ct.nii.gz",
+ "pseudo_label": "s1151/ct.nii.gz",
+ "label": "s1151/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1151/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0821/ct.nii.gz",
+ "pseudo_label": "s0821/ct.nii.gz",
+ "label": "s0821/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0821/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1386/ct.nii.gz",
+ "pseudo_label": "s1386/ct.nii.gz",
+ "label": "s1386/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1386/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0844/ct.nii.gz",
+ "pseudo_label": "s0844/ct.nii.gz",
+ "label": "s0844/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0844/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0368/ct.nii.gz",
+ "pseudo_label": "s0368/ct.nii.gz",
+ "label": "s0368/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0368/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0553/ct.nii.gz",
+ "pseudo_label": "s0553/ct.nii.gz",
+ "label": "s0553/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0553/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0450/ct.nii.gz",
+ "pseudo_label": "s0450/ct.nii.gz",
+ "label": "s0450/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0450/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1286/ct.nii.gz",
+ "pseudo_label": "s1286/ct.nii.gz",
+ "label": "s1286/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1286/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1009/ct.nii.gz",
+ "pseudo_label": "s1009/ct.nii.gz",
+ "label": "s1009/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1009/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0004/ct.nii.gz",
+ "pseudo_label": "s0004/ct.nii.gz",
+ "label": "s0004/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0004/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0944/ct.nii.gz",
+ "pseudo_label": "s0944/ct.nii.gz",
+ "label": "s0944/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0944/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0362/ct.nii.gz",
+ "pseudo_label": "s0362/ct.nii.gz",
+ "label": "s0362/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0362/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0793/ct.nii.gz",
+ "pseudo_label": "s0793/ct.nii.gz",
+ "label": "s0793/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0793/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0865/ct.nii.gz",
+ "pseudo_label": "s0865/ct.nii.gz",
+ "label": "s0865/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0865/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1136/ct.nii.gz",
+ "pseudo_label": "s1136/ct.nii.gz",
+ "label": "s1136/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1136/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0311/ct.nii.gz",
+ "pseudo_label": "s0311/ct.nii.gz",
+ "label": "s0311/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0311/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1403/ct.nii.gz",
+ "pseudo_label": "s1403/ct.nii.gz",
+ "label": "s1403/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1403/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1303/ct.nii.gz",
+ "pseudo_label": "s1303/ct.nii.gz",
+ "label": "s1303/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1303/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1067/ct.nii.gz",
+ "pseudo_label": "s1067/ct.nii.gz",
+ "label": "s1067/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1067/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0601/ct.nii.gz",
+ "pseudo_label": "s0601/ct.nii.gz",
+ "label": "s0601/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0601/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0422/ct.nii.gz",
+ "pseudo_label": "s0422/ct.nii.gz",
+ "label": "s0422/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0422/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1037/ct.nii.gz",
+ "pseudo_label": "s1037/ct.nii.gz",
+ "label": "s1037/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1037/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0770/ct.nii.gz",
+ "pseudo_label": "s0770/ct.nii.gz",
+ "label": "s0770/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0770/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s1227/ct.nii.gz",
+ "pseudo_label": "s1227/ct.nii.gz",
+ "label": "s1227/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1227/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0726/ct.nii.gz",
+ "pseudo_label": "s0726/ct.nii.gz",
+ "label": "s0726/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0726/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0143/ct.nii.gz",
+ "pseudo_label": "s0143/ct.nii.gz",
+ "label": "s0143/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0143/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0714/ct.nii.gz",
+ "pseudo_label": "s0714/ct.nii.gz",
+ "label": "s0714/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0714/ct/ct_seg.nii.gz"
+ },
+ {
+ "image": "s0608/ct.nii.gz",
+ "pseudo_label": "s0608/ct.nii.gz",
+ "label": "s0608/seg.nii.gz",
+ "fold": 4,
+ "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0608/ct/ct_seg.nii.gz"
+ }
+ ],
+ "training_transform": [
+ {
+ "_target_": "RandCropByLabelClassesd",
+ "keys": [
+ "@image_key",
+ "@label_key",
+ "@pseudo_label_key",
+ "@label_sv_key"
+ ],
+ "label_key": "@pseudo_label_key",
+ "num_classes": 133,
+ "num_samples": "@num_patches_per_image",
+ "spatial_size": "@patch_size",
+ "ratios": "$tuple(float(i >= 0) for i in range(133))",
+ "warn": false,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandZoomd",
+ "keys": [
+ "@image_key",
+ "@label_key",
+ "@pseudo_label_key",
+ "@label_sv_key"
+ ],
+ "min_zoom": 0.8,
+ "max_zoom": 1.2,
+ "mode": [
+ "trilinear",
+ "nearest",
+ "nearest",
+ "nearest"
+ ],
+ "prob": 0.2,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandSimulateLowResolutiond",
+ "keys": [
+ "@image_key"
+ ],
+ "zoom_range": [
+ 0.3,
+ 1
+ ],
+ "prob": 0.2,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandGaussianSmoothd",
+ "keys": [
+ "@image_key"
+ ],
+ "prob": 0.2,
+ "sigma_x": [
+ 0.5,
+ 1.0
+ ],
+ "sigma_y": [
+ 0.5,
+ 1.0
+ ],
+ "sigma_z": [
+ 0.5,
+ 1.0
+ ]
+ },
+ {
+ "_target_": "RandScaleIntensityd",
+ "keys": [
+ "@image_key"
+ ],
+ "factors": 0.1,
+ "prob": 0.2
+ },
+ {
+ "_target_": "RandShiftIntensityd",
+ "keys": [
+ "@image_key"
+ ],
+ "offsets": 0.1,
+ "prob": 0.2
+ },
+ {
+ "_target_": "RandGaussianNoised",
+ "keys": [
+ "@image_key"
+ ],
+ "prob": 0.2,
+ "mean": 0.0,
+ "std": 0.2
+ }
+ ],
+ "label_dict": {
+ "1": "spleen",
+ "2": "right kidney",
+ "3": "left kidney",
+ "4": "gallbladder",
+ "5": "liver",
+ "6": "stomach",
+ "7": "aorta",
+ "8": "inferior vena cava",
+ "9": "portal vein and splenic vein",
+ "10": "pancreas",
+ "11": "right adrenal gland",
+ "12": "left adrenal gland",
+ "13": "left lung upper lobe",
+ "14": "left lung lower lobe",
+ "15": "right lung upper lobe",
+ "16": "right lung middle lobe",
+ "17": "right lung lower lobe",
+ "18": "vertebrae L5",
+ "19": "vertebrae L4",
+ "20": "vertebrae L3",
+ "21": "vertebrae L2",
+ "22": "vertebrae L1",
+ "23": "vertebrae T12",
+ "24": "vertebrae T11",
+ "25": "vertebrae T10",
+ "26": "vertebrae T9",
+ "27": "vertebrae T8",
+ "28": "vertebrae T7",
+ "29": "vertebrae T6",
+ "30": "vertebrae T5",
+ "31": "vertebrae T4",
+ "32": "vertebrae T3",
+ "33": "vertebrae T2",
+ "34": "vertebrae T1",
+ "35": "vertebrae C7",
+ "36": "vertebrae C6",
+ "37": "vertebrae C5",
+ "38": "vertebrae C4",
+ "39": "vertebrae C3",
+ "40": "vertebrae C2",
+ "41": "vertebrae C1",
+ "42": "esophagus",
+ "43": "trachea",
+ "44": "brain",
+ "45": "left iliac artery",
+ "46": "right iliac artery",
+ "47": "left iliac vena",
+ "48": "right iliac vena",
+ "49": "small bowel",
+ "50": "duodenum",
+ "51": "colon",
+ "52": "left rib 1",
+ "53": "left rib 2",
+ "54": "left rib 3",
+ "55": "left rib 4",
+ "56": "left rib 5",
+ "57": "left rib 6",
+ "58": "left rib 7",
+ "59": "left rib 8",
+ "60": "left rib 9",
+ "61": "left rib 10",
+ "62": "left rib 11",
+ "63": "left rib 12",
+ "64": "right rib 1",
+ "65": "right rib 2",
+ "66": "right rib 3",
+ "67": "right rib 4",
+ "68": "right rib 5",
+ "69": "right rib 6",
+ "70": "right rib 7",
+ "71": "right rib 8",
+ "72": "right rib 9",
+ "73": "right rib 10",
+ "74": "right rib 11",
+ "75": "right rib 12",
+ "76": "left humerus",
+ "77": "right humerus",
+ "78": "left scapula",
+ "79": "right scapula",
+ "80": "left clavicula",
+ "81": "right clavicula",
+ "82": "left femur",
+ "83": "right femur",
+ "84": "left hip",
+ "85": "right hip",
+ "86": "sacrum",
+ "87": "left gluteus maximus",
+ "88": "right gluteus maximus",
+ "89": "left gluteus medius",
+ "90": "right gluteus medius",
+ "91": "left gluteus minimus",
+ "92": "right gluteus minimus",
+ "93": "left autochthon",
+ "94": "right autochthon",
+ "95": "left iliopsoas",
+ "96": "right iliopsoas",
+ "97": "bladder",
+ "98": "left atrial appendage",
+ "99": "brachiocephalic trunk",
+ "100": "left brachiocephalic vein",
+ "101": "right brachiocephalic vein",
+ "102": "left common carotid artery",
+ "103": "right common carotid artery",
+ "104": "costal cartilages",
+ "105": "heart",
+ "106": "left kidney cyst",
+ "107": "right kidney cyst",
+ "108": "prostate",
+ "109": "pulmonary vein",
+ "110": "skull",
+ "111": "spinal cord",
+ "112": "sternum",
+ "113": "left subclavian artery",
+ "114": "right subclavian artery",
+ "115": "superior vena cava",
+ "116": "thyroid gland",
+ "117": "vertebrae S1"
+ },
+ "original_label_dict": {
+ "1": "spleen",
+ "2": "kidney_right",
+ "3": "kidney_left",
+ "4": "gallbladder",
+ "5": "liver",
+ "6": "stomach",
+ "7": "aorta",
+ "8": "inferior_vena_cava",
+ "9": "portal_vein_and_splenic_vein",
+ "10": "pancreas",
+ "11": "adrenal_gland_right",
+ "12": "adrenal_gland_left",
+ "13": "lung_upper_lobe_left",
+ "14": "lung_lower_lobe_left",
+ "15": "lung_upper_lobe_right",
+ "16": "lung_middle_lobe_right",
+ "17": "lung_lower_lobe_right",
+ "18": "vertebrae_L5",
+ "19": "vertebrae_L4",
+ "20": "vertebrae_L3",
+ "21": "vertebrae_L2",
+ "22": "vertebrae_L1",
+ "23": "vertebrae_T12",
+ "24": "vertebrae_T11",
+ "25": "vertebrae_T10",
+ "26": "vertebrae_T9",
+ "27": "vertebrae_T8",
+ "28": "vertebrae_T7",
+ "29": "vertebrae_T6",
+ "30": "vertebrae_T5",
+ "31": "vertebrae_T4",
+ "32": "vertebrae_T3",
+ "33": "vertebrae_T2",
+ "34": "vertebrae_T1",
+ "35": "vertebrae_C7",
+ "36": "vertebrae_C6",
+ "37": "vertebrae_C5",
+ "38": "vertebrae_C4",
+ "39": "vertebrae_C3",
+ "40": "vertebrae_C2",
+ "41": "vertebrae_C1",
+ "42": "esophagus",
+ "43": "trachea",
+ "44": "brain",
+ "45": "iliac_artery_left",
+ "46": "iliac_artery_right",
+ "47": "iliac_vena_left",
+ "48": "iliac_vena_right",
+ "49": "small_bowel",
+ "50": "duodenum",
+ "51": "colon",
+ "52": "rib_left_1",
+ "53": "rib_left_2",
+ "54": "rib_left_3",
+ "55": "rib_left_4",
+ "56": "rib_left_5",
+ "57": "rib_left_6",
+ "58": "rib_left_7",
+ "59": "rib_left_8",
+ "60": "rib_left_9",
+ "61": "rib_left_10",
+ "62": "rib_left_11",
+ "63": "rib_left_12",
+ "64": "rib_right_1",
+ "65": "rib_right_2",
+ "66": "rib_right_3",
+ "67": "rib_right_4",
+ "68": "rib_right_5",
+ "69": "rib_right_6",
+ "70": "rib_right_7",
+ "71": "rib_right_8",
+ "72": "rib_right_9",
+ "73": "rib_right_10",
+ "74": "rib_right_11",
+ "75": "rib_right_12",
+ "76": "humerus_left",
+ "77": "humerus_right",
+ "78": "scapula_left",
+ "79": "scapula_right",
+ "80": "clavicula_left",
+ "81": "clavicula_right",
+ "82": "femur_left",
+ "83": "femur_right",
+ "84": "hip_left",
+ "85": "hip_right",
+ "86": "sacrum",
+ "87": "gluteus_maximus_left",
+ "88": "gluteus_maximus_right",
+ "89": "gluteus_medius_left",
+ "90": "gluteus_medius_right",
+ "91": "gluteus_minimus_left",
+ "92": "gluteus_minimus_right",
+ "93": "autochthon_left",
+ "94": "autochthon_right",
+ "95": "iliopsoas_left",
+ "96": "iliopsoas_right",
+ "97": "urinary_bladder",
+ "98": "atrial_appendage_left",
+ "99": "brachiocephalic_trunk",
+ "100": "brachiocephalic_vein_left",
+ "101": "brachiocephalic_vein_right",
+ "102": "common_carotid_artery_left",
+ "103": "common_carotid_artery_right",
+ "104": "costal_cartilages",
+ "105": "heart",
+ "106": "kidney_cyst_left",
+ "107": "kidney_cyst_right",
+ "108": "prostate",
+ "109": "pulmonary_vein",
+ "110": "skull",
+ "111": "spinal_cord",
+ "112": "sternum",
+ "113": "subclavian_artery_left",
+ "114": "subclavian_artery_right",
+ "115": "superior_vena_cava",
+ "116": "thyroid_gland",
+ "117": "vertebrae_S1"
+ },
+ "testing": [
+ {
+ "image": "s0754/ct.nii.gz",
+ "label": "s0754/seg.nii.gz"
+ },
+ {
+ "image": "s0459/ct.nii.gz",
+ "label": "s0459/seg.nii.gz"
+ },
+ {
+ "image": "s1196/ct.nii.gz",
+ "label": "s1196/seg.nii.gz"
+ },
+ {
+ "image": "s0249/ct.nii.gz",
+ "label": "s0249/seg.nii.gz"
+ },
+ {
+ "image": "s0150/ct.nii.gz",
+ "label": "s0150/seg.nii.gz"
+ },
+ {
+ "image": "s0784/ct.nii.gz",
+ "label": "s0784/seg.nii.gz"
+ },
+ {
+ "image": "s1210/ct.nii.gz",
+ "label": "s1210/seg.nii.gz"
+ },
+ {
+ "image": "s0568/ct.nii.gz",
+ "label": "s0568/seg.nii.gz"
+ },
+ {
+ "image": "s1382/ct.nii.gz",
+ "label": "s1382/seg.nii.gz"
+ },
+ {
+ "image": "s0535/ct.nii.gz",
+ "label": "s0535/seg.nii.gz"
+ },
+ {
+ "image": "s1317/ct.nii.gz",
+ "label": "s1317/seg.nii.gz"
+ },
+ {
+ "image": "s1097/ct.nii.gz",
+ "label": "s1097/seg.nii.gz"
+ },
+ {
+ "image": "s0170/ct.nii.gz",
+ "label": "s0170/seg.nii.gz"
+ },
+ {
+ "image": "s0675/ct.nii.gz",
+ "label": "s0675/seg.nii.gz"
+ },
+ {
+ "image": "s0838/ct.nii.gz",
+ "label": "s0838/seg.nii.gz"
+ },
+ {
+ "image": "s0968/ct.nii.gz",
+ "label": "s0968/seg.nii.gz"
+ },
+ {
+ "image": "s0326/ct.nii.gz",
+ "label": "s0326/seg.nii.gz"
+ },
+ {
+ "image": "s0982/ct.nii.gz",
+ "label": "s0982/seg.nii.gz"
+ },
+ {
+ "image": "s1051/ct.nii.gz",
+ "label": "s1051/seg.nii.gz"
+ },
+ {
+ "image": "s0414/ct.nii.gz",
+ "label": "s0414/seg.nii.gz"
+ },
+ {
+ "image": "s0849/ct.nii.gz",
+ "label": "s0849/seg.nii.gz"
+ },
+ {
+ "image": "s0206/ct.nii.gz",
+ "label": "s0206/seg.nii.gz"
+ },
+ {
+ "image": "s0798/ct.nii.gz",
+ "label": "s0798/seg.nii.gz"
+ },
+ {
+ "image": "s1016/ct.nii.gz",
+ "label": "s1016/seg.nii.gz"
+ },
+ {
+ "image": "s1168/ct.nii.gz",
+ "label": "s1168/seg.nii.gz"
+ },
+ {
+ "image": "s0334/ct.nii.gz",
+ "label": "s0334/seg.nii.gz"
+ },
+ {
+ "image": "s0473/ct.nii.gz",
+ "label": "s0473/seg.nii.gz"
+ },
+ {
+ "image": "s1307/ct.nii.gz",
+ "label": "s1307/seg.nii.gz"
+ },
+ {
+ "image": "s0338/ct.nii.gz",
+ "label": "s0338/seg.nii.gz"
+ },
+ {
+ "image": "s0571/ct.nii.gz",
+ "label": "s0571/seg.nii.gz"
+ },
+ {
+ "image": "s0996/ct.nii.gz",
+ "label": "s0996/seg.nii.gz"
+ },
+ {
+ "image": "s0703/ct.nii.gz",
+ "label": "s0703/seg.nii.gz"
+ },
+ {
+ "image": "s0468/ct.nii.gz",
+ "label": "s0468/seg.nii.gz"
+ },
+ {
+ "image": "s0282/ct.nii.gz",
+ "label": "s0282/seg.nii.gz"
+ },
+ {
+ "image": "s0352/ct.nii.gz",
+ "label": "s0352/seg.nii.gz"
+ },
+ {
+ "image": "s0339/ct.nii.gz",
+ "label": "s0339/seg.nii.gz"
+ },
+ {
+ "image": "s0494/ct.nii.gz",
+ "label": "s0494/seg.nii.gz"
+ },
+ {
+ "image": "s0377/ct.nii.gz",
+ "label": "s0377/seg.nii.gz"
+ },
+ {
+ "image": "s0619/ct.nii.gz",
+ "label": "s0619/seg.nii.gz"
+ },
+ {
+ "image": "s0556/ct.nii.gz",
+ "label": "s0556/seg.nii.gz"
+ },
+ {
+ "image": "s0760/ct.nii.gz",
+ "label": "s0760/seg.nii.gz"
+ },
+ {
+ "image": "s0789/ct.nii.gz",
+ "label": "s0789/seg.nii.gz"
+ },
+ {
+ "image": "s0110/ct.nii.gz",
+ "label": "s0110/seg.nii.gz"
+ },
+ {
+ "image": "s0513/ct.nii.gz",
+ "label": "s0513/seg.nii.gz"
+ },
+ {
+ "image": "s0857/ct.nii.gz",
+ "label": "s0857/seg.nii.gz"
+ },
+ {
+ "image": "s0637/ct.nii.gz",
+ "label": "s0637/seg.nii.gz"
+ },
+ {
+ "image": "s0248/ct.nii.gz",
+ "label": "s0248/seg.nii.gz"
+ },
+ {
+ "image": "s0651/ct.nii.gz",
+ "label": "s0651/seg.nii.gz"
+ },
+ {
+ "image": "s0193/ct.nii.gz",
+ "label": "s0193/seg.nii.gz"
+ },
+ {
+ "image": "s0723/ct.nii.gz",
+ "label": "s0723/seg.nii.gz"
+ },
+ {
+ "image": "s0796/ct.nii.gz",
+ "label": "s0796/seg.nii.gz"
+ },
+ {
+ "image": "s0423/ct.nii.gz",
+ "label": "s0423/seg.nii.gz"
+ },
+ {
+ "image": "s0262/ct.nii.gz",
+ "label": "s0262/seg.nii.gz"
+ },
+ {
+ "image": "s0621/ct.nii.gz",
+ "label": "s0621/seg.nii.gz"
+ },
+ {
+ "image": "s0606/ct.nii.gz",
+ "label": "s0606/seg.nii.gz"
+ },
+ {
+ "image": "s0431/ct.nii.gz",
+ "label": "s0431/seg.nii.gz"
+ },
+ {
+ "image": "s1247/ct.nii.gz",
+ "label": "s1247/seg.nii.gz"
+ },
+ {
+ "image": "s0366/ct.nii.gz",
+ "label": "s0366/seg.nii.gz"
+ },
+ {
+ "image": "s0137/ct.nii.gz",
+ "label": "s0137/seg.nii.gz"
+ },
+ {
+ "image": "s0919/ct.nii.gz",
+ "label": "s0919/seg.nii.gz"
+ },
+ {
+ "image": "s0435/ct.nii.gz",
+ "label": "s0435/seg.nii.gz"
+ },
+ {
+ "image": "s0593/ct.nii.gz",
+ "label": "s0593/seg.nii.gz"
+ },
+ {
+ "image": "s0768/ct.nii.gz",
+ "label": "s0768/seg.nii.gz"
+ },
+ {
+ "image": "s0641/ct.nii.gz",
+ "label": "s0641/seg.nii.gz"
+ },
+ {
+ "image": "s0724/ct.nii.gz",
+ "label": "s0724/seg.nii.gz"
+ },
+ {
+ "image": "s1033/ct.nii.gz",
+ "label": "s1033/seg.nii.gz"
+ },
+ {
+ "image": "s1272/ct.nii.gz",
+ "label": "s1272/seg.nii.gz"
+ },
+ {
+ "image": "s0219/ct.nii.gz",
+ "label": "s0219/seg.nii.gz"
+ },
+ {
+ "image": "s0818/ct.nii.gz",
+ "label": "s0818/seg.nii.gz"
+ },
+ {
+ "image": "s0644/ct.nii.gz",
+ "label": "s0644/seg.nii.gz"
+ },
+ {
+ "image": "s0999/ct.nii.gz",
+ "label": "s0999/seg.nii.gz"
+ },
+ {
+ "image": "s0241/ct.nii.gz",
+ "label": "s0241/seg.nii.gz"
+ },
+ {
+ "image": "s0884/ct.nii.gz",
+ "label": "s0884/seg.nii.gz"
+ },
+ {
+ "image": "s1072/ct.nii.gz",
+ "label": "s1072/seg.nii.gz"
+ },
+ {
+ "image": "s0117/ct.nii.gz",
+ "label": "s0117/seg.nii.gz"
+ },
+ {
+ "image": "s0700/ct.nii.gz",
+ "label": "s0700/seg.nii.gz"
+ },
+ {
+ "image": "s0066/ct.nii.gz",
+ "label": "s0066/seg.nii.gz"
+ },
+ {
+ "image": "s1373/ct.nii.gz",
+ "label": "s1373/seg.nii.gz"
+ },
+ {
+ "image": "s0552/ct.nii.gz",
+ "label": "s0552/seg.nii.gz"
+ },
+ {
+ "image": "s1304/ct.nii.gz",
+ "label": "s1304/seg.nii.gz"
+ },
+ {
+ "image": "s0582/ct.nii.gz",
+ "label": "s0582/seg.nii.gz"
+ },
+ {
+ "image": "s0922/ct.nii.gz",
+ "label": "s0922/seg.nii.gz"
+ },
+ {
+ "image": "s0136/ct.nii.gz",
+ "label": "s0136/seg.nii.gz"
+ },
+ {
+ "image": "s0441/ct.nii.gz",
+ "label": "s0441/seg.nii.gz"
+ },
+ {
+ "image": "s0555/ct.nii.gz",
+ "label": "s0555/seg.nii.gz"
+ },
+ {
+ "image": "s0522/ct.nii.gz",
+ "label": "s0522/seg.nii.gz"
+ },
+ {
+ "image": "s0095/ct.nii.gz",
+ "label": "s0095/seg.nii.gz"
+ },
+ {
+ "image": "s0412/ct.nii.gz",
+ "label": "s0412/seg.nii.gz"
+ },
+ {
+ "image": "s0704/ct.nii.gz",
+ "label": "s0704/seg.nii.gz"
+ },
+ {
+ "image": "s0801/ct.nii.gz",
+ "label": "s0801/seg.nii.gz"
+ },
+ {
+ "image": "s0246/ct.nii.gz",
+ "label": "s0246/seg.nii.gz"
+ },
+ {
+ "image": "s0908/ct.nii.gz",
+ "label": "s0908/seg.nii.gz"
+ },
+ {
+ "image": "s1069/ct.nii.gz",
+ "label": "s1069/seg.nii.gz"
+ },
+ {
+ "image": "s1414/ct.nii.gz",
+ "label": "s1414/seg.nii.gz"
+ },
+ {
+ "image": "s0495/ct.nii.gz",
+ "label": "s0495/seg.nii.gz"
+ },
+ {
+ "image": "s1113/ct.nii.gz",
+ "label": "s1113/seg.nii.gz"
+ },
+ {
+ "image": "s0453/ct.nii.gz",
+ "label": "s0453/seg.nii.gz"
+ },
+ {
+ "image": "s0199/ct.nii.gz",
+ "label": "s0199/seg.nii.gz"
+ },
+ {
+ "image": "s1407/ct.nii.gz",
+ "label": "s1407/seg.nii.gz"
+ },
+ {
+ "image": "s0795/ct.nii.gz",
+ "label": "s0795/seg.nii.gz"
+ },
+ {
+ "image": "s0721/ct.nii.gz",
+ "label": "s0721/seg.nii.gz"
+ },
+ {
+ "image": "s1207/ct.nii.gz",
+ "label": "s1207/seg.nii.gz"
+ },
+ {
+ "image": "s0162/ct.nii.gz",
+ "label": "s0162/seg.nii.gz"
+ },
+ {
+ "image": "s0680/ct.nii.gz",
+ "label": "s0680/seg.nii.gz"
+ },
+ {
+ "image": "s0332/ct.nii.gz",
+ "label": "s0332/seg.nii.gz"
+ },
+ {
+ "image": "s0802/ct.nii.gz",
+ "label": "s0802/seg.nii.gz"
+ },
+ {
+ "image": "s0933/ct.nii.gz",
+ "label": "s0933/seg.nii.gz"
+ },
+ {
+ "image": "s0797/ct.nii.gz",
+ "label": "s0797/seg.nii.gz"
+ },
+ {
+ "image": "s1342/ct.nii.gz",
+ "label": "s1342/seg.nii.gz"
+ },
+ {
+ "image": "s0168/ct.nii.gz",
+ "label": "s0168/seg.nii.gz"
+ },
+ {
+ "image": "s0866/ct.nii.gz",
+ "label": "s0866/seg.nii.gz"
+ },
+ {
+ "image": "s0039/ct.nii.gz",
+ "label": "s0039/seg.nii.gz"
+ },
+ {
+ "image": "s1383/ct.nii.gz",
+ "label": "s1383/seg.nii.gz"
+ },
+ {
+ "image": "s1330/ct.nii.gz",
+ "label": "s1330/seg.nii.gz"
+ },
+ {
+ "image": "s1056/ct.nii.gz",
+ "label": "s1056/seg.nii.gz"
+ },
+ {
+ "image": "s0019/ct.nii.gz",
+ "label": "s0019/seg.nii.gz"
+ },
+ {
+ "image": "s0577/ct.nii.gz",
+ "label": "s0577/seg.nii.gz"
+ },
+ {
+ "image": "s1195/ct.nii.gz",
+ "label": "s1195/seg.nii.gz"
+ },
+ {
+ "image": "s1187/ct.nii.gz",
+ "label": "s1187/seg.nii.gz"
+ },
+ {
+ "image": "s0030/ct.nii.gz",
+ "label": "s0030/seg.nii.gz"
+ },
+ {
+ "image": "s1042/ct.nii.gz",
+ "label": "s1042/seg.nii.gz"
+ },
+ {
+ "image": "s0182/ct.nii.gz",
+ "label": "s0182/seg.nii.gz"
+ },
+ {
+ "image": "s1248/ct.nii.gz",
+ "label": "s1248/seg.nii.gz"
+ },
+ {
+ "image": "s0174/ct.nii.gz",
+ "label": "s0174/seg.nii.gz"
+ },
+ {
+ "image": "s0663/ct.nii.gz",
+ "label": "s0663/seg.nii.gz"
+ },
+ {
+ "image": "s0867/ct.nii.gz",
+ "label": "s0867/seg.nii.gz"
+ },
+ {
+ "image": "s0379/ct.nii.gz",
+ "label": "s0379/seg.nii.gz"
+ },
+ {
+ "image": "s0257/ct.nii.gz",
+ "label": "s0257/seg.nii.gz"
+ },
+ {
+ "image": "s0492/ct.nii.gz",
+ "label": "s0492/seg.nii.gz"
+ },
+ {
+ "image": "s1241/ct.nii.gz",
+ "label": "s1241/seg.nii.gz"
+ },
+ {
+ "image": "s0232/ct.nii.gz",
+ "label": "s0232/seg.nii.gz"
+ },
+ {
+ "image": "s0992/ct.nii.gz",
+ "label": "s0992/seg.nii.gz"
+ },
+ {
+ "image": "s0160/ct.nii.gz",
+ "label": "s0160/seg.nii.gz"
+ },
+ {
+ "image": "s0167/ct.nii.gz",
+ "label": "s0167/seg.nii.gz"
+ },
+ {
+ "image": "s1341/ct.nii.gz",
+ "label": "s1341/seg.nii.gz"
+ },
+ {
+ "image": "s0209/ct.nii.gz",
+ "label": "s0209/seg.nii.gz"
+ },
+ {
+ "image": "s0025/ct.nii.gz",
+ "label": "s0025/seg.nii.gz"
+ },
+ {
+ "image": "s0100/ct.nii.gz",
+ "label": "s0100/seg.nii.gz"
+ },
+ {
+ "image": "s1311/ct.nii.gz",
+ "label": "s1311/seg.nii.gz"
+ },
+ {
+ "image": "s0759/ct.nii.gz",
+ "label": "s0759/seg.nii.gz"
+ },
+ {
+ "image": "s1120/ct.nii.gz",
+ "label": "s1120/seg.nii.gz"
+ },
+ {
+ "image": "s0090/ct.nii.gz",
+ "label": "s0090/seg.nii.gz"
+ },
+ {
+ "image": "s0850/ct.nii.gz",
+ "label": "s0850/seg.nii.gz"
+ },
+ {
+ "image": "s0916/ct.nii.gz",
+ "label": "s0916/seg.nii.gz"
+ },
+ {
+ "image": "s1354/ct.nii.gz",
+ "label": "s1354/seg.nii.gz"
+ },
+ {
+ "image": "s0003/ct.nii.gz",
+ "label": "s0003/seg.nii.gz"
+ },
+ {
+ "image": "s1163/ct.nii.gz",
+ "label": "s1163/seg.nii.gz"
+ },
+ {
+ "image": "s0705/ct.nii.gz",
+ "label": "s0705/seg.nii.gz"
+ },
+ {
+ "image": "s0244/ct.nii.gz",
+ "label": "s0244/seg.nii.gz"
+ },
+ {
+ "image": "s0563/ct.nii.gz",
+ "label": "s0563/seg.nii.gz"
+ },
+ {
+ "image": "s0503/ct.nii.gz",
+ "label": "s0503/seg.nii.gz"
+ },
+ {
+ "image": "s0810/ct.nii.gz",
+ "label": "s0810/seg.nii.gz"
+ },
+ {
+ "image": "s0738/ct.nii.gz",
+ "label": "s0738/seg.nii.gz"
+ },
+ {
+ "image": "s1011/ct.nii.gz",
+ "label": "s1011/seg.nii.gz"
+ },
+ {
+ "image": "s1104/ct.nii.gz",
+ "label": "s1104/seg.nii.gz"
+ },
+ {
+ "image": "s1171/ct.nii.gz",
+ "label": "s1171/seg.nii.gz"
+ },
+ {
+ "image": "s1191/ct.nii.gz",
+ "label": "s1191/seg.nii.gz"
+ },
+ {
+ "image": "s0527/ct.nii.gz",
+ "label": "s0527/seg.nii.gz"
+ },
+ {
+ "image": "s0952/ct.nii.gz",
+ "label": "s0952/seg.nii.gz"
+ },
+ {
+ "image": "s0971/ct.nii.gz",
+ "label": "s0971/seg.nii.gz"
+ },
+ {
+ "image": "s1231/ct.nii.gz",
+ "label": "s1231/seg.nii.gz"
+ },
+ {
+ "image": "s1012/ct.nii.gz",
+ "label": "s1012/seg.nii.gz"
+ },
+ {
+ "image": "s0756/ct.nii.gz",
+ "label": "s0756/seg.nii.gz"
+ },
+ {
+ "image": "s0045/ct.nii.gz",
+ "label": "s0045/seg.nii.gz"
+ },
+ {
+ "image": "s1100/ct.nii.gz",
+ "label": "s1100/seg.nii.gz"
+ },
+ {
+ "image": "s0188/ct.nii.gz",
+ "label": "s0188/seg.nii.gz"
+ },
+ {
+ "image": "s0353/ct.nii.gz",
+ "label": "s0353/seg.nii.gz"
+ },
+ {
+ "image": "s0184/ct.nii.gz",
+ "label": "s0184/seg.nii.gz"
+ },
+ {
+ "image": "s1124/ct.nii.gz",
+ "label": "s1124/seg.nii.gz"
+ },
+ {
+ "image": "s0382/ct.nii.gz",
+ "label": "s0382/seg.nii.gz"
+ },
+ {
+ "image": "s0836/ct.nii.gz",
+ "label": "s0836/seg.nii.gz"
+ },
+ {
+ "image": "s0226/ct.nii.gz",
+ "label": "s0226/seg.nii.gz"
+ },
+ {
+ "image": "s0845/ct.nii.gz",
+ "label": "s0845/seg.nii.gz"
+ },
+ {
+ "image": "s1259/ct.nii.gz",
+ "label": "s1259/seg.nii.gz"
+ },
+ {
+ "image": "s0687/ct.nii.gz",
+ "label": "s0687/seg.nii.gz"
+ },
+ {
+ "image": "s1141/ct.nii.gz",
+ "label": "s1141/seg.nii.gz"
+ },
+ {
+ "image": "s0357/ct.nii.gz",
+ "label": "s0357/seg.nii.gz"
+ },
+ {
+ "image": "s0683/ct.nii.gz",
+ "label": "s0683/seg.nii.gz"
+ },
+ {
+ "image": "s0433/ct.nii.gz",
+ "label": "s0433/seg.nii.gz"
+ },
+ {
+ "image": "s0532/ct.nii.gz",
+ "label": "s0532/seg.nii.gz"
+ },
+ {
+ "image": "s1411/ct.nii.gz",
+ "label": "s1411/seg.nii.gz"
+ },
+ {
+ "image": "s0265/ct.nii.gz",
+ "label": "s0265/seg.nii.gz"
+ },
+ {
+ "image": "s0255/ct.nii.gz",
+ "label": "s0255/seg.nii.gz"
+ },
+ {
+ "image": "s1154/ct.nii.gz",
+ "label": "s1154/seg.nii.gz"
+ },
+ {
+ "image": "s0598/ct.nii.gz",
+ "label": "s0598/seg.nii.gz"
+ },
+ {
+ "image": "s1061/ct.nii.gz",
+ "label": "s1061/seg.nii.gz"
+ },
+ {
+ "image": "s1254/ct.nii.gz",
+ "label": "s1254/seg.nii.gz"
+ },
+ {
+ "image": "s0212/ct.nii.gz",
+ "label": "s0212/seg.nii.gz"
+ },
+ {
+ "image": "s0537/ct.nii.gz",
+ "label": "s0537/seg.nii.gz"
+ },
+ {
+ "image": "s1039/ct.nii.gz",
+ "label": "s1039/seg.nii.gz"
+ },
+ {
+ "image": "s0825/ct.nii.gz",
+ "label": "s0825/seg.nii.gz"
+ },
+ {
+ "image": "s0861/ct.nii.gz",
+ "label": "s0861/seg.nii.gz"
+ },
+ {
+ "image": "s0444/ct.nii.gz",
+ "label": "s0444/seg.nii.gz"
+ },
+ {
+ "image": "s0611/ct.nii.gz",
+ "label": "s0611/seg.nii.gz"
+ },
+ {
+ "image": "s1036/ct.nii.gz",
+ "label": "s1036/seg.nii.gz"
+ },
+ {
+ "image": "s0624/ct.nii.gz",
+ "label": "s0624/seg.nii.gz"
+ },
+ {
+ "image": "s0062/ct.nii.gz",
+ "label": "s0062/seg.nii.gz"
+ },
+ {
+ "image": "s1293/ct.nii.gz",
+ "label": "s1293/seg.nii.gz"
+ },
+ {
+ "image": "s0541/ct.nii.gz",
+ "label": "s0541/seg.nii.gz"
+ },
+ {
+ "image": "s0171/ct.nii.gz",
+ "label": "s0171/seg.nii.gz"
+ },
+ {
+ "image": "s1405/ct.nii.gz",
+ "label": "s1405/seg.nii.gz"
+ },
+ {
+ "image": "s0978/ct.nii.gz",
+ "label": "s0978/seg.nii.gz"
+ },
+ {
+ "image": "s0638/ct.nii.gz",
+ "label": "s0638/seg.nii.gz"
+ },
+ {
+ "image": "s0907/ct.nii.gz",
+ "label": "s0907/seg.nii.gz"
+ },
+ {
+ "image": "s0388/ct.nii.gz",
+ "label": "s0388/seg.nii.gz"
+ },
+ {
+ "image": "s0002/ct.nii.gz",
+ "label": "s0002/seg.nii.gz"
+ },
+ {
+ "image": "s0773/ct.nii.gz",
+ "label": "s0773/seg.nii.gz"
+ },
+ {
+ "image": "s0589/ct.nii.gz",
+ "label": "s0589/seg.nii.gz"
+ },
+ {
+ "image": "s0696/ct.nii.gz",
+ "label": "s0696/seg.nii.gz"
+ },
+ {
+ "image": "s0237/ct.nii.gz",
+ "label": "s0237/seg.nii.gz"
+ },
+ {
+ "image": "s0175/ct.nii.gz",
+ "label": "s0175/seg.nii.gz"
+ },
+ {
+ "image": "s0794/ct.nii.gz",
+ "label": "s0794/seg.nii.gz"
+ },
+ {
+ "image": "s0979/ct.nii.gz",
+ "label": "s0979/seg.nii.gz"
+ },
+ {
+ "image": "s1368/ct.nii.gz",
+ "label": "s1368/seg.nii.gz"
+ },
+ {
+ "image": "s0369/ct.nii.gz",
+ "label": "s0369/seg.nii.gz"
+ },
+ {
+ "image": "s0792/ct.nii.gz",
+ "label": "s0792/seg.nii.gz"
+ },
+ {
+ "image": "s1132/ct.nii.gz",
+ "label": "s1132/seg.nii.gz"
+ },
+ {
+ "image": "s0035/ct.nii.gz",
+ "label": "s0035/seg.nii.gz"
+ },
+ {
+ "image": "s0402/ct.nii.gz",
+ "label": "s0402/seg.nii.gz"
+ },
+ {
+ "image": "s1345/ct.nii.gz",
+ "label": "s1345/seg.nii.gz"
+ },
+ {
+ "image": "s0156/ct.nii.gz",
+ "label": "s0156/seg.nii.gz"
+ },
+ {
+ "image": "s0694/ct.nii.gz",
+ "label": "s0694/seg.nii.gz"
+ },
+ {
+ "image": "s0365/ct.nii.gz",
+ "label": "s0365/seg.nii.gz"
+ },
+ {
+ "image": "s0153/ct.nii.gz",
+ "label": "s0153/seg.nii.gz"
+ },
+ {
+ "image": "s1090/ct.nii.gz",
+ "label": "s1090/seg.nii.gz"
+ },
+ {
+ "image": "s1150/ct.nii.gz",
+ "label": "s1150/seg.nii.gz"
+ },
+ {
+ "image": "s0881/ct.nii.gz",
+ "label": "s0881/seg.nii.gz"
+ },
+ {
+ "image": "s0259/ct.nii.gz",
+ "label": "s0259/seg.nii.gz"
+ },
+ {
+ "image": "s0974/ct.nii.gz",
+ "label": "s0974/seg.nii.gz"
+ },
+ {
+ "image": "s0263/ct.nii.gz",
+ "label": "s0263/seg.nii.gz"
+ },
+ {
+ "image": "s1388/ct.nii.gz",
+ "label": "s1388/seg.nii.gz"
+ },
+ {
+ "image": "s0208/ct.nii.gz",
+ "label": "s0208/seg.nii.gz"
+ },
+ {
+ "image": "s1093/ct.nii.gz",
+ "label": "s1093/seg.nii.gz"
+ },
+ {
+ "image": "s0639/ct.nii.gz",
+ "label": "s0639/seg.nii.gz"
+ },
+ {
+ "image": "s0629/ct.nii.gz",
+ "label": "s0629/seg.nii.gz"
+ },
+ {
+ "image": "s1162/ct.nii.gz",
+ "label": "s1162/seg.nii.gz"
+ },
+ {
+ "image": "s1404/ct.nii.gz",
+ "label": "s1404/seg.nii.gz"
+ },
+ {
+ "image": "s0115/ct.nii.gz",
+ "label": "s0115/seg.nii.gz"
+ },
+ {
+ "image": "s1278/ct.nii.gz",
+ "label": "s1278/seg.nii.gz"
+ },
+ {
+ "image": "s1144/ct.nii.gz",
+ "label": "s1144/seg.nii.gz"
+ },
+ {
+ "image": "s1165/ct.nii.gz",
+ "label": "s1165/seg.nii.gz"
+ },
+ {
+ "image": "s0507/ct.nii.gz",
+ "label": "s0507/seg.nii.gz"
+ },
+ {
+ "image": "s1053/ct.nii.gz",
+ "label": "s1053/seg.nii.gz"
+ },
+ {
+ "image": "s0717/ct.nii.gz",
+ "label": "s0717/seg.nii.gz"
+ },
+ {
+ "image": "s1244/ct.nii.gz",
+ "label": "s1244/seg.nii.gz"
+ },
+ {
+ "image": "s1040/ct.nii.gz",
+ "label": "s1040/seg.nii.gz"
+ },
+ {
+ "image": "s0277/ct.nii.gz",
+ "label": "s0277/seg.nii.gz"
+ },
+ {
+ "image": "s1237/ct.nii.gz",
+ "label": "s1237/seg.nii.gz"
+ }
+ ]
+}
diff --git a/vista3d/data/jsons/VerSe_5_folds.json b/vista3d/data/jsons/VerSe_5_folds.json
new file mode 100644
index 0000000..cf1fe75
--- /dev/null
+++ b/vista3d/data/jsons/VerSe_5_folds.json
@@ -0,0 +1,2785 @@
+{
+ "training": [
+ {
+ "image": "dataset-verse19test/rawdata/sub-verse054/sub-verse054_ct.nii.gz",
+ "pseudo_label": "dataset-verse19test/rawdata/sub-verse054/sub-verse054_ct.nii.gz",
+ "label": "dataset-verse19test/derivatives/sub-verse054/sub-verse054_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse701/sub-verse701_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse701/sub-verse701_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse701/sub-verse701_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse585/sub-verse585_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse585/sub-verse585_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse585/sub-verse585_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "dataset-verse19test/rawdata/sub-verse101/sub-verse101_ct.nii.gz",
+ "pseudo_label": "dataset-verse19test/rawdata/sub-verse101/sub-verse101_ct.nii.gz",
+ "label": "dataset-verse19test/derivatives/sub-verse101/sub-verse101_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse769/sub-verse769_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse769/sub-verse769_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse769/sub-verse769_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-verse605/sub-verse605_dir-sag_ct.nii.gz",
+ "pseudo_label": "dataset-01training/rawdata/sub-verse605/sub-verse605_dir-sag_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-verse605/sub-verse605_dir-sag_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-gl453/sub-gl453_dir-ax_ct.nii.gz",
+ "pseudo_label": "dataset-01training/rawdata/sub-gl453/sub-gl453_dir-ax_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-gl453/sub-gl453_dir-ax_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse706/sub-verse706_dir-sag_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-verse706/sub-verse706_dir-sag_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse706/sub-verse706_dir-sag_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse014/sub-verse014_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse014/sub-verse014_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse014/sub-verse014_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "dataset-verse19validation/rawdata/sub-verse116/sub-verse116_ct.nii.gz",
+ "pseudo_label": "dataset-verse19validation/rawdata/sub-verse116/sub-verse116_ct.nii.gz",
+ "label": "dataset-verse19validation/derivatives/sub-verse116/sub-verse116_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse761/sub-verse761_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse761/sub-verse761_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse761/sub-verse761_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse757/sub-verse757_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse757/sub-verse757_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse757/sub-verse757_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse100/sub-verse100_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse100/sub-verse100_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse100/sub-verse100_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "dataset-verse19test/rawdata/sub-verse085/sub-verse085_ct.nii.gz",
+ "pseudo_label": "dataset-verse19test/rawdata/sub-verse085/sub-verse085_ct.nii.gz",
+ "label": "dataset-verse19test/derivatives/sub-verse085/sub-verse085_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse105/sub-verse105_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse105/sub-verse105_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse105/sub-verse105_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse621/sub-verse621_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse621/sub-verse621_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse621/sub-verse621_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-gl428/sub-gl428_dir-ax_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-gl428/sub-gl428_dir-ax_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-gl428/sub-gl428_dir-ax_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse502/sub-verse502_dir-iso_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-verse502/sub-verse502_dir-iso_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse502/sub-verse502_dir-iso_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-gl216/sub-gl216_dir-ax_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-gl216/sub-gl216_dir-ax_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-gl216/sub-gl216_dir-ax_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-gl108/sub-gl108_dir-ax_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-gl108/sub-gl108_dir-ax_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-gl108/sub-gl108_dir-ax_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-verse514/sub-verse514_dir-ax_ct.nii.gz",
+ "pseudo_label": "dataset-01training/rawdata/sub-verse514/sub-verse514_dir-ax_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-verse514/sub-verse514_dir-ax_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse076/sub-verse076_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse076/sub-verse076_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse076/sub-verse076_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse554/sub-verse554_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse554/sub-verse554_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse554/sub-verse554_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse813/sub-verse813_dir-sag_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-verse813/sub-verse813_dir-sag_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse813/sub-verse813_dir-sag_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-verse536/sub-verse536_dir-ax_ct.nii.gz",
+ "pseudo_label": "dataset-01training/rawdata/sub-verse536/sub-verse536_dir-ax_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-verse536/sub-verse536_dir-ax_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse513/sub-verse513_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse513/sub-verse513_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse513/sub-verse513_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse112/sub-verse112_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse112/sub-verse112_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse112/sub-verse112_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse627/sub-verse627_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse627/sub-verse627_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse627/sub-verse627_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "dataset-verse19validation/rawdata/sub-verse018/sub-verse018_ct.nii.gz",
+ "pseudo_label": "dataset-verse19validation/rawdata/sub-verse018/sub-verse018_ct.nii.gz",
+ "label": "dataset-verse19validation/derivatives/sub-verse018/sub-verse018_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-verse503/sub-verse503_dir-ax_ct.nii.gz",
+ "pseudo_label": "dataset-01training/rawdata/sub-verse503/sub-verse503_dir-ax_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-verse503/sub-verse503_dir-ax_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse152/sub-verse152_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse152/sub-verse152_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse152/sub-verse152_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse135/sub-verse135_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse135/sub-verse135_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse135/sub-verse135_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse137/sub-verse137_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse137/sub-verse137_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse137/sub-verse137_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "dataset-verse19test/rawdata/sub-verse271/sub-verse271_ct.nii.gz",
+ "pseudo_label": "dataset-verse19test/rawdata/sub-verse271/sub-verse271_ct.nii.gz",
+ "label": "dataset-verse19test/derivatives/sub-verse271/sub-verse271_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse082/sub-verse082_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse082/sub-verse082_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse082/sub-verse082_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "dataset-verse19validation/rawdata/sub-verse022/sub-verse022_ct.nii.gz",
+ "pseudo_label": "dataset-verse19validation/rawdata/sub-verse022/sub-verse022_ct.nii.gz",
+ "label": "dataset-verse19validation/derivatives/sub-verse022/sub-verse022_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse408/sub-verse408_split-verse265_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse408/sub-verse408_split-verse265_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse408/sub-verse408_split-verse265_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse559/sub-verse559_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse559/sub-verse559_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse559/sub-verse559_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse651/sub-verse651_dir-iso_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-verse651/sub-verse651_dir-iso_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse651/sub-verse651_dir-iso_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-verse537/sub-verse537_dir-iso_ct.nii.gz",
+ "pseudo_label": "dataset-01training/rawdata/sub-verse537/sub-verse537_dir-iso_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-verse537/sub-verse537_dir-iso_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse088/sub-verse088_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse088/sub-verse088_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse088/sub-verse088_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse530/sub-verse530_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse530/sub-verse530_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse530/sub-verse530_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse615/sub-verse615_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse615/sub-verse615_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse615/sub-verse615_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse145/sub-verse145_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse145/sub-verse145_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse145/sub-verse145_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-gl099/sub-gl099_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-gl099/sub-gl099_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-gl099/sub-gl099_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "dataset-verse19test/rawdata/sub-verse092/sub-verse092_ct.nii.gz",
+ "pseudo_label": "dataset-verse19test/rawdata/sub-verse092/sub-verse092_ct.nii.gz",
+ "label": "dataset-verse19test/derivatives/sub-verse092/sub-verse092_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse141/sub-verse141_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse141/sub-verse141_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse141/sub-verse141_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "dataset-verse19validation/rawdata/sub-verse242/sub-verse242_ct.nii.gz",
+ "pseudo_label": "dataset-verse19validation/rawdata/sub-verse242/sub-verse242_ct.nii.gz",
+ "label": "dataset-verse19validation/derivatives/sub-verse242/sub-verse242_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "dataset-verse19test/rawdata/sub-verse414/sub-verse414_split-verse241_ct.nii.gz",
+ "pseudo_label": "dataset-verse19test/rawdata/sub-verse414/sub-verse414_split-verse241_ct.nii.gz",
+ "label": "dataset-verse19test/derivatives/sub-verse414/sub-verse414_split-verse241_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse647/sub-verse647_dir-sag_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-verse647/sub-verse647_dir-sag_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse647/sub-verse647_dir-sag_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse650/sub-verse650_dir-iso_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-verse650/sub-verse650_dir-iso_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse650/sub-verse650_dir-iso_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse545/sub-verse545_dir-ax_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse545/sub-verse545_dir-ax_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse545/sub-verse545_dir-ax_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-gl059/sub-gl059_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-gl059/sub-gl059_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-gl059/sub-gl059_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse709/sub-verse709_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse709/sub-verse709_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse709/sub-verse709_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-verse507/sub-verse507_dir-ax_ct.nii.gz",
+ "pseudo_label": "dataset-01training/rawdata/sub-verse507/sub-verse507_dir-ax_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-verse507/sub-verse507_dir-ax_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse719/sub-verse719_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse719/sub-verse719_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse719/sub-verse719_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 1
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-gl003/sub-gl003_dir-ax_ct.nii.gz",
+ "pseudo_label": "dataset-01training/rawdata/sub-gl003/sub-gl003_dir-ax_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-gl003/sub-gl003_dir-ax_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-verse629/sub-verse629_dir-ax_ct.nii.gz",
+ "pseudo_label": "dataset-01training/rawdata/sub-verse629/sub-verse629_dir-ax_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-verse629/sub-verse629_dir-ax_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse097/sub-verse097_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse097/sub-verse097_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse097/sub-verse097_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "dataset-verse19validation/rawdata/sub-verse276/sub-verse276_ct.nii.gz",
+ "pseudo_label": "dataset-verse19validation/rawdata/sub-verse276/sub-verse276_ct.nii.gz",
+ "label": "dataset-verse19validation/derivatives/sub-verse276/sub-verse276_seg-vert_msk.nii.gz",
+ "fold": 0,
+ "pseudo_label_reliability": 0
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse700/sub-verse700_dir-sag_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-verse700/sub-verse700_dir-sag_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse700/sub-verse700_dir-sag_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse700_dir-sag_ct/sub-verse700_dir-sag_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-gl352/sub-gl352_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-gl352/sub-gl352_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-gl352/sub-gl352_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-gl352_ct/sub-gl352_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse616/sub-verse616_dir-iso_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-verse616/sub-verse616_dir-iso_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse616/sub-verse616_dir-iso_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse616_dir-iso_ct/sub-verse616_dir-iso_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse758/sub-verse758_dir-sag_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-verse758/sub-verse758_dir-sag_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse758/sub-verse758_dir-sag_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse758_dir-sag_ct/sub-verse758_dir-sag_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19test/rawdata/sub-verse149/sub-verse149_ct.nii.gz",
+ "pseudo_label": "dataset-verse19test/rawdata/sub-verse149/sub-verse149_ct.nii.gz",
+ "label": "dataset-verse19test/derivatives/sub-verse149/sub-verse149_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse149_ct/sub-verse149_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse509/sub-verse509_dir-iso_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-verse509/sub-verse509_dir-iso_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse509/sub-verse509_dir-iso_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse509_dir-iso_ct/sub-verse509_dir-iso_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19validation/rawdata/sub-verse047/sub-verse047_ct.nii.gz",
+ "pseudo_label": "dataset-verse19validation/rawdata/sub-verse047/sub-verse047_ct.nii.gz",
+ "label": "dataset-verse19validation/derivatives/sub-verse047/sub-verse047_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse047_ct/sub-verse047_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse713/sub-verse713_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse713/sub-verse713_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse713/sub-verse713_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse713_ct/sub-verse713_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse582/sub-verse582_dir-iso_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-verse582/sub-verse582_dir-iso_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse582/sub-verse582_dir-iso_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse582_dir-iso_ct/sub-verse582_dir-iso_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-verse581/sub-verse581_dir-ax_ct.nii.gz",
+ "pseudo_label": "dataset-01training/rawdata/sub-verse581/sub-verse581_dir-ax_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-verse581/sub-verse581_dir-ax_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse581_dir-ax_ct/sub-verse581_dir-ax_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse550/sub-verse550_dir-iso_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-verse550/sub-verse550_dir-iso_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse550/sub-verse550_dir-iso_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse550_dir-iso_ct/sub-verse550_dir-iso_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse113/sub-verse113_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse113/sub-verse113_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse113/sub-verse113_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse113_ct/sub-verse113_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-verse811/sub-verse811_dir-ax_ct.nii.gz",
+ "pseudo_label": "dataset-01training/rawdata/sub-verse811/sub-verse811_dir-ax_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-verse811/sub-verse811_dir-ax_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse811_dir-ax_ct/sub-verse811_dir-ax_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-verse500/sub-verse500_dir-ax_ct.nii.gz",
+ "pseudo_label": "dataset-01training/rawdata/sub-verse500/sub-verse500_dir-ax_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-verse500/sub-verse500_dir-ax_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse500_dir-ax_ct/sub-verse500_dir-ax_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-verse518/sub-verse518_dir-ax_ct.nii.gz",
+ "pseudo_label": "dataset-01training/rawdata/sub-verse518/sub-verse518_dir-ax_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-verse518/sub-verse518_dir-ax_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse518_dir-ax_ct/sub-verse518_dir-ax_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19validation/rawdata/sub-verse264/sub-verse264_ct.nii.gz",
+ "pseudo_label": "dataset-verse19validation/rawdata/sub-verse264/sub-verse264_ct.nii.gz",
+ "label": "dataset-verse19validation/derivatives/sub-verse264/sub-verse264_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse264_ct/sub-verse264_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse406/sub-verse406_split-verse261_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse406/sub-verse406_split-verse261_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse406/sub-verse406_split-verse261_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse406_split-verse261_ct/sub-verse406_split-verse261_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse802/sub-verse802_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse802/sub-verse802_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse802/sub-verse802_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse802_ct/sub-verse802_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse408/sub-verse408_split-verse223_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse408/sub-verse408_split-verse223_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse408/sub-verse408_split-verse223_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse408_split-verse223_ct/sub-verse408_split-verse223_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-gl364/sub-gl364_dir-ax_ct.nii.gz",
+ "pseudo_label": "dataset-01training/rawdata/sub-gl364/sub-gl364_dir-ax_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-gl364/sub-gl364_dir-ax_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-gl364_dir-ax_ct/sub-gl364_dir-ax_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse401/sub-verse401_split-verse201_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse401/sub-verse401_split-verse201_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse401/sub-verse401_split-verse201_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse401_split-verse201_ct/sub-verse401_split-verse201_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-gl419/sub-gl419_dir-ax_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-gl419/sub-gl419_dir-ax_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-gl419/sub-gl419_dir-ax_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-gl419_dir-ax_ct/sub-gl419_dir-ax_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse134/sub-verse134_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse134/sub-verse134_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse134/sub-verse134_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse134_ct/sub-verse134_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19validation/rawdata/sub-verse030/sub-verse030_ct.nii.gz",
+ "pseudo_label": "dataset-verse19validation/rawdata/sub-verse030/sub-verse030_ct.nii.gz",
+ "label": "dataset-verse19validation/derivatives/sub-verse030/sub-verse030_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse030_ct/sub-verse030_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse609/sub-verse609_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse609/sub-verse609_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse609/sub-verse609_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse609_ct/sub-verse609_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-verse539/sub-verse539_dir-ax_ct.nii.gz",
+ "pseudo_label": "dataset-01training/rawdata/sub-verse539/sub-verse539_dir-ax_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-verse539/sub-verse539_dir-ax_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse539_dir-ax_ct/sub-verse539_dir-ax_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19validation/rawdata/sub-verse073/sub-verse073_ct.nii.gz",
+ "pseudo_label": "dataset-verse19validation/rawdata/sub-verse073/sub-verse073_ct.nii.gz",
+ "label": "dataset-verse19validation/derivatives/sub-verse073/sub-verse073_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse073_ct/sub-verse073_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse556/sub-verse556_dir-ax_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse556/sub-verse556_dir-ax_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse556/sub-verse556_dir-ax_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse556_dir-ax_ct/sub-verse556_dir-ax_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse572/sub-verse572_dir-sag_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-verse572/sub-verse572_dir-sag_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse572/sub-verse572_dir-sag_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse572_dir-sag_ct/sub-verse572_dir-sag_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse402/sub-verse402_split-verse251_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse402/sub-verse402_split-verse251_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse402/sub-verse402_split-verse251_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse402_split-verse251_ct/sub-verse402_split-verse251_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19validation/rawdata/sub-verse125/sub-verse125_ct.nii.gz",
+ "pseudo_label": "dataset-verse19validation/rawdata/sub-verse125/sub-verse125_ct.nii.gz",
+ "label": "dataset-verse19validation/derivatives/sub-verse125/sub-verse125_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse125_ct/sub-verse125_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19test/rawdata/sub-verse236/sub-verse236_ct.nii.gz",
+ "pseudo_label": "dataset-verse19test/rawdata/sub-verse236/sub-verse236_ct.nii.gz",
+ "label": "dataset-verse19test/derivatives/sub-verse236/sub-verse236_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse236_ct/sub-verse236_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse716/sub-verse716_dir-iso_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-verse716/sub-verse716_dir-iso_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse716/sub-verse716_dir-iso_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse716_dir-iso_ct/sub-verse716_dir-iso_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse754/sub-verse754_dir-sag_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-verse754/sub-verse754_dir-sag_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse754/sub-verse754_dir-sag_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse754_dir-sag_ct/sub-verse754_dir-sag_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19validation/rawdata/sub-verse078/sub-verse078_ct.nii.gz",
+ "pseudo_label": "dataset-verse19validation/rawdata/sub-verse078/sub-verse078_ct.nii.gz",
+ "label": "dataset-verse19validation/derivatives/sub-verse078/sub-verse078_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse078_ct/sub-verse078_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-gl017/sub-gl017_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-gl017/sub-gl017_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-gl017/sub-gl017_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-gl017_ct/sub-gl017_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19validation/rawdata/sub-verse412/sub-verse412_split-verse290_ct.nii.gz",
+ "pseudo_label": "dataset-verse19validation/rawdata/sub-verse412/sub-verse412_split-verse290_ct.nii.gz",
+ "label": "dataset-verse19validation/derivatives/sub-verse412/sub-verse412_split-verse290_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse412_split-verse290_ct/sub-verse412_split-verse290_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19validation/rawdata/sub-verse221/sub-verse221_ct.nii.gz",
+ "pseudo_label": "dataset-verse19validation/rawdata/sub-verse221/sub-verse221_ct.nii.gz",
+ "label": "dataset-verse19validation/derivatives/sub-verse221/sub-verse221_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse221_ct/sub-verse221_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse768/sub-verse768_dir-ax_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-verse768/sub-verse768_dir-ax_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse768/sub-verse768_dir-ax_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse768_dir-ax_ct/sub-verse768_dir-ax_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse107/sub-verse107_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse107/sub-verse107_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse107/sub-verse107_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse107_ct/sub-verse107_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse512/sub-verse512_dir-iso_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-verse512/sub-verse512_dir-iso_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse512/sub-verse512_dir-iso_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse512_dir-iso_ct/sub-verse512_dir-iso_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse407/sub-verse407_split-verse215_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse407/sub-verse407_split-verse215_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse407/sub-verse407_split-verse215_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse407_split-verse215_ct/sub-verse407_split-verse215_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-gl016/sub-gl016_dir-ax_ct.nii.gz",
+ "pseudo_label": "dataset-01training/rawdata/sub-gl016/sub-gl016_dir-ax_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-gl016/sub-gl016_dir-ax_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-gl016_dir-ax_ct/sub-gl016_dir-ax_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19test/rawdata/sub-verse416/sub-verse416_split-verse279_ct.nii.gz",
+ "pseudo_label": "dataset-verse19test/rawdata/sub-verse416/sub-verse416_split-verse279_ct.nii.gz",
+ "label": "dataset-verse19test/derivatives/sub-verse416/sub-verse416_split-verse279_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse416_split-verse279_ct/sub-verse416_split-verse279_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse151/sub-verse151_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse151/sub-verse151_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse151/sub-verse151_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse151_ct/sub-verse151_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse826/sub-verse826_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse826/sub-verse826_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse826/sub-verse826_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse826_ct/sub-verse826_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse598/sub-verse598_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse598/sub-verse598_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse598/sub-verse598_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse598_ct/sub-verse598_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse576/sub-verse576_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse576/sub-verse576_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse576/sub-verse576_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse576_ct/sub-verse576_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19test/rawdata/sub-verse055/sub-verse055_ct.nii.gz",
+ "pseudo_label": "dataset-verse19test/rawdata/sub-verse055/sub-verse055_ct.nii.gz",
+ "label": "dataset-verse19test/derivatives/sub-verse055/sub-verse055_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse055_ct/sub-verse055_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19validation/rawdata/sub-verse400/sub-verse400_split-verse155_ct.nii.gz",
+ "pseudo_label": "dataset-verse19validation/rawdata/sub-verse400/sub-verse400_split-verse155_ct.nii.gz",
+ "label": "dataset-verse19validation/derivatives/sub-verse400/sub-verse400_split-verse155_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse400_split-verse155_ct/sub-verse400_split-verse155_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-verse642/sub-verse642_dir-sag_ct.nii.gz",
+ "pseudo_label": "dataset-01training/rawdata/sub-verse642/sub-verse642_dir-sag_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-verse642/sub-verse642_dir-sag_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse642_dir-sag_ct/sub-verse642_dir-sag_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse522/sub-verse522_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse522/sub-verse522_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse522/sub-verse522_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse522_ct/sub-verse522_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-verse593/sub-verse593_dir-sag_ct.nii.gz",
+ "pseudo_label": "dataset-01training/rawdata/sub-verse593/sub-verse593_dir-sag_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-verse593/sub-verse593_dir-sag_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse593_dir-sag_ct/sub-verse593_dir-sag_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse411/sub-verse411_split-verse270_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse411/sub-verse411_split-verse270_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse411/sub-verse411_split-verse270_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse411_split-verse270_ct/sub-verse411_split-verse270_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19test/rawdata/sub-verse417/sub-verse417_split-verse277_ct.nii.gz",
+ "pseudo_label": "dataset-verse19test/rawdata/sub-verse417/sub-verse417_split-verse277_ct.nii.gz",
+ "label": "dataset-verse19test/derivatives/sub-verse417/sub-verse417_split-verse277_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse417_split-verse277_ct/sub-verse417_split-verse277_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse402/sub-verse402_split-verse202_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse402/sub-verse402_split-verse202_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse402/sub-verse402_split-verse202_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse402_split-verse202_ct/sub-verse402_split-verse202_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19validation/rawdata/sub-verse041/sub-verse041_ct.nii.gz",
+ "pseudo_label": "dataset-verse19validation/rawdata/sub-verse041/sub-verse041_ct.nii.gz",
+ "label": "dataset-verse19validation/derivatives/sub-verse041/sub-verse041_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse041_ct/sub-verse041_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse707/sub-verse707_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse707/sub-verse707_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse707/sub-verse707_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse707_ct/sub-verse707_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19test/rawdata/sub-verse416/sub-verse416_split-verse247_ct.nii.gz",
+ "pseudo_label": "dataset-verse19test/rawdata/sub-verse416/sub-verse416_split-verse247_ct.nii.gz",
+ "label": "dataset-verse19test/derivatives/sub-verse416/sub-verse416_split-verse247_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse416_split-verse247_ct/sub-verse416_split-verse247_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19test/rawdata/sub-verse260/sub-verse260_ct.nii.gz",
+ "pseudo_label": "dataset-verse19test/rawdata/sub-verse260/sub-verse260_ct.nii.gz",
+ "label": "dataset-verse19test/derivatives/sub-verse260/sub-verse260_seg-vert_msk.nii.gz",
+ "fold": 1,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse260_ct/sub-verse260_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19validation/rawdata/sub-verse150/sub-verse150_ct.nii.gz",
+ "pseudo_label": "dataset-verse19validation/rawdata/sub-verse150/sub-verse150_ct.nii.gz",
+ "label": "dataset-verse19validation/derivatives/sub-verse150/sub-verse150_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse150_ct/sub-verse150_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-verse533/sub-verse533_dir-ax_ct.nii.gz",
+ "pseudo_label": "dataset-01training/rawdata/sub-verse533/sub-verse533_dir-ax_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-verse533/sub-verse533_dir-ax_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse533_dir-ax_ct/sub-verse533_dir-ax_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-verse584/sub-verse584_dir-ax_ct.nii.gz",
+ "pseudo_label": "dataset-01training/rawdata/sub-verse584/sub-verse584_dir-ax_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-verse584/sub-verse584_dir-ax_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse584_dir-ax_ct/sub-verse584_dir-ax_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse075/sub-verse075_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse075/sub-verse075_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse075/sub-verse075_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse075_ct/sub-verse075_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse816/sub-verse816_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse816/sub-verse816_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse816/sub-verse816_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse816_ct/sub-verse816_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-verse820/sub-verse820_dir-ax_ct.nii.gz",
+ "pseudo_label": "dataset-01training/rawdata/sub-verse820/sub-verse820_dir-ax_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-verse820/sub-verse820_dir-ax_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse820_dir-ax_ct/sub-verse820_dir-ax_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-verse808/sub-verse808_dir-iso_ct.nii.gz",
+ "pseudo_label": "dataset-01training/rawdata/sub-verse808/sub-verse808_dir-iso_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-verse808/sub-verse808_dir-iso_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse808_dir-iso_ct/sub-verse808_dir-iso_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-verse825/sub-verse825_dir-ax_ct.nii.gz",
+ "pseudo_label": "dataset-01training/rawdata/sub-verse825/sub-verse825_dir-ax_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-verse825/sub-verse825_dir-ax_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse825_dir-ax_ct/sub-verse825_dir-ax_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse547/sub-verse547_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse547/sub-verse547_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse547/sub-verse547_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse547_ct/sub-verse547_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19test/rawdata/sub-verse032/sub-verse032_ct.nii.gz",
+ "pseudo_label": "dataset-verse19test/rawdata/sub-verse032/sub-verse032_ct.nii.gz",
+ "label": "dataset-verse19test/derivatives/sub-verse032/sub-verse032_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse032_ct/sub-verse032_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse407/sub-verse407_split-verse262_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse407/sub-verse407_split-verse262_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse407/sub-verse407_split-verse262_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse407_split-verse262_ct/sub-verse407_split-verse262_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-verse833/sub-verse833_dir-ax_ct.nii.gz",
+ "pseudo_label": "dataset-01training/rawdata/sub-verse833/sub-verse833_dir-ax_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-verse833/sub-verse833_dir-ax_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse833_dir-ax_ct/sub-verse833_dir-ax_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse763/sub-verse763_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse763/sub-verse763_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse763/sub-verse763_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse763_ct/sub-verse763_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse015/sub-verse015_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse015/sub-verse015_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse015/sub-verse015_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse015_ct/sub-verse015_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19test/rawdata/sub-verse217/sub-verse217_ct.nii.gz",
+ "pseudo_label": "dataset-verse19test/rawdata/sub-verse217/sub-verse217_ct.nii.gz",
+ "label": "dataset-verse19test/derivatives/sub-verse217/sub-verse217_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse217_ct/sub-verse217_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse765/sub-verse765_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse765/sub-verse765_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse765/sub-verse765_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse765_ct/sub-verse765_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-gl479/sub-gl479_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-gl479/sub-gl479_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-gl479/sub-gl479_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-gl479_ct/sub-gl479_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse415/sub-verse415_split-verse243_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse415/sub-verse415_split-verse243_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse415/sub-verse415_split-verse243_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse415_split-verse243_ct/sub-verse415_split-verse243_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse755/sub-verse755_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse755/sub-verse755_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse755/sub-verse755_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse755_ct/sub-verse755_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse401/sub-verse401_split-verse253_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse401/sub-verse401_split-verse253_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse401/sub-verse401_split-verse253_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse401_split-verse253_ct/sub-verse401_split-verse253_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-gl295/sub-gl295_dir-ax_ct.nii.gz",
+ "pseudo_label": "dataset-01training/rawdata/sub-gl295/sub-gl295_dir-ax_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-gl295/sub-gl295_dir-ax_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-gl295_dir-ax_ct/sub-gl295_dir-ax_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse640/sub-verse640_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse640/sub-verse640_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse640/sub-verse640_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse640_ct/sub-verse640_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse009/sub-verse009_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse009/sub-verse009_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse009/sub-verse009_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse009_ct/sub-verse009_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse573/sub-verse573_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse573/sub-verse573_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse573/sub-verse573_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse573_ct/sub-verse573_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse511/sub-verse511_dir-ax_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse511/sub-verse511_dir-ax_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse511/sub-verse511_dir-ax_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse511_dir-ax_ct/sub-verse511_dir-ax_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse549/sub-verse549_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse549/sub-verse549_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse549/sub-verse549_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse549_ct/sub-verse549_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse810/sub-verse810_dir-iso_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-verse810/sub-verse810_dir-iso_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse810/sub-verse810_dir-iso_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse810_dir-iso_ct/sub-verse810_dir-iso_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19validation/rawdata/sub-verse067/sub-verse067_ct.nii.gz",
+ "pseudo_label": "dataset-verse19validation/rawdata/sub-verse067/sub-verse067_ct.nii.gz",
+ "label": "dataset-verse19validation/derivatives/sub-verse067/sub-verse067_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse067_ct/sub-verse067_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19validation/rawdata/sub-verse404/sub-verse404_split-verse209_ct.nii.gz",
