diff --git a/.github/workflows/premerge-py-min.yml b/.github/workflows/premerge-py-min.yml new file mode 100644 index 0000000..d7e6da8 --- /dev/null +++ b/.github/workflows/premerge-py-min.yml @@ -0,0 +1,56 @@ +name: premerge-min + +on: + # quick tests for pull requests and the releasing branches + push: + branches: + - vista3d + - main + pull_request: + +concurrency: + # automatically cancel the previously triggered workflows when there's a newer version + group: py-min-${{ github.event.pull_request.number || github.ref }} + cancel-in-progress: true + +jobs: + min-dep-py3: # min dependencies installed tests for different python + runs-on: ubuntu-latest + strategy: + fail-fast: false + matrix: + python-version: ['3.9', '3.10', '3.11'] + timeout-minutes: 40 + steps: + - uses: actions/checkout@v4 + - name: Set up Python ${{ matrix.python-version }} + uses: actions/setup-python@v5 + with: + python-version: ${{ matrix.python-version }} + - name: Prepare pip wheel + run: | + which python + python -m pip install --user --upgrade pip setuptools wheel + - name: cache weekly timestamp + id: pip-cache + run: | + echo "datew=$(date '+%Y-%V')" >> $GITHUB_OUTPUT + echo "dir=$(pip cache dir)" >> $GITHUB_OUTPUT + shell: bash + - name: cache for pip + uses: actions/cache@v4 + id: cache + with: + path: ${{ steps.pip-cache.outputs.dir }} + key: ubuntu-latest-latest-pip-${{ steps.pip-cache.outputs.datew }} + - name: Install the dependencies + run: | + python -m pip install torch --extra-index-url https://download.pytorch.org/whl/cpu + python -m pip install "monai[all]" + python -m pip list + shell: bash + - name: Run quick tests (CPU ${{ runner.os }}) + run: | + python -c 'import torch; print(torch.__version__); print(torch.rand(5,3))' + python -c "import monai; monai.config.print_config()" + python -m unittest -v diff --git a/.gitignore b/.gitignore index 1c01314..4d2179c 100644 --- a/.gitignore +++ b/.gitignore @@ -108,6 +108,7 @@ temp/ runs *.gz *.pth +*.pt lib/ pip-wheel-metadata/ share/python-wheels/ diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index 4d277df..b093c1e 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -9,7 +9,7 @@ ci: repos: - repo: https://github.com/pre-commit/pre-commit-hooks - rev: v4.4.0 + rev: v4.6.0 hooks: - id: end-of-file-fixer - id: trailing-whitespace @@ -27,23 +27,23 @@ repos: - id: end-of-file-fixer - id: mixed-line-ending - repo: https://github.com/psf/black - rev: "23.3.0" + rev: "24.4.2" hooks: - id: black - id: black-jupyter - repo: https://github.com/pycqa/isort - rev: 5.12.0 + rev: 5.13.2 hooks: - id: isort args: ["--profile", "black"] - - repo: https://github.com/charliermarsh/ruff-pre-commit - rev: v0.0.261 + - repo: https://github.com/astral-sh/ruff-pre-commit + rev: v0.5.0 hooks: - id: ruff args: ['--fix'] - repo: https://github.com/asottile/yesqa - rev: v1.4.0 + rev: v1.5.0 hooks: - id: yesqa name: Unused noqa @@ -54,8 +54,7 @@ repos: - pep8-naming exclude: | (?x)^( - monai/__init__.py| - docs/source/conf.py| + .*/__init__.py| tests/utils.py )$ diff --git a/3rdParty/data_license.txt b/3rdParty/data_license.txt deleted file mode 100644 index 0f702f0..0000000 --- a/3rdParty/data_license.txt +++ /dev/null @@ -1,6 +0,0 @@ -Third Party Licenses ------------------------------------------------------------------------ - -/*********************************************************************/ -i. TotalSegmentator - https://zenodo.org/record/6802614#.Y9iTydLMJ6I diff --git a/3rdParty/segment-anything.LICENSE.txt b/LICENSE.txt similarity index 100% rename from 3rdParty/segment-anything.LICENSE.txt rename to LICENSE.txt diff --git a/README.md b/README.md index 5baa84a..33fec7a 100644 --- a/README.md +++ b/README.md @@ -11,184 +11,5 @@ See the License for the specific language governing permissions and limitations under the License. --> -# MONAI VISTA - -MONAI **V**ersatile **I**maging **S**egmen**T**ation and **A**nnotation - -
- -*(We're seeking collaborators. -If your institution is interested, please fill out the survey: https://forms.office.com/r/RedPQc9fmw)* - -### Table of Contents -- [Overview](#overview) -- [MONAI VISTA Training and FineTuning](training/) -- [MONAI VISTA with MONAI Label](#monai-label-integration) - - [Step 1. Installation](#installation) - - [Step 2. MONAI Label monaivista app](#monai-vista-app) - - [Step 3. MONAI VISTA - Label Plugins](#monai-vista-viewer-plugins) - - [Step 4. Data Preparation](#sample-data) - - [Step 5. Start MONAI Label Server and Start Annotating!](#start-monai-label-server-with-vista-model) -- [Video Demo](https://drive.google.com/file/d/1rEF1y9ZKo3Kj0Zms_gxkKwHlz75CYjwA/view?usp=sharing) -- [Community](#community) -- [License](#license) -- [Reference](#reference) - -## Overview - -[MONAI Meetup presentation at MIDL 2023](https://docs.google.com/presentation/d/1evp8txCyTzkqLT0fVE_0eFlXL4hux5myb7ggFhokRFQ) - -MONAI VISTA provides domain-specific workflows for building and utilizing foundation models -for medical image segmentation. -It leverages state-of-the-art deep learning technology to establish a -new collaborative approach for developing robust and versatile - segmentation models and applications. - -This repository hosts the ongoing effort of building MONAI VISTA and -is currently under active development. - - - -
- - -## MONAI Label Integration -This section provides MONAI Label integration and sample apps. The integration is a server-client -system that facilitates interactive medical image segmentation using VISTA via the sample 3D slicer plugin. - -### Installation - -MONAI VISTA models are integrated based on [MONAI Label](https://docs.monai.io/projects/label/en/latest/index.html#). -Start using MONAI Label locally and run the installation with your familiar visualization tools. -Stable version software represents the currently tested and supported visualization tools with -the latest release of MONAI Label. - -Refer to [MONAI Label installation](https://docs.monai.io/projects/label/en/latest/installation.html) page -for details. For milestone releases, users can install from PyPl with the command: - -```bash -pip install monailabel - -``` - -For Docker and Github installation, refer to MONAI Label [Github](https://github.com/Project-MONAI/MONAILabel) - -### MONAI VISTA APP - -Based on MONAI Label, MONAI VISTA is developed as an app. This app has example models -to do both interactive and "Everything" segmentation over medical images. -Prompt-based segment experience is highlighted. Including class prompts and point click prompts, Segmentation with the latest deep learning architectures (e.g., Segmentation Anything Model (SAM)) for multiple lung, abdominal, and pelvis -organs. Interactive tools include control points and class prompt check boxes developed with viewer plugins. - -Get the monaivista app with: - -```bash -# Clone MONAI VISTA repo -git clone git@github.com:Project-MONAI/VISTA.git -# the sample monaivista app is in the monailabel folder -cd VISTA/monailabel -``` - -For more details on `monaivista` app, see the [sample-app page](https://github.com/Project-MONAI/VISTA/tree/main/monailabel/monaivista). - -### MONAI VISTA Viewer Plugins - -The interactive annotation experience with prompt-based segmentation models needs the integration of medical image viewers. -MONAI VISTA and MONAI Label support multiple open-sourced viewers, such as [3D Slicer](https://www.slicer.org/) and [OHIF](https://ohif.org/). - -Example of 3D Slicer integration: - -3D Slicer is a free, open-source software for visualization, processing, segmentation, registration, -and other 3D images and meshes. 3D Slicer is a mature and well-tested viewer for radiology studies and algorithms. - -#### Installing 3D Slicer - -To use MONAI Label with 3D Slicer, you'll need to download and install 3D Slicer. -MONAI Label supports stable and preview versions of 3D Slicer, version 5.0 or higher. -For more information on installing 3D Slicer, -check out the [3D Slicer Documentation](https://slicer.readthedocs.io/en/latest/user_guide/getting_started.html#installing-3d-slicer) - -#### Install MONAI VISTA-Label plugin of 3D Slicer - -The plugin needs to be added in developer mode. Please follow the below steps. - -##### Plugin in Developer Mode - -- `git clone git@github.com:Project-MONAI/VISTA.git` -- Find the plugin folder: `plugins/slicer/MONAILabel` -- Open 3D Slicer: Go to **Edit** -> **Application Settings** -> **Modules** -> **Additional Module Paths** -- Add New Module Path: __/plugins/slicer/MONAILabel (You can drag the slicer/MONAILabel folder to the module panel.) -- _**Restart**_ 3D Slicer - -
- -
- -### Sample Data - -Prepare some sample data to start with: - -Download MSD pancreas dataset as the sample dataset using monailabel API. -The task is the volumetric (3D) segmentation of the pancreas from CT image. -The dataset is from the 2018 MICCAI challenge. - -```bash -monailabel datasets --download --name Task07_Pancreas --output . -``` - -### Start MONAI Label Server with VISTA Model - -Specify the sample app and sample datasets' path in the following command: - -```bash -monailabel start_server --app monaivista --studies ./Task07_Pancreas/imagesTs --conf models vista_point_2pt5 -``` - -- Open 3D Slicer and MONAI VISTA-Label plugin. -
- -- Connect to the monailabel server, start annotating! -
- -## Community - -Join the conversation on Twitter [@ProjectMONAI](https://twitter.com/ProjectMONAI) or join -our [Slack channel](https://projectmonai.slack.com/archives/C031QRE0M1C). - -Ask and answer questions on [MONAI VISTA's GitHub discussions tab](https://github.com/Project-MONAI/VISTA/discussions). - -## License - -The model is licensed under the Apache 2.0 license. - -## Reference - -The current model is trained and developed based on [Segment Anything Model (SAM)](https://github.com/facebookresearch/segment-anything). Check the 3rd party license for reference. - -We greatly appreciate the authors of [`Segment Anything`](https://github.com/facebookresearch/segment-anything) and [`TotalSegmentator`](https://github.com/wasserth/TotalSegmentator) for releasing their work under a permissive license to the community. - -``` -@article{kirillov2023segany, - title={Segment Anything}, - author={Kirillov, Alexander and Mintun, Eric and Ravi, Nikhila and Mao, Hanzi and Rolland, Chloe and Gustafson, Laura and Xiao, Tete and Whitehead, Spencer and Berg, Alexander C. and Lo, Wan-Yen and Doll{\'a}r, Piotr and Girshick, Ross}, - journal={arXiv:2304.02643}, - year={2023} - } -@article{wasserthal2022totalsegmentator, - title={TotalSegmentator: robust segmentation of 104 anatomical structures in CT images}, - author={Wasserthal, Jakob and Meyer, Manfred and Breit, Hanns-Christian and Cyriac, Joshy and Yang, Shan and Segeroth, Martin}, - journal={arXiv preprint arXiv:2208.05868}, - year={2022} - } -``` - -This integration is based on MONAI Label: - -```bash -@article{diaz2022monai, - title={Monai label: A framework for ai-assisted interactive labeling of 3d medical images}, - author={Diaz-Pinto, Andres and Alle, Sachidanand and Nath, Vishwesh and Tang, Yucheng and Ihsani, Alvin and Asad, Muhammad and P{\'e}rez-Garc{\'\i}a, Fernando and Mehta, Pritesh and Li, Wenqi and Flores, Mona and others}, - journal={arXiv preprint arXiv:2203.12362}, - year={2022} -} -``` +# MONAI VISTA Repository +This is the repository for VISTA3D and VISTA2D For the older VISTA2.5d code, please checkout the vista2.5d branch diff --git a/assets/img.png b/assets/img.png deleted file mode 100644 index 046b4f4..0000000 Binary files a/assets/img.png and /dev/null differ diff --git a/assets/img_1.png b/assets/img_1.png deleted file mode 100644 index 88c6d3e..0000000 Binary files a/assets/img_1.png and /dev/null differ diff --git a/assets/imgs/3dslicer_annotating.png b/assets/imgs/3dslicer_annotating.png deleted file mode 100644 index 95f65b1..0000000 Binary files a/assets/imgs/3dslicer_annotating.png and /dev/null differ diff --git a/assets/imgs/3dslicer_module.png b/assets/imgs/3dslicer_module.png deleted file mode 100644 index 50abfc0..0000000 Binary files a/assets/imgs/3dslicer_module.png and /dev/null differ diff --git a/assets/imgs/3dslicer_open.jpeg b/assets/imgs/3dslicer_open.jpeg deleted file mode 100644 index 43a6ce1..0000000 Binary files a/assets/imgs/3dslicer_open.jpeg and /dev/null differ diff --git a/assets/imgs/3dslicer_plugin.png b/assets/imgs/3dslicer_plugin.png deleted file mode 100644 index fe90b48..0000000 Binary files a/assets/imgs/3dslicer_plugin.png and /dev/null differ diff --git a/monailabel/monaivista/README.md b/monailabel/monaivista/README.md deleted file mode 100644 index d896418..0000000 --- a/monailabel/monaivista/README.md +++ /dev/null @@ -1,46 +0,0 @@ - - -The MONAI VISTA app contains several tasks: - -- Inferencing tasks: These tasks allow end-users to invoke pre-trained models for image analysis. -- Training and fine-tuning tasks: (coming soon) - -#### Implementing an Inference Task -To implement an inference task, developers must inherit the [InferTask](https://github.com/Project-MONAI/MONAILabel/blob/main/monailabel/tasks/infer/basic_infer.py) interface, which specifies a list of pre- and post-transforms and an inferer. - -The code snippet below demonstrates an example implementation of `InferTask`. In this example, the image is pre-processed to a Numpy array and input into the `SimpleInferer`. The resulting output is post-processed by applying sigmoid activation with binary discretization. - -
-from monai.inferers import SimpleInferer
-from monai.transforms import (LoadImaged, ToNumpyd, Activationsd AsDiscreted, ToNumpyd)
-from monailabel.interfaces.tasks import InferTask
-
-class MyInfer(InferTask):
-  def pre_transforms(self, data=None):
-      return [
-          LoadImaged(keys="image"),
-          ToNumpyd(keys="image"),
-      ]
-  def inferer(self, data=None):
-      return SimpleInferer()
-
-  def post_transforms(self, data=None):
-      return [
-          Activationsd(keys="pred", sigmoid=True),
-          AsDiscreted(keys="pred", threshold=0.5),
-          ToNumpyd(keys="pred"),
-      ]
-
- -Note that `inferer` needs to be defined by developers. diff --git a/monailabel/monaivista/lib/activelearning/__init__.py b/monailabel/monaivista/lib/activelearning/__init__.py deleted file mode 100644 index b24dd5b..0000000 --- a/monailabel/monaivista/lib/activelearning/__init__.py +++ /dev/null @@ -1,12 +0,0 @@ -# Copyright (c) MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from .last import Last diff --git a/monailabel/monaivista/lib/activelearning/last.py b/monailabel/monaivista/lib/activelearning/last.py deleted file mode 100644 index d62863c..0000000 --- a/monailabel/monaivista/lib/activelearning/last.py +++ /dev/null @@ -1,37 +0,0 @@ -# Copyright (c) MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import logging - -from monailabel.interfaces.datastore import Datastore -from monailabel.interfaces.tasks.strategy import Strategy - -logger = logging.getLogger(__name__) - - -class Last(Strategy): - """ - Consider implementing a first strategy for active learning - """ - - def __init__(self): - super().__init__("Get Last Sample") - - def __call__(self, request, datastore: Datastore): - images = datastore.get_unlabeled_images() - if not len(images): - return None - - images.sort() - image = images[-1] - - logger.info(f"First: Selected Image: {image}") - return {"id": image} diff --git a/monailabel/monaivista/lib/basic_infer.py b/monailabel/monaivista/lib/basic_infer.py deleted file mode 100644 index 0d913fc..0000000 --- a/monailabel/monaivista/lib/basic_infer.py +++ /dev/null @@ -1,664 +0,0 @@ -# Copyright (c) MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import copy -import logging -import os -import time -from abc import abstractmethod -from enum import Enum -from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, Union - -import torch -from monai.data import decollate_batch -from monai.inferers import Inferer, SimpleInferer, SlidingWindowInferer -from monailabel.interfaces.exception import MONAILabelError, MONAILabelException -from monailabel.interfaces.tasks.infer_v2 import InferTask, InferType -from monailabel.interfaces.utils.transform import dump_data, run_transforms -from monailabel.transform.cache import CacheTransformDatad - -# from monailabel.transform.writer import ClassificationWriter, DetectionWriter, Writer -from monailabel.utils.others.generic import device_list, device_map, name_to_device - -from .writer import ClassificationWriter, DetectionWriter, Writer - -logger = logging.getLogger(__name__) - - -class CallBackTypes(str, Enum): - PRE_TRANSFORMS = "PRE_TRANSFORMS" - INFERER = "INFERER" - INVERT_TRANSFORMS = "INVERT_TRANSFORMS" - POST_TRANSFORMS = "POST_TRANSFORMS" - WRITER = "WRITER" - - -class BasicInferTask(InferTask): - """ - Basic Inference Task Helper - """ - - def __init__( - self, - path: Union[None, str, Sequence[str]], - network: Union[None, Any], - type: Union[str, InferType], - labels: Union[str, None, Sequence[str], Dict[Any, Any]], - dimension: int, - description: str, - model_state_dict: str = "model", - input_key: str = "image", - output_label_key: str = "pred", - output_json_key: str = "result", - config: Union[None, Dict[str, Any]] = None, - load_strict: bool = False, - roi_size=None, - preload=False, - train_mode=False, - skip_writer=False, - ): - """ - :param path: Model File Path. Supports multiple paths to support versions (Last item will be picked as latest) - :param network: Model Network (e.g. monai.networks.xyz). None in case if you use TorchScript (torch.jit). - :param type: Type of Infer (segmentation, deepgrow etc..) - :param labels: Labels associated to this Infer - :param dimension: Input dimension - :param description: Description - :param model_state_dict: Key for loading the model state from checkpoint - :param input_key: Input key for running inference - :param output_label_key: Output key for storing result/label of inference - :param output_json_key: Output key for storing result/label of inference - :param config: K,V pairs to be part of user config - :param load_strict: Load model in strict mode - :param roi_size: ROI size for scanning window inference - :param preload: Preload model/network on all available GPU devices - :param train_mode: Run in Train mode instead of eval (when network has dropouts) - :param skip_writer: Skip Writer and return data dictionary - """ - - super().