+ "pseudo_label": "dataset-verse19validation/rawdata/sub-verse404/sub-verse404_split-verse209_ct.nii.gz",
+ "label": "dataset-verse19validation/derivatives/sub-verse404/sub-verse404_split-verse209_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse404_split-verse209_ct/sub-verse404_split-verse209_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse750/sub-verse750_dir-ax_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse750/sub-verse750_dir-ax_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse750/sub-verse750_dir-ax_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse750_dir-ax_ct/sub-verse750_dir-ax_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse405/sub-verse405_split-verse258_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse405/sub-verse405_split-verse258_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse405/sub-verse405_split-verse258_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse405_split-verse258_ct/sub-verse405_split-verse258_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse061/sub-verse061_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse061/sub-verse061_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse061/sub-verse061_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse061_ct/sub-verse061_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse753/sub-verse753_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse753/sub-verse753_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse753/sub-verse753_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse753_ct/sub-verse753_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-verse619/sub-verse619_dir-ax_ct.nii.gz",
+ "pseudo_label": "dataset-01training/rawdata/sub-verse619/sub-verse619_dir-ax_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-verse619/sub-verse619_dir-ax_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse619_dir-ax_ct/sub-verse619_dir-ax_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse006/sub-verse006_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse006/sub-verse006_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse006/sub-verse006_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse006_ct/sub-verse006_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-verse565/sub-verse565_dir-ax_ct.nii.gz",
+ "pseudo_label": "dataset-01training/rawdata/sub-verse565/sub-verse565_dir-ax_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-verse565/sub-verse565_dir-ax_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse565_dir-ax_ct/sub-verse565_dir-ax_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse065/sub-verse065_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse065/sub-verse065_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse065/sub-verse065_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse065_ct/sub-verse065_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse711/sub-verse711_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse711/sub-verse711_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse711/sub-verse711_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse711_ct/sub-verse711_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19test/rawdata/sub-verse144/sub-verse144_ct.nii.gz",
+ "pseudo_label": "dataset-verse19test/rawdata/sub-verse144/sub-verse144_ct.nii.gz",
+ "label": "dataset-verse19test/derivatives/sub-verse144/sub-verse144_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse144_ct/sub-verse144_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19test/rawdata/sub-verse038/sub-verse038_ct.nii.gz",
+ "pseudo_label": "dataset-verse19test/rawdata/sub-verse038/sub-verse038_ct.nii.gz",
+ "label": "dataset-verse19test/derivatives/sub-verse038/sub-verse038_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse038_ct/sub-verse038_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19validation/rawdata/sub-verse011/sub-verse011_ct.nii.gz",
+ "pseudo_label": "dataset-verse19validation/rawdata/sub-verse011/sub-verse011_ct.nii.gz",
+ "label": "dataset-verse19validation/derivatives/sub-verse011/sub-verse011_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse011_ct/sub-verse011_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse552/sub-verse552_dir-ax_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-verse552/sub-verse552_dir-ax_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse552/sub-verse552_dir-ax_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse552_dir-ax_ct/sub-verse552_dir-ax_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse600/sub-verse600_dir-ax_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse600/sub-verse600_dir-ax_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse600/sub-verse600_dir-ax_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse600_dir-ax_ct/sub-verse600_dir-ax_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse607/sub-verse607_dir-sag_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-verse607/sub-verse607_dir-sag_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse607/sub-verse607_dir-sag_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse607_dir-sag_ct/sub-verse607_dir-sag_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19test/rawdata/sub-verse130/sub-verse130_ct.nii.gz",
+ "pseudo_label": "dataset-verse19test/rawdata/sub-verse130/sub-verse130_ct.nii.gz",
+ "label": "dataset-verse19test/derivatives/sub-verse130/sub-verse130_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse130_ct/sub-verse130_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse623/sub-verse623_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse623/sub-verse623_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse623/sub-verse623_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse623_ct/sub-verse623_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse104/sub-verse104_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse104/sub-verse104_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse104/sub-verse104_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse104_ct/sub-verse104_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19validation/rawdata/sub-verse080/sub-verse080_ct.nii.gz",
+ "pseudo_label": "dataset-verse19validation/rawdata/sub-verse080/sub-verse080_ct.nii.gz",
+ "label": "dataset-verse19validation/derivatives/sub-verse080/sub-verse080_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse080_ct/sub-verse080_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse409/sub-verse409_split-verse226_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse409/sub-verse409_split-verse226_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse409/sub-verse409_split-verse226_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse409_split-verse226_ct/sub-verse409_split-verse226_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse603/sub-verse603_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse603/sub-verse603_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse603/sub-verse603_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse603_ct/sub-verse603_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse614/sub-verse614_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse614/sub-verse614_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse614/sub-verse614_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse614_ct/sub-verse614_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse005/sub-verse005_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse005/sub-verse005_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse005/sub-verse005_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse005_ct/sub-verse005_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse146/sub-verse146_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse146/sub-verse146_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse146/sub-verse146_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse146_ct/sub-verse146_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19validation/rawdata/sub-verse023/sub-verse023_ct.nii.gz",
+ "pseudo_label": "dataset-verse19validation/rawdata/sub-verse023/sub-verse023_ct.nii.gz",
+ "label": "dataset-verse19validation/derivatives/sub-verse023/sub-verse023_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse023_ct/sub-verse023_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-verse544/sub-verse544_dir-ax_ct.nii.gz",
+ "pseudo_label": "dataset-01training/rawdata/sub-verse544/sub-verse544_dir-ax_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-verse544/sub-verse544_dir-ax_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse544_dir-ax_ct/sub-verse544_dir-ax_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse801/sub-verse801_dir-iso_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-verse801/sub-verse801_dir-iso_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse801/sub-verse801_dir-iso_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse801_dir-iso_ct/sub-verse801_dir-iso_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse764/sub-verse764_dir-iso_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-verse764/sub-verse764_dir-iso_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse764/sub-verse764_dir-iso_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse764_dir-iso_ct/sub-verse764_dir-iso_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse526/sub-verse526_dir-iso_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-verse526/sub-verse526_dir-iso_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse526/sub-verse526_dir-iso_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse526_dir-iso_ct/sub-verse526_dir-iso_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse708/sub-verse708_dir-iso_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-verse708/sub-verse708_dir-iso_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse708/sub-verse708_dir-iso_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse708_dir-iso_ct/sub-verse708_dir-iso_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse604/sub-verse604_dir-iso_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-verse604/sub-verse604_dir-iso_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse604/sub-verse604_dir-iso_seg-vert_msk.nii.gz",
+ "fold": 2,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse604_dir-iso_ct/sub-verse604_dir-iso_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-verse594/sub-verse594_dir-ax_ct.nii.gz",
+ "pseudo_label": "dataset-01training/rawdata/sub-verse594/sub-verse594_dir-ax_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-verse594/sub-verse594_dir-ax_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse594_dir-ax_ct/sub-verse594_dir-ax_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse617/sub-verse617_dir-iso_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-verse617/sub-verse617_dir-iso_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse617/sub-verse617_dir-iso_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse617_dir-iso_ct/sub-verse617_dir-iso_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-verse542/sub-verse542_dir-iso_ct.nii.gz",
+ "pseudo_label": "dataset-01training/rawdata/sub-verse542/sub-verse542_dir-iso_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-verse542/sub-verse542_dir-iso_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse542_dir-iso_ct/sub-verse542_dir-iso_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-gl195/sub-gl195_dir-ax_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-gl195/sub-gl195_dir-ax_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-gl195/sub-gl195_dir-ax_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-gl195_dir-ax_ct/sub-gl195_dir-ax_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19validation/rawdata/sub-verse024/sub-verse024_ct.nii.gz",
+ "pseudo_label": "dataset-verse19validation/rawdata/sub-verse024/sub-verse024_ct.nii.gz",
+ "label": "dataset-verse19validation/derivatives/sub-verse024/sub-verse024_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse024_ct/sub-verse024_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse254/sub-verse254_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse254/sub-verse254_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse254/sub-verse254_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse254_ct/sub-verse254_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse702/sub-verse702_dir-sag_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-verse702/sub-verse702_dir-sag_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse702/sub-verse702_dir-sag_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse702_dir-sag_ct/sub-verse702_dir-sag_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse004/sub-verse004_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse004/sub-verse004_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse004/sub-verse004_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse004_ct/sub-verse004_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-verse504/sub-verse504_dir-iso_ct.nii.gz",
+ "pseudo_label": "dataset-01training/rawdata/sub-verse504/sub-verse504_dir-iso_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-verse504/sub-verse504_dir-iso_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse504_dir-iso_ct/sub-verse504_dir-iso_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse710/sub-verse710_dir-iso_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-verse710/sub-verse710_dir-iso_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse710/sub-verse710_dir-iso_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse710_dir-iso_ct/sub-verse710_dir-iso_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19test/rawdata/sub-verse070/sub-verse070_ct.nii.gz",
+ "pseudo_label": "dataset-verse19test/rawdata/sub-verse070/sub-verse070_ct.nii.gz",
+ "label": "dataset-verse19test/derivatives/sub-verse070/sub-verse070_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse070_ct/sub-verse070_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19test/rawdata/sub-verse417/sub-verse417_split-verse278_ct.nii.gz",
+ "pseudo_label": "dataset-verse19test/rawdata/sub-verse417/sub-verse417_split-verse278_ct.nii.gz",
+ "label": "dataset-verse19test/derivatives/sub-verse417/sub-verse417_split-verse278_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse417_split-verse278_ct/sub-verse417_split-verse278_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-verse519/sub-verse519_dir-iso_ct.nii.gz",
+ "pseudo_label": "dataset-01training/rawdata/sub-verse519/sub-verse519_dir-iso_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-verse519/sub-verse519_dir-iso_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse519_dir-iso_ct/sub-verse519_dir-iso_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-verse641/sub-verse641_dir-ax_ct.nii.gz",
+ "pseudo_label": "dataset-01training/rawdata/sub-verse641/sub-verse641_dir-ax_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-verse641/sub-verse641_dir-ax_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse641_dir-ax_ct/sub-verse641_dir-ax_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19test/rawdata/sub-verse020/sub-verse020_ct.nii.gz",
+ "pseudo_label": "dataset-verse19test/rawdata/sub-verse020/sub-verse020_ct.nii.gz",
+ "label": "dataset-verse19test/derivatives/sub-verse020/sub-verse020_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse020_ct/sub-verse020_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse817/sub-verse817_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse817/sub-verse817_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse817/sub-verse817_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse817_ct/sub-verse817_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse571/sub-verse571_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse571/sub-verse571_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse571/sub-verse571_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse571_ct/sub-verse571_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19validation/rawdata/sub-verse095/sub-verse095_ct.nii.gz",
+ "pseudo_label": "dataset-verse19validation/rawdata/sub-verse095/sub-verse095_ct.nii.gz",
+ "label": "dataset-verse19validation/derivatives/sub-verse095/sub-verse095_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse095_ct/sub-verse095_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-verse596/sub-verse596_dir-ax_ct.nii.gz",
+ "pseudo_label": "dataset-01training/rawdata/sub-verse596/sub-verse596_dir-ax_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-verse596/sub-verse596_dir-ax_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse596_dir-ax_ct/sub-verse596_dir-ax_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-gl045/sub-gl045_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-gl045/sub-gl045_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-gl045/sub-gl045_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-gl045_ct/sub-gl045_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-verse521/sub-verse521_dir-ax_ct.nii.gz",
+ "pseudo_label": "dataset-01training/rawdata/sub-verse521/sub-verse521_dir-ax_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-verse521/sub-verse521_dir-ax_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse521_dir-ax_ct/sub-verse521_dir-ax_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-verse631/sub-verse631_ct.nii.gz",
+ "pseudo_label": "dataset-01training/rawdata/sub-verse631/sub-verse631_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-verse631/sub-verse631_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse631_ct/sub-verse631_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse413/sub-verse413_split-verse239_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse413/sub-verse413_split-verse239_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse413/sub-verse413_split-verse239_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse413_split-verse239_ct/sub-verse413_split-verse239_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse767/sub-verse767_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse767/sub-verse767_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse767/sub-verse767_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse767_ct/sub-verse767_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-verse561/sub-verse561_dir-sag_ct.nii.gz",
+ "pseudo_label": "dataset-01training/rawdata/sub-verse561/sub-verse561_dir-sag_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-verse561/sub-verse561_dir-sag_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse561_dir-sag_ct/sub-verse561_dir-sag_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse602/sub-verse602_dir-iso_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-verse602/sub-verse602_dir-iso_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse602/sub-verse602_dir-iso_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse602_dir-iso_ct/sub-verse602_dir-iso_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse007/sub-verse007_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse007/sub-verse007_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse007/sub-verse007_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse007_ct/sub-verse007_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse804/sub-verse804_dir-iso_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-verse804/sub-verse804_dir-iso_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse804/sub-verse804_dir-iso_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse804_dir-iso_ct/sub-verse804_dir-iso_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse111/sub-verse111_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse111/sub-verse111_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse111/sub-verse111_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse111_ct/sub-verse111_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse803/sub-verse803_dir-iso_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-verse803/sub-verse803_dir-iso_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse803/sub-verse803_dir-iso_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse803_dir-iso_ct/sub-verse803_dir-iso_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse821/sub-verse821_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse821/sub-verse821_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse821/sub-verse821_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse821_ct/sub-verse821_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse618/sub-verse618_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse618/sub-verse618_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse618/sub-verse618_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse618_ct/sub-verse618_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse524/sub-verse524_dir-iso_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-verse524/sub-verse524_dir-iso_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse524/sub-verse524_dir-iso_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse524_dir-iso_ct/sub-verse524_dir-iso_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse555/sub-verse555_dir-iso_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-verse555/sub-verse555_dir-iso_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse555/sub-verse555_dir-iso_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse555_dir-iso_ct/sub-verse555_dir-iso_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-gl144/sub-gl144_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-gl144/sub-gl144_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-gl144/sub-gl144_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-gl144_ct/sub-gl144_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-gl146/sub-gl146_dir-ax_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-gl146/sub-gl146_dir-ax_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-gl146/sub-gl146_dir-ax_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-gl146_dir-ax_ct/sub-gl146_dir-ax_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19validation/rawdata/sub-verse093/sub-verse093_ct.nii.gz",
+ "pseudo_label": "dataset-verse19validation/rawdata/sub-verse093/sub-verse093_ct.nii.gz",
+ "label": "dataset-verse19validation/derivatives/sub-verse093/sub-verse093_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse093_ct/sub-verse093_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse074/sub-verse074_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse074/sub-verse074_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse074/sub-verse074_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse074_ct/sub-verse074_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19test/rawdata/sub-verse138/sub-verse138_ct.nii.gz",
+ "pseudo_label": "dataset-verse19test/rawdata/sub-verse138/sub-verse138_ct.nii.gz",
+ "label": "dataset-verse19test/derivatives/sub-verse138/sub-verse138_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse138_ct/sub-verse138_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19validation/rawdata/sub-verse153/sub-verse153_ct.nii.gz",
+ "pseudo_label": "dataset-verse19validation/rawdata/sub-verse153/sub-verse153_ct.nii.gz",
+ "label": "dataset-verse19validation/derivatives/sub-verse153/sub-verse153_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse153_ct/sub-verse153_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse415/sub-verse415_split-verse275_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse415/sub-verse415_split-verse275_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse415/sub-verse415_split-verse275_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse415_split-verse275_ct/sub-verse415_split-verse275_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-verse823/sub-verse823_dir-iso_ct.nii.gz",
+ "pseudo_label": "dataset-01training/rawdata/sub-verse823/sub-verse823_dir-iso_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-verse823/sub-verse823_dir-iso_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse823_dir-iso_ct/sub-verse823_dir-iso_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse760/sub-verse760_dir-iso_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-verse760/sub-verse760_dir-iso_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse760/sub-verse760_dir-iso_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse760_dir-iso_ct/sub-verse760_dir-iso_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-verse824/sub-verse824_dir-ax_ct.nii.gz",
+ "pseudo_label": "dataset-01training/rawdata/sub-verse824/sub-verse824_dir-ax_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-verse824/sub-verse824_dir-ax_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse824_dir-ax_ct/sub-verse824_dir-ax_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19validation/rawdata/sub-verse230/sub-verse230_ct.nii.gz",
+ "pseudo_label": "dataset-verse19validation/rawdata/sub-verse230/sub-verse230_ct.nii.gz",
+ "label": "dataset-verse19validation/derivatives/sub-verse230/sub-verse230_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse230_ct/sub-verse230_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse805/sub-verse805_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse805/sub-verse805_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse805/sub-verse805_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse805_ct/sub-verse805_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-gl124/sub-gl124_dir-ax_ct.nii.gz",
+ "pseudo_label": "dataset-01training/rawdata/sub-gl124/sub-gl124_dir-ax_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-gl124/sub-gl124_dir-ax_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-gl124_dir-ax_ct/sub-gl124_dir-ax_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse644/sub-verse644_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse644/sub-verse644_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse644/sub-verse644_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse644_ct/sub-verse644_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse597/sub-verse597_dir-iso_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-verse597/sub-verse597_dir-iso_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse597/sub-verse597_dir-iso_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse597_dir-iso_ct/sub-verse597_dir-iso_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-gl068/sub-gl068_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-gl068/sub-gl068_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-gl068/sub-gl068_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-gl068_ct/sub-gl068_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse096/sub-verse096_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse096/sub-verse096_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse096/sub-verse096_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse096_ct/sub-verse096_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse712/sub-verse712_dir-iso_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-verse712/sub-verse712_dir-iso_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse712/sub-verse712_dir-iso_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse712_dir-iso_ct/sub-verse712_dir-iso_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19test/rawdata/sub-verse066/sub-verse066_ct.nii.gz",
+ "pseudo_label": "dataset-verse19test/rawdata/sub-verse066/sub-verse066_ct.nii.gz",
+ "label": "dataset-verse19test/derivatives/sub-verse066/sub-verse066_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse066_ct/sub-verse066_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse051/sub-verse051_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse051/sub-verse051_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse051/sub-verse051_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse051_ct/sub-verse051_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse717/sub-verse717_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse717/sub-verse717_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse717/sub-verse717_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse717_ct/sub-verse717_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse060/sub-verse060_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse060/sub-verse060_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse060/sub-verse060_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse060_ct/sub-verse060_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse508/sub-verse508_dir-ax_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse508/sub-verse508_dir-ax_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse508/sub-verse508_dir-ax_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse508_dir-ax_ct/sub-verse508_dir-ax_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-verse506/sub-verse506_dir-iso_ct.nii.gz",
+ "pseudo_label": "dataset-01training/rawdata/sub-verse506/sub-verse506_dir-iso_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-verse506/sub-verse506_dir-iso_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse506_dir-iso_ct/sub-verse506_dir-iso_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse409/sub-verse409_split-verse266_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse409/sub-verse409_split-verse266_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse409/sub-verse409_split-verse266_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse409_split-verse266_ct/sub-verse409_split-verse266_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse715/sub-verse715_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse715/sub-verse715_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse715/sub-verse715_seg-vert_msk.nii.gz",
+ "fold": 3,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse715_ct/sub-verse715_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19test/rawdata/sub-verse029/sub-verse029_ct.nii.gz",
+ "pseudo_label": "dataset-verse19test/rawdata/sub-verse029/sub-verse029_ct.nii.gz",
+ "label": "dataset-verse19test/derivatives/sub-verse029/sub-verse029_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse029_ct/sub-verse029_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse570/sub-verse570_dir-iso_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-verse570/sub-verse570_dir-iso_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse570/sub-verse570_dir-iso_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse570_dir-iso_ct/sub-verse570_dir-iso_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse068/sub-verse068_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse068/sub-verse068_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse068/sub-verse068_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse068_ct/sub-verse068_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-verse532/sub-verse532_dir-ax_ct.nii.gz",
+ "pseudo_label": "dataset-01training/rawdata/sub-verse532/sub-verse532_dir-ax_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-verse532/sub-verse532_dir-ax_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse532_dir-ax_ct/sub-verse532_dir-ax_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse809/sub-verse809_dir-iso_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-verse809/sub-verse809_dir-iso_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse809/sub-verse809_dir-iso_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse809_dir-iso_ct/sub-verse809_dir-iso_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse703/sub-verse703_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse703/sub-verse703_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse703/sub-verse703_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse703_ct/sub-verse703_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19test/rawdata/sub-verse059/sub-verse059_ct.nii.gz",
+ "pseudo_label": "dataset-verse19test/rawdata/sub-verse059/sub-verse059_ct.nii.gz",
+ "label": "dataset-verse19test/derivatives/sub-verse059/sub-verse059_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse059_ct/sub-verse059_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse714/sub-verse714_dir-iso_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-verse714/sub-verse714_dir-iso_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse714/sub-verse714_dir-iso_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse714_dir-iso_ct/sub-verse714_dir-iso_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19test/rawdata/sub-verse414/sub-verse414_split-verse273_ct.nii.gz",
+ "pseudo_label": "dataset-verse19test/rawdata/sub-verse414/sub-verse414_split-verse273_ct.nii.gz",
+ "label": "dataset-verse19test/derivatives/sub-verse414/sub-verse414_split-verse273_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse414_split-verse273_ct/sub-verse414_split-verse273_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse531/sub-verse531_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse531/sub-verse531_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse531/sub-verse531_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse531_ct/sub-verse531_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse558/sub-verse558_dir-sag_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-verse558/sub-verse558_dir-sag_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse558/sub-verse558_dir-sag_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse558_dir-sag_ct/sub-verse558_dir-sag_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse529/sub-verse529_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse529/sub-verse529_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse529/sub-verse529_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse529_ct/sub-verse529_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse613/sub-verse613_dir-iso_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-verse613/sub-verse613_dir-iso_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse613/sub-verse613_dir-iso_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse613_dir-iso_ct/sub-verse613_dir-iso_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse133/sub-verse133_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse133/sub-verse133_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse133/sub-verse133_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse133_ct/sub-verse133_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse207/sub-verse207_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse207/sub-verse207_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse207/sub-verse207_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse207_ct/sub-verse207_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse592/sub-verse592_dir-ax_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse592/sub-verse592_dir-ax_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse592/sub-verse592_dir-ax_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse592_dir-ax_ct/sub-verse592_dir-ax_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19validation/rawdata/sub-verse225/sub-verse225_ct.nii.gz",
+ "pseudo_label": "dataset-verse19validation/rawdata/sub-verse225/sub-verse225_ct.nii.gz",
+ "label": "dataset-verse19validation/derivatives/sub-verse225/sub-verse225_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse225_ct/sub-verse225_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19validation/rawdata/sub-verse269/sub-verse269_ct.nii.gz",
+ "pseudo_label": "dataset-verse19validation/rawdata/sub-verse269/sub-verse269_ct.nii.gz",
+ "label": "dataset-verse19validation/derivatives/sub-verse269/sub-verse269_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse269_ct/sub-verse269_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-verse534/sub-verse534_dir-iso_ct.nii.gz",
+ "pseudo_label": "dataset-01training/rawdata/sub-verse534/sub-verse534_dir-iso_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-verse534/sub-verse534_dir-iso_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse534_dir-iso_ct/sub-verse534_dir-iso_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse033/sub-verse033_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse033/sub-verse033_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse033/sub-verse033_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse033_ct/sub-verse033_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19validation/rawdata/sub-verse124/sub-verse124_ct.nii.gz",
+ "pseudo_label": "dataset-verse19validation/rawdata/sub-verse124/sub-verse124_ct.nii.gz",
+ "label": "dataset-verse19validation/derivatives/sub-verse124/sub-verse124_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse124_ct/sub-verse124_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-verse577/sub-verse577_dir-ax_ct.nii.gz",
+ "pseudo_label": "dataset-01training/rawdata/sub-verse577/sub-verse577_dir-ax_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-verse577/sub-verse577_dir-ax_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse577_dir-ax_ct/sub-verse577_dir-ax_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse046/sub-verse046_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse046/sub-verse046_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse046/sub-verse046_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse046_ct/sub-verse046_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse756/sub-verse756_dir-iso_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-verse756/sub-verse756_dir-iso_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse756/sub-verse756_dir-iso_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse756_dir-iso_ct/sub-verse756_dir-iso_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19validation/rawdata/sub-verse404/sub-verse404_split-verse256_ct.nii.gz",
+ "pseudo_label": "dataset-verse19validation/rawdata/sub-verse404/sub-verse404_split-verse256_ct.nii.gz",
+ "label": "dataset-verse19validation/derivatives/sub-verse404/sub-verse404_split-verse256_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse404_split-verse256_ct/sub-verse404_split-verse256_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse413/sub-verse413_split-verse272_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse413/sub-verse413_split-verse272_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse413/sub-verse413_split-verse272_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse413_split-verse272_ct/sub-verse413_split-verse272_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse102/sub-verse102_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse102/sub-verse102_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse102/sub-verse102_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse102_ct/sub-verse102_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse406/sub-verse406_split-verse214_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse406/sub-verse406_split-verse214_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse406/sub-verse406_split-verse214_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse406_split-verse214_ct/sub-verse406_split-verse214_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse563/sub-verse563_dir-iso_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-verse563/sub-verse563_dir-iso_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse563/sub-verse563_dir-iso_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse563_dir-iso_ct/sub-verse563_dir-iso_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse505/sub-verse505_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse505/sub-verse505_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse505/sub-verse505_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse505_ct/sub-verse505_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse751/sub-verse751_dir-sag_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-verse751/sub-verse751_dir-sag_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse751/sub-verse751_dir-sag_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse751_dir-sag_ct/sub-verse751_dir-sag_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse762/sub-verse762_dir-iso_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-verse762/sub-verse762_dir-iso_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse762/sub-verse762_dir-iso_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse762_dir-iso_ct/sub-verse762_dir-iso_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse031/sub-verse031_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse031/sub-verse031_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse031/sub-verse031_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse031_ct/sub-verse031_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse649/sub-verse649_dir-sag_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-verse649/sub-verse649_dir-sag_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse649/sub-verse649_dir-sag_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse649_dir-sag_ct/sub-verse649_dir-sag_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19test/rawdata/sub-verse050/sub-verse050_ct.nii.gz",
+ "pseudo_label": "dataset-verse19test/rawdata/sub-verse050/sub-verse050_ct.nii.gz",
+ "label": "dataset-verse19test/derivatives/sub-verse050/sub-verse050_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse050_ct/sub-verse050_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse705/sub-verse705_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse705/sub-verse705_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse705/sub-verse705_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse705_ct/sub-verse705_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19validation/rawdata/sub-verse013/sub-verse013_ct.nii.gz",
+ "pseudo_label": "dataset-verse19validation/rawdata/sub-verse013/sub-verse013_ct.nii.gz",
+ "label": "dataset-verse19validation/derivatives/sub-verse013/sub-verse013_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse013_ct/sub-verse013_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse008/sub-verse008_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse008/sub-verse008_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse008/sub-verse008_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse008_ct/sub-verse008_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse405/sub-verse405_split-verse259_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse405/sub-verse405_split-verse259_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse405/sub-verse405_split-verse259_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse405_split-verse259_ct/sub-verse405_split-verse259_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19test/rawdata/sub-verse089/sub-verse089_ct.nii.gz",
+ "pseudo_label": "dataset-verse19test/rawdata/sub-verse089/sub-verse089_ct.nii.gz",
+ "label": "dataset-verse19test/derivatives/sub-verse089/sub-verse089_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse089_ct/sub-verse089_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19test/rawdata/sub-verse147/sub-verse147_ct.nii.gz",
+ "pseudo_label": "dataset-verse19test/rawdata/sub-verse147/sub-verse147_ct.nii.gz",
+ "label": "dataset-verse19test/derivatives/sub-verse147/sub-verse147_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse147_ct/sub-verse147_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse612/sub-verse612_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse612/sub-verse612_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse612/sub-verse612_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse612_ct/sub-verse612_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19validation/rawdata/sub-verse058/sub-verse058_ct.nii.gz",
+ "pseudo_label": "dataset-verse19validation/rawdata/sub-verse058/sub-verse058_ct.nii.gz",
+ "label": "dataset-verse19validation/derivatives/sub-verse058/sub-verse058_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse058_ct/sub-verse058_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse403/sub-verse403_split-verse208_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse403/sub-verse403_split-verse208_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse403/sub-verse403_split-verse208_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse403_split-verse208_ct/sub-verse403_split-verse208_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19validation/rawdata/sub-verse252/sub-verse252_ct.nii.gz",
+ "pseudo_label": "dataset-verse19validation/rawdata/sub-verse252/sub-verse252_ct.nii.gz",
+ "label": "dataset-verse19validation/derivatives/sub-verse252/sub-verse252_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse252_ct/sub-verse252_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse043/sub-verse043_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse043/sub-verse043_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse043/sub-verse043_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse043_ct/sub-verse043_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19validation/rawdata/sub-verse400/sub-verse400_split-verse090_ct.nii.gz",
+ "pseudo_label": "dataset-verse19validation/rawdata/sub-verse400/sub-verse400_split-verse090_ct.nii.gz",
+ "label": "dataset-verse19validation/derivatives/sub-verse400/sub-verse400_split-verse090_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse400_split-verse090_ct/sub-verse400_split-verse090_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-gl240/sub-gl240_dir-ax_ct.nii.gz",
+ "pseudo_label": "dataset-01training/rawdata/sub-gl240/sub-gl240_dir-ax_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-gl240/sub-gl240_dir-ax_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-gl240_dir-ax_ct/sub-gl240_dir-ax_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19test/rawdata/sub-verse154/sub-verse154_ct.nii.gz",
+ "pseudo_label": "dataset-verse19test/rawdata/sub-verse154/sub-verse154_ct.nii.gz",
+ "label": "dataset-verse19test/derivatives/sub-verse154/sub-verse154_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse154_ct/sub-verse154_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse048/sub-verse048_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse048/sub-verse048_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse048/sub-verse048_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse048_ct/sub-verse048_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse606/sub-verse606_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-verse606/sub-verse606_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse606/sub-verse606_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse606_ct/sub-verse606_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19test/rawdata/sub-verse143/sub-verse143_ct.nii.gz",
+ "pseudo_label": "dataset-verse19test/rawdata/sub-verse143/sub-verse143_ct.nii.gz",
+ "label": "dataset-verse19test/derivatives/sub-verse143/sub-verse143_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse143_ct/sub-verse143_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse410/sub-verse410_split-verse267_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse410/sub-verse410_split-verse267_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse410/sub-verse410_split-verse267_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse410_split-verse267_ct/sub-verse410_split-verse267_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse704/sub-verse704_dir-iso_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-verse704/sub-verse704_dir-iso_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse704/sub-verse704_dir-iso_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse704_dir-iso_ct/sub-verse704_dir-iso_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse517/sub-verse517_dir-iso_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-verse517/sub-verse517_dir-iso_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse517/sub-verse517_dir-iso_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse517_dir-iso_ct/sub-verse517_dir-iso_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-gl380/sub-gl380_ct.nii.gz",
+ "pseudo_label": "dataset-02validation/rawdata/sub-gl380/sub-gl380_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-gl380/sub-gl380_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-gl380_ct/sub-gl380_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse410/sub-verse410_split-verse227_ct.nii.gz",
+ "pseudo_label": "dataset-verse19training/rawdata/sub-verse410/sub-verse410_split-verse227_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse410/sub-verse410_split-verse227_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 1,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse410_split-verse227_ct/sub-verse410_split-verse227_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse587/sub-verse587_dir-iso_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-verse587/sub-verse587_dir-iso_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse587/sub-verse587_dir-iso_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse587_dir-iso_ct/sub-verse587_dir-iso_ct_seg.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse540/sub-verse540_dir-iso_ct.nii.gz",
+ "pseudo_label": "dataset-03test/rawdata/sub-verse540/sub-verse540_dir-iso_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse540/sub-verse540_dir-iso_seg-vert_msk.nii.gz",
+ "fold": 4,
+ "pseudo_label_reliability": 0,
+ "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse540_dir-iso_ct/sub-verse540_dir-iso_ct_seg.nii.gz"
+ }
+ ],
+ "training_transform": [
+ {
+ "_target_": "RandCropByLabelClassesd",
+ "keys": [
+ "@image_key",
+ "@label_key",
+ "@pseudo_label_key",
+ "@label_sv_key"
+ ],
+ "label_key": "@pseudo_label_key",
+ "num_classes": 133,
+ "num_samples": "@num_patches_per_image",
+ "spatial_size": "@patch_size",
+ "ratios": "$tuple(float(i >= 0) for i in range(133))",
+ "warn": false,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandZoomd",
+ "keys": [
+ "@image_key",
+ "@label_key",
+ "@pseudo_label_key",
+ "@label_sv_key"
+ ],
+ "min_zoom": 0.8,
+ "max_zoom": 1.2,
+ "mode": [
+ "trilinear",
+ "nearest",
+ "nearest",
+ "nearest"
+ ],
+ "prob": 0.2,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandSimulateLowResolutiond",
+ "keys": [
+ "@image_key"
+ ],
+ "zoom_range": [
+ 0.3,
+ 1
+ ],
+ "prob": 0.2,
+ "allow_missing_keys": true
+ },
+ {
+ "_target_": "RandGaussianSmoothd",
+ "keys": [
+ "@image_key"
+ ],
+ "prob": 0.2,
+ "sigma_x": [
+ 0.5,
+ 1.0
+ ],
+ "sigma_y": [
+ 0.5,
+ 1.0
+ ],
+ "sigma_z": [
+ 0.5,
+ 1.0
+ ]
+ },
+ {
+ "_target_": "RandScaleIntensityd",
+ "keys": [
+ "@image_key"
+ ],
+ "factors": 0.1,
+ "prob": 0.2
+ },
+ {
+ "_target_": "RandShiftIntensityd",
+ "keys": [
+ "@image_key"
+ ],
+ "offsets": 0.1,
+ "prob": 0.2
+ },
+ {
+ "_target_": "RandGaussianNoised",
+ "keys": [
+ "@image_key"
+ ],
+ "prob": 0.2,
+ "mean": 0.0,
+ "std": 0.2
+ }
+ ],
+ "label_dict": {
+ "1": "vertebrae C1",
+ "2": "vertebrae C2",
+ "3": "vertebrae C3",
+ "4": "vertebrae C4",
+ "5": "vertebrae C5",
+ "6": "vertebrae C6",
+ "7": "vertebrae C7",
+ "8": "vertebrae T1",
+ "9": "vertebrae T2",
+ "10": "vertebrae T3",
+ "11": "vertebrae T4",
+ "12": "vertebrae T5",
+ "13": "vertebrae T6",
+ "14": "vertebrae T7",
+ "15": "vertebrae T8",
+ "16": "vertebrae T9",
+ "17": "vertebrae T10",
+ "18": "vertebrae T11",
+ "19": "vertebrae T12",
+ "20": "vertebrae L1",
+ "21": "vertebrae L2",
+ "22": "vertebrae L3",
+ "23": "vertebrae L4",
+ "24": "vertebrae L5",
+ "25": "vertebrae L6"
+ },
+ "original_label_dict": {
+ "1": "vertebrae C1",
+ "2": "vertebrae C2",
+ "3": "vertebrae C3",
+ "4": "vertebrae C4",
+ "5": "vertebrae C5",
+ "6": "vertebrae C6",
+ "7": "vertebrae C7",
+ "8": "vertebrae T1",
+ "9": "vertebrae T2",
+ "10": "vertebrae T3",
+ "11": "vertebrae T4",
+ "12": "vertebrae T5",
+ "13": "vertebrae T6",
+ "14": "vertebrae T7",
+ "15": "vertebrae T8",
+ "16": "vertebrae T9",
+ "17": "vertebrae T10",
+ "18": "vertebrae T11",
+ "19": "vertebrae T12",
+ "20": "vertebrae L1",
+ "21": "vertebrae L2",
+ "22": "vertebrae L3",
+ "23": "vertebrae L4",
+ "24": "vertebrae L5",
+ "25": "vertebrae L6"
+ },
+ "testing": [
+ {
+ "image": "dataset-verse19validation/rawdata/sub-verse016/sub-verse016_ct.nii.gz",
+ "label": "dataset-verse19validation/derivatives/sub-verse016/sub-verse016_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-gl492/sub-gl492_dir-ax_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-gl492/sub-gl492_dir-ax_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse569/sub-verse569_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse569/sub-verse569_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-verse525/sub-verse525_dir-sag_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-verse525/sub-verse525_dir-sag_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-verse19test/rawdata/sub-verse119/sub-verse119_ct.nii.gz",
+ "label": "dataset-verse19test/derivatives/sub-verse119/sub-verse119_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse122/sub-verse122_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse122/sub-verse122_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-gl247/sub-gl247_dir-ax_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-gl247/sub-gl247_dir-ax_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse034/sub-verse034_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse034/sub-verse034_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse718/sub-verse718_dir-iso_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse718/sub-verse718_dir-iso_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse551/sub-verse551_dir-iso_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse551/sub-verse551_dir-iso_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-verse588/sub-verse588_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-verse588/sub-verse588_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-verse19test/rawdata/sub-verse053/sub-verse053_ct.nii.gz",
+ "label": "dataset-verse19test/derivatives/sub-verse053/sub-verse053_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse645/sub-verse645_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse645/sub-verse645_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-gl153/sub-gl153_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-gl153/sub-gl153_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-verse807/sub-verse807_dir-ax_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-verse807/sub-verse807_dir-ax_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-verse19validation/rawdata/sub-verse071/sub-verse071_ct.nii.gz",
+ "label": "dataset-verse19validation/derivatives/sub-verse071/sub-verse071_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse036/sub-verse036_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse036/sub-verse036_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-verse835/sub-verse835_dir-iso_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-verse835/sub-verse835_dir-iso_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-gl348/sub-gl348_dir-ax_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-gl348/sub-gl348_dir-ax_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse599/sub-verse599_dir-iso_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse599/sub-verse599_dir-iso_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-verse541/sub-verse541_dir-ax_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-verse541/sub-verse541_dir-ax_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse127/sub-verse127_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse127/sub-verse127_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse591/sub-verse591_dir-iso_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse591/sub-verse591_dir-iso_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse405/sub-verse405_split-verse212_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse405/sub-verse405_split-verse212_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse560/sub-verse560_dir-iso_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse560/sub-verse560_dir-iso_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse064/sub-verse064_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse064/sub-verse064_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse139/sub-verse139_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse139/sub-verse139_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse620/sub-verse620_dir-iso_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse620/sub-verse620_dir-iso_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-verse510/sub-verse510_dir-ax_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-verse510/sub-verse510_dir-ax_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-verse19test/rawdata/sub-verse108/sub-verse108_ct.nii.gz",
+ "label": "dataset-verse19test/derivatives/sub-verse108/sub-verse108_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse578/sub-verse578_dir-iso_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse578/sub-verse578_dir-iso_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-verse646/sub-verse646_dir-iso_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-verse646/sub-verse646_dir-iso_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-verse19validation/rawdata/sub-verse010/sub-verse010_ct.nii.gz",
+ "label": "dataset-verse19validation/derivatives/sub-verse010/sub-verse010_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-verse557/sub-verse557_dir-ax_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-verse557/sub-verse557_dir-ax_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse806/sub-verse806_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse806/sub-verse806_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-verse19validation/rawdata/sub-verse412/sub-verse412_split-verse235_ct.nii.gz",
+ "label": "dataset-verse19validation/derivatives/sub-verse412/sub-verse412_split-verse235_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-verse19test/rawdata/sub-verse083/sub-verse083_ct.nii.gz",
+ "label": "dataset-verse19test/derivatives/sub-verse083/sub-verse083_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-verse586/sub-verse586_dir-iso_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-verse586/sub-verse586_dir-iso_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-gl047/sub-gl047_dir-ax_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-gl047/sub-gl047_dir-ax_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-gl090/sub-gl090_dir-ax_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-gl090/sub-gl090_dir-ax_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse257/sub-verse257_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse257/sub-verse257_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse815/sub-verse815_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse815/sub-verse815_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse759/sub-verse759_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse759/sub-verse759_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-verse19test/rawdata/sub-verse012/sub-verse012_ct.nii.gz",
+ "label": "dataset-verse19test/derivatives/sub-verse012/sub-verse012_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse411/sub-verse411_split-verse232_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse411/sub-verse411_split-verse232_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse580/sub-verse580_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse580/sub-verse580_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-verse19test/rawdata/sub-verse250/sub-verse250_ct.nii.gz",
+ "label": "dataset-verse19test/derivatives/sub-verse250/sub-verse250_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-verse19test/rawdata/sub-verse131/sub-verse131_ct.nii.gz",
+ "label": "dataset-verse19test/derivatives/sub-verse131/sub-verse131_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse752/sub-verse752_dir-ax_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse752/sub-verse752_dir-ax_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse814/sub-verse814_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse814/sub-verse814_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse643/sub-verse643_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse643/sub-verse643_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-verse19validation/rawdata/sub-verse205/sub-verse205_ct.nii.gz",
+ "label": "dataset-verse19validation/derivatives/sub-verse205/sub-verse205_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse636/sub-verse636_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse636/sub-verse636_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse553/sub-verse553_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse553/sub-verse553_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-verse19test/rawdata/sub-verse040/sub-verse040_ct.nii.gz",
+ "label": "dataset-verse19test/derivatives/sub-verse040/sub-verse040_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse056/sub-verse056_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse056/sub-verse056_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-gl279/sub-gl279_dir-ax_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-gl279/sub-gl279_dir-ax_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse766/sub-verse766_dir-ax_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse766/sub-verse766_dir-ax_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-verse564/sub-verse564_dir-iso_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-verse564/sub-verse564_dir-iso_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse546/sub-verse546_dir-ax_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse546/sub-verse546_dir-ax_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-verse527/sub-verse527_dir-ax_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-verse527/sub-verse527_dir-ax_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse403/sub-verse403_split-verse255_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse403/sub-verse403_split-verse255_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-verse818/sub-verse818_dir-ax_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-verse818/sub-verse818_dir-ax_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse635/sub-verse635_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse635/sub-verse635_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse648/sub-verse648_dir-iso_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse648/sub-verse648_dir-iso_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-01training/rawdata/sub-verse535/sub-verse535_dir-iso_ct.nii.gz",
+ "label": "dataset-01training/derivatives/sub-verse535/sub-verse535_dir-iso_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-verse19test/rawdata/sub-verse081/sub-verse081_ct.nii.gz",
+ "label": "dataset-verse19test/derivatives/sub-verse081/sub-verse081_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-gl217/sub-gl217_dir-ax_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-gl217/sub-gl217_dir-ax_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse063/sub-verse063_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse063/sub-verse063_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-verse19validation/rawdata/sub-verse026/sub-verse026_ct.nii.gz",
+ "label": "dataset-verse19validation/derivatives/sub-verse026/sub-verse026_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse626/sub-verse626_dir-iso_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse626/sub-verse626_dir-iso_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse091/sub-verse091_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse091/sub-verse091_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-03test/rawdata/sub-verse590/sub-verse590_dir-iso_ct.nii.gz",
+ "label": "dataset-03test/derivatives/sub-verse590/sub-verse590_dir-iso_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-02validation/rawdata/sub-verse601/sub-verse601_ct.nii.gz",
+ "label": "dataset-02validation/derivatives/sub-verse601/sub-verse601_seg-vert_msk.nii.gz"
+ },
+ {
+ "image": "dataset-verse19training/rawdata/sub-verse072/sub-verse072_ct.nii.gz",
+ "label": "dataset-verse19training/derivatives/sub-verse072/sub-verse072_seg-vert_msk.nii.gz"
+ }
+ ]
+}
diff --git a/vista3d/data/jsons/label_dict.json b/vista3d/data/jsons/label_dict.json
new file mode 100644
index 0000000..6fb98b5
--- /dev/null
+++ b/vista3d/data/jsons/label_dict.json
@@ -0,0 +1,129 @@
+{
+ "liver": 1,
+ "kidney": 2,
+ "spleen": 3,
+ "pancreas": 4,
+ "right kidney": 5,
+ "aorta": 6,
+ "inferior vena cava": 7,
+ "right adrenal gland": 8,
+ "left adrenal gland": 9,
+ "gallbladder": 10,
+ "esophagus": 11,
+ "stomach": 12,
+ "duodenum": 13,
+ "left kidney": 14,
+ "bladder": 15,
+ "portal vein and splenic vein": 17,
+ "small bowel": 19,
+ "lung": 20,
+ "bone": 21,
+ "brain": 22,
+ "lung tumor": 23,
+ "pancreatic tumor": 24,
+ "hepatic vessel": 25,
+ "hepatic tumor": 26,
+ "colon cancer primaries": 27,
+ "left lung upper lobe": 28,
+ "left lung lower lobe": 29,
+ "right lung upper lobe": 30,
+ "right lung middle lobe": 31,
+ "right lung lower lobe": 32,
+ "vertebrae L5": 33,
+ "vertebrae L4": 34,
+ "vertebrae L3": 35,
+ "vertebrae L2": 36,
+ "vertebrae L1": 37,
+ "vertebrae T12": 38,
+ "vertebrae T11": 39,
+ "vertebrae T10": 40,
+ "vertebrae T9": 41,
+ "vertebrae T8": 42,
+ "vertebrae T7": 43,
+ "vertebrae T6": 44,
+ "vertebrae T5": 45,
+ "vertebrae T4": 46,
+ "vertebrae T3": 47,
+ "vertebrae T2": 48,
+ "vertebrae T1": 49,
+ "vertebrae C7": 50,
+ "vertebrae C6": 51,
+ "vertebrae C5": 52,
+ "vertebrae C4": 53,
+ "vertebrae C3": 54,
+ "vertebrae C2": 55,
+ "vertebrae C1": 56,
+ "trachea": 57,
+ "left iliac artery": 58,
+ "right iliac artery": 59,
+ "left iliac vena": 60,
+ "right iliac vena": 61,
+ "colon": 62,
+ "left rib 1": 63,
+ "left rib 2": 64,
+ "left rib 3": 65,
+ "left rib 4": 66,
+ "left rib 5": 67,
+ "left rib 6": 68,
+ "left rib 7": 69,
+ "left rib 8": 70,
+ "left rib 9": 71,
+ "left rib 10": 72,
+ "left rib 11": 73,
+ "left rib 12": 74,
+ "right rib 1": 75,
+ "right rib 2": 76,
+ "right rib 3": 77,
+ "right rib 4": 78,
+ "right rib 5": 79,
+ "right rib 6": 80,
+ "right rib 7": 81,
+ "right rib 8": 82,
+ "right rib 9": 83,
+ "right rib 10": 84,
+ "right rib 11": 85,
+ "right rib 12": 86,
+ "left humerus": 87,
+ "right humerus": 88,
+ "left scapula": 89,
+ "right scapula": 90,
+ "left clavicula": 91,
+ "right clavicula": 92,
+ "left femur": 93,
+ "right femur": 94,
+ "left hip": 95,
+ "right hip": 96,
+ "sacrum": 97,
+ "left gluteus maximus": 98,
+ "right gluteus maximus": 99,
+ "left gluteus medius": 100,
+ "right gluteus medius": 101,
+ "left gluteus minimus": 102,
+ "right gluteus minimus": 103,
+ "left autochthon": 104,
+ "right autochthon": 105,
+ "left iliopsoas": 106,
+ "right iliopsoas": 107,
+ "left atrial appendage": 108,
+ "brachiocephalic trunk": 109,
+ "left brachiocephalic vein": 110,
+ "right brachiocephalic vein": 111,
+ "left common carotid artery": 112,
+ "right common carotid artery": 113,
+ "costal cartilages": 114,
+ "heart": 115,
+ "left kidney cyst": 116,
+ "right kidney cyst": 117,
+ "prostate": 118,
+ "pulmonary vein": 119,
+ "skull": 120,
+ "spinal cord": 121,
+ "sternum": 122,
+ "left subclavian artery": 123,
+ "right subclavian artery": 124,
+ "superior vena cava": 125,
+ "thyroid gland": 126,
+ "vertebrae S1": 127,
+ "bone lesion": 128,
+ "airway": 132
+}
diff --git a/vista3d/data/jsons/label_mappings.json b/vista3d/data/jsons/label_mappings.json
new file mode 100644
index 0000000..50b5d0d
--- /dev/null
+++ b/vista3d/data/jsons/label_mappings.json
@@ -0,0 +1,1006 @@
+{
+ "AbdomenCT-1K": [
+ [
+ 1,
+ 1
+ ],
+ [
+ 3,
+ 3
+ ],
+ [
+ 4,
+ 4
+ ]
+ ],
+ "FLARE22": [
+ [
+ 1,
+ 1
+ ],
+ [
+ 2,
+ 5
+ ],
+ [
+ 3,
+ 3
+ ],
+ [
+ 4,
+ 4
+ ],
+ [
+ 5,
+ 6
+ ],
+ [
+ 6,
+ 7
+ ],
+ [
+ 7,
+ 8
+ ],
+ [
+ 8,
+ 9
+ ],
+ [
+ 9,
+ 10
+ ],
+ [
+ 10,
+ 11
+ ],
+ [
+ 11,
+ 12
+ ],
+ [
+ 12,
+ 13
+ ],
+ [
+ 13,
+ 14
+ ]
+ ],
+ "AMOS22": [
+ [
+ 1,
+ 3
+ ],
+ [
+ 2,
+ 5
+ ],
+ [
+ 3,
+ 14
+ ],
+ [
+ 4,
+ 10
+ ],
+ [
+ 5,
+ 11
+ ],
+ [
+ 6,
+ 1
+ ],
+ [
+ 7,
+ 12
+ ],
+ [
+ 8,
+ 6
+ ],
+ [
+ 9,
+ 7
+ ],
+ [
+ 10,
+ 4
+ ],
+ [
+ 11,
+ 8
+ ],
+ [
+ 12,
+ 9
+ ],
+ [
+ 13,
+ 13
+ ],
+ [
+ 14,
+ 15
+ ],
+ [
+ 15,
+ 118
+ ]
+ ],
+ "BTCV-Abdomen": [
+ [
+ 1,
+ 3
+ ],
+ [
+ 2,
+ 5
+ ],
+ [
+ 3,
+ 14
+ ],
+ [
+ 4,
+ 10
+ ],
+ [
+ 5,
+ 11
+ ],
+ [
+ 6,
+ 1
+ ],
+ [
+ 7,
+ 12
+ ],
+ [
+ 8,
+ 6
+ ],
+ [
+ 9,
+ 7
+ ],
+ [
+ 10,
+ 17
+ ],
+ [
+ 11,
+ 4
+ ],
+ [
+ 12,
+ 8
+ ],
+ [
+ 13,
+ 9
+ ]
+ ],
+ "BTCV-Cervix": [
+ [
+ 1,
+ 15
+ ],
+ [
+ 2,
+ 118
+ ],
+ [
+ 4,
+ 19
+ ]
+ ],
+ "CT-ORG": [
+ [
+ 1,
+ 1
+ ],
+ [
+ 2,
+ 15
+ ],
+ [
+ 6,
+ 22
+ ]
+ ],
+ "Multi-organ-Abdominal-CT-btcv": [
+ [
+ 1,
+ 3
+ ],
+ [
+ 2,
+ 5
+ ],
+ [
+ 3,
+ 14
+ ],
+ [
+ 4,
+ 10
+ ],
+ [
+ 5,
+ 11
+ ],
+ [
+ 6,
+ 1
+ ],
+ [
+ 7,
+ 12
+ ],
+ [
+ 8,
+ 6
+ ],
+ [
+ 9,
+ 7
+ ],
+ [
+ 10,
+ 17
+ ],
+ [
+ 11,
+ 4
+ ],
+ [
+ 12,
+ 8
+ ],
+ [
+ 13,
+ 9
+ ],
+ [
+ 14,
+ 13
+ ]
+ ],
+ "Multi-organ-Abdominal-CT-tcia": [
+ [
+ 1,
+ 3
+ ],
+ [
+ 2,
+ 5
+ ],
+ [
+ 3,
+ 14
+ ],
+ [
+ 4,
+ 10
+ ],
+ [
+ 5,
+ 11
+ ],
+ [
+ 6,
+ 1
+ ],
+ [
+ 7,
+ 12
+ ],
+ [
+ 8,
+ 4
+ ],
+ [
+ 9,
+ 13
+ ]
+ ],
+ "Pancreas-CT": [
+ [
+ 1,
+ 4
+ ]
+ ],
+ "Task06": [
+ [
+ 1,
+ 23
+ ]
+ ],
+ "Task07": [
+ [
+ 1,
+ 4
+ ],
+ [
+ 2,
+ 24
+ ]
+ ],
+ "Task08": [
+ [
+ 1,
+ 25
+ ],
+ [
+ 2,
+ 26
+ ]
+ ],
+ "Task09": [
+ [
+ 1,
+ 3
+ ]
+ ],
+ "Task10": [
+ [
+ 1,
+ 27
+ ]
+ ],
+ "TotalSegmentatorV2": [
+ [
+ 1,
+ 3
+ ],
+ [
+ 2,
+ 5
+ ],
+ [
+ 3,
+ 14
+ ],
+ [
+ 4,
+ 10
+ ],
+ [
+ 5,
+ 1
+ ],
+ [
+ 6,
+ 12
+ ],
+ [
+ 7,
+ 6
+ ],
+ [
+ 8,
+ 7
+ ],
+ [
+ 9,
+ 17
+ ],
+ [
+ 10,
+ 4
+ ],
+ [
+ 11,
+ 8
+ ],
+ [
+ 12,
+ 9
+ ],
+ [
+ 13,
+ 28
+ ],
+ [
+ 14,
+ 29
+ ],
+ [
+ 15,
+ 30
+ ],
+ [
+ 16,
+ 31
+ ],
+ [
+ 17,
+ 32
+ ],
+ [
+ 18,
+ 33
+ ],
+ [
+ 19,
+ 34
+ ],
+ [
+ 20,
+ 35
+ ],
+ [
+ 21,
+ 36
+ ],
+ [
+ 22,
+ 37
+ ],
+ [
+ 23,
+ 38
+ ],
+ [
+ 24,
+ 39
+ ],
+ [
+ 25,
+ 40
+ ],
+ [
+ 26,
+ 41
+ ],
+ [
+ 27,
+ 42
+ ],
+ [
+ 28,
+ 43
+ ],
+ [
+ 29,
+ 44
+ ],
+ [
+ 30,
+ 45
+ ],
+ [
+ 31,
+ 46
+ ],
+ [
+ 32,
+ 47
+ ],
+ [
+ 33,
+ 48
+ ],
+ [
+ 34,
+ 49
+ ],
+ [
+ 35,
+ 50
+ ],
+ [
+ 36,
+ 51
+ ],
+ [
+ 37,
+ 52
+ ],
+ [
+ 38,
+ 53
+ ],
+ [
+ 39,
+ 54
+ ],
+ [
+ 40,
+ 55
+ ],
+ [
+ 41,
+ 56
+ ],
+ [
+ 42,
+ 11
+ ],
+ [
+ 43,
+ 57
+ ],
+ [
+ 44,
+ 22
+ ],
+ [
+ 45,
+ 58
+ ],
+ [
+ 46,
+ 59
+ ],
+ [
+ 47,
+ 60
+ ],
+ [
+ 48,
+ 61
+ ],
+ [
+ 49,
+ 19
+ ],
+ [
+ 50,
+ 13
+ ],
+ [
+ 51,
+ 62
+ ],
+ [
+ 52,
+ 63
+ ],
+ [
+ 53,
+ 64
+ ],
+ [
+ 54,
+ 65
+ ],
+ [
+ 55,
+ 66
+ ],
+ [
+ 56,
+ 67
+ ],
+ [
+ 57,
+ 68
+ ],
+ [
+ 58,
+ 69
+ ],
+ [
+ 59,
+ 70
+ ],
+ [
+ 60,
+ 71
+ ],
+ [
+ 61,
+ 72
+ ],
+ [
+ 62,
+ 73
+ ],
+ [
+ 63,
+ 74
+ ],
+ [
+ 64,
+ 75
+ ],
+ [
+ 65,
+ 76
+ ],
+ [
+ 66,
+ 77
+ ],
+ [
+ 67,
+ 78
+ ],
+ [
+ 68,
+ 79
+ ],
+ [
+ 69,
+ 80
+ ],
+ [
+ 70,
+ 81
+ ],
+ [
+ 71,
+ 82
+ ],
+ [
+ 72,
+ 83
+ ],
+ [
+ 73,
+ 84
+ ],
+ [
+ 74,
+ 85
+ ],
+ [
+ 75,
+ 86
+ ],
+ [
+ 76,
+ 87
+ ],
+ [
+ 77,
+ 88
+ ],
+ [
+ 78,
+ 89
+ ],
+ [
+ 79,
+ 90
+ ],
+ [
+ 80,
+ 91
+ ],
+ [
+ 81,
+ 92
+ ],
+ [
+ 82,
+ 93
+ ],
+ [
+ 83,
+ 94
+ ],
+ [
+ 84,
+ 95
+ ],
+ [
+ 85,
+ 96
+ ],
+ [
+ 86,
+ 97
+ ],
+ [
+ 87,
+ 98
+ ],
+ [
+ 88,
+ 99
+ ],
+ [
+ 89,
+ 100
+ ],
+ [
+ 90,
+ 101
+ ],
+ [
+ 91,
+ 102
+ ],
+ [
+ 92,
+ 103
+ ],
+ [
+ 93,
+ 104
+ ],
+ [
+ 94,
+ 105
+ ],
+ [
+ 95,
+ 106
+ ],
+ [
+ 96,
+ 107
+ ],
+ [
+ 97,
+ 15
+ ],
+ [
+ 98,
+ 108
+ ],
+ [
+ 99,
+ 109
+ ],
+ [
+ 100,
+ 110
+ ],
+ [
+ 101,
+ 111
+ ],
+ [
+ 102,
+ 112
+ ],
+ [
+ 103,
+ 113
+ ],
+ [
+ 104,
+ 114
+ ],
+ [
+ 105,
+ 115
+ ],
+ [
+ 106,
+ 116
+ ],
+ [
+ 107,
+ 117
+ ],
+ [
+ 108,
+ 118
+ ],
+ [
+ 109,
+ 119
+ ],
+ [
+ 110,
+ 120
+ ],
+ [
+ 111,
+ 121
+ ],
+ [
+ 112,
+ 122
+ ],
+ [
+ 113,
+ 123
+ ],
+ [
+ 114,
+ 124
+ ],
+ [
+ 115,
+ 125
+ ],
+ [
+ 116,
+ 126
+ ],
+ [
+ 117,
+ 127
+ ]
+ ],
+ "Task03": [
+ [
+ 1,
+ 1
+ ],
+ [
+ 2,
+ 26
+ ]
+ ],
+ "Bone-NIH": [
+ [
+ 1,
+ 128
+ ],
+ [
+ 2,
+ 128
+ ]
+ ],
+ "CRLM-CT": [
+ [
+ 3,
+ 25
+ ],
+ [
+ 4,
+ 17
+ ],
+ [
+ 5,
+ 26
+ ]
+ ],
+ "VerSe": [
+ [
+ 1,
+ 56
+ ],
+ [
+ 2,
+ 55
+ ],
+ [
+ 3,
+ 54
+ ],
+ [
+ 4,
+ 53
+ ],
+ [
+ 5,
+ 52
+ ],
+ [
+ 6,
+ 51
+ ],
+ [
+ 7,
+ 50
+ ],
+ [
+ 8,
+ 49
+ ],
+ [
+ 9,
+ 48
+ ],
+ [
+ 10,
+ 47
+ ],
+ [
+ 11,
+ 46
+ ],
+ [
+ 12,
+ 45
+ ],
+ [
+ 13,
+ 44
+ ],
+ [
+ 14,
+ 43
+ ],
+ [
+ 15,
+ 42
+ ],
+ [
+ 16,
+ 41
+ ],
+ [
+ 17,
+ 40
+ ],
+ [
+ 18,
+ 39
+ ],
+ [
+ 19,
+ 38
+ ],
+ [
+ 20,
+ 37
+ ],
+ [
+ 21,
+ 36
+ ],
+ [
+ 22,
+ 35
+ ],
+ [
+ 23,
+ 34
+ ],
+ [
+ 24,
+ 33
+ ]
+ ],
+ "AeroPath": [
+ [
+ 2,
+ 132
+ ]
+ ],
+ "Autopet23": [
+ [
+ 1,
+ 133
+ ]
+ ],
+ "LIDC-IDRI": [
+ [
+ 1,
+ 134
+ ]
+ ],
+ "CTPelvic1K-CLINIC": [
+ [
+ 1,
+ 97
+ ],
+ [
+ 2,
+ 95
+ ],
+ [
+ 3,
+ 96
+ ]
+ ],
+ "COLON_ACRIN6664": [
+ [
+ 1,
+ 97
+ ],
+ [
+ 2,
+ 95
+ ],
+ [
+ 3,
+ 96
+ ],
+ [
+ 4,
+ 135
+ ]
+ ]
+}
diff --git a/vista3d/data/make_datalists.py b/vista3d/data/make_datalists.py
new file mode 100644
index 0000000..80469c5
--- /dev/null
+++ b/vista3d/data/make_datalists.py
@@ -0,0 +1,2286 @@
+# Copyright (c) MONAI Consortium
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+# http://www.apache.org/licenses/LICENSE-2.0
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+
+# Step 1.
+# reading image and label folders, listing all the nii.gz files,
+# creating a data_list.json for training and validation
+# the data_list.json format is like ('testing' labels are optional):
+# {
+# "training": [
+# {"image": "img0001.nii.gz", "label": "label0001.nii.gz", "fold": 0},
+# {"image": "img0002.nii.gz", "label": "label0002.nii.gz", "fold": 2},
+# ...
+# ],
+# "testing": [
+# {"image": "img0003.nii.gz", "label": "label0003.nii.gz"},
+# {"image": "img0004.nii.gz", "label": "label0004.nii.gz"},
+# ...
+# ]
+# }
+
+import os
+import re
+from glob import glob
+from pprint import pprint
+
+from monai.apps import get_logger
+from monai.bundle import ConfigParser
+from monai.data.utils import partition_dataset
+
+logger = get_logger(__name__)
+test_ratio = 0.2 # test split
+n_folds = 5 # training and validation split
+seed = 20230808 # random seed for data partition_dataset reproducibility
+output_json_dir = os.path.join(os.path.dirname(__file__), "jsons")
+
+
+def register_make(func):
+ """
+ register the function to make the data list
+ """
+ global _make_funcs
+ if "_make_funcs" not in globals():
+ _make_funcs = {}
+ if func.__name__ in _make_funcs:
+ raise ValueError(f"{func.__name__} already exists.")
+ _make_funcs[func.__name__] = func
+ return func
+
+
+def search_image_files(base_dir, ext, regex=None):
+ """returns a list of relative filenames with given extension in `base_dir`"""
+ print(f"searching ext={ext} from base_dir={base_dir}")
+ images = []
+ for root, _, files in os.walk(base_dir):
+ images.extend(
+ os.path.join(root, filename) for filename in files if filename.endswith(ext)
+ )
+ if regex is not None:
+ images = [x for x in images if re.compile(regex).search(x) is not None]
+ print(f"found {len(images)} *.{ext} files")
+ return sorted(images)
+
+
+def create_splits_and_write_json(
+ images,
+ labels,
+ ratio,
+ num_folds,
+ json_name,
+ rng_seed,
+ label_dict,
+ original_label_dict=None,
+):
+ """
+ first generate training/test split, then from the training part,
+ generate training/validation num_folds
+ """
+ items = [{"image": img, "label": lab} for img, lab in zip(images, labels)]
+ train_test = partition_dataset(
+ items, ratios=[1 - ratio, ratio], shuffle=True, seed=rng_seed
+ )
+ print(f"training: {len(train_test[0])}, testing: {len(train_test[1])}")
+ train_val = partition_dataset(
+ train_test[0], num_partitions=num_folds, shuffle=True, seed=rng_seed
+ )
+ print(f"training validation folds sizes: {[len(x) for x in train_val]}")
+ training = []
+ for f, x in enumerate(train_val):
+ for item in x:
+ item["fold"] = f
+ training.append(item)
+
+ # write json
+ parser = ConfigParser({})
+ parser["training"] = training
+ parser["testing"] = train_test[1]
+
+ parser["label_dict"] = label_dict
+ parser["original_label_dict"] = original_label_dict or label_dict
+
+ print(f"writing {json_name}\n\n")
+ if os.path.exists(json_name):
+ logger.warning(f"rewrite existing datalist file: {json_name}")
+ ConfigParser.export_config_file(parser.config, json_name, indent=4)
+
+
+def filtering_files(base_url, image_names, label_names, idx=-1):
+ """
+ check the idx-th item in the lists of image and label filenames, remove:
+
+ - image files without corresponding label files
+
+ """
+ _tmp_img = os.path.join(base_url, image_names[idx])
+ _tmp_lab = os.path.join(base_url, label_names[idx])
+ if not (os.path.exists(_tmp_img) and os.path.exists(_tmp_lab)):
+ if not os.path.exists(_tmp_img):
+ logger.warning(f"image file {_tmp_img} pair does not exist")
+ if not os.path.exists(_tmp_lab):
+ logger.warning(f"label file {_tmp_lab} pair does not exist")
+ image_names.pop(idx)
+ label_names.pop(idx)
+
+
+####
+@register_make
+def make_abdomenct_1k():
+ base_url = "/data/AbdomenCT-1K"
+ dataset_name = "AbdomenCT-1K"
+ json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json")
+ masks = search_image_files(os.path.join(base_url, "Mask"), ".nii.gz")
+ images, labels = [], []
+ for mask in masks:
+ rel_mask = os.path.relpath(mask, base_url)
+ labels.append(rel_mask)
+ idx = re.compile(r"Case_(\d+).nii.gz").search(rel_mask)[1]
+ img_name = f"Case_{idx}_0000.nii.gz"
+ for f in [
+ "AbdomenCT-1K-ImagePart1",
+ "AbdomenCT-1K-ImagePart2",
+ "AbdomenCT-1K-ImagePart3",
+ ]:
+ if os.path.exists(os.path.join(base_url, f, img_name)):
+ images.append(os.path.join(f, img_name))
+ break
+ # print(f"image: {images[-1]}, label: {labels[-1]}")
+ filtering_files(base_url, images, labels)
+ label_dict = {1: "liver", 2: "kidney", 3: "spleen", 4: "pancreas"}
+ create_splits_and_write_json(
+ images, labels, test_ratio, n_folds, json_name, seed, label_dict
+ )
+
+
+####
+@register_make
+def make_flare22():
+ base_url = "/data/AbdomenCT-1K/FLARE22Train"
+ dataset_name = "FLARE22"
+ json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json")
+ masks = search_image_files(os.path.join(base_url, "labels"), ".nii.gz")
+ images, labels = [], []
+ for mask in masks:
+ rel_mask = os.path.relpath(mask, base_url)
+ labels.append(rel_mask)
+ idx = re.compile(r"FLARE22_Tr_(\d+).nii.gz").search(rel_mask)[1]
+ img_name = f"FLARE22_Tr_{idx}_0000.nii.gz"
+ images.append(os.path.join("images", img_name))
+ filtering_files(base_url, images, labels)
+ label_dict = {
+ 1: "liver",
+ 2: "right kidney",
+ 3: "spleen",
+ 4: "pancreas",
+ 5: "aorta",
+ 6: "inferior vena cava",
+ 7: "right adrenal gland",
+ 8: "left adrenal gland",
+ 9: "gallbladder",
+ 10: "esophagus",
+ 11: "stomach",
+ 12: "duodenum",
+ 13: "left kidney",
+ }
+ create_splits_and_write_json(
+ images, labels, test_ratio, n_folds, json_name, seed, label_dict
+ )
+
+
+####
+@register_make
+def make_amos22():
+ base_url = "/data/AMOS22"
+ dataset_name = "AMOS22"
+ json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json")
+ masks = search_image_files(os.path.join(base_url, "labelsTr"), ".nii.gz")
+ masks += search_image_files(os.path.join(base_url, "labelsVa"), ".nii.gz")
+ images, labels = [], []
+ for mask in masks:
+ rel_mask = os.path.relpath(mask, base_url)
+ labels.append(rel_mask)
+ idx = re.compile(r"amos_(\d+).nii.gz").search(rel_mask)[1]
+ if int(idx) >= 500: # skip the MRI cases
+ labels.pop()
+ continue
+ img_name = f"amos_{idx}.nii.gz"
+ for f in ["imagesTr", "imagesVa"]:
+ if os.path.exists(os.path.join(base_url, f, img_name)):
+ images.append(os.path.join(f, img_name))
+ break
+ # print(f"image: {images[-1]}, label: {labels[-1]}")
+ filtering_files(base_url, images, labels)
+ original_label_dict = {
+ 1: "spleen",
+ 2: "right kidney",
+ 3: "left kidney",
+ 4: "gallbladder",
+ 5: "esophagus",
+ 6: "liver",
+ 7: "stomach",
+ 8: "aorta",
+ 9: "postcava",
+ 10: "pancreas",
+ 11: "right adrenal gland",
+ 12: "left adrenal gland",
+ 13: "duodenum",
+ 14: "bladder",
+ 15: "prostate or uterus",
+ }
+ label_dict = {
+ 1: "spleen",
+ 2: "right kidney",
+ 3: "left kidney",
+ 4: "gallbladder",
+ 5: "esophagus",
+ 6: "liver",
+ 7: "stomach",
+ 8: "aorta",
+ 9: "inferior vena cava",
+ 10: "pancreas",
+ 11: "right adrenal gland",
+ 12: "left adrenal gland",
+ 13: "duodenum",
+ 14: "bladder",
+ 15: "prostate or uterus",
+ }
+ create_splits_and_write_json(
+ images,
+ labels,
+ test_ratio,
+ n_folds,
+ json_name,
+ seed,
+ label_dict,
+ original_label_dict,
+ )
+
+
+####
+@register_make
+def make_btcv_abdomen():
+ base_url = "/data/BTCV/Abdomen"
+ dataset_name = "BTCV-Abdomen"
+ json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json")
+ masks = search_image_files(
+ os.path.join(base_url, "RawData", "Training", "label"), ".nii.gz"
+ )
+ images, labels = [], []
+ for mask in masks:
+ rel_mask = os.path.relpath(mask, base_url)
+ labels.append(rel_mask)
+ idx = re.compile(r"label(\d+).nii.gz").search(rel_mask)[1]
+ img_name = f"img{idx}.nii.gz"
+ images.append(os.path.join("RawData", "Training", "img", img_name))
+ filtering_files(base_url, images, labels)
+ label_dict = {
+ 1: "spleen",
+ 2: "right kidney",
+ 3: "left kidney",
+ 4: "gallbladder",
+ 5: "esophagus",
+ 6: "liver",
+ 7: "stomach",
+ 8: "aorta",
+ 9: "inferior vena cava",
+ 10: "portal vein and splenic vein",
+ 11: "pancreas",
+ 12: "right adrenal gland",
+ 13: "left adrenal gland",
+ }
+ create_splits_and_write_json(
+ images, labels, test_ratio, n_folds, json_name, seed, label_dict
+ )
+
+
+####
+@register_make
+def make_btcv_cervix():
+ base_url = "/data/BTCV/Cervix"
+ dataset_name = "BTCV-Cervix"
+ json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json")
+ masks = search_image_files(
+ os.path.join(base_url, "FixedDataV2", "Training", "label"), ".nii.gz"
+ )
+ images, labels = [], []
+ for mask in masks:
+ rel_mask = os.path.relpath(mask, base_url)
+ labels.append(rel_mask)
+ idx = re.compile(r"(\d+)-Mask.nii.gz").search(rel_mask)[1]
+ img_name = f"{idx}-Image.nii.gz"
+ images.append(os.path.join("FixedData", "Training", "img", img_name))
+ filtering_files(base_url, images, labels)
+ original_label_dict = {1: "bladder", 2: "uterus", 3: "rectum", 4: "small bowel"}
+ label_dict = {1: "bladder", 2: "prostate or uterus", 3: "rectum", 4: "small bowel"}
+ create_splits_and_write_json(
+ images,
+ labels,
+ test_ratio,
+ n_folds,
+ json_name,
+ seed,
+ label_dict,
+ original_label_dict,
+ )
+
+
+####
+@register_make
+def make_chaos():
+ base_url = "/data/CHAOS"
+ dataset_name = "CHAOS"
+ json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json")
+ masks = search_image_files(
+ os.path.join(base_url, "Train_Sets_nifti_ct"), "segmentation.nii.gz"
+ )
+ images, labels = [], []
+ for mask in masks:
+ rel_mask = os.path.relpath(mask, base_url)
+ labels.append(rel_mask)
+ idx = re.compile(r"(\d+)_segmentation.nii.gz").search(rel_mask)[1]
+ img_name = f"{idx}_image.nii.gz"
+ images.append(os.path.join("Train_Sets_nifti_ct", img_name))
+ filtering_files(base_url, images, labels)
+ label_dict = {1: "liver"}
+ create_splits_and_write_json(
+ images, labels, test_ratio, n_folds, json_name, seed, label_dict
+ )
+
+
+####
+@register_make
+def make_ct_org():
+ base_url = "/data/CT-ORG"
+ dataset_name = "CT-ORG"
+ json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json")
+ masks = search_image_files(
+ os.path.join(base_url, "OrganSegmentations"), ".nii.gz", regex=r"labels"
+ )
+ images, labels = [], []
+ for mask in masks:
+ idx = re.compile(r"labels-(\d+).nii.gz").search(mask)[1]
+ if idx in {"19", "70", "74", "76"}:
+ continue # these are problematic cases
+ _fixed_mask = os.path.join(base_url, "fixed_affine", f"labels-{idx}.nii.gz")
+ img_name = f"volume-{idx}.nii.gz"
+ mask_name = f"labels-{idx}.nii.gz"
+ if os.path.exists(_fixed_mask): # there are newer fixed files
+ images.append(os.path.join("fixed_affine", img_name))
+ labels.append(os.path.join("fixed_affine", mask_name))
+ else:
+ images.append(os.path.join("OrganSegmentations", img_name))
+ labels.append(os.path.join("OrganSegmentations", mask_name))
+ filtering_files(base_url, images, labels)
+ original_label_dict = {
+ 1: "liver",
+ 2: "bladder",
+ 3: "lungs",
+ 4: "kidneys",
+ 5: "bone",
+ 6: "brain",
+ }
+ label_dict = {
+ 1: "liver",
+ 2: "bladder",
+ 3: "lung",
+ 4: "kidney",
+ 5: "bone",
+ 6: "brain",
+ }
+ create_splits_and_write_json(
+ images,
+ labels,
+ test_ratio,
+ n_folds,
+ json_name,
+ seed,
+ label_dict,
+ original_label_dict,
+ )
+
+
+####
+@register_make
+def make_kits23():
+ base_url = "/data/KiTS23/dataset"
+ dataset_name = "KiTS23"
+ json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json")
+ masks = search_image_files(base_url, "segmentation.nii.gz")
+ images, labels = [], []
+ for mask in masks:
+ rel_mask = os.path.relpath(mask, base_url)
+ labels.append(rel_mask)
+ idx = re.compile(r"case_(\d+)").search(rel_mask)[1]
+ img_name = f"case_{idx}"
+ images.append(os.path.join(img_name, "imaging.nii.gz"))
+ filtering_files(base_url, images, labels)
+ original_label_dict = {1: "kidney", 2: "tumor", 3: "cyst"}
+ label_dict = {1: "kidney", 2: "kidney tumor", 3: "kidney cyst"}
+ create_splits_and_write_json(
+ images,
+ labels,
+ test_ratio,
+ n_folds,
+ json_name,
+ seed,
+ label_dict,
+ original_label_dict,
+ )
+
+
+####
+@register_make
+def make_lits23():
+ base_url = "/data/LiTS/Training_Batch"
+ dataset_name = "LiTS"
+ json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json")
+ masks = search_image_files(base_url, ".nii", regex=r"segmentation")
+ images, labels = [], []
+ for mask in masks:
+ rel_mask = os.path.relpath(mask, base_url)
+ labels.append(rel_mask)
+ idx = re.compile(r"segmentation-(\d+).nii").search(rel_mask)[1]
+ img_name = f"volume-{idx}.nii"
+ images.append(img_name)
+ filtering_files(base_url, images, labels)
+ original_label_dict = {1: "liver", 2: "tumor"}
+ label_dict = {1: "liver", 2: "liver tumor"}
+ create_splits_and_write_json(
+ images,
+ labels,
+ test_ratio,
+ n_folds,
+ json_name,
+ seed,
+ label_dict,
+ original_label_dict,
+ )
+
+
+####
+@register_make
+def make_multi_organ_btcv():
+ base_url = "/data/Multi-organ-Abdominal-CT/res_1.0mm_relabeled2"
+ dataset_name = "Multi-organ-Abdominal-CT-btcv"
+ json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json")
+ masks = search_image_files(os.path.join(base_url, "label_btcv_multiorgan"), ".nii")
+ images, labels = [], []
+ for mask in masks:
+ rel_mask = os.path.relpath(mask, base_url)
+ labels.append(rel_mask)
+ idx = re.compile(r"label(\d+).nii").search(rel_mask)[1]
+ img_name = f"img{idx}.nii"
+ images.append(os.path.join("images_btcv", img_name))
+ filtering_files(base_url, images, labels)
+ label_dict = {
+ 1: "spleen",
+ 2: "right kidney",
+ 3: "left kidney",
+ 4: "gallbladder",
+ 5: "esophagus",
+ 6: "liver",
+ 7: "stomach",
+ 8: "aorta",
+ 9: "inferior vena cava",
+ 10: "portal vein and splenic vein",
+ 11: "pancreas",
+ 12: "right adrenal gland",
+ 13: "left adrenal gland",
+ 14: "duodenum",
+ }
+ create_splits_and_write_json(
+ images, labels, test_ratio, n_folds, json_name, seed, label_dict
+ )
+
+
+####
+@register_make
+def make_multi_organ_tcia():
+ base_url = "/data/Multi-organ-Abdominal-CT/res_1.0mm_relabeled2"
+ dataset_name = "Multi-organ-Abdominal-CT-tcia"
+ json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json")
+ masks = search_image_files(
+ os.path.join(base_url, "label_tcia_multiorgan+rkidney"), ".nii"
+ )
+ images, labels = [], []
+ for mask in masks:
+ rel_mask = os.path.relpath(mask, base_url)
+ labels.append(rel_mask)
+ idx = re.compile(r"label(\d+).nii").search(rel_mask)[1]
+ img_name = f"PANCREAS_{idx}.nii"
+ images.append(os.path.join("images_tcia", img_name))
+ filtering_files(base_url, images, labels)
+ label_dict = {
+ 1: "spleen",
+ 2: "right kidney",
+ 3: "left kidney",
+ 4: "gallbladder",
+ 5: "esophagus",
+ 6: "liver",
+ 7: "stomach",
+ 8: "pancreas",
+ 9: "duodenum",
+ }
+ create_splits_and_write_json(
+ images, labels, test_ratio, n_folds, json_name, seed, label_dict
+ )
+
+
+####
+@register_make
+def make_pancreas_ct():
+ base_url = "/data/Pancreas-CT"
+ dataset_name = "Pancreas-CT"
+ json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json")
+ masks = search_image_files(
+ os.path.join(base_url, "TCIA_pancreas_labels-02-05-2017"), ".nii.gz"
+ )
+ images, labels = [], []
+ for mask in masks:
+ rel_mask = os.path.relpath(mask, base_url)
+ labels.append(rel_mask)
+ idx = re.compile(r"label(\d+).nii.gz").search(rel_mask)[1]
+ img_name = f"PANCREAS_{idx}.nii.gz"
+ images.append(os.path.join("manifest-1599750808610", "nifti", img_name))
+ filtering_files(base_url, images, labels)
+ label_dict = {1: "pancreas"}
+ create_splits_and_write_json(
+ images, labels, test_ratio, n_folds, json_name, seed, label_dict
+ )
+
+
+####
+@register_make
+def make_task06():
+ base_url = "/data/Task06"
+ dataset_name = "Task06"
+ json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json")
+ masks = search_image_files(os.path.join(base_url, "labelsTr"), ".nii.gz")
+ images, labels = [], []
+ for mask in masks:
+ rel_mask = os.path.relpath(mask, base_url)
+ labels.append(rel_mask)
+ idx = re.compile(r"lung_(\d+).nii.gz").search(rel_mask)[1]
+ img_name = f"lung_{idx}.nii.gz"
+ images.append(os.path.join("imagesTr", img_name))
+ filtering_files(base_url, images, labels)
+ original_label_dict = {1: "cancer"}
+ label_dict = {1: "lung tumor"}
+ create_splits_and_write_json(
+ images,
+ labels,
+ test_ratio,
+ n_folds,
+ json_name,
+ seed,
+ label_dict,
+ original_label_dict,
+ )
+
+
+####
+@register_make
+def make_task07():
+ base_url = "/data/Task07"
+ dataset_name = "Task07"
+ json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json")
+ masks = search_image_files(os.path.join(base_url, "labelsTr"), ".nii.gz")
+ images, labels = [], []
+ for mask in masks:
+ rel_mask = os.path.relpath(mask, base_url)
+ labels.append(rel_mask)
+ idx = re.compile(r"pancreas_(\d+).nii.gz").search(rel_mask)[1]
+ img_name = f"pancreas_{idx}.nii.gz"
+ images.append(os.path.join("imagesTr", img_name))
+ filtering_files(base_url, images, labels)
+ original_label_dict = {1: "pancreas", 2: "cancer"}
+ label_dict = {1: "pancreas", 2: "pancreatic tumor"}
+ create_splits_and_write_json(
+ images,
+ labels,
+ test_ratio,
+ n_folds,
+ json_name,
+ seed,
+ label_dict,
+ original_label_dict,
+ )
+
+
+####
+@register_make
+def make_task08():
+ base_url = "/data/Task08"
+ dataset_name = "Task08"
+ json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json")
+ masks = search_image_files(os.path.join(base_url, "labelsTr"), ".nii.gz")
+ images, labels = [], []
+ for mask in masks:
+ rel_mask = os.path.relpath(mask, base_url)
+ labels.append(rel_mask)
+ idx = re.compile(r"hepaticvessel_(\d+).nii.gz").search(rel_mask)[1]
+ img_name = f"hepaticvessel_{idx}.nii.gz"
+ images.append(os.path.join("imagesTr", img_name))
+ filtering_files(base_url, images, labels)
+ original_label_dict = {1: "Vessel", 2: "Tumour"}
+ label_dict = {1: "hepatic vessel", 2: "hepatic tumor"}
+ create_splits_and_write_json(
+ images,
+ labels,
+ test_ratio,
+ n_folds,
+ json_name,
+ seed,
+ label_dict,
+ original_label_dict,
+ )
+
+
+####
+@register_make
+def make_task09():
+ base_url = "/data/Task09"
+ dataset_name = "Task09"
+ json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json")
+ masks = search_image_files(os.path.join(base_url, "labelsTr"), ".nii.gz")
+ images, labels = [], []
+ for mask in masks:
+ rel_mask = os.path.relpath(mask, base_url)
+ labels.append(rel_mask)
+ idx = re.compile(r"spleen_(\d+).nii.gz").search(rel_mask)[1]
+ img_name = f"spleen_{idx}.nii.gz"
+ images.append(os.path.join("imagesTr", img_name))
+ filtering_files(base_url, images, labels)
+ label_dict = {1: "spleen"}
+ create_splits_and_write_json(
+ images, labels, test_ratio, n_folds, json_name, seed, label_dict
+ )
+
+
+####
+@register_make
+def make_task10():
+ base_url = "/data/Task10"
+ dataset_name = "Task10"
+ json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json")
+ masks = search_image_files(os.path.join(base_url, "labelsTr"), ".nii.gz")
+ images, labels = [], []
+ for mask in masks:
+ rel_mask = os.path.relpath(mask, base_url)
+ labels.append(rel_mask)
+ idx = re.compile(r"colon_(\d+).nii.gz").search(rel_mask)[1]
+ img_name = f"colon_{idx}.nii.gz"
+ images.append(os.path.join("imagesTr", img_name))
+ filtering_files(base_url, images, labels)
+ label_dict = {1: "colon cancer primaries"}
+ create_splits_and_write_json(
+ images, labels, test_ratio, n_folds, json_name, seed, label_dict
+ )
+
+
+####
+@register_make
+def make_total_segmentator():
+ base_url = "/data/TotalSegmentator"
+ dataset_name = "TotalSegmentator"
+ json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json")
+ masks = search_image_files(os.path.join(base_url, "labels"), ".nii.gz")
+ images, labels = [], []
+ for mask in masks:
+ rel_mask = os.path.relpath(mask, base_url)
+ labels.append(rel_mask)
+ idx = re.compile(r"s(\d+).nii.gz").search(rel_mask)[1]
+ img_name = f"s{idx}.nii.gz"
+ images.append(os.path.join("images", img_name))
+ filtering_files(base_url, images, labels)
+ original_label_dict = { # https://github.com/wasserth/TotalSegmentator/blob/master/totalsegmentator/map_to_binary.py
+ 1: "spleen",
+ 2: "kidney_right",
+ 3: "kidney_left",
+ 4: "gallbladder",
+ 5: "liver",
+ 6: "stomach",
+ 7: "aorta",
+ 8: "inferior_vena_cava",
+ 9: "portal_vein_and_splenic_vein",
+ 10: "pancreas",
+ 11: "adrenal_gland_right",
+ 12: "adrenal_gland_left",
+ 13: "lung_upper_lobe_left",
+ 14: "lung_lower_lobe_left",
+ 15: "lung_upper_lobe_right",
+ 16: "lung_middle_lobe_right",
+ 17: "lung_lower_lobe_right",
+ 18: "vertebrae_L5",
+ 19: "vertebrae_L4",
+ 20: "vertebrae_L3",
+ 21: "vertebrae_L2",
+ 22: "vertebrae_L1",
+ 23: "vertebrae_T12",
+ 24: "vertebrae_T11",
+ 25: "vertebrae_T10",
+ 26: "vertebrae_T9",
+ 27: "vertebrae_T8",
+ 28: "vertebrae_T7",
+ 29: "vertebrae_T6",
+ 30: "vertebrae_T5",
+ 31: "vertebrae_T4",
+ 32: "vertebrae_T3",
+ 33: "vertebrae_T2",
+ 34: "vertebrae_T1",
+ 35: "vertebrae_C7",
+ 36: "vertebrae_C6",
+ 37: "vertebrae_C5",
+ 38: "vertebrae_C4",
+ 39: "vertebrae_C3",
+ 40: "vertebrae_C2",
+ 41: "vertebrae_C1",
+ 42: "esophagus",
+ 43: "trachea",
+ 44: "heart_myocardium",
+ 45: "heart_atrium_left",
+ 46: "heart_ventricle_left",
+ 47: "heart_atrium_right",
+ 48: "heart_ventricle_right",
+ 49: "pulmonary_artery",
+ 50: "brain",
+ 51: "iliac_artery_left",
+ 52: "iliac_artery_right",
+ 53: "iliac_vena_left",
+ 54: "iliac_vena_right",
+ 55: "small_bowel",
+ 56: "duodenum",
+ 57: "colon",
+ 58: "rib_left_1",
+ 59: "rib_left_2",
+ 60: "rib_left_3",
+ 61: "rib_left_4",
+ 62: "rib_left_5",
+ 63: "rib_left_6",
+ 64: "rib_left_7",
+ 65: "rib_left_8",
+ 66: "rib_left_9",
+ 67: "rib_left_10",
+ 68: "rib_left_11",
+ 69: "rib_left_12",
+ 70: "rib_right_1",
+ 71: "rib_right_2",
+ 72: "rib_right_3",
+ 73: "rib_right_4",
+ 74: "rib_right_5",
+ 75: "rib_right_6",
+ 76: "rib_right_7",
+ 77: "rib_right_8",
+ 78: "rib_right_9",
+ 79: "rib_right_10",
+ 80: "rib_right_11",
+ 81: "rib_right_12",
+ 82: "humerus_left",
+ 83: "humerus_right",
+ 84: "scapula_left",
+ 85: "scapula_right",
+ 86: "clavicula_left",
+ 87: "clavicula_right",
+ 88: "femur_left",
+ 89: "femur_right",
+ 90: "hip_left",
+ 91: "hip_right",
+ 92: "sacrum",
+ 93: "face",
+ 94: "gluteus_maximus_left",
+ 95: "gluteus_maximus_right",
+ 96: "gluteus_medius_left",
+ 97: "gluteus_medius_right",
+ 98: "gluteus_minimus_left",
+ 99: "gluteus_minimus_right",
+ 100: "autochthon_left",
+ 101: "autochthon_right",
+ 102: "iliopsoas_left",
+ 103: "iliopsoas_right",
+ 104: "urinary_bladder",
+ }
+ label_dict = {
+ 1: "spleen",
+ 2: "right kidney",
+ 3: "left kidney",
+ 4: "gallbladder",
+ 5: "liver",
+ 6: "stomach",
+ 7: "aorta",
+ 8: "inferior vena cava",
+ 9: "portal vein and splenic vein",
+ 10: "pancreas",
+ 11: "right adrenal gland",
+ 12: "left adrenal gland",
+ 13: "left lung upper lobe",
+ 14: "left lung lower lobe",
+ 15: "right lung upper lobe",
+ 16: "right lung middle lobe",
+ 17: "right lung lower lobe",
+ 18: "vertebrae L5",
+ 19: "vertebrae L4",
+ 20: "vertebrae L3",
+ 21: "vertebrae L2",
+ 22: "vertebrae L1",
+ 23: "vertebrae T12",
+ 24: "vertebrae T11",
+ 25: "vertebrae T10",
+ 26: "vertebrae T9",
+ 27: "vertebrae T8",
+ 28: "vertebrae T7",
+ 29: "vertebrae T6",
+ 30: "vertebrae T5",
+ 31: "vertebrae T4",
+ 32: "vertebrae T3",
+ 33: "vertebrae T2",
+ 34: "vertebrae T1",
+ 35: "vertebrae C7",
+ 36: "vertebrae C6",
+ 37: "vertebrae C5",
+ 38: "vertebrae C4",
+ 39: "vertebrae C3",
+ 40: "vertebrae C2",
+ 41: "vertebrae C1",
+ 42: "esophagus",
+ 43: "trachea",
+ 44: "heart myocardium",
+ 45: "left heart atrium",
+ 46: "left heart ventricle",
+ 47: "right heart atrium",
+ 48: "right heart ventricle",
+ 49: "pulmonary artery",
+ 50: "brain",
+ 51: "left iliac artery",
+ 52: "right iliac artery",
+ 53: "left iliac vena",
+ 54: "right iliac vena",
+ 55: "small bowel",
+ 56: "duodenum",
+ 57: "colon",
+ 58: "left rib 1",
+ 59: "left rib 2",
+ 60: "left rib 3",
+ 61: "left rib 4",
+ 62: "left rib 5",
+ 63: "left rib 6",
+ 64: "left rib 7",
+ 65: "left rib 8",
+ 66: "left rib 9",
+ 67: "left rib 10",
+ 68: "left rib 11",
+ 69: "left rib 12",
+ 70: "right rib 1",
+ 71: "right rib 2",
+ 72: "right rib 3",
+ 73: "right rib 4",
+ 74: "right rib 5",
+ 75: "right rib 6",
+ 76: "right rib 7",
+ 77: "right rib 8",
+ 78: "right rib 9",
+ 79: "right rib 10",
+ 80: "right rib 11",
+ 81: "right rib 12",
+ 82: "left humerus",
+ 83: "right humerus",
+ 84: "left scapula",
+ 85: "right scapula",
+ 86: "left clavicula",
+ 87: "right clavicula",
+ 88: "left femur",
+ 89: "right femur",
+ 90: "left hip",
+ 91: "right hip",
+ 92: "sacrum",
+ 93: "face",
+ 94: "left gluteus maximus",
+ 95: "right gluteus maximus",
+ 96: "left gluteus medius",
+ 97: "right gluteus medius",
+ 98: "left gluteus minimus",
+ 99: "right gluteus minimus",
+ 100: "left autochthon",
+ 101: "right autochthon",
+ 102: "left iliopsoas",
+ 103: "right iliopsoas",
+ 104: "bladder",
+ }
+ create_splits_and_write_json(
+ images,
+ labels,
+ test_ratio,
+ n_folds,
+ json_name,
+ seed,
+ label_dict,
+ original_label_dict,
+ )
+
+
+####
+@register_make
+def make_word():
+ base_url = "/data/WORD"
+ dataset_name = "WORD"
+ json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json")
+ masks = search_image_files(os.path.join(base_url, "labelsTr"), ".nii.gz")
+ masks += search_image_files(os.path.join(base_url, "labelsTs"), ".nii.gz")
+ masks += search_image_files(os.path.join(base_url, "labelsVal"), ".nii.gz")
+ images, labels = [], []
+ for mask in masks:
+ rel_mask = os.path.relpath(mask, base_url)
+ labels.append(rel_mask)
+ idx = re.compile(r"word_(\d+).nii.gz").search(rel_mask)[1]
+ img_name = f"word_{idx}.nii.gz"
+ for f in ["imagesTr", "imagesTs", "imagesVal"]:
+ if os.path.exists(os.path.join(base_url, f, img_name)):
+ images.append(os.path.join(f, img_name))
+ break
+ filtering_files(base_url, images, labels)
+ original_label_dict = {
+ 1: "liver",
+ 2: "spleen",
+ 3: "left_kidney",
+ 4: "right_kidney",
+ 5: "stomach",
+ 6: "gallbladder",
+ 7: "esophagus",
+ 8: "pancreas",
+ 9: "duodenum",
+ 10: "colon",
+ 11: "intestine",
+ 12: "adrenal",
+ 13: "rectum",
+ 14: "bladder",
+ 15: "Head_of_femur_L",
+ 16: "Head_of_femur_R",
+ }
+ label_dict = {
+ 1: "liver",
+ 2: "spleen",
+ 3: "left kidney",
+ 4: "right kidney",
+ 5: "stomach",
+ 6: "gallbladder",
+ 7: "esophagus",
+ 8: "pancreas",
+ 9: "duodenum",
+ 10: "colon",
+ 11: "intestine",
+ 12: "adrenal gland",
+ 13: "rectum",
+ 14: "bladder",
+ 15: "left head of femur",
+ 16: "right head of femur",
+ }
+ create_splits_and_write_json(
+ images,
+ labels,
+ test_ratio,
+ n_folds,
+ json_name,
+ seed,
+ label_dict,
+ original_label_dict,
+ )
+
+
+####
+@register_make
+def make_task03():
+ base_url = "/data/Task03"
+ dataset_name = "Task03"
+ json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json")
+ masks = search_image_files(os.path.join(base_url, "labelsTr"), ".nii.gz")
+ images, labels = [], []
+ for mask in masks:
+ rel_mask = os.path.relpath(mask, base_url)
+ labels.append(rel_mask)
+ idx = re.compile(r"liver_(\d+).nii.gz").search(rel_mask)[1]
+ img_name = f"liver_{idx}.nii.gz"
+ images.append(os.path.join("imagesTr", img_name))
+ filtering_files(base_url, images, labels)
+ original_label_dict = {1: "liver", 2: "cancer"}
+ label_dict = {1: "liver", 2: "hepatic tumor"}
+ create_splits_and_write_json(
+ images,
+ labels,
+ test_ratio,
+ n_folds,
+ json_name,
+ seed,
+ label_dict,
+ original_label_dict,
+ )
+
+
+####
+@register_make
+def make_bone():
+ base_url = "/data/Bone-NIH"
+ dataset_name = "Bone-NIH"
+ json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json")
+ masks = search_image_files(base_url, "enriched_3-class.nii.gz")
+ full_ct = search_image_files(base_url, "CT.nii.gz")
+ for x in full_ct:
+ if x.endswith(os.path.join("anon_data", "BONE-017", "CT.nii.gz")):
+ full_ct.remove(x)
+ images, labels = [], []
+ for mask in masks:
+ rel_mask = os.path.relpath(mask, base_url)
+ idx = re.compile(r"BONE-(\d+)").search(rel_mask)[1]
+ if idx in {"066"}:
+ continue
+ img_name = os.path.join(f"BONE-{idx}", "CT.nii.gz")
+ for x in full_ct:
+ if x.endswith(img_name):
+ images.append(os.path.relpath(x, base_url))
+ full_ct.remove(x)
+ break
+ labels.append(rel_mask)
+ filtering_files(base_url, images, labels)
+ if len(full_ct) > 1:
+ raise ValueError("Remaining items in the full ct set.")