__init__(type, labels, dimension, description, config) - - self.path = [] if not path else [path] if isinstance(path, str) else path - self.network = network - self.model_state_dict = model_state_dict - self.input_key = input_key - self.output_label_key = output_label_key - self.output_json_key = output_json_key - self.load_strict = load_strict - self.roi_size = roi_size - self.train_mode = train_mode - self.skip_writer = skip_writer - - self._networks: Dict = {} - self._cachedData: Dict = {} - self._cachedEmbedding: Dict = {} - - self.computeEmbedding = False - - self._config.update( - { - "device": device_list(), - # "result_extension": None, - # "result_dtype": None, - # "result_compress": False - # "roi_size": self.roi_size, - # "sw_batch_size": 1, - # "sw_overlap": 0.25, - } - ) - - if config: - self._config.update(config) - - if preload: - for device in device_map().values(): - logger.info(f"Preload Network for device: {device}") - self._get_network(device, None) - - def info(self) -> Dict[str, Any]: - return { - "type": self.type, - "labels": self.labels, - "dimension": self.dimension, - "description": self.description, - "config": self.config(), - } - - def config(self) -> Dict[str, Any]: - return self._config - - def is_valid(self) -> bool: - if self.network or self.type == InferType.SCRIBBLES: - return True - - paths = self.path - for path in reversed(paths): - if path and os.path.exists(path): - return True - return False - - def get_path(self, validate=True): - if not self.path: - return None - - paths = self.path - for path in reversed(paths): - if path: - if not validate or os.path.exists(path): - return path - return None - - def add_cache_transform(self, t, data, keys=("image", "image_meta_dict"), hash_key=("image_path", "model")): - if data and data.get("cache_transforms", False): - in_memory = data.get("cache_transforms_in_memory", True) - ttl = data.get("cache_transforms_ttl", 300) - - t.append(CacheTransformDatad(keys=keys, hash_key=hash_key, in_memory=in_memory, ttl=ttl)) - - @abstractmethod - def pre_transforms(self, data=None) -> Sequence[Callable]: - """ - Provide List of pre-transforms - - :param data: current data dictionary/request which can be helpful to define the transforms per-request basis - - For Example:: - - return [ - monai.transforms.LoadImaged(keys='image'), - monai.transforms.AddChanneld(keys='image'), - monai.transforms.Spacingd(keys='image', pixdim=[1.0, 1.0, 1.0]), - monai.transforms.ScaleIntensityRanged(keys='image', - a_min=-57, a_max=164, b_min=0.0, b_max=1.0, clip=True), - ] - - """ - pass - - def inverse_transforms(self, data=None) -> Union[None, Sequence[Callable]]: - """ - Provide List of inverse-transforms. They are normally subset of pre-transforms. - This task is performed on output_label (using the references from input_key) - - :param data: current data dictionary/request which can be helpful to define the transforms per-request basis - - Return one of the following. - - None: Return None to disable running any inverse transforms (default behavior). - - Empty: Return [] to run all applicable pre-transforms which has inverse method - - list: Return list of specific pre-transforms names/classes to run inverse method - - For Example:: - - return [ - monai.transforms.Spacingd, - ] - - """ - return None - - @abstractmethod - def post_transforms(self, data=None) -> Sequence[Callable]: - """ - Provide List of post-transforms - - :param data: current data dictionary/request which can be helpful to define the transforms per-request basis - - For Example:: - - return [ - monai.transforms.AddChanneld(keys='pred'), - monai.transforms.Activationsd(keys='pred', softmax=True), - monai.transforms.AsDiscreted(keys='pred', argmax=True), - monai.transforms.SqueezeDimd(keys='pred', dim=0), - monai.transforms.ToNumpyd(keys='pred'), - monailabel.interface.utils.Restored(keys='pred', ref_image='image'), - monailabel.interface.utils.ExtremePointsd(keys='pred', result='result', points='points'), - monailabel.interface.utils.BoundingBoxd(keys='pred', result='result', bbox='bbox'), - ] - - """ - pass - - def inferer(self, data=None) -> Inferer: - input_shape = data[self.input_key].shape if data else None - - roi_size = data.get("roi_size", self.roi_size) if data else self.roi_size - sw_batch_size = data.get("sw_batch_size", 1) if data else 1 - sw_overlap = data.get("sw_overlap", 0.25) if data else 0.25 - device = data.get("device") - - sliding = False - if input_shape and roi_size: - for i in range(len(roi_size)): - if input_shape[-i] > roi_size[-i]: - sliding = True - - if sliding: - return SlidingWindowInferer( - roi_size=roi_size, - overlap=sw_overlap, - sw_batch_size=sw_batch_size, - sw_device=device, - device=device, - ) - return SimpleInferer() - - def detector(self, data=None) -> Optional[Callable]: - return None - - def __call__( - self, request, callbacks: Union[Dict[CallBackTypes, Any], None] = None - ) -> Union[Dict, Tuple[str, Dict[str, Any]]]: - """ - It provides basic implementation to run the following in order - - Run Pre Transforms - - Run Inferer - - Run Invert Transforms - - Run Post Transforms - - Run Writer to save the label mask and result params - - You can provide callbacks which can be useful while writing pipelines to consume intermediate outputs - Callback function should consume data and return data (modified/updated) e.g. `def my_cb(data): return data` - - Returns: Label (File Path) and Result Params (JSON) - """ - begin = time.time() - req = copy.deepcopy(self._config) - req.update(request) - - # device - device = name_to_device(req.get("device", "cuda")) - req["device"] = device - - logger.setLevel(req.get("logging", "INFO").upper()) - if req.get("image") is not None and isinstance(req.get("image"), str): - logger.info(f"Infer Request (final): {req}") - data = copy.deepcopy(req) - data.update({"image_path": req.get("image")}) - else: - dump_data(req, logger.level) - data = req - - self.class_prompts = request.get("class_prompts", None) - self.point_prompts = request.get("point_prompts", None) - self.computeEmbedding = request.get("computeEmbedding", False) - - # callbacks useful in case of pipeliens to consume intermediate output from each of the following stages - # callback function should consume data and returns data (modified/updated) - callbacks = callbacks if callbacks else {} - callback_run_pre_transforms = callbacks.get(CallBackTypes.PRE_TRANSFORMS) - callback_run_inferer = callbacks.get(CallBackTypes.INFERER) - callback_run_invert_transforms = callbacks.get(CallBackTypes.INVERT_TRANSFORMS) - callback_run_post_transforms = callbacks.get(CallBackTypes.POST_TRANSFORMS) - callback_writer = callbacks.get(CallBackTypes.WRITER) - - start = time.time() - pre_transforms = self.pre_transforms(data) - data = self.run_pre_transforms(data, pre_transforms) - if callback_run_pre_transforms: - data = callback_run_pre_transforms(data) - latency_pre = time.time() - start - - start = time.time() - - self._cachedData = ( - {} - if self._cachedData and data.get("image_path") != self._cachedData.get("image_path") - else self._cachedData or {} - ) - - if self.type == InferType.DETECTION: - data = self.run_detector(data, device=device) - else: - data = self.run_inferer(data, self._cachedEmbedding, self._cachedData, device=device) - - if not self.computeEmbedding: - self._cachedData = data.copy() - - if callback_run_inferer: - data = callback_run_inferer(data) - latency_inferer = time.time() - start - - start = time.time() - data = self.run_invert_transforms(data, pre_transforms, self.inverse_transforms(data)) - if callback_run_invert_transforms: - data = callback_run_invert_transforms(data) - latency_invert = time.time() - start - - start = time.time() - data = self.run_post_transforms(data, self.post_transforms(data)) - if callback_run_post_transforms: - data = callback_run_post_transforms(data) - latency_post = time.time() - start - - if self.skip_writer: - return dict(data) - - start = time.time() - result_file_name, result_json = self.writer(data) - if callback_writer: - data = callback_writer(data) - latency_write = time.time() - start - - latency_total = time.time() - begin - logger.info( - "++ Latencies => Total: {:.4f}; " - "Pre: {:.4f}; Inferer: {:.4f}; Invert: {:.4f}; Post: {:.4f}; Write: {:.4f}".format( - latency_total, - latency_pre, - latency_inferer, - latency_invert, - latency_post, - latency_write, - ) - ) - - result_json["label_names"] = self.labels - result_json["latencies"] = { - "pre": round(latency_pre, 2), - "infer": round(latency_inferer, 2), - "invert": round(latency_invert, 2), - "post": round(latency_post, 2), - "write": round(latency_write, 2), - "total": round(latency_total, 2), - "transform": data.get("latencies"), - } - - if result_file_name is not None and isinstance(result_file_name, str): - logger.info(f"Result File: {result_file_name}") - logger.info(f"Result Json Keys: {list(result_json.keys())}") - return result_file_name, result_json - else: - # result_file_name, result_json = self.writer(data, embedding=True) - - self._cachedEmbedding = data - result_json = {"Cache": "embedding"} - result_file_name = "CacheEmbedding" - # logger.info(f"Computed image mebedding: {data}") - self.computeEmbedding = False - self._cachedData = {} - return result_file_name, result_json - - def run_pre_transforms(self, data: Dict[str, Any], transforms): - pre_cache: List[Any] = [] - post_cache: List[Any] = [] - - current = pre_cache - cache_t = None - for t in transforms: - if isinstance(t, CacheTransformDatad): - cache_t = t - current = post_cache - else: - current.append(t) - - if cache_t is not None: - - class LoadFromCache: - def __call__(self, data): - return cache_t.load(data) - - d = run_transforms(data, [LoadFromCache()], log_prefix="PRE", use_compose=False) - - # Failed/Cache-Miss (run everything) - if d is None: - return run_transforms(data, transforms, log_prefix="PRE", use_compose=False) - return run_transforms(d, post_cache, log_prefix="PRE", use_compose=False) if post_cache else d - - return run_transforms(data, transforms, log_prefix="PRE", use_compose=False) - - def run_invert_transforms(self, data: Dict[str, Any], pre_transforms, names): - if names is None: - return data - - pre_names = dict() - transforms = [] - for t in reversed(pre_transforms): - if hasattr(t, "inverse"): - pre_names[t.__class__.__name__] = t - transforms.append(t) - - # Run only selected/given - if len(names) > 0: - transforms = [pre_transforms[n if isinstance(n, str) else n.__name__] for n in names] - - d = copy.deepcopy(dict(data)) - d[self.input_key] = data[self.output_label_key] - - d = run_transforms(d, transforms, inverse=True, log_prefix="INV") - data[self.output_label_key] = d[self.input_key] - return data - - def run_post_transforms(self, data: Dict[str, Any], transforms): - return run_transforms(data, transforms, log_prefix="POST") - - def clear_cache(self): - self._networks.clear() - - def _get_network(self, device, data): - path = self.get_path() - logger.info(f"Infer model path: {path}") - - if data and self._config.get("model_filename"): - model_filename = data.get("model_filename") - model_filename = model_filename if isinstance(model_filename, str) else model_filename[0] - user_path = os.path.join(os.path.dirname(self.path[0]), model_filename) - if user_path and os.path.exists(user_path): - path = user_path - logger.info(f"Using provided model_file: {user_path}") - else: - logger.info(f"Ignoring provided model_file (not valid): {user_path}") - - if not path and not self.network: - if self.type == InferType.SCRIBBLES: - return None - - raise MONAILabelException( - MONAILabelError.INFERENCE_ERROR, - f"Model Path ({self.path}) does not exist/valid", - ) - - cached = self._networks.get(device) - statbuf = os.stat(path) if path else None - network = None - if cached: - if statbuf and statbuf.st_mtime == cached[1]: - network = cached[0] - elif statbuf: - logger.warning(f"Reload model from cache. Prev ts: {cached[1]}; Current ts: {statbuf.st_mtime}") - - if network is None: - if self.network: - network = copy.deepcopy(self.network) - network.to(torch.device(device)) - - if path: - model_state_dict = torch.load(path, map_location=torch.device(device)) - load_dict = model_state_dict["state_dict"] - - network.load_state_dict(load_dict, strict=True) - - else: - network = torch.jit.load(path, map_location=torch.device(device)) - - if self.train_mode: - network.train() - else: - network.eval() - - self._networks[device] = (network, statbuf.st_mtime if statbuf else 0) - - return network - - def run_inferer(self, data: Dict[str, Any], cachedEmbedding, cachedData, convert_to_batch=True, device="cuda"): - """ - Run Inferer over pre-processed Data. Derive this logic to customize the normal behavior. - In some cases, you want to implement your own for running chained inferers over pre-processed data - - :param data: pre-processed data - :param convert_to_batch: convert input to batched input - :param device: device type run load the model and run inferer - :return: updated data with output_key stored that will be used for post-processing - """ - inferer = self.inferer(data) - logger.info(f"Inferer:: {device} => {inferer.__class__.__name__} => {inferer.__dict__}") - - image_meta_dict = data.get("image_meta_dict", None) - if image_meta_dict: - original_affine = image_meta_dict.get("original_affine", None) - else: - original_affine = None - - network = self._get_network(device, data) - if network: - inputs = data[self.input_key] - inputs = inputs if torch.is_tensor(inputs) else torch.from_numpy(inputs) - inputs = inputs[None] if convert_to_batch else inputs - inputs = inputs.to(torch.device(device)) - - with torch.no_grad(): - if self.computeEmbedding: - outputs = inferer( - inputs, network, computeEmbedding=self.computeEmbedding, labels=self.labels, device=device - ) - return outputs - else: - outputs = inferer( - inputs, - network, - class_prompts=self.class_prompts, - point_prompts=self.point_prompts, - cachedEmbedding=cachedEmbedding, - cached_data=cachedData, - computeEmbedding=self.computeEmbedding, - labels=self.labels, - device=device, - original_affine=original_affine, - ) - - if device.startswith("cuda"): - torch.cuda.empty_cache() - - if convert_to_batch: - if isinstance(outputs, dict): - outputs_d = decollate_batch(outputs) - outputs = outputs_d[0] - else: - outputs = outputs[0] - - data[self.output_label_key] = outputs - else: - # consider them as callable transforms - data = run_transforms(data, inferer, log_prefix="INF", log_name="Inferer") - return data - - def run_detector(self, data: Dict[str, Any], convert_to_batch=True, device="cuda"): - """ - Run Detector over pre-processed Data. Derive this logic to customize the normal behavior. - In some cases, you want to implement your own for running chained inferers over pre-processed data - - :param data: pre-processed data - :param convert_to_batch: convert input to batched input - :param device: device type run load the model and run inferer - :return: updated data with output_key stored that will be used for post-processing - """ - - """ - Run Detector over pre-processed Data. Derive this logic to customize the normal behavior. - In some cases, you want to implement your own for running chained detector ops over pre-processed data - - :param data: pre-processed data - :param device: device type run load the model and run inferer - :return: updated data with output_key stored that will be used for post-processing - """ - detector = self.detector(data) - if detector is None: - raise ValueError("Detector is Not Provided") - - if hasattr(detector, "inferer"): - logger.info( - f"Detector Inferer:: {device} => {detector.inferer.__class__.__name__} => " - f"{detector.inferer.__dict__}" - ) - - network = self._get_network(device, data) - if network: - inputs = data[self.input_key] - inputs = inputs if torch.is_tensor(inputs) else torch.from_numpy(inputs) - inputs = inputs[None] if convert_to_batch else inputs - inputs = inputs.to(torch.device(device)) - - if hasattr(detector, "network"): - detector.network = network # type: ignore - else: - logger.warning("Detector has no 'network' attribute defined; Running without pretrained network") - - with torch.no_grad(): - if callable(getattr(detector, "eval", None)): - detector.eval() # type: ignore - network.eval() - outputs = detector(inputs, use_inferer=True) - - if device.startswith("cuda"): - torch.cuda.empty_cache() - - if convert_to_batch: - if isinstance(outputs, dict): - outputs_d = decollate_batch(outputs) - outputs = outputs_d[0] - else: - outputs = outputs[0] - - if isinstance(outputs, dict): - data.update(outputs) - else: - data[self.output_label_key] = outputs - return data - - def writer(self, data: Dict[str, Any], extension=None, dtype=None) -> Tuple[Any, Any]: - """ - You can provide your own writer. However, this writer saves the prediction/label mask to file - and fetches result json - - :param data: typically it is post processed data - :param extension: output label extension - :param dtype: output label dtype - :return: tuple of output_file and result_json - """ - logger.info("Writing Result...") - if extension is not None: - data["result_extension"] = extension - if dtype is not None: - data["result_dtype"] = dtype - if self.labels is not None: - data["labels"] = self.labels - - if self.type == InferType.CLASSIFICATION: - if isinstance(self.labels, dict): - label_names = {v: k for k, v in self.labels.items()} - else: - label_names = {v: k for v, k in enumerate(self.labels)} if isinstance(self.labels, Sequence) else None - - cw = ClassificationWriter(label=self.output_label_key, label_names=label_names) - return cw(data) - - if self.type == InferType.DETECTION: - dw = DetectionWriter() - return dw(data) - - writer = Writer(label=self.output_label_key, json=self.output_json_key) - return writer(data) - - def clear(self): - self._networks.clear() - - def set_loglevel(self, level: str): - logger.setLevel(level.upper()) diff --git a/monailabel/monaivista/lib/class_utils.py b/monailabel/monaivista/lib/class_utils.py deleted file mode 100644 index bb8c49a..0000000 --- a/monailabel/monaivista/lib/class_utils.py +++ /dev/null @@ -1,197 +0,0 @@ -# Copyright (c) MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import glob -import importlib.util -import inspect -import logging -import os -import sys -from distutils.util import strtobool -from typing import List - -from monailabel.interfaces.exception import MONAILabelError, MONAILabelException - -logger = logging.getLogger(__name__) - - -def unload_module(name): - modules = [] - for m in sorted(sys.modules): - if m == name or m.startswith(f"{name}."): - modules.append(m) - - if modules and strtobool(os.environ.get("MONAI_LABEL_RELOAD_APP_LIB", "true")): - logger.info(f"Remove/Reload previous Modules: {modules}") - for m in modules: - del sys.modules[m] - - -def module_from_file(module_name, file_path): - app_dir = os.path.dirname(file_path) - sys.path.insert(0, app_dir) - unload_module("lib") - - spec = importlib.util.spec_from_file_location(module_name, file_path) - module = importlib.util.module_from_spec(spec) - spec.loader.exec_module(module) - - sys.path.remove(app_dir) - logger.debug(f"module: {module}") - return module - - -def is_subclass(n, o, class_c): - if inspect.isclass(o) and n != class_c: - b = [cls.