+ original_label_dict = {1: "lesion 1", 2: "lesion 2"}
+ label_dict = {1: "bone lesion", 2: "bone lesion"} # merging 1 and 2
+ create_splits_and_write_json(
+ images,
+ labels,
+ test_ratio,
+ n_folds,
+ json_name,
+ seed,
+ label_dict,
+ original_label_dict,
+ )
+
+
+####
+@register_make
+def make_total_segmentator_v2():
+ base_url = "/data/TotalSegmentatorV2"
+ dataset_name = "TotalSegmentatorV2"
+ json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json")
+ masks = search_image_files(base_url, "seg.nii.gz")
+ images, labels = [], []
+ for mask in masks:
+ rel_mask = os.path.relpath(mask, base_url)
+ if "s1104" in rel_mask or "s0992" in rel_mask or "s0248" in rel_mask:
+ # using totalseg v2.0.0 list, although in v2.0.1 this has been fixed
+ continue
+ labels.append(rel_mask)
+ img_name = os.path.join(os.path.dirname(rel_mask), "ct.nii.gz")
+ images.append(img_name)
+ filtering_files(base_url, images, labels)
+ original_label_dict = {
+ 1: "spleen",
+ 2: "kidney_right",
+ 3: "kidney_left",
+ 4: "gallbladder",
+ 5: "liver",
+ 6: "stomach",
+ 7: "aorta",
+ 8: "inferior_vena_cava",
+ 9: "portal_vein_and_splenic_vein",
+ 10: "pancreas",
+ 11: "adrenal_gland_right",
+ 12: "adrenal_gland_left",
+ 13: "lung_upper_lobe_left",
+ 14: "lung_lower_lobe_left",
+ 15: "lung_upper_lobe_right",
+ 16: "lung_middle_lobe_right",
+ 17: "lung_lower_lobe_right",
+ 18: "vertebrae_L5",
+ 19: "vertebrae_L4",
+ 20: "vertebrae_L3",
+ 21: "vertebrae_L2",
+ 22: "vertebrae_L1",
+ 23: "vertebrae_T12",
+ 24: "vertebrae_T11",
+ 25: "vertebrae_T10",
+ 26: "vertebrae_T9",
+ 27: "vertebrae_T8",
+ 28: "vertebrae_T7",
+ 29: "vertebrae_T6",
+ 30: "vertebrae_T5",
+ 31: "vertebrae_T4",
+ 32: "vertebrae_T3",
+ 33: "vertebrae_T2",
+ 34: "vertebrae_T1",
+ 35: "vertebrae_C7",
+ 36: "vertebrae_C6",
+ 37: "vertebrae_C5",
+ 38: "vertebrae_C4",
+ 39: "vertebrae_C3",
+ 40: "vertebrae_C2",
+ 41: "vertebrae_C1",
+ 42: "esophagus",
+ 43: "trachea",
+ 44: "brain",
+ 45: "iliac_artery_left",
+ 46: "iliac_artery_right",
+ 47: "iliac_vena_left",
+ 48: "iliac_vena_right",
+ 49: "small_bowel",
+ 50: "duodenum",
+ 51: "colon",
+ 52: "rib_left_1",
+ 53: "rib_left_2",
+ 54: "rib_left_3",
+ 55: "rib_left_4",
+ 56: "rib_left_5",
+ 57: "rib_left_6",
+ 58: "rib_left_7",
+ 59: "rib_left_8",
+ 60: "rib_left_9",
+ 61: "rib_left_10",
+ 62: "rib_left_11",
+ 63: "rib_left_12",
+ 64: "rib_right_1",
+ 65: "rib_right_2",
+ 66: "rib_right_3",
+ 67: "rib_right_4",
+ 68: "rib_right_5",
+ 69: "rib_right_6",
+ 70: "rib_right_7",
+ 71: "rib_right_8",
+ 72: "rib_right_9",
+ 73: "rib_right_10",
+ 74: "rib_right_11",
+ 75: "rib_right_12",
+ 76: "humerus_left",
+ 77: "humerus_right",
+ 78: "scapula_left",
+ 79: "scapula_right",
+ 80: "clavicula_left",
+ 81: "clavicula_right",
+ 82: "femur_left",
+ 83: "femur_right",
+ 84: "hip_left",
+ 85: "hip_right",
+ 86: "sacrum",
+ 87: "gluteus_maximus_left",
+ 88: "gluteus_maximus_right",
+ 89: "gluteus_medius_left",
+ 90: "gluteus_medius_right",
+ 91: "gluteus_minimus_left",
+ 92: "gluteus_minimus_right",
+ 93: "autochthon_left",
+ 94: "autochthon_right",
+ 95: "iliopsoas_left",
+ 96: "iliopsoas_right",
+ 97: "urinary_bladder",
+ 98: "atrial_appendage_left",
+ 99: "brachiocephalic_trunk",
+ 100: "brachiocephalic_vein_left",
+ 101: "brachiocephalic_vein_right",
+ 102: "common_carotid_artery_left",
+ 103: "common_carotid_artery_right",
+ 104: "costal_cartilages",
+ 105: "heart",
+ 106: "kidney_cyst_left",
+ 107: "kidney_cyst_right",
+ 108: "prostate",
+ 109: "pulmonary_vein",
+ 110: "skull",
+ 111: "spinal_cord",
+ 112: "sternum",
+ 113: "subclavian_artery_left",
+ 114: "subclavian_artery_right",
+ 115: "superior_vena_cava",
+ 116: "thyroid_gland",
+ 117: "vertebrae_S1",
+ }
+ label_dict = {
+ 1: "spleen",
+ 2: "right kidney",
+ 3: "left kidney",
+ 4: "gallbladder",
+ 5: "liver",
+ 6: "stomach",
+ 7: "aorta",
+ 8: "inferior vena cava",
+ 9: "portal vein and splenic vein",
+ 10: "pancreas",
+ 11: "right adrenal gland",
+ 12: "left adrenal gland",
+ 13: "left lung upper lobe",
+ 14: "left lung lower lobe",
+ 15: "right lung upper lobe",
+ 16: "right lung middle lobe",
+ 17: "right lung lower lobe",
+ 18: "vertebrae L5",
+ 19: "vertebrae L4",
+ 20: "vertebrae L3",
+ 21: "vertebrae L2",
+ 22: "vertebrae L1",
+ 23: "vertebrae T12",
+ 24: "vertebrae T11",
+ 25: "vertebrae T10",
+ 26: "vertebrae T9",
+ 27: "vertebrae T8",
+ 28: "vertebrae T7",
+ 29: "vertebrae T6",
+ 30: "vertebrae T5",
+ 31: "vertebrae T4",
+ 32: "vertebrae T3",
+ 33: "vertebrae T2",
+ 34: "vertebrae T1",
+ 35: "vertebrae C7",
+ 36: "vertebrae C6",
+ 37: "vertebrae C5",
+ 38: "vertebrae C4",
+ 39: "vertebrae C3",
+ 40: "vertebrae C2",
+ 41: "vertebrae C1",
+ 42: "esophagus",
+ 43: "trachea",
+ 44: "brain",
+ 45: "left iliac artery",
+ 46: "right iliac artery",
+ 47: "left iliac vena",
+ 48: "right iliac vena",
+ 49: "small bowel",
+ 50: "duodenum",
+ 51: "colon",
+ 52: "left rib 1",
+ 53: "left rib 2",
+ 54: "left rib 3",
+ 55: "left rib 4",
+ 56: "left rib 5",
+ 57: "left rib 6",
+ 58: "left rib 7",
+ 59: "left rib 8",
+ 60: "left rib 9",
+ 61: "left rib 10",
+ 62: "left rib 11",
+ 63: "left rib 12",
+ 64: "right rib 1",
+ 65: "right rib 2",
+ 66: "right rib 3",
+ 67: "right rib 4",
+ 68: "right rib 5",
+ 69: "right rib 6",
+ 70: "right rib 7",
+ 71: "right rib 8",
+ 72: "right rib 9",
+ 73: "right rib 10",
+ 74: "right rib 11",
+ 75: "right rib 12",
+ 76: "left humerus",
+ 77: "right humerus",
+ 78: "left scapula",
+ 79: "right scapula",
+ 80: "left clavicula",
+ 81: "right clavicula",
+ 82: "left femur",
+ 83: "right femur",
+ 84: "left hip",
+ 85: "right hip",
+ 86: "sacrum",
+ 87: "left gluteus maximus",
+ 88: "right gluteus maximus",
+ 89: "left gluteus medius",
+ 90: "right gluteus medius",
+ 91: "left gluteus minimus",
+ 92: "right gluteus minimus",
+ 93: "left autochthon",
+ 94: "right autochthon",
+ 95: "left iliopsoas",
+ 96: "right iliopsoas",
+ 97: "bladder",
+ 98: "left atrial appendage",
+ 99: "brachiocephalic trunk",
+ 100: "left brachiocephalic vein",
+ 101: "right brachiocephalic vein",
+ 102: "left common carotid artery",
+ 103: "right common carotid artery",
+ 104: "costal cartilages",
+ 105: "heart",
+ 106: "left kidney cyst",
+ 107: "right kidney cyst",
+ 108: "prostate",
+ 109: "pulmonary vein",
+ 110: "skull",
+ 111: "spinal cord",
+ 112: "sternum",
+ 113: "left subclavian artery",
+ 114: "right subclavian artery",
+ 115: "superior vena cava",
+ 116: "thyroid gland",
+ 117: "vertebrae S1",
+ }
+ create_splits_and_write_json(
+ images,
+ labels,
+ test_ratio,
+ n_folds,
+ json_name,
+ seed,
+ label_dict,
+ original_label_dict,
+ )
+
+
+####
+@register_make
+def make_c4kc_kits():
+ base_url = "/data/C4KC-KiTS/nifti"
+ dataset_name = "C4KC-KiTS"
+ json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json")
+ masks = search_image_files(base_url, "mask.nii.gz")
+ images, labels = [], []
+ for mask in masks:
+ rel_mask = os.path.relpath(mask, base_url)
+ img_folder = os.path.dirname(mask)
+ img_name = [
+ s
+ for s in sorted(glob(os.path.join(img_folder, "*.nii.gz")))
+ if not ("seg" in os.path.basename(s) or "mask" in os.path.basename(s))
+ ][0]
+ rel_img = os.path.relpath(img_name, base_url)
+ images.append(rel_img)
+ labels.append(rel_mask)
+ filtering_files(base_url, images, labels)
+ original_label_dict = {1: "Kidney", 2: "Mass"}
+ label_dict = {1: "kidney", 2: "kidney mass"}
+ create_splits_and_write_json(
+ images,
+ labels,
+ test_ratio,
+ n_folds,
+ json_name,
+ seed,
+ label_dict,
+ original_label_dict,
+ )
+
+
+####
+@register_make
+def make_crlm_ct():
+ base_url = "/data/CRLM-CT/nifti"
+ dataset_name = "CRLM-CT"
+ json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json")
+ masks = search_image_files(base_url, "mask.nii.gz")
+ images, labels = [], []
+ for mask in masks:
+ rel_mask = os.path.relpath(mask, base_url)
+ img_folder = os.path.dirname(mask)
+ img_name = [
+ s
+ for s in sorted(glob(os.path.join(img_folder, "*.nii.gz")))
+ if not ("seg" in os.path.basename(s) or "mask" in os.path.basename(s))
+ ][0]
+ rel_img = os.path.relpath(img_name, base_url)
+ images.append(rel_img)
+ labels.append(rel_mask)
+ filtering_files(base_url, images, labels)
+ original_label_dict = {
+ 1: "Liver",
+ 2: "Liver Remnant",
+ 3: "Hepatic Vein",
+ 4: "Portal Vein",
+ 5: "Tumor",
+ }
+ label_dict = {
+ 3: "hepatic vessel",
+ 4: "portal vein and splenic vein",
+ 5: "liver tumor",
+ }
+ create_splits_and_write_json(
+ images,
+ labels,
+ test_ratio,
+ n_folds,
+ json_name,
+ seed,
+ label_dict,
+ original_label_dict,
+ )
+
+
+####
+@register_make
+def make_verse():
+ base_url = "/data/VerSe/"
+ dataset_name = "VerSe"
+ json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json")
+ masks = search_image_files(
+ os.path.join(base_url, "dataset-01training"), "_msk.nii.gz"
+ )
+ masks += search_image_files(
+ os.path.join(base_url, "dataset-02validation"), "_msk.nii.gz"
+ )
+ masks += search_image_files(os.path.join(base_url, "dataset-03test"), "_msk.nii.gz")
+ masks += search_image_files(
+ os.path.join(base_url, "dataset-verse19test"), "_msk.nii.gz"
+ )
+ masks += search_image_files(
+ os.path.join(base_url, "dataset-verse19training"), "_msk.nii.gz"
+ )
+ masks += search_image_files(
+ os.path.join(base_url, "dataset-verse19validation"), "_msk.nii.gz"
+ )
+ masks = sorted(masks)
+ images, labels = [], []
+ for mask in masks:
+ rel_mask = os.path.relpath(mask, base_url)
+ img_name = f"{mask}".replace("derivatives", "rawdata").replace(
+ "_seg-vert_msk", "_ct"
+ )
+ rel_img = os.path.relpath(img_name, base_url)
+ images.append(rel_img)
+ labels.append(rel_mask)
+ filtering_files(base_url, images, labels)
+ label_dict = {
+ 1: "vertebrae C1",
+ 2: "vertebrae C2",
+ 3: "vertebrae C3",
+ 4: "vertebrae C4",
+ 5: "vertebrae C5",
+ 6: "vertebrae C6",
+ 7: "vertebrae C7",
+ 8: "vertebrae T1",
+ 9: "vertebrae T2",
+ 10: "vertebrae T3",
+ 11: "vertebrae T4",
+ 12: "vertebrae T5",
+ 13: "vertebrae T6",
+ 14: "vertebrae T7",
+ 15: "vertebrae T8",
+ 16: "vertebrae T9",
+ 17: "vertebrae T10",
+ 18: "vertebrae T11",
+ 19: "vertebrae T12",
+ 20: "vertebrae L1",
+ 21: "vertebrae L2",
+ 22: "vertebrae L3",
+ 23: "vertebrae L4",
+ 24: "vertebrae L5",
+ 25: "vertebrae L6",
+ }
+ create_splits_and_write_json(
+ images, labels, test_ratio, n_folds, json_name, seed, label_dict
+ )
+
+
+####
+@register_make
+def make_aeropath():
+ base_url = "/data/AeroPath/"
+ dataset_name = "AeroPath"
+ json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json")
+ masks = search_image_files(base_url, "_label.nii.gz")
+ images, labels = [], []
+ for mask in masks:
+ rel_mask = os.path.relpath(mask, base_url)
+ img_folder = os.path.dirname(mask)
+ img_name = [
+ s
+ for s in sorted(glob(os.path.join(img_folder, "*.nii.gz")))
+ if "label" not in os.path.basename(s)
+ ][0]
+ rel_img = os.path.relpath(img_name, base_url)
+ images.append(rel_img)
+ labels.append(rel_mask)
+ filtering_files(base_url, images, labels)
+ original_label_dict = {1: "lung", 2: "airway"}
+ label_dict = {2: "airway"}
+ create_splits_and_write_json(
+ images,
+ labels,
+ test_ratio,
+ n_folds,
+ json_name,
+ seed,
+ label_dict,
+ original_label_dict,
+ )
+
+
+####
+@register_make
+def make_autopet23():
+ base_url = "/data/Autopet23/"
+ dataset_name = "Autopet23"
+ json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json")
+ masks = search_image_files(base_url, "SEG.nii.gz")
+ images, labels = [], []
+ for mask in masks:
+ rel_mask = os.path.relpath(mask, base_url)
+ img_folder = os.path.dirname(mask)
+ img_name = os.path.join(img_folder, "CTres.nii.gz")
+ rel_img = os.path.relpath(img_name, base_url)
+ images.append(rel_img)
+ labels.append(rel_mask)
+ filtering_files(base_url, images, labels)
+ label_dict = {1: "FDG-avid lesion"}
+ create_splits_and_write_json(
+ images, labels, test_ratio, n_folds, json_name, seed, label_dict
+ )
+
+
+####
+@register_make
+def make_LIDC_IDRI():
+ base_url = "/data/LIDC-IDRI/"
+ dataset_name = "LIDC-IDRI"
+ json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json")
+ masks = search_image_files(os.path.join(base_url, "Mask"), ".nii.gz")
+ images, labels = [], []
+ for mask in masks:
+ if "0985" in mask:
+ continue
+ rel_mask = os.path.relpath(mask, base_url)
+ rel_img = rel_mask.replace("Mask", "Image")
+ images.append(rel_img)
+ labels.append(rel_mask)
+ filtering_files(base_url, images, labels)
+ label_dict = {1: "lung nodule"}
+ create_splits_and_write_json(
+ images, labels, test_ratio, n_folds, json_name, seed, label_dict
+ )
+
+
+####
+@register_make
+def make_ctpelvic1k_clinic():
+ base_url = "/data/CTPelvic1K-CLINIC"
+ dataset_name = "CTPelvic1K-CLINIC"
+ json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json")
+ masks = search_image_files(
+ os.path.join(base_url, "ipcai2021_dataset6_Anonymized"), ".nii.gz"
+ )
+ masks += search_image_files(
+ os.path.join(base_url, "CTPelvic1K_dataset7_mask"), ".nii.gz"
+ )
+ images, labels = [], []
+ for mask in masks:
+ mask = os.path.relpath(mask, base_url)
+ labels.append(mask)
+ if "dataset7" in mask:
+ img = (
+ mask.replace("mask", "data")
+ .replace("CLINIC_metal", "dataset7_CLINIC_metal")
+ .replace("_4label", "")
+ )
+ if "dataset6" in mask:
+ img = (
+ mask.replace("ipcai2021", "CTPelvic1K")
+ .replace("_Anonymized", "_data")
+ .replace("mask_4label", "data")
+ )
+ images.append(img)
+ label_dict = {1: "sacrum", 2: "left hip", 3: "right hip", 4: "lumbar spine"}
+ create_splits_and_write_json(
+ images, labels, test_ratio, n_folds, json_name, seed, label_dict
+ )
+
+
+####
+@register_make
+def make_colon_acrin6664():
+ base_url = "/data/COLON_ACRIN6664"
+ dataset_name = "COLON_ACRIN6664"
+ json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json")
+ masks = search_image_files(os.path.join(base_url, "mask"), ".nii.gz")
+ images, labels = [], []
+ for mask in masks:
+ mask = os.path.relpath(mask, base_url)
+ labels.append(mask)
+ img = "_".join(mask.split("_")[1:3]) + ".nii.gz"
+ img = os.path.join("nifti", img)
+ images.append(img)
+ label_dict = {1: "sacrum", 2: "left hip", 3: "right hip", 4: "lumbar spine"}
+ create_splits_and_write_json(
+ images, labels, test_ratio, n_folds, json_name, seed, label_dict
+ )
+
+
+####
+@register_make
+def make_adrenal_ki67():
+ base_url = "/data/Adrenal_Ki67"
+ dataset_name = "Adrenal_Ki67"
+ json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json")
+ masks = search_image_files(base_url, "seg-1__fix.nii.gz")
+ images, labels = [], []
+ for mask in masks:
+ mask = os.path.relpath(mask, base_url)
+ labels.append(mask)
+ img_folder = os.path.join(base_url, os.path.dirname(mask))
+ img_name = [
+ s
+ for s in sorted(glob(os.path.join(img_folder, "*.nii.gz")))
+ if "seg" not in os.path.basename(s)
+ ][0]
+ img_name = os.path.relpath(img_name, base_url)
+ if "Ki67_Seg_049" in img_name:
+ img_name = os.path.join(
+ "Adrenal_Ki67_Seg_049-Adrenal_Ki67_Seg_049",
+ "3-CAP_W_O_5.0_I30f_3_3.nii.gz",
+ )
+ if "Ki67_Seg_053" in img_name:
+ img_name = os.path.join(
+ "Adrenal_Ki67_Seg_053-Adrenal_Ki67_Seg_053", "7-ABD_AX_3_PV_7.nii.gz"
+ )
+ images.append(img_name)
+ label_dict = {1: "adrenocortical tumor"}
+ create_splits_and_write_json(
+ images, labels, test_ratio, n_folds, json_name, seed, label_dict
+ )
+
+
+####
+@register_make
+def make_hcc_tace():
+ base_url = "/data/HCC-TACE-Seg"
+ dataset_name = "HCC-TACE-Seg"
+ json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json")
+ masks = search_image_files(base_url, "seg__fix.nii.gz")
+ images, labels = [], []
+ for mask in masks:
+ mask = os.path.relpath(mask, base_url)
+ if "089" in mask:
+ mask = mask.replace("seg__fix.nii.gz", "seg_ori__fix_2.nii.gz", 1)
+ labels.append(mask)
+ img_folder = os.path.join(base_url, os.path.dirname(mask))
+ img_name = [
+ s
+ for s in sorted(glob(os.path.join(img_folder, "*.nii.gz")))
+ if "seg" not in os.path.basename(s)
+ ][0]
+ img_name = os.path.relpath(img_name, base_url)
+ images.append(img_name)
+ label_dict = {2: "hepatic tumor"}
+ create_splits_and_write_json(
+ images, labels, test_ratio, n_folds, json_name, seed, label_dict
+ )
+
+
+####
+@register_make
+def make_micro_ct_murine_native():
+ base_url = "/data/micro-ct-murine/1_nativeCTdata_nifti"
+ dataset_name = "micro-ct-murine-native"
+ json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json")
+ masks = search_image_files(base_url, "seg.nii.gz")
+ images, labels = [], []
+ for mask in masks:
+ mask = os.path.relpath(mask, base_url)
+ labels.append(mask)
+ img_name = mask.replace("seg.nii.gz", "CT140.nii.gz")
+ images.append(img_name)
+ label_dict = {1: "heart", 2: "spinal cord", 3: "right lung", 4: "left lung"}
+ create_splits_and_write_json(
+ images, labels, test_ratio, n_folds, json_name, seed, label_dict
+ )
+
+
+####
+@register_make
+def make_micro_ct_murine_contrast():
+ base_url = "/data/micro-ct-murine/2_contrast-enhancedCTdata_nifti"
+ dataset_name = "micro-ct-murine-contrast"
+ json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json")
+ masks = search_image_files(base_url, "seg.nii.gz")
+ images, labels = [], []
+ for mask in masks:
+ mask = os.path.relpath(mask, base_url)
+ labels.append(mask)
+ img_name = mask.replace("seg.nii.gz", "CT140.nii.gz")
+ images.append(img_name)
+ label_dict = {1: "heart", 2: "spinal cord", 3: "right lung", 4: "left lung"}
+ create_splits_and_write_json(
+ images, labels, test_ratio, n_folds, json_name, seed, label_dict
+ )
+
+
+####
+@register_make
+def make_segrap2023_task1():
+ base_url = "/data/segrap23/"
+ dataset_name = "segrap23-task1"
+ json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json")
+ masks = search_image_files(
+ os.path.join(
+ base_url, "SegRap2023_Training_Set_120cases_OneHot_Labels", "Task001"
+ ),
+ ".nii.gz",
+ )
+ images, labels = [], []
+ for mask in masks:
+ mask = os.path.relpath(mask, base_url)
+ labels.append(mask)
+ s_id = os.path.basename(mask)[: -len(".nii.gz")]
+ img_name = os.path.join(
+ "SegRap2023_Training_Set_120cases", f"{s_id}", "image.nii.gz"
+ )
+ images.append(img_name)
+ original_label_dict = {
+ "1": "Brain",
+ "2": "BrainStem",
+ "3": "Chiasm",
+ "4": "TemporalLobe_L",
+ "5": "TemporalLobe_R",
+ "6": "TemporalLobe_Hippocampus_OverLap_L",
+ "7": "TemporalLobe_Hippocampus_OverLap_R",
+ "8": "Hippocampus_L",
+ "9": "Hippocampus_R",
+ "10": "Eye_L",
+ "11": "Eye_R",
+ "12": "Lens_L",
+ "13": "Lens_R",
+ "14": "OpticNerve_L",
+ "15": "OpticNerve_R",
+ "16": "MiddleEar_L",
+ "17": "MiddleEar_R",
+ "18": "IAC_L",
+ "19": "IAC_R",
+ "20": "MiddleEar_TympanicCavity_OverLap_L",
+ "21": "MiddleEar_TympanicCavity_OverLap_R",
+ "22": "TympanicCavity_L",
+ "23": "TympanicCavity_R",
+ "24": "MiddleEar_VestibulSemi_OverLap_L",
+ "25": "MiddleEar_VestibulSemi_OverLap_R",
+ "26": "VestibulSemi_L",
+ "27": "VestibulSemi_R",
+ "28": "Cochlea_L",
+ "29": "Cochlea_R",
+ "30": "MiddleEar_ETbone_OverLap_L",
+ "31": "MiddleEar_ETbone_OverLap_R",
+ "32": "ETbone_L",
+ "33": "ETbone_R",
+ "34": "Pituitary",
+ "35": "OralCavity",
+ "36": "Mandible_L",
+ "37": "Mandible_R",
+ "38": "Submandibular_L",
+ "39": "Submandibular_R",
+ "40": "Parotid_L",
+ "41": "Parotid_R",
+ "42": "Mastoid_L",
+ "43": "Mastoid_R",
+ "44": "TMjoint_L",
+ "45": "TMjoint_R",
+ "46": "SpinalCord",
+ "47": "Esophagus",
+ "48": "Larynx",
+ "49": "Larynx_Glottic",
+ "50": "Larynx_Supraglot",
+ "51": "Larynx_PharynxConst_OverLap",
+ "52": "PharynxConst",
+ "53": "Thyroid",
+ "54": "Trachea",
+ }
+ label_dict = {
+ "1": "brain",
+ "2": "brain stem",
+ "3": "optic chiasm",
+ "4": "left temporal lobe",
+ "5": "right temporal lobe",
+ "6": "left temporal lobe hippocampus overlap",
+ "7": "right temporal lobe hippocampus overlap",
+ "8": "left hippocampus",
+ "9": "right hippocampus",
+ "10": "left eye",
+ "11": "right eye",
+ "12": "left lens",
+ "13": "right lens",
+ "14": "left optic nerve",
+ "15": "right optic nerve",
+ "16": "left middle ear",
+ "17": "right middle ear",
+ "18": "left internal auditory canal",
+ "19": "right internal auditory canal",
+ "20": "left middle ear tympanic cavity overlap",
+ "21": "right middle ear tympanic cavity overlap",
+ "22": "left tympanic cavity",
+ "23": "right tympanic cavity",
+ "24": "left middle ear vestibular semicircular canal overlap",
+ "25": "right middle ear vestibular semicircular canal overlap",
+ "26": "left vestibular semicircular canal",
+ "27": "right vestibular semicircular canal",
+ "28": "left cochlea",
+ "29": "right cochlea",
+ "30": "left middle ear eustachian tube bone overlap",
+ "31": "right middle ear eustachian tube bone overlap",
+ "32": "left eustachian tube bone",
+ "33": "right eustachian tube bone",
+ "34": "pituitary",
+ "35": "oral cavity",
+ "36": "left mandible",
+ "37": "right mandible",
+ "38": "left submandibular",
+ "39": "right submandibular",
+ "40": "left parotid",
+ "41": "right parotid",
+ "42": "left mastoid",
+ "43": "right mastoid",
+ "44": "left temporomandibular joint",
+ "45": "right temporomandibular joint",
+ "46": "spinal cord",
+ "47": "esophagus",
+ "48": "larynx",
+ "49": "larynx glottic",
+ "50": "larynx supraglottic",
+ "51": "larynx pharynx const overlap",
+ "52": "pharynx const",
+ "53": "thyroid",
+ "54": "trachea",
+ }
+ create_splits_and_write_json(
+ images,
+ labels,
+ test_ratio,
+ n_folds,
+ json_name,
+ seed,
+ label_dict,
+ original_label_dict,
+ )
+
+
+####
+@register_make
+def make_pediatric_ct_seg():
+ base_url = "/data/Pediatric-CT-SEG/"
+ dataset_name = "Pediatric-CT-SEG"
+ json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json")
+ masks = search_image_files(base_url, "seg.nii.gz")
+ images, labels = [], []
+ for mask in masks:
+ mask = os.path.relpath(mask, base_url)
+ labels.append(mask)
+ img_name = mask.replace("seg.nii.gz", "image.nii.gz")
+ images.append(img_name)
+ original_label_dict = {
+ 1: "bladder",
+ 2: "rectum",
+ 3: "gonads",
+ 4: "prostate",
+ 5: "uterocervix",
+ 6: "femoral-head-lef",
+ 7: "femoral-head-rig",
+ 8: "small-intestine",
+ 9: "large-intestine",
+ 10: "spinal-canal",
+ 11: "gall-bladder",
+ 12: "kidney-left",
+ 13: "kidney-right",
+ 14: "spleen",
+ 15: "liver",
+ 16: "stomach",
+ 17: "pancreas",
+ 18: "duodenum",
+ 19: "adrenal-left",
+ 20: "adrenal-right",
+ 21: "heart",
+ 22: "esophagus",
+ 23: "lung_l",
+ 24: "lung_r",
+ 25: "breast-left",
+ 26: "breast-right",
+ 27: "thymus",
+ 28: "skin",
+ 29: "bones",
+ }
+
+ label_dict = {
+ 1: "bladder",
+ 2: "rectum",
+ 3: "gonads",
+ 4: "prostate",
+ 5: "uterocervix",
+ 6: "left femoral head",
+ 7: "right femoral head",
+ 8: "small intestine",
+ 9: "large intestine",
+ 10: "spinal canal",
+ 11: "gallbladder",
+ 12: "left kidney",
+ 13: "right kidney",
+ 14: "spleen",
+ 15: "liver",
+ 16: "stomach",
+ 17: "pancreas",
+ 18: "duodenum",
+ 19: "left adrenal",
+ 20: "right adrenal",
+ 21: "heart",
+ 22: "esophagus",
+ 23: "left lung",
+ 24: "right lung",
+ 25: "left breast",
+ 26: "right breast",
+ 27: "thymus",
+ 28: "skin",
+ 29: "bones",
+ }
+ create_splits_and_write_json(
+ images,
+ labels,
+ test_ratio,
+ n_folds,
+ json_name,
+ seed,
+ label_dict,
+ original_label_dict,
+ )
+
+
+####
+@register_make
+def make_autopet_atlas():
+ base_url = "/data/"
+ dataset_name = "AutoPET-Atlas"
+ json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json")
+ masks = search_image_files(os.path.join(base_url, "AutoPET-Atlas"), ".nii.gz")
+ images, labels = [], []
+ for mask in masks:
+ mask = os.path.relpath(mask, base_url)
+ labels.append(mask)
+ pat_id = mask.split("_")[1]
+ img_folder = os.path.join(
+ base_url, "Autopet23", "FDG-PET-CT-Lesions", f"PETCT_{pat_id}"
+ )
+ image_nii = search_image_files(img_folder, "CT.nii.gz")[0]
+ img_name = os.path.relpath(image_nii, base_url)
+ images.append(img_name)
+ label_dict = {
+ 2: "muscles",
+ 3: "fat",
+ 4: "abdominal tissue",
+ 5: "mediastinal tissue",
+ 6: "esophagus",
+ 7: "stomach",
+ 8: "small bowel",
+ 9: "duodenum",
+ 10: "colon",
+ 11: "rectum",
+ 12: "gallbladder",
+ 13: "liver",
+ 14: "pancreas",
+ 15: "left kidney",
+ 16: "right kidney",
+ 17: "bladder",
+ 18: "gonads",
+ 19: "prostate",
+ 20: "uterocervix",
+ 21: "uterus",
+ 22: "left breast",
+ 23: "right breast",
+ 24: "spinal canal",
+ 25: "brain",
+ 26: "spleen",
+ 27: "left adrenal gland",
+ 28: "right adrenal gland",
+ 29: "left thyroid",
+ 30: "right thyroid",
+ 31: "thymus",
+ 32: "left gluteus maximus",
+ 33: "right gluteus maximus",
+ 34: "left gluteus medius",
+ 35: "right gluteus medius",
+ 36: "left gluteus minimus",
+ 37: "right gluteus minimus",
+ 38: "left iliopsoas",
+ 39: "right iliopsoas",
+ 40: "left autochthon",
+ 41: "right autochthon",
+ 42: "skin",
+ 43: "vertebrae C1",
+ 44: "vertebrae C2",
+ 45: "vertebrae C3",
+ 46: "vertebrae C4",
+ 47: "vertebrae C5",
+ 48: "vertebrae C6",
+ 49: "vertebrae C7",
+ 50: "vertebrae T1",
+ 51: "vertebrae T2",
+ 52: "vertebrae T3",
+ 53: "vertebrae T4",
+ 54: "vertebrae T5",
+ 55: "vertebrae T6",
+ 56: "vertebrae T7",
+ 57: "vertebrae T8",
+ 58: "vertebrae T9",
+ 59: "vertebrae T10",
+ 60: "vertebrae T11",
+ 61: "vertebrae T12",
+ 62: "vertebrae L1",
+ 63: "vertebrae L2",
+ 64: "vertebrae L3",
+ 65: "vertebrae L4",
+ 66: "vertebrae L5",
+ 67: "left costa 1",
+ 68: "right costa 1",
+ 69: "left costa 2",
+ 70: "right costa 2",
+ 71: "left costa 3",
+ 72: "right costa 3",
+ 73: "left costa 4",
+ 74: "right costa 4",
+ 75: "left costa 5",
+ 76: "right costa 5",
+ 77: "left costa 6",
+ 78: "right costa 6",
+ 79: "left costa 7",
+ 80: "right costa 7",
+ 81: "left costa 8",
+ 82: "right costa 8",
+ 83: "left costa 9",
+ 84: "right costa 9",
+ 85: "left costa 10",
+ 86: "right costa 10",
+ 87: "left costa 11",
+ 88: "right costa 11",
+ 89: "left costa 12",
+ 90: "right costa 12",
+ 91: "rib_cartilage",
+ 92: "sternum",
+ 93: "left clavicle",
+ 94: "right clavicle",
+ 95: "left scapula",
+ 96: "right scapula",
+ 97: "left humerus",
+ 98: "right humerus",
+ 99: "skull",
+ 100: "left hip",
+ 101: "right hip",
+ 102: "sacrum",
+ 103: "left femur",
+ 104: "right femur",
+ 105: "heart ",
+ 106: "left heart atrium",
+ 107: "heart tissue",
+ 108: "right heart atrium",
+ 109: "heart myocardium",
+ 110: "left heart ventricle",
+ 111: "right heart ventricle",
+ 112: "left iliac artery",
+ 113: "right iliac artery",
+ 114: "aorta",
+ 115: "left iliac vena",
+ 116: "right iliac vena",
+ 117: "inferior vena cava",
+ 118: "portal vein and splenic vein",
+ 119: "celiac trunk",
+ 120: "left lung lower lobe",
+ 121: "left lung upper lobe",
+ 122: "right lung lower lobe",
+ 123: "right lung middle lobe",
+ 124: "right lung upper lobe",
+ 125: "bronchie",
+ 126: "trachea",
+ 127: "pulmonary artery",
+ 128: "left cheek",
+ 129: "right cheek",
+ 130: "left eyeball",
+ 131: "right eyeball",
+ }
+ create_splits_and_write_json(
+ images, labels, test_ratio, n_folds, json_name, seed, label_dict
+ )
+
+
+####
+@register_make
+def make_uls23():
+ base_url = "/data/ULS23"
+ dataset_name = "ULS23_DeepLesion"
+ json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json")
+ # data/ULS23/ULS23_annotations/processed_data/partially_annotated/DeepLesion/labels_grabcut
+ seg_folder = [
+ base_url,
+ "ULS23_annotations",
+ "processed_data",
+ "partially_annotated",
+ "DeepLesion",
+ "labels_grabcut",
+ ]
+ masks = search_image_files(os.path.join(*seg_folder), ".nii.gz")
+ images, labels = [], []
+ for mask in masks:
+ mask = os.path.relpath(mask, base_url)
+ labels.append(mask)
+ img_name = mask.replace("ULS23_annotations", "ULS23").replace(
+ "labels_grabcut", "images"
+ )
+ images.append(img_name)
+ label_dict = {1: "lesion"}
+ create_splits_and_write_json(
+ images, labels, test_ratio, n_folds, json_name, seed, label_dict
+ )
+
+
+####
+@register_make
+def make_uls23_deeplesion3d():
+ base_url = "/data/ULS23"
+ dataset_name = "ULS23_DeepLesion3D"
+ json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json")
+ # /data/ULS23/ULS23_annotations/novel_data/ULS23_DeepLesion3D/labels
+ seg_folder = [
+ base_url,
+ "ULS23_annotations",
+ "novel_data",
+ "ULS23_DeepLesion3D",
+ "labels",
+ ]
+ masks = search_image_files(os.path.join(*seg_folder), ".nii.gz")
+ images, labels = [], []
+ for mask in masks:
+ mask = os.path.relpath(mask, base_url)
+ labels.append(mask)
+ img_name = mask.replace("ULS23_annotations", "ULS23").replace(
+ "labels", "images"
+ )
+ images.append(img_name)
+ label_dict = {1: "lesion"}
+ create_splits_and_write_json(
+ images, labels, test_ratio, n_folds, json_name, seed, label_dict
+ )
+
+
+####
+@register_make
+def make_uls23_bone():
+ base_url = "/data/ULS23"
+ dataset_name = "ULS23_Bone"
+ json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json")
+ # /data/ULS23/ULS23_annotations/novel_data/ULS23_Radboudumc_Bone/labels
+ seg_folder = [
+ base_url,
+ "ULS23_annotations",
+ "novel_data",
+ "ULS23_Radboudumc_Bone",
+ "labels",
+ ]
+ masks = search_image_files(os.path.join(*seg_folder), ".nii.gz")
+ images, labels = [], []
+ for mask in masks:
+ mask = os.path.relpath(mask, base_url)
+ labels.append(mask)
+ img_name = mask.replace("ULS23_annotations", "ULS23").replace(
+ "labels", "images"
+ )
+ images.append(img_name)
+ label_dict = {1: "lesion"}
+ create_splits_and_write_json(
+ images, labels, test_ratio, n_folds, json_name, seed, label_dict
+ )
+
+
+####
+@register_make
+def make_uls23_pancreas():
+ base_url = "/data/ULS23"
+ dataset_name = "ULS23_Pancreas"
+ json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json")
+ # /data/ULS23/ULS23_annotations/novel_data/ULS23_Radboudumc_Pancreas/labels
+ seg_folder = [
+ base_url,
+ "ULS23_annotations",
+ "novel_data",
+ "ULS23_Radboudumc_Pancreas",
+ "labels",
+ ]
+ masks = search_image_files(os.path.join(*seg_folder), ".nii.gz")
+ images, labels = [], []
+ for mask in masks:
+ mask = os.path.relpath(mask, base_url)
+ labels.append(mask)
+ img_name = mask.replace("ULS23_annotations", "ULS23").replace(
+ "labels", "images"
+ )
+ images.append(img_name)
+ label_dict = {1: "lesion"}
+ create_splits_and_write_json(
+ images, labels, test_ratio, n_folds, json_name, seed, label_dict
+ )
+
+
+####
+@register_make
+def make_mr_amos22():
+ base_url = "/data/AMOS22"
+ dataset_name = "MR_AMOS22"
+ json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json")
+ masks = search_image_files(os.path.join(base_url, "labelsTr"), ".nii.gz")
+ masks += search_image_files(os.path.join(base_url, "labelsVa"), ".nii.gz")
+ images, labels = [], []
+ for mask in masks:
+ rel_mask = os.path.relpath(mask, base_url)
+ labels.append(rel_mask)
+ idx = re.compile(r"amos_(\d+).nii.gz").search(rel_mask)[1]
+ if int(idx) < 500: # skip the CT cases
+ labels.pop()
+ continue
+ img_name = f"amos_{idx}.nii.gz"
+ for f in ["imagesTr", "imagesVa"]:
+ if os.path.exists(os.path.join(base_url, f, img_name)):
+ images.append(os.path.join(f, img_name))
+ break
+ # print(f"image: {images[-1]}, label: {labels[-1]}")
+ filtering_files(base_url, images, labels)
+ original_label_dict = {
+ 1: "spleen",
+ 2: "right kidney",
+ 3: "left kidney",
+ 4: "gallbladder",
+ 5: "esophagus",
+ 6: "liver",
+ 7: "stomach",
+ 8: "aorta",
+ 9: "postcava",
+ 10: "pancreas",
+ 11: "right adrenal gland",
+ 12: "left adrenal gland",
+ 13: "duodenum",
+ 14: "bladder",
+ 15: "prostate or uterus",
+ }
+ label_dict = {
+ 1: "spleen",
+ 2: "right kidney",
+ 3: "left kidney",
+ 4: "gallbladder",
+ 5: "esophagus",
+ 6: "liver",
+ 7: "stomach",
+ 8: "aorta",
+ 9: "inferior vena cava",
+ 10: "pancreas",
+ 11: "right adrenal gland",
+ 12: "left adrenal gland",
+ 13: "duodenum",
+ 14: "bladder",
+ 15: "prostate or uterus",
+ }
+ create_splits_and_write_json(
+ images,
+ labels,
+ test_ratio,
+ n_folds,
+ json_name,
+ seed,
+ label_dict,
+ original_label_dict,
+ )
+
+
+if __name__ == "__main__":
+ pprint(_make_funcs)
+ for func_name, f in _make_funcs.items():
+ print(f"running {func_name}")
+ f()
diff --git a/monailabel/monaivista/lib/__init__.py b/vista3d/scripts/__init__.py
similarity index 100%
rename from monailabel/monaivista/lib/__init__.py
rename to vista3d/scripts/__init__.py
diff --git a/vista3d/scripts/debugger.py b/vista3d/scripts/debugger.py
new file mode 100644
index 0000000..b2568f4
--- /dev/null
+++ b/vista3d/scripts/debugger.py
@@ -0,0 +1,240 @@
+import copy
+from tkinter import Tk, filedialog, messagebox
+
+import fire
+import matplotlib.pyplot as plt
+import nibabel as nib
+import numpy as np
+from matplotlib.widgets import Button, TextBox
+
+from .infer import InferClass
+from .utils.workflow_utils import get_point_label
+
+inferer = InferClass(config_file=["./configs/infer.yaml"])
+
+
+class samm_visualizer:
+ def __init__(self):
+ self.clicked_points = []
+ self.data = None
+ self.mask_plot = None
+ self.mask = None
+ self.data_path = None
+ self.circle_artists = []
+ self.class_label = None
+
+ def select_data_file(self):
+ root = Tk()
+ root.withdraw()
+ file_path = filedialog.askopenfilename(
+ title="Select Data File", initialfile=self.data_path
+ )
+ if not file_path:
+ print("No file selected.")
+ exit()
+ # Load data from NIfTI file
+ try:
+ nifti_img = nib.load(file_path)
+ data = nifti_img.get_fdata()
+ if len(data.shape) == 4:
+ data = data[..., 0] # Extract last element along the 4th dimension
+ except FileNotFoundError:
+ print("File not found.")
+ exit()
+ except nib.filebasedimages.ImageFileError:
+ print("Invalid NIfTI file.")
+ exit()
+ self.data = data
+ self.data_path = file_path
+
+ def generate_mask(self):
+ point = []
+ point_label = []
+ self.class_label = self.text_box.text
+ if len(self.class_label) == 0:
+ messagebox.showwarning(
+ "Warning",
+ "Label prompt is not specified. Assuming the point is for supported class. \
+ For zero-shot, input random number > 132",
+ )
+ label_prompt = None
+ prompt_class = None
+ neg_id, pos_id = get_point_label(1)
+ else:
+ if self.class_label in [2, 20, 21]:
+ messagebox.showwarning(
+ "Warning",
+ "Current debugger skip kidney (2), lung (20), and bone (21). Use their subclasses.",
+ )
+ return
+ label_prompt = int(self.class_label)
+ neg_id, pos_id = get_point_label(label_prompt)
+ label_prompt = np.array([label_prompt])[np.newaxis, ...]
+ prompt_class = copy.deepcopy(label_prompt)
+ # if zero-shot
+ if label_prompt is not None and label_prompt[0] > 132:
+ label_prompt = None
+ for p in self.clicked_points:
+ point.append([p[1], p[0], p[2]])
+ point_label.append(pos_id if p[3] == 1 else neg_id)
+ if len(point) == 0:
+ point = None
+ point_label = None
+ else:
+ point = np.array(point)[np.newaxis, ...]
+ point_label = np.array(point_label)[np.newaxis, ...]
+ mask = inferer.infer(
+ {"image": self.data_path},
+ point,
+ point_label,
+ label_prompt,
+ prompt_class,
+ save_mask=True,
+ point_start=self.point_start,
+ )[0]
+ nan_mask = np.isnan(mask)
+ mask = mask.data.cpu().numpy() > 0.5
+ mask = mask.astype(np.float32)
+ mask[mask == 0] = np.nan
+ if self.mask is None:
+ self.mask = mask
+ else:
+ self.mask[~nan_mask] = mask[~nan_mask]
+
+ def display_3d_slices(self):
+ fig, ax = plt.subplots()
+ assert self.data is not None, "Load data first."
+ ax.volume = self.data
+ ax.index = self.data.shape[2] // 2
+ ax.imshow(self.data[:, :, ax.index], cmap="gray")
+ ax.set_title(f"Slice {ax.index}")
+ self.update_slice(ax)
+ fig.canvas.mpl_connect("scroll_event", self.process_scroll)
+ fig.canvas.mpl_connect("button_press_event", self.process_click)
+ # Add numerical input box for slice index
+ text_ax = plt.axes([0.45, 0.01, 0.2, 0.05]) # Position of the text box
+ self.text_box = TextBox(text_ax, "Class prompt", initial=self.class_label)
+ # Add a button
+ button_ax = plt.axes([0.05, 0.01, 0.2, 0.05]) # Position of the button
+ button = Button(button_ax, "Run")
+
+ def on_button_click(event, ax=ax):
+ # Define what happens when the button is clicked
+ print("-- segmenting ---")
+ self.generate_mask()
+ print("-- done ---")
+ print(
+ "-- Note: Point only prompts will only do 128 cubic segmentation, a cropping artefact will be observed. ---"
+ )
+ print(
+ "-- Note: Point without class will be treated as supported class, which has worse zero-shot ability. Try class > 132 to perform better zeroshot. ---"
+ )
+ print("-- Note: CTRL + Right Click will be adding negative points. ---")
+ print(
+ "-- Note: Click points on different foreground class will cause segmentation conflicts. Clear first. ---"
+ )
+ print(
+ "-- Note: Click points not matching class prompts will also cause confusion. ---"
+ )
+
+ self.update_slice(ax)
+ # self.point_start = len(self.clicked_points)
+
+ button.on_clicked(on_button_click)
+
+ button_ax_clear = plt.axes([0.75, 0.01, 0.2, 0.05]) # Position of the button
+ button_clear = Button(button_ax_clear, "Clear")
+
+ def on_button_click_clear(event, ax=ax):
+ # Define what happens when the button is clicked
+ inferer.clear_cache()
+ # clear points
+ self.clicked_points = []
+ self.point_start = 0
+ self.mask = None
+ self.mask_plot.remove()
+ self.mask_plot = None
+ self.update_slice(ax)
+
+ button_clear.on_clicked(on_button_click_clear)
+
+ plt.show()
+
+ def process_scroll(self, event):
+ ax = event.inaxes
+ try:
+ if event.button == "up":
+ self.previous_slice(ax)
+ elif event.button == "down":
+ self.next_slice(ax)
+ except BaseException:
+ pass
+
+ def previous_slice(self, ax):
+ if ax is None:
+ return
+ ax.index = (ax.index - 1) % ax.volume.shape[2]
+ self.update_slice(ax)
+
+ def next_slice(self, ax):
+ if ax is None:
+ return
+ ax.index = (ax.index + 1) % ax.volume.shape[2]
+ self.update_slice(ax)
+
+ def update_slice(self, ax):
+ # remove circles
+ while len(self.circle_artists) > 0:
+ ca = self.circle_artists.pop()
+ ca.remove()
+ # plot circles
+ for x, y, z, label in self.clicked_points:
+ if z == ax.index:
+ color = "red" if (label == 1 or label == 3) else "blue"
+ circle_artist = plt.Circle((x, y), 1, color=color, fill=False)
+ self.circle_artists.append(circle_artist)
+ ax.add_artist(circle_artist)
+ ax.images[0].set_array(ax.volume[:, :, ax.index])
+ if self.mask is not None and self.mask_plot is None:
+ self.mask_plot = ax.imshow(
+ np.zeros_like(self.mask[:, :, ax.index]) * np.nan,
+ cmap="viridis",
+ alpha=0.5,
+ )
+ if self.mask is not None and self.mask_plot is not None:
+ self.mask_plot.set_data(self.mask[:, :, ax.index])
+ self.mask_plot.set_visible(True)
+ ax.set_title(f"Slice {ax.index}")
+ ax.figure.canvas.draw()
+
+ def process_click(self, event):
+ try:
+ ax = event.inaxes
+ if ax is not None:
+ x = int(event.xdata)
+ y = int(event.ydata)
+ z = ax.index
+ print(f"Clicked coordinates: x={x}, y={y}, z={z}")
+ if event.key == "control":
+ point_label = 0
+ else:
+ point_label = 1
+ self.clicked_points.append((x, y, z, point_label))
+ self.update_slice(ax)
+ except BaseException:
+ pass
+
+ def run(self):
+ # File selection
+ self.select_data_file()
+ inferer.clear_cache()
+ self.point_start = 0
+ self.display_3d_slices()
+
+
+if __name__ == "__main__":
+ from monai.utils import optional_import
+
+ fire, _ = optional_import("fire")
+ # using python -m interactive run
+ fire.Fire(samm_visualizer)
diff --git a/vista3d/scripts/infer.py b/vista3d/scripts/infer.py
new file mode 100644
index 0000000..924a5ab
--- /dev/null
+++ b/vista3d/scripts/infer.py
@@ -0,0 +1,328 @@
+# Copyright (c) MONAI Consortium
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+# http://www.apache.org/licenses/LICENSE-2.0
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import logging
+import os
+import sys
+from functools import partial
+
+import monai
+import numpy as np
+import torch
+import torch.distributed as dist
+from monai import transforms
+from monai.apps.auto3dseg.auto_runner import logger
+from monai.auto3dseg.utils import datafold_read
+from monai.bundle import ConfigParser
+from monai.bundle.scripts import _pop_args, _update_args
+from monai.data import decollate_batch, list_data_collate, partition_dataset
+from monai.utils import optional_import
+
+from vista3d import vista_model_registry
+
+from .sliding_window import point_based_window_inferer, sliding_window_inference
+from .train import CONFIG
+from .utils.trans_utils import VistaPostTransform, get_largest_connected_component_point
+
+rearrange, _ = optional_import("einops", name="rearrange")
+sys.path.insert(0, os.path.abspath(os.path.dirname(__file__)))
+IGNORE_PROMPT = set(
+ [
+ 2, # kidney
+ 16, # prostate or uterus
+ 18, # rectum
+ 20, # lung
+ 21, # bone
+ 23, # lung tumor
+ 24, # pancreatic tumor
+ 25, # hepatic vessel
+ 26, # hepatic tumor
+ 27, # colon cancer primaries
+ 128, # bone lesion
+ 129, # kidney mass
+ 130, # liver tumor
+ 131, # vertebrae L6
+ 132,
+ ]
+) # airway
+EVERYTHING_PROMPT = list(set([i + 1 for i in range(133)]) - IGNORE_PROMPT)
+
+
+def infer_wrapper(inputs, model, **kwargs):
+ outputs = model(input_images=inputs, **kwargs)
+ return outputs.transpose(1, 0)
+
+
+class InferClass:
+ def __init__(self, config_file="./configs/infer.yaml", **override):
+ logging.basicConfig(stream=sys.stdout, level=logging.INFO)
+
+ _args = _update_args(config_file=config_file, **override)
+ config_file_ = _pop_args(_args, "config_file")[0]
+
+ parser = ConfigParser()
+ parser.read_config(config_file_)
+ parser.update(pairs=_args)
+
+ self.amp = parser.get_parsed_content("amp")
+ input_channels = parser.get_parsed_content("input_channels")
+ patch_size = parser.get_parsed_content("patch_size")
+ self.patch_size = patch_size
+
+ ckpt_name = parser.get_parsed_content("infer")["ckpt_name"]
+ output_path = parser.get_parsed_content("infer")["output_path"]
+ if not os.path.exists(output_path):
+ os.makedirs(output_path, exist_ok=True)
+
+ CONFIG["handlers"]["file"]["filename"] = parser.get_parsed_content("infer")[
+ "log_output_file"
+ ]
+ logging.config.dictConfig(CONFIG)
+ self.infer_transforms = parser.get_parsed_content("transforms_infer")
+
+ self.device = torch.device("cuda:0")
+ model_registry = parser.get_parsed_content("model")
+ model = vista_model_registry[model_registry](
+ in_channels=input_channels, image_size=patch_size
+ )
+ self.model = model.to(self.device)
+
+ pretrained_ckpt = torch.load(ckpt_name, map_location=self.device)
+ self.model.load_state_dict(pretrained_ckpt, strict=False)
+ logger.debug(f"[debug] checkpoint {ckpt_name:s} loaded")
+ post_transforms = [
+ VistaPostTransform(keys="pred"),
+ transforms.Invertd(
+ keys="pred",
+ transform=self.infer_transforms,
+ orig_keys="image",
+ meta_keys="pred_meta_dict",
+ orig_meta_keys="image_meta_dict",
+ meta_key_postfix="meta_dict",
+ nearest_interp=True,
+ to_tensor=True,
+ ),
+ ]
+
+ # For Vista3d, sigmoid is always used, but for visualization, argmax is needed
+ save_transforms = [
+ transforms.SaveImaged(
+ keys="pred",
+ meta_keys="pred_meta_dict",
+ output_dir=output_path,
+ output_postfix="seg",
+ resample=False,
+ data_root_dir=None,
+ print_log=False,
+ )
+ ]
+ self.post_transforms = transforms.Compose(post_transforms)
+ self.save_transforms = transforms.Compose(save_transforms)
+ self.prev_mask = None
+ self.batch_data = None
+ return
+
+ def clear_cache(self):
+ self.prev_mask = None
+ self.batch_data = None
+
+ def transform_points(self, point, affine):
+ """transform point to the coordinates of the transformed image
+ point: numpy array [bs, N, 3]
+ """
+ bs, N = point.shape[:2]
+ point = np.concatenate((point, np.ones((bs, N, 1))), axis=-1)
+ point = rearrange(point, "b n d -> d (b n)")
+ point = affine @ point
+ point = rearrange(point, "d (b n)-> b n d", b=bs)[:, :, :3]
+ return point
+
+ @torch.no_grad()
+ def infer(
+ self,
+ image_file,
+ point=None,
+ point_label=None,
+ label_prompt=None,
+ prompt_class=None,
+ save_mask=False,
+ point_start=0,
+ ):
+ """Infer a single image_file. If save_mask is true, save the argmax prediction to disk. If false,
+ do not save and return the probability maps (usually used by autorunner emsembler). point_start is
+ used together with prev_mask. If prev_mask is generated by N points, point_start should be N+1 to save
+ time and avoid repeated inference. This is by default disabled.
+ """
+ self.model.eval()
+ if not isinstance(image_file, dict):
+ image_file = {"image": image_file}
+ if self.batch_data is not None:
+ batch_data = self.batch_data
+ else:
+ batch_data = self.infer_transforms(image_file)
+ if label_prompt is not None:
+ batch_data["label_prompt"] = label_prompt
+ batch_data = list_data_collate([batch_data])
+ self.batch_data = batch_data
+ if point is not None:
+ if type(point) is list:
+ point = np.array(point)[np.newaxis, ...]
+ point_label = np.array(point_label)[np.newaxis, ...]
+ point = self.transform_points(
+ point,
+ np.linalg.inv(batch_data["image"].affine[0])
+ @ batch_data["image"].meta["original_affine"][0].numpy(),
+ )
+ self.sliding_window_inferer = partial(
+ point_based_window_inferer, point_start=point_start
+ )
+ else:
+ self.sliding_window_inferer = sliding_window_inference
+ device_list_input = [self.device, self.device, "cpu"]
+ device_list_output = [self.device, "cpu", "cpu"]
+ for _device_in, _device_out in zip(device_list_input, device_list_output):
+ try:
+ with torch.cuda.amp.autocast(enabled=self.amp):
+ batch_data["pred"] = self.sliding_window_inferer(
+ inputs=batch_data["image"].to(_device_in),
+ roi_size=self.patch_size,
+ sw_batch_size=1,
+ predictor=partial(infer_wrapper, model=self.model),
+ mode="gaussian",
+ overlap=0.625,
+ progress=True,
+ sw_device=self.device,
+ device=_device_out,
+ point_coords=(
+ torch.tensor(point).to(_device_in)
+ if point is not None
+ else None
+ ),
+ point_labels=(
+ torch.tensor(point_label).to(_device_in)
+ if point_label is not None
+ else None
+ ),
+ class_vector=(
+ torch.tensor(label_prompt).to(_device_in)
+ if label_prompt is not None
+ else None
+ ),
+ prompt_class=(
+ torch.tensor(prompt_class).to(_device_in)
+ if prompt_class is not None
+ else None
+ ),
+ prev_mask=(
+ torch.tensor(self.prev_mask).to(_device_in)
+ if self.prev_mask is not None
+ else None
+ ),
+ )
+
+ if not hasattr(batch_data["pred"], "meta"):
+ batch_data["pred"] = monai.data.MetaTensor(
+ batch_data["pred"],
+ affine=batch_data["image"].meta["affine"],
+ meta=batch_data["image"].meta,
+ )
+ self.prev_mask = batch_data["pred"]
+ if label_prompt is None and point is not None:
+ batch_data["pred"] = get_largest_connected_component_point(
+ batch_data["pred"], point_coords=point, point_labels=point_label
+ )
+ batch_data["image"] = batch_data["image"].to("cpu")
+ batch_data["pred"] = batch_data["pred"].to("cpu")
+ torch.cuda.empty_cache()
+ batch_data = [
+ self.post_transforms(i) for i in decollate_batch(batch_data)
+ ]
+ if save_mask:
+ batch_data = [self.save_transforms(i) for i in batch_data]
+
+ finished = True
+ except RuntimeError as e:
+ if not any(x in str(e).lower() for x in ("memory", "cuda", "cudnn")):
+ raise e
+ finished = False
+ if finished:
+ break
+ if not finished:
+ raise RuntimeError("Infer not finished due to OOM.")
+ return batch_data[0]["pred"]
+
+ @torch.no_grad()
+ def infer_everything(self, image_file, label_prompt=EVERYTHING_PROMPT, rank=0):
+ self.model.eval()
+ device = f"cuda:{rank}"
+ if not isinstance(image_file, dict):
+ image_file = {"image": image_file}
+ batch_data = self.infer_transforms(image_file)
+ batch_data["label_prompt"] = label_prompt
+ batch_data = list_data_collate([batch_data])
+ device_list_input = [device, device, "cpu"]
+ device_list_output = [device, "cpu", "cpu"]
+ for _device_in, _device_out in zip(device_list_input, device_list_output):
+ try:
+ with torch.cuda.amp.autocast(enabled=self.amp):
+ batch_data["pred"] = sliding_window_inference(
+ inputs=batch_data["image"].to(_device_in),
+ roi_size=self.patch_size,
+ sw_batch_size=1,
+ predictor=partial(infer_wrapper, model=self.model),
+ mode="gaussian",
+ overlap=0.625,
+ sw_device=device,
+ device=_device_out,
+ class_vector=torch.tensor(label_prompt).to(_device_in),
+ )
+ if not hasattr(batch_data["pred"], "meta"):
+ batch_data["pred"] = monai.data.MetaTensor(
+ batch_data["pred"],
+ affine=batch_data["image"].meta["affine"],
+ meta=batch_data["image"].meta,
+ )
+ torch.cuda.empty_cache()
+ batch_data = [
+ self.post_transforms(i) for i in decollate_batch(batch_data)
+ ]
+ batch_data = [self.save_transforms(i) for i in batch_data]
+ finished = True
+ except RuntimeError as e:
+ if not any(x in str(e).lower() for x in ("memory", "cuda", "cudnn")):
+ raise e
+ finished = False
+ if finished:
+ break
+ if not finished:
+ raise RuntimeError("Infer not finished due to OOM.")
+
+ @torch.no_grad()
+ def batch_infer_everything(self, datalist=str, basedir=str):
+ train_files, _ = datafold_read(datalist=datalist, basedir=basedir, fold=0)
+ train_files = [_["image"] for _ in train_files]
+ dist.init_process_group(backend="nccl", init_method="env://")
+ world_size = dist.get_world_size()
+ rank = dist.get_rank()
+ # no need to wrap model with DistributedDataParallel
+ self.model = self.model.to(f"cuda:{rank}")
+ infer_files = partition_dataset(
+ data=train_files,
+ shuffle=False,
+ num_partitions=world_size,
+ even_divisible=False,
+ )[rank]
+ self.infer(infer_files, label_prompt=EVERYTHING_PROMPT, rank=rank)
+
+
+if __name__ == "__main__":
+ fire, _ = optional_import("fire")
+ fire.Fire(InferClass)
diff --git a/vista3d/scripts/slic_process_sam.py b/vista3d/scripts/slic_process_sam.py
new file mode 100644
index 0000000..c73b69c
--- /dev/null
+++ b/vista3d/scripts/slic_process_sam.py
@@ -0,0 +1,219 @@
+# Copyright (c) MONAI Consortium
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+# http://www.apache.org/licenses/LICENSE-2.0
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import logging
+import os
+import sys
+import time
+
+import monai
+import numpy as np
+import torch
+import torch.distributed as dist
+from monai import transforms
+from monai.auto3dseg.utils import datafold_read
+from monai.data import partition_dataset
+from monai.utils import optional_import
+from segment_anything import SamPredictor, sam_model_registry
+from skimage.segmentation import slic
+from tqdm import tqdm
+
+from .train import CONFIG
+from .utils.trans_utils import dilate3d, erode3d
+
+rearrange, _ = optional_import("einops", name="rearrange")
+sys.path.insert(0, os.path.abspath(os.path.dirname(__file__)))
+
+
+def pad_to_divisible_by_16(image):
+ # Get the dimensions of the input image
+ depth, height, width = image.shape[-3:]
+
+ # Calculate the padding required to make the dimensions divisible by 16
+ pad_depth = (16 - (depth % 16)) % 16
+ pad_height = (16 - (height % 16)) % 16
+ pad_width = (16 - (width % 16)) % 16
+
+ # Create a tuple with the padding values for each dimension
+ padding = (0, pad_width, 0, pad_height, 0, pad_depth)
+
+ # Pad the image
+ padded_image = torch.nn.functional.pad(image, padding)
+
+ return padded_image, padding
+
+
+class InferClass:
+ def __init__(self):
+ logging.basicConfig(stream=sys.stdout, level=logging.INFO)
+ output_path = "./supervoxel_sam"
+ if not os.path.exists(output_path):
+ os.makedirs(output_path, exist_ok=True)
+ self.amp = True
+ CONFIG["handlers"]["file"]["filename"] = f"{output_path}/log.log"
+ logging.config.dictConfig(CONFIG)
+ self.device = torch.device("cuda:0")
+ self.sam = sam_model_registry["vit_h"](checkpoint="sam_vit_h_4b8939.pth").to(
+ self.device
+ )
+ self.model = SamPredictor(self.sam)
+ return
+
+ @torch.no_grad()
+ @torch.cuda.amp.autocast()
+ def infer(
+ self,
+ image_file="example/s1238.nii.gz",
+ rank=0,
+ output_dir="./supervoxel_sam/",
+ data_root_dir=None,
+ n_segments=400,
+ ):
+ """Infer a single image_file. If save_mask is true, save the argmax prediction to disk. If false,
+ do not save and return the probability maps (usually used by autorunner emsembler).
+ """
+ pixel_mean = torch.Tensor([123.675, 116.28, 103.53]).view(1, 3, 1, 1)
+ pixel_std = torch.Tensor([58.395, 57.12, 57.375]).view(1, 3, 1, 1)
+ if not isinstance(image_file, list):
+ image_file = [image_file]
+
+ permute_pairs = [
+ [(2, 0, 1), None],
+ [(1, 0, 2), (0, 1, 3, 2)],
+ [(0, 1, 2), (0, 3, 1, 2)],
+ ]
+ for file in image_file:
+ if data_root_dir is not None:
+ savefolder = os.path.join(
+ output_dir,
+ file.replace(data_root_dir, "").split("/")[0],
+ file.replace(data_root_dir, "")
+ .split("/")[1]
+ .replace(".nii.gz", ""),
+ )
+ else:
+ savefolder = os.path.join(
+ output_dir, file.split("/")[-1].replace(".nii.gz", "")
+ )
+ if os.path.isdir(savefolder):
+ print(f"{file} already exist. Skipped")
+ continue
+ try:
+ batch_data = None
+ batch_data = transforms.LoadImage(image_only=True)(file)
+ orig_data = batch_data.clone()
+ batch_data = transforms.ScaleIntensityRange(
+ a_max=1000, a_min=-1000, b_max=255, b_min=0, clip=True
+ )(batch_data)
+ print(f"[{rank}] working on {file}")
+ outputs = None
+ torch.cuda.empty_cache()
+ features_ = 0
+ for views in permute_pairs:
+ data = batch_data.permute(*views[0])
+ features = []
+ max_slice = 8
+ for i in tqdm(range(int(np.ceil(data.shape[0] / max_slice)))):
+ idx = (i * max_slice, min((i + 1) * max_slice, data.shape[0]))
+ image = data[idx[0] : idx[1]]
+ d, h, w = image.shape
+ pad_h = 0 if h > w else w - h
+ pad_w = 0 if w > h else h - w
+ image = torch.nn.functional.pad(
+ image, (0, pad_w, 0, pad_h, 0, 0)
+ )
+ image = monai.transforms.Resize(
+ [d, 1024, 1024], mode="bilinear"
+ )(image.unsqueeze(0)).squeeze(0)
+ image = (
+ torch.stack([image, image, image], -1)
+ .permute(0, 3, 1, 2)
+ .contiguous()
+ )
+ image = (image - pixel_mean) / pixel_std
+ feature = self.model.get_feature_upsampled(
+ image.to(f"cuda:{rank}")
+ )
+ feature = monai.transforms.Resize(
+ [h + pad_h, w + pad_w, d], mode="bilinear"
+ )(feature.permute(1, 2, 3, 0))[:, :h, :w]
+ features.append(feature.cpu())
+ features = torch.cat(features, -1)
+ if views[1] is not None:
+ features = features.permute(*views[1])
+ features_ += features
+ features = None
+ start = time.time()
+ outputs = slic(
+ features_.numpy(),
+ channel_axis=0,
+ compactness=0.01,
+ n_segments=n_segments,
+ sigma=3,
+ )
+ features_ = None
+ outputs = torch.from_numpy(outputs).cuda()
+ print("slic took", time.time() - start)
+ mask = monai.transforms.utils.get_largest_connected_component_mask(
+ orig_data < -800, connectivity=None, num_components=1
+ ).cuda()
+ mask = dilate3d(mask, erosion=3)
+ mask = erode3d(mask, erosion=3)
+ outputs[mask.to(torch.bool)] = 0
+ outputs = monai.data.MetaTensor(
+ outputs, affine=batch_data.affine, meta=batch_data.meta
+ )
+ monai.transforms.SaveImage(
+ output_dir=output_dir,
+ output_postfix="seg",
+ data_root_dir=data_root_dir,
+ )(outputs.unsqueeze(0).cpu().to(torch.int16))
+ except BaseException:
+ print(f"{file} failed. Skipped.")
+
+ @torch.no_grad()
+ @torch.cuda.amp.autocast()
+ def batch_infer(
+ self,
+ datalist=str,
+ basedir=str,
+ output_dir="./supervoxel_sam/",
+ data_root_dir=None,
+ n_segments=400,
+ ):
+ train_files, _ = datafold_read(datalist=datalist, basedir=basedir, fold=0)
+ train_files = [_["image"] for _ in train_files]
+ dist.init_process_group(backend="nccl", init_method="env://")
+ world_size = dist.get_world_size()
+ rank = dist.get_rank()
+ # no need to wrap model with DistributedDataParallel
+ self.model = SamPredictor(self.sam.to(f"cuda:{rank}"))
+ infer_files = partition_dataset(
+ data=train_files,
+ shuffle=False,
+ num_partitions=world_size,
+ even_divisible=False,
+ )[rank]
+ self.infer(
+ infer_files,
+ rank=rank,
+ output_dir=output_dir,
+ data_root_dir=data_root_dir,
+ n_segments=n_segments,
+ )
+
+
+if __name__ == "__main__":
+ from monai.utils import optional_import
+
+ inferer = InferClass()
+ fire, _ = optional_import("fire")
+ fire.Fire(inferer)
diff --git a/vista3d/scripts/sliding_window.py b/vista3d/scripts/sliding_window.py
new file mode 100644
index 0000000..67b2061
--- /dev/null
+++ b/vista3d/scripts/sliding_window.py
@@ -0,0 +1,666 @@
+# Copyright (c) MONAI Consortium
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+# http://www.apache.org/licenses/LICENSE-2.0
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from __future__ import annotations
+
+import copy
+import itertools
+from collections.abc import Callable, Mapping, Sequence
+from typing import Any, Iterable
+
+import monai
+import numpy as np
+import torch
+import torch.nn.functional as F
+from monai.data.meta_tensor import MetaTensor
+from monai.data.utils import (
+ compute_importance_map,
+ dense_patch_slices,
+ get_valid_patch_size,
+)
+from monai.utils import (
+ BlendMode,
+ PytorchPadMode,
+ convert_data_type,
+ convert_to_dst_type,
+ ensure_tuple,
+ ensure_tuple_rep,
+ fall_back_tuple,
+ look_up_option,
+ optional_import,
+ pytorch_after,
+)
+
+tqdm, _ = optional_import("tqdm", name="tqdm")
+_nearest_mode = "nearest-exact" if pytorch_after(1, 11) else "nearest"
+
+__all__ = ["sliding_window_inference", "point_based_window_inferer"]
+
+
+def get_window_idx_c(p, roi, s):
+ if p - roi // 2 < 0:
+ left, right = 0, roi
+ elif p + roi // 2 > s:
+ left, right = s - roi, s
+ else:
+ left, right = int(p) - roi // 2, int(p) + roi // 2
+ return left, right
+
+
+def get_window_idx(p, roi, s, center_only=True, margin=5):
+ left, right = get_window_idx_c(p, roi, s)
+ if center_only:
+ return [left], [right]
+ left_most = max(0, p - roi + margin)
+ right_most = min(s, p + roi - margin)
+ left = [left_most, right_most - roi, left]
+ right = [left_most + roi, right_most, right]
+ return left, right
+
+
+def pad_previous_mask(inputs, roi_size, padvalue=0):
+ pad_size = []
+ for k in range(len(inputs.shape) - 1, 1, -1):
+ diff = max(roi_size[k - 2] - inputs.shape[k], 0)
+ half = diff // 2
+ pad_size.extend([half, diff - half])
+ if any(pad_size):
+ inputs = torch.nn.functional.pad(
+ inputs, pad=pad_size, mode="constant", value=padvalue
+ )
+ return inputs, pad_size
+
+
+def point_based_window_inferer(
+ inputs,
+ roi_size,
+ sw_batch_size,
+ predictor,
+ mode,
+ overlap,
+ sw_device,
+ device,
+ point_coords,
+ point_labels,
+ class_vector,
+ prompt_class,
+ prev_mask,
+ point_mask=None,
+ point_start=0,
+ **kwargs,
+):
+ """Point based window inferer, crop a patch centered at the point, and perform inference. Different patches are combined with gaussian weighted weights.
+ Args:
+ predictor: partial(infer_wrapper, model). infer_wrapper transpose the model output. The model output is [B, 1, H, W, D] which needs to be transposed to [1, B, H, W, D]
+ point_coords: [B, N, 3]
+ point_labels: [B, N]
+ class_vector: [B]
+ prev_mask: [1, B, H, W, D], THE VALUE IS BEFORE SIGMOID!
+ Returns:
+ stitched_output: [1, B, H, W, D]. The value is before sigmoid.
+ Notice: The function currently only supports SINGLE OBJECT INFERENCE with B=1.
+ """
+ assert point_coords.shape[0] == 1, "Only supports single object point click"
+ image, pad = pad_previous_mask(copy.deepcopy(inputs), roi_size)
+ point_coords = point_coords + torch.tensor([pad[-2], pad[-4], pad[-6]]).to(
+ point_coords.device
+ )
+ prev_mask = (
+ pad_previous_mask(copy.deepcopy(prev_mask), roi_size)[0]
+ if prev_mask is not None
+ else None
+ )
+ stitched_output = None
+ center_only = True
+ for p in point_coords[0][point_start:]:
+ lx_, rx_ = get_window_idx(
+ p[0], roi_size[0], image.shape[-3], center_only=center_only, margin=5
+ )
+ ly_, ry_ = get_window_idx(
+ p[1], roi_size[1], image.shape[-2], center_only=center_only, margin=5
+ )
+ lz_, rz_ = get_window_idx(
+ p[2], roi_size[2], image.shape[-1], center_only=center_only, margin=5
+ )
+ for i in range(len(lx_)):
+ for j in range(len(ly_)):
+ for k in range(len(lz_)):
+ lx, rx, ly, ry, lz, rz = (
+ lx_[i],
+ rx_[i],
+ ly_[j],
+ ry_[j],
+ lz_[k],
+ rz_[k],
+ )
+ unravel_slice = [
+ slice(None),
+ slice(None),
+ slice(int(lx), int(rx)),
+ slice(int(ly), int(ry)),
+ slice(int(lz), int(rz)),
+ ]
+ batch_image = image[unravel_slice]
+ # ball = get_gaussian_ball(batch_image.shape[-3:])
+ output = predictor(
+ batch_image,
+ point_coords=point_coords,
+ point_labels=point_labels,
+ class_vector=class_vector,
+ prompt_class=prompt_class,
+ patch_coords=unravel_slice,
+ prev_mask=prev_mask,
+ **kwargs,
+ )
+ if stitched_output is None:
+ stitched_output = torch.zeros(
+ [
+ 1,
+ output.shape[1],
+ image.shape[-3],
+ image.shape[-2],
+ image.shape[-1],
+ ],
+ device="cpu",
+ )
+ stitched_mask = torch.zeros(
+ [
+ 1,
+ output.shape[1],
+ image.shape[-3],
+ image.shape[-2],
+ image.shape[-1],
+ ],
+ device="cpu",
+ )
+ stitched_output[unravel_slice] += output.to("cpu")
+ stitched_mask[unravel_slice] = 1
+ # if stitched_mask is 0, then NaN value
+ stitched_output = stitched_output / stitched_mask
+ # revert padding
+ stitched_output = stitched_output[
+ :,
+ :,
+ pad[4] : image.shape[-3] - pad[5],
+ pad[2] : image.shape[-2] - pad[3],
+ pad[0] : image.shape[-1] - pad[1],
+ ]
+ stitched_mask = stitched_mask[
+ :,
+ :,
+ pad[4] : image.shape[-3] - pad[5],
+ pad[2] : image.shape[-2] - pad[3],
+ pad[0] : image.shape[-1] - pad[1],
+ ]
+ if prev_mask is not None:
+ prev_mask = prev_mask[
+ :,
+ :,
+ pad[4] : image.shape[-3] - pad[5],
+ pad[2] : image.shape[-2] - pad[3],
+ pad[0] : image.shape[-1] - pad[1],
+ ]
+ prev_mask = prev_mask.to("cpu")
+ # for un-calculated place, use previous mask
+ stitched_output[stitched_mask < 1] = prev_mask[stitched_mask < 1]
+ if not hasattr(stitched_output, "meta"):
+ stitched_output = monai.data.MetaTensor(
+ stitched_output, affine=inputs.meta["affine"], meta=inputs.meta
+ )
+ return stitched_output
+
+
+def sliding_window_inference(
+ inputs: torch.Tensor | MetaTensor,
+ roi_size: Sequence[int] | int,
+ sw_batch_size: int,
+ predictor: Callable[
+ ..., torch.Tensor | Sequence[torch.Tensor] | dict[Any, torch.Tensor]
+ ],
+ overlap: Sequence[float] | float = 0.25,
+ mode: BlendMode | str = BlendMode.CONSTANT,
+ sigma_scale: Sequence[float] | float = 0.125,
+ padding_mode: PytorchPadMode | str = PytorchPadMode.CONSTANT,
+ cval: float = 0.0,
+ sw_device: torch.device | str | None = None,
+ device: torch.device | str | None = None,
+ progress: bool = False,
+ roi_weight_map: torch.Tensor | None = None,
+ process_fn: Callable | None = None,
+ buffer_steps: int | None = None,
+ buffer_dim: int = -1,
+ *args: Any,
+ **kwargs: Any,
+) -> torch.Tensor | tuple[torch.Tensor, ...] | dict[Any, torch.Tensor]:
+ """
+ Sliding window inference on `inputs` with `predictor`.
+
+ The outputs of `predictor` could be a tensor, a tuple, or a dictionary of tensors.
+ Each output in the tuple or dict value is allowed to have different resolutions with respect to the input.
+ e.g., the input patch spatial size is [128,128,128], the output (a tuple of two patches) patch sizes
+ could be ([128,64,256], [64,32,128]).
+ In this case, the parameter `overlap` and `roi_size` need to be carefully chosen to ensure the output ROI is still
+ an integer. If the predictor's input and output spatial sizes are not equal, we recommend choosing the parameters
+ so that `overlap*roi_size*output_size/input_size` is an integer (for each spatial dimension).
+
+ When roi_size is larger than the inputs' spatial size, the input image are padded during inference.
+ To maintain the same spatial sizes, the output image will be cropped to the original input size.
+
+ Args:
+ inputs: input image to be processed (assuming NCHW[D])
+ roi_size: the spatial window size for inferences.
+ When its components have None or non-positives, the corresponding inputs dimension will be used.
+ if the components of the `roi_size` are non-positive values, the transform will use the
+ corresponding components of img size. For example, `roi_size=(32, -1)` will be adapted
+ to `(32, 64)` if the second spatial dimension size of img is `64`.
+ sw_batch_size: the batch size to run window slices.
+ predictor: given input tensor ``patch_data`` in shape NCHW[D],
+ The outputs of the function call ``predictor(patch_data)`` should be a tensor, a tuple, or a dictionary
+ with Tensor values. Each output in the tuple or dict value should have the same batch_size, i.e. NM'H'W'[D'];
+ where H'W'[D'] represents the output patch's spatial size, M is the number of output channels,
+ N is `sw_batch_size`, e.g., the input shape is (7, 1, 128,128,128),
+ the output could be a tuple of two tensors, with shapes: ((7, 5, 128, 64, 256), (7, 4, 64, 32, 128)).
+ In this case, the parameter `overlap` and `roi_size` need to be carefully chosen
+ to ensure the scaled output ROI sizes are still integers.
+ If the `predictor`'s input and output spatial sizes are different,
+ we recommend choosing the parameters so that ``overlap*roi_size*zoom_scale`` is an integer for each dimension.
+ overlap: Amount of overlap between scans along each spatial dimension, defaults to ``0.25``.
+ mode: {``"constant"``, ``"gaussian"``}
+ How to blend output of overlapping windows. Defaults to ``"constant"``.
+
+ - ``"constant``": gives equal weight to all predictions.
+ - ``"gaussian``": gives less weight to predictions on edges of windows.
+
+ sigma_scale: the standard deviation coefficient of the Gaussian window when `mode` is ``"gaussian"``.
+ Default: 0.125. Actual window sigma is ``sigma_scale`` * ``dim_size``.
+ When sigma_scale is a sequence of floats, the values denote sigma_scale at the corresponding
+ spatial dimensions.
+ padding_mode: {``"constant"``, ``"reflect"``, ``"replicate"``, ``"circular"``}
+ Padding mode for ``inputs``, when ``roi_size`` is larger than inputs. Defaults to ``"constant"``
+ See also: https://pytorch.org/docs/stable/generated/torch.nn.functional.pad.html
+ cval: fill value for 'constant' padding mode. Default: 0
+ sw_device: device for the window data.
+ By default the device (and accordingly the memory) of the `inputs` is used.
+ Normally `sw_device` should be consistent with the device where `predictor` is defined.
+ device: device for the stitched output prediction.
+ By default the device (and accordingly the memory) of the `inputs` is used. If for example
+ set to device=torch.device('cpu') the gpu memory consumption is less and independent of the
+ `inputs` and `roi_size`. Output is on the `device`.
+ progress: whether to print a `tqdm` progress bar.
+ roi_weight_map: pre-computed (non-negative) weight map for each ROI.
+ If not given, and ``mode`` is not `constant`, this map will be computed on the fly.
+ process_fn: process inference output and adjust the importance map per window
+ buffer_steps: the number of sliding window iterations along the ``buffer_dim``
+ to be buffered on ``sw_device`` before writing to ``device``.
+ (Typically, ``sw_device`` is ``cuda`` and ``device`` is ``cpu``.)
+ default is None, no buffering. For the buffer dim, when spatial size is divisible by buffer_steps*roi_size,
+ (i.e. no overlapping among the buffers) non_blocking copy may be automatically enabled for efficiency.
+ buffer_dim: the spatial dimension along which the buffers are created.
+ 0 indicates the first spatial dimension. Default is -1, the last spatial dimension.
+ args: optional args to be passed to ``predictor``.
+ kwargs: optional keyword args to be passed to ``predictor``.
+
+ Note:
+ - input must be channel-first and have a batch dim, supports N-D sliding window.
+
+ """
+ buffered = buffer_steps is not None and buffer_steps > 0
+ num_spatial_dims = len(inputs.shape) - 2
+ if buffered:
+ if buffer_dim < -num_spatial_dims or buffer_dim > num_spatial_dims:
+ raise ValueError(
+ f"buffer_dim must be in [{-num_spatial_dims}, {num_spatial_dims}], got {buffer_dim}."
+ )
+ if buffer_dim < 0:
+ buffer_dim += num_spatial_dims
+ overlap = ensure_tuple_rep(overlap, num_spatial_dims)
+ for o in overlap:
+ if o < 0 or o >= 1:
+ raise ValueError(f"overlap must be >= 0 and < 1, got {overlap}.")
+ compute_dtype = inputs.dtype
+
+ # determine image spatial size and batch size
+ # Note: all input images must have the same image size and batch size
+ batch_size, _, *image_size_ = inputs.shape
+ device = device or inputs.device
+ sw_device = sw_device or inputs.device
+
+ temp_meta = None
+ if isinstance(inputs, MetaTensor):
+ temp_meta = MetaTensor([]).copy_meta_from(inputs, copy_attr=False)
+ inputs = convert_data_type(inputs, torch.Tensor, wrap_sequence=True)[0]
+ roi_size = fall_back_tuple(roi_size, image_size_)
+
+ # in case that image size is smaller than roi size
+ image_size = tuple(
+ max(image_size_[i], roi_size[i]) for i in range(num_spatial_dims)
+ )
+ pad_size = []
+ for k in range(len(inputs.shape) - 1, 1, -1):
+ diff = max(roi_size[k - 2] - inputs.shape[k], 0)
+ half = diff // 2
+ pad_size.extend([half, diff - half])
+ if any(pad_size):
+ inputs = F.pad(
+ inputs,
+ pad=pad_size,
+ mode=look_up_option(padding_mode, PytorchPadMode),
+ value=cval,
+ )
+ if "labels" in kwargs.keys() and kwargs["labels"] is not None:
+ kwargs["labels"] = F.pad(
+ kwargs["labels"],
+ pad=pad_size,
+ mode=look_up_option(padding_mode, PytorchPadMode),
+ value=cval,
+ )
+ if "prev_mask" in kwargs.keys() and kwargs["prev_mask"] is not None:
+ kwargs["prev_mask"] = F.pad(
+ kwargs["prev_mask"],
+ pad=pad_size,
+ mode=look_up_option(padding_mode, PytorchPadMode),
+ value=cval,
+ )
+ if "point_coords" in kwargs.keys() and kwargs["point_coords"] is not None:
+ kwargs["point_coords"] = kwargs["point_coords"] + torch.tensor(
+ [pad_size[-2], pad_size[-4], pad_size[-6]]
+ ).to(kwargs["point_coords"].device)
+
+ # Store all slices
+ scan_interval = _get_scan_interval(image_size, roi_size, num_spatial_dims, overlap)
+ slices = dense_patch_slices(
+ image_size, roi_size, scan_interval, return_slice=not buffered
+ )
+
+ num_win = len(slices) # number of windows per image
+ total_slices = num_win * batch_size # total number of windows
+ windows_range: Iterable
+ if not buffered:
+ non_blocking = False
+ windows_range = range(0, total_slices, sw_batch_size)
+ else:
+ slices, n_per_batch, b_slices, windows_range = _create_buffered_slices(
+ slices, batch_size, sw_batch_size, buffer_dim, buffer_steps
+ )
+ non_blocking, _ss = torch.cuda.is_available(), -1
+ for x in b_slices[:n_per_batch]:
+ if x[1] < _ss: # detect overlapping slices
+ non_blocking = False
+ break
+ _ss = x[2]
+
+ # Create window-level importance map
+ valid_patch_size = get_valid_patch_size(image_size, roi_size)
+ if valid_patch_size == roi_size and (roi_weight_map is not None):
+ importance_map_ = roi_weight_map
+ else:
+ try:
+ valid_p_size = ensure_tuple(valid_patch_size)
+ importance_map_ = compute_importance_map(
+ valid_p_size,
+ mode=mode,
+ sigma_scale=sigma_scale,
+ device=sw_device,
+ dtype=compute_dtype,
+ )
+ if len(importance_map_.shape) == num_spatial_dims and not process_fn:
+ importance_map_ = importance_map_[
+ None, None
+ ] # adds batch, channel dimensions
+ except Exception as e:
+ raise RuntimeError(
+ f"patch size {valid_p_size}, mode={mode}, sigma_scale={sigma_scale}, device={device}\n"
+ "Seems to be OOM. Please try smaller patch size or mode='constant' instead of mode='gaussian'."
+ ) from e
+ importance_map_ = convert_data_type(
+ importance_map_, torch.Tensor, device=sw_device, dtype=compute_dtype
+ )[0]
+
+ # stores output and count map
+ output_image_list, count_map_list, sw_device_buffer, b_s, b_i = [], [], [], 0, 0 # type: ignore
+ # for each patch
+ for slice_g in tqdm(windows_range) if progress else windows_range:
+ slice_range = range(
+ slice_g,
+ min(
+ slice_g + sw_batch_size, b_slices[b_s][0] if buffered else total_slices
+ ),
+ )
+ unravel_slice = [
+ [slice(idx // num_win, idx // num_win + 1), slice(None)]
+ + list(slices[idx % num_win])
+ for idx in slice_range
+ ]
+ if sw_batch_size > 1:
+ win_data = torch.cat([inputs[win_slice] for win_slice in unravel_slice]).to(
+ sw_device
+ )
+ else:
+ win_data = inputs[unravel_slice[0]].to(sw_device)
+
+ seg_prob_out = predictor(
+ win_data, patch_coords=unravel_slice[0], *args, **kwargs
+ ) # batched patch
+
+ # convert seg_prob_out to tuple seg_tuple, this does not allocate new memory.
+ dict_keys, seg_tuple = _flatten_struct(seg_prob_out)
+ if process_fn:
+ seg_tuple, w_t = process_fn(seg_tuple, win_data, importance_map_)
+ else:
+ w_t = importance_map_
+ if len(w_t.shape) == num_spatial_dims:
+ w_t = w_t[None, None]
+ w_t = w_t.to(dtype=compute_dtype, device=sw_device)
+ if buffered:
+ c_start, c_end = b_slices[b_s][1:]
+ if not sw_device_buffer:
+ k = seg_tuple[0].shape[1] # len(seg_tuple) > 1 is currently ignored
+ sp_size = list(image_size)
+ sp_size[buffer_dim] = c_end - c_start
+ sw_device_buffer = [
+ torch.zeros(
+ size=[1, k, *sp_size], dtype=compute_dtype, device=sw_device
+ )
+ ]
+ for p, s in zip(seg_tuple[0], unravel_slice):
+ offset = s[buffer_dim + 2].start - c_start
+ s[buffer_dim + 2] = slice(offset, offset + roi_size[buffer_dim])
+ s[0] = slice(0, 1)
+ sw_device_buffer[0][s] += p * w_t
+ b_i += len(unravel_slice)
+ if b_i < b_slices[b_s][0]:
+ continue
+ else:
+ sw_device_buffer = list(seg_tuple)
+
+ for ss in range(len(sw_device_buffer)):
+ b_shape = sw_device_buffer[ss].shape
+ seg_chns, seg_shape = b_shape[1], b_shape[2:]
+ z_scale = None
+ if not buffered and seg_shape != roi_size:
+ z_scale = [
+ out_w_i / float(in_w_i)
+ for out_w_i, in_w_i in zip(seg_shape, roi_size)
+ ]
+ w_t = F.interpolate(w_t, seg_shape, mode=_nearest_mode)
+ if len(output_image_list) <= ss:
+ output_shape = [batch_size, seg_chns]
+ output_shape += (
+ [int(_i * _z) for _i, _z in zip(image_size, z_scale)]
+ if z_scale
+ else list(image_size)
+ )
+ # allocate memory to store the full output and the count for overlapping parts
+ new_tensor: Callable = torch.empty if non_blocking else torch.zeros # type: ignore
+ output_image_list.append(
+ new_tensor(output_shape, dtype=compute_dtype, device=device)
+ )
+ count_map_list.append(
+ torch.zeros(
+ [1, 1] + output_shape[2:], dtype=compute_dtype, device=device
+ )
+ )
+ w_t_ = w_t.to(device)
+ for __s in slices:
+ if z_scale is not None:
+ __s = tuple(
+ slice(int(_si.start * z_s), int(_si.stop * z_s))
+ for _si, z_s in zip(__s, z_scale)
+ )
+ count_map_list[-1][(slice(None), slice(None), *__s)] += w_t_
+ if buffered:
+ o_slice = [slice(None)] * len(inputs.shape)
+ o_slice[buffer_dim + 2] = slice(c_start, c_end)
+ img_b = b_s // n_per_batch # image batch index
+ o_slice[0] = slice(img_b, img_b + 1)
+ if non_blocking:
+ output_image_list[0][o_slice].copy_(
+ sw_device_buffer[0], non_blocking=non_blocking
+ )
+ else:
+ output_image_list[0][o_slice] += sw_device_buffer[0].to(
+ device=device
+ )
+ else:
+ sw_device_buffer[ss] *= w_t
+ sw_device_buffer[ss] = sw_device_buffer[ss].to(device)
+ _compute_coords(
+ unravel_slice, z_scale, output_image_list[ss], sw_device_buffer[ss]
+ )
+ sw_device_buffer = []
+ if buffered:
+ b_s += 1
+
+ if non_blocking:
+ torch.cuda.current_stream().synchronize()
+
+ # account for any overlapping sections
+ for ss in range(len(output_image_list)):
+ output_image_list[ss] /= count_map_list.pop(0)
+
+ # remove padding if image_size smaller than roi_size
+ if any(pad_size):
+ for ss, output_i in enumerate(output_image_list):
+ zoom_scale = [
+ _shape_d / _roi_size_d
+ for _shape_d, _roi_size_d in zip(output_i.shape[2:], roi_size)
+ ]
+ final_slicing: list[slice] = []
+ for sp in range(num_spatial_dims):
+ si = num_spatial_dims - sp - 1
+ slice_dim = slice(
+ int(round(pad_size[sp * 2] * zoom_scale[si])),
+ int(round((pad_size[sp * 2] + image_size_[si]) * zoom_scale[si])),
+ )
+ final_slicing.insert(0, slice_dim)
+ output_image_list[ss] = output_i[(slice(None), slice(None), *final_slicing)]
+
+ final_output = _pack_struct(output_image_list, dict_keys)
+ if temp_meta is not None:
+ final_output = convert_to_dst_type(final_output, temp_meta, device=device)[0]
+ else:
+ final_output = convert_to_dst_type(final_output, inputs, device=device)[0]
+
+ return final_output # type: ignore
+
+
+def _create_buffered_slices(
+ slices, batch_size, sw_batch_size, buffer_dim, buffer_steps
+):
+ """rearrange slices for buffering"""
+ slices_np = np.asarray(slices)
+ slices_np = slices_np[np.argsort(slices_np[:, buffer_dim, 0], kind="mergesort")]
+ slices = [tuple(slice(c[0], c[1]) for c in i) for i in slices_np]
+ slices_np = slices_np[:, buffer_dim]
+
+ _, _, _b_lens = np.unique(slices_np[:, 0], return_counts=True, return_index=True)
+ b_ends = np.cumsum(_b_lens).tolist() # possible buffer flush boundaries
+ x = [0, *b_ends][:: min(len(b_ends), int(buffer_steps))]
+ if x[-1] < b_ends[-1]:
+ x.append(b_ends[-1])
+ n_per_batch = len(x) - 1
+ windows_range = [
+ range(b * x[-1] + x[i], b * x[-1] + x[i + 1], sw_batch_size)
+ for b in range(batch_size)
+ for i in range(n_per_batch)
+ ]
+ b_slices = []
+ for _s, _r in enumerate(windows_range):
+ s_s = slices_np[windows_range[_s - 1].stop % len(slices) if _s > 0 else 0, 0]
+ s_e = slices_np[(_r.stop - 1) % len(slices), 1]
+ b_slices.append((_r.stop, s_s, s_e)) # buffer index, slice start, slice end
+ windows_range = itertools.chain(*windows_range) # type: ignore
+ return slices, n_per_batch, b_slices, windows_range
+
+
+def _compute_coords(coords, z_scale, out, patch):
+ """sliding window batch spatial scaling indexing for multi-resolution outputs."""
+ for original_idx, p in zip(coords, patch):
+ idx_zm = list(original_idx) # 4D for 2D image, 5D for 3D image
+ if z_scale:
+ for axis in range(2, len(idx_zm)):
+ idx_zm[axis] = slice(
+ int(original_idx[axis].start * z_scale[axis - 2]),
+ int(original_idx[axis].stop * z_scale[axis - 2]),
+ )
+ out[idx_zm] += p
+
+
+def _get_scan_interval(
+ image_size: Sequence[int],
+ roi_size: Sequence[int],
+ num_spatial_dims: int,
+ overlap: Sequence[float],
+) -> tuple[int, ...]:
+ """
+ Compute scan interval according to the image size, roi size and overlap.
+ Scan interval will be `int((1 - overlap) * roi_size)`, if interval is 0,
+ use 1 instead to make sure sliding window works.
+
+ """
+ if len(image_size) != num_spatial_dims:
+ raise ValueError(
+ f"len(image_size) {len(image_size)} different from spatial dims {num_spatial_dims}."
+ )
+ if len(roi_size) != num_spatial_dims:
+ raise ValueError(
+ f"len(roi_size) {len(roi_size)} different from spatial dims {num_spatial_dims}."
+ )
+
+ scan_interval = []
+ for i, o in zip(range(num_spatial_dims), overlap):
+ if roi_size[i] == image_size[i]:
+ scan_interval.append(int(roi_size[i]))
+ else:
+ interval = int(roi_size[i] * (1 - o))
+ scan_interval.append(interval if interval > 0 else 1)
+ return tuple(scan_interval)
+
+
+def _flatten_struct(seg_out):
+ dict_keys = None
+ seg_probs: tuple[torch.Tensor, ...]
+ if isinstance(seg_out, torch.Tensor):
+ seg_probs = (seg_out,)
+ elif isinstance(seg_out, Mapping):
+ dict_keys = sorted(seg_out.keys()) # track predictor's output keys
+ seg_probs = tuple(seg_out[k] for k in dict_keys)
+ else:
+ seg_probs = ensure_tuple(seg_out)
+ return dict_keys, seg_probs
+
+
+def _pack_struct(seg_out, dict_keys=None):
+ if dict_keys is not None:
+ return dict(zip(dict_keys, seg_out))
+ if isinstance(seg_out, (list, tuple)) and len(seg_out) == 1:
+ return seg_out[0]
+ return ensure_tuple(seg_out)
diff --git a/vista3d/scripts/train.py b/vista3d/scripts/train.py
new file mode 100644
index 0000000..e9beb8e
--- /dev/null
+++ b/vista3d/scripts/train.py
@@ -0,0 +1,1028 @@
+# Copyright (c) MONAI Consortium
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+# http://www.apache.org/licenses/LICENSE-2.0
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from __future__ import annotations
+
+import logging
+import math
+import os
+import sys
+import time
+import warnings
+from datetime import timedelta
+from functools import partial
+from typing import Optional, Sequence, Union
+
+import monai
+import nibabel as nib
+import numpy as np
+import torch
+import torch.distributed as dist
+import yaml
+from data.datasets import (
+ compute_dataset_weights,
+ get_class_names,
+ get_datalist_with_dataset_name,
+ get_datalist_with_dataset_name_and_transform,
+)
+from monai import transforms
+from monai.apps.auto3dseg.auto_runner import logger
+from monai.apps.utils import DEFAULT_FMT
+from monai.bundle import ConfigParser
+from monai.bundle.scripts import _pop_args, _update_args
+from monai.data import DataLoader, DistributedSampler, DistributedWeightedRandomSampler
+from monai.metrics import compute_dice
+from monai.networks.utils import copy_model_state
+from monai.utils import optional_import, set_determinism
+from torch.nn.parallel import DistributedDataParallel
+from torch.utils.data.sampler import RandomSampler, WeightedRandomSampler
+from torch.utils.tensorboard import SummaryWriter
+from tqdm import tqdm
+
+from vista3d import vista_model_registry
+
+from .sliding_window import sliding_window_inference
+from .utils.sample_utils import Point_sampler
+from .utils.trans_utils import DatasetSelectTansformd, RelabelD
+from .utils.workflow_utils import (
+ MERGE_LIST,
+ USE_SV_GT_LIST,
+ generate_prompt_pairs,
+ get_next_points,
+ none_cat,
+ sample_points_patch_val,
+)
+
+nib.imageglobals.logger.setLevel(40)
+RankFilter, _ = optional_import("monai.utils", name="RankFilter")
+CONFIG = {
+ "version": 1,
+ "disable_existing_loggers": False,
+ "formatters": {"monai_default": {"format": DEFAULT_FMT}},
+ "loggers": {
+ "monai.apps.auto3dseg.auto_runner": {
+ "handlers": ["file", "console"],
+ "level": "DEBUG",
+ "propagate": False,
+ },
+ "data.analyzer": {
+ "handlers": ["file", "console"],
+ "level": "INFO",
+ "propagate": False,
+ },
+ "data.datasets": {
+ "handlers": ["file", "console"],
+ "level": "INFO",
+ "propagate": False,
+ },
+ },
+ "filters": {"rank_filter": {"()": RankFilter}},
+ "handlers": {
+ "file": {
+ "class": "logging.FileHandler",
+ "filename": "runner.log",
+ "mode": "a", # append or overwrite
+ "level": "DEBUG",
+ "formatter": "monai_default",
+ "filters": ["rank_filter"],
+ },
+ "console": {
+ "class": "logging.StreamHandler",
+ "level": "INFO",
+ "formatter": "monai_default",
+ "filters": ["rank_filter"],
+ },
+ },
+}
+
+
+def infer_wrapper(inputs, model, **kwargs):
+ """VISTA3D output is [B, 1, H, W, D], which segment B foregrounds and stacked at the batch dimension.
+ Sliding-window inferer requires [1, B, H, W, D]. The function is used only for sliding-window inference.
+ """
+ outputs = model(input_images=inputs, **kwargs)
+ return outputs.transpose(1, 0)
+
+
+def loss_wrapper(pred, label, loss_function):
+ return loss_function(pred, label)
+
+
+def run(config_file: Optional[Union[str, Sequence[str]]] = None, **override):
+ # Initialize distributed and scale parameters based on GPU memory
+ if torch.cuda.device_count() > 1:
+ dist.init_process_group(
+ backend="nccl", init_method="env://", timeout=timedelta(seconds=3600)
+ )
+ world_size = dist.get_world_size()
+ dist.barrier()
+ else:
+ world_size = 1
+ logging.basicConfig(stream=sys.stdout, level=logging.INFO)
+ if isinstance(config_file, str) and "," in config_file:
+ config_file = config_file.split(",")
+ _args = _update_args(config_file=config_file, **override)
+ config_file_ = _pop_args(_args, "config_file")[0]
+
+ parser = ConfigParser()
+ parser.read_config(config_file_)
+ parser.update(pairs=_args)
+
+ # loggings and experiment pathes
+ start_time = time.time()
+ bundle_root = parser.get_parsed_content("bundle_root")
+ ckpt_path = parser.get_parsed_content("ckpt_path")
+ os.makedirs(ckpt_path, exist_ok=True)
+ if world_size == 1 or dist.get_rank() == 0:
+ writer = SummaryWriter(log_dir=os.path.join(ckpt_path, "Events"))
+ with open(os.path.join(ckpt_path, "accuracy_history.csv"), "a") as f:
+ f.write("epoch\tmetric\tloss\tlr\ttime\titer\n")
+ metric_dim = (
+ parser.get_parsed_content("output_classes") - 1
+ ) # only affect dice calculation
+ random_seed = parser.get_parsed_content("random_seed")
+ save_last = parser.get_parsed_content(
+ "save_last", default=False
+ ) # save the last checkpoint
+ save_all = parser.get_parsed_content(
+ "save_all", default=False
+ ) # save all val-checkpoint
+ if world_size == 1 or dist.get_rank() == 0:
+ config_yaml = os.path.join(bundle_root, "configs.yaml")
+ ConfigParser.export_config_file(
+ parser.get(), config_yaml, fmt="yaml", default_flow_style=None
+ )
+ if random_seed is not None and (
+ isinstance(random_seed, int) or isinstance(random_seed, float)
+ ):
+ set_determinism(seed=random_seed)
+ CONFIG["handlers"]["file"]["filename"] = parser.get_parsed_content(
+ "log_output_file"
+ )
+ logging.config.dictConfig(CONFIG)
+ logging.getLogger("torch.distributed.distributed_c10d").setLevel(logging.WARNING)
+
+ # training hyperparameters - workflow
+ device = (
+ torch.device(f"cuda:{os.environ['LOCAL_RANK']}")
+ if world_size > 1
+ else torch.device("cuda:0")
+ )
+ amp = parser.get_parsed_content("amp")
+ if amp:
+ from torch.cuda.amp import GradScaler, autocast
+
+ scaler = GradScaler()
+ logger.debug("Amp enabled")
+ finetune = parser.get_parsed_content("finetune")
+ num_epochs = parser.get_parsed_content("num_epochs")
+ num_epochs_per_validation = parser.get_parsed_content("num_epochs_per_validation")
+ weighted_sampling = parser.get_parsed_content(
+ "weighted_sampling"
+ ) # perform dataset weighted sample using dataset_weights.yaml
+ skip_iter_prob = parser.get_parsed_content(
+ "skip_iter_prob"
+ ) # prob. to skip iterative point sampling, 1 for auto-training
+ iter_num = parser.get_parsed_content(
+ "iter_num"
+ ) # total iter number in point branch training
+ freeze_epoch = parser.get_parsed_content(
+ "freeze_epoch", default=-1
+ ) # freeze the whole branch epoch
+ freeze_head = parser.get_parsed_content(
+ "freeze_head", default="auto"
+ ) # freeze which branch, "auto" or "point". We freeze point for auto-training.
+ logger.debug(f"World_size: {world_size}")
+ logger.debug(f"num_epochs: {num_epochs}")
+ logger.debug(f"num_epochs_per_validation: {num_epochs_per_validation}")
+
+ # training hyperparameters - model and optimizer
+ input_channels = parser.get_parsed_content("input_channels")
+ model_registry = parser.get_parsed_content("model")
+ patch_size = parser.get_parsed_content("patch_size")
+ model = vista_model_registry[model_registry](
+ in_channels=input_channels, image_size=patch_size
+ )
+ model = model.to(device)
+ optimizer_part = parser.get_parsed_content("optimizer", instantiate=False)
+ optimizer = optimizer_part.instantiate(params=model.parameters())
+ lr_scheduler_part = parser.get_parsed_content("lr_scheduler", instantiate=False)
+ lr_scheduler = lr_scheduler_part.instantiate(optimizer=optimizer)
+ if world_size > 1:
+ model = DistributedDataParallel(
+ model, device_ids=[device], find_unused_parameters=True
+ )
+ if finetune["activate"] and os.path.isfile(finetune["pretrained_ckpt_name"]):
+ logger.debug(
+ "Fine-tuning pre-trained checkpoint {:s}".format(
+ finetune["pretrained_ckpt_name"]
+ )
+ )
+ pretrained_ckpt = torch.load(
+ finetune["pretrained_ckpt_name"], map_location=device
+ )
+ copy_model_state(
+ model, pretrained_ckpt, exclude_vars=finetune.get("exclude_vars")
+ )
+ del pretrained_ckpt
+ else:
+ logger.debug("Training from scratch")
+
+ # training hyperparameters - sample
+ num_images_per_batch = parser.get_parsed_content("num_images_per_batch")
+ num_patches_per_iter = parser.get_parsed_content("num_patches_per_iter")
+ overlap_ratio = parser.get_parsed_content("overlap_ratio") # sliding window overlap
+ max_prompt = parser.get_parsed_content("max_prompt", default=96)
+ max_backprompt = parser.get_parsed_content("max_backprompt", default=96)
+ max_foreprompt = parser.get_parsed_content("max_foreprompt", default=96)
+ drop_label_prob = parser.get_parsed_content("drop_label_prob")
+ drop_point_prob = parser.get_parsed_content("drop_point_prob")
+ max_point = parser.get_parsed_content("max_point")
+ balance_gt = parser.get_parsed_content("balance_gt", default=False)
+
+ # training hyperparameters - data and transforms
+ fold = parser.get_parsed_content("fold")
+ json_dir = parser.get_parsed_content(
+ "json_dir", default="./data/jsons"
+ ) # path to json datalists
+ train_datasets = parser.get_parsed_content("train_datasets", default=None)
+ val_datasets = parser.get_parsed_content("val_datasets", default=None)
+ train_transforms = parser.get_parsed_content(
+ "transforms_train#transforms", default=None
+ )
+ val_transforms = parser.get_parsed_content(
+ "transforms_validate#transforms", default=None
+ )
+ post_pred = transforms.Compose(
+ [
+ transforms.EnsureType(),
+ transforms.AsDiscrete(threshold=0.0, dtype=torch.uint8),
+ ]
+ )
+ class_names = get_class_names(json_dir=json_dir)
+ label_mappings = dict(
+ ConfigParser.load_config_file(os.path.join(json_dir, "label_mappings.json"))
+ )
+ image_key, label_key, label_sv_key, pseudo_label_key = (
+ parser.get_parsed_content("image_key", default="image"),
+ parser.get_parsed_content("label_key", default="label"),
+ parser.get_parsed_content("label_sv_key", default="label_sv"),
+ parser.get_parsed_content("pseudo_label_key", default="pseudo_label"),
+ )
+ train_files, _, dataset_specific_transforms, dataset_specific_transforms_val = (
+ get_datalist_with_dataset_name_and_transform(
+ datasets=train_datasets,
+ fold_idx=fold,
+ image_key=image_key,
+ label_key=label_key,
+ label_sv_key=label_sv_key,
+ pseudo_label_key=pseudo_label_key,
+ num_patches_per_image=parser.get_parsed_content("num_patches_per_image"),
+ patch_size=parser.get_parsed_content("patch_size"),
+ json_dir=json_dir,
+ )
+ )
+
+ _, val_files = get_datalist_with_dataset_name(
+ datasets=val_datasets, fold_idx=fold, json_dir=json_dir
+ )
+ if world_size > 1:
+ if len(val_files) < world_size:
+ val_files = list(val_files) * math.ceil(
+ float(world_size) / float(len(val_files))
+ )
+ logger.debug(f"Train_files: {len(train_files)}")
+ logger.debug(f"Val_files: {len(val_files)}")
+
+ if train_transforms is not None:
+ # Add dataset-specific transforms to over-sample certain labels
+ dataset_select_transform = DatasetSelectTansformd(
+ [image_key, label_key], dataset_specific_transforms
+ )
+ train_transforms[
+ train_transforms.index("Placeholder for dataset-specific transform")
+ ] = dataset_select_transform
+ logger.debug("using dataset-specific transforms")
+ for k, v in dataset_specific_transforms.items():
+ logger.debug(k)
+ logger.debug(v.transforms)
+ train_transforms.append(
+ RelabelD(label_key, label_mappings=label_mappings, dtype=torch.int32)
+ )
+ train_transforms = transforms.Compose(train_transforms)
+
+ if val_transforms is not None:
+ dataset_select_transform_val = DatasetSelectTansformd(
+ [image_key, label_key], dataset_specific_transforms_val
+ )
+ val_transforms[
+ val_transforms.index("Placeholder for dataset-specific transform")
+ ] = dataset_select_transform_val
+ logger.debug("using dataset-specific transforms for validation")
+ for k, v in dataset_specific_transforms_val.items():
+ logger.debug(k)
+ try:
+ logger.debug(v.transforms)
+ except BaseException:
+ logger.debug(v)
+ val_transforms = transforms.Compose(val_transforms)
+
+ with warnings.catch_warnings():
+ warnings.simplefilter(action="ignore", category=FutureWarning)
+ warnings.simplefilter(action="ignore", category=Warning)
+ train_ds, val_ds = None, None
+ train_ds = monai.data.Dataset(
+ data=train_files * num_epochs_per_validation, transform=train_transforms
+ )
+ val_ds = monai.data.Dataset(data=val_files, transform=val_transforms)
+
+ train_sampler, val_sampler = None, None
+ train_w = None
+ if weighted_sampling:
+ train_w = (
+ compute_dataset_weights(
+ train_files, weight_path="./data/dataset_weights.yaml"
+ )
+ * num_epochs_per_validation
+ )
+ logger.debug("using uniform sample")
+ if world_size > 1:
+ train_sampler = DistributedWeightedRandomSampler(train_ds, train_w)
+ val_sampler = DistributedSampler(
+ val_ds, shuffle=False, even_divisible=False
+ )
+ else:
+ train_sampler = WeightedRandomSampler(train_w, len(train_files))
+ else:
+ if world_size > 1:
+ train_sampler = DistributedSampler(train_ds, shuffle=True)
+ val_sampler = DistributedSampler(
+ val_ds, shuffle=False, even_divisible=False
+ )
+ else:
+ train_sampler = RandomSampler(train_ds)
+ train_loader = DataLoader(
+ train_ds,
+ num_workers=4,
+ batch_size=num_images_per_batch,
+ shuffle=(train_sampler is None),
+ persistent_workers=True,
+ pin_memory=True,
+ sampler=train_sampler,
+ prefetch_factor=1,
+ )
+ val_loader = DataLoader(
+ val_ds,
+ num_workers=4,
+ batch_size=1,
+ shuffle=False,
+ sampler=val_sampler,
+ prefetch_factor=1,
+ persistent_workers=False,
+ )
+
+ # --------- Start training ---------
+ """ Notes: The training script is directly modified from auto3dseg.
+ To increase speed, the training script is not based on epoch, but based on validation rounds.
+ In each batch, num_images_per_batch=2 whole 3D images are loaded into CPU for data transformation
+ num_patches_per_image=2*num_patches_per_iter is extracted from each 3D image, in each iteration,
+ num_patches_per_iter patches is used for training (real batch size on each GPU).
+ """
+ num_rounds = int(np.ceil(float(num_epochs) // float(num_epochs_per_validation)))
+ best_metric = -1
+ best_metric_epoch = -1
+ idx_iter = 0
+ if num_rounds == 0:
+ raise RuntimeError(
+ "num_epochs_per_validation > num_epochs, modify hyper_parameters.yaml"
+ )
+
+ if world_size == 1 or dist.get_rank() == 0:
+ progress_bar = tqdm(
+ range(num_rounds),
+ desc=f"{os.path.basename(bundle_root)} - training ...",
+ unit="round",
+ )
+ for _round in (
+ range(num_rounds) if world_size > 1 and dist.get_rank() != 0 else progress_bar
+ ):
+ model.train()
+ epoch_loss = 0
+ loss_torch = torch.zeros(2, dtype=torch.float, device=device) + 1e-5
+ step = 0
+ e_time = time.time()
+ if world_size > 1:
+ train_loader.sampler.set_epoch(_round)
+ for batch_data in train_loader:
+ # for batch_data in cycle_k(train_loader):
+ s_time = time.time()
+ # if step % (len(train_loader)) == 0:
+ if step % (len(train_loader) // num_epochs_per_validation) == 0:
+ epoch = _round * num_epochs_per_validation + step // (
+ len(train_loader) // num_epochs_per_validation
+ )
+ lr_scheduler.step()
+ lr = lr_scheduler.get_last_lr()[0]
+ if freeze_epoch > epoch:
+ # if automatic branch is frozen, drop label prompts
+ if freeze_head == "auto":
+ drop_label_prob_train = 1
+ drop_point_prob_train = 0
+ auto_freeze = True
+ point_freeze = False
+ elif freeze_head == "point":
+ drop_label_prob_train = 0
+ drop_point_prob_train = 1
+ auto_freeze = False
+ point_freeze = True
+ try:
+ model.module.set_auto_grad(
+ auto_freeze=auto_freeze, point_freeze=point_freeze
+ )
+ except BaseException:
+ model.set_auto_grad(
+ auto_freeze=auto_freeze, point_freeze=point_freeze
+ )
+ if world_size == 1 or dist.get_rank() == 0:
+ logger.debug(
+ f"Auto freeze {auto_freeze}, point freeze {point_freeze} at epoch {epoch}!"
+ )
+ else:
+ drop_label_prob_train = drop_label_prob
+ drop_point_prob_train = drop_point_prob
+ try:
+ model.module.set_auto_grad(
+ auto_freeze=False, point_freeze=False
+ )
+ except BaseException:
+ model.set_auto_grad(auto_freeze=False, point_freeze=False)
+ if world_size == 1 or dist.get_rank() == 0:
+ logger.debug(
+ f"Auto freeze {False}, point freeze {False} at epoch {epoch}!"
+ )
+
+ if world_size == 1 or dist.get_rank() == 0:
+ logger.debug("----------")
+ logger.debug(f"epoch {epoch}/{num_epochs}")
+ logger.debug(f"Learning rate is set to {lr}")
+ step += 1
+ inputs_l = batch_data["image"].as_subclass(torch.Tensor)
+ if "label" not in batch_data:
+ # this will only happen for unlabeled dataset, converting pseudo-label to manual label
+ batch_data["label"] = batch_data.pop("pseudo_label")
+ labels_l = batch_data["label"].as_subclass(torch.Tensor)
+ labels_sv_l = (
+ batch_data["label_sv"].as_subclass(torch.Tensor)
+ if "label_sv" in batch_data
+ else None
+ )
+ labels_p_l = (
+ batch_data["pseudo_label"].as_subclass(torch.Tensor)
+ if "pseudo_label" in batch_data
+ else None
+ )
+
+ # if pseudo_label_reliability does not exist, treat as reliable
+ if labels_p_l is not None:
+ pl_reliability_l = batch_data.get(
+ "pseudo_label_reliability", torch.ones(labels_p_l.shape[0], 1)
+ )
+ else:
+ pl_reliability_l = None
+ ds_l = batch_data["dataset_name"]
+
+ if len(inputs_l) > 1:
+ _idx = torch.randperm(inputs_l.shape[0])
+ inputs_l = inputs_l[_idx]
+ labels_l = labels_l[_idx]
+ labels_sv_l = labels_sv_l[_idx] if labels_sv_l is not None else None
+ labels_p_l = labels_p_l[_idx] if labels_p_l is not None else None
+ pl_reliability_l = (
+ pl_reliability_l[_idx] if pl_reliability_l is not None else None
+ )
+ ds_l = [ds_l[int(_d_i)] for _d_i in _idx]
+
+ for _k in range(inputs_l.shape[0] // num_patches_per_iter):
+ inputs = inputs_l[
+ _k * num_patches_per_iter : (_k + 1) * num_patches_per_iter, ...
+ ]
+ labels = labels_l[
+ _k * num_patches_per_iter : (_k + 1) * num_patches_per_iter, ...
+ ]
+ labels_sv = (
+ labels_sv_l[
+ _k * num_patches_per_iter : (_k + 1) * num_patches_per_iter, ...
+ ]
+ if labels_sv_l is not None
+ else None
+ )
+
+ inputs = inputs.to(device)
+ labels = labels.to(device)
+ labels_sv = labels_sv.to(device) if labels_sv is not None else None
+
+ ds_name = ds_l[_k]
+ # label_mapping does not contain unlabeled dataset, use totalsegv2's labelmapping for unlabeled datasets.
+ try:
+ train_label_set = {_xx[1] for _xx in label_mappings[ds_name]}
+ except BaseException:
+ train_label_set = {
+ _xx[1] for _xx in label_mappings["TotalSegmentatorV2"]
+ }
+ # hepatic vessel and airway are generated in pseudolabel generation
+ train_label_set_pseudo = {
+ _xx[1] for _xx in label_mappings["TotalSegmentatorV2"]
+ } | {25, 132}
+
+ pl_reliability = (
+ pl_reliability_l[
+ _k * num_patches_per_iter : (_k + 1) * num_patches_per_iter, ...
+ ]
+ if pl_reliability_l is not None
+ else None
+ )
+ labels_p = None
+ if pl_reliability is not None and pl_reliability > 0:
+ labels_p = (
+ labels_p_l[
+ _k * num_patches_per_iter : (_k + 1) * num_patches_per_iter,
+ ...,
+ ]
+ if labels_p_l is not None
+ else None
+ )
+ labels_p = labels_p.to(device) if labels_p is not None else None
+ # decide if use iterative training and sync across all ranks
+ if world_size > 1:
+ if dist.get_rank() == 0:
+ skip_iter = (torch.rand(1) < skip_iter_prob).to(
+ dtype=torch.float, device=device
+ )
+ else:
+ skip_iter = torch.empty(1).to(dtype=torch.float, device=device)
+ dist.broadcast(skip_iter, src=0)
+ else:
+ skip_iter = (torch.rand(1) < skip_iter_prob).float()
+ if skip_iter > 0:
+ # if not using iterative
+ num_iters = 1
+ else:
+ # if use iterative training
+ num_iters = max(iter_num, 1)
+
+ point_sampler = None
+ point_sampler_pseudo = None
+ # for dataset other than totalseg, use pseudolabel for zero-shot. for totalseg, if labels_p exist, use labels_p for zero-shot,
+ # gt for regular sample. If labels_p does not exist, use gt for zero-shot.
+ if labels_sv is not None:
+ if labels_p is not None:
+ point_sampler_pseudo = Point_sampler(
+ label=labels_p[0, 0],
+ label_sv=labels_sv[0, 0],
+ map_shift=512,
+ )
+ elif ds_name in USE_SV_GT_LIST:
+ point_sampler = Point_sampler(
+ label=labels[0, 0], label_sv=labels_sv[0, 0], map_shift=512
+ )
+
+ label_prompt, point, point_label, prompt_class = generate_prompt_pairs(
+ labels,
+ train_label_set,
+ max_point=max_point,
+ max_prompt=max_prompt,
+ max_backprompt=max_backprompt,
+ max_foreprompt=max_foreprompt,
+ drop_label_prob=drop_label_prob_train,
+ drop_point_prob=drop_point_prob_train,
+ point_sampler=point_sampler,
+ )
+ (
+ label_prompt_pseudo,
+ point_pseudo,
+ point_label_pseudo,
+ prompt_class_pseudo,
+ ) = (None, None, None, None)
+
+ if labels_p is not None:
+ (
+ label_prompt_pseudo,
+ point_pseudo,
+ point_label_pseudo,
+ prompt_class_pseudo,
+ ) = generate_prompt_pairs(
+ labels_p,
+ train_label_set_pseudo,
+ max_point=max_point,
+ max_prompt=max_prompt,
+ max_backprompt=max_backprompt,
+ max_foreprompt=max_foreprompt,
+ drop_label_prob=drop_label_prob_train,
+ drop_point_prob=drop_point_prob_train,
+ point_sampler=point_sampler_pseudo,
+ )
+ # point sampler updates the labels internally.
+ if point_sampler is not None and prompt_class is not None:
+ # update the labels. The shifted prompt index means zero-shot index.
+ labels = point_sampler.label.unsqueeze(0).unsqueeze(0)
+ shifted = point_sampler.shifted
+ for i, p in enumerate(prompt_class):
+ if p in list(shifted.keys()):
+ prompt_class[i] = shifted[p.item()]
+ del point_sampler
+ if point_sampler_pseudo is not None and prompt_class_pseudo is not None:
+ # update the labels. The shifted prompt index means zero-shot index.
+ labels_p = point_sampler_pseudo.label.unsqueeze(0).unsqueeze(0)
+ shifted = point_sampler_pseudo.shifted
+ for i, p in enumerate(prompt_class_pseudo):
+ if p in list(shifted.keys()):
+ prompt_class_pseudo[i] = shifted[p.item()]
+ del point_sampler_pseudo
+ torch.cuda.empty_cache()
+ # Skip the training if prompts are both None
+ skip_update = torch.zeros(1, device=device)
+ if (
+ label_prompt is None
+ and point is None
+ and label_prompt_pseudo is None
+ and point_pseudo is None
+ ):
+ logger.debug(f"Iteration skipped due to None prompts at {ds_name}")
+ skip_update = torch.ones(1, device=device)
+ if world_size > 1:
+ dist.all_reduce(skip_update, op=dist.ReduceOp.SUM)
+ if skip_update[0] > 0:
+ continue # some rank has no foreground, skip this batch
+ # clear image_embedding
+ try:
+ model.module.clear_cache()
+ except BaseException:
+ model.clear_cache()
+ for click_indx in range(num_iters):
+ outputs = None
+ inputs = inputs.to(device)
+ labels = labels.to(device)
+ labels_p = labels_p.to(device) if labels_p is not None else None
+ # only sinlge point prompt case activate multi-mask output
+ loss_function = partial(
+ loss_wrapper, loss_function=parser.get_parsed_content("loss")
+ )
+ with autocast():
+ outputs = model(
+ input_images=inputs,
+ point_coords=none_cat(point, point_pseudo),
+ point_labels=none_cat(point_label, point_label_pseudo),
+ class_vector=none_cat(label_prompt, label_prompt_pseudo),
+ prompt_class=none_cat(prompt_class, prompt_class_pseudo),
+ )
+ # cumulate loss
+ loss, loss_n = torch.tensor(0.0, device=device), torch.tensor(
+ 0.0, device=device
+ )
+ ps_start = len(prompt_class) if prompt_class is not None else 0
+ if prompt_class is not None:
+ for idx in range(len(prompt_class)):
+ if prompt_class[idx] == 0:
+ continue # skip background class
+ loss_n += 1.0
+ gt = labels == prompt_class[idx]
+ if prompt_class[idx].item() in MERGE_LIST.keys():
+ for m in MERGE_LIST[prompt_class[idx].item()]:
+ gt = torch.logical_or(gt, labels == m)
+ loss += loss_function(outputs[[idx]].float(), gt)
+
+ if prompt_class_pseudo is not None:
+ if balance_gt:
+ multiplier = len(prompt_class_pseudo) / len(prompt_class)
+ loss *= multiplier
+ for idx in range(len(prompt_class_pseudo)):
+ if prompt_class_pseudo[idx] == 0:
+ continue # skip background class
+ loss_n += 1.0
+ gt = labels_p == prompt_class_pseudo[idx]
+ if prompt_class_pseudo[idx].item() in MERGE_LIST.keys():
+ for m in MERGE_LIST[prompt_class_pseudo[idx].item()]:
+ gt = torch.logical_or(gt, labels_p == m)
+ loss += loss_function(outputs[[idx + ps_start]].float(), gt)
+
+ loss /= max(loss_n, 1.0)
+ print(loss, ds_name)
+ if num_iters > 1:
+ if click_indx != num_iters - 1: # do not sample at last iter
+ outputs.sigmoid_()
+ if prompt_class is not None:
+ point, point_label = get_next_points(
+ outputs[: len(prompt_class)],
+ labels,
+ prompt_class,
+ point,
+ point_label,
+ )
+ if prompt_class_pseudo is not None:
+ point_pseudo, point_label_pseudo = get_next_points(
+ outputs[ps_start:],
+ labels_p,
+ prompt_class_pseudo,
+ point_pseudo,
+ point_label_pseudo,
+ )
+ # stop iterative if no new points are added.
+ skip_this_iter = torch.tensor(False, device=device)
+ if prompt_class is not None:
+ if torch.all(point_label[:, -1] == -1) and torch.all(
+ point_label[:, -2] == -1
+ ):
+ skip_this_iter = torch.tensor(True, device=device)
+ if prompt_class_pseudo is not None:
+ if torch.all(
+ point_label_pseudo[:, -1] == -1
+ ) and torch.all(point_label_pseudo[:, -2] == -1):
+ skip_this_iter = torch.tensor(True, device=device)
+
+ if world_size > 1:
+ dist.all_reduce(
+ skip_this_iter, op=dist.ReduceOp.PRODUCT
+ )
+ skip_this_iter = bool(skip_this_iter.item())
+ if skip_this_iter:
+ print(f"iteration end at {click_indx}")
+ logger.info(f"iteration end at {click_indx}")
+ break
+ del outputs
+ torch.cuda.empty_cache()
+
+ for param in model.parameters():
+ param.grad = None
+ inputs = inputs.to("cpu")
+ labels = labels.to("cpu")
+ labels_p = labels_p.to("cpu") if labels_p is not None else None
+ scaler.scale(loss).backward()
+ scaler.unscale_(optimizer)
+ scaler.step(optimizer)
+ scaler.update()
+
+ epoch_loss += loss.item()
+ loss_torch[0] += loss.item()
+ loss_torch[1] += 1.0
+ epoch_len = len(train_loader)
+ idx_iter += 1
+ if world_size == 1 or dist.get_rank() == 0:
+ logger.debug(
+ f"{time.time() - s_time:.4f} {step}/{epoch_len}, train_loss: {loss.item():.4f}"
+ )
+ writer.add_scalar(
+ "train/loss", loss.item(), epoch_len * _round + step
+ )
+
+ if world_size > 1:
+ dist.all_reduce(loss_torch, op=torch.distributed.ReduceOp.SUM)
+
+ loss_torch = loss_torch.tolist()
+ if world_size == 1 or dist.get_rank() == 0:
+ loss_torch_epoch = loss_torch[0] / loss_torch[1]
+ logger.debug(
+ f"{time.time() - e_time:.4f} Epoch {epoch} average loss: {loss_torch_epoch:.4f}, "
+ f"best mean dice: {best_metric:.4f} at epoch {best_metric_epoch}"
+ )
+ try:
+ del inputs, labels, inputs_l, labels_l, batch_data, labels_sv_l
+ except BaseException:
+ pass
+ torch.cuda.empty_cache()
+
+ # --------- Start Validation ---------
+ """ Note:
+ In training transform, labels are mapped to global index with Relabel transform. However, there could be local index that are not used since it can excluded
+ from label_mapping definition. In training sample generation, training pairs will only be sampled from label_set. In validation, the label_prompt
+ will use global mapping, but the val label is not mapped to global index, so we need the val_orig_set. Notice the compute_dice assume gt label starts
+ from 0,1,2,3,4,.... If some are index are not used (not defined in label_mapping.json thus label_set does not include them), compute_dice directly will give wrong
+ number. We calculate dice for each class with a for loop.
+ """
+ model.eval()
+ model_inferer = partial(infer_wrapper, model=model)
+ with torch.no_grad():
+ # for metric, index 2*c is the dice for class c, and 2*c + 1 is the not-nan counts for class c
+ metric = torch.zeros(metric_dim * 2, dtype=torch.float, device=device)
+ for _index, val_data in enumerate(val_loader):
+ val_filename = val_data["image"].meta["filename_or_obj"][0]
+ val_data["label"] = val_data["label"].as_subclass(torch.Tensor)
+ val_data["image"] = val_data["image"].as_subclass(torch.Tensor)
+ ds_l = val_data["dataset_name"][0] # assume batch_size=1
+ val_label_set = [0] + [_xx[1] for _xx in label_mappings[ds_l]]
+ val_orig_set = [0] + [_xx[0] for _xx in label_mappings[ds_l]]
+ # special handling of Bone lesion dataset
+ if ds_l == "Bone-NIH":
+ val_label_set = val_label_set[:-1]
+ val_orig_set = val_orig_set[:-1]
+ # merge bone lesion 1 and 2
+ val_data["label"][val_data["label"] == 2] = 1
+
+ for _device_in, _device_out in zip(
+ [device, device, "cpu"], [device, "cpu", "cpu"]
+ ):
+ try:
+ label_prompt = (
+ torch.tensor(val_label_set).to(device).unsqueeze(0)
+ )
+ prompt_class = torch.ones(len(val_orig_set), 1).to(
+ device
+ ) # supported class
+ if drop_point_prob_train > 0.99 or (
+ freeze_head == "point" and freeze_epoch > 0
+ ):
+ point = None
+ point_label = None
+ if drop_label_prob_train > 0.99 or (
+ freeze_head == "auto" and freeze_epoch > 0
+ ):
+ label_prompt = None
+ with autocast(enabled=amp):
+ val_outputs = None
+ torch.cuda.empty_cache()
+ val_outputs = sliding_window_inference(
+ inputs=val_data["image"].to(_device_in),
+ roi_size=patch_size,
+ sw_batch_size=1,
+ predictor=model_inferer,
+ mode="gaussian",
+ overlap=overlap_ratio,
+ sw_device=device,
+ device=_device_out,
+ point_coords=None,
+ point_labels=None,
+ class_vector=label_prompt,
+ prompt_class=prompt_class,
+ labels=val_data["label"].to(_device_in),
+ label_set=val_orig_set,
+ val_point_sampler=partial(
+ sample_points_patch_val,
+ mapped_label_set=val_label_set,
+ max_ppoint=1,
+ use_center=True,
+ ),
+ )
+ try:
+ val_outputs = post_pred(val_outputs[0, ...])
+ except BaseException:
+ val_outputs = post_pred(val_outputs[0, ...].to("cpu"))
+ finished = True
+
+ except RuntimeError as e:
+ if not any(
+ x in str(e).lower() for x in ("memory", "cuda", "cudnn")
+ ):
+ raise e
+ logger.warning(e)
+ finished = False
+
+ if finished:
+ break
+
+ if finished:
+ del val_data["image"]
+ value = torch.full((1, metric_dim), float("nan")).to(device)
+ val_outputs = val_outputs[None, ...]
+ value_l = []
+ for i in range(1, len(val_orig_set)):
+ gt = val_data["label"].to(val_outputs.device) == val_orig_set[i]
+ value_l.append(
+ compute_dice(
+ y_pred=val_outputs[:, [i]],
+ y=gt,
+ include_background=False,
+ )
+ )
+ value_l = torch.hstack(value_l).to(device)
+ for _v_i, _v_c in enumerate(value_l[0]):
+ value[0, val_label_set[_v_i + 1] - 1] = _v_c
+ else:
+ # During training, allow validation OOM for some big data to avoid crush.
+ logger.debug(
+ f"{val_filename} is skipped due to OOM, using NaN dice values"
+ )
+ value = torch.full((1, metric_dim), float("nan")).to(device)
+
+ # remove temp variables to save memory.
+ val_outputs, val_data = None, None
+ torch.cuda.empty_cache()
+
+ logger.debug(
+ f"{_index + 1} / {len(val_loader)} / {val_filename}: {value}"
+ )
+
+ for _c in range(metric_dim):
+ val0 = torch.nan_to_num(value[0, _c], nan=0.0)
+ val1 = 1.0 - torch.isnan(value[0, _c]).float()
+ metric[2 * _c] += val0
+ metric[2 * _c + 1] += val1
+
+ if world_size > 1:
+ dist.all_reduce(metric, op=torch.distributed.ReduceOp.SUM)
+
+ metric = metric.tolist()
+ metric_class = np.zeros(metric_dim)
+ if world_size == 1 or dist.get_rank() == 0:
+ avg_metric = 0
+ valid = 0
+ for _c in range(metric_dim):
+ if metric[2 * _c + 1] > 0:
+ v = metric[2 * _c] / metric[2 * _c + 1]
+ avg_metric += v
+ valid += 1
+ else:
+ v = torch.nan
+ metric_class[_c] = v
+ try:
+ writer.add_scalar(
+ f"val_class/acc_{class_names[_c + 1]}", v, epoch
+ )
+ logger.debug(
+ f"Evaluation metric - class {_c + 1} {class_names[_c + 1]}: {v:.4f}"
+ )
+ except BaseException:
+ writer.add_scalar(f"val_class/acc_{_c}", v, epoch)
+ logger.debug(f"Evaluation metric - class {_c + 1} : {v:.4f}")
+
+ avg_metric = avg_metric / valid
+ logger.debug(f"Avg_metric: {avg_metric}")
+
+ writer.add_scalar("val/acc", avg_metric, epoch)
+ if avg_metric > best_metric or save_last:
+ best_metric = avg_metric
+ best_metric_epoch = epoch
+ if save_all:
+ ckpt_name = f"best_metric_model_{epoch}.pt"
+ else:
+ ckpt_name = "best_metric_model.pt"
+ if world_size > 1:
+ torch.save(
+ model.module.state_dict(),
+ os.path.join(ckpt_path, ckpt_name),
+ )
+ else:
+ torch.save(
+ model.state_dict(), os.path.join(ckpt_path, ckpt_name)
+ )
+ logger.debug("Saved new best metric model")
+
+ dict_file = {}
+ dict_file["best_avg_dice_score"] = float(best_metric)
+ dict_file["best_avg_dice_score_epoch"] = int(best_metric_epoch)
+ dict_file["best_avg_dice_score_iteration"] = int(idx_iter)
+ with open(
+ os.path.join(ckpt_path, "progress.yaml"), "a"
+ ) as out_file:
+ yaml.dump([dict_file], stream=out_file)
+
+ logger.debug(
+ "Current epoch: {} current mean dice: {:.4f} best mean dice: {:.4f} at epoch {}".format(
+ epoch, avg_metric, best_metric, best_metric_epoch
+ )
+ )
+
+ current_time = time.time()
+ elapsed_time = (current_time - start_time) / 60.0
+ with open(os.path.join(ckpt_path, "accuracy_history.csv"), "a") as f:
+ f.write(
+ "{:d}\t{:.5f}\t{:.5f}\t{:.5f}\t{:.1f}\t{:d}\n".format(
+ epoch,
+ avg_metric,
+ loss_torch_epoch,
+ lr,
+ elapsed_time,
+ idx_iter,
+ )
+ )
+
+ if world_size > 1:
+ dist.barrier()
+
+ torch.cuda.empty_cache()
+
+ if world_size == 1 or dist.get_rank() == 0:
+ logger.debug(
+ f"Training completed, best_metric: {best_metric:.4f} at epoch: {best_metric_epoch}."
+ )
+
+ writer.flush()
+ writer.close()
+
+ logger.warning(f"{os.path.basename(bundle_root)} - training: finished")
+
+ if world_size > 1:
+ dist.destroy_process_group()
+
+ return
+
+
+if __name__ == "__main__":
+ fire, _ = optional_import("fire")
+ fire.Fire()
diff --git a/vista3d/scripts/train_finetune.py b/vista3d/scripts/train_finetune.py
new file mode 100644
index 0000000..bb945ee
--- /dev/null
+++ b/vista3d/scripts/train_finetune.py
@@ -0,0 +1,817 @@
+# Copyright (c) MONAI Consortium
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+# http://www.apache.org/licenses/LICENSE-2.0
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from __future__ import annotations
+
+import copy
+import logging
+import math
+import os
+import sys
+import time
+import warnings
+from datetime import timedelta
+from functools import partial
+from typing import Optional, Sequence, Union
+
+import monai
+import nibabel as nib
+import numpy as np
+import torch
+import torch.distributed as dist
+import yaml
+from monai import transforms
+from monai.apps.auto3dseg.auto_runner import logger
+from monai.auto3dseg.utils import datafold_read
+from monai.bundle import ConfigParser
+from monai.bundle.scripts import _pop_args, _update_args
+from monai.data import DataLoader, DistributedSampler
+from monai.metrics import compute_dice
+from monai.networks.utils import copy_model_state
+from monai.utils import set_determinism
+from torch.nn.parallel import DistributedDataParallel
+from torch.utils.tensorboard import SummaryWriter
+from tqdm import tqdm
+
+from vista3d import vista_model_registry
+
+from .sliding_window import sliding_window_inference
+from .train import CONFIG, infer_wrapper, loss_wrapper
+from .utils.workflow_utils import (
+ MERGE_LIST,
+ generate_prompt_pairs,
+ get_next_points,
+ sample_points_patch_val,
+)
+
+nib.imageglobals.logger.setLevel(40)
+
+
+def run(config_file: Optional[Union[str, Sequence[str]]] = None, **override):
+ # Initialize distributed and scale parameters based on GPU memory
+ if torch.cuda.device_count() > 1:
+ dist.init_process_group(
+ backend="nccl", init_method="env://", timeout=timedelta(seconds=3600)
+ )
+ world_size = dist.get_world_size()
+ dist.barrier()
+ else:
+ world_size = 1
+ logging.basicConfig(stream=sys.stdout, level=logging.INFO)
+ if isinstance(config_file, str) and "," in config_file:
+ config_file = config_file.split(",")
+ _args = _update_args(config_file=config_file, **override)
+ config_file_ = _pop_args(_args, "config_file")[0]
+
+ parser = ConfigParser()
+ parser.read_config(config_file_)
+ parser.update(pairs=_args)
+
+ # loggings and experiment pathes
+ start_time = time.time()
+ bundle_root = parser.get_parsed_content("bundle_root")
+ ckpt_path = parser.get_parsed_content("ckpt_path")
+ os.makedirs(ckpt_path, exist_ok=True)
+ if world_size == 1 or dist.get_rank() == 0:
+ writer = SummaryWriter(log_dir=os.path.join(ckpt_path, "Events"))
+ with open(os.path.join(ckpt_path, "accuracy_history.csv"), "a") as f:
+ f.write("epoch\tmetric\tloss\tlr\ttime\titer\n")
+ random_seed = parser.get_parsed_content("random_seed")
+ save_last = parser.get_parsed_content(
+ "save_last", default=False
+ ) # save the last checkpoint
+ save_all = parser.get_parsed_content(
+ "save_all", default=False
+ ) # save all val-checkpoint
+ if world_size == 1 or dist.get_rank() == 0:
+ config_yaml = os.path.join(bundle_root, "configs.yaml")
+ ConfigParser.export_config_file(
+ parser.get(), config_yaml, fmt="yaml", default_flow_style=None
+ )
+ if random_seed is not None and (
+ isinstance(random_seed, int) or isinstance(random_seed, float)
+ ):
+ set_determinism(seed=random_seed)
+ CONFIG["handlers"]["file"]["filename"] = parser.get_parsed_content(
+ "log_output_file"
+ )
+ logging.config.dictConfig(CONFIG)
+ logging.getLogger("torch.distributed.distributed_c10d").setLevel(logging.WARNING)
+
+ # training hyperparameters - workflow
+ device = (
+ torch.device(f"cuda:{os.environ['LOCAL_RANK']}")
+ if world_size > 1
+ else torch.device("cuda:0")
+ )
+ amp = parser.get_parsed_content("amp")
+ if amp:
+ from torch.cuda.amp import GradScaler, autocast
+
+ scaler = GradScaler()
+ logger.debug("Amp enabled")
+ finetune = parser.get_parsed_content("finetune")
+ num_epochs = parser.get_parsed_content("num_epochs")
+ num_epochs_per_validation = parser.get_parsed_content("num_epochs_per_validation")
+ skip_iter_prob = parser.get_parsed_content(
+ "skip_iter_prob"
+ ) # prob. to skip iterative point sampling, 1 for auto-training
+ iter_num = parser.get_parsed_content(
+ "iter_num"
+ ) # total iter number in point branch training
+ freeze_epoch = parser.get_parsed_content(
+ "freeze_epoch", default=-1
+ ) # freeze the whole branch epoch
+ freeze_head = parser.get_parsed_content(
+ "freeze_head", default="auto"
+ ) # freeze which branch, "auto" or "point". We freeze point for auto-training.