__name__ for cls in o.__bases__] - logger.debug(f"Base classes => {b}") - if class_c in b: - logger.info(f"Subclass for {class_c} Found: {o}") - return True - return False - - -def get_class_of_subclass(module, class_c): - logger.debug(f"{module} => {class_c}") - for n, o in inspect.getmembers(module): - if not inspect.isclass(o): - continue - - logger.debug(f"{n} => {o}") - if is_subclass(n, o, class_c): - return o - return None - - -def get_class_of_subclass_from_file(module_name, file_path, class_c): - return get_class_of_subclass(module_from_file(module_name, file_path), class_c) - - -def to_expression(class_path, class_args): - key_val = [] - for key in class_args: - val = class_args[key] - if isinstance(val, str): - val = f"'{val}'" - elif isinstance(val, tuple) or isinstance(val, list): - vals = [] - for v in val: - if isinstance(v, str): - v = f"'{v}'" - else: - v = str(v) - vals.append(v) - if isinstance(val, tuple): - val = f"({', '.join(vals)})" - else: - val = f"[{', '.join(vals)}]" - else: - val = str(val) - key_val.append(f"{key}={val}") - return f"{class_path}({', '.join(key_val)})" - - -def class_args_to_exp(c, mappings=None): - class_name = c["name"] - class_name = mappings.get(class_name, class_name) if mappings else class_name - class_args = c.get("args", {}) - return to_expression(class_name, class_args) - - -def get_class_info(exp, handle_bool=True): - if isinstance(exp, dict): - return exp["name"], exp["args"] - if exp.find("(") == -1: - return exp, {} - - def foo(**kwargs): - return kwargs - - if handle_bool: - exp = exp.replace("=true", "=True").replace("=false", "=False") # safe to assume - exp = exp.replace(" true", " True").replace(" false", " False") - class_path = exp[: exp.find("(")] - class_args = exp[exp.find("(") + 1 : -1] if exp.find("(") >= 0 else None - - logger.debug(f"Eval Input:: {class_path} => {class_args}") - class_args = eval("foo(" + class_args + ")") if class_args else None - - logger.debug(f"{class_path} => {class_args}") - return class_path, class_args - - -def init_class(class_path, class_args): - if "." not in class_path: - raise MONAILabelException( - MONAILabelError.CLASS_INIT_ERROR, "Class path need to be in the form [module/file].[class_name]." - ) - module_name, class_name = class_path.rsplit(".", 1) - - m = importlib.import_module(module_name) - importlib.reload(m) - c = getattr(m, class_name) - return c(**class_args) if class_args else c() - - -def init_class_from_exp(exp): - class_path, class_args = get_class_info(exp) - return init_class(class_path, class_args) - - -def get_class_names(p, subclass=None) -> List[str]: - logger = logging.getLogger(__name__) - - result = [] - logger.debug(f"Module File Path: {p.__file__}") - - if os.path.basename(p.__file__).startswith("__"): - current_dir = os.path.dirname(p.__file__) - current_module_name = p.__package__ - - for file in glob.glob(current_dir + "/*.py*"): - name = os.path.splitext(os.path.basename(file))[0] - if name.startswith("__"): - continue - - module = importlib.import_module("." + name, package=current_module_name) - # print("!!! 0: {}".format(module)) - - for m in dir(module): - c = getattr(module, m) - if not c or inspect.isabstract(c): - continue - - # if "lib.configs.samm_clipUM" in module.__name__: - # # print("!!! 1: {}".format(m)) - - if ( - inspect.isclass(c) - and c.__module__ == module.__name__ - and (not subclass or is_subclass(c.__name__, c, subclass)) - ): - result.append(c.__module__ + "." + c.__name__) - - else: - for m in dir(p): - c = getattr(p, m) - if not c or inspect.isabstract(c): - continue - print("!!! 1: {}".format(p.__name__)) - print("!!! 2: {}".format(c.__module__)) - - if ( - inspect.isclass(c) - and c.__module__ == p.__name__ - and (not subclass or is_subclass(c.__name__, c, subclass)) - ): - result.append(c.__module__ + "." + c.__name__) - - return result diff --git a/monailabel/monaivista/lib/configs/vista_point_2pt5.py b/monailabel/monaivista/lib/configs/vista_point_2pt5.py deleted file mode 100644 index 0ff4b4d..0000000 --- a/monailabel/monaivista/lib/configs/vista_point_2pt5.py +++ /dev/null @@ -1,170 +0,0 @@ -# Copyright (c) MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import logging -import os -from typing import Any, Dict, Optional, Union - -import lib.infers -import lib.trainers -from lib.model.vista_point_2pt5.model_2pt5 import sam_model_registry -from monailabel.interfaces.config import TaskConfig -from monailabel.interfaces.tasks.infer_v2 import InferTask -from monailabel.interfaces.tasks.train import TrainTask -from monailabel.utils.others.generic import download_file, strtobool - -logger = logging.getLogger(__name__) - - -class VISTAPOINT2PT5(TaskConfig): - def __init__(self): - super().__init__() - - def init(self, name: str, model_dir: str, conf: Dict[str, str], planner: Any, **kwargs): - super().init(name, model_dir, conf, planner, **kwargs) - - # Labels - self.labels = { - "spleen": 1, - "kidney_right": 2, - "kidney_left": 3, - "gallbladder": 4, - "liver": 5, - "stomach": 6, - "aorta": 7, - "inferior_vena_cava": 8, - "portal_vein_and_splenic_vein": 9, - "pancreas": 10, - "adrenal_gland_right": 11, - "adrenal_gland_left": 12, - "lung_upper_lobe_left": 13, - "lung_lower_lobe_left": 14, - "lung_upper_lobe_right": 15, - "lung_middle_lobe_right": 16, - "lung_lower_lobe_right": 17, - "vertebrae_L5": 18, - "vertebrae_L4": 19, - "vertebrae_L3": 20, - "vertebrae_L2": 21, - "vertebrae_L1": 22, - "vertebrae_T12": 23, - "vertebrae_T11": 24, - "vertebrae_T10": 25, - "vertebrae_T9": 26, - "vertebrae_T8": 27, - "vertebrae_T7": 28, - "vertebrae_T6": 29, - "vertebrae_T5": 30, - "vertebrae_T4": 31, - "vertebrae_T3": 32, - "vertebrae_T2": 33, - "vertebrae_T1": 34, - "vertebrae_C7": 35, - "vertebrae_C6": 36, - "vertebrae_C5": 37, - "vertebrae_C4": 38, - "vertebrae_C3": 39, - "vertebrae_C2": 40, - "vertebrae_C1": 41, - "esophagus": 42, - "trachea": 43, - "heart_myocardium": 44, - "heart_atrium_left": 45, - "heart_ventricle_left": 46, - "heart_atrium_right": 47, - "heart_ventricle_right": 48, - "pulmonary_artery": 49, - "brain": 50, - "iliac_artery_left": 51, - "iliac_artery_right": 52, - "iliac_vena_left": 53, - "iliac_vena_right": 54, - "small_bowel": 55, - "duodenum": 56, - "colon": 57, - "rib_left_1": 58, - "rib_left_2": 59, - "rib_left_3": 60, - "rib_left_4": 61, - "rib_left_5": 62, - "rib_left_6": 63, - "rib_left_7": 64, - "rib_left_8": 65, - "rib_left_9": 66, - "rib_left_10": 67, - "rib_left_11": 68, - "rib_left_12": 69, - "rib_right_1": 70, - "rib_right_2": 71, - "rib_right_3": 72, - "rib_right_4": 73, - "rib_right_5": 74, - "rib_right_6": 75, - "rib_right_7": 76, - "rib_right_8": 77, - "rib_right_9": 78, - "rib_right_10": 79, - "rib_right_11": 80, - "rib_right_12": 81, - "humerus_left": 82, - "humerus_right": 83, - "scapula_left": 84, - "scapula_right": 85, - "clavicula_left": 86, - "clavicula_right": 87, - "femur_left": 88, - "femur_right": 89, - "hip_left": 90, - "hip_right": 91, - "sacrum": 92, - "face": 93, - "gluteus_maximus_left": 94, - "gluteus_maximus_right": 95, - "gluteus_medius_left": 96, - "gluteus_medius_right": 97, - "gluteus_minimus_left": 98, - "gluteus_minimus_right": 99, - "autochthon_left": 100, - "autochthon_right": 101, - "iliopsoas_left": 102, - "iliopsoas_right": 103, - "urinary_bladder": 104, - } - - # Model Files - self.path = [ - os.path.join(self.model_dir, f"pretrained_{name}.pt"), # pretrained - os.path.join(self.model_dir, f"{name}.pt"), # published - ] - - # Download PreTrained Model - if strtobool(self.conf.get("use_pretrained_model", "true")): - url = f"{self.conf.get('pretrained_path', self.PRE_TRAINED_PATH)}" - url = f"{url}/monaivista_point_104_sam_2pt5.pt" - download_file(url, self.path[0]) - - self.target_spacing = (1.5, 1.5, 1.5) # target space for image - # Setting ROI size - This is for the image padding - self.roi_size = (96, 96, 96) - - self.network = sam_model_registry["vit_b"](checkpoint=None, image_size=1024, encoder_in_chans=9 * 3) - - def infer(self) -> Union[InferTask, Dict[str, InferTask]]: - task: InferTask = lib.infers.VISTAPOINT2PT5( - path=self.path, - network=self.network, - labels=self.labels, - preload=strtobool(self.conf.get("preload", "false")), - ) - return task - - def trainer(self) -> Optional[TrainTask]: - None diff --git a/monailabel/monaivista/lib/infers/__init__.py b/monailabel/monaivista/lib/infers/__init__.py deleted file mode 100644 index 83dda98..0000000 --- a/monailabel/monaivista/lib/infers/__init__.py +++ /dev/null @@ -1,12 +0,0 @@ -# Copyright (c) MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from .vista_point_2pt5 import VISTAPOINT2PT5 diff --git a/monailabel/monaivista/lib/infers/vista_point_2pt5.py b/monailabel/monaivista/lib/infers/vista_point_2pt5.py deleted file mode 100644 index ee35286..0000000 --- a/monailabel/monaivista/lib/infers/vista_point_2pt5.py +++ /dev/null @@ -1,76 +0,0 @@ -# Copyright (c) MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from typing import Callable, Sequence - -from lib.basic_infer import BasicInferTask -from lib.model.vista_point_2pt5.inferer import VISTASliceInferer -from monai.inferers import Inferer -from monai.transforms import ( - EnsureChannelFirstd, - EnsureTyped, - LoadImaged, - Orientationd, - ScaleIntensityRanged, -) -from monailabel.interfaces.tasks.infer_v2 import InferType -from monailabel.transform.post import Restored - - -class VISTAPOINT2PT5(BasicInferTask): - """ - This provides Inference Engine for pre-trained VISTA segmentation model. - """ - - def __init__( - self, - path, - network=None, - target_spacing=(1.5, 1.5, 1.5), - type=InferType.SEGMENTATION, - labels=None, - dimension=2, - description="A pre-trained model for volumetric (2.5D) segmentation of the monai vista", - **kwargs, - ): - super().__init__( - path=path, - network=network, - type=type, - labels=labels, - dimension=dimension, - description=description, - **kwargs, - ) - self.target_spacing = target_spacing - - def is_valid(self) -> bool: - return True - - def pre_transforms(self, data=None) -> Sequence[Callable]: - return [ - LoadImaged(keys="image"), - EnsureChannelFirstd(keys="image"), - Orientationd(keys="image", axcodes="RAS"), - ScaleIntensityRanged(keys="image", a_min=-1024, a_max=1024, b_min=0.0, b_max=1.0, clip=True), - ] - - def inferer(self, data=None) -> Inferer: - return VISTASliceInferer(device=data.get("device") if data else None) - - def inverse_transforms(self, data=None): - return [] - - def post_transforms(self, data=None) -> Sequence[Callable]: - return [ - EnsureTyped(keys="pred", device=data.get("device") if data else None), - Restored(keys="pred", ref_image="image"), - ] diff --git a/monailabel/monaivista/lib/model/vista_point_2pt5/__init__.py b/monailabel/monaivista/lib/model/vista_point_2pt5/__init__.py deleted file mode 100644 index 1e97f89..0000000 --- a/monailabel/monaivista/lib/model/vista_point_2pt5/__init__.py +++ /dev/null @@ -1,10 +0,0 @@ -# Copyright (c) MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. diff --git a/monailabel/monaivista/lib/model/vista_point_2pt5/inferer.py b/monailabel/monaivista/lib/model/vista_point_2pt5/inferer.py deleted file mode 100644 index 77e52f7..0000000 --- a/monailabel/monaivista/lib/model/vista_point_2pt5/inferer.py +++ /dev/null @@ -1,327 +0,0 @@ -# Copyright (c) MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from __future__ import annotations - -from collections.abc import Callable, Sequence -from typing import Any - -import torch -import torch.nn.functional as F -from monai.apps.utils import get_logger -from monai.data.meta_tensor import MetaTensor -from monai.inferers import Inferer -from monai.transforms import Activations, AsDiscrete, Compose -from monai.utils import convert_to_dst_type -from torch.cuda.amp import autocast - -from .utils.utils import prepare_sam_val_input - -logger = get_logger(__name__) - - -class VISTASliceInferer(Inferer): - def __init__( - self, - device: torch.device | str | None = None, - progress: bool = False, - cpu_thresh: int | None = None, - ) -> None: - super().__init__() - self.device = device - self.progress = progress - self.cpu_thresh = cpu_thresh - - def __call__( - self, - inputs: torch.Tensor, - network: Callable[..., torch.Tensor | Sequence[torch.Tensor] | dict[Any, torch.Tensor]], - device: torch.device | str | None = None, - n_z_slices: int = 9, - *args: Any, - **kwargs: Any, - ) -> torch.Tensor | tuple[torch.Tensor, ...] | dict[Any, torch.Tensor]: - """ - - Args: - inputs: model input data for inference. - network: target model to execute inference. - supports callables such as ``lambda x: my_torch_model(x, additional_config)`` - args: optional args to be passed to ``network``. - kwargs: optional keyword args to be passed to ``network``. - - """ - - device = kwargs.pop("device", self.device) - - if device is None and self.cpu_thresh is not None and inputs.shape[2:].numel() > self.cpu_thresh: - device = "cpu" # stitch in cpu memory if image is too large - - return vista_slice_inference( - inputs, - network, - device, - n_z_slices, - *args, - **kwargs, - ) - - -def vista_slice_inference( - inputs: torch.Tensor | MetaTensor, - predictor: Callable[..., torch.Tensor | Sequence[torch.Tensor] | dict[Any, torch.Tensor]], - device: torch.device | str | None = None, - n_z_slices: int = 9, - *args: Any, - **kwargs: Any, -) -> torch.Tensor | tuple[torch.Tensor, ...] | dict[Any, torch.Tensor]: - temp_meta = None - if isinstance(inputs, MetaTensor): - temp_meta = MetaTensor([]).copy_meta_from(inputs, copy_attr=False) - - labels = kwargs.pop("labels") - num_classes = len(labels) - - inputs_l = inputs - pred_volume = torch.repeat_interleave(torch.zeros_like(inputs_l), num_classes + 1, dim=1).float() - - inputs_l = inputs_l.squeeze() - n_z_before_pad = inputs_l.shape[-1] - # pad the z direction, so we can easily extract 2.5D input and predict labels for the center slice - - pd = (n_z_slices // 2, n_z_slices // 2) - inputs_l = F.pad(inputs_l, pd, "constant", 0) - - computeEmbedding = kwargs.pop("computeEmbedding") - - if computeEmbedding: - embedding = compute_embedding(n_z_slices, n_z_before_pad, inputs_l, predictor) - return embedding - - post_pred = Compose([Activations(sigmoid=True)]) - post_pred_slice = Compose([Activations(sigmoid=True), AsDiscrete(threshold=0.5)]) - - class_prompts = kwargs.pop("class_prompts") - point_prompts = kwargs.pop("point_prompts") - cached_data = kwargs.pop("cached_data") - cached_pred = cached_data["pred"] if cached_data else None - - cachedEmbedding = kwargs.pop("cachedEmbedding") - cachedEmbedding = cachedEmbedding if cachedEmbedding else None - original_affine = kwargs.pop("original_affine") - - if (class_prompts is None) and (point_prompts is None): - # Everything button: no class, no point prompts: iterate all slices - class_prompts = [i for i in range(num_classes)] - point_prompts = {"foreground": [], "background": []} - pred_volume = iterate_all( - pred_volume, - n_z_slices, - n_z_before_pad, - inputs_l, - class_prompts, - point_prompts, - predictor, - post_pred, - cachedEmbedding, - cached_pred, - device, - ) - elif (point_prompts is None) and (class_prompts is not None): - if class_prompts: - # class prompts only: need to iterate all slices - point_prompts = {"foreground": [], "background": []} - pred_volume = iterate_all( - pred_volume, - n_z_slices, - n_z_before_pad, - inputs_l, - class_prompts, - point_prompts, - predictor, - post_pred, - cachedEmbedding, - cached_pred, - device, - ) - else: - pred_volume = pred_volume.argmax(1).unsqueeze(1) - elif (class_prompts is None) and (point_prompts is not None): - class_prompts = [] - pred_volume = update_slice( - pred_volume, - n_z_slices, - n_z_before_pad, - inputs_l, - class_prompts, - point_prompts, - predictor, - post_pred_slice, - cached_pred, - num_classes, - original_affine, - device, - ) - else: - pred_volume = update_slice( - pred_volume, - n_z_slices, - n_z_before_pad, - inputs_l, - class_prompts, - point_prompts, - predictor, - post_pred_slice, - cached_pred, - num_classes, - original_affine, - device, - ) - - if temp_meta is not None: - final_output = convert_to_dst_type(pred_volume, temp_meta, device=device)[0] - else: - final_output = convert_to_dst_type(pred_volume, inputs, device=device)[0] - - return final_output # type: ignore - - -def compute_embedding(n_z_slices, n_z_before_pad, inputs_l, predictor): - # image_embedding_dict saves the image embedding for each slice. - # The key (int) is the index of center slice in original volume (before padding), e.g., 0,1,2,...n if the - # original volume has n slices. - # The value (torch.tensor) is the corresponding image embedding. - image_embedding_dict = {} - # get image embedding from the predictor (network) forward function - for start_idx in range((n_z_slices // 2), (n_z_slices // 2 + n_z_before_pad)): - inputs = inputs_l[..., start_idx - (n_z_slices // 2) : start_idx + (n_z_slices // 2) + 1].permute(2, 0, 1) - # Here, the batch size is 1 (it is possible to increase batch size if the device has enough memory). - data = [{"image": inputs}] - with autocast(): - image_embeddings = predictor.get_image_embeddings(data) # (1, C, H, W) - # Save image embedding for each slice to RAM - image_embedding_dict[start_idx - (n_z_slices // 2)] = image_embeddings.cpu() - - return image_embedding_dict - - -def update_slice( - pred_volume, - n_z_slices, - n_z_before_pad, - inputs_l, - class_prompts, - point_prompts, - predictor, - post_pred_slice, - cached_pred, - num_classes, - original_affine, - device, -): - z_indices = [p[2] + (9 // 2) for p in point_prompts["foreground"]] - z_indices.extend([p[2] + (9 // 2) for p in point_prompts["background"]]) - z_indices = list(set(z_indices)) - - pred_volume = pred_volume.argmax(1).unsqueeze(1) - - for start_idx in z_indices: - if start_idx < (n_z_slices // 2): - continue - - inputs = inputs_l[..., start_idx - (n_z_slices // 2) : start_idx + (n_z_slices // 2) + 1].permute(2, 0, 1) - if device and (device == "cuda" or isinstance(device, torch.device) and device.type == "cuda"): - inputs = inputs.cuda() - data, unique_labels = prepare_sam_val_input( - inputs, class_prompts, point_prompts, start_idx, original_affine, device=device - ) - - predictor.eval() - if device == "cuda" or (isinstance(device, torch.device) and device.type == "cuda"): - with torch.cuda.amp.autocast(): - outputs = predictor(data) - logit = outputs[0]["high_res_logits"] - else: - with torch.cpu.amp.autocast(): - outputs = predictor(data) - logit = outputs[0]["high_res_logits"] - - out_list = torch.unbind(logit, dim=0) - y_pred = torch.stack(post_pred_slice(out_list)).float() - - pred_volume = pred_volume.float() - idx = torch.where(y_pred[0] == 1) - z_idx = start_idx - (n_z_slices // 2) - - if cached_pred is not None: - if class_prompts: - cached_pred_idx = torch.where(cached_pred[:, :, :, z_idx] == class_prompts[0] + 1) - cached_pred[:, :, :, z_idx][cached_pred_idx] = 0 - cached_pred[:, :, :, z_idx][idx] = class_prompts[0] + 1 - else: - cached_pred[:, :, :, z_idx][idx] = num_classes + 1 - else: - pred_volume[0, :, :, :, z_idx][idx] = class_prompts[0] + 1 if class_prompts else num_classes + 1 - - if cached_pred is not None: - pred_volume[0] = cached_pred.float() - - return pred_volume - - -def iterate_all( - pred_volume, - n_z_slices, - n_z_before_pad, - inputs_l, - class_prompts, - point_prompts, - predictor, - post_pred, - cachedEmbedding, - cached_pred, - device, -): - start_range = ( - range(n_z_slices // 2, min((n_z_slices // 2 + n_z_before_pad), len(cachedEmbedding))) - if cachedEmbedding - else range(n_z_slices // 2, n_z_slices // 2 + n_z_before_pad) - ) - for start_idx in start_range: - inputs = inputs_l[..., start_idx - n_z_slices // 2 : start_idx + n_z_slices // 2 + 1].permute(2, 0, 1) - if device == "cuda" or (isinstance(device, torch.device) and device.type == "cuda"): - inputs = inputs.cuda() - data, unique_labels = prepare_sam_val_input(inputs, class_prompts, point_prompts, start_idx, device=device) - predictor = predictor.eval() - with autocast(): - if cachedEmbedding: - curr_embedding = cachedEmbedding[start_idx] - if device == "cuda" or (isinstance(device, torch.device) and device.type == "cuda"): - curr_embedding = curr_embedding.cuda() - outputs = predictor.get_mask_prediction(data, curr_embedding) - else: - outputs = predictor(data) - logit = outputs[0]["high_res_logits"] - - out_list = torch.unbind(logit, dim=0) - y_pred = torch.stack(post_pred(out_list)).float() - pred_idx = start_idx - (n_z_slices // 2) if not cachedEmbedding else start_idx - pred_volume[0, unique_labels, ..., pred_idx] = y_pred - - pred_volume = pred_volume.argmax(1).unsqueeze(1).cpu() - pred_volume = pred_volume.float() - - if cached_pred is not None: - pred_volume_idx = torch.where(pred_volume[0] != 0) - cached_pred[pred_volume_idx] = pred_volume[0][pred_volume_idx] - pred_volume[0] = cached_pred.float() - - return pred_volume diff --git a/monailabel/monaivista/lib/model/vista_point_2pt5/model_2pt5.py b/monailabel/monaivista/lib/model/vista_point_2pt5/model_2pt5.py deleted file mode 100644 index 08759ec..0000000 --- a/monailabel/monaivista/lib/model/vista_point_2pt5/model_2pt5.py +++ /dev/null @@ -1,439 +0,0 @@ -# Copyright (c) MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. - -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -from functools import partial -from typing import Any, Dict, List, Tuple - -import monai -import torch -from segment_anything.modeling import TwoWayTransformer -from segment_anything.modeling.mask_decoder import MaskDecoder -from torch import nn -from torch.nn import functional as F - -from .vista_2pt5_image_encoder import VistaImageEncoderViT -from .vista_2pt5_prompt_encoder import VistaPromptEncoder - - -class Vista2pt5D(nn.Module): - mask_threshold: float = 0.5 - image_format: str = "RGB" - - def __init__( - self, - image_encoder: VistaImageEncoderViT, - prompt_encoder: VistaPromptEncoder, - mask_decoder: MaskDecoder, - pixel_mean: List[float] = [123.675, 116.28, 103.53], - pixel_std: List[float] = [58.395, 57.12, 57.375], - ) -> None: - """ - SAM predicts object masks from an image and input prompts. - - Arguments: - image_encoder (ImageEncoderViT): The backbone used to encode the - image into image embeddings that allow for efficient mask prediction. - prompt_encoder (PromptEncoder): Encodes various types of input prompts. - mask_decoder (MaskDecoder): Predicts masks from the image embeddings - and encoded prompts. - pixel_mean (list(float)): Mean values for normalizing pixels in the input image. - pixel_std (list(float)): Std values for normalizing pixels in the input image. - """ - super().__init__() - self.image_encoder = image_encoder - self.prompt_encoder = prompt_encoder - self.mask_decoder = mask_decoder - self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False) - self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False) - - @property - def device(self) -> Any: - return self.pixel_mean.device - - def get_image_embeddings( - self, - batched_input: List[Dict[str, Any]], - ): - input_images = torch.stack([self.preprocess(x["image"]) for x in batched_input], dim=0) - image_embeddings = self.image_encoder(input_images) - return image_embeddings - - def get_mask_prediction( - self, batched_input: List[Dict[str, Any]], image_embeddings, multimask_output: bool = False - ): - outputs = [] - for image_record, curr_embedding in zip(batched_input, image_embeddings): - if "point_coords" in image_record: - points = (image_record["point_coords"], image_record["point_labels"]) - else: - points = None - sparse_embeddings, dense_embeddings = self.prompt_encoder( - points=points, - boxes=image_record.get("boxes", None), - masks=image_record.get("mask_inputs", None), - class_labels=image_record.get("labels", None), - ) - low_res_masks, iou_predictions = self.mask_decoder( - image_embeddings=curr_embedding.unsqueeze(0), - image_pe=self.prompt_encoder.get_dense_pe(), - sparse_prompt_embeddings=sparse_embeddings, - dense_prompt_embeddings=dense_embeddings, - multimask_output=multimask_output, - ) - - high_res_masks = self.postprocess_masks( - low_res_masks, - original_size=image_record["original_size"], - ) - masks = high_res_masks > self.mask_threshold - outputs.append( - { - "masks": masks, - "iou_predictions": iou_predictions, - "low_res_logits": low_res_masks, - "high_res_logits": high_res_masks, - } - ) - return outputs - - def forward( - self, - batched_input: List[Dict[str, Any]], - multimask_output: bool = False, - is_train: bool = False, - ) -> List[Dict[str, torch.Tensor]]: - """ - Predicts masks end-to-end from provided images and prompts. - If prompts are not known in advance, using SamPredictor is - recommended over calling the model directly. - - Arguments: - batched_input (list(dict)): A list over input images, each a - dictionary with the following keys. A prompt key can be - excluded if it is not present. - 'image': The image as a torch tensor in 3xHxW format, - already transformed for input to the model. - 'original_size': (tuple(int, int)) The original size of - the image before transformation, as (H, W). - 'point_coords': (torch.Tensor) Batched point prompts for - this image, with shape BxNx2. Already transformed to the - input frame of the model. - 'point_labels': (torch.Tensor) Batched labels for point prompts, - with shape BxN. - 'labels': (torch.Tensor) Batched labels for class-label prompt, - with shape BxN. - 'boxes': (torch.Tensor) Batched box inputs, with shape Bx4. - Already transformed to the input frame of the model. - 'mask_inputs': (torch.Tensor) Batched mask inputs to the model, - in the form Bx1xHxW. - multimask_output (bool): Whether the model should predict multiple - disambiguating masks, or return a single mask. - - Returns: - (list(dict)): A list over input images, where each element is - as dictionary with the following keys. - 'masks': (torch.Tensor) Batched binary mask predictions, - with shape BxCxHxW, where B is the number of input promts, - C is determiend by multimask_output, and (H, W) is the - original size of the image. - 'iou_predictions': (torch.Tensor) The model's predictions - of mask quality, in shape BxC. - 'low_res_logits': (torch.Tensor) Low resolution logits with - shape BxCxHxW, where H=W=256. Can be passed as mask input - to subsequent iterations of prediction. - """ - input_images = torch.stack([self.preprocess(x["image"]) for x in batched_input], dim=0) - image_embeddings = self.image_encoder(input_images) - - outputs = [] - for image_record, curr_embedding in zip(batched_input, image_embeddings): - if "point_coords" in image_record: - points = (image_record["point_coords"], image_record["point_labels"]) - else: - points = None - sparse_embeddings, dense_embeddings = self.prompt_encoder( - points=points, - boxes=image_record.get("boxes", None), - masks=image_record.get("mask_inputs", None), - class_labels=image_record.get("labels", None), - ) - low_res_masks, iou_predictions = self.mask_decoder( - image_embeddings=curr_embedding.unsqueeze(0), - image_pe=self.prompt_encoder.get_dense_pe(), - sparse_prompt_embeddings=sparse_embeddings, - dense_prompt_embeddings=dense_embeddings, - multimask_output=multimask_output, - ) - if is_train: - outputs.append( - { - "iou_predictions": iou_predictions, - "low_res_logits": low_res_masks, - } - ) - else: - high_res_masks = self.postprocess_masks( - low_res_masks, - # input_size=image_record["image"].shape[-2:], - original_size=image_record["original_size"], - ) - masks = high_res_masks > self.mask_threshold - outputs.append( - { - "masks": masks, - "iou_predictions": iou_predictions, - "low_res_logits": low_res_masks, - "high_res_logits": high_res_masks, - } - ) - return outputs - - def postprocess_masks( - self, - masks: torch.Tensor, - original_size: Tuple[int, ...], - ) -> torch.Tensor: - """ - Remove padding and upscale masks to the original image size. - - Arguments: - masks (torch.Tensor): Batched masks from the mask_decoder, - in BxCxHxW format. - input_size (tuple(int, int)): The size of the image input to the - model, in (H, W) format. Used to remove padding. - original_size (tuple(int, int)): The original size of the image - before resizing for input to the model, in (H, W) format. - - Returns: - (torch.Tensor): Batched masks in BxCxHxW format, where (H, W) - is given by original_size. - """ - # make it high resolution - masks = F.interpolate( - masks, - (self.image_encoder.img_size, self.image_encoder.img_size), - mode="bilinear", - align_corners=False, - ) - # resize it back to the longest dim (square image) - masks = F.interpolate(masks, max(original_size), mode="bilinear", align_corners=False) - # remove padding - masks = masks[..., : original_size[0], : original_size[1]] - return masks - - def preprocess(self, x: torch.Tensor, is_input=True) -> torch.Tensor: - """Normalize pixel values and pad to a square input.""" - if is_input: - if x.shape[0] == 1: - # Normalize colors map the values in [0,1] to [0,255] for input images and then using - # original pixel_mean and pixel_std to do normalization - x = (x * 255.0 - self.pixel_mean) / self.pixel_std - else: - # for other 2.5d data, we normalize each input slice - x = torch.cat( - [(x[i].unsqueeze(0) * 255.0 - self.pixel_mean) / self.pixel_std for i in range(x.shape[0])], dim=0 - ) - - # Pad image and make it a square image - h, w = x.shape[-2:] - # find the longest dim - target_length = max(h, w) - padh = target_length - h - padw = target_length - w - x = F.pad(x, (0, padw, 0, padh)) - if is_input: - # Resize it to self.image_encoder.img_size - x = F.interpolate( - x.unsqueeze(0), - (self.image_encoder.img_size, self.image_encoder.img_size), - mode="bilinear", - align_corners=False, - ).squeeze(0) - else: - # Resize it to self.image_encoder.img_size // 4 (for labels). the size is same as low-res logit - x = F.interpolate( - x.unsqueeze(0), (self.image_encoder.img_size // 4, self.image_encoder.img_size // 4), mode="nearest" - ).squeeze(0) - return x - - -def _build_vista2pt5d( - encoder_in_chans, - encoder_embed_dim, - encoder_depth, - encoder_num_heads, - encoder_global_attn_indexes, - checkpoint=None, - image_size=1024, - clip_class_label_prompt=False, - patch_embed_3d=False, -): - prompt_embed_dim = 256 - image_size = image_size - vit_patch_size = 16 - image_embedding_size = image_size // vit_patch_size - sam = Vista2pt5D( - image_encoder=VistaImageEncoderViT( - in_chans=encoder_in_chans, - depth=encoder_depth, - embed_dim=encoder_embed_dim, - img_size=image_size, - mlp_ratio=4, - norm_layer=partial(torch.nn.LayerNorm, eps=1e-6), - num_heads=encoder_num_heads, - patch_size=vit_patch_size, - qkv_bias=True, - use_rel_pos=True, - global_attn_indexes=encoder_global_attn_indexes, - window_size=14, - out_chans=prompt_embed_dim, - patch_embed_3d=patch_embed_3d, - ), - prompt_encoder=VistaPromptEncoder( - embed_dim=prompt_embed_dim, - image_embedding_size=(image_embedding_size, image_embedding_size), - input_image_size=(image_size, image_size), - mask_in_chans=16, - clip_class_label_prompt=clip_class_label_prompt, - ), - mask_decoder=MaskDecoder( - num_multimask_outputs=3, # TODO: only predict one binary mask - transformer=TwoWayTransformer( - depth=2, - embedding_dim=prompt_embed_dim, - mlp_dim=2048, - num_heads=8, - ), - transformer_dim=prompt_embed_dim, - iou_head_depth=3, - iou_head_hidden_dim=256, - ), - pixel_mean=[123.675, 116.28, 103.53], - pixel_std=[58.395, 57.12, 57.375], - ) - - if checkpoint is not None: - with open(checkpoint, "rb") as f: - state_dict = torch.load(f) - - if image_size == 1024: - # we try to use all pretrained weights - new_dict = state_dict - else: - new_dict = {} - for k, v in state_dict.items(): - # skip weights in position embedding and learned relative positional embeddings - # due to the change of input size - if ("pos_embed" in k and k.startswith("image_encoder")) or ( - "attn.rel_pos" in k and k.startswith("image_encoder") - ): - continue - else: - new_dict[k] = v - - if encoder_in_chans != 3: - new_dict.pop("image_encoder.patch_embed.proj.weight") - new_dict.pop("image_encoder.patch_embed.proj.bias") - - sam.load_state_dict(new_dict, strict=False) - print(f"Load {len(new_dict)} keys from checkpoint {checkpoint}, current model has {len(sam.state_dict())} keys") - - total_params = [] - image_encoder_params = [] - prompt_encoder_params = [] - mask_decoder_params = [] - for name, param in sam.named_parameters(): - n_param = param.numel() - total_params.append(n_param) - if name.startswith("image_encoder"): - image_encoder_params.append(n_param) - elif name.startswith("prompt_encoder"): - prompt_encoder_params.append(n_param) - elif name.startswith("mask_decoder"): - mask_decoder_params.append(n_param) - - print( - f"{sam.__class__.__name__} has {sum(total_params) * 1.e-6:.2f} M params, " - f"{sum(image_encoder_params) * 1.e-6:.2f} M params in image encoder," - f"{sum(prompt_encoder_params) * 1.e-6:.2f} M params in prompt encoder," - f"{sum(mask_decoder_params) * 1.e-6:.2f} M params in mask decoder." - ) - - total_trainable_params = sum(p.numel() if p.requires_grad else 0 for p in sam.parameters()) - print(f"{sam.__class__.