+ logger.debug(f"World_size: {world_size}")
+ logger.debug(f"num_epochs: {num_epochs}")
+ logger.debug(f"num_epochs_per_validation: {num_epochs_per_validation}")
+
+ # training hyperparameters - model and optimizer
+ input_channels = parser.get_parsed_content("input_channels")
+ model_registry = parser.get_parsed_content("model")
+ patch_size = parser.get_parsed_content("patch_size")
+ model = vista_model_registry[model_registry](
+ in_channels=input_channels, image_size=patch_size
+ )
+ model = model.to(device)
+ optimizer_part = parser.get_parsed_content("optimizer", instantiate=False)
+ optimizer = optimizer_part.instantiate(params=model.parameters())
+ lr_scheduler_part = parser.get_parsed_content("lr_scheduler", instantiate=False)
+ lr_scheduler = lr_scheduler_part.instantiate(optimizer=optimizer)
+ if world_size > 1:
+ model = DistributedDataParallel(
+ model, device_ids=[device], find_unused_parameters=True
+ )
+ if finetune["activate"] and os.path.isfile(finetune["pretrained_ckpt_name"]):
+ logger.debug(
+ "Fine-tuning pre-trained checkpoint {:s}".format(
+ finetune["pretrained_ckpt_name"]
+ )
+ )
+ pretrained_ckpt = torch.load(
+ finetune["pretrained_ckpt_name"], map_location=device
+ )
+ copy_model_state(
+ model, pretrained_ckpt, exclude_vars=finetune.get("exclude_vars")
+ )
+ del pretrained_ckpt
+ else:
+ logger.debug("Training from scratch")
+
+ # training hyperparameters - sample
+ num_images_per_batch = parser.get_parsed_content("num_images_per_batch")
+ num_patches_per_iter = parser.get_parsed_content("num_patches_per_iter")
+ overlap_ratio = parser.get_parsed_content("overlap_ratio") # sliding window overlap
+ max_prompt = parser.get_parsed_content("max_prompt", default=96)
+ max_backprompt = parser.get_parsed_content("max_backprompt", default=96)
+ max_foreprompt = parser.get_parsed_content("max_foreprompt", default=96)
+ drop_label_prob = parser.get_parsed_content("drop_label_prob")
+ drop_point_prob = parser.get_parsed_content("drop_point_prob")
+ max_point = parser.get_parsed_content("max_point")
+
+ # training hyperparameters - data and transforms
+ label_set = parser.get_parsed_content("label_set", default=None)
+ mapped_label_set = parser.get_parsed_content(
+ "mapped_label_set", default=copy.deepcopy(label_set)
+ )
+ # user can define class names in the json config
+ class_names = parser.get_parsed_content("class_names", default=None)
+ label_mapping = {label_set[i]: mapped_label_set[i] for i in range(len(label_set))}
+ metric_dim = len(label_set) - 1 # only affect dice calculation
+ fold = parser.get_parsed_content("fold")
+ use_folds = parser.get_parsed_content("use_folds", default=False)
+ post_pred = transforms.Compose(
+ [
+ transforms.EnsureType(),
+ transforms.AsDiscrete(threshold=0.0, dtype=torch.uint8),
+ ]
+ )
+ data_file_base_dir = parser.get_parsed_content("data_file_base_dir")
+ data_list_file_path = parser.get_parsed_content("data_list_file_path")
+ train_number = parser.get_parsed_content("train_number", default=-1)
+ train_transforms, val_transforms = None, None
+ train_transforms = parser.get_parsed_content("transforms_train", default=None)
+ val_transforms = parser.get_parsed_content("transforms_validate", default=None)
+ post_transform = transforms.Invertd(
+ keys="pred",
+ transform=val_transforms,
+ orig_keys="image",
+ meta_keys="pred_meta_dict",
+ orig_meta_keys="image_meta_dict",
+ meta_key_postfix="meta_dict",
+ nearest_interp=False,
+ to_tensor=True,
+ )
+ if use_folds:
+ train_files, val_files = datafold_read(
+ datalist=data_list_file_path,
+ basedir=data_file_base_dir,
+ fold=fold,
+ key="training",
+ )
+ test_files, _ = datafold_read(
+ datalist=data_list_file_path,
+ basedir=data_file_base_dir,
+ fold=-1,
+ key="testing",
+ )
+ else:
+ train_files, _ = datafold_read(
+ datalist=data_list_file_path,
+ basedir=data_file_base_dir,
+ fold=-1,
+ key="training",
+ )
+ val_files, _ = datafold_read(
+ datalist=data_list_file_path,
+ basedir=data_file_base_dir,
+ fold=-1,
+ key="validation",
+ )
+ test_files, _ = datafold_read(
+ datalist=data_list_file_path,
+ basedir=data_file_base_dir,
+ fold=-1,
+ key="testing",
+ )
+ train_files = train_files[:train_number]
+ if world_size > 1:
+ if len(val_files) < world_size:
+ val_files = list(val_files) * math.ceil(
+ float(world_size) / float(len(val_files))
+ )
+ logger.debug(f"Train_files: {len(train_files)}")
+ logger.debug(f"Val_files: {len(val_files)}")
+ with warnings.catch_warnings():
+ warnings.simplefilter(action="ignore", category=FutureWarning)
+ warnings.simplefilter(action="ignore", category=Warning)
+ train_ds, val_ds, test_ds = None, None, None
+ # for pact 118 use normal dataset to avoid crash.
+ train_ds = monai.data.Dataset(
+ data=train_files * num_epochs_per_validation, transform=train_transforms
+ )
+ val_ds = monai.data.Dataset(data=val_files, transform=val_transforms)
+ test_ds = monai.data.Dataset(data=test_files, transform=val_transforms)
+ train_sampler, val_sampler, test_sampler = None, None, None
+ if world_size > 1:
+ if train_ds is not None:
+ train_sampler = DistributedSampler(train_ds, shuffle=True)
+ if val_ds is not None:
+ val_sampler = DistributedSampler(
+ val_ds, shuffle=False, even_divisible=False
+ )
+ if test_ds is not None:
+ test_sampler = DistributedSampler(
+ test_ds, shuffle=False, even_divisible=False
+ )
+ train_loader = DataLoader(
+ train_ds,
+ num_workers=4,
+ batch_size=num_images_per_batch,
+ shuffle=(train_sampler is None),
+ persistent_workers=True,
+ pin_memory=True,
+ sampler=train_sampler,
+ prefetch_factor=1,
+ )
+ val_loader = DataLoader(
+ val_ds,
+ num_workers=4,
+ batch_size=1,
+ shuffle=False,
+ sampler=val_sampler,
+ prefetch_factor=1,
+ persistent_workers=False,
+ )
+ test_loader = DataLoader(
+ test_ds,
+ num_workers=4,
+ batch_size=1,
+ shuffle=False,
+ sampler=test_sampler,
+ prefetch_factor=1,
+ persistent_workers=False,
+ )
+
+ # --------- Start training ---------
+ """ Notes: The training script is directly modified from auto3dseg.
+ To increase speed, the training script is not based on epoch, but based on validation rounds.
+ In each batch, num_images_per_batch=2 whole 3D images are loaded into CPU for data transformation
+ num_patches_per_image=2*num_patches_per_iter is extracted from each 3D image, in each iteration,
+ num_patches_per_iter patches is used for training (real batch size on each GPU).
+ """
+ num_rounds = int(np.ceil(float(num_epochs) // float(num_epochs_per_validation)))
+ best_metric = -1
+ best_metric_epoch = -1
+ idx_iter = 0
+ if num_rounds == 0:
+ raise RuntimeError(
+ "num_epochs_per_validation > num_epochs, modify hyper_parameters.yaml"
+ )
+
+ if world_size == 1 or dist.get_rank() == 0:
+ progress_bar = tqdm(
+ range(num_rounds),
+ desc=f"{os.path.basename(bundle_root)} - training ...",
+ unit="round",
+ )
+ for _round in (
+ range(num_rounds) if world_size > 1 and dist.get_rank() != 0 else progress_bar
+ ):
+ model.train()
+ epoch_loss = 0
+ loss_torch_epoch = 0
+ epoch = 0
+ loss_torch = torch.zeros(2, dtype=torch.float, device=device) + 1e-5
+ step = 0
+ e_time = time.time()
+ if world_size > 1:
+ train_loader.sampler.set_epoch(_round)
+ for batch_data in train_loader:
+ # for batch_data in cycle_k(train_loader):
+ s_time = time.time()
+ # if step % (len(train_loader)) == 0:
+ if step % (len(train_loader) // num_epochs_per_validation) == 0:
+ epoch = _round * num_epochs_per_validation + step // (
+ len(train_loader) // num_epochs_per_validation
+ )
+ lr_scheduler.step()
+ lr = lr_scheduler.get_last_lr()[0]
+ if freeze_epoch > epoch:
+ # if automatic branch is frozen, drop label prompts
+ if freeze_head == "auto":
+ drop_label_prob_train = 1
+ drop_point_prob_train = 0
+ auto_freeze = True
+ point_freeze = False
+ elif freeze_head == "point":
+ drop_label_prob_train = 0
+ drop_point_prob_train = 1
+ auto_freeze = False
+ point_freeze = True
+ try:
+ model.module.set_auto_grad(
+ auto_freeze=auto_freeze, point_freeze=point_freeze
+ )
+ except BaseException:
+ model.set_auto_grad(
+ auto_freeze=auto_freeze, point_freeze=point_freeze
+ )
+ if world_size == 1 or dist.get_rank() == 0:
+ logger.debug(
+ f"Auto freeze {auto_freeze}, point freeze {point_freeze} at epoch {epoch}!"
+ )
+ else:
+ drop_label_prob_train = drop_label_prob
+ drop_point_prob_train = drop_point_prob
+ try:
+ model.module.set_auto_grad(
+ auto_freeze=False, point_freeze=False
+ )
+ except BaseException:
+ model.set_auto_grad(auto_freeze=False, point_freeze=False)
+ if world_size == 1 or dist.get_rank() == 0:
+ logger.debug(
+ f"Auto freeze {False}, point freeze {False} at epoch {epoch}!"
+ )
+
+ if world_size == 1 or dist.get_rank() == 0:
+ logger.debug("----------")
+ logger.debug(f"epoch {epoch}/{num_epochs}")
+ logger.debug(f"Learning rate is set to {lr}")
+ step += 1
+ inputs_l = batch_data["image"].as_subclass(torch.Tensor)
+ if "label" not in batch_data:
+ # this will only happen for unlabeled dataset
+ batch_data["label"] = batch_data.pop("pseudo_label")
+ labels_l = batch_data["label"].as_subclass(torch.Tensor)
+
+ if len(inputs_l) > 1:
+ _idx = torch.randperm(inputs_l.shape[0])
+ inputs_l = inputs_l[_idx]
+ labels_l = labels_l[_idx]
+
+ for _k in range(inputs_l.shape[0] // num_patches_per_iter):
+ inputs = inputs_l[
+ _k * num_patches_per_iter : (_k + 1) * num_patches_per_iter, ...
+ ]
+ labels = labels_l[
+ _k * num_patches_per_iter : (_k + 1) * num_patches_per_iter, ...
+ ]
+ inputs = inputs.to(device)
+ labels = labels.to(device)
+ train_label_set = label_set
+ if world_size > 1:
+ if dist.get_rank() == 0:
+ skip_iter = (torch.rand(1) < skip_iter_prob).to(
+ dtype=torch.float, device=device
+ )
+ else:
+ skip_iter = torch.empty(1).to(dtype=torch.float, device=device)
+ dist.broadcast(skip_iter, src=0)
+ else:
+ skip_iter = (torch.rand(1) < skip_iter_prob).float()
+ if skip_iter > 0:
+ # if not using iterative
+ num_iters = 1
+ else:
+ # if use iterative training
+ num_iters = max(iter_num, 1)
+
+ # for dataset other than totalseg, use pseudolabel for zero-shot. for totalseg, if labels_p exist, use labels_p for zero-shot,
+ # gt for regular sample. If labels_p does not exist, use gt for zero-shot.
+ label_prompt, point, point_label, prompt_class = generate_prompt_pairs(
+ labels,
+ train_label_set,
+ max_point=max_point,
+ max_prompt=max_prompt,
+ max_backprompt=max_backprompt,
+ max_foreprompt=max_foreprompt,
+ drop_label_prob=drop_label_prob_train,
+ drop_point_prob=drop_point_prob_train,
+ )
+ # Skip the training if prompts are both None
+ skip_update = torch.zeros(1, device=device)
+ if label_prompt is None and point is None:
+ logger.debug("Iteration skipped due to None prompts")
+ skip_update = torch.ones(1, device=device)
+ if world_size > 1:
+ dist.all_reduce(skip_update, op=dist.ReduceOp.SUM)
+ if skip_update[0] > 0:
+ continue # some rank has no foreground, skip this batch
+ # clear image_embedding
+ try:
+ model.module.clear_cache()
+ except BaseException:
+ model.clear_cache()
+ for click_indx in range(num_iters):
+ outputs = None
+ inputs = inputs.to(device)
+ labels = labels.to(device)
+ # only sinlge point prompt case activate multi-mask output
+ loss_function = partial(
+ loss_wrapper, loss_function=parser.get_parsed_content("loss")
+ )
+
+ # need to convert label_prompt to global index
+ label_prompt_global = []
+ for i in label_prompt[:, 0].cpu().tolist():
+ label_prompt_global.append(label_mapping[i])
+ with autocast():
+ outputs = model(
+ input_images=inputs,
+ point_coords=point,
+ point_labels=point_label,
+ class_vector=torch.tensor(label_prompt_global)
+ .to(device)
+ .unsqueeze(1),
+ prompt_class=prompt_class,
+ )
+ # cumulate loss
+ loss, loss_n = torch.tensor(0.0, device=device), torch.tensor(
+ 0.0, device=device
+ )
+ for idx in range(len(prompt_class)):
+ if prompt_class[idx] == 0:
+ continue # skip background class
+ loss_n += 1.0
+ gt = labels == prompt_class[idx]
+ if prompt_class[idx].item() in MERGE_LIST.keys():
+ for m in MERGE_LIST[prompt_class[idx].item()]:
+ gt = torch.logical_or(gt, labels == m)
+ loss += loss_function(outputs[[idx]].float(), gt)
+
+ loss /= max(loss_n, 1.0)
+
+ if num_iters > 1:
+ if click_indx != num_iters - 1: # do not sample at last iter
+ outputs.sigmoid_()
+ if prompt_class is not None:
+ point, point_label = get_next_points(
+ outputs[: len(prompt_class)],
+ labels,
+ prompt_class,
+ point,
+ point_label,
+ )
+ # stop iterative if no new points are added.
+ skip_this_iter = torch.tensor(False, device=device)
+ if prompt_class is not None:
+ if torch.all(point_label[:, -1] == -1) and torch.all(
+ point_label[:, -2] == -1
+ ):
+ skip_this_iter = torch.tensor(True, device=device)
+ if world_size > 1:
+ dist.all_reduce(
+ skip_this_iter, op=dist.ReduceOp.PRODUCT
+ )
+ skip_this_iter = bool(skip_this_iter.item())
+ if skip_this_iter:
+ print(f"iteration end at {click_indx}")
+ logger.info(f"iteration end at {click_indx}")
+ break
+ del outputs
+ torch.cuda.empty_cache()
+
+ for param in model.parameters():
+ param.grad = None
+ inputs = inputs.to("cpu")
+ labels = labels.to("cpu")
+ scaler.scale(loss).backward()
+ scaler.unscale_(optimizer)
+ # clip_grad_norm_(model.parameters(), 0.5)
+ scaler.step(optimizer)
+ scaler.update()
+
+ epoch_loss += loss.item()
+ loss_torch[0] += loss.item()
+ loss_torch[1] += 1.0
+ epoch_len = len(train_loader) # * num_epochs_per_validation
+ idx_iter += 1
+ if world_size == 1 or dist.get_rank() == 0:
+ logger.debug(
+ f"{time.time() - s_time:.4f} {step}/{epoch_len}, train_loss: {loss.item():.4f}"
+ )
+ writer.add_scalar(
+ "train/loss", loss.item(), epoch_len * _round + step
+ )
+
+ if world_size > 1:
+ dist.all_reduce(loss_torch, op=torch.distributed.ReduceOp.SUM)
+
+ loss_torch = loss_torch.tolist()
+ if world_size == 1 or dist.get_rank() == 0:
+ loss_torch_epoch = loss_torch[0] / loss_torch[1]
+ logger.debug(
+ f"{time.time() - e_time:.4f} Epoch {epoch} average loss: {loss_torch_epoch:.4f}, "
+ f"best mean dice: {best_metric:.4f} at epoch {best_metric_epoch}"
+ )
+ try:
+ del inputs, labels, inputs_l, labels_l, batch_data
+ except BaseException:
+ pass
+ torch.cuda.empty_cache()
+
+ # --------- Start Validation ---------
+ """ Note:
+ In training transform, labels are mapped to global index with Relabel transform. However, there could be local index that are not used since it can excluded
+ from label_mapping definition. In training sample generation, training pairs will only be sampled from label_set. In validation, the label_prompt
+ will use global mapping, but the val label is not mapped to global index, so we need the val_orig_set. Notice the compute_dice assume gt label starts
+ from 0,1,2,3,4,.... If some are index are not used (not defined in label_mapping.json thus label_set does not include them), compute_dice directly will give wrong
+ number. We calculate dice for each class with a for loop.
+ """
+ model.eval()
+ model_inferer = partial(infer_wrapper, model=model)
+ data_loader = [val_loader, test_loader]
+ log_info = ["Validation", "Testing"]
+ for val_times in [0]:
+ with torch.no_grad():
+ # for metric, index 2*c is the dice for class c, and 2*c + 1 is the not-nan counts for class c
+ metric = torch.zeros(metric_dim * 2, dtype=torch.float, device=device)
+ val_data = None
+ torch.cuda.empty_cache()
+ for _index, val_data in enumerate(data_loader[val_times]):
+ val_filename = val_data["image"].meta["filename_or_obj"][0]
+ # one difference is that label_set in train.py does not include 0 but here we require user add 0 in
+ # the json config.
+ val_label_set = mapped_label_set
+ val_orig_set = label_set
+
+ for _device_in, _device_out in zip(
+ [device, device, "cpu"], [device, "cpu", "cpu"]
+ ):
+ try:
+ label_prompt = (
+ torch.tensor(val_label_set).to(device).unsqueeze(0)
+ )
+ promot_class = torch.ones(len(label_set), 1).to(
+ device
+ ) # supported class
+ if drop_label_prob > 0.99:
+ label_prompt = None
+ with autocast(enabled=amp):
+ val_outputs = None
+ torch.cuda.empty_cache()
+ val_outputs = sliding_window_inference(
+ inputs=val_data["image"].to(_device_in),
+ roi_size=patch_size,
+ sw_batch_size=1,
+ predictor=model_inferer,
+ mode="gaussian",
+ overlap=overlap_ratio,
+ sw_device=device,
+ device=_device_out,
+ point_coords=None,
+ point_labels=None,
+ class_vector=label_prompt,
+ prompt_class=promot_class,
+ labels=val_data["label"].to(_device_in),
+ label_set=val_orig_set,
+ val_point_sampler=partial(
+ sample_points_patch_val,
+ mapped_label_set=val_label_set,
+ max_ppoint=1,
+ use_center=True,
+ ),
+ )
+ try:
+ val_outputs = post_pred(val_outputs[0, ...])
+ except BaseException:
+ val_outputs = post_pred(val_outputs[0, ...].to("cpu"))
+ finished = True
+
+ except RuntimeError as e:
+ if not any(
+ x in str(e).lower() for x in ("memory", "cuda", "cudnn")
+ ):
+ raise e
+ logger.warning(e)
+ finished = False
+
+ if finished:
+ break
+
+ if finished:
+ value = torch.full((1, metric_dim), float("nan")).to(device)
+ val_outputs = val_outputs[None, ...]
+ if val_times > 0:
+ try:
+ val_outputs = post_transform(
+ {
+ "image": val_data["image"][0],
+ "pred": val_outputs[0],
+ }
+ )["pred"][None, ...]
+ except BaseException:
+ print(val_filename, "OOM", val_data["label_gt"].shape)
+ val_data["image"] = val_data["image"].cpu()
+ val_outputs = val_outputs.cpu()
+ val_outputs = post_transform(
+ {
+ "image": val_data["image"][0],
+ "pred": val_outputs[0],
+ }
+ )["pred"][None, ...]
+ print("finished OOM")
+ del val_data["image"]
+ value_l = []
+ for i in range(1, len(val_orig_set)):
+ if val_times == 0:
+ gt = (
+ val_data["label"].to(val_outputs.device)
+ == val_orig_set[i]
+ )
+ else:
+ gt = (
+ val_data["label_gt"].to(val_outputs.device)
+ == val_orig_set[i]
+ )
+ value_l.append(
+ compute_dice(
+ y_pred=val_outputs[:, [i]],
+ y=gt,
+ include_background=False,
+ )
+ )
+ value = torch.hstack(value_l).to(device)
+ else:
+ # During training, allow validation OOM for some big data to avoid crush.
+ logger.debug(
+ f"{val_filename} is skipped due to OOM, using NaN dice values"
+ )
+ value = torch.full((1, metric_dim), float("nan")).to(device)
+
+ # remove temp variables to save memory.
+ val_outputs, val_data = None, None
+ torch.cuda.empty_cache()
+
+ logger.debug(
+ f"{_index + 1} / {len(val_loader)} / {val_filename}: {value}"
+ )
+
+ for _c in range(metric_dim):
+ val0 = torch.nan_to_num(value[0, _c], nan=0.0)
+ val1 = 1.0 - torch.isnan(value[0, _c]).float()
+ metric[2 * _c] += val0
+ metric[2 * _c + 1] += val1
+
+ if world_size > 1:
+ dist.all_reduce(metric, op=torch.distributed.ReduceOp.SUM)
+
+ metric = metric.tolist()
+ metric_class = np.zeros(metric_dim)
+ if world_size == 1 or dist.get_rank() == 0:
+ avg_metric = 0
+ valid = 0
+ for _c in range(metric_dim):
+ if metric[2 * _c + 1] > 0:
+ v = metric[2 * _c] / metric[2 * _c + 1]
+ avg_metric += v
+ valid += 1
+ else:
+ v = torch.nan
+ metric_class[_c] = v
+ try:
+ writer.add_scalar(
+ f"val_class/acc_{class_names[_c + 1]}", v, epoch
+ )
+ logger.debug(
+ f"Evaluation metric - class {_c + 1} {class_names[_c + 1]}: {v:.4f}"
+ )
+ except BaseException:
+ writer.add_scalar(f"val_class/acc_{_c}", v, epoch)
+ logger.debug(
+ f"Evaluation metric - class {_c + 1} : {v:.4f}"
+ )
+
+ avg_metric = avg_metric / valid
+ logger.debug(f"{log_info[val_times]} Avg_metric: {avg_metric}")
+ if val_times > 0:
+ continue
+ writer.add_scalar("val/acc", avg_metric, epoch)
+ if avg_metric > best_metric or save_last:
+ best_metric = avg_metric
+ best_metric_epoch = epoch
+ if save_all:
+ ckpt_name = f"best_metric_model_{epoch}.pt"
+ else:
+ ckpt_name = "best_metric_model.pt"
+ if world_size > 1:
+ torch.save(
+ model.module.state_dict(),
+ os.path.join(ckpt_path, ckpt_name),
+ )
+ else:
+ torch.save(
+ model.state_dict(), os.path.join(ckpt_path, ckpt_name)
+ )
+ logger.debug("Saved new best metric model")
+
+ dict_file = {}
+ dict_file["best_avg_dice_score"] = float(best_metric)
+ dict_file["best_avg_dice_score_epoch"] = int(best_metric_epoch)
+ dict_file["best_avg_dice_score_iteration"] = int(idx_iter)
+ with open(
+ os.path.join(ckpt_path, "progress.yaml"), "a"
+ ) as out_file:
+ yaml.dump([dict_file], stream=out_file)
+
+ logger.debug(
+ "Current epoch: {} current mean dice: {:.4f} best mean dice: {:.4f} at epoch {}".format(
+ epoch, avg_metric, best_metric, best_metric_epoch
+ )
+ )
+
+ current_time = time.time()
+ elapsed_time = (current_time - start_time) / 60.0
+ with open(
+ os.path.join(ckpt_path, "accuracy_history.csv"), "a"
+ ) as f:
+ f.write(
+ "{:d}\t{:.5f}\t{:.5f}\t{:.5f}\t{:.1f}\t{:d}\n".format(
+ epoch,
+ avg_metric,
+ loss_torch_epoch,
+ lr,
+ elapsed_time,
+ idx_iter,
+ )
+ )
+
+ if world_size > 1:
+ dist.barrier()
+
+ torch.cuda.empty_cache()
+
+ if world_size == 1 or dist.get_rank() == 0:
+ logger.debug(
+ f"Training completed, best_metric: {best_metric:.4f} at epoch: {best_metric_epoch}."
+ )
+
+ writer.flush()
+ writer.close()
+
+ logger.warning(f"{os.path.basename(bundle_root)} - training: finished")
+
+ if world_size > 1:
+ dist.destroy_process_group()
+
+ return
+
+
+if __name__ == "__main__":
+ from monai.utils import optional_import
+
+ fire, _ = optional_import("fire")
+ fire.Fire()
diff --git a/vista3d/scripts/utils/sample_utils.py b/vista3d/scripts/utils/sample_utils.py
new file mode 100644
index 0000000..24973f0
--- /dev/null
+++ b/vista3d/scripts/utils/sample_utils.py
@@ -0,0 +1,348 @@
+import copy
+import random
+
+import monai
+import numpy as np
+import torch
+from skimage import measure
+
+from .trans_utils import dilate3d, erode3d
+from .workflow_utils import ENABLE_SPECIAL, SPECIAL_INDEX, get_point_label
+
+
+def open_lcc(plabels):
+ plabels_org = plabels.clone()
+ plabels = erode3d(plabels, erosion=3)
+ plabels = monai.transforms.utils.get_largest_connected_component_mask(plabels)
+ return dilate3d(plabels, erosion=3).to(torch.bool) * plabels_org
+
+
+def find_lcc_label(plabels, region):
+ plabels_org = plabels.clone()
+ plabels = erode3d(plabels, erosion=3)
+ label = measure.label
+ features, num_features = label(
+ plabels.cpu().numpy(), connectivity=3, return_num=True
+ )
+ features = torch.from_numpy(features).to(region.device)
+ max_cc = torch.zeros_like(region)
+ max_cc_count = 0
+ region = dilate3d(region, erosion=5).to(torch.bool)
+ for i in range(1, num_features):
+ cc = features == i
+ if torch.logical_and(cc, region).any():
+ cc_sum = cc.sum()
+ if cc_sum > max_cc_count:
+ max_cc = cc
+ max_cc_count = cc_sum
+ return dilate3d(max_cc, erosion=5).to(torch.bool) * plabels_org
+
+
+class Point_sampler:
+ """Point sampler will take original manual label and supervoxel to perform augmentation.
+ Args:
+ label: manual label
+ label_sv: supervoxel
+ map_shift: this value must be larger than the last_supported value in vista3d.point_head. When a
+ mask is given a shift of id + map_shift, it will be identified as zero-shot.
+ offset: remove patch boundary samples
+ vrange: the probability range for different augmentations.
+ """
+
+ def __init__(
+ self,
+ label,
+ label_sv,
+ map_shift=512,
+ offset=10,
+ vrange=[0.6, 0.7, 0.8, 0.9],
+ ):
+ self.label = label
+ self.label_sv = label_sv
+ self.map_shift = map_shift
+ self.shifted = {}
+ self.device = self.label.device
+ self.label_ = label.clone()
+ self.window = torch.ones_like(label, dtype=torch.bool)
+ self.window[offset:-offset, offset:-offset, offset:-offset] = False
+ self.vrange = vrange
+ self.zshot_rate = 0.5
+
+ def reset(self):
+ self.label = self.label_.clone()
+
+ def skip_aug(self, id):
+ if id in SPECIAL_INDEX and ENABLE_SPECIAL:
+ return True
+ return False
+
+ def __call__(self, unique_labels, Np=1, Nn=0):
+ _point = []
+ _point_label = []
+ vrange = self.vrange
+ self.read_only_id = copy.deepcopy(unique_labels)
+ for id in unique_labels:
+ if self.skip_aug(id):
+ v = 0
+ print(f"{id} will use regular")
+ else:
+ v = np.random.rand()
+ if v < vrange[0] or self.label_sv is None:
+ _p, _pl = self.regular(id, Np, Nn)
+ if v >= vrange[0] and v < vrange[1]:
+ _p, _pl = self.organ_sub(id, Np, Nn)
+ if v >= vrange[1] and v < vrange[2]:
+ _p, _pl = self.organ_add(id, Np, Nn)
+ if v >= vrange[2] and v < vrange[3]:
+ _p, _pl = self.zeroshot_unseen(id, Np, Nn)
+ if v >= vrange[3]:
+ _p, _pl = self.zeroshot_random(id, Np, Nn)
+ _point.append(_p)
+ _point_label.append(_pl)
+ return self._padding(_point, _point_label)
+
+ def _padding(self, point, point_label):
+ if len(point) > 0:
+ max_len = max([len(_) for _ in point])
+ point = [
+ torch.stack(
+ _ + [torch.tensor([0, 0, 0]).to(self.device)] * (max_len - len(_))
+ )
+ for _ in point
+ ]
+ point_label = [
+ torch.tensor(_ + [-1] * (max_len - len(_))).to(self.device)
+ for _ in point_label
+ ]
+ # print(point, point_label)
+ return point, point_label
+
+ def regular(self, id, Np=1, Nn=0):
+ print("regular")
+ plabels = self.label == int(id)
+ _plabels = erode3d(plabels)
+ _plabels[self.window] = 0
+ plabelpoints = torch.nonzero(_plabels)
+ kp = min(len(plabelpoints), Np)
+ if kp == 0:
+ plabelpoints = torch.nonzero(plabels)
+ kp = min(len(plabelpoints), Np)
+ _point = random.choices(plabelpoints, k=kp)
+ neg_id, pos_id = get_point_label(id)
+ _point_label = [pos_id] * kp
+ if Nn > 0:
+ nlabels = ~plabels
+ nlabels = erode3d(nlabels)
+ nlabelpoints = torch.nonzero(nlabels)
+ kn = min(len(nlabelpoints), Nn)
+ if kn > 0:
+ _point += random.choices(nlabelpoints, k=kn)
+ _point_label += [neg_id] * kn
+ return _point, _point_label
+
+ def zeroshot_random(self, id, Np=1, Nn=0):
+ min_size = 20 * 20 * 20
+ region = self.label == 0
+ sregion = self.label_sv[region]
+ sid = torch.unique(sregion).cpu().numpy()
+ random.shuffle(sid)
+ for sid_p in sid:
+ plabels = self.label_sv == sid_p
+ plabels = open_lcc(plabels)
+ ids = self.label[plabels].unique().cpu().numpy()
+ if np.array([i in ids for i in self.read_only_id]).any():
+ continue
+ if plabels.sum() < min_size:
+ continue
+ _point = []
+ _point_label = []
+ random.shuffle(ids)
+ count = 0
+ max_merge = len(ids)
+ for i in ids:
+ if i == 0:
+ continue
+ if count >= max_merge:
+ break
+ fg = self.label == i
+ overlap = torch.logical_and(plabels, fg)
+ if 0.1 * fg.sum() < overlap.sum():
+ plabels = torch.logical_or(plabels, fg)
+ _plabels = erode3d(overlap)
+ _plabels[self.window] = 0
+ plabelpoints = torch.nonzero(_plabels)
+ kp = min(len(plabelpoints), 1)
+ if kp == 0:
+ continue
+ _point += random.choices(plabelpoints, k=kp)
+ _point_label += [1] * kp
+ count += 1
+ _plabels = torch.logical_and(plabels, region)
+ _plabels = erode3d(_plabels)
+ _plabels[self.window] = 0
+ plabelpoints = torch.nonzero(_plabels)
+ kp = min(len(plabelpoints), Np)
+ if kp == 0:
+ continue
+ _point += random.choices(plabelpoints, k=kp)
+ _point_label += [1] * kp
+ self.label[plabels.to(torch.bool)] = id + self.map_shift
+ self.shifted[id] = id + self.map_shift
+ self.read_only_id.append(id + self.map_shift)
+ print("zeroshot_random")
+ return _point, _point_label
+ return self.regular(id, Np, Nn)
+
+ def zeroshot_unseen(self, id, Np=1, Nn=0):
+ # PASSED
+ min_size = 20 * 20 * 20
+ region = self.label == 0
+ sregion = self.label_sv[region]
+ sid = torch.unique(sregion).cpu().numpy()
+ random.shuffle(sid)
+ npoint = None
+ for sid_p in sid:
+ plabels = torch.logical_and(self.label_sv == sid_p, region)
+ plabels = open_lcc(plabels)
+ if plabels.sum() < min_size:
+ continue
+ ids = self.label[plabels].unique().cpu().numpy().tolist()
+ if np.array([i in ids for i in self.read_only_id]).any():
+ continue
+ _plabels = erode3d(plabels)
+ _plabels[self.window] = 0
+ plabelpoints = torch.nonzero(_plabels)
+ kp = min(len(plabelpoints), Np)
+ if kp == 0:
+ continue
+ _point = random.choices(plabelpoints, k=kp)
+ _point_label = [1] * kp
+ if Nn > 0:
+ nlabels = torch.logical_and(~plabels, region)
+ nlabels = erode3d(nlabels)
+ nlabelpoints = torch.nonzero(nlabels)
+ kn = min(len(nlabelpoints), Nn)
+ if kn > 0:
+ _point += random.choices(nlabelpoints, k=kn)
+ _point_label += [0] * kn
+ if npoint is not None:
+ _point += npoint
+ _point_label += [0]
+ self.label[plabels.to(torch.bool)] = id + self.map_shift
+ self.shifted[id] = id + self.map_shift
+ self.read_only_id.append(id + self.map_shift)
+ print("zeroshot_unseen")
+ return _point, _point_label
+ return self.regular(id, Np, Nn)
+
+ def remove_outside(self, plabels, region):
+ """Remove the points that does not lay within region slices (3 views). Avoid sample far away points"""
+ ps = torch.stack(torch.nonzero(region, as_tuple=True)).transpose(1, 0)
+ index = torch.ones_like(plabels).to(torch.bool)
+ index[
+ ps[:, 0].min() : ps[:, 0].max(),
+ ps[:, 1].min() : ps[:, 1].max(),
+ ps[:, 2].min() : ps[:, 2].max(),
+ ] = False
+ plabels[index] = 0
+ return plabels
+
+ def organ_add(self, id, Np=1, Nn=0):
+ """For class id, find a supvervoxel index sid that mostly inside id."""
+ lower_size = 0.1 # times
+ region = self.label == id
+ region_size = region.sum()
+ all_region = self.label == 0
+ sid = torch.unique(self.label_sv[region]).cpu().numpy()
+ random.shuffle(sid)
+ for sid_p in sid:
+ plabels = torch.logical_and(self.label_sv == int(sid_p), all_region)
+ if not plabels.any():
+ continue
+ plabels = find_lcc_label(plabels, region)
+ ids = self.label[plabels].unique().cpu().numpy().tolist()
+ if np.array([i in ids for i in self.read_only_id]).any():
+ continue
+ psize = plabels.sum()
+ if psize < lower_size * region_size:
+ continue
+ _plabels = erode3d(plabels)
+ _plabels[self.window] = 0
+ _plabels = self.remove_outside(_plabels, region)
+ # only pick points at the slice with the organ
+ plabelpoints = torch.nonzero(_plabels)
+ kp = min(len(plabelpoints), Np)
+ if kp == 0:
+ continue
+ _point = random.choices(plabelpoints, k=kp)
+ plabels_ = erode3d(region)
+ plabels_[self.window] = 0
+ plabelpoints = torch.nonzero(plabels_)
+ kp2 = min(len(plabelpoints), Np)
+ if kp2 == 0:
+ plabelpoints = torch.nonzero(region)
+ kp2 = min(len(plabelpoints), Np)
+ _point += random.choices(plabelpoints, k=kp2)
+ self.label[plabels] = id
+ _point_label = [1] * (kp + kp2)
+ if np.random.rand() < self.zshot_rate:
+ self.label[self.label == id] = id + self.map_shift
+ self.shifted[id] = id + self.map_shift
+ self.read_only_id.append(id + self.map_shift)
+ print("organ add")
+ return _point, _point_label
+ return self.regular(id, Np, Nn)
+
+ def organ_sub(self, id, Np=1, Nn=0):
+ """Substract a sid that is not too big or too small. 10%-50% of the id area size. At least 1 pos in remaining region in id and 1 neg
+ in subtracted region.
+ """
+ upper_size = 0.9 # times
+ lower_size = 0.1 # times
+ region = self.label == id
+ region_size = region.sum()
+ sregion = self.label_sv[region]
+ sid = torch.unique(sregion).cpu().numpy()
+ random.shuffle(sid)
+ use_zs = np.random.rand() < 0.5
+ for sid_p in sid:
+ # must contain 2 points within id and 1 point within sid_p
+ if use_zs:
+ plabels = torch.logical_and(self.label_sv == int(sid_p), region)
+ plabels = open_lcc(plabels)
+ psize = plabels.sum()
+ if psize < lower_size * region_size or psize > upper_size * region_size:
+ continue
+ nlabels = torch.logical_and(~plabels, region)
+ else:
+ nlabels = torch.logical_and(self.label_sv == int(sid_p), region)
+ nlabels = open_lcc(nlabels)
+ nsize = nlabels.sum()
+ if nsize < lower_size * region_size or nsize > upper_size * region_size:
+ continue
+ plabels = torch.logical_and(~nlabels, region)
+
+ _plabels = erode3d(plabels)
+ _plabels[self.window] = 0
+ plabelpoints = torch.nonzero(_plabels)
+ _nlabels = erode3d(nlabels)
+ _nlabels[self.window] = 0
+ nlabelpoints = torch.nonzero(_nlabels)
+ kp = min(len(plabelpoints), Np)
+ kn = min(len(nlabelpoints), max(1, Nn))
+ if kp == 0 or kn == 0:
+ continue
+ _point = random.choices(plabelpoints, k=kp) + random.choices(
+ nlabelpoints, k=kn
+ )
+ _point_label = [1] * kp + [0] * kn
+ if use_zs or np.random.rand() < self.zshot_rate:
+ self.label[plabels.to(torch.bool)] = id + self.map_shift
+ self.shifted[id] = id + self.map_shift
+ self.read_only_id.append(id + self.map_shift)
+ else:
+ self.label[nlabels.to(torch.bool)] = 0
+ print("organ_sub")
+ return _point, _point_label
+ _point, _point_label = self.regular(id, Np, Nn)
+ return _point, _point_label
diff --git a/vista3d/scripts/utils/trans_utils.py b/vista3d/scripts/utils/trans_utils.py
new file mode 100644
index 0000000..ec3ac4d
--- /dev/null
+++ b/vista3d/scripts/utils/trans_utils.py
@@ -0,0 +1,497 @@
+# Copyright (c) MONAI Consortium
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+# http://www.apache.org/licenses/LICENSE-2.0
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from __future__ import annotations
+
+from collections.abc import Hashable, Mapping
+
+import numpy as np
+import torch
+import torch.nn.functional as F
+from monai.config import DtypeLike, KeysCollection
+from monai.config.type_definitions import NdarrayOrTensor, NdarrayTensor
+from monai.data.meta_obj import get_track_meta
+from monai.data.meta_tensor import MetaTensor
+from monai.transforms import (
+ MapLabelValue,
+ MapTransform,
+ RandCropByLabelClasses,
+ RandCropByLabelClassesd,
+ SpatialCrop,
+)
+from monai.utils import ImageMetaKey as Key
+from monai.utils import (
+ convert_data_type,
+ ensure_tuple_rep,
+ fall_back_tuple,
+ look_up_option,
+ min_version,
+ optional_import,
+)
+from monai.utils.type_conversion import convert_to_dst_type
+
+measure, has_measure = optional_import("skimage.measure", "0.14.2", min_version)
+morphology, has_morphology = optional_import("skimage.morphology")
+ndimage, _ = optional_import("scipy.ndimage")
+cp, has_cp = optional_import("cupy")
+cp_ndarray, _ = optional_import("cupy", name="ndarray")
+exposure, has_skimage = optional_import("skimage.exposure")
+
+__all__ = [
+ "get_largest_connected_component_mask",
+ "RandCropByLabelClassesShiftd",
+ "erode3d",
+ "erode2d",
+ "dilate3d",
+ "VistaPostTransform",
+ "convert_points_to_disc",
+]
+
+
+def convert_points_to_disc(image_size, point, point_label, radius=2, disc=False):
+ # [b, N, 3], [b, N]
+ # generate masks [b,2,h,w,d]
+ if not torch.is_tensor(point):
+ point = torch.from_numpy(point)
+ masks = torch.zeros(
+ [point.shape[0], 2, image_size[0], image_size[1], image_size[2]],
+ device=point.device,
+ )
+ row_array = torch.arange(
+ start=0, end=image_size[0], step=1, dtype=torch.float32, device=point.device
+ )
+ col_array = torch.arange(
+ start=0, end=image_size[1], step=1, dtype=torch.float32, device=point.device
+ )
+ z_array = torch.arange(
+ start=0, end=image_size[2], step=1, dtype=torch.float32, device=point.device
+ )
+ coord_rows, coord_cols, coord_z = torch.meshgrid(z_array, col_array, row_array)
+ # [1,3,h,w,d] -> [b, 2, 3, h,w,d]
+ coords = (
+ torch.stack((coord_rows, coord_cols, coord_z), dim=0)
+ .unsqueeze(0)
+ .unsqueeze(0)
+ .repeat(point.shape[0], 2, 1, 1, 1, 1)
+ )
+ for b in range(point.shape[0]):
+ for n in range(point.shape[1]):
+ if point_label[b, n] > -1:
+ channel = 0 if (point_label[b, n] == 0 or point_label[b, n] == 2) else 1
+ if disc:
+ masks[b, channel] += (
+ torch.pow(
+ coords[b, channel]
+ - point[b, n].unsqueeze(-1).unsqueeze(-1).unsqueeze(-1),
+ 2,
+ ).sum(0)
+ < radius**2
+ )
+ else:
+ masks[b, channel] += torch.exp(
+ -torch.pow(
+ coords[b, channel]
+ - point[b, n].unsqueeze(-1).unsqueeze(-1).unsqueeze(-1),
+ 2,
+ ).sum(0)
+ / (2 * radius**2)
+ )
+ # masks[masks>1] = 1
+ return masks
+
+
+def erode3d(input_tensor, erosion=3):
+ # Define the structuring element
+ erosion = ensure_tuple_rep(erosion, 3)
+ structuring_element = torch.ones(1, 1, erosion[0], erosion[1], erosion[2]).to(
+ input_tensor.device
+ )
+
+ # Pad the input tensor to handle border pixels
+ input_padded = F.pad(
+ input_tensor.float().unsqueeze(0).unsqueeze(0),
+ (
+ erosion[2] // 2,
+ erosion[2] // 2,
+ erosion[1] // 2,
+ erosion[1] // 2,
+ erosion[0] // 2,
+ erosion[0] // 2,
+ ),
+ mode="constant",
+ value=1.0,
+ )
+
+ # Apply erosion operation
+ output = F.conv3d(input_padded, structuring_element, padding=0)
+
+ # Set output values based on the minimum value within the structuring element
+ output = torch.where(output == torch.sum(structuring_element), 1.0, 0.0)
+
+ return output.squeeze(0).squeeze(0)
+
+
+def erode2d(input_tensor, erosion=3):
+ # Define the structuring element
+ erosion = ensure_tuple_rep(erosion, 2)
+ structuring_element = torch.ones(1, 1, erosion[0], erosion[1]).to(
+ input_tensor.device
+ )
+
+ # Pad the input tensor to handle border pixels
+ input_padded = F.pad(
+ input_tensor.float().unsqueeze(0).unsqueeze(0),
+ (erosion[1] // 2, erosion[1] // 2, erosion[0] // 2, erosion[0] // 2),
+ mode="constant",
+ value=1.0,
+ )
+
+ # Apply erosion operation
+ output = F.conv2d(input_padded, structuring_element, padding=0)
+
+ # Set output values based on the minimum value within the structuring element
+ output = torch.where(output == torch.sum(structuring_element), 1.0, 0.0)
+
+ return output.squeeze(0).squeeze(0)
+
+
+def dilate3d(input_tensor, erosion=3):
+ # Define the structuring element
+ erosion = ensure_tuple_rep(erosion, 3)
+ structuring_element = torch.ones(1, 1, erosion[0], erosion[1], erosion[2]).to(
+ input_tensor.device
+ )
+
+ # Pad the input tensor to handle border pixels
+ input_padded = F.pad(
+ input_tensor.float().unsqueeze(0).unsqueeze(0),
+ (
+ erosion[2] // 2,
+ erosion[2] // 2,
+ erosion[1] // 2,
+ erosion[1] // 2,
+ erosion[0] // 2,
+ erosion[0] // 2,
+ ),
+ mode="constant",
+ value=0.0,
+ )
+
+ # Apply erosion operation
+ output = F.conv3d(input_padded, structuring_element, padding=0)
+
+ # Set output values based on the minimum value within the structuring element
+ output = torch.where(output > 0, 1.0, 0.0)
+
+ return output.squeeze(0).squeeze(0)
+
+
+def get_largest_connected_component_point(
+ img: NdarrayTensor, point_coords=None, point_labels=None
+) -> NdarrayTensor:
+ """
+ Gets the largest connected component mask of an image. img is before post process! And will include NaN values.
+ Args:
+ img: [1, B, H, W, D]
+ point_coords [B, N, 3]
+ point_labels [B, N]
+ """
+ outs = torch.zeros_like(img)
+ for c in range(len(point_coords)):
+ if not ((point_labels[c] == 3).any() or (point_labels[c] == 1).any()):
+ continue
+ coords = (
+ point_coords[c, point_labels[c] == 3].tolist()
+ + point_coords[c, point_labels[c] == 1].tolist()
+ )
+ not_nan_mask = ~torch.isnan(img[0, c])
+ img_ = torch.nan_to_num(img[0, c] > 0, 0)
+ img_, *_ = convert_data_type(img_, np.ndarray)
+ label = measure.label
+ features = label(img_, connectivity=3)
+ pos_mask = torch.from_numpy(img_).to(img.device) > 0
+ # if num features less than max desired, nothing to do.
+ features = torch.from_numpy(features).to(img.device)
+ # generate a map with all pos points
+ idx = []
+ for p in coords:
+ idx.append(features[round(p[0]), round(p[1]), round(p[2])].item())
+ idx = list(set(idx))
+ for i in idx:
+ if i == 0:
+ continue
+ outs[0, c] += features == i
+ outs = outs > 0
+ # find negative mean value
+ fill_in = img[0, c][torch.logical_and(~outs[0, c], not_nan_mask)].mean()
+ img[0, c][torch.logical_and(pos_mask, ~outs[0, c])] = fill_in
+ return img
+
+
+def get_largest_connected_component_mask(
+ img_pos: NdarrayTensor,
+ img_neg: NdarrayTensor,
+ connectivity: int | None = None,
+ num_components: int = 1,
+ point_coords=None,
+ point_labels=None,
+ margins=3,
+) -> NdarrayTensor:
+ """
+ Gets the largest connected component mask of an image that include the point_coords.
+ Args:
+ img_pos: [1, B, H, W, D]
+ point_coords [B, N, 3]
+ point_labels [B, N]
+ """
+ # use skimage/cucim.skimage and np/cp depending on whether packages are
+ # available and input is non-cpu torch.tensor
+ # cucim, has_cucim = optional_import("cucim")
+
+ # use_cp = has_cp and has_cucim and isinstance(img_pos, torch.Tensor) and img_pos.device != torch.device("cpu")
+ # if use_cp:
+ # img_pos_ = convert_to_cupy(img_pos.short()) # type: ignore
+ # img_neg_ = convert_to_cupy(img_neg.short()) # type: ignore
+ # label = cucim.skimage.measure.label
+ # lib = cp
+ # else:
+ # if not has_measure:
+ # raise RuntimeError("Skimage.measure required.")
+ # img_pos_, *_ = convert_data_type(img_pos, np.ndarray)
+ # img_neg_, *_ = convert_data_type(img_neg, np.ndarray)
+ # label = measure.label
+ # lib = np
+ img_pos_, *_ = convert_data_type(img_pos, np.ndarray)
+ img_neg_, *_ = convert_data_type(img_neg, np.ndarray)
+ label = measure.label
+ lib = np
+ # features will be an image -- 0 for background and then each different
+ # feature will have its own index.
+ # features, num_features = label(img_, connectivity=connectivity, return_num=True)
+
+ features_pos, num_features = label(img_pos_, connectivity=3, return_num=True)
+ features_neg, num_features = label(img_neg_, connectivity=3, return_num=True)
+ # if num features less than max desired, nothing to do.
+ outs = np.zeros_like(img_pos_)
+ for bs in range(point_coords.shape[0]):
+ for i, p in enumerate(point_coords[bs]):
+ if point_labels[bs, i] == 1 or point_labels[bs, i] == 3:
+ features = features_pos
+ elif point_labels[bs, i] == 0 or point_labels[bs, i] == 2:
+ features = features_neg
+ else:
+ # if -1 padding point, skip
+ continue
+ for margin in range(margins):
+ left, right = max(p[0].round().int().item() - margin, 0), min(
+ p[0].round().int().item() + margin + 1, features.shape[-3]
+ )
+ t, d = max(p[1].round().int().item() - margin, 0), min(
+ p[1].round().int().item() + margin + 1, features.shape[-2]
+ )
+ f, b = max(p[2].round().int().item() - margin, 0), min(
+ p[2].round().int().item() + margin + 1, features.shape[-1]
+ )
+ if (features[bs, 0, left:right, t:d, f:b] > 0).any():
+ index = features[bs, 0, left:right, t:d, f:b].max()
+ outs[[bs]] += lib.isin(features[[bs]], index)
+ break
+ outs[outs > 1] = 1
+ outs = convert_to_dst_type(outs, dst=img_pos, dtype=outs.dtype)[0]
+ return outs
+
+
+class VistaPostTransform(MapTransform):
+ def __init__(
+ self,
+ keys: KeysCollection,
+ allow_missing_keys: bool = False,
+ ) -> None:
+ """
+ Args:
+ keys: keys of the corresponding items to be transformed.
+ dataset_transforms: a dictionary specifies the transform for corresponding dataset:
+ key: dataset name, value: list of data transforms.
+ dataset_key: key to get the dataset name from the data dictionary, default to "dataset_name".
+ allow_missing_keys: don't raise exception if key is missing.
+
+ """
+ super().__init__(keys, allow_missing_keys)
+
+ def __call__(
+ self, data: Mapping[Hashable, NdarrayOrTensor]
+ ) -> dict[Hashable, NdarrayOrTensor]:
+ for keys in self.keys:
+ if keys in data:
+ pred = data[keys]
+ object_num = pred.shape[0]
+ # device = pred.device
+ pred[pred < 0] = 0.0
+ # if it's multichannel, perform argmax
+ if object_num > 1:
+ # concate background channel. Make sure user did not provide 0 as prompt.
+ is_bk = torch.all(pred <= 0, dim=0, keepdim=True)
+ pred = pred.argmax(0).unsqueeze(0).float() + 1.0
+ pred[is_bk] = 0.0
+ else:
+ # AsDiscrete will remove NaN
+ # pred = monai.transforms.AsDiscrete(threshold=0.5)(pred)
+ pred[pred > 0] = 1.0
+ if "label_prompt" in data and data["label_prompt"] is not None:
+ pred += 0.5 # inplace mapping to avoid cloning pred
+ for i in range(1, object_num + 1):
+ frac = i + 0.5
+ pred[pred == frac] = torch.tensor(
+ data["label_prompt"][i - 1]
+ ).to(pred.dtype)
+ pred[pred == 0.5] = 0.0
+ data[keys] = pred
+ return data
+
+
+class RandCropByLabelClassesShift(RandCropByLabelClasses):
+ def __call__(
+ self,
+ img: torch.Tensor,
+ label: torch.Tensor | None = None,
+ image: torch.Tensor | None = None,
+ indices: list[NdarrayOrTensor] | None = None,
+ randomize: bool = True,
+ lazy: bool | None = None,
+ ) -> list[torch.Tensor]:
+ """
+ Args:
+ img: input data to crop samples from based on the ratios of every class, assumes `img` is a
+ channel-first array.
+ label: the label image that is used for finding indices of every class, if None, use `self.label`.
+ image: optional image data to help select valid area, can be same as `img` or another image array.
+ use ``image > image_threshold`` to select the centers only in valid region. if None, use `self.image`.
+ indices: list of indices for every class in the image, used to randomly select crop centers.
+ randomize: whether to execute the random operations, default to `True`.
+ lazy: a flag to override the lazy behaviour for this call, if set. Defaults to None.
+ """
+ if image is None:
+ image = self.image
+ if randomize:
+ if label is None:
+ label = self.label
+ self.randomize(label, indices, image)
+ results: list[torch.Tensor] = []
+ if self.centers is not None:
+ img_shape = (
+ img.peek_pending_shape()
+ if isinstance(img, MetaTensor)
+ else img.shape[1:]
+ )
+ roi_size = fall_back_tuple(self.spatial_size, default=img_shape)
+ lazy_ = self.lazy if lazy is None else lazy
+ for i, center in enumerate(self.centers):
+ for i in range(3):
+ center[i] = min(
+ img_shape[i],
+ max(
+ 0,
+ np.random.randint(-roi_size[i] // 3, roi_size[i] // 3)
+ + center[i],
+ ),
+ )
+ cropper = SpatialCrop(
+ roi_center=tuple(center), roi_size=roi_size, lazy=lazy_
+ )
+ cropped = cropper(img)
+ if get_track_meta():
+ ret_: MetaTensor = cropped # type: ignore
+ ret_.meta[Key.PATCH_INDEX] = i
+ ret_.meta["crop_center"] = center
+ self.push_transform(ret_, replace=True, lazy=lazy_)
+ results.append(cropped)
+
+ return results
+
+
+class RandCropByLabelClassesShiftd(RandCropByLabelClassesd):
+ backend = RandCropByLabelClassesShift.backend
+
+
+class RelabelD(MapTransform):
+ def __init__(
+ self,
+ keys: KeysCollection,
+ label_mappings: dict[str, list[tuple[int, int]]],
+ dtype: DtypeLike = np.int16,
+ dataset_key: str = "dataset_name",
+ allow_missing_keys: bool = False,
+ ) -> None:
+ """
+ Args:
+ keys: keys of the corresponding items to be transformed.
+ label_mappings: a dictionary specifies how local dataset class indices are mapped to the
+ global class indices, format:
+ key: dataset name, value: list of (local label, global label) pairs
+ set this argument to "{}" to disable relabeling.
+ dtype: convert the output data to dtype, default to float32.
+ dataset_key: key to get the dataset name from the data dictionary, default to "dataset_name".
+ allow_missing_keys: don't raise exception if key is missing.
+
+ """
+ super().__init__(keys, allow_missing_keys)
+ self.mappers = {}
+ self.dataset_key = dataset_key
+ for name, mapping in label_mappings.items():
+ self.mappers[name] = MapLabelValue(
+ orig_labels=[pair[0] for pair in mapping],
+ target_labels=[pair[1] for pair in mapping],
+ dtype=dtype,
+ )
+
+ def __call__(
+ self, data: Mapping[Hashable, NdarrayOrTensor]
+ ) -> dict[Hashable, NdarrayOrTensor]:
+ d = dict(data)
+ dataset_name = d.get(self.dataset_key, "default")
+ _m = look_up_option(dataset_name, self.mappers, default=None)
+ if not _m:
+ return d
+ for key in self.key_iterator(d):
+ d[key] = _m(d[key])
+ return d
+
+
+class DatasetSelectTansformd(MapTransform):
+ def __init__(
+ self,
+ keys: KeysCollection,
+ dataset_transforms,
+ dataset_key: str = "dataset_name",
+ allow_missing_keys: bool = False,
+ ) -> None:
+ """
+ Args:
+ keys: keys of the corresponding items to be transformed.
+ dataset_transforms: a dictionary specifies the transform for corresponding dataset:
+ key: dataset name, value: list of data transforms.
+ dataset_key: key to get the dataset name from the data dictionary, default to "dataset_name".
+ allow_missing_keys: don't raise exception if key is missing.
+
+ """
+ super().__init__(keys, allow_missing_keys)
+ self.dataset_transforms = dataset_transforms
+ self.dataset_key = dataset_key
+
+ def __call__(
+ self, data: Mapping[Hashable, NdarrayOrTensor]
+ ) -> dict[Hashable, NdarrayOrTensor]:
+ d = dict(data)
+ dataset_name = d[self.dataset_key]
+ _m = self.dataset_transforms[dataset_name]
+ if _m is None:
+ return d
+ return _m(d)
diff --git a/vista3d/scripts/utils/workflow_utils.py b/vista3d/scripts/utils/workflow_utils.py
new file mode 100644
index 0000000..49692f9
--- /dev/null
+++ b/vista3d/scripts/utils/workflow_utils.py
@@ -0,0 +1,609 @@
+import copy
+import random
+
+import monai
+import numpy as np
+import torch
+import torch.nn.functional as F
+
+from .trans_utils import erode3d
+
+ENABLE_SPECIAL = True
+SPECIAL_INDEX = [23, 24, 25, 26, 27, 57, 128]
+MERGE_LIST = {
+ 1: [25, 26], # hepatic tumor and vessel merge into liver
+ 4: [24], # pancreatic tumor merge into pancreas
+ 132: [57], # overlap with trachea merge into airway
+}
+USE_SV_GT_LIST = [
+ "TotalSegmentatorV2",
+ "Covid19",
+ "NLST",
+ "LIDC",
+ "StonyBrook-CT",
+ "TCIA_Colon",
+]
+
+
+def get_point_label(id):
+ """Get point label from class index"""
+ # [B, N]
+ if id in SPECIAL_INDEX and ENABLE_SPECIAL:
+ return 2, 3
+ else:
+ return 0, 1
+
+
+def convert_point_label(point_label, label_set=None):
+ if label_set is None or not ENABLE_SPECIAL:
+ return point_label
+ assert point_label.shape[0] == len(label_set)
+ for i in range(len(label_set)):
+ if label_set[i] in SPECIAL_INDEX:
+ for j in range(len(point_label[i])):
+ point_label[i, j] = (
+ point_label[i, j] + 2
+ if point_label[i, j] > -1
+ else point_label[i, j]
+ )
+ return point_label
+
+
+def none_cat(point, point_pseudo):
+ """Concatenate point and point_pseudo and allow None input and padding."""
+ _point = None
+ if point is not None:
+ if point_pseudo is not None:
+ if len(point.shape) == 3:
+ pad_n = max(point.shape[1], point_pseudo.shape[1])
+ point = F.pad(point, (0, 0, 0, pad_n - point.shape[1], 0, 0))
+ point_pseudo = F.pad(
+ point_pseudo, (0, 0, 0, pad_n - point_pseudo.shape[1], 0, 0)
+ )
+ elif len(point.shape) == 2:
+ pad_n = max(point.shape[1], point_pseudo.shape[1])
+ point = F.pad(point, (0, pad_n - point.shape[1], 0, 0), value=-1)
+ point_pseudo = F.pad(
+ point_pseudo, (0, pad_n - point_pseudo.shape[1], 0, 0), value=-1
+ )
+ elif len(point.shape) == 1:
+ pad_n = max(point.shape[0], point_pseudo.shape[0])
+ point = F.pad(point, (0, pad_n - point.shape[1]), value=-1)
+ point_pseudo = F.pad(
+ point_pseudo, (0, pad_n - point_pseudo.shape[1]), value=-1
+ )
+ _point = torch.cat([point, point_pseudo], dim=0)
+ else:
+ _point = point
+ elif point_pseudo is not None:
+ _point = point_pseudo
+ return _point
+
+
+def sample_points_patch_val(
+ labels,
+ patch_coords,
+ label_set,
+ use_center=True,
+ mapped_label_set=None,
+ max_ppoint=1,
+ max_npoint=0,
+ **kwargs
+):
+ """Sample points for patch during sliding window validation. Only used for point only validation.
+ Args:
+ labels: [1, 1, H, W, D]
+ patch_coords: sliding window slice object
+ label_set: local index, must match values in labels
+ use_center: sample points from the center
+ mapped_label_set: global index, it is used to identify special classes.
+ max_ppoint/max_npoint: positive points and negative points to sample.
+ """
+ point_coords, point_labels = generate_prompt_pairs_val(
+ labels[patch_coords],
+ label_set,
+ max_ppoint=max_ppoint,
+ max_npoint=max_npoint,
+ device=labels.device,
+ use_center=use_center,
+ )
+ point_labels = convert_point_label(point_labels, mapped_label_set)
+ return (
+ point_coords,
+ point_labels,
+ torch.tensor(mapped_label_set).to(point_coords.device).unsqueeze(-1),
+ )
+
+
+def generate_prompt_pairs_val(
+ labels, label_set=None, max_ppoint=1, max_npoint=0, device="cpu", use_center=False
+):
+ """Sample points from labels. This function is only used for validation and did not map point label to 2, 3.