__name__} has {total_trainable_params * 1.e-6:.2f} M trainable params.") - return sam - - -def build_vista2pt5d_vit_h( - checkpoint=None, image_size=1024, encoder_in_chans=3, clip_class_label_prompt=False, patch_embed_3d=False -): - return _build_vista2pt5d( - encoder_in_chans=encoder_in_chans, - encoder_embed_dim=1280, - encoder_depth=32, - encoder_num_heads=16, - encoder_global_attn_indexes=[7, 15, 23, 31], - checkpoint=checkpoint, - image_size=image_size, - clip_class_label_prompt=clip_class_label_prompt, - patch_embed_3d=patch_embed_3d, - ) - - -def build_vista2pt5d_vit_l( - checkpoint=None, image_size=1024, encoder_in_chans=3, clip_class_label_prompt=False, patch_embed_3d=False -): - return _build_vista2pt5d( - encoder_in_chans=encoder_in_chans, - encoder_embed_dim=1024, - encoder_depth=24, - encoder_num_heads=16, - encoder_global_attn_indexes=[5, 11, 17, 23], - checkpoint=checkpoint, - image_size=image_size, - clip_class_label_prompt=clip_class_label_prompt, - patch_embed_3d=patch_embed_3d, - ) - - -def build_vista2pt5d_vit_b( - checkpoint=None, image_size=1024, encoder_in_chans=3, clip_class_label_prompt=False, patch_embed_3d=False -): - return _build_vista2pt5d( - encoder_in_chans=encoder_in_chans, - encoder_embed_dim=768, - encoder_depth=12, - encoder_num_heads=12, - encoder_global_attn_indexes=[2, 5, 8, 11], - checkpoint=checkpoint, - image_size=image_size, - clip_class_label_prompt=clip_class_label_prompt, - patch_embed_3d=patch_embed_3d, - ) - - -sam_model_registry = { - "default": build_vista2pt5d_vit_h, - "vit_h": build_vista2pt5d_vit_h, - "vit_l": build_vista2pt5d_vit_l, - "vit_b": build_vista2pt5d_vit_b, -} - - -if __name__ == "__main__": - model = build_vista2pt5d_vit_b() - model.cuda() diff --git a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/__init__.py b/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/__init__.py deleted file mode 100644 index 718fdc3..0000000 --- a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/__init__.py +++ /dev/null @@ -1,15 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. - -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -from .automatic_mask_generator import SamAutomaticMaskGenerator -from .build_sam import ( - build_sam, - build_sam_vit_b, - build_sam_vit_h, - build_sam_vit_l, - sam_model_registry, -) -from .predictor import SamPredictor diff --git a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/automatic_mask_generator.py b/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/automatic_mask_generator.py deleted file mode 100644 index 2cd252d..0000000 --- a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/automatic_mask_generator.py +++ /dev/null @@ -1,368 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. - -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -from typing import Any, Dict, List, Optional, Tuple - -import numpy as np -import torch -from torchvision.ops.boxes import batched_nms, box_area # type: ignore - -from .modeling import Sam -from .predictor import SamPredictor -from .utils.amg import ( - MaskData, - area_from_rle, - batch_iterator, - batched_mask_to_box, - box_xyxy_to_xywh, - build_all_layer_point_grids, - calculate_stability_score, - coco_encode_rle, - generate_crop_boxes, - is_box_near_crop_edge, - mask_to_rle_pytorch, - remove_small_regions, - rle_to_mask, - uncrop_boxes_xyxy, - uncrop_masks, - uncrop_points, -) - - -class SamAutomaticMaskGenerator: - def __init__( - self, - model: Sam, - points_per_side: Optional[int] = 32, - points_per_batch: int = 64, - pred_iou_thresh: float = 0.88, - stability_score_thresh: float = 0.95, - stability_score_offset: float = 1.0, - box_nms_thresh: float = 0.7, - crop_n_layers: int = 0, - crop_nms_thresh: float = 0.7, - crop_overlap_ratio: float = 512 / 1500, - crop_n_points_downscale_factor: int = 1, - point_grids: Optional[List[np.ndarray]] = None, - min_mask_region_area: int = 0, - output_mode: str = "binary_mask", - ) -> None: - """ - Using a SAM model, generates masks for the entire image. - Generates a grid of point prompts over the image, then filters - low quality and duplicate masks. The default settings are chosen - for SAM with a ViT-H backbone. - - Arguments: - model (Sam): The SAM model to use for mask prediction. - points_per_side (int or None): The number of points to be sampled - along one side of the image. The total number of points is - points_per_side**2. If None, 'point_grids' must provide explicit - point sampling. - points_per_batch (int): Sets the number of points run simultaneously - by the model. Higher numbers may be faster but use more GPU memory. - pred_iou_thresh (float): A filtering threshold in [0,1], using the - model's predicted mask quality. - stability_score_thresh (float): A filtering threshold in [0,1], using - the stability of the mask under changes to the cutoff used to binarize - the model's mask predictions. - stability_score_offset (float): The amount to shift the cutoff when - calculated the stability score. - box_nms_thresh (float): The box IoU cutoff used by non-maximal - suppression to filter duplicate masks. - crops_n_layers (int): If >0, mask prediction will be run again on - crops of the image. Sets the number of layers to run, where each - layer has 2**i_layer number of image crops. - crops_nms_thresh (float): The box IoU cutoff used by non-maximal - suppression to filter duplicate masks between different crops. - crop_overlap_ratio (float): Sets the degree to which crops overlap. - In the first crop layer, crops will overlap by this fraction of - the image length. Later layers with more crops scale down this overlap. - crop_n_points_downscale_factor (int): The number of points-per-side - sampled in layer n is scaled down by crop_n_points_downscale_factor**n. - point_grids (list(np.ndarray) or None): A list over explicit grids - of points used for sampling, normalized to [0,1]. The nth grid in the - list is used in the nth crop layer. Exclusive with points_per_side. - min_mask_region_area (int): If >0, postprocessing will be applied - to remove disconnected regions and holes in masks with area smaller - than min_mask_region_area. Requires opencv. - output_mode (str): The form masks are returned in. Can be 'binary_mask', - 'uncompressed_rle', or 'coco_rle'. 'coco_rle' requires pycocotools. - For large resolutions, 'binary_mask' may consume large amounts of - memory. - """ - - assert (points_per_side is None) != ( - point_grids is None - ), "Exactly one of points_per_side or point_grid must be provided." - if points_per_side is not None: - self.point_grids = build_all_layer_point_grids( - points_per_side, - crop_n_layers, - crop_n_points_downscale_factor, - ) - elif point_grids is not None: - self.point_grids = point_grids - else: - raise ValueError("Can't have both points_per_side and point_grid be None.") - - assert output_mode in [ - "binary_mask", - "uncompressed_rle", - "coco_rle", - ], f"Unknown output_mode {output_mode}." - if output_mode == "coco_rle": - from pycocotools import mask as mask_utils # type: ignore # noqa: F401 - - if min_mask_region_area > 0: - import cv2 # type: ignore # noqa: F401 - - self.predictor = SamPredictor(model) - self.points_per_batch = points_per_batch - self.pred_iou_thresh = pred_iou_thresh - self.stability_score_thresh = stability_score_thresh - self.stability_score_offset = stability_score_offset - self.box_nms_thresh = box_nms_thresh - self.crop_n_layers = crop_n_layers - self.crop_nms_thresh = crop_nms_thresh - self.crop_overlap_ratio = crop_overlap_ratio - self.crop_n_points_downscale_factor = crop_n_points_downscale_factor - self.min_mask_region_area = min_mask_region_area - self.output_mode = output_mode - - @torch.no_grad() - def generate(self, image: np.ndarray) -> List[Dict[str, Any]]: - """ - Generates masks for the given image. - - Arguments: - image (np.ndarray): The image to generate masks for, in HWC uint8 format. - - Returns: - list(dict(str, any)): A list over records for masks. Each record is - a dict containing the following keys: - segmentation (dict(str, any) or np.ndarray): The mask. If - output_mode='binary_mask', is an array of shape HW. Otherwise, - is a dictionary containing the RLE. - bbox (list(float)): The box around the mask, in XYWH format. - area (int): The area in pixels of the mask. - predicted_iou (float): The model's own prediction of the mask's - quality. This is filtered by the pred_iou_thresh parameter. - point_coords (list(list(float))): The point coordinates input - to the model to generate this mask. - stability_score (float): A measure of the mask's quality. This - is filtered on using the stability_score_thresh parameter. - crop_box (list(float)): The crop of the image used to generate - the mask, given in XYWH format. - """ - - # Generate masks - mask_data = self._generate_masks(image) - - # Filter small disconnected regions and holes in masks - if self.min_mask_region_area > 0: - mask_data = self.postprocess_small_regions( - mask_data, - self.min_mask_region_area, - max(self.box_nms_thresh, self.crop_nms_thresh), - ) - - # Encode masks - if self.output_mode == "coco_rle": - mask_data["segmentations"] = [coco_encode_rle(rle) for rle in mask_data["rles"]] - elif self.output_mode == "binary_mask": - mask_data["segmentations"] = [rle_to_mask(rle) for rle in mask_data["rles"]] - else: - mask_data["segmentations"] = mask_data["rles"] - - # Write mask records - curr_anns = [] - for idx in range(len(mask_data["segmentations"])): - ann = { - "segmentation": mask_data["segmentations"][idx], - "area": area_from_rle(mask_data["rles"][idx]), - "bbox": box_xyxy_to_xywh(mask_data["boxes"][idx]).tolist(), - "predicted_iou": mask_data["iou_preds"][idx].item(), - "point_coords": [mask_data["points"][idx].tolist()], - "stability_score": mask_data["stability_score"][idx].item(), - "crop_box": box_xyxy_to_xywh(mask_data["crop_boxes"][idx]).tolist(), - } - curr_anns.append(ann) - - return curr_anns - - def _generate_masks(self, image: np.ndarray) -> MaskData: - orig_size = image.shape[:2] - crop_boxes, layer_idxs = generate_crop_boxes(orig_size, self.crop_n_layers, self.crop_overlap_ratio) - - # Iterate over image crops - data = MaskData() - for crop_box, layer_idx in zip(crop_boxes, layer_idxs): - crop_data = self._process_crop(image, crop_box, layer_idx, orig_size) - data.cat(crop_data) - - # Remove duplicate masks between crops - if len(crop_boxes) > 1: - # Prefer masks from smaller crops - scores = 1 / box_area(data["crop_boxes"]) - scores = scores.to(data["boxes"].device) - keep_by_nms = batched_nms( - data["boxes"].float(), - scores, - torch.zeros(len(data["boxes"])), # categories - iou_threshold=self.crop_nms_thresh, - ) - data.filter(keep_by_nms) - - data.to_numpy() - return data - - def _process_crop( - self, - image: np.ndarray, - crop_box: List[int], - crop_layer_idx: int, - orig_size: Tuple[int, ...], - ) -> MaskData: - # Crop the image and calculate embeddings - x0, y0, x1, y1 = crop_box - cropped_im = image[y0:y1, x0:x1, :] - cropped_im_size = cropped_im.shape[:2] - self.predictor.set_image(cropped_im) - - # Get points for this crop - points_scale = np.array(cropped_im_size)[None, ::-1] - points_for_image = self.point_grids[crop_layer_idx] * points_scale - - # Generate masks for this crop in batches - data = MaskData() - for (points,) in batch_iterator(self.points_per_batch, points_for_image): - batch_data = self._process_batch(points, cropped_im_size, crop_box, orig_size) - data.cat(batch_data) - del batch_data - self.predictor.reset_image() - - # Remove duplicates within this crop. - keep_by_nms = batched_nms( - data["boxes"].float(), - data["iou_preds"], - torch.zeros(len(data["boxes"])), # categories - iou_threshold=self.box_nms_thresh, - ) - data.filter(keep_by_nms) - - # Return to the original image frame - data["boxes"] = uncrop_boxes_xyxy(data["boxes"], crop_box) - data["points"] = uncrop_points(data["points"], crop_box) - data["crop_boxes"] = torch.tensor([crop_box for _ in range(len(data["rles"]))]) - - return data - - def _process_batch( - self, - points: np.ndarray, - im_size: Tuple[int, ...], - crop_box: List[int], - orig_size: Tuple[int, ...], - ) -> MaskData: - orig_h, orig_w = orig_size - - # Run model on this batch - transformed_points = self.predictor.transform.apply_coords(points, im_size) - in_points = torch.as_tensor(transformed_points, device=self.predictor.device) - in_labels = torch.ones(in_points.shape[0], dtype=torch.int, device=in_points.device) - masks, iou_preds, _ = self.predictor.predict_torch( - in_points[:, None, :], - in_labels[:, None], - multimask_output=True, - return_logits=True, - ) - - # Serialize predictions and store in MaskData - data = MaskData( - masks=masks.flatten(0, 1), - iou_preds=iou_preds.flatten(0, 1), - points=torch.as_tensor(points.repeat(masks.shape[1], axis=0)), - ) - del masks - - # Filter by predicted IoU - if self.pred_iou_thresh > 0.0: - keep_mask = data["iou_preds"] > self.pred_iou_thresh - data.filter(keep_mask) - - # Calculate stability score - data["stability_score"] = calculate_stability_score( - data["masks"], self.predictor.model.mask_threshold, self.stability_score_offset - ) - if self.stability_score_thresh > 0.0: - keep_mask = data["stability_score"] >= self.stability_score_thresh - data.filter(keep_mask) - - # Threshold masks and calculate boxes - data["masks"] = data["masks"] > self.predictor.model.mask_threshold - data["boxes"] = batched_mask_to_box(data["masks"]) - - # Filter boxes that touch crop boundaries - keep_mask = ~is_box_near_crop_edge(data["boxes"], crop_box, [0, 0, orig_w, orig_h]) - if not torch.all(keep_mask): - data.filter(keep_mask) - - # Compress to RLE - data["masks"] = uncrop_masks(data["masks"], crop_box, orig_h, orig_w) - data["rles"] = mask_to_rle_pytorch(data["masks"]) - del data["masks"] - - return data - - @staticmethod - def postprocess_small_regions(mask_data: MaskData, min_area: int, nms_thresh: float) -> MaskData: - """ - Removes small disconnected regions and holes in masks, then reruns - box NMS to remove any new duplicates. - - Edits mask_data in place. - - Requires open-cv as a dependency. - """ - if len(mask_data["rles"]) == 0: - return mask_data - - # Filter small disconnected regions and holes - new_masks = [] - scores = [] - for rle in mask_data["rles"]: - mask = rle_to_mask(rle) - - mask, changed = remove_small_regions(mask, min_area, mode="holes") - unchanged = not changed - mask, changed = remove_small_regions(mask, min_area, mode="islands") - unchanged = unchanged and not changed - - new_masks.append(torch.as_tensor(mask).unsqueeze(0)) - # Give score=0 to changed masks and score=1 to unchanged masks - # so NMS will prefer ones that didn't need postprocessing - scores.append(float(unchanged)) - - # Recalculate boxes and remove any new duplicates - masks = torch.cat(new_masks, dim=0) - boxes = batched_mask_to_box(masks) - keep_by_nms = batched_nms( - boxes.float(), - torch.as_tensor(scores), - torch.zeros(len(boxes)), # categories - iou_threshold=nms_thresh, - ) - - # Only recalculate RLEs for masks that have changed - for i_mask in keep_by_nms: - if scores[i_mask] == 0.0: - mask_torch = masks[i_mask].unsqueeze(0) - mask_data["rles"][i_mask] = mask_to_rle_pytorch(mask_torch)[0] - mask_data["boxes"][i_mask] = boxes[i_mask] # update res directly - mask_data.filter(keep_by_nms) - - return mask_data diff --git a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/build_sam.py b/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/build_sam.py deleted file mode 100644 index fef9980..0000000 --- a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/build_sam.py +++ /dev/null @@ -1,113 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. - -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -from functools import partial - -import torch - -from .modeling import ( - ImageEncoderViT, - MaskDecoder, - PromptEncoder, - Sam, - TwoWayTransformer, -) - - -def build_sam_vit_h(checkpoint=None): - return _build_sam( - encoder_embed_dim=1280, - encoder_depth=32, - encoder_num_heads=16, - encoder_global_attn_indexes=[7, 15, 23, 31], - checkpoint=checkpoint, - ) - - -build_sam = build_sam_vit_h - - -def build_sam_vit_l(checkpoint=None): - return _build_sam( - encoder_embed_dim=1024, - encoder_depth=24, - encoder_num_heads=16, - encoder_global_attn_indexes=[5, 11, 17, 23], - checkpoint=checkpoint, - ) - - -def build_sam_vit_b(checkpoint=None): - return _build_sam( - encoder_embed_dim=768, - encoder_depth=12, - encoder_num_heads=12, - encoder_global_attn_indexes=[2, 5, 8, 11], - checkpoint=checkpoint, - ) - - -sam_model_registry = { - "default": build_sam, - "vit_h": build_sam, - "vit_l": build_sam_vit_l, - "vit_b": build_sam_vit_b, -} - - -def _build_sam( - encoder_embed_dim, - encoder_depth, - encoder_num_heads, - encoder_global_attn_indexes, - checkpoint=None, -): - prompt_embed_dim = 256 - image_size = 1024 - vit_patch_size = 16 - image_embedding_size = image_size // vit_patch_size - sam = Sam( - image_encoder=ImageEncoderViT( - depth=encoder_depth, - embed_dim=encoder_embed_dim, - img_size=image_size, - mlp_ratio=4, - norm_layer=partial(torch.nn.LayerNorm, eps=1e-6), - num_heads=encoder_num_heads, - patch_size=vit_patch_size, - qkv_bias=True, - use_rel_pos=True, - global_attn_indexes=encoder_global_attn_indexes, - window_size=14, - out_chans=prompt_embed_dim, - ), - prompt_encoder=PromptEncoder( - embed_dim=prompt_embed_dim, - image_embedding_size=(image_embedding_size, image_embedding_size), - input_image_size=(image_size, image_size), - mask_in_chans=16, - ), - mask_decoder=MaskDecoder( - num_multimask_outputs=3, - transformer=TwoWayTransformer( - depth=2, - embedding_dim=prompt_embed_dim, - mlp_dim=2048, - num_heads=8, - ), - transformer_dim=prompt_embed_dim, - iou_head_depth=3, - iou_head_hidden_dim=256, - ), - pixel_mean=[123.675, 116.28, 103.53], - pixel_std=[58.395, 57.12, 57.375], - ) - sam.eval() - if checkpoint is not None: - with open(checkpoint, "rb") as f: - state_dict = torch.load(f) - sam.load_state_dict(state_dict) - return sam diff --git a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/modeling/__init__.py b/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/modeling/__init__.py deleted file mode 100644 index 088af38..0000000 --- a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/modeling/__init__.py +++ /dev/null @@ -1,11 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. - -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -from .image_encoder import ImageEncoderViT -from .mask_decoder import MaskDecoder -from .prompt_encoder import PromptEncoder -from .sam import Sam -from .transformer import TwoWayTransformer diff --git a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/modeling/common.py b/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/modeling/common.py deleted file mode 100644 index e872781..0000000 --- a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/modeling/common.py +++ /dev/null @@ -1,43 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. - -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -from typing import Type - -import torch -import torch.nn as nn - - -class MLPBlock(nn.Module): - def __init__( - self, - embedding_dim: int, - mlp_dim: int, - act: Type[nn.Module] = nn.GELU, - ) -> None: - super().__init__() - self.lin1 = nn.Linear(embedding_dim, mlp_dim) - self.lin2 = nn.Linear(mlp_dim, embedding_dim) - self.act = act() - - def forward(self, x: torch.Tensor) -> torch.Tensor: - return self.lin2(self.act(self.lin1(x))) - - -# From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa -# Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa -class LayerNorm2d(nn.Module): - def __init__(self, num_channels: int, eps: float = 1e-6) -> None: - super().__init__() - self.weight = nn.Parameter(torch.ones(num_channels)) - self.bias = nn.Parameter(torch.zeros(num_channels)) - self.eps = eps - - def forward(self, x: torch.Tensor) -> torch.Tensor: - u = x.mean(1, keepdim=True) - s = (x - u).pow(2).mean(1, keepdim=True) - x = (x - u) / torch.sqrt(s + self.eps) - x = self.weight[:, None, None] * x + self.bias[:, None, None] - return x diff --git a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/modeling/image_encoder.py b/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/modeling/image_encoder.py deleted file mode 100644 index 4e4b63b..0000000 --- a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/modeling/image_encoder.py +++ /dev/null @@ -1,440 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. - -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -from typing import Optional, Tuple, Type - -import torch -import torch.nn as nn -import torch.nn.functional as F - -from .common import LayerNorm2d, MLPBlock - - -# This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py # noqa -class ImageEncoderViT(nn.Module): - def __init__( - self, - img_size: int = 1024, - patch_size: int = 16, - in_chans: int = 3, - embed_dim: int = 768, - depth: int = 12, - num_heads: int = 12, - mlp_ratio: float = 4.0, - out_chans: int = 256, - qkv_bias: bool = True, - norm_layer: Type[nn.Module] = nn.LayerNorm, - act_layer: Type[nn.Module] = nn.GELU, - use_abs_pos: bool = True, - use_rel_pos: bool = False, - rel_pos_zero_init: bool = True, - window_size: int = 0, - global_attn_indexes: Tuple[int, ...] = (), - ) -> None: - """ - Args: - img_size (int): Input image size. - patch_size (int): Patch size. - in_chans (int): Number of input image channels. - embed_dim (int): Patch embedding dimension. - depth (int): Depth of ViT. - num_heads (int): Number of attention heads in each ViT block. - mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. - qkv_bias (bool): If True, add a learnable bias to query, key, value. - norm_layer (nn.Module): Normalization layer. - act_layer (nn.Module): Activation layer. - use_abs_pos (bool): If True, use absolute positional embeddings. - use_rel_pos (bool): If True, add relative positional embeddings to the attention map. - rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. - window_size (int): Window size for window attention blocks. - global_attn_indexes (list): Indexes for blocks using global attention. - """ - super().__init__() - self.img_size = img_size - - # if in_chans == 3: - # self.patch_embed = PatchEmbed( - # kernel_size=(patch_size, patch_size), - # stride=(patch_size, patch_size), - # in_chans=in_chans, - # embed_dim=embed_dim, - # ) - # else: - # self.patch_embed = PatchEmbed2pt5D( - # kernel_size=(patch_size, patch_size, in_chans//3), - # stride=(patch_size, patch_size, in_chans//3), - # in_chans=3, - # embed_dim=embed_dim, - # ) - self.patch_embed = PatchEmbed( - kernel_size=(patch_size, patch_size), - stride=(patch_size, patch_size), - in_chans=in_chans, - embed_dim=embed_dim, - ) - - self.pos_embed: Optional[nn.Parameter] = None - if use_abs_pos: - # Initialize absolute positional embedding with pretrain image size. - self.pos_embed = nn.Parameter(torch.zeros(1, img_size // patch_size, img_size // patch_size, embed_dim)) - - self.blocks = nn.ModuleList() - for i in range(depth): - block = Block( - dim=embed_dim, - num_heads=num_heads, - mlp_ratio=mlp_ratio, - qkv_bias=qkv_bias, - norm_layer=norm_layer, - act_layer=act_layer, - use_rel_pos=use_rel_pos, - rel_pos_zero_init=rel_pos_zero_init, - window_size=window_size if i not in global_attn_indexes else 0, - input_size=(img_size // patch_size, img_size // patch_size), - ) - self.blocks.append(block) - - self.neck = nn.Sequential( - nn.Conv2d( - embed_dim, - out_chans, - kernel_size=1, - bias=False, - ), - LayerNorm2d(out_chans), - nn.Conv2d( - out_chans, - out_chans, - kernel_size=3, - padding=1, - bias=False, - ), - LayerNorm2d(out_chans), - ) - - def forward(self, x: torch.Tensor) -> torch.Tensor: - x = self.patch_embed(x) - if self.pos_embed is not None: - x = x + self.pos_embed - - for blk in self.blocks: - x = blk(x) - - x = self.neck(x.permute(0, 3, 1, 2)) - - return x - - -class Block(nn.Module): - """Transformer blocks with support of window attention and residual propagation blocks""" - - def __init__( - self, - dim: int, - num_heads: int, - mlp_ratio: float = 4.0, - qkv_bias: bool = True, - norm_layer: Type[nn.Module] = nn.LayerNorm, - act_layer: Type[nn.Module] = nn.GELU, - use_rel_pos: bool = False, - rel_pos_zero_init: bool = True, - window_size: int = 0, - input_size: Optional[Tuple[int, int]] = None, - ) -> None: - """ - Args: - dim (int): Number of input channels. - num_heads (int): Number of attention heads in each ViT block. - mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. - qkv_bias (bool): If True, add a learnable bias to query, key, value. - norm_layer (nn.Module): Normalization layer. - act_layer (nn.Module): Activation layer. - use_rel_pos (bool): If True, add relative positional embeddings to the attention map. - rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. - window_size (int): Window size for window attention blocks. If it equals 0, then - use global attention. - input_size (int or None): Input resolution for calculating the relative positional - parameter size. - """ - super().__init__() - self.norm1 = norm_layer(dim) - self.attn = Attention( - dim, - num_heads=num_heads, - qkv_bias=qkv_bias, - use_rel_pos=use_rel_pos, - rel_pos_zero_init=rel_pos_zero_init, - input_size=input_size if window_size == 0 else (window_size, window_size), - ) - - self.norm2 = norm_layer(dim) - self.mlp = MLPBlock(embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer) - - self.window_size = window_size - - def forward(self, x: torch.Tensor) -> torch.Tensor: - shortcut = x - x = self.norm1(x) - # Window partition - if self.window_size > 0: - H, W = x.shape[1], x.shape[2] - x, pad_hw = window_partition(x, self.window_size) - - x = self.attn(x) - # Reverse window partition - if self.window_size > 0: - x = window_unpartition(x, self.window_size, pad_hw, (H, W)) - - x = shortcut + x - x = x + self.mlp(self.norm2(x)) - - return x - - -class Attention(nn.Module): - """Multi-head Attention block with relative position embeddings.""" - - def __init__( - self, - dim: int, - num_heads: int = 8, - qkv_bias: bool = True, - use_rel_pos: bool = False, - rel_pos_zero_init: bool = True, - input_size: Optional[Tuple[int, int]] = None, - ) -> None: - """ - Args: - dim (int): Number of input channels. - num_heads (int): Number of attention heads. - qkv_bias (bool: If True, add a learnable bias to query, key, value. - rel_pos (bool): If True, add relative positional embeddings to the attention map. - rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. - input_size (int or None): Input resolution for calculating the relative positional - parameter size. - """ - super().__init__() - self.num_heads = num_heads - head_dim = dim // num_heads - self.scale = head_dim**-0.5 - - self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) - self.proj = nn.Linear(dim, dim) - - self.use_rel_pos = use_rel_pos - if self.use_rel_pos: - assert input_size is not None, "Input size must be provided if using relative positional encoding." - # initialize relative positional embeddings - self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim)) - self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim)) - - def forward(self, x: torch.Tensor) -> torch.Tensor: - B, H, W, _ = x.shape - # qkv with shape (3, B, nHead, H * W, C) - qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) - # q, k, v with shape (B * nHead, H * W, C) - q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0) - - attn = (q * self.scale) @ k.transpose(-2, -1) - - if self.use_rel_pos: - attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W)) - - attn = attn.softmax(dim=-1) - x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1) - x = self.proj(x) - - return x - - -def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]: - """ - Partition into non-overlapping windows with padding if needed. - Args: - x (tensor): input tokens with [B, H, W, C]. - window_size (int): window size. - - Returns: - windows: windows after partition with [B * num_windows, window_size, window_size, C]. - (Hp, Wp): padded height and width before partition - """ - B, H, W, C = x.shape - - pad_h = (window_size - H % window_size) % window_size - pad_w = (window_size - W % window_size) % window_size - if pad_h > 0 or pad_w > 0: - x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h)) - Hp, Wp = H + pad_h, W + pad_w - - x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C) - windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) - return windows, (Hp, Wp) - - -def window_unpartition( - windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int], hw: Tuple[int, int] -) -> torch.Tensor: - """ - Window unpartition into original sequences and removing padding. - Args: - x (tensor): input tokens with [B * num_windows, window_size, window_size, C]. - window_size (int): window size. - pad_hw (Tuple): padded height and width (Hp, Wp). - hw (Tuple): original height and width (H, W) before padding. - - Returns: - x: unpartitioned sequences with [B, H, W, C]. - """ - Hp, Wp = pad_hw - H, W = hw - B = windows.shape[0] // (Hp * Wp // window_size // window_size) - x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1) - x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1) - - if Hp > H or Wp > W: - x = x[:, :H, :W, :].contiguous() - return x - - -def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor: - """ - Get relative positional embeddings according to the relative positions of - query and key sizes. - Args: - q_size (int): size of query q. - k_size (int): size of key k. - rel_pos (Tensor): relative position embeddings (L, C). - - Returns: - Extracted positional embeddings according to relative positions. - """ - max_rel_dist = int(2 * max(q_size, k_size) - 1) - # Interpolate rel pos if needed. - if rel_pos.shape[0] != max_rel_dist: - # Interpolate rel pos. - rel_pos_resized = F.interpolate( - rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1), - size=max_rel_dist, - mode="linear", - ) - rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0) - else: - rel_pos_resized = rel_pos - - # Scale the coords with short length if shapes for q and k are different. - q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0) - k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0) - relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0) - - return rel_pos_resized[relative_coords.long()] - - -def add_decomposed_rel_pos( - attn: torch.Tensor, - q: torch.Tensor, - rel_pos_h: torch.Tensor, - rel_pos_w: torch.Tensor, - q_size: Tuple[int, int], - k_size: Tuple[int, int], -) -> torch.Tensor: - """ - Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`. - https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950 - Args: - attn (Tensor): attention map. - q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C). - rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis. - rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis. - q_size (Tuple): spatial sequence size of query q with (q_h, q_w). - k_size (Tuple): spatial sequence size of key k with (k_h, k_w). - - Returns: - attn (Tensor): attention map with added relative positional embeddings. - """ - q_h, q_w = q_size - k_h, k_w = k_size - Rh = get_rel_pos(q_h, k_h, rel_pos_h) - Rw = get_rel_pos(q_w, k_w, rel_pos_w) - - B, _, dim = q.shape - r_q = q.reshape(B, q_h, q_w, dim) - rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh) - rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw) - - attn = (attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]).view( - B, q_h * q_w, k_h * k_w - ) - - return attn - - -class PatchEmbed(nn.Module): - """ - Image to Patch Embedding. - """ - - def __init__( - self, - kernel_size: Tuple[int, int] = (16, 16), - stride: Tuple[int, int] = (16, 16), - padding: Tuple[int, int] = (0, 0), - in_chans: int = 3, - embed_dim: int = 768, - ) -> None: - """ - Args: - kernel_size (Tuple): kernel size of the projection layer. - stride (Tuple): stride of the projection layer. - padding (Tuple): padding size of the projection layer. - in_chans (int): Number of input image channels. - embed_dim (int): embed_dim (int): Patch embedding dimension. - """ - super().__init__() - - self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding) - - def forward(self, x: torch.Tensor) -> torch.Tensor: - x = self.proj(x) - # B C H W -> B H W C - x = x.permute(0, 2, 3, 1) - return x - - -class PatchEmbed2pt5D(nn.Module): - """ - Image to Patch Embedding. - """ - - def __init__( - self, - kernel_size: Tuple[int, int, int] = (16, 16, 1), - stride: Tuple[int, int, int] = (16, 16, 1), - padding: Tuple[int, int, int] = (0, 0, 0), - in_chans: int = 3, - embed_dim: int = 768, - ) -> None: - """ - Args: - kernel_size (Tuple): kernel size of the projection layer. - stride (Tuple): stride of the projection layer. - padding (Tuple): padding size of the projection layer. - in_chans (int): Number of input image channels. - embed_dim (int): embed_dim (int): Patch embedding dimension. - """ - super().__init__() - - self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding) - - def forward(self, x: torch.Tensor) -> torch.Tensor: - # got restore RGB channel dim and the depth dim - c = x.shape[1] - x = torch.stack(x.chunk(c // 3, dim=1), dim=-1) - x = self.proj(x) - # remove dummy depth dim to make it 2d - x = x.squeeze(-1) - # B C H W -> B H W C - x = x.permute(0, 2, 3, 1) - return x diff --git a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/modeling/mask_decoder.py b/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/modeling/mask_decoder.py deleted file mode 100644 index dfacfe5..0000000 --- a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/modeling/mask_decoder.py +++ /dev/null @@ -1,170 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. - -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -from typing import List, Tuple, Type - -import torch -from torch import nn -from torch.nn import functional as F - -from .common import LayerNorm2d - - -class MaskDecoder(nn.Module): - def __init__( - self, - *, - transformer_dim: int, - transformer: nn.Module, - num_multimask_outputs: int = 3, - activation: Type[nn.Module] = nn.GELU, - iou_head_depth: int = 3, - iou_head_hidden_dim: int = 256, - ) -> None: - """ - Predicts masks given an image and prompt embeddings, using a - tranformer architecture. - - Arguments: - transformer_dim (int): the channel dimension of the transformer - transformer (nn.Module): the transformer used to predict masks - num_multimask_outputs (int): the number of masks to predict - when disambiguating masks - activation (nn.Module): the type of activation to use when - upscaling masks - iou_head_depth (int): the depth of the MLP used to predict - mask quality - iou_head_hidden_dim (int): the hidden dimension of the MLP - used to predict mask quality - """ - super().__init__() - self.transformer_dim = transformer_dim - self.transformer = transformer - - self.num_multimask_outputs = num_multimask_outputs - - self.iou_token = nn.Embedding(1, transformer_dim) - self.num_mask_tokens = num_multimask_outputs + 1 - self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim) - - self.output_upscaling = nn.Sequential( - nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2), - LayerNorm2d(transformer_dim // 4), - activation(), - nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2), - activation(), - ) - self.output_hypernetworks_mlps = nn.ModuleList( - [MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) for i in range(self.num_mask_tokens)] - ) - - self.iou_prediction_head = MLP(transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth) - - def forward( - self, - image_embeddings: torch.Tensor, - image_pe: torch.Tensor, - sparse_prompt_embeddings: torch.Tensor, - dense_prompt_embeddings: torch.Tensor, - multimask_output: bool, - ) -> Tuple[torch.Tensor, torch.Tensor]: - """ - Predict masks given image and prompt embeddings. - - Arguments: - image_embeddings (torch.Tensor): the embeddings from the image encoder - image_pe (torch.Tensor): positional encoding with the shape of image_embeddings - sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes - dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs - multimask_output (bool): Whether to return multiple masks or a single - mask. - - Returns: - torch.Tensor: batched predicted masks - torch.Tensor: batched predictions of mask quality - """ - masks, iou_pred = self.predict_masks( - image_embeddings=image_embeddings, - image_pe=image_pe, - sparse_prompt_embeddings=sparse_prompt_embeddings, - dense_prompt_embeddings=dense_prompt_embeddings, - ) - - # Select the correct mask or masks for output - if multimask_output: - mask_slice = slice(1, None) - else: - mask_slice = slice(0, 1) - masks = masks[:, mask_slice, :, :] - iou_pred = iou_pred[:, mask_slice] - - # Prepare output - return masks, iou_pred - - def predict_masks( - self, - image_embeddings: torch.Tensor, - image_pe: torch.Tensor, - sparse_prompt_embeddings: torch.Tensor, - dense_prompt_embeddings: torch.Tensor, - ) -> Tuple[torch.Tensor, torch.Tensor]: - """Predicts masks. See 'forward' for more details.""" - # Concatenate output tokens - output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0) - output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1) - tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1) - - # Expand per-image data in batch direction to be per-mask - src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0) - src = src + dense_prompt_embeddings - pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0) - b, c, h, w = src.shape - - # Run the transformer - hs, src = self.transformer(src, pos_src, tokens) - iou_token_out = hs[:, 0, :] - mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :] - - # Upscale mask embeddings and predict masks using the mask tokens - src = src.transpose(1, 2).view(b, c, h, w) - upscaled_embedding = self.output_upscaling(src) - hyper_in_list: List[torch.Tensor] = [] - for i in range(self.num_mask_tokens): - hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :])) - hyper_in = torch.stack(hyper_in_list, dim=1) - b, c, h, w = upscaled_embedding.shape - - masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w) - - # Generate mask quality predictions - iou_pred = self.iou_prediction_head(iou_token_out) - - return masks, iou_pred - - -# Lightly adapted from -# https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa -class MLP(nn.Module): - def __init__( - self, - input_dim: int, - hidden_dim: int, - output_dim: int, - num_layers: int, - sigmoid_output: bool = False, - ) -> None: - super().