+ For zero-shot point evaluation, this function will be called directly. Otherwise see sample_points_patch_val.
+ Args:
+ labels: [1, 1, H, W, D]
+ label_set: local index, must match values in labels
+ Returns:
+ point: [B, N, 3]
+ point_label: [B, N]
+ """
+ assert labels.shape[0] == 1, "only support batch size 1"
+ labels = labels[0, 0]
+ unique_labels = labels.unique().cpu().numpy().tolist()
+ _point = []
+ _point_label = []
+ Nn = max_npoint
+ Np = max_ppoint
+ for id in label_set:
+ if id in unique_labels:
+ plabels = labels == int(id)
+ nlabels = ~plabels
+ _plabels = erode3d(plabels)
+ _plabels = monai.transforms.utils.get_largest_connected_component_mask(
+ _plabels
+ )
+ plabelpoints = torch.nonzero(_plabels).to(device)
+ if len(plabelpoints) == 0:
+ plabelpoints = torch.nonzero(plabels).to(device)
+ nlabelpoints = torch.nonzero(nlabels).to(device)
+ if use_center:
+ pmean = plabelpoints.float().mean(0)
+ pdis = ((plabelpoints - pmean) ** 2).sum(-1)
+ _, sorted_indices = torch.sort(pdis)
+ _point.append(
+ torch.stack(
+ [
+ plabelpoints[sorted_indices[i]]
+ for i in range(min(len(plabelpoints), Np))
+ ]
+ + random.choices(nlabelpoints, k=min(len(nlabelpoints), Nn))
+ + [torch.tensor([0, 0, 0], device=device)]
+ * (
+ Np
+ + Nn
+ - min(len(plabelpoints), Np)
+ - min(len(nlabelpoints), Nn)
+ )
+ )
+ )
+ _point_label.append(
+ torch.tensor(
+ [1] * min(len(plabelpoints), Np)
+ + [0.0] * min(len(nlabelpoints), Nn)
+ + [-1]
+ * (
+ Np
+ + Nn
+ - min(len(plabelpoints), Np)
+ - min(len(nlabelpoints), Nn)
+ )
+ ).to(device)
+ )
+
+ else:
+ _point.append(
+ torch.stack(
+ random.choices(plabelpoints, k=min(len(plabelpoints), Np))
+ + random.choices(nlabelpoints, k=min(len(nlabelpoints), Nn))
+ + [torch.tensor([0, 0, 0], device=device)]
+ * (
+ Np
+ + Nn
+ - min(len(plabelpoints), Np)
+ - min(len(nlabelpoints), Nn)
+ )
+ )
+ )
+ _point_label.append(
+ torch.tensor(
+ [1] * min(len(plabelpoints), Np)
+ + [0.0] * min(len(nlabelpoints), Nn)
+ + [-1]
+ * (
+ Np
+ + Nn
+ - min(len(plabelpoints), Np)
+ - min(len(nlabelpoints), Nn)
+ )
+ ).to(device)
+ )
+ else:
+ # pad the background labels
+ _point.append(torch.zeros(Np + Nn, 3).to(device)) # all 0
+ _point_label.append(torch.zeros(Np + Nn).to(device) - 1) # -1 not a point
+ point = torch.stack(_point)
+ point_label = torch.stack(_point_label)
+ return point, point_label
+
+
+def generate_prompt_pairs(
+ labels,
+ label_set=None,
+ max_prompt=None,
+ max_foreprompt=None,
+ max_backprompt=1,
+ max_point=20,
+ include_background=False,
+ drop_label_prob=0.2,
+ drop_point_prob=0.2,
+ point_sampler=None,
+):
+ """This is the main function sampling training pairs for point branch. Only used in training.
+ Args:
+ labels: [1, 1, H, W, D]
+ label_set: the label list for the specific dataset.
+ max_prompt: int, max number of total prompt, including foreground and background.
+ max_foreprompt: int, max number of prompt from foreground.
+ max_backprompt: int, max number of prompt from background.
+ max_point: maximum number of points for each object
+ include_background: if include label=0 into training prompt. May casue issue in partial label
+ trainig.
+ drop_label_prob: probablity to drop label prompt
+ drop_point_prob: probablity to drop point prompt
+ point_sampler: sampler to augment masks with supervoxel.
+ Returns:
+ label_prompt: [b, 1]
+ point: [b, N, 3]
+ point_label: [b, N]
+ prompt_class: [b, 1], exactly the same with label_prompt for label indexing for training loss.
+
+ """
+ # class label number
+ assert labels.shape[0] == 1, "only support batch size 1"
+ labels = labels[0, 0]
+ device = labels.device
+ unique_labels = labels.unique().cpu().numpy().tolist()
+ if include_background:
+ unique_labels = list(set(unique_labels) - (set(unique_labels) - set(label_set)))
+ else:
+ unique_labels = list(
+ set(unique_labels) - (set(unique_labels) - set(label_set)) - set([0])
+ )
+ background_labels = list(set(label_set) - set(unique_labels))
+ # during training, balance background and foreground prompts
+ if max_backprompt is not None:
+ if len(background_labels) > max_backprompt:
+ random.shuffle(background_labels)
+ background_labels = background_labels[:max_backprompt]
+
+ if max_foreprompt is not None:
+ if len(unique_labels) > max_foreprompt:
+ random.shuffle(unique_labels)
+ unique_labels = unique_labels[:max_foreprompt]
+
+ if max_prompt is not None:
+ if len(unique_labels) + len(background_labels) > max_prompt:
+ if len(unique_labels) > max_prompt:
+ unique_labels = random.sample(unique_labels, max_prompt)
+ background_labels = []
+ else:
+ background_labels = random.sample(
+ background_labels, max_prompt - len(unique_labels)
+ )
+ _point = []
+ _point_label = []
+ # if use regular sampling
+ if point_sampler is None:
+ Np = min(max_point, int(np.abs(random.gauss(mu=0, sigma=max_point // 2))) + 1)
+ Nn = min(max_point, int(np.abs(random.gauss(mu=0, sigma=max_point // 2))))
+ for id in unique_labels:
+ neg_id, pos_id = get_point_label(id)
+ plabels = labels == int(id)
+ nlabels = ~plabels
+ plabelpoints = torch.nonzero(plabels)
+ nlabelpoints = torch.nonzero(nlabels)
+ _point.append(
+ torch.stack(
+ random.choices(plabelpoints, k=min(len(plabelpoints), Np))
+ + random.choices(nlabelpoints, k=min(len(nlabelpoints), Nn))
+ + [torch.tensor([0, 0, 0], device=device)]
+ * (
+ Np
+ + Nn
+ - min(len(plabelpoints), Np)
+ - min(len(nlabelpoints), Nn)
+ )
+ )
+ )
+ _point_label.append(
+ torch.tensor(
+ [pos_id] * min(len(plabelpoints), Np)
+ + [neg_id] * min(len(nlabelpoints), Nn)
+ + [-1]
+ * (
+ Np
+ + Nn
+ - min(len(plabelpoints), Np)
+ - min(len(nlabelpoints), Nn)
+ )
+ ).to(device)
+ )
+ for id in background_labels:
+ # pad the background labels
+ _point.append(torch.zeros(Np + Nn, 3).to(device)) # all 0
+ _point_label.append(torch.zeros(Np + Nn).to(device) - 1) # -1 not a point
+ else:
+ Np = max_point
+ Nn = 0
+ _point, _point_label = point_sampler(unique_labels, Np=Np, Nn=Nn)
+ for id in background_labels:
+ # pad the background labels
+ _point.append(torch.zeros(len(_point_label[0]), 3).to(device)) # all 0
+ _point_label.append(
+ torch.zeros(len(_point_label[0])).to(device) - 1
+ ) # -1 not a point
+ if len(unique_labels) == 0 and len(background_labels) == 0:
+ # the iteration should be skipped
+ label_prompt, point, point_label, prompt_class = None, None, None, None
+ else:
+ label_prompt = (
+ torch.tensor(unique_labels + background_labels)
+ .unsqueeze(-1)
+ .to(device)
+ .long()
+ )
+ point = torch.stack(_point)
+ point_label = torch.stack(_point_label)
+ prompt_class = copy.deepcopy(label_prompt)
+ if random.uniform(0, 1) < drop_label_prob and len(unique_labels) > 0:
+ label_prompt = None
+ # If label prompt is dropped, there is no need to pad with points with label -1.
+ pad = len(background_labels)
+ point = point[: len(point) - pad]
+ point_label = point_label[: len(point_label) - pad]
+ prompt_class = prompt_class[: len(prompt_class) - pad]
+ else:
+ if random.uniform(0, 1) < drop_point_prob:
+ point = None
+ point_label = None
+ return label_prompt, point, point_label, prompt_class
+
+
+def get_next_points_val(
+ pred,
+ gt,
+ prompt_class,
+ point,
+ point_label,
+ pred_thresh=0.5,
+ mapped=True,
+ include_background=False,
+ use_center=False,
+ erosion2d=False,
+ **kwargs
+):
+ """This function is used to sample points for iterative point evaluation. Each time only 1 point
+ is sampled. background index will be ignored.
+ mapped: If the input prompt_class are mapped to the global index, we will use special index. If not mapped (zero-shot),
+ the special index will not be enabled.
+ """
+ new_points = []
+ new_points_label = []
+ for id in range(len(prompt_class)):
+ if prompt_class[id] == 0 and not include_background:
+ new_points.append(torch.tensor([0, 0, 0], device=pred.device))
+ new_points_label.append(torch.tensor(-1, device=pred.device))
+ continue
+ neg_id, pos_id = get_point_label(-1)
+ _gt = (gt == prompt_class[id])[0, 0]
+ if mapped:
+ # if in the global index, some supported classes need modification.
+ neg_id, pos_id = get_point_label(prompt_class[id])
+ if prompt_class[id].item() in MERGE_LIST.keys():
+ for m in MERGE_LIST[prompt_class[id].item()]:
+ _gt = torch.logical_or(_gt, (gt == m)[0, 0])
+ fn_mask = torch.logical_and(_gt, pred[id][0] < pred_thresh)
+ if erosion2d:
+ fn_mask = erode3d(fn_mask, erosion=(3, 3, 1))
+ else:
+ fn_mask = erode3d(fn_mask, erosion=(3, 3, 3))
+ fn_mask = monai.transforms.utils.get_largest_connected_component_mask(fn_mask)
+ fp_mask = torch.logical_and(torch.logical_not(_gt), pred[id][0] > pred_thresh)
+ if erosion2d:
+ fp_mask = erode3d(fp_mask, erosion=(3, 3, 1))
+ else:
+ fp_mask = erode3d(fp_mask, erosion=(3, 3, 3))
+ fp_mask = monai.transforms.utils.get_largest_connected_component_mask(fp_mask)
+ if fn_mask.sum() >= fp_mask.sum():
+ plabelpoints = torch.nonzero(fn_mask)
+ if len(plabelpoints) > 0:
+ if use_center:
+ pdis = ((plabelpoints - plabelpoints.float().mean(0)) ** 2).sum(-1)
+ _, sorted_indices = torch.sort(pdis)
+ new_points.append(plabelpoints[sorted_indices[0]])
+ new_points_label.append(torch.tensor(pos_id, device=pred.device))
+ else:
+ new_points.append(random.choices(plabelpoints, k=1)[0])
+ new_points_label.append(torch.tensor(pos_id, device=pred.device))
+ print("sampled pos")
+ else:
+ new_points.append(torch.tensor([0, 0, 0], device=pred.device))
+ new_points_label.append(torch.tensor(-1, device=pred.device))
+ else:
+ plabelpoints = torch.nonzero(fp_mask)
+ if len(plabelpoints) > 0:
+ if use_center:
+ pdis = ((plabelpoints - plabelpoints.float().mean(0)) ** 2).sum(-1)
+ _, sorted_indices = torch.sort(pdis)
+ new_points.append(plabelpoints[sorted_indices[0]])
+ new_points_label.append(torch.tensor(neg_id, device=pred.device))
+ else:
+ new_points.append(random.choices(plabelpoints, k=1)[0])
+ new_points_label.append(torch.tensor(neg_id, device=pred.device))
+ print("sampled neg")
+ else:
+ new_points.append(torch.tensor([0, 0, 0], device=pred.device))
+ new_points_label.append(torch.tensor(-1, device=pred.device))
+ new_points = torch.stack(new_points).unsqueeze(1)
+ new_points_label = torch.stack(new_points_label).unsqueeze(1)
+ point = torch.cat([point, new_points], dim=1)
+ point_label = torch.cat([point_label, new_points_label], dim=1)
+ return point, point_label
+
+
+def get_next_points_auto_point(
+ pred,
+ gt,
+ prompt_class,
+ class_vector=None,
+ pred_thresh=0.5,
+ mapped=True,
+ include_background=False,
+ use_fg=False,
+ **kwargs
+):
+ """sample points from foreground or error region. This function is only used during patch based auto + point evaluation. mapped is always true if
+ evaluate dataset with automatic, which requires global index.
+ """
+ new_points = []
+ new_points_label = []
+ for id in range(len(prompt_class)):
+ neg_id, pos_id = get_point_label(-1)
+ _gt = (gt == prompt_class[id])[0, 0]
+ if mapped:
+ # if in the global index, some supported classes need modification. prompt_class is the local index
+ if class_vector is not None:
+ neg_id, pos_id = get_point_label(class_vector[id])
+ if class_vector[id].item() in MERGE_LIST.keys():
+ for m in MERGE_LIST[class_vector[id].item()]:
+ _gt = torch.logical_or(_gt, (gt == m)[0, 0])
+ else:
+ neg_id, pos_id = get_point_label(prompt_class[id])
+ if prompt_class[id].item() in MERGE_LIST.keys():
+ for m in MERGE_LIST[prompt_class[id].item()]:
+ _gt = torch.logical_or(_gt, (gt == m)[0, 0])
+ if (prompt_class[id] == 0 and not include_background) or _gt.sum() == 0:
+ # if background or no foreground and no false positive
+ if _gt.sum() == 0 and (pred[id][0] > pred_thresh).sum() > 0:
+ fp_mask = pred[id][0] > pred_thresh
+ new_points.append(random.choices(torch.nonzero(fp_mask), k=1))
+ new_points_label.append([torch.tensor(neg_id, device=pred.device)])
+ else:
+ new_points.append([torch.tensor([0, 0, 0], device=pred.device)])
+ new_points_label.append([torch.tensor(-1, device=pred.device)])
+ continue
+
+ # DO NOT MERGE HERE. The merge classs evaluation will not perform merge.
+ if use_fg:
+ plabelpoints = torch.nonzero(_gt)
+ new_points.append(random.choices(plabelpoints, k=1))
+ new_points_label.append([torch.tensor(pos_id, device=pred.device)])
+ continue
+ _new_points, _new_points_label = [], []
+ fn_mask = torch.logical_and(_gt, pred[id][0] < pred_thresh)
+ fn_mask = erode3d(fn_mask)
+ fn_mask = monai.transforms.utils.get_largest_connected_component_mask(fn_mask)
+ fp_mask = torch.logical_and(torch.logical_not(_gt), pred[id][0] > pred_thresh)
+ fp_mask = erode3d(fp_mask)
+ fp_mask = monai.transforms.utils.get_largest_connected_component_mask(fp_mask)
+ if fn_mask.sum() <= fp_mask.sum():
+ # if false positive is larger than false negative, we will sample a negative point and one from foreground.
+ # if all of them are 0, will sample a foreground
+ plabelpoints = torch.nonzero(_gt)
+ _new_points.extend(random.choices(plabelpoints, k=1))
+ _new_points_label.extend([torch.tensor(pos_id, device=pred.device)])
+ plabelpoints = torch.nonzero(fp_mask)
+ if len(plabelpoints) > 0:
+ _new_points.extend(random.choices(plabelpoints, k=1))
+ _new_points_label.extend([torch.tensor(neg_id, device=pred.device)])
+ else:
+ _new_points.extend([torch.tensor([0, 0, 0], device=pred.device)])
+ _new_points_label.extend([torch.tensor(-1, device=pred.device)])
+ else:
+ plabelpoints = torch.nonzero(fn_mask)
+ if len(plabelpoints) > 0:
+ _new_points.extend(random.choices(plabelpoints, k=1))
+ _new_points_label.extend([torch.tensor(pos_id, device=pred.device)])
+ else:
+ _new_points.extend([torch.tensor([0, 0, 0], device=pred.device)])
+ _new_points_label.extend([torch.tensor(-1, device=pred.device)])
+ new_points.append(_new_points)
+ new_points_label.append(_new_points_label)
+
+ max_len = max([len(_) for _ in new_points])
+ x = []
+ for _ in new_points:
+ x.append(_ + [torch.tensor([0, 0, 0]).to(pred.device)] * (max_len - len(_)))
+ new_points = torch.stack([torch.stack(_) for _ in x])
+ # new_points = torch.stack([torch.stack(_) for _ in [x + [torch.tensor([0,0,0]).to(pred.device)] * (max_len - len(x)) for x in new_points]])
+ x = []
+ for _ in new_points_label:
+ x.append(_ + [torch.tensor(-1).to(pred.device)] * (max_len - len(_)))
+ new_points_label = torch.vstack([torch.stack(_) for _ in x])
+
+ return new_points, new_points_label
+
+
+def get_next_points(
+ pred,
+ gt,
+ prompt_class,
+ point,
+ point_label,
+ pred_thresh=0.5,
+ mapped=True,
+ include_background=False,
+ **kwargs
+):
+ """Iterative training. Sample points from false positve or false negative. This is used in training.
+ pred [bs, 1, h, w, d]
+ gt [1,1,h,w,d]
+ point [bs, n, 3]
+ Args:
+ mapped: If the input prompt_class are mapped to the global index, we will use special index. If not mapped (zero-shot),
+ the special index will not be enabled.
+ """
+ new_points = []
+ new_points_label = []
+ offset = 10
+ window = torch.ones_like(pred[0, 0], dtype=torch.bool)
+ window[offset:-offset, offset:-offset, :] = False
+ for id in range(len(prompt_class)):
+ if prompt_class[id] == 0 and not include_background:
+ new_points.append(torch.tensor([0, 0, 0], device=pred.device))
+ new_points_label.append(torch.tensor(-1, device=pred.device))
+ continue
+ neg_id, pos_id = get_point_label(-1)
+ _gt = (gt == prompt_class[id])[0, 0]
+ if mapped:
+ # if in the global index, some supported classes need modification.
+ neg_id, pos_id = get_point_label(prompt_class[id])
+ if prompt_class[id].item() in MERGE_LIST.keys():
+ for m in MERGE_LIST[prompt_class[id].item()]:
+ _gt = torch.logical_or(_gt, (gt == m)[0, 0])
+ fn_mask = torch.logical_and(_gt, pred[id][0] < pred_thresh)
+ fn_mask = erode3d(fn_mask)
+ fn_mask[window] = 0
+ fp_mask = torch.logical_and(torch.logical_not(_gt), pred[id][0] > pred_thresh)
+ fp_mask = erode3d(fp_mask)
+ fp_mask[window] = 0
+ # random select a false negative
+ fnlabelpoints = torch.nonzero(fn_mask)
+ fplabelpoints = torch.nonzero(fp_mask)
+ _new_points = []
+ _new_points_label = []
+ if len(fnlabelpoints) > 0:
+ _new_points.append(random.choices(fnlabelpoints, k=1)[0])
+ _new_points_label.append(torch.tensor(pos_id, device=pred.device))
+ else:
+ _new_points.append(torch.tensor([0, 0, 0], device=pred.device))
+ _new_points_label.append(torch.tensor(-1, device=pred.device))
+ if len(fplabelpoints) > 0:
+ _new_points.append(random.choices(fplabelpoints, k=1)[0])
+ _new_points_label.append(torch.tensor(neg_id, device=pred.device))
+ else:
+ _new_points.append(torch.tensor([0, 0, 0], device=pred.device))
+ _new_points_label.append(torch.tensor(-1, device=pred.device))
+ new_points.append(torch.stack(_new_points))
+ new_points_label.append(torch.stack(_new_points_label))
+ if len(new_points) > 0:
+ new_points = torch.stack(new_points)
+ new_points_label = torch.stack(new_points_label)
+ if point is not None:
+ point = torch.cat([point, new_points], dim=1)
+ point_label = torch.cat([point_label, new_points_label], dim=1)
+ else:
+ point = new_points
+ point_label = new_points_label
+
+ return point, point_label
diff --git a/vista3d/scripts/validation/build_vista3d_eval_only.py b/vista3d/scripts/validation/build_vista3d_eval_only.py
new file mode 100644
index 0000000..b5e016a
--- /dev/null
+++ b/vista3d/scripts/validation/build_vista3d_eval_only.py
@@ -0,0 +1,174 @@
+# Copyright (c) MONAI Consortium
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+# http://www.apache.org/licenses/LICENSE-2.0
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from __future__ import annotations
+
+import copy
+
+import numpy as np
+import torch
+from monai.metrics import compute_dice
+from vista3d.modeling import (
+ VISTA3D2,
+ Class_Mapping_Classify,
+ Point_Mapping_SAM,
+ SegResNetDS2,
+)
+
+from ..utils.workflow_utils import get_next_points_auto_point
+
+
+class VISTA3D2_eval_only(VISTA3D2):
+ @torch.no_grad()
+ def point_head_iterative_trial(
+ self,
+ logits,
+ labels,
+ out,
+ point_coords,
+ point_labels,
+ class_vector,
+ prompt_class,
+ n_trials=3,
+ ):
+ """The prompt class is the local label set while class vector is the mapped global label set"""
+ logits_update = logits.detach().clone()
+ for trial_idx in range(n_trials):
+ if trial_idx == 0:
+ point_coords, point_labels = get_next_points_auto_point(
+ logits > 0, labels, prompt_class, class_vector, use_fg=True
+ )
+ else:
+ point_coords, point_labels = get_next_points_auto_point(
+ logits > 0, labels, prompt_class, class_vector, use_fg=False
+ )
+ mapping_index = ((point_labels != -1).sum(1) > 0).to(torch.bool)
+ point_coords = point_coords[mapping_index]
+ point_labels = point_labels[mapping_index]
+ if (torch.sum(mapping_index) == 1 and mapping_index[0]) or torch.sum(
+ mapping_index
+ ) == 0:
+ return logits
+ if trial_idx == 0:
+ best_dice = []
+ for i in range(len(prompt_class)):
+ dice = compute_dice(
+ y_pred=(logits[[i]] > 0).to(labels.device),
+ y=labels == prompt_class[i],
+ ).item()
+ if np.isnan(dice):
+ best_dice.append(-(logits[[i]] > 0).sum())
+ else:
+ best_dice.append(dice)
+
+ point_logits = self.point_head(
+ out,
+ point_coords,
+ point_labels,
+ class_vector=class_vector[mapping_index],
+ )
+
+ target_logits = self.connected_components_combine(
+ logits, point_logits, point_coords, point_labels, mapping_index
+ )
+ combine_dice = []
+ for i in range(len(prompt_class)):
+ if mapping_index[i]:
+ dice = compute_dice(
+ y_pred=(target_logits[[i]] > 0).to(labels.device),
+ y=(labels == prompt_class[i]),
+ ).item()
+ if np.isnan(dice):
+ combine_dice.append(-(target_logits[[i]] > 0).sum())
+ else:
+ combine_dice.append(dice)
+ else:
+ combine_dice.append(-1)
+ # check the dice for each label
+ for i in range(len(prompt_class)):
+ if prompt_class[i] == 0:
+ continue
+ if combine_dice[i] > best_dice[i]:
+ # print(trial_idx, prompt_class[i], combine_dice[i], best_dice[i])
+ logits_update[i] = copy.deepcopy(target_logits[i])
+ best_dice[i] = copy.deepcopy(combine_dice[i])
+
+ labels, target_logits, logits, best_dice, combine_dice = (
+ None,
+ None,
+ None,
+ None,
+ None,
+ )
+ # force releasing memories that set to None
+ torch.cuda.empty_cache()
+ return logits_update
+
+ def forward(
+ self,
+ input_images,
+ point_coords=None,
+ point_labels=None,
+ class_vector=None,
+ prompt_class=None,
+ patch_coords=None,
+ labels=None,
+ label_set=None,
+ prev_mask=None,
+ radius=None,
+ val_point_sampler=None,
+ **kwargs,
+ ):
+ out, out_auto = self.image_encoder(
+ input_images, with_point=True, with_label=True
+ )
+ input_images = None
+ # force releasing memories that set to None
+ torch.cuda.empty_cache()
+ logits, _ = self.class_head(out_auto, class_vector)
+ logits = self.point_head_iterative_trial(
+ logits,
+ labels[patch_coords],
+ out,
+ point_coords,
+ point_labels,
+ class_vector[0],
+ prompt_class[0],
+ n_trials=3,
+ )
+ return logits
+
+
+def build_vista3d_segresnet_decoder(
+ encoder_embed_dim=48, in_channels=1, image_size=(96, 96, 96)
+):
+ segresnet = SegResNetDS2(
+ in_channels=in_channels,
+ blocks_down=(1, 2, 2, 4, 4),
+ norm="instance",
+ out_channels=encoder_embed_dim,
+ init_filters=encoder_embed_dim,
+ dsdepth=1,
+ )
+ point_head = Point_Mapping_SAM(feature_size=encoder_embed_dim, last_supported=132)
+ class_head = Class_Mapping_Classify(
+ n_classes=512, feature_size=encoder_embed_dim, use_mlp=True
+ )
+ vista = VISTA3D2_eval_only(
+ image_encoder=segresnet,
+ class_head=class_head,
+ point_head=point_head,
+ feature_size=encoder_embed_dim,
+ )
+ return vista
+
+
+vista_model_registry = {"vista3d_segresnet_d": build_vista3d_segresnet_decoder}
diff --git a/vista3d/scripts/validation/val_multigpu_autopoint_patch.py b/vista3d/scripts/validation/val_multigpu_autopoint_patch.py
new file mode 100644
index 0000000..61065e3
--- /dev/null
+++ b/vista3d/scripts/validation/val_multigpu_autopoint_patch.py
@@ -0,0 +1,442 @@
+# Copyright (c) MONAI Consortium
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+# http://www.apache.org/licenses/LICENSE-2.0
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from __future__ import annotations
+
+import copy
+import glob
+import json
+import logging
+import os
+import sys
+from datetime import timedelta
+from functools import partial
+from typing import Optional, Sequence, Union
+
+import monai
+import numpy as np
+import torch
+import torch.distributed as dist
+from monai import transforms
+from monai.apps.auto3dseg.auto_runner import logger
+from monai.auto3dseg.utils import datafold_read
+from monai.bundle import ConfigParser
+from monai.bundle.scripts import _pop_args, _update_args
+from monai.data import DataLoader, partition_dataset
+from monai.metrics import compute_dice
+from monai.utils import set_determinism
+from torch.cuda.amp import autocast
+from torch.nn.parallel import DistributedDataParallel
+
+from ..sliding_window import sliding_window_inference
+from ..train import CONFIG, infer_wrapper
+from ..utils.trans_utils import VistaPostTransform
+from .build_vista3d_eval_only import vista_model_registry
+
+
+def run(config_file: Optional[Union[str, Sequence[str]]] = None, **override):
+ # Initialize distributed and scale parameters based on GPU memory
+ if torch.cuda.device_count() > 1:
+ dist.init_process_group(
+ backend="nccl", init_method="env://", timeout=timedelta(seconds=3600)
+ )
+ world_size = dist.get_world_size()
+ dist.barrier()
+ else:
+ world_size = 1
+
+ logging.basicConfig(stream=sys.stdout, level=logging.INFO)
+
+ if isinstance(config_file, str) and "," in config_file:
+ config_file = config_file.split(",")
+
+ _args = _update_args(config_file=config_file, **override)
+ config_file_ = _pop_args(_args, "config_file")[0]
+
+ parser = ConfigParser()
+ parser.read_config(config_file_)
+ parser.update(pairs=_args)
+
+ amp = parser.get_parsed_content("amp")
+ data_file_base_dir = parser.get_parsed_content("data_file_base_dir")
+ data_list_file_path = parser.get_parsed_content("data_list_file_path")
+ ckpt = parser.get_parsed_content("ckpt")
+ fold = parser.get_parsed_content("fold")
+ patch_size = parser.get_parsed_content("patch_size")
+ model_registry = parser.get_parsed_content("model")
+ input_channels = parser.get_parsed_content("input_channels")
+ label_set = parser.get_parsed_content("label_set", default=None)
+ val_auto = parser.get_parsed_content("val_auto", default=False)
+ argmax_first = parser.get_parsed_content("argmax_first", default=True)
+ five_fold = parser.get_parsed_content("five_fold", default=True)
+ mapped_label_set = parser.get_parsed_content(
+ "mapped_label_set", default=copy.deepcopy(label_set)
+ )
+ transforms_infer = parser.get_parsed_content("transforms_infer")
+ list_key = parser.get_parsed_content("list_key", default="testing")
+ """ start_prompt and end_prompt are used to save memory. For 117 class prompts, it will go oom. Use these two to limit
+ the prompt number and run the scripts multiple times to cover 117 classes.
+ """
+ start_prompt = parser.get_parsed_content("start_prompt", default=None)
+ end_prompt = parser.get_parsed_content("end_prompt", default=None)
+ dataset_name = parser.get_parsed_content("dataset_name", default=None)
+ if label_set is None:
+ label_mapping = parser.get_parsed_content(
+ "label_mapping", default="./data/jsons/label_mappings.json"
+ )
+
+ with open(label_mapping, "r") as f:
+ label_mapping = json.load(f)
+ label_set = [_xx[0] for _xx in label_mapping[dataset_name]]
+ mapped_label_set = [_xx[1] for _xx in label_mapping[dataset_name]]
+ if start_prompt is not None:
+ # this is used for dataset like totalseg with large number of prompts.
+ label_set = label_set[start_prompt:end_prompt]
+ mapped_label_set = mapped_label_set[start_prompt:end_prompt]
+
+ label_set = [0] + label_set
+ mapped_label_set = [0] + mapped_label_set
+ if dataset_name == "Task07" or dataset_name == "Task03":
+ # disable argmax if there is overlap.
+ argmax_first = False
+ if dataset_name == "Bone-NIH":
+ mapped_label_set = mapped_label_set[:-1]
+ label_set = label_set[:-1]
+
+ random_seed = parser.get_parsed_content("random_seed", default=0)
+ if random_seed is not None and (
+ isinstance(random_seed, int) or isinstance(random_seed, float)
+ ):
+ set_determinism(seed=random_seed)
+
+ CONFIG["handlers"]["file"]["filename"] = parser.get_parsed_content(
+ "log_output_file"
+ )
+ logging.config.dictConfig(CONFIG)
+ logging.getLogger("torch.distributed.distributed_c10d").setLevel(logging.WARNING)
+ logger.debug(f"Number of GPUs: {torch.cuda.device_count()}")
+ logger.debug(f"World_size: {world_size}")
+ logger.debug(f"Validation using auto: {val_auto}")
+ if five_fold:
+ train_files, val_files = datafold_read(
+ datalist=data_list_file_path,
+ basedir=data_file_base_dir,
+ fold=fold,
+ key="training",
+ )
+ test_files, _ = datafold_read(
+ datalist=data_list_file_path,
+ basedir=data_file_base_dir,
+ fold=-1,
+ key="testing",
+ )
+ else:
+ train_files, _ = datafold_read(
+ datalist=data_list_file_path,
+ basedir=data_file_base_dir,
+ fold=-1,
+ key="training",
+ )
+ val_files, _ = datafold_read(
+ datalist=data_list_file_path,
+ basedir=data_file_base_dir,
+ fold=-1,
+ key="validation",
+ )
+ test_files, _ = datafold_read(
+ datalist=data_list_file_path,
+ basedir=data_file_base_dir,
+ fold=-1,
+ key="testing",
+ )
+ process_dict = {
+ "training": train_files,
+ "validation": val_files,
+ "testing": test_files,
+ "all": train_files + val_files + test_files,
+ }
+ process_files = process_dict[list_key]
+
+ save_metric = parser.get_parsed_content("save_metric", default=False)
+ if save_metric:
+ output_dirs = os.path.join(
+ os.path.dirname(parser.get_parsed_content("log_output_file")), dataset_name
+ )
+ os.makedirs(output_dirs, exist_ok=True)
+ generated_files = glob.glob(os.path.join(output_dirs, "*.json"))
+ _process_files = []
+ for i in process_files:
+ not_finished = True
+ for j in generated_files:
+ if j.split(".json")[0].split("/")[-1] in i["image"]:
+ not_finished = False
+ break
+ if not_finished:
+ _process_files.append(i)
+ logger.info(f"{len(_process_files)} is remained out from {len(process_files)}")
+ print(f"{len(_process_files)} is remained out from {len(process_files)}")
+ process_files = _process_files
+
+ for i in range(len(process_files)):
+ if (
+ isinstance(process_files[i]["image"], list)
+ and len(process_files[i]["image"]) > 1
+ ):
+ process_files[i]["image"] = process_files[i]["image"][0]
+ if torch.cuda.device_count() == 1 or dist.get_rank() == 0:
+ print(f"Total files {len(process_files)}")
+ print(process_files)
+ overlap = parser.get_parsed_content("overlap", default=0.0)
+ if torch.cuda.device_count() > 1:
+ process_files = partition_dataset(
+ data=process_files,
+ shuffle=False,
+ num_partitions=world_size,
+ even_divisible=False,
+ )[dist.get_rank()]
+ logger.debug(f"Val_files: {len(process_files)}")
+ val_ds = monai.data.Dataset(data=process_files, transform=transforms_infer)
+ val_loader = DataLoader(
+ val_ds,
+ num_workers=parser.get_parsed_content("num_workers_validation", default=2),
+ batch_size=1,
+ shuffle=False,
+ )
+
+ device = (
+ torch.device(f"cuda:{os.environ['LOCAL_RANK']}")
+ if world_size > 1
+ else torch.device("cuda:0")
+ )
+
+ model = vista_model_registry[model_registry](
+ in_channels=input_channels, image_size=patch_size
+ )
+
+ model = model.to(device)
+
+ if torch.cuda.device_count() > 1:
+ model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
+
+ post_transform = transforms.Invertd(
+ keys="pred",
+ transform=transforms_infer,
+ orig_keys="image",
+ meta_keys="pred_meta_dict",
+ orig_meta_keys="image_meta_dict",
+ meta_key_postfix="meta_dict",
+ nearest_interp=True,
+ to_tensor=True,
+ )
+
+ post_pred = transforms.AsDiscrete(threshold=0.0, dtype=torch.uint8)
+
+ if torch.cuda.device_count() > 1:
+ model = DistributedDataParallel(
+ model, device_ids=[device], find_unused_parameters=True
+ )
+
+ if torch.cuda.device_count() > 1:
+ model.module.load_state_dict(
+ torch.load(ckpt, map_location=device), strict=False
+ )
+ else:
+ model.load_state_dict(torch.load(ckpt, map_location=device), strict=False)
+
+ model.eval()
+ metric_dim = len(label_set) - 1
+ model_inferer = partial(infer_wrapper, model=model)
+ with torch.no_grad():
+ metric = torch.zeros(metric_dim * 2, dtype=torch.float, device=device)
+ _index = 0
+ _final_count = 0
+ for val_data in val_loader:
+ if dataset_name == "Bone-NIH":
+ val_data["label_gt"][val_data["label_gt"] == 2] = 1
+ val_data["label"][val_data["label"] == 2] = 1
+ val_filename = val_data["image"].meta["filename_or_obj"][0]
+ _index += 1
+ with autocast(enabled=amp):
+ val_outputs = None
+ torch.cuda.empty_cache()
+ for _device_in, _device_out in zip(
+ [device, device, "cpu"], [device, "cpu", "cpu"]
+ ):
+ try:
+ with autocast(enabled=amp):
+ val_outputs = None
+ torch.cuda.empty_cache()
+ val_outputs = sliding_window_inference(
+ inputs=val_data["image"].to(_device_in),
+ roi_size=patch_size,
+ sw_batch_size=1,
+ predictor=model_inferer,
+ mode="gaussian",
+ overlap=overlap,
+ sw_device=device,
+ device=_device_out,
+ point_coords=None,
+ point_labels=None,
+ class_vector=torch.tensor(mapped_label_set)
+ .to(device)
+ .unsqueeze(0),
+ prompt_class=torch.tensor(label_set)
+ .to(device)
+ .unsqueeze(0),
+ labels=val_data["label"].to(_device_in),
+ label_set=label_set,
+ merge_with_trial=True,
+ )
+ finished = True
+ skipped = False
+ except RuntimeError as e:
+ if not any(
+ x in str(e).lower() for x in ("memory", "cuda", "cudnn")
+ ):
+ raise e
+ logger.warning(e)
+ finished = False
+ skipped = True
+
+ if finished:
+ break
+ if skipped:
+ logger.debug(
+ f"{_index} / {len(val_loader)} / {val_filename}: skipped due to OOM with size {val_data['image'].shape}"
+ )
+ continue
+ value = torch.full((1, metric_dim), float("nan")).to(device)
+ if not skipped:
+ if argmax_first:
+ try:
+ try:
+ val_outputs = VistaPostTransform(keys="pred")(
+ {
+ "image": val_data["image"][0],
+ "pred": val_outputs[0],
+ "label_prompt": label_set,
+ }
+ )
+ val_outputs = post_transform(val_outputs)["pred"][None, ...]
+ except BaseException:
+ val_outputs = VistaPostTransform(keys="pred")(
+ {
+ "image": val_data["image"][0].cpu(),
+ "pred": val_outputs[0].cpu(),
+ "label_prompt": label_set,
+ }
+ )
+ val_outputs = post_transform(val_outputs)["pred"][None, ...]
+ for i in range(1, len(label_set)):
+ gt = (
+ val_data["label_gt"].to(val_outputs.device)
+ == label_set[i]
+ )
+ ypred = val_outputs == label_set[i]
+ value[0, i - 1] = compute_dice(
+ y_pred=ypred, y=gt, include_background=False
+ )
+ _final_count += 1
+ except BaseException:
+ logger.debug(
+ f"{_index} / {len(val_loader)} / {val_filename}: Shape mismatch or OOM in postransform"
+ )
+ value = torch.full((1, metric_dim), float("nan")).to(device)
+ else:
+ try:
+ val_outputs = post_pred(val_outputs[0])[None, ...]
+ try:
+ val_outputs = post_transform(
+ {"image": val_data["image"][0], "pred": val_outputs[0]}
+ )["pred"][None, ...]
+ except BaseException:
+ val_outputs = post_transform(
+ {
+ "image": val_data["image"][0].cpu(),
+ "pred": val_outputs[0].cpu(),
+ }
+ )["pred"][None, ...]
+ for i in range(1, len(label_set)):
+ gt = (
+ val_data["label_gt"].to(val_outputs.device)
+ == label_set[i]
+ )
+ y_pred = val_outputs[:, [i]]
+ if i == 1 and (
+ dataset_name == "Task07" or dataset_name == "Task03"
+ ):
+ y_pred = torch.logical_and(
+ y_pred > 0.5, val_outputs[:, [i + 1]] < 0.5
+ )
+ value[0, i - 1] = compute_dice(
+ y_pred, y=gt, include_background=False
+ )
+ _final_count += 1
+ if save_metric:
+ output_json_path = os.path.join(
+ output_dirs,
+ os.path.dirname(val_filename).split("/")[-1] + ".json",
+ )
+ with open(output_json_path, "w") as f:
+ json.dump(value[0].cpu().numpy().tolist(), f)
+ except BaseException:
+ logger.debug(
+ f"{_index} / {len(val_loader)} / {val_filename}: Shape mismatch or OOM in postransform"
+ )
+ value = torch.full((1, metric_dim), float("nan")).to(device)
+ val_outputs, val_data = None, None
+ torch.cuda.empty_cache()
+ print(f"{_index} / {len(val_loader)} / {val_filename}: {value}")
+ logger.debug(f"{_index} / {len(val_loader)} / {val_filename}: {value}")
+ for _c in range(metric_dim):
+ val0 = torch.nan_to_num(value[0, _c], nan=0.0)
+ val1 = 1.0 - torch.isnan(value[0, _c]).float()
+ metric[2 * _c] += val0
+ metric[2 * _c + 1] += val1
+
+ if torch.cuda.device_count() > 1:
+ dist.all_reduce(metric, op=torch.distributed.ReduceOp.SUM)
+
+ metric = metric.tolist()
+ metric_class = np.zeros(metric_dim)
+ if torch.cuda.device_count() == 1 or dist.get_rank() == 0:
+ avg_metric = 0
+ valid = 0
+ for _c in range(metric_dim):
+ if metric[2 * _c + 1] > 0:
+ v = metric[2 * _c] / metric[2 * _c + 1]
+ avg_metric += v
+ valid += 1
+ else:
+ v = torch.nan
+ metric_class[_c] = v
+ try:
+ logger.debug(f"Evaluation metric - class {_c + 1} : {v:.4f}")
+ except BaseException:
+ logger.debug(f"Evaluation metric - class {_c + 1} : {v:.4f}")
+ avg_metric = avg_metric / valid
+ print(f"Avg_metric: {avg_metric}")
+ logger.debug(f"Avg_metric: {avg_metric}")
+
+ torch.cuda.empty_cache()
+ if torch.cuda.device_count() > 1:
+ dist.barrier()
+ logger.debug(f"Final Evaluated Cases {_final_count}")
+ dist.destroy_process_group()
+
+ return
+
+
+if __name__ == "__main__":
+ from monai.utils import optional_import
+
+ fire, _ = optional_import("fire")
+ fire.Fire()
diff --git a/vista3d/scripts/validation/val_multigpu_point_iterative.py b/vista3d/scripts/validation/val_multigpu_point_iterative.py
new file mode 100644
index 0000000..2ac19f2
--- /dev/null
+++ b/vista3d/scripts/validation/val_multigpu_point_iterative.py
@@ -0,0 +1,392 @@
+# Copyright (c) MONAI Consortium
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+# http://www.apache.org/licenses/LICENSE-2.0
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from __future__ import annotations
+
+import json
+import logging
+import os
+import sys
+from datetime import timedelta
+from functools import partial
+from typing import Optional, Sequence, Union
+
+import monai
+import torch
+import torch.distributed as dist
+from monai import transforms
+from monai.apps.auto3dseg.auto_runner import logger
+from monai.auto3dseg.utils import datafold_read
+from monai.bundle import ConfigParser
+from monai.bundle.scripts import _pop_args, _update_args
+from monai.data import DataLoader, partition_dataset
+from monai.metrics import compute_dice
+from monai.utils import set_determinism
+from torch.cuda.amp import autocast
+from torch.nn.parallel import DistributedDataParallel
+
+from vista3d import vista_model_registry
+
+from ..sliding_window import sliding_window_inference
+from ..train import CONFIG, infer_wrapper
+from ..utils.workflow_utils import generate_prompt_pairs_val, get_next_points_val
+
+
+def run(config_file: Optional[Union[str, Sequence[str]]] = None, **override):
+ # Initialize distributed and scale parameters based on GPU memory
+ if torch.cuda.device_count() > 1:
+ dist.init_process_group(
+ backend="nccl", init_method="env://", timeout=timedelta(seconds=10000)
+ )
+ world_size = dist.get_world_size()
+ dist.barrier()
+ else:
+ world_size = 1
+
+ logging.basicConfig(stream=sys.stdout, level=logging.INFO)
+
+ if isinstance(config_file, str) and "," in config_file:
+ config_file = config_file.split(",")
+
+ _args = _update_args(config_file=config_file, **override)
+ config_file_ = _pop_args(_args, "config_file")[0]
+
+ parser = ConfigParser()
+ parser.read_config(config_file_)
+ parser.update(pairs=_args)
+
+ amp = parser.get_parsed_content("amp")
+ data_file_base_dir = parser.get_parsed_content("data_file_base_dir")
+ data_list_file_path = parser.get_parsed_content("data_list_file_path")
+ ckpt = parser.get_parsed_content("ckpt")
+ fold = parser.get_parsed_content("fold")
+ patch_size = parser.get_parsed_content("patch_size")
+ model_registry = parser.get_parsed_content("model")
+ input_channels = parser.get_parsed_content("input_channels")
+ label_set = parser.get_parsed_content("label_set", default=None)
+ transforms_infer = parser.get_parsed_content("transforms_infer")
+ list_key = parser.get_parsed_content("list_key", default="testing")
+ five_fold = parser.get_parsed_content("five_fold", default=True)
+ remove_out = parser.get_parsed_content("remove_out", default=True)
+ use_center = parser.get_parsed_content("use_center", default=True)
+ MAX_ITER = parser.get_parsed_content("max_iter", default=10)
+
+ if label_set is None:
+ label_mapping = parser.get_parsed_content(
+ "label_mapping", default="./data/jsons_final_update/label_mappings.json"
+ )
+ dataset_name = parser.get_parsed_content("dataset_name", default=None)
+ with open(label_mapping, "r") as f:
+ label_mapping = json.load(f)
+ label_set = [0] + [_xx[0] for _xx in label_mapping[dataset_name]]
+
+ random_seed = parser.get_parsed_content("random_seed", default=0)
+ if random_seed is not None and (
+ isinstance(random_seed, int) or isinstance(random_seed, float)
+ ):
+ set_determinism(seed=random_seed)
+
+ CONFIG["handlers"]["file"]["filename"] = parser.get_parsed_content(
+ "log_output_file"
+ )
+ logging.config.dictConfig(CONFIG)
+ logging.getLogger("torch.distributed.distributed_c10d").setLevel(logging.WARNING)
+ logger.debug(f"Number of GPUs: {torch.cuda.device_count()}")
+ logger.debug(f"World_size: {world_size}")
+ if five_fold:
+ train_files, val_files = datafold_read(
+ datalist=data_list_file_path,
+ basedir=data_file_base_dir,
+ fold=fold,
+ key="training",
+ )
+ test_files, _ = datafold_read(
+ datalist=data_list_file_path,
+ basedir=data_file_base_dir,
+ fold=-1,
+ key="testing",
+ )
+ else:
+ train_files, _ = datafold_read(
+ datalist=data_list_file_path,
+ basedir=data_file_base_dir,
+ fold=-1,
+ key="training",
+ )
+ val_files, _ = datafold_read(
+ datalist=data_list_file_path,
+ basedir=data_file_base_dir,
+ fold=-1,
+ key="validation",
+ )
+ test_files, _ = datafold_read(
+ datalist=data_list_file_path,
+ basedir=data_file_base_dir,
+ fold=-1,
+ key="testing",
+ )
+ process_dict = {
+ "training": train_files,
+ "validation": val_files,
+ "testing": test_files,
+ "all": train_files + val_files + test_files,
+ }
+ process_files = process_dict[list_key]
+ for i in range(len(process_files)):
+ if (
+ isinstance(process_files[i]["image"], list)
+ and len(process_files[i]["image"]) > 1
+ ):
+ process_files[i]["image"] = process_files[i]["image"][0]
+ if torch.cuda.device_count() == 1 or dist.get_rank() == 0:
+ print(f"Total files {len(process_files)}")
+ print(process_files)
+ overlap = parser.get_parsed_content("overlap", default=0.0)
+ if torch.cuda.device_count() > 1:
+ process_files = partition_dataset(
+ data=process_files,
+ shuffle=False,
+ num_partitions=world_size,
+ even_divisible=False,
+ )[dist.get_rank()]
+ logger.debug(f"Val_files: {len(process_files)}")
+ val_ds = monai.data.Dataset(data=process_files, transform=transforms_infer)
+ val_loader = DataLoader(
+ val_ds,
+ num_workers=parser.get_parsed_content("num_workers_validation", default=2),
+ batch_size=1,
+ shuffle=False,
+ )
+
+ device = (
+ torch.device(f"cuda:{os.environ['LOCAL_RANK']}")
+ if world_size > 1
+ else torch.device("cuda:0")
+ )
+
+ model = vista_model_registry[model_registry](
+ in_channels=input_channels, image_size=patch_size
+ )
+
+ model = model.to(device)
+
+ if torch.cuda.device_count() > 1:
+ model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
+
+ post_transform = transforms.Invertd(
+ keys="pred",
+ transform=transforms_infer,
+ orig_keys="image",
+ meta_keys="pred_meta_dict",
+ orig_meta_keys="image_meta_dict",
+ meta_key_postfix="meta_dict",
+ nearest_interp=False,
+ to_tensor=True,
+ )
+
+ post_pred = transforms.AsDiscrete(threshold=0.0, dtype=torch.uint8)
+
+ if torch.cuda.device_count() > 1:
+ model = DistributedDataParallel(
+ model, device_ids=[device], find_unused_parameters=True
+ )
+
+ if torch.cuda.device_count() > 1:
+ model.module.load_state_dict(
+ torch.load(ckpt, map_location=device), strict=False
+ )
+ else:
+ model.load_state_dict(torch.load(ckpt, map_location=device), strict=False)
+
+ model.eval()
+ max_iters = MAX_ITER
+ metric_dim = len(label_set) - 1
+ model_inferer = partial(infer_wrapper, model=model)
+ log_string = []
+ with torch.no_grad():
+ obj_num = len(val_loader)
+ if torch.cuda.device_count() > 1:
+ size_tensor = torch.tensor(obj_num, device=device)
+ output_tensor = [torch.zeros_like(size_tensor) for _ in range(world_size)]
+ dist.barrier()
+ dist.all_gather(output_tensor, size_tensor)
+ # total_size_tensor = sum(output_tensor)
+ obj_num = max(output_tensor)
+ metric = (
+ torch.zeros(
+ obj_num, metric_dim, max_iters, dtype=torch.float, device=device
+ )
+ + torch.nan
+ )
+ point_num = (
+ torch.zeros(obj_num, metric_dim, dtype=torch.float, device=device)
+ + torch.nan
+ )
+ _index = 0
+ for val_data in val_loader:
+ val_filename = val_data["image"].meta["filename_or_obj"][0]
+ _index += 1
+
+ val_outputs = None
+ for idx in range(max_iters):
+ if idx == 0:
+ point, point_label = generate_prompt_pairs_val(
+ val_data["label"].to(device),
+ label_set,
+ max_ppoint=1,
+ use_center=use_center,
+ )
+ point = point.to(device)
+ point_label = point_label.to(device)
+ else:
+ # val_outputs is from model_inferer which moved the batch_dim to 0.
+ _point, _point_label = get_next_points_val(
+ val_outputs.transpose(1, 0),
+ val_data["label"].to(device),
+ torch.tensor(label_set).to(device),
+ point,
+ point_label,
+ use_center=False,
+ )
+ # if labels other than 0 didn't get new points, skip
+ skip_this_iter = torch.all(_point_label[1:, -1] == -1)
+ if skip_this_iter:
+ if idx < 10:
+ _point, _point_label = get_next_points_val(
+ val_outputs.transpose(1, 0),
+ val_data["label"].to(device),
+ torch.tensor(label_set).to(device),
+ point,
+ point_label,
+ use_center=False,
+ erosion2d=True,
+ )
+ skip_this_iter = torch.all(_point_label[1:, -1] == -1)
+ if skip_this_iter:
+ print(f"iteration end at {idx}")
+ break
+ point, point_label = _point, _point_label
+
+ with autocast(enabled=amp):
+ val_outputs = None
+ val_outputs = sliding_window_inference(
+ inputs=val_data["image"].to(device),
+ roi_size=patch_size,
+ sw_batch_size=1,
+ predictor=model_inferer,
+ mode="gaussian",
+ overlap=overlap,
+ sw_device=device,
+ device=device,
+ point_coords=point, # not None
+ point_labels=point_label,
+ class_vector=None,
+ prompt_class=torch.ones(len(label_set), 1).to(device)
+ * 600, # will not be used when val_point_sampler is not None
+ labels=None,
+ label_set=None,
+ use_cfp=True,
+ brush_radius=None,
+ prev_mask=None,
+ val_point_sampler=None,
+ ) # making sure zero-shot
+ # val_outputs = get_largest_connected_component_point(val_outputs, point_coords=point, point_labels=point_label, post_idx=post_idx)
+ val_pred = post_transform(
+ {"image": val_data["image"][0], "pred": val_outputs[0]}
+ )["pred"]
+ val_pred = post_pred(val_pred)[None, ...]
+ val_outputs = post_pred(val_outputs[0, ...])
+ val_outputs = val_outputs[None, ...]
+ if remove_out:
+ # remove false positive in slices with no gt
+ for i in range(1, len(label_set)):
+ gt = val_data["label"].to(val_outputs.device) == label_set[i]
+ remove_slice = gt[0, 0].sum(0).sum(0) == 0
+ val_outputs[:, i, :, :, remove_slice] = 0
+ for i in range(1, len(label_set)):
+ gt = val_data["label_gt"].to(val_outputs.device) == label_set[i]
+ y_pred = val_pred[:, [i]]
+ remove_slice = gt[0, 0].sum(0).sum(0) == 0
+ y_pred[:, :, :, :, remove_slice] = 0
+
+ metric[_index - 1, i - 1, idx] = compute_dice(
+ y_pred=y_pred, y=gt, include_background=False
+ )
+ point_num[_index - 1, i - 1] = idx + 1
+ string = f"Validation Dice score : {idx} / {_index} / {len(val_loader)}/ {val_filename}: {metric[_index-1,:,idx]}"
+ print(string)
+ log_string.append(string)
+ # move all to cpu to avoid potential out memory in invert transform
+ torch.cuda.empty_cache()
+ log_string = sorted(log_string)
+ for _ in log_string:
+ logger.debug(_)
+
+ if torch.cuda.device_count() > 1:
+ dist.barrier()
+ global_combined_tensor = [
+ torch.zeros_like(metric) for _ in range(world_size)
+ ]
+ dist.all_gather(tensor_list=global_combined_tensor, tensor=metric)
+ metric = torch.vstack(global_combined_tensor)
+ dist.barrier()
+ global_combined_tensor = [
+ torch.zeros_like(point_num) for _ in range(world_size)
+ ]
+ dist.all_gather(tensor_list=global_combined_tensor, tensor=point_num)
+ point_num = torch.vstack(global_combined_tensor)
+
+ if torch.cuda.device_count() == 1 or dist.get_rank() == 0:
+ # remove metric that's all NaN
+ keep_index = ~torch.isnan(metric).all(1).all(1)
+ metric = metric[keep_index]
+ point_num = point_num[keep_index]
+ if max_iters > 1:
+ metric_best = torch.nan_to_num(metric, 0).max(2)[0]
+ else:
+ metric_best = metric[:, :, 0]
+ for i in range(metric.shape[0]):
+ logger.debug(f"object {i}: {metric[i].tolist()}")
+ logger.debug(f"object {i}: {metric_best[i].tolist()}")
+ print("point_number", point_num, point_num.nanmean(0))
+ torch.save(
+ {"metric": metric.cpu(), "point": point_num.cpu()},
+ parser.get_parsed_content("log_output_file").replace("log", "pt"),
+ )
+ logger.debug(
+ f"Best metric {metric_best.nanmean(0).tolist()}, best avg {metric_best.nanmean(0).nanmean().tolist()}"
+ )
+ logger.debug(
+ f"point needed, {point_num.tolist()}, mean is {point_num.nanmean(0).tolist()}"
+ )
+ """ Note: the zero-shot plots in the paper is using the saved pt file. For the j-th point, the results might be worse due to random point selection. We chose
+ the best dice from point 1 to j, e.g. point i and treat i as the point click number.
+ data = torch.load(path_to_pt_file)['metric']
+ for j in range(1, max_iters):
+ data_notnan = torch.nan_to_num(data_[:,:j],0)
+ data_notnan = data_notnan.max(1)[0]
+ y.append(data_notnan.mean())
+ x.append((~torch.isnan(data_[:,:j])).sum()/data_.shape[0])
+ plot(x, y)
+ """
+ torch.cuda.empty_cache()
+ if torch.cuda.device_count() > 1:
+ dist.barrier()
+ dist.destroy_process_group()
+
+ return
+
+
+if __name__ == "__main__":
+ from monai.utils import optional_import
+
+ fire, _ = optional_import("fire")
+ fire.Fire()
diff --git a/vista3d/scripts/validation/val_multigpu_point_patch.py b/vista3d/scripts/validation/val_multigpu_point_patch.py
new file mode 100644
index 0000000..b02daf2
--- /dev/null
+++ b/vista3d/scripts/validation/val_multigpu_point_patch.py
@@ -0,0 +1,470 @@
+# Copyright (c) MONAI Consortium
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+# http://www.apache.org/licenses/LICENSE-2.0
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from __future__ import annotations
+
+import copy
+import glob
+import json
+import logging
+import os
+import sys
+from datetime import timedelta
+from functools import partial
+from typing import Optional, Sequence, Union
+
+import monai
+import numpy as np
+import torch
+import torch.distributed as dist
+from monai import transforms
+from monai.apps.auto3dseg.auto_runner import logger
+from monai.auto3dseg.utils import datafold_read
+from monai.bundle import ConfigParser
+from monai.bundle.scripts import _pop_args, _update_args
+from monai.data import DataLoader, partition_dataset
+
+# from .monai_trans_utils import get_largest_connected_component_point
+from monai.metrics import compute_dice
+from monai.utils import set_determinism
+from torch.cuda.amp import autocast
+from torch.nn.parallel import DistributedDataParallel
+
+from vista3d import vista_model_registry
+
+from ..sliding_window import sliding_window_inference
+from ..train import CONFIG, infer_wrapper
+from ..utils.trans_utils import VistaPostTransform
+from ..utils.workflow_utils import sample_points_patch_val
+
+
+def run(config_file: Optional[Union[str, Sequence[str]]] = None, **override):
+ # Initialize distributed and scale parameters based on GPU memory
+ if torch.cuda.device_count() > 1:
+ dist.init_process_group(
+ backend="nccl", init_method="env://", timeout=timedelta(seconds=3600)
+ )
+ world_size = dist.get_world_size()
+ dist.barrier()
+ else:
+ world_size = 1
+
+ logging.basicConfig(stream=sys.stdout, level=logging.INFO)
+
+ if isinstance(config_file, str) and "," in config_file:
+ config_file = config_file.split(",")
+
+ _args = _update_args(config_file=config_file, **override)
+ config_file_ = _pop_args(_args, "config_file")[0]
+
+ parser = ConfigParser()
+ parser.read_config(config_file_)
+ parser.update(pairs=_args)
+
+ amp = parser.get_parsed_content("amp")
+ data_file_base_dir = parser.get_parsed_content("data_file_base_dir")
+ data_list_file_path = parser.get_parsed_content("data_list_file_path")
+ ckpt = parser.get_parsed_content("ckpt")
+ fold = parser.get_parsed_content("fold")
+ patch_size = parser.get_parsed_content("patch_size")
+ model_registry = parser.get_parsed_content("model")
+ input_channels = parser.get_parsed_content("input_channels")
+ label_set = parser.get_parsed_content("label_set", default=None)
+ val_auto = parser.get_parsed_content("val_auto", default=False)
+ argmax_first = parser.get_parsed_content("argmax_first", default=True)
+ five_fold = parser.get_parsed_content("five_fold", default=True)
+ mapped_label_set = parser.get_parsed_content(
+ "mapped_label_set", default=copy.deepcopy(label_set)
+ )
+ transforms_infer = parser.get_parsed_content("transforms_infer")
+ list_key = parser.get_parsed_content("list_key", default="testing")
+
+ dataset_name = parser.get_parsed_content("dataset_name", default=None)
+ if label_set is None:
+ label_mapping = parser.get_parsed_content(
+ "label_mapping", default="./data/jsons/label_mappings.json"
+ )
+
+ with open(label_mapping, "r") as f:
+ label_mapping = json.load(f)
+ label_set = [0] + [_xx[0] for _xx in label_mapping[dataset_name]]
+ mapped_label_set = [0] + [_xx[1] for _xx in label_mapping[dataset_name]]
+ if dataset_name == "Task07" or dataset_name == "Task03":
+ # disable argmax if there is overlap.
+ argmax_first = False
+ if dataset_name == "Bone-NIH":
+ mapped_label_set = mapped_label_set[:-1]
+ label_set = label_set[:-1]
+
+ random_seed = parser.get_parsed_content("random_seed", default=0)
+ if random_seed is not None and (
+ isinstance(random_seed, int) or isinstance(random_seed, float)
+ ):
+ set_determinism(seed=random_seed)
+
+ CONFIG["handlers"]["file"]["filename"] = parser.get_parsed_content(
+ "log_output_file"
+ )
+ logging.config.dictConfig(CONFIG)
+ logging.getLogger("torch.distributed.distributed_c10d").setLevel(logging.WARNING)
+ logger.debug(f"Number of GPUs: {torch.cuda.device_count()}")
+ logger.debug(f"World_size: {world_size}")
+ logger.debug(f"Validation using auto: {val_auto}")
+ if five_fold:
+ train_files, val_files = datafold_read(
+ datalist=data_list_file_path,
+ basedir=data_file_base_dir,
+ fold=fold,
+ key="training",
+ )
+ test_files, _ = datafold_read(
+ datalist=data_list_file_path,
+ basedir=data_file_base_dir,
+ fold=-1,
+ key="testing",
+ )
+ else:
+ train_files, _ = datafold_read(
+ datalist=data_list_file_path,
+ basedir=data_file_base_dir,
+ fold=-1,
+ key="training",
+ )
+ val_files, _ = datafold_read(
+ datalist=data_list_file_path,
+ basedir=data_file_base_dir,
+ fold=-1,
+ key="validation",
+ )
+ test_files, _ = datafold_read(
+ datalist=data_list_file_path,
+ basedir=data_file_base_dir,
+ fold=-1,
+ key="testing",
+ )
+ process_dict = {
+ "training": train_files,
+ "validation": val_files,
+ "testing": test_files,
+ "all": train_files + val_files + test_files,
+ }
+ process_files = process_dict[list_key]
+
+ save_metric = parser.get_parsed_content("save_metric", default=False)
+ if save_metric:
+ output_dirs = os.path.join(
+ os.path.dirname(parser.get_parsed_content("log_output_file")), dataset_name
+ )
+ os.makedirs(output_dirs, exist_ok=True)
+ generated_files = glob.glob(os.path.join(output_dirs, "*.json"))
+ _process_files = []
+ for i in process_files:
+ not_finished = True
+ for j in generated_files:
+ if j.split(".json")[0].split("/")[-1] in i["image"]:
+ not_finished = False
+ break
+ if not_finished:
+ _process_files.append(i)
+ logger.info(f"{len(_process_files)} is remained out from {len(process_files)}")
+ print(f"{len(_process_files)} is remained out from {len(process_files)}")
+ process_files = _process_files
+
+ for i in range(len(process_files)):
+ if (
+ isinstance(process_files[i]["image"], list)
+ and len(process_files[i]["image"]) > 1
+ ):
+ process_files[i]["image"] = process_files[i]["image"][0]
+ if torch.cuda.device_count() == 1 or dist.get_rank() == 0:
+ print(f"Total files {len(process_files)}")
+ print(process_files)
+ overlap = parser.get_parsed_content("overlap", default=0.5)
+ if torch.cuda.device_count() > 1:
+ process_files = partition_dataset(
+ data=process_files,
+ shuffle=False,
+ num_partitions=world_size,
+ even_divisible=False,
+ )[dist.get_rank()]
+ logger.debug(f"Val_files: {len(process_files)}")
+ val_ds = monai.data.Dataset(data=process_files, transform=transforms_infer)
+ val_loader = DataLoader(
+ val_ds,
+ num_workers=parser.get_parsed_content("num_workers_validation", default=2),
+ batch_size=1,
+ shuffle=False,
+ )
+
+ device = (
+ torch.device(f"cuda:{os.environ['LOCAL_RANK']}")
+ if world_size > 1
+ else torch.device("cuda:0")
+ )
+
+ model = vista_model_registry[model_registry](
+ in_channels=input_channels, image_size=patch_size
+ )
+
+ model = model.to(device)
+
+ if torch.cuda.device_count() > 1:
+ model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
+
+ post_transform = transforms.Invertd(
+ keys="pred",
+ transform=transforms_infer,
+ orig_keys="image",
+ meta_keys="pred_meta_dict",
+ orig_meta_keys="image_meta_dict",
+ meta_key_postfix="meta_dict",
+ nearest_interp=True,
+ to_tensor=True,
+ )
+
+ post_pred = transforms.AsDiscrete(threshold=0.0, dtype=torch.uint8)
+
+ if torch.cuda.device_count() > 1:
+ model = DistributedDataParallel(
+ model, device_ids=[device], find_unused_parameters=True
+ )
+
+ if torch.cuda.device_count() > 1:
+ model.module.load_state_dict(
+ torch.load(ckpt, map_location=device), strict=False
+ )
+ else:
+ model.load_state_dict(torch.load(ckpt, map_location=device), strict=False)
+
+ model.eval()
+ metric_dim = len(label_set) - 1
+ model_inferer = partial(infer_wrapper, model=model)
+ with torch.no_grad():
+ metric = torch.zeros(metric_dim * 2, dtype=torch.float, device=device)
+ _index = 0
+ _final_count = 0
+ for val_data in val_loader:
+ if dataset_name == "Bone-NIH":
+ val_data["label_gt"][val_data["label_gt"] == 2] = 1
+ val_data["label"][val_data["label"] == 2] = 1
+ val_filename = val_data["image"].meta["filename_or_obj"][0]
+ _index += 1
+ with autocast(enabled=amp):
+ val_outputs = None
+ torch.cuda.empty_cache()
+ if val_auto:
+ try:
+ with autocast(enabled=True):
+ val_outputs = sliding_window_inference(
+ inputs=val_data["image"].to(device),
+ roi_size=patch_size,
+ sw_batch_size=1,
+ predictor=model_inferer,
+ mode="gaussian",
+ overlap=overlap,
+ sw_device=device,
+ device=device,
+ point_coords=None,
+ point_labels=None,
+ class_vector=torch.tensor(mapped_label_set)
+ .to(device)
+ .unsqueeze(0),
+ prompt_class=None,
+ labels=None,
+ label_set=None,
+ use_cfp=True,
+ brush_radius=None,
+ val_point_sampler=None,
+ )
+ skipped = False
+ except BaseException:
+ skipped = True
+ logger.debug(
+ f"{_index} / {len(val_loader)} / {val_filename}: skipped due to OOM"
+ )
+ continue
+ else:
+ for _device_in, _device_out in zip(
+ [device, device, "cpu"], [device, "cpu", "cpu"]
+ ):
+ try:
+ with autocast(enabled=amp):
+ val_outputs = None
+ torch.cuda.empty_cache()
+ val_outputs = sliding_window_inference(
+ inputs=val_data["image"].to(_device_in),
+ roi_size=patch_size,
+ sw_batch_size=1,
+ predictor=model_inferer,
+ mode="gaussian",
+ overlap=overlap,
+ sw_device=device,
+ device=_device_out,
+ point_coords=torch.zeros(len(label_set), 1),
+ point_labels=not None,
+ class_vector=None,
+ prompt_class=None,
+ labels=val_data["label"].to(_device_in),
+ label_set=label_set,
+ use_cfp=True,
+ brush_radius=None,
+ val_point_sampler=partial(
+ sample_points_patch_val,
+ mapped_label_set=mapped_label_set,
+ max_ppoint=1,
+ use_center=True,
+ ),
+ )
+ finished = True
+ skipped = False
+ except RuntimeError as e:
+ if not any(
+ x in str(e).lower() for x in ("memory", "cuda", "cudnn")
+ ):
+ raise e
+ logger.warning(e)
+ finished = False
+ skipped = True
+
+ if finished:
+ break
+ if skipped:
+ logger.debug(
+ f"{_index} / {len(val_loader)} / {val_filename}: skipped due to OOM with size {val_data['image'].shape}"
+ )
+ continue
+ value = torch.full((1, metric_dim), float("nan")).to(device)
+ if not skipped:
+ if argmax_first:
+ try:
+ try:
+ val_outputs = VistaPostTransform(keys="pred")(
+ {
+ "image": val_data["image"][0],
+ "pred": val_outputs[0],
+ "label_prompt": label_set,
+ }
+ )
+ val_outputs = post_transform(val_outputs)["pred"][None, ...]
+ except BaseException:
+ val_outputs = VistaPostTransform(keys="pred")(
+ {
+ "image": val_data["image"][0].cpu(),
+ "pred": val_outputs[0].cpu(),
+ "label_prompt": label_set,
+ }
+ )
+ val_outputs = post_transform(val_outputs)["pred"][None, ...]
+ for i in range(1, len(label_set)):
+ gt = (
+ val_data["label_gt"].to(val_outputs.device)
+ == label_set[i]
+ )
+ ypred = val_outputs == label_set[i]
+ value[0, i - 1] = compute_dice(
+ y_pred=ypred, y=gt, include_background=False
+ )
+ _final_count += 1
+ except BaseException:
+ logger.debug(
+ f"{_index} / {len(val_loader)} / {val_filename}: Shape mismatch or OOM in postransform"
+ )
+ value = torch.full((1, metric_dim), float("nan")).to(device)
+ else:
+ try:
+ val_outputs = post_pred(val_outputs[0])[None, ...]
+ try:
+ val_outputs = post_transform(
+ {"image": val_data["image"][0], "pred": val_outputs[0]}
+ )["pred"][None, ...]
+ except BaseException:
+ val_outputs = post_transform(
+ {
+ "image": val_data["image"][0].cpu(),
+ "pred": val_outputs[0].cpu(),
+ }
+ )["pred"][None, ...]
+ for i in range(1, len(label_set)):
+ gt = (
+ val_data["label_gt"].to(val_outputs.device)
+ == label_set[i]
+ )
+ y_pred = val_outputs[:, [i]]
+ if i == 1 and (
+ dataset_name == "Task07" or dataset_name == "Task03"
+ ):
+ y_pred = torch.logical_and(
+ y_pred > 0.5, val_outputs[:, [i + 1]] < 0.5
+ )
+ value[0, i - 1] = compute_dice(
+ y_pred, y=gt, include_background=False
+ )
+ _final_count += 1
+ if save_metric:
+ output_json_path = os.path.join(
+ output_dirs,
+ os.path.dirname(val_filename).split("/")[-1] + ".json",
+ )
+ with open(output_json_path, "w") as f:
+ json.dump(value[0].cpu().numpy().tolist(), f)
+ except BaseException:
+ logger.debug(
+ f"{_index} / {len(val_loader)} / {val_filename}: Shape mismatch or OOM in postransform"
+ )
+ value = torch.full((1, metric_dim), float("nan")).to(device)
+ val_outputs, val_data = None, None
+ torch.cuda.empty_cache()
+ print(f"{_index} / {len(val_loader)} / {val_filename}: {value}")
+ logger.debug(f"{_index} / {len(val_loader)} / {val_filename}: {value}")
+ for _c in range(metric_dim):
+ val0 = torch.nan_to_num(value[0, _c], nan=0.0)
+ val1 = 1.0 - torch.isnan(value[0, _c]).float()
+ metric[2 * _c] += val0
+ metric[2 * _c + 1] += val1
+
+ if torch.cuda.device_count() > 1:
+ dist.all_reduce(metric, op=torch.distributed.ReduceOp.SUM)
+
+ metric = metric.tolist()
+ metric_class = np.zeros(metric_dim)
+ if torch.cuda.device_count() == 1 or dist.get_rank() == 0:
+ avg_metric = 0
+ valid = 0
+ for _c in range(metric_dim):
+ if metric[2 * _c + 1] > 0:
+ v = metric[2 * _c] / metric[2 * _c + 1]
+ avg_metric += v
+ valid += 1
+ else:
+ v = torch.nan
+ metric_class[_c] = v
+ try:
+ logger.debug(f"Evaluation metric - class {_c + 1} : {v:.4f}")
+ except BaseException:
+ logger.debug(f"Evaluation metric - class {_c + 1} : {v:.4f}")
+ avg_metric = avg_metric / valid
+ print(f"Avg_metric: {avg_metric}")
+ logger.debug(f"Avg_metric: {avg_metric}")
+
+ torch.cuda.empty_cache()
+ if torch.cuda.device_count() > 1:
+ dist.barrier()
+ logger.debug(f"Final Evaluated Cases {_final_count}")
+ dist.destroy_process_group()
+
+ return
+
+
+if __name__ == "__main__":
+ from monai.utils import optional_import
+
+ fire, _ = optional_import("fire")
+ fire.Fire()
diff --git a/monailabel/monaivista/lib/configs/__init__.py b/vista3d/tests/__init__.py
similarity index 100%
rename from monailabel/monaivista/lib/configs/__init__.py
rename to vista3d/tests/__init__.py
diff --git a/vista3d/tests/test_config.py b/vista3d/tests/test_config.py
new file mode 100644
index 0000000..0a4fc38
--- /dev/null
+++ b/vista3d/tests/test_config.py
@@ -0,0 +1,39 @@
+# Copyright (c) MONAI Consortium
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+# http://www.apache.org/licenses/LICENSE-2.0
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import glob
+import os
+import unittest
+
+from monai.apps.utils import get_logger
+from monai.bundle import ConfigParser
+
+
+class TestConfig(unittest.TestCase):
+ def test_vista3d_configs_parsing(self):
+ config_dir = os.path.join(
+ os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "configs"
+ )
+ get_logger("TestConfig").info(config_dir)
+
+ configs = glob.glob(os.path.join(config_dir, "**", "*.yaml"), recursive=True)
+ for x in configs:
+ parser = ConfigParser()
+ parser.read_config(x)
+ keys = sorted(parser.config.keys())
+ # verify parser key fetching
+ get_logger("TestConfig").info(
+ f"{parser[keys[0]]}, {keys[0]}, {parser[keys[-1]]}, {keys[-1]}"
+ )
+
+
+if __name__ == "__main__":
+ unittest.main()
diff --git a/monailabel/plugins/slicer/MONAILabel/Testing/Python/CMakeLists.txt b/vista3d/tests/test_logger.py
similarity index 62%
rename from monailabel/plugins/slicer/MONAILabel/Testing/Python/CMakeLists.txt
rename to vista3d/tests/test_logger.py
index d7649ab..748abd3 100644
--- a/monailabel/plugins/slicer/MONAILabel/Testing/Python/CMakeLists.txt
+++ b/vista3d/tests/test_logger.py
@@ -9,5 +9,19 @@
# See the License for the specific language governing permissions and
# limitations under the License.
+import logging
+import unittest
-#slicer_add_python_unittest(SCRIPT ${MODULE_NAME}ModuleTest.py)
+from monai.apps.auto3dseg.auto_runner import logger
+
+
+class TestLogger(unittest.TestCase):
+ def test_vista3d_logger(self):
+ from scripts.train import CONFIG
+
+ logging.config.dictConfig(CONFIG)
+ logger.warning("check train logging format")
+
+
+if __name__ == "__main__":
+ unittest.main()
diff --git a/vista3d/vista3d/__init__.py b/vista3d/vista3d/__init__.py
new file mode 100644
index 0000000..6bc956f
--- /dev/null
+++ b/vista3d/vista3d/__init__.py
@@ -0,0 +1 @@
+from .build_vista3d import vista_model_registry # noqa: F401
diff --git a/vista3d/vista3d/build_vista3d.py b/vista3d/vista3d/build_vista3d.py
new file mode 100644
index 0000000..b19b239
--- /dev/null
+++ b/vista3d/vista3d/build_vista3d.py
@@ -0,0 +1,40 @@
+# Copyright (c) MONAI Consortium
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+# http://www.apache.org/licenses/LICENSE-2.0
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+
+from .modeling import VISTA3D2, Class_Mapping_Classify, Point_Mapping_SAM, SegResNetDS2
+
+
+def build_vista3d_segresnet_decoder(
+ encoder_embed_dim=48, in_channels=1, image_size=(96, 96, 96)
+):
+ segresnet = SegResNetDS2(
+ in_channels=in_channels,
+ blocks_down=(1, 2, 2, 4, 4),
+ norm="instance",
+ out_channels=encoder_embed_dim,
+ init_filters=encoder_embed_dim,
+ dsdepth=1,
+ )
+ point_head = Point_Mapping_SAM(feature_size=encoder_embed_dim, last_supported=132)
+ class_head = Class_Mapping_Classify(
+ n_classes=512, feature_size=encoder_embed_dim, use_mlp=True
+ )
+ vista = VISTA3D2(
+ image_encoder=segresnet,
+ class_head=class_head,
+ point_head=point_head,
+ feature_size=encoder_embed_dim,
+ )
+ return vista
+
+
+vista_model_registry = {"vista3d_segresnet_d": build_vista3d_segresnet_decoder}
diff --git a/vista3d/vista3d/modeling/__init__.py b/vista3d/vista3d/modeling/__init__.py
new file mode 100644
index 0000000..38ddfb7
--- /dev/null
+++ b/vista3d/vista3d/modeling/__init__.py
@@ -0,0 +1,4 @@
+from .class_head import Class_Mapping_Classify # noqa: F401
+from .point_head import Point_Mapping_SAM # noqa: F401
+from .segresnetds import SegResNetDS2 # noqa: F401
+from .vista3d import VISTA3D2 # noqa: F401
diff --git a/vista3d/vista3d/modeling/class_head.py b/vista3d/vista3d/modeling/class_head.py
new file mode 100644
index 0000000..a55de51
--- /dev/null
+++ b/vista3d/vista3d/modeling/class_head.py
@@ -0,0 +1,53 @@
+import monai
+import torch
+import torch.nn as nn
+
+
+class Class_Mapping_Classify(nn.Module):
+ def __init__(self, n_classes, feature_size, use_mlp=False):
+ super().__init__()
+ self.use_mlp = use_mlp
+ if use_mlp:
+ self.mlp = nn.Sequential(
+ nn.Linear(feature_size, feature_size),
+ nn.InstanceNorm1d(1),
+ nn.GELU(),
+ nn.Linear(feature_size, feature_size),
+ )
+ self.class_embeddings = nn.Embedding(n_classes, feature_size)
+ self.image_post_mapping = nn.Sequential(
+ monai.networks.blocks.UnetrBasicBlock(
+ spatial_dims=3,
+ in_channels=feature_size,
+ out_channels=feature_size,
+ kernel_size=3,
+ stride=1,
+ norm_name="instance",
+ res_block=True,
+ ),
+ monai.networks.blocks.UnetrBasicBlock(
+ spatial_dims=3,
+ in_channels=feature_size,
+ out_channels=feature_size,
+ kernel_size=3,
+ stride=1,
+ norm_name="instance",
+ res_block=True,
+ ),
+ )
+
+ def forward(self, src, class_vector):
+ b, c, h, w, d = src.shape
+ src = self.image_post_mapping(src)
+ class_embedding = self.class_embeddings(class_vector)
+ if self.use_mlp:
+ class_embedding = self.mlp(class_embedding)
+ # [b,1,feat] @ [1,feat,dim], batch dimension become class_embedding batch dimension.
+ masks = []
+ for i in range(b):
+ mask = (class_embedding @ src[[i]].view(1, c, h * w * d)).view(
+ -1, 1, h, w, d
+ )
+ masks.append(mask)
+ masks = torch.cat(masks, 1)
+ return masks, class_embedding
diff --git a/vista3d/vista3d/modeling/point_head.py b/vista3d/vista3d/modeling/point_head.py
new file mode 100644
index 0000000..d8e6463
--- /dev/null
+++ b/vista3d/vista3d/modeling/point_head.py
@@ -0,0 +1,171 @@
+from __future__ import annotations
+
+import numpy as np
+import torch
+import torch.nn as nn
+from monai.utils import optional_import
+
+from .sam_blocks import MLP, PositionEmbeddingRandom, TwoWayTransformer
+
+rearrange, _ = optional_import("einops", name="rearrange")
+
+
+class Point_Mapping_SAM(nn.Module):
+ def __init__(
+ self,
+ feature_size,
+ max_prompt=32,
+ num_add_mask_tokens=2,
+ n_classes=512,
+ last_supported=132,
+ ):
+ super().__init__()
+ transformer_dim = feature_size
+ self.max_prompt = max_prompt
+ self.feat_downsample = nn.Sequential(
+ nn.Conv3d(
+ in_channels=feature_size,
+ out_channels=feature_size,
+ kernel_size=3,
+ stride=2,
+ padding=1,
+ ),
+ nn.InstanceNorm3d(feature_size),
+ nn.GELU(),
+ nn.Conv3d(
+ in_channels=feature_size,
+ out_channels=transformer_dim,
+ kernel_size=3,
+ stride=1,
+ padding=1,
+ ),
+ nn.InstanceNorm3d(feature_size),
+ )
+
+ self.mask_downsample = nn.Conv3d(
+ in_channels=2, out_channels=2, kernel_size=3, stride=2, padding=1
+ )
+
+ self.transformer = TwoWayTransformer(
+ depth=2,
+ embedding_dim=transformer_dim,
+ mlp_dim=512,
+ num_heads=4,
+ )
+ self.pe_layer = PositionEmbeddingRandom(transformer_dim // 2)
+ self.point_embeddings = nn.ModuleList(
+ [nn.Embedding(1, transformer_dim), nn.Embedding(1, transformer_dim)]
+ )
+ self.not_a_point_embed = nn.Embedding(1, transformer_dim)
+ self.special_class_embed = nn.Embedding(1, transformer_dim)
+ self.mask_tokens = nn.Embedding(1, transformer_dim)
+
+ self.output_upscaling = nn.Sequential(
+ nn.ConvTranspose3d(
+ transformer_dim,
+ transformer_dim,
+ kernel_size=3,
+ stride=2,
+ padding=1,
+ output_padding=1,
+ ),
+ nn.InstanceNorm3d(transformer_dim),
+ nn.GELU(),
+ nn.Conv3d(
+ transformer_dim, transformer_dim, kernel_size=3, stride=1, padding=1
+ ),
+ )
+
+ self.output_hypernetworks_mlps = MLP(
+ transformer_dim, transformer_dim, transformer_dim, 3
+ )
+
+ ## MultiMask output
+ self.num_add_mask_tokens = num_add_mask_tokens
+ self.output_add_hypernetworks_mlps = nn.ModuleList(
+ [
+ MLP(transformer_dim, transformer_dim, transformer_dim, 3)
+ for i in range(self.num_add_mask_tokens)
+ ]
+ )
+ # class embedding
+ self.n_classes = n_classes
+ self.last_supported = last_supported
+ self.class_embeddings = nn.Embedding(n_classes, feature_size)
+ self.zeroshot_embed = nn.Embedding(1, transformer_dim)
+ self.supported_embed = nn.Embedding(1, transformer_dim)
+
+ def forward(self, out, point_coords, point_labels, class_vector=None):
+ # downsample out
+ out_low = self.feat_downsample(out)
+ out_shape = out.shape[-3:]
+ out = None
+ torch.cuda.empty_cache()
+ # embed points
+ points = point_coords + 0.5 # Shift to center of pixel
+ point_embedding = self.pe_layer.forward_with_coords(points, out_shape)
+ point_embedding[point_labels == -1] = 0.0
+ point_embedding[point_labels == -1] += self.not_a_point_embed.weight
+ point_embedding[point_labels == 0] += self.point_embeddings[0].weight
+ point_embedding[point_labels == 1] += self.point_embeddings[1].weight
+ point_embedding[point_labels == 2] += (
+ self.point_embeddings[0].weight + self.special_class_embed.weight
+ )
+ point_embedding[point_labels == 3] += (
+ self.point_embeddings[1].weight + self.special_class_embed.weight
+ )
+ output_tokens = self.mask_tokens.weight
+
+ output_tokens = output_tokens.unsqueeze(0).expand(
+ point_embedding.size(0), -1, -1
+ )
+ if class_vector is None:
+ tokens_all = torch.cat(
+ (
+ output_tokens,
+ point_embedding,
+ self.supported_embed.weight.unsqueeze(0).expand(
+ point_embedding.size(0), -1, -1
+ ),
+ ),
+ dim=1,
+ )
+ # tokens_all = torch.cat((output_tokens, point_embedding), dim=1)
+ else:
+ class_embeddings = []
+ for i in class_vector:
+ if i > self.last_supported:
+ class_embeddings.append(self.zeroshot_embed.weight)
+ else:
+ class_embeddings.append(self.supported_embed.weight)
+ class_embeddings = torch.stack(class_embeddings)
+ tokens_all = torch.cat(
+ (output_tokens, point_embedding, class_embeddings), dim=1
+ )
+ # cross attention
+ masks = []
+ max_prompt = self.max_prompt
+ for i in range(int(np.ceil(tokens_all.shape[0] / max_prompt))):
+ # remove variables in previous for loops to save peak memory for self.transformer
+ src, upscaled_embedding, hyper_in = None, None, None
+ torch.cuda.empty_cache()
+ idx = (i * max_prompt, min((i + 1) * max_prompt, tokens_all.shape[0]))
+ tokens = tokens_all[idx[0] : idx[1]]
+ src = torch.repeat_interleave(out_low, tokens.shape[0], dim=0)
+ pos_src = torch.repeat_interleave(
+ self.pe_layer(out_low.shape[-3:]).unsqueeze(0), tokens.shape[0], dim=0
+ )
+ b, c, h, w, d = src.shape
+ hs, src = self.transformer(src, pos_src, tokens)
+ mask_tokens_out = hs[:, :1, :]
+ hyper_in = self.output_hypernetworks_mlps(mask_tokens_out)
+ src = src.transpose(1, 2).view(b, c, h, w, d)
+ upscaled_embedding = self.output_upscaling(src)
+ b, c, h, w, d = upscaled_embedding.shape
+ masks.append(
+ (hyper_in @ upscaled_embedding.view(b, c, h * w * d)).view(
+ b, -1, h, w, d
+ )
+ )
+ masks = torch.vstack(masks)
+ return masks
diff --git a/training/segment_anything/modeling/transformer.py b/vista3d/vista3d/modeling/sam_blocks.py
similarity index 61%
rename from training/segment_anything/modeling/transformer.py
rename to vista3d/vista3d/modeling/sam_blocks.py
index 5bdd753..d7bc413 100644
--- a/training/segment_anything/modeling/transformer.py
+++ b/vista3d/vista3d/modeling/sam_blocks.py
@@ -1,3 +1,15 @@
+# Copyright (c) MONAI Consortium
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+# http://www.apache.org/licenses/LICENSE-2.0
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+# Adapted from https://github.com/facebookresearch/segment-anything
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
@@ -5,13 +17,13 @@
# LICENSE file in the root directory of this source tree.
import math
-from typing import Tuple, Type
+from typing import Any, Optional, Tuple, Type
+import numpy as np
import torch
+import torch.nn.functional as F
from torch import Tensor, nn
-from .common import MLPBlock
-
class TwoWayTransformer(nn.Module):
def __init__(
@@ -54,7 +66,9 @@ def __init__(
)
)
- self.final_attn_token_to_image = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate)
+ self.final_attn_token_to_image = Attention(
+ embedding_dim, num_heads, downsample_rate=attention_downsample_rate
+ )
self.norm_final_attn = nn.LayerNorm(embedding_dim)
def forward(
@@ -77,7 +91,7 @@ def forward(
torch.Tensor: the processed image_embedding
"""
# BxCxHxW -> BxHWxC == B x N_image_tokens x C
- bs, c, h, w = image_embedding.shape
+ bs, c, h, w, d = image_embedding.shape
image_embedding = image_embedding.flatten(2).permute(0, 2, 1)
image_pe = image_pe.flatten(2).permute(0, 2, 1)
@@ -94,7 +108,7 @@ def forward(
key_pe=image_pe,
)
- # Apply the final attenion layer from the points to the image
+ # Apply the final attention layer from the points to the image
q = queries + point_embedding
k = keys + image_pe
attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys)
@@ -131,18 +145,24 @@ def __init__(
self.self_attn = Attention(embedding_dim, num_heads)
self.norm1 = nn.LayerNorm(embedding_dim)
- self.cross_attn_token_to_image = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate)
+ self.cross_attn_token_to_image = Attention(
+ embedding_dim, num_heads, downsample_rate=attention_downsample_rate
+ )
self.norm2 = nn.LayerNorm(embedding_dim)
self.mlp = MLPBlock(embedding_dim, mlp_dim, activation)
self.norm3 = nn.LayerNorm(embedding_dim)
self.norm4 = nn.LayerNorm(embedding_dim)
- self.cross_attn_image_to_token = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate)
+ self.cross_attn_image_to_token = Attention(
+ embedding_dim, num_heads, downsample_rate=attention_downsample_rate
+ )
self.skip_first_layer_pe = skip_first_layer_pe
- def forward(self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor) -> Tuple[Tensor, Tensor]:
+ def forward(
+ self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor
+ ) -> Tuple[Tensor, Tensor]:
# Self attention block
if self.skip_first_layer_pe:
queries = self.self_attn(q=queries, k=queries, v=queries)
@@ -190,7 +210,9 @@ def __init__(
self.embedding_dim = embedding_dim
self.internal_dim = embedding_dim // downsample_rate
self.num_heads = num_heads
- assert self.internal_dim % num_heads == 0, "num_heads must divide embedding_dim."
+ assert (
+ self.internal_dim % num_heads == 0
+ ), "num_heads must divide embedding_dim."
self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
self.k_proj = nn.Linear(embedding_dim, self.internal_dim)
@@ -230,3 +252,95 @@ def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
out = self.out_proj(out)
return out
+
+
+class PositionEmbeddingRandom(nn.Module):
+ """
+ Positional encoding using random spatial frequencies.
+ """
+
+ def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None:
+ super().__init__()
+ if scale is None or scale <= 0.0:
+ scale = 1.0
+ self.register_buffer(
+ "positional_encoding_gaussian_matrix",
+ scale * torch.randn((3, num_pos_feats)),
+ )
+
+ def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
+ """Positionally encode points that are normalized to [0,1]."""
+ # assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
+ coords = 2 * coords - 1
+ # [bs=1,N=2,2] @ [2,128]
+ # [bs=1, N=2, 128]
+ coords = coords @ self.positional_encoding_gaussian_matrix
+ coords = 2 * np.pi * coords
+ # outputs d_1 x ... x d_n x C shape
+ # [bs=1, N=2, 128+128=256]
+ return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1)
+
+ def forward(self, size: Tuple[int, int, int]) -> torch.Tensor:
+ """Generate positional encoding for a grid of the specified size."""
+ h, w, d = size
+ device: Any = self.positional_encoding_gaussian_matrix.device
+ grid = torch.ones((h, w, d), device=device, dtype=torch.float32)
+ x_embed = grid.cumsum(dim=0) - 0.5
+ y_embed = grid.cumsum(dim=1) - 0.5
+ z_embed = grid.cumsum(dim=2) - 0.5
+ x_embed = x_embed / h
+ y_embed = y_embed / w
+ z_embed = z_embed / d
+ pe = self._pe_encoding(torch.stack([x_embed, y_embed, z_embed], dim=-1))
+ return pe.permute(3, 0, 1, 2) # C x H x W
+
+ def forward_with_coords(
+ self, coords_input: torch.Tensor, image_size: Tuple[int, int]
+ ) -> torch.Tensor:
+ """Positionally encode points that are not normalized to [0,1]."""
+ coords = coords_input.clone()
+ coords[:, :, 0] = coords[:, :, 0] / image_size[0]
+ coords[:, :, 1] = coords[:, :, 1] / image_size[1]
+ coords[:, :, 2] = coords[:, :, 2] / image_size[2]
+ return self._pe_encoding(coords.to(torch.float)) # B x N x C
+
+
+class MLPBlock(nn.Module):
+ def __init__(
+ self,
+ embedding_dim: int,
+ mlp_dim: int,
+ act: Type[nn.Module] = nn.GELU,
+ ) -> None:
+ super().__init__()
+ self.lin1 = nn.Linear(embedding_dim, mlp_dim)
+ self.lin2 = nn.Linear(mlp_dim, embedding_dim)
+ self.act = act()
+
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
+ return self.lin2(self.act(self.lin1(x)))
+
+
+class MLP(nn.Module):
+ def __init__(
+ self,
+ input_dim: int,
+ hidden_dim: int,
+ output_dim: int,
+ num_layers: int,
+ sigmoid_output: bool = False,
+ ) -> None:
+ super().__init__()
+ self.num_layers = num_layers
+ h = [hidden_dim] * (num_layers - 1)
+ self.layers = nn.ModuleList(
+ nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
+ )
+ self.sigmoid_output = sigmoid_output
+
+ def forward(self, x):
+ for i, layer in enumerate(self.layers):
+ x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
+ if self.sigmoid_output:
+ x = F.sigmoid(x)
+ return x
diff --git a/vista3d/vista3d/modeling/segresnetds.py b/vista3d/vista3d/modeling/segresnetds.py
new file mode 100644
index 0000000..e8c96d5
--- /dev/null
+++ b/vista3d/vista3d/modeling/segresnetds.py
@@ -0,0 +1,536 @@
+# Copyright (c) MONAI Consortium
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+# http://www.apache.org/licenses/LICENSE-2.0
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from __future__ import annotations
+
+from collections.abc import Callable
+from typing import Union
+
+import numpy as np
+import torch
+import torch.nn as nn
+from monai.networks.blocks.upsample import UpSample
+from monai.networks.layers.factories import Act, Conv, Norm, split_args
+from monai.networks.layers.utils import get_act_layer, get_norm_layer
+from monai.utils import UpsampleMode, has_option
+
+__all__ = ["SegResNetDS2"]
+
+
+def scales_for_resolution(resolution: tuple | list, n_stages: int | None = None):
+ """
+ A helper function to compute a schedule of scale at different downsampling levels,
+ given the input resolution.
+
+ .. code-block:: python
+
+ scales_for_resolution(resolution=[1,1,5], n_stages=5)
+
+ Args:
+ resolution: input image resolution (in mm)
+ n_stages: optionally the number of stages of the network
+ """
+
+ ndim = len(resolution)
+ res = np.array(resolution)
+ if not all(res > 0):
+ raise ValueError("Resolution must be positive")
+
+ nl = np.floor(np.log2(np.max(res) / res)).astype(np.int32)
+ scales = [tuple(np.where(2**i >= 2**nl, 1, 2)) for i in range(max(nl))]
+ if n_stages and n_stages > max(nl):
+ scales = scales + [(2,) * ndim] * (n_stages - max(nl))
+ else:
+ scales = scales[:n_stages]
+ return scales
+
+
+def aniso_kernel(scale: tuple | list):
+ """
+ A helper function to compute kernel_size, padding and stride for the given scale
+
+ Args:
+ scale: scale from a current scale level
+ """
+ kernel_size = [3 if scale[k] > 1 else 1 for k in range(len(scale))]
+ padding = [k // 2 for k in kernel_size]
+ return kernel_size, padding, scale
+
+
+class SegResBlock(nn.Module):
+ """
+ Residual network block used SegResNet based on `3D MRI brain tumor segmentation using autoencoder regularization
+ `_.
+ """
+
+ def __init__(
+ self,
+ spatial_dims: int,
+ in_channels: int,
+ norm: tuple | str,
+ kernel_size: tuple | int = 3,
+ act: tuple | str = "relu",
+ ) -> None:
+ """
+ Args:
+ spatial_dims: number of spatial dimensions, could be 1, 2 or 3.
+ in_channels: number of input channels.
+ norm: feature normalization type and arguments.
+ kernel_size: convolution kernel size. Defaults to 3.
+ act: activation type and arguments. Defaults to ``RELU``.
+ """
+ super().__init__()
+
+ if isinstance(kernel_size, (tuple, list)):
+ padding = tuple(k // 2 for k in kernel_size)
+ else:
+ padding = kernel_size // 2 # type: ignore
+
+ self.norm1 = get_norm_layer(
+ name=norm, spatial_dims=spatial_dims, channels=in_channels
+ )
+ self.act1 = get_act_layer(act)
+ self.conv1 = Conv[Conv.CONV, spatial_dims](
+ in_channels=in_channels,
+ out_channels=in_channels,
+ kernel_size=kernel_size,
+ stride=1,
+ padding=padding,
+ bias=False,
+ )
+
+ self.norm2 = get_norm_layer(
+ name=norm, spatial_dims=spatial_dims, channels=in_channels
+ )
+ self.act2 = get_act_layer(act)
+ self.conv2 = Conv[Conv.CONV, spatial_dims](
+ in_channels=in_channels,
+ out_channels=in_channels,
+ kernel_size=kernel_size,
+ stride=1,
+ padding=padding,
+ bias=False,
+ )
+
+ def forward(self, x):
+ identity = x
+ x = self.conv1(self.act1(self.norm1(x)))
+ x = self.conv2(self.act2(self.norm2(x)))
+ x += identity
+ return x
+
+
+class SegResEncoder(nn.Module):
+ """
+ SegResEncoder based on the econder structure in `3D MRI brain tumor segmentation using autoencoder regularization
+ `_.
+
+ Args:
+ spatial_dims: spatial dimension of the input data. Defaults to 3.
+ init_filters: number of output channels for initial convolution layer. Defaults to 32.
+ in_channels: number of input channels for the network. Defaults to 1.
+ out_channels: number of output channels for the network. Defaults to 2.
+ act: activation type and arguments. Defaults to ``RELU``.
+ norm: feature normalization type and arguments. Defaults to ``BATCH``.
+ blocks_down: number of downsample blocks in each layer. Defaults to ``[1,2,2,4]``.
+ head_module: optional callable module to apply to the final features.
+ anisotropic_scales: optional list of scale for each scale level.
+ """
+
+ def __init__(
+ self,
+ spatial_dims: int = 3,
+ init_filters: int = 32,
+ in_channels: int = 1,
+ act: tuple | str = "relu",
+ norm: tuple | str = "batch",
+ blocks_down: tuple = (1, 2, 2, 4),
+ head_module: nn.Module | None = None,
+ anisotropic_scales: tuple | None = None,
+ ):
+ super().__init__()
+
+ if spatial_dims not in (1, 2, 3):
+ raise ValueError("`spatial_dims` can only be 1, 2 or 3.")
+
+ # ensure normalization has affine trainable parameters (if not specified)
+ norm = split_args(norm)
+ if has_option(Norm[norm[0], spatial_dims], "affine"):
+ norm[1].setdefault("affine", True) # type: ignore
+
+ # ensure activation is inplace (if not specified)
+ act = split_args(act)
+ if has_option(Act[act[0]], "inplace"):
+ act[1].setdefault("inplace", True) # type: ignore
+
+ filters = init_filters # base number of features
+
+ kernel_size, padding, _ = (
+ aniso_kernel(anisotropic_scales[0]) if anisotropic_scales else (3, 1, 1)
+ )
+ self.conv_init = Conv[Conv.CONV, spatial_dims](
+ in_channels=in_channels,
+ out_channels=filters,
+ kernel_size=kernel_size,
+ padding=padding,
+ stride=1,
+ bias=False,
+ )
+ self.layers = nn.ModuleList()
+
+ for i in range(len(blocks_down)):
+ level = nn.ModuleDict()
+
+ kernel_size, padding, stride = (
+ aniso_kernel(anisotropic_scales[i]) if anisotropic_scales else (3, 1, 2)
+ )
+ blocks = [
+ SegResBlock(
+ spatial_dims=spatial_dims,
+ in_channels=filters,
+ kernel_size=kernel_size,
+ norm=norm,
+ act=act,
+ )
+ for _ in range(blocks_down[i])
+ ]
+ level["blocks"] = nn.Sequential(*blocks)
+
+ if i < len(blocks_down) - 1:
+ level["downsample"] = Conv[Conv.CONV, spatial_dims](
+ in_channels=filters,
+ out_channels=2 * filters,
+ bias=False,
+ kernel_size=kernel_size,
+ stride=stride,
+ padding=padding,
+ )
+ else:
+ level["downsample"] = nn.Identity()
+
+ self.layers.append(level)
+ filters *= 2
+
+ self.head_module = head_module
+ self.in_channels = in_channels
+ self.blocks_down = blocks_down
+ self.init_filters = init_filters
+ self.norm = norm
+ self.act = act
+ self.spatial_dims = spatial_dims
+
+ def _forward(self, x: torch.Tensor) -> list[torch.Tensor]:
+ outputs = []
+ x = self.conv_init(x)
+
+ for level in self.layers:
+ x = level["blocks"](x)
+ outputs.append(x)
+ x = level["downsample"](x)
+
+ if self.head_module is not None:
+ outputs = self.head_module(outputs)
+
+ return outputs
+
+ def forward(self, x: torch.Tensor) -> list[torch.Tensor]:
+ return self._forward(x)
+
+
+class SegResNetDS2(nn.Module):
+ """
+ SegResNetDS based on `3D MRI brain tumor segmentation using autoencoder regularization
+ `_.
+ It is similar to https://docs.monai.io/en/stable/networks.html#segresnet, with several
+ improvements including deep supervision and non-isotropic kernel support.
+
+ Args:
+ spatial_dims: spatial dimension of the input data. Defaults to 3.
+ init_filters: number of output channels for initial convolution layer. Defaults to 32.
+ in_channels: number of input channels for the network. Defaults to 1.
+ out_channels: number of output channels for the network. Defaults to 2.
+ act: activation type and arguments. Defaults to ``RELU``.
+ norm: feature normalization type and arguments. Defaults to ``BATCH``.
+ blocks_down: number of downsample blocks in each layer. Defaults to ``[1,2,2,4]``.
+ blocks_up: number of upsample blocks (optional).
+ dsdepth: number of levels for deep supervision. This will be the length of the list of outputs at each scale level.
+ At dsdepth==1,only a single output is returned.
+ preprocess: optional callable function to apply before the model's forward pass
+ resolution: optional input image resolution. When provided, the network will first use non-isotropic kernels to bring
+ image spacing into an approximately isotropic space.
+ Otherwise, by default, the kernel size and downsampling is always isotropic.
+
+ """
+
+ def __init__(
+ self,
+ spatial_dims: int = 3,
+ init_filters: int = 32,
+ in_channels: int = 1,
+ out_channels: int = 2,
+ act: tuple | str = "relu",
+ norm: tuple | str = "batch",
+ blocks_down: tuple = (1, 2, 2, 4),
+ blocks_up: tuple | None = None,
+ dsdepth: int = 1,
+ preprocess: nn.Module | Callable | None = None,
+ upsample_mode: UpsampleMode | str = "deconv",
+ resolution: tuple | None = None,
+ ):
+ super().__init__()
+
+ if spatial_dims not in (1, 2, 3):
+ raise ValueError("`spatial_dims` can only be 1, 2 or 3.")
+
+ self.spatial_dims = spatial_dims
+ self.init_filters = init_filters
+ self.in_channels = in_channels
+ self.out_channels = out_channels
+ self.act = act
+ self.norm = norm
+ self.blocks_down = blocks_down
+ self.dsdepth = max(dsdepth, 1)
+ self.resolution = resolution
+ self.preprocess = preprocess
+
+ if resolution is not None:
+ if not isinstance(resolution, (list, tuple)):
+ raise TypeError("resolution must be a tuple")
+ elif not all(r > 0 for r in resolution):
+ raise ValueError("resolution must be positive")
+
+ # ensure normalization had affine trainable parameters (if not specified)
+ norm = split_args(norm)
+ if has_option(Norm[norm[0], spatial_dims], "affine"):
+ norm[1].setdefault("affine", True) # type: ignore
+
+ # ensure activation is inplace (if not specified)
+ act = split_args(act)
+ if has_option(Act[act[0]], "inplace"):
+ act[1].setdefault("inplace", True) # type: ignore
+
+ anisotropic_scales = None
+ if resolution:
+ anisotropic_scales = scales_for_resolution(
+ resolution, n_stages=len(blocks_down)
+ )
+ self.anisotropic_scales = anisotropic_scales
+
+ self.encoder = SegResEncoder(
+ spatial_dims=spatial_dims,
+ init_filters=init_filters,
+ in_channels=in_channels,
+ act=act,
+ norm=norm,
+ blocks_down=blocks_down,
+ anisotropic_scales=anisotropic_scales,
+ )
+
+ n_up = len(blocks_down) - 1
+ if blocks_up is None:
+ blocks_up = (1,) * n_up # assume 1 upsample block per level
+ self.blocks_up = blocks_up
+
+ filters = init_filters * 2**n_up
+ self.up_layers = nn.ModuleList()
+ self.up_layers_auto = nn.ModuleList()
+
+ for i in range(n_up):
+ filters = filters // 2
+ kernel_size, _, stride = (
+ aniso_kernel(anisotropic_scales[len(blocks_up) - i - 1])
+ if anisotropic_scales
+ else (3, 1, 2)
+ )
+
+ level = nn.ModuleDict()
+ level_auto = nn.ModuleDict()
+ level["upsample"] = UpSample(
+ mode=upsample_mode,
+ spatial_dims=spatial_dims,
+ in_channels=2 * filters,
+ out_channels=filters,
+ kernel_size=kernel_size,
+ scale_factor=stride,
+ bias=False,
+ align_corners=False,
+ )
+ level_auto["upsample"] = UpSample(
+ mode=upsample_mode,
+ spatial_dims=spatial_dims,
+ in_channels=2 * filters,
+ out_channels=filters,
+ kernel_size=kernel_size,
+ scale_factor=stride,
+ bias=False,
+ align_corners=False,
+ )
+ blocks = [
+ SegResBlock(
+ spatial_dims=spatial_dims,
+ in_channels=filters,
+ kernel_size=kernel_size,
+ norm=norm,
+ act=act,
+ )
+ for _ in range(blocks_up[i])
+ ]
+ level["blocks"] = nn.Sequential(*blocks)
+ blocks = [
+ SegResBlock(
+ spatial_dims=spatial_dims,
+ in_channels=filters,
+ kernel_size=kernel_size,
+ norm=norm,
+ act=act,
+ )
+ for _ in range(blocks_up[i])
+ ]
+ level_auto["blocks"] = nn.Sequential(*blocks)
+ if len(blocks_up) - i <= dsdepth: # deep supervision heads
+ level["head"] = Conv[Conv.CONV, spatial_dims](
+ in_channels=filters,
+ out_channels=out_channels,
+ kernel_size=1,
+ bias=True,
+ )
+ level_auto["head"] = Conv[Conv.CONV, spatial_dims](
+ in_channels=filters,
+ out_channels=out_channels,
+ kernel_size=1,
+ bias=True,
+ )
+ else:
+ level["head"] = nn.Identity()
+ level_auto["head"] = nn.Identity()
+
+ self.up_layers.append(level)
+ self.up_layers_auto.append(level_auto)
+
+ if (
+ n_up == 0
+ ): # in a corner case of flat structure (no downsampling), attache a single head
+ level = nn.ModuleDict(
+ {
+ "upsample": nn.Identity(),
+ "blocks": nn.Identity(),
+ "head": Conv[Conv.CONV, spatial_dims](
+ in_channels=filters,
+ out_channels=out_channels,
+ kernel_size=1,
+ bias=True,
+ ),
+ }
+ )
+ level_auto = nn.ModuleDict(
+ {
+ "upsample": nn.Identity(),
+ "blocks": nn.Identity(),
+ "head": Conv[Conv.CONV, spatial_dims](
+ in_channels=filters,
+ out_channels=out_channels,
+ kernel_size=1,
+ bias=True,
+ ),
+ }
+ )
+ self.up_layers.append(level)
+ self.up_layers_auto.append(level_auto)
+
+ def shape_factor(self):
+ """
+ Calculate the factors (divisors) that the input image shape must be divisible by
+ """
+ if self.anisotropic_scales is None:
+ d = [2 ** (len(self.blocks_down) - 1)] * self.spatial_dims
+ else:
+ d = list(np.prod(np.array(self.anisotropic_scales[:-1]), axis=0))
+ return d
+
+ def is_valid_shape(self, x):
+ """
+ Calculate if the input shape is divisible by the minimum factors for the current network configuration
+ """
+ a = [i % j == 0 for i, j in zip(x.shape[2:], self.shape_factor())]
+ return all(a)
+
+ def _forward(
+ self, x: torch.Tensor, with_point, with_label
+ ) -> Union[None, torch.Tensor, list[torch.Tensor]]:
+ if self.preprocess is not None:
+ x = self.preprocess(x)
+
+ if not self.is_valid_shape(x):
+ raise ValueError(
+ f"Input spatial dims {x.shape} must be divisible by {self.shape_factor()}"
+ )
+
+ x_down = self.encoder(x)
+
+ x_down.reverse()
+ x = x_down.pop(0)
+
+ if len(x_down) == 0:
+ x_down = [torch.zeros(1, device=x.device, dtype=x.dtype)]
+
+ outputs: list[torch.Tensor] = []
+ outputs_auto: list[torch.Tensor] = []
+ x_ = x.clone()
+ if with_point:
+ i = 0
+ for level in self.up_layers:
+ x = level["upsample"](x)
+ x = x + x_down[i]
+ x = level["blocks"](x)
+
+ if len(self.up_layers) - i <= self.dsdepth:
+ outputs.append(level["head"](x))
+ i = i + 1
+
+ outputs.reverse()
+ x = x_
+ if with_label:
+ i = 0
+ for level in self.up_layers_auto:
+ x = level["upsample"](x)
+ x = x + x_down[i]
+ x = level["blocks"](x)
+
+ if len(self.up_layers) - i <= self.dsdepth:
+ outputs_auto.append(level["head"](x))
+ i = i + 1
+
+ outputs_auto.reverse()
+
+ # in eval() mode, always return a single final output
+ if not self.training or len(outputs) == 1:
+ outputs = outputs[0] if len(outputs) == 1 else outputs
+
+ if not self.training or len(outputs_auto) == 1:
+ outputs_auto = outputs_auto[0] if len(outputs_auto) == 1 else outputs_auto
+
+ # return a list of DS outputs
+ return outputs, outputs_auto
+
+ def forward(
+ self, x: torch.Tensor, with_point=True, with_label=True, **kwargs
+ ) -> Union[None, torch.Tensor, list[torch.Tensor]]:
+ return self._forward(x, with_point, with_label)
+
+ def set_auto_grad(self, auto_freeze=False, point_freeze=False):
+ for param in self.encoder.parameters():
+ param.requires_grad = (not auto_freeze) and (not point_freeze)
+
+ for param in self.up_layers_auto.parameters():
+ param.requires_grad = not auto_freeze
+
+ for param in self.up_layers.parameters():
+ param.requires_grad = not point_freeze
diff --git a/vista3d/vista3d/modeling/vista3d.py b/vista3d/vista3d/modeling/vista3d.py
new file mode 100644
index 0000000..a67b660
--- /dev/null
+++ b/vista3d/vista3d/modeling/vista3d.py
@@ -0,0 +1,345 @@
+# Copyright (c) MONAI Consortium
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+# http://www.apache.org/licenses/LICENSE-2.0
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from __future__ import annotations
+
+import monai
+import numpy as np
+import torch
+import torch.nn as nn
+from monai.utils import optional_import
+from scripts.utils.trans_utils import convert_points_to_disc
+from scripts.utils.trans_utils import get_largest_connected_component_mask as lcc
+from scripts.utils.workflow_utils import sample_points_patch_val
+
+rearrange, _ = optional_import("einops", name="rearrange")
+NINF_VALUE = -9999
+PINF_VALUE = 9999
+
+
+class VISTA3D2(nn.Module):
+ def __init__(self, image_encoder, class_head, point_head, feature_size):
+ super().__init__()
+ self.image_encoder = image_encoder
+ self.class_head = class_head
+ self.point_head = point_head
+ self.image_embeddings = None
+ self.weight_mapper = nn.Sequential(
+ nn.Linear(feature_size, 4 * feature_size),
+ nn.GELU(),
+ nn.InstanceNorm1d(4 * feature_size),
+ nn.Linear(4 * feature_size, 1),
+ )
+ self.auto_freeze = False
+ self.point_freeze = False
+
+ def precompute_embedding(self, input_images):
+ """precompute image embedding, require sliding window inference"""
+ raise NotImplementedError
+
+ def clear_cache(self):
+ self.image_embeddings = None
+
+ def get_bs(self, class_vector, point_coords):
+ if class_vector is None:
+ assert point_coords is not None, "prompt is required"
+ return point_coords.shape[0]
+ else:
+ return class_vector.shape[0]
+
+ def update_point_to_patch(self, patch_coords, point_coords, point_labels):
+ """Update point_coords with respect to patch coords.
+ If point is outside of the patch, remove the coordinates and set label to -1
+ """
+ patch_ends = [
+ patch_coords[-3].stop,
+ patch_coords[-2].stop,
+ patch_coords[-1].stop,
+ ]
+ patch_starts = [
+ patch_coords[-3].start,
+ patch_coords[-2].start,
+ patch_coords[-1].start,
+ ]
+ # update point coords
+ patch_starts = (
+ torch.tensor(patch_starts, device=point_coords.device)
+ .unsqueeze(0)
+ .unsqueeze(0)
+ )
+ patch_ends = (
+ torch.tensor(patch_ends, device=point_coords.device)
+ .unsqueeze(0)
+ .unsqueeze(0)
+ )
+ # [1 N 1]
+ indices = torch.logical_and(
+ ((point_coords - patch_starts) > 0).all(2),
+ ((patch_ends - point_coords) > 0).all(2),
+ )
+ # check if it's within patch coords
+ point_coords = point_coords.clone() - patch_starts
+ point_labels = point_labels.clone()
+ if indices.any():
+ point_labels[~indices] = -1
+ point_coords[~indices] = 0
+ # also remove padded points, mainly used for inference.
+ not_pad_indices = (point_labels != -1).any(0)
+ point_coords = point_coords[:, not_pad_indices]
+ point_labels = point_labels[:, not_pad_indices]
+ else:
+ point_coords = None
+ point_labels = None
+ return point_coords, point_labels
+
+ def connected_components_combine(
+ self, logits, point_logits, point_coords, point_labels, mapping_index, thred=0.5
+ ):
+ """Combine auto results with point click response, or combine previous mask with point click response.
+ For mapping_index with point clicks, NaN values in logits will be replaced with point_logits. Meanwhile, the added/removed
+ region in point clicks must be updated by the lcc function. Notice, if a positive point is within logits/prev_mask, the components containing the positive point
+ will be added.
+ """
+ logits = (
+ logits.as_tensor() if isinstance(logits, monai.data.MetaTensor) else logits
+ )
+ _logits = logits[mapping_index]
+ inside = []
+ for i in range(_logits.shape[0]):
+ inside.append(
+ np.any(
+ [
+ _logits[
+ i,
+ 0,
+ round(p[0].item()),
+ round(p[1].item()),
+ round(p[2].item()),
+ ].item()
+ > 0
+ for p in point_coords[i]
+ ]
+ )
+ )
+ inside = torch.tensor(inside).to(logits.device)
+ nan_mask = torch.isnan(_logits)
+ _logits = torch.nan_to_num(_logits, nan=NINF_VALUE).sigmoid()
+ pos_region = point_logits.sigmoid() > thred
+ diff_pos = torch.logical_and(
+ torch.logical_or(
+ (_logits <= thred),
+ inside.unsqueeze(-1).unsqueeze(-1).unsqueeze(-1).unsqueeze(-1),
+ ),
+ pos_region,
+ )
+ diff_neg = torch.logical_and((_logits > thred), ~pos_region)
+ cc = lcc(
+ diff_pos, diff_neg, point_coords=point_coords, point_labels=point_labels
+ )
+ # cc is the region that can be updated by point_logits.
+ cc = cc.to(logits.device)
+ # Need to replace NaN with point_logits. diff_neg will never lie in nan_mask, only remove unconnected positive region.
+ uc_pos_region = torch.logical_and(pos_region, ~cc)
+ fill_mask = torch.logical_and(nan_mask, uc_pos_region)
+ if fill_mask.any():
+ # fill in the mean negative value
+ point_logits[fill_mask] = -1
+ # replace logits nan value and cc with point_logits
+ cc = torch.logical_or(nan_mask, cc).to(logits.dtype)
+ logits[mapping_index] *= 1 - cc
+ logits[mapping_index] += cc * point_logits
+ # debug_ccp(_logits, point_logits.sigmoid(), point_coords, point_labels, diff, cc, logits[mapping_index], np.random.randint(10000))
+ return logits
+
+ def gaussian_combine(
+ self, logits, point_logits, point_coords, point_labels, mapping_index, radius
+ ):
+ """Combine point results with auto results using gaussian."""
+ if radius is None:
+ radius = min(point_logits.shape[-3:]) // 5 # empirical value 5
+ weight = 1 - convert_points_to_disc(
+ point_logits.shape[-3:], point_coords, point_labels, radius=radius
+ ).sum(1, keepdims=True)
+ weight[weight < 0] = 0
+ logits = (
+ logits.as_tensor() if isinstance(logits, monai.data.MetaTensor) else logits
+ )
+ logits[mapping_index] *= weight
+ logits[mapping_index] += (1 - weight) * point_logits
+ return logits
+
+ def set_auto_grad(self, auto_freeze=False, point_freeze=False):
+ """Freeze auto-branch or point-branch"""
+ if auto_freeze != self.auto_freeze:
+ if hasattr(self.image_encoder, "set_auto_grad"):
+ self.image_encoder.set_auto_grad(
+ auto_freeze=auto_freeze, point_freeze=point_freeze
+ )
+ else:
+ for param in self.image_encoder.parameters():
+ param.requires_grad = (not auto_freeze) and (not point_freeze)
+ for param in self.class_head.parameters():
+ param.requires_grad = not auto_freeze
+ self.auto_freeze = auto_freeze
+
+ if point_freeze != self.point_freeze:
+ if hasattr(self.image_encoder, "set_auto_grad"):
+ self.image_encoder.set_auto_grad(
+ auto_freeze=auto_freeze, point_freeze=point_freeze
+ )
+ else:
+ for param in self.image_encoder.parameters():
+ param.requires_grad = (not auto_freeze) and (not point_freeze)
+ for param in self.point_head.parameters():
+ param.requires_grad = not point_freeze
+ self.point_freeze = point_freeze
+
+ def forward(
+ self,
+ input_images,
+ point_coords=None,
+ point_labels=None,
+ class_vector=None,
+ prompt_class=None,
+ patch_coords=None,
+ labels=None,
+ label_set=None,
+ prev_mask=None,
+ radius=None,
+ val_point_sampler=None,
+ **kwargs,
+ ):
+ """
+ The forward function for VISTA3D. We only support single patch in training and inference.
+ One exception is allowing sliding window batch size > 1 for automatic segmentation only case.
+ B represents number of objects, N represents number of points for each objects.
+ Args:
+ input_images: [1, 1, H, W, D]
+ point_coords: [B, N, 3]
+ point_labels: [B, N], -1 represents padding. 0/1 means negative/positive points for regular class.
+ 2/3 means negative/postive ponits for special supported class like tumor.
+ class_vector: [B, 1], the global class index
+ prompt_class: [B, 1], the global class index. This value is associated with point_coords to identify if
+ the points are for zero-shot or supported class. When class_vector and point_coords are both
+ provided, prompt_class is the same as class_vector. For prompt_class[b] > 512, point_coords[b]
+ will be considered novel class.
+ patch_coords: the python slice object representing the patch coordinates during sliding window inference. This value is
+ passed from monai_utils.sliding_window_inferer. This is an indicator for training phase or validation phase.
+ labels: [1, 1, H, W, D], the groundtruth label tensor, only used for point-only evaluation
+ label_set: the label index matching the indexes in labels. If labels are mapped to global index using RelabelID,
+ this label_set should be global mapped index. If labels are not mapped to global index, e.g. in zero-shot
+ evaluation, this label_set should be the original index.
+ prev_mask: [B, N, H_fullsize, W_fullsize, D_fullsize]. This is the transposed raw output from sliding_window_inferer before
+ any postprocessing. When user click points to perform auto-results correction, this can be the auto-results.
+ radius: single float value controling the gaussian blur when combining point and auto results. The gaussian combine is not used
+ in VISTA3D training but might be useful for finetuning purposes.
+ val_point_sampler: function used to sample points from labels. This is only used for point-only evaluation.
+
+ """
+ image_size = input_images.shape[-3:]
+ device = input_images.device
+ if point_coords is None and class_vector is None:
+ return NINF_VALUE + torch.zeros([1, 1, *image_size], device=device)
+
+ bs = self.get_bs(class_vector, point_coords)
+ if patch_coords is not None:
+ # if during validation and perform enable based point-validation.
+ if labels is not None and label_set is not None:
+ # if labels is not None, sample from labels for each patch.
+ if val_point_sampler is None:
+ val_point_sampler = sample_points_patch_val
+ point_coords, point_labels, prompt_class = val_point_sampler(
+ labels, patch_coords, label_set
+ )
+ if prompt_class[0].item() == 0:
+ point_labels[0] = -1
+ labels, prev_mask = None, None
+ elif point_coords is not None:
+ # If not performing patch-based point only validation, use user provided click points for inference.
+ # the point clicks is in original image space, convert it to current patch-coordinate space.
+ point_coords, point_labels = self.update_point_to_patch(
+ patch_coords, point_coords, point_labels
+ )
+
+ if point_coords is not None and point_labels is not None:
+ # remove points that used for padding purposes (point_label = -1)
+ mapping_index = ((point_labels != -1).sum(1) > 0).to(torch.bool)
+ if mapping_index.any():
+ point_coords = point_coords[mapping_index]
+ point_labels = point_labels[mapping_index]
+ if prompt_class is not None:
+ prompt_class = prompt_class[mapping_index]
+ else:
+ if self.auto_freeze or (class_vector is None and patch_coords is None):
+ # if auto_freeze, point prompt must exist to allow loss backward
+ # in training, class_vector and point cannot both be None due to loss.backward()
+ mapping_index.fill_(True)
+ else:
+ point_coords, point_labels = None, None
+
+ if point_coords is None and class_vector is None:
+ return NINF_VALUE + torch.zeros([bs, 1, *image_size], device=device)
+
+ if (
+ self.image_embeddings is not None
+ and kwargs.get("keep_cache", False)
+ and class_vector is None
+ ):
+ out, out_auto = self.image_embeddings, None
+ else:
+ out, out_auto = self.image_encoder(
+ input_images,
+ with_point=point_coords is not None,
+ with_label=class_vector is not None,
+ )
+ input_images = None
+
+ # force releasing memories that set to None
+ torch.cuda.empty_cache()
+ if class_vector is not None:
+ logits, _ = self.class_head(out_auto, class_vector)
+ if point_coords is not None:
+ point_logits = self.point_head(
+ out, point_coords, point_labels, class_vector=prompt_class
+ )
+ if patch_coords is None:
+ logits = self.gaussian_combine(
+ logits,
+ point_logits,
+ point_coords,
+ point_labels,
+ mapping_index,
+ radius,
+ )
+ else:
+ # during validation use largest component
+ logits = self.connected_components_combine(
+ logits, point_logits, point_coords, point_labels, mapping_index
+ )
+ else:
+ logits = NINF_VALUE + torch.zeros(
+ [bs, 1, *image_size], device=device, dtype=out.dtype
+ )
+ logits[mapping_index] = self.point_head(
+ out, point_coords, point_labels, class_vector=prompt_class
+ )
+ if prev_mask is not None and patch_coords is not None:
+ logits = self.connected_components_combine(
+ prev_mask[patch_coords].transpose(1, 0).to(logits.device),
+ logits[mapping_index],
+ point_coords,
+ point_labels,
+ mapping_index,
+ )
+
+ if kwargs.get("keep_cache", False) and class_vector is None:
+ self.image_embeddings = out.detach()
+ return logits