__init__() - self.num_layers = num_layers - h = [hidden_dim] * (num_layers - 1) - self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) - self.sigmoid_output = sigmoid_output - - def forward(self, x): - for i, layer in enumerate(self.layers): - x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) - if self.sigmoid_output: - x = F.sigmoid(x) - return x diff --git a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/modeling/prompt_encoder.py b/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/modeling/prompt_encoder.py deleted file mode 100644 index 7a7da9a..0000000 --- a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/modeling/prompt_encoder.py +++ /dev/null @@ -1,239 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. - -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -from typing import Any, Optional, Tuple, Type - -import numpy as np -import torch -from torch import nn - -from .common import LayerNorm2d - - -class PromptEncoder(nn.Module): - def __init__( - self, - embed_dim: int, - image_embedding_size: Tuple[int, int], - input_image_size: Tuple[int, int], - mask_in_chans: int, - activation: Type[nn.Module] = nn.GELU, - n_classes: int = 512, - ) -> None: - """ - Encodes prompts for input to SAM's mask decoder. - - Arguments: - embed_dim (int): The prompts' embedding dimension - image_embedding_size (tuple(int, int)): The spatial size of the - image embedding, as (H, W). - input_image_size (int): The padded size of the image as input - to the image encoder, as (H, W). - mask_in_chans (int): The number of hidden channels used for - encoding input masks. - activation (nn.Module): The activation to use when encoding - input masks. - n_classes (int): The number of pre-defined classes. - """ - super().__init__() - self.embed_dim = embed_dim - self.input_image_size = input_image_size - self.image_embedding_size = image_embedding_size - self.pe_layer = PositionEmbeddingRandom(embed_dim // 2) - - self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners - point_embeddings = [nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings)] - self.point_embeddings = nn.ModuleList(point_embeddings) - self.not_a_point_embed = nn.Embedding(1, embed_dim) - - self.mask_input_size = (4 * image_embedding_size[0], 4 * image_embedding_size[1]) - self.mask_downscaling = nn.Sequential( - nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2), - LayerNorm2d(mask_in_chans // 4), - activation(), - nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2), - LayerNorm2d(mask_in_chans), - activation(), - nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1), - ) - self.no_mask_embed = nn.Embedding(1, embed_dim) - - # Add support for onehot vector embedding for pre-defined classes - self.label_embeddings = nn.Embedding(n_classes, embed_dim) - self.no_label_embed = nn.Embedding(1, embed_dim) - - def get_dense_pe(self) -> torch.Tensor: - """ - Returns the positional encoding used to encode point prompts, - applied to a dense set of points the shape of the image encoding. - - Returns: - torch.Tensor: Positional encoding with shape - 1x(embed_dim)x(embedding_h)x(embedding_w) - """ - return self.pe_layer(self.image_embedding_size).unsqueeze(0) - - def _embed_points( - self, - points: torch.Tensor, - labels: torch.Tensor, - pad: bool, - ) -> torch.Tensor: - """Embeds point prompts.""" - points = points + 0.5 # Shift to center of pixel - if pad: - padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device) - padding_label = -torch.ones((labels.shape[0], 1), device=labels.device) - points = torch.cat([points, padding_point], dim=1) - labels = torch.cat([labels, padding_label], dim=1) - point_embedding = self.pe_layer.forward_with_coords(points, self.input_image_size) - point_embedding[labels == -1] = 0.0 - point_embedding[labels == -1] += self.not_a_point_embed.weight - point_embedding[labels == 0] += self.point_embeddings[0].weight - point_embedding[labels == 1] += self.point_embeddings[1].weight - return point_embedding - - def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor: - """Embeds box prompts.""" - boxes = boxes + 0.5 # Shift to center of pixel - coords = boxes.reshape(-1, 2, 2) - corner_embedding = self.pe_layer.forward_with_coords(coords, self.input_image_size) - corner_embedding[:, 0, :] += self.point_embeddings[2].weight - corner_embedding[:, 1, :] += self.point_embeddings[3].weight - return corner_embedding - - def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor: - """Embeds mask inputs.""" - mask_embedding = self.mask_downscaling(masks) - return mask_embedding - - def _embed_labels(self, labels: torch.Tensor) -> torch.Tensor: - """Embeds onehot vector inputs.""" - # Add support for onehot vector embedding for pre-defined classes - label_embedding = self.label_embeddings(labels) - return label_embedding - - def _get_batch_size( - self, - points: Optional[Tuple[torch.Tensor, torch.Tensor]], - boxes: Optional[torch.Tensor], - masks: Optional[torch.Tensor], - labels: Optional[torch.Tensor], - ) -> int: - """ - Gets the batch size of the output given the batch size of the input prompts. - """ - if points is not None: - return points[0].shape[0] - elif boxes is not None: - return boxes.shape[0] - elif masks is not None: - return masks.shape[0] - elif labels is not None: - return labels.shape[0] - else: - return 1 - - def _get_device(self) -> torch.device: - return self.point_embeddings[0].weight.device - - def forward( - self, - points: Optional[Tuple[torch.Tensor, torch.Tensor]], - boxes: Optional[torch.Tensor], - masks: Optional[torch.Tensor], - class_labels: Optional[torch.Tensor], - ) -> Tuple[torch.Tensor, torch.Tensor]: - """ - Embeds different types of prompts, returning both sparse and dense - embeddings. - - Arguments: - points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates - and labels to embed. - boxes (torch.Tensor or none): boxes to embed - masks (torch.Tensor or none): masks to embed - - Returns: - torch.Tensor: sparse embeddings for the points and boxes, with shape - BxNx(embed_dim), where N is determined by the number of input points - and boxes. - torch.Tensor: dense embeddings for the masks, in the shape - Bx(embed_dim)x(embed_H)x(embed_W) - """ - bs = self._get_batch_size(points, boxes, masks, class_labels) - - # Add support for onehot vector embedding for pre-defined classes - if class_labels is not None: - label_embeddings = self._embed_labels(class_labels) - else: - label_embeddings = self.no_label_embed.weight.reshape(1, 1, -1).expand(bs, -1, -1) - - sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self._get_device()) - - # Add support for onehot vector embedding for pre-defined classes - sparse_embeddings = torch.cat([sparse_embeddings, label_embeddings], dim=1) - - if points is not None: - coords, labels = points - point_embeddings = self._embed_points(coords, labels, pad=(boxes is None)) - sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1) - if boxes is not None: - box_embeddings = self._embed_boxes(boxes) - sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1) - - if masks is not None: - dense_embeddings = self._embed_masks(masks) - else: - dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand( - bs, -1, self.image_embedding_size[0], self.image_embedding_size[1] - ) - - return sparse_embeddings, dense_embeddings - - -class PositionEmbeddingRandom(nn.Module): - """ - Positional encoding using random spatial frequencies. - """ - - def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None: - super().__init__() - if scale is None or scale <= 0.0: - scale = 1.0 - self.register_buffer( - "positional_encoding_gaussian_matrix", - scale * torch.randn((2, num_pos_feats)), - ) - - def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor: - """Positionally encode points that are normalized to [0,1].""" - # assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape - coords = 2 * coords - 1 - coords = coords @ self.positional_encoding_gaussian_matrix - coords = 2 * np.pi * coords - # outputs d_1 x ... x d_n x C shape - return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1) - - def forward(self, size: Tuple[int, int]) -> torch.Tensor: - """Generate positional encoding for a grid of the specified size.""" - h, w = size - device: Any = self.positional_encoding_gaussian_matrix.device - grid = torch.ones((h, w), device=device, dtype=torch.float32) - y_embed = grid.cumsum(dim=0) - 0.5 - x_embed = grid.cumsum(dim=1) - 0.5 - y_embed = y_embed / h - x_embed = x_embed / w - - pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1)) - return pe.permute(2, 0, 1) # C x H x W - - def forward_with_coords(self, coords_input: torch.Tensor, image_size: Tuple[int, int]) -> torch.Tensor: - """Positionally encode points that are not normalized to [0,1].""" - coords = coords_input.clone() - coords[:, :, 0] = coords[:, :, 0] / image_size[1] - coords[:, :, 1] = coords[:, :, 1] / image_size[0] - return self._pe_encoding(coords.to(torch.float)) # B x N x C diff --git a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/modeling/sam.py b/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/modeling/sam.py deleted file mode 100644 index c1ce4ec..0000000 --- a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/modeling/sam.py +++ /dev/null @@ -1,174 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. - -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -from typing import Any, Dict, List, Tuple - -import torch -from torch import nn -from torch.nn import functional as F - -from .image_encoder import ImageEncoderViT -from .mask_decoder import MaskDecoder -from .prompt_encoder import PromptEncoder - - -class Sam(nn.Module): - mask_threshold: float = 0.0 - image_format: str = "RGB" - - def __init__( - self, - image_encoder: ImageEncoderViT, - prompt_encoder: PromptEncoder, - mask_decoder: MaskDecoder, - pixel_mean: List[float] = [123.675, 116.28, 103.53], - pixel_std: List[float] = [58.395, 57.12, 57.375], - ) -> None: - """ - SAM predicts object masks from an image and input prompts. - - Arguments: - image_encoder (ImageEncoderViT): The backbone used to encode the - image into image embeddings that allow for efficient mask prediction. - prompt_encoder (PromptEncoder): Encodes various types of input prompts. - mask_decoder (MaskDecoder): Predicts masks from the image embeddings - and encoded prompts. - pixel_mean (list(float)): Mean values for normalizing pixels in the input image. - pixel_std (list(float)): Std values for normalizing pixels in the input image. - """ - super().__init__() - self.image_encoder = image_encoder - self.prompt_encoder = prompt_encoder - self.mask_decoder = mask_decoder - self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False) - self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False) - - @property - def device(self) -> Any: - return self.pixel_mean.device - - @torch.no_grad() - def forward( - self, - batched_input: List[Dict[str, Any]], - multimask_output: bool, - ) -> List[Dict[str, torch.Tensor]]: - """ - Predicts masks end-to-end from provided images and prompts. - If prompts are not known in advance, using SamPredictor is - recommended over calling the model directly. - - Arguments: - batched_input (list(dict)): A list over input images, each a - dictionary with the following keys. A prompt key can be - excluded if it is not present. - 'image': The image as a torch tensor in 3xHxW format, - already transformed for input to the model. - 'original_size': (tuple(int, int)) The original size of - the image before transformation, as (H, W). - 'point_coords': (torch.Tensor) Batched point prompts for - this image, with shape BxNx2. Already transformed to the - input frame of the model. - 'point_labels': (torch.Tensor) Batched labels for point prompts, - with shape BxN. - 'boxes': (torch.Tensor) Batched box inputs, with shape Bx4. - Already transformed to the input frame of the model. - 'mask_inputs': (torch.Tensor) Batched mask inputs to the model, - in the form Bx1xHxW. - multimask_output (bool): Whether the model should predict multiple - disambiguating masks, or return a single mask. - - Returns: - (list(dict)): A list over input images, where each element is - as dictionary with the following keys. - 'masks': (torch.Tensor) Batched binary mask predictions, - with shape BxCxHxW, where B is the number of input promts, - C is determiend by multimask_output, and (H, W) is the - original size of the image. - 'iou_predictions': (torch.Tensor) The model's predictions - of mask quality, in shape BxC. - 'low_res_logits': (torch.Tensor) Low resolution logits with - shape BxCxHxW, where H=W=256. Can be passed as mask input - to subsequent iterations of prediction. - """ - input_images = torch.stack([self.preprocess(x["image"]) for x in batched_input], dim=0) - image_embeddings = self.image_encoder(input_images) - - outputs = [] - for image_record, curr_embedding in zip(batched_input, image_embeddings): - if "point_coords" in image_record: - points = (image_record["point_coords"], image_record["point_labels"]) - else: - points = None - sparse_embeddings, dense_embeddings = self.prompt_encoder( - points=points, - boxes=image_record.get("boxes", None), - masks=image_record.get("mask_inputs", None), - ) - low_res_masks, iou_predictions = self.mask_decoder( - image_embeddings=curr_embedding.unsqueeze(0), - image_pe=self.prompt_encoder.get_dense_pe(), - sparse_prompt_embeddings=sparse_embeddings, - dense_prompt_embeddings=dense_embeddings, - multimask_output=multimask_output, - ) - masks = self.postprocess_masks( - low_res_masks, - input_size=image_record["image"].shape[-2:], - original_size=image_record["original_size"], - ) - masks = masks > self.mask_threshold - outputs.append( - { - "masks": masks, - "iou_predictions": iou_predictions, - "low_res_logits": low_res_masks, - } - ) - return outputs - - def postprocess_masks( - self, - masks: torch.Tensor, - input_size: Tuple[int, ...], - original_size: Tuple[int, ...], - ) -> torch.Tensor: - """ - Remove padding and upscale masks to the original image size. - - Arguments: - masks (torch.Tensor): Batched masks from the mask_decoder, - in BxCxHxW format. - input_size (tuple(int, int)): The size of the image input to the - model, in (H, W) format. Used to remove padding. - original_size (tuple(int, int)): The original size of the image - before resizing for input to the model, in (H, W) format. - - Returns: - (torch.Tensor): Batched masks in BxCxHxW format, where (H, W) - is given by original_size. - """ - masks = F.interpolate( - masks, - (self.image_encoder.img_size, self.image_encoder.img_size), - mode="bilinear", - align_corners=False, - ) - masks = masks[..., : input_size[0], : input_size[1]] - masks = F.interpolate(masks, original_size, mode="bilinear", align_corners=False) - return masks - - def preprocess(self, x: torch.Tensor) -> torch.Tensor: - """Normalize pixel values and pad to a square input.""" - # Normalize colors - x = (x - self.pixel_mean) / self.pixel_std - - # Pad - h, w = x.shape[-2:] - padh = self.image_encoder.img_size - h - padw = self.image_encoder.img_size - w - x = F.pad(x, (0, padw, 0, padh)) - return x diff --git a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/modeling/transformer.py b/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/modeling/transformer.py deleted file mode 100644 index 5bdd753..0000000 --- a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/modeling/transformer.py +++ /dev/null @@ -1,232 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. - -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -import math -from typing import Tuple, Type - -import torch -from torch import Tensor, nn - -from .common import MLPBlock - - -class TwoWayTransformer(nn.Module): - def __init__( - self, - depth: int, - embedding_dim: int, - num_heads: int, - mlp_dim: int, - activation: Type[nn.Module] = nn.ReLU, - attention_downsample_rate: int = 2, - ) -> None: - """ - A transformer decoder that attends to an input image using - queries whose positional embedding is supplied. - - Args: - depth (int): number of layers in the transformer - embedding_dim (int): the channel dimension for the input embeddings - num_heads (int): the number of heads for multihead attention. Must - divide embedding_dim - mlp_dim (int): the channel dimension internal to the MLP block - activation (nn.Module): the activation to use in the MLP block - """ - super().__init__() - self.depth = depth - self.embedding_dim = embedding_dim - self.num_heads = num_heads - self.mlp_dim = mlp_dim - self.layers = nn.ModuleList() - - for i in range(depth): - self.layers.append( - TwoWayAttentionBlock( - embedding_dim=embedding_dim, - num_heads=num_heads, - mlp_dim=mlp_dim, - activation=activation, - attention_downsample_rate=attention_downsample_rate, - skip_first_layer_pe=(i == 0), - ) - ) - - self.final_attn_token_to_image = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate) - self.norm_final_attn = nn.LayerNorm(embedding_dim) - - def forward( - self, - image_embedding: Tensor, - image_pe: Tensor, - point_embedding: Tensor, - ) -> Tuple[Tensor, Tensor]: - """ - Args: - image_embedding (torch.Tensor): image to attend to. Should be shape - B x embedding_dim x h x w for any h and w. - image_pe (torch.Tensor): the positional encoding to add to the image. Must - have the same shape as image_embedding. - point_embedding (torch.Tensor): the embedding to add to the query points. - Must have shape B x N_points x embedding_dim for any N_points. - - Returns: - torch.Tensor: the processed point_embedding - torch.Tensor: the processed image_embedding - """ - # BxCxHxW -> BxHWxC == B x N_image_tokens x C - bs, c, h, w = image_embedding.shape - image_embedding = image_embedding.flatten(2).permute(0, 2, 1) - image_pe = image_pe.flatten(2).permute(0, 2, 1) - - # Prepare queries - queries = point_embedding - keys = image_embedding - - # Apply transformer blocks and final layernorm - for layer in self.layers: - queries, keys = layer( - queries=queries, - keys=keys, - query_pe=point_embedding, - key_pe=image_pe, - ) - - # Apply the final attenion layer from the points to the image - q = queries + point_embedding - k = keys + image_pe - attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys) - queries = queries + attn_out - queries = self.norm_final_attn(queries) - - return queries, keys - - -class TwoWayAttentionBlock(nn.Module): - def __init__( - self, - embedding_dim: int, - num_heads: int, - mlp_dim: int = 2048, - activation: Type[nn.Module] = nn.ReLU, - attention_downsample_rate: int = 2, - skip_first_layer_pe: bool = False, - ) -> None: - """ - A transformer block with four layers: (1) self-attention of sparse - inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp - block on sparse inputs, and (4) cross attention of dense inputs to sparse - inputs. - - Arguments: - embedding_dim (int): the channel dimension of the embeddings - num_heads (int): the number of heads in the attention layers - mlp_dim (int): the hidden dimension of the mlp block - activation (nn.Module): the activation of the mlp block - skip_first_layer_pe (bool): skip the PE on the first layer - """ - super().__init__() - self.self_attn = Attention(embedding_dim, num_heads) - self.norm1 = nn.LayerNorm(embedding_dim) - - self.cross_attn_token_to_image = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate) - self.norm2 = nn.LayerNorm(embedding_dim) - - self.mlp = MLPBlock(embedding_dim, mlp_dim, activation) - self.norm3 = nn.LayerNorm(embedding_dim) - - self.norm4 = nn.LayerNorm(embedding_dim) - self.cross_attn_image_to_token = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate) - - self.skip_first_layer_pe = skip_first_layer_pe - - def forward(self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor) -> Tuple[Tensor, Tensor]: - # Self attention block - if self.skip_first_layer_pe: - queries = self.self_attn(q=queries, k=queries, v=queries) - else: - q = queries + query_pe - attn_out = self.self_attn(q=q, k=q, v=queries) - queries = queries + attn_out - queries = self.norm1(queries) - - # Cross attention block, tokens attending to image embedding - q = queries + query_pe - k = keys + key_pe - attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys) - queries = queries + attn_out - queries = self.norm2(queries) - - # MLP block - mlp_out = self.mlp(queries) - queries = queries + mlp_out - queries = self.norm3(queries) - - # Cross attention block, image embedding attending to tokens - q = queries + query_pe - k = keys + key_pe - attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries) - keys = keys + attn_out - keys = self.norm4(keys) - - return queries, keys - - -class Attention(nn.Module): - """ - An attention layer that allows for downscaling the size of the embedding - after projection to queries, keys, and values. - """ - - def __init__( - self, - embedding_dim: int, - num_heads: int, - downsample_rate: int = 1, - ) -> None: - super().__init__() - self.embedding_dim = embedding_dim - self.internal_dim = embedding_dim // downsample_rate - self.num_heads = num_heads - assert self.internal_dim % num_heads == 0, "num_heads must divide embedding_dim." - - self.q_proj = nn.Linear(embedding_dim, self.internal_dim) - self.k_proj = nn.Linear(embedding_dim, self.internal_dim) - self.v_proj = nn.Linear(embedding_dim, self.internal_dim) - self.out_proj = nn.Linear(self.internal_dim, embedding_dim) - - def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor: - b, n, c = x.shape - x = x.reshape(b, n, num_heads, c // num_heads) - return x.transpose(1, 2) # B x N_heads x N_tokens x C_per_head - - def _recombine_heads(self, x: Tensor) -> Tensor: - b, n_heads, n_tokens, c_per_head = x.shape - x = x.transpose(1, 2) - return x.reshape(b, n_tokens, n_heads * c_per_head) # B x N_tokens x C - - def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor: - # Input projections - q = self.q_proj(q) - k = self.k_proj(k) - v = self.v_proj(v) - - # Separate into heads - q = self._separate_heads(q, self.num_heads) - k = self._separate_heads(k, self.num_heads) - v = self._separate_heads(v, self.num_heads) - - # Attention - _, _, _, c_per_head = q.shape - attn = q @ k.permute(0, 1, 3, 2) # B x N_heads x N_tokens x N_tokens - attn = attn / math.sqrt(c_per_head) - attn = torch.softmax(attn, dim=-1) - - # Get output - out = attn @ v - out = self._recombine_heads(out) - out = self.out_proj(out) - - return out diff --git a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/predictor.py b/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/predictor.py deleted file mode 100644 index d80ca28..0000000 --- a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/predictor.py +++ /dev/null @@ -1,264 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. - -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -from typing import Optional, Tuple - -import numpy as np -import torch - -from .modeling import Sam -from .utils.transforms import ResizeLongestSide - - -class SamPredictor: - def __init__( - self, - sam_model: Sam, - ) -> None: - """ - Uses SAM to calculate the image embedding for an image, and then - allow repeated, efficient mask prediction given prompts. - - Arguments: - sam_model (Sam): The model to use for mask prediction. - """ - super().__init__() - self.model = sam_model - self.transform = ResizeLongestSide(sam_model.image_encoder.img_size) - self.reset_image() - - def set_image( - self, - image: np.ndarray, - image_format: str = "RGB", - ) -> None: - """ - Calculates the image embeddings for the provided image, allowing - masks to be predicted with the 'predict' method. - - Arguments: - image (np.ndarray): The image for calculating masks. Expects an - image in HWC uint8 format, with pixel values in [0, 255]. - image_format (str): The color format of the image, in ['RGB', 'BGR']. - """ - assert image_format in [ - "RGB", - "BGR", - ], f"image_format must be in ['RGB', 'BGR'], is {image_format}." - if image_format != self.model.image_format: - image = image[..., ::-1] - - # Transform the image to the form expected by the model - input_image = self.transform.apply_image(image) - input_image_torch = torch.as_tensor(input_image, device=self.device) - input_image_torch = input_image_torch.permute(2, 0, 1).contiguous()[None, :, :, :] - - self.set_torch_image(input_image_torch, image.shape[:2]) - - @torch.no_grad() - def set_torch_image( - self, - transformed_image: torch.Tensor, - original_image_size: Tuple[int, ...], - ) -> None: - """ - Calculates the image embeddings for the provided image, allowing - masks to be predicted with the 'predict' method. Expects the input - image to be already transformed to the format expected by the model. - - Arguments: - transformed_image (torch.Tensor): The input image, with shape - 1x3xHxW, which has been transformed with ResizeLongestSide. - original_image_size (tuple(int, int)): The size of the image - before transformation, in (H, W) format. - """ - assert ( - len(transformed_image.shape) == 4 - and transformed_image.shape[1] == 3 - and max(*transformed_image.shape[2:]) == self.model.image_encoder.img_size - ), f"set_torch_image input must be BCHW with long side {self.model.image_encoder.img_size}." - self.reset_image() - - self.original_size = original_image_size - self.input_size = tuple(transformed_image.shape[-2:]) - input_image = self.model.preprocess(transformed_image) - self.features = self.model.image_encoder(input_image) - self.is_image_set = True - - def predict( - self, - point_coords: Optional[np.ndarray] = None, - point_labels: Optional[np.ndarray] = None, - box: Optional[np.ndarray] = None, - mask_input: Optional[np.ndarray] = None, - multimask_output: bool = True, - return_logits: bool = False, - ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: - """ - Predict masks for the given input prompts, using the currently set image. - - Arguments: - point_coords (np.ndarray or None): A Nx2 array of point prompts to the - model. Each point is in (X,Y) in pixels. - point_labels (np.ndarray or None): A length N array of labels for the - point prompts. 1 indicates a foreground point and 0 indicates a - background point. - box (np.ndarray or None): A length 4 array given a box prompt to the - model, in XYXY format. - mask_input (np.ndarray): A low resolution mask input to the model, typically - coming from a previous prediction iteration. Has form 1xHxW, where - for SAM, H=W=256. - multimask_output (bool): If true, the model will return three masks. - For ambiguous input prompts (such as a single click), this will often - produce better masks than a single prediction. If only a single - mask is needed, the model's predicted quality score can be used - to select the best mask. For non-ambiguous prompts, such as multiple - input prompts, multimask_output=False can give better results. - return_logits (bool): If true, returns un-thresholded masks logits - instead of a binary mask. - - Returns: - (np.ndarray): The output masks in CxHxW format, where C is the - number of masks, and (H, W) is the original image size. - (np.ndarray): An array of length C containing the model's - predictions for the quality of each mask. - (np.ndarray): An array of shape CxHxW, where C is the number - of masks and H=W=256. These low resolution logits can be passed to - a subsequent iteration as mask input. - """ - if not self.is_image_set: - raise RuntimeError("An image must be set with .set_image(...) before mask prediction.") - - # Transform input prompts - coords_torch, labels_torch, box_torch, mask_input_torch = None, None, None, None - if point_coords is not None: - assert point_labels is not None, "point_labels must be supplied if point_coords is supplied." - point_coords = self.transform.apply_coords(point_coords, self.original_size) - coords_torch = torch.as_tensor(point_coords, dtype=torch.float, device=self.device) - labels_torch = torch.as_tensor(point_labels, dtype=torch.int, device=self.device) - coords_torch, labels_torch = coords_torch[None, :, :], labels_torch[None, :] - if box is not None: - box = self.transform.apply_boxes(box, self.original_size) - box_torch = torch.as_tensor(box, dtype=torch.float, device=self.device) - box_torch = box_torch[None, :] - if mask_input is not None: - mask_input_torch = torch.as_tensor(mask_input, dtype=torch.float, device=self.device) - mask_input_torch = mask_input_torch[None, :, :, :] - - masks, iou_predictions, low_res_masks = self.predict_torch( - coords_torch, - labels_torch, - box_torch, - mask_input_torch, - multimask_output, - return_logits=return_logits, - ) - - masks = masks[0].detach().cpu().numpy() - iou_predictions = iou_predictions[0].detach().cpu().numpy() - low_res_masks = low_res_masks[0].detach().cpu().numpy() - return masks, iou_predictions, low_res_masks - - @torch.no_grad() - def predict_torch( - self, - point_coords: Optional[torch.Tensor], - point_labels: Optional[torch.Tensor], - boxes: Optional[torch.Tensor] = None, - mask_input: Optional[torch.Tensor] = None, - multimask_output: bool = True, - return_logits: bool = False, - ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: - """ - Predict masks for the given input prompts, using the currently set image. - Input prompts are batched torch tensors and are expected to already be - transformed to the input frame using ResizeLongestSide. - - Arguments: - point_coords (torch.Tensor or None): A BxNx2 array of point prompts to the - model. Each point is in (X,Y) in pixels. - point_labels (torch.Tensor or None): A BxN array of labels for the - point prompts. 1 indicates a foreground point and 0 indicates a - background point. - box (np.ndarray or None): A Bx4 array given a box prompt to the - model, in XYXY format. - mask_input (np.ndarray): A low resolution mask input to the model, typically - coming from a previous prediction iteration. Has form Bx1xHxW, where - for SAM, H=W=256. Masks returned by a previous iteration of the - predict method do not need further transformation. - multimask_output (bool): If true, the model will return three masks. - For ambiguous input prompts (such as a single click), this will often - produce better masks than a single prediction. If only a single - mask is needed, the model's predicted quality score can be used - to select the best mask. For non-ambiguous prompts, such as multiple - input prompts, multimask_output=False can give better results. - return_logits (bool): If true, returns un-thresholded masks logits - instead of a binary mask. - - Returns: - (torch.Tensor): The output masks in BxCxHxW format, where C is the - number of masks, and (H, W) is the original image size. - (torch.Tensor): An array of shape BxC containing the model's - predictions for the quality of each mask. - (torch.Tensor): An array of shape BxCxHxW, where C is the number - of masks and H=W=256. These low res logits can be passed to - a subsequent iteration as mask input. - """ - if not self.is_image_set: - raise RuntimeError("An image must be set with .set_image(...) before mask prediction.") - - if point_coords is not None: - points = (point_coords, point_labels) - else: - points = None - - # Embed prompts - sparse_embeddings, dense_embeddings = self.model.prompt_encoder( - points=points, - boxes=boxes, - masks=mask_input, - ) - - # Predict masks - low_res_masks, iou_predictions = self.model.mask_decoder( - image_embeddings=self.features, - image_pe=self.model.prompt_encoder.get_dense_pe(), - sparse_prompt_embeddings=sparse_embeddings, - dense_prompt_embeddings=dense_embeddings, - multimask_output=multimask_output, - ) - - # Upscale the masks to the original image resolution - masks = self.model.postprocess_masks(low_res_masks, self.input_size, self.original_size) - - if not return_logits: - masks = masks > self.model.mask_threshold - - return masks, iou_predictions, low_res_masks - - def get_image_embedding(self) -> torch.Tensor: - """ - Returns the image embeddings for the currently set image, with - shape 1xCxHxW, where C is the embedding dimension and (H,W) are - the embedding spatial dimension of SAM (typically C=256, H=W=64). - """ - if not self.is_image_set: - raise RuntimeError("An image must be set with .set_image(...) to generate an embedding.") - assert self.features is not None, "Features must exist if an image has been set." - return self.features - - @property - def device(self) -> torch.device: - return self.model.device - - def reset_image(self) -> None: - """Resets the currently set image.""" - self.is_image_set = False - self.features = None - self.orig_h = None - self.orig_w = None - self.input_h = None - self.input_w = None diff --git a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/utils/__init__.py b/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/utils/__init__.py deleted file mode 100644 index 5277f46..0000000 --- a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/utils/__init__.py +++ /dev/null @@ -1,5 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. - -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. diff --git a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/utils/amg.py b/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/utils/amg.py deleted file mode 100644 index 1c9c491..0000000 --- a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/utils/amg.py +++ /dev/null @@ -1,330 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. - -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -import math -from copy import deepcopy -from itertools import product -from typing import Any, Dict, Generator, ItemsView, List, Tuple - -import numpy as np -import torch - - -class MaskData: - """ - A structure for storing masks and their related data in batched format. - Implements basic filtering and concatenation. - """ - - def __init__(self, **kwargs) -> None: - for v in kwargs.values(): - assert isinstance( - v, (list, np.ndarray, torch.Tensor) - ), "MaskData only supports list, numpy arrays, and torch tensors." - self._stats = dict(**kwargs) - - def __setitem__(self, key: str, item: Any) -> None: - assert isinstance( - item, (list, np.ndarray, torch.Tensor) - ), "MaskData only supports list, numpy arrays, and torch tensors." - self._stats[key] = item - - def __delitem__(self, key: str) -> None: - del self._stats[key] - - def __getitem__(self, key: str) -> Any: - return self._stats[key] - - def items(self) -> ItemsView[str, Any]: - return self._stats.items() - - def filter(self, keep: torch.Tensor) -> None: - for k, v in self._stats.items(): - if v is None: - self._stats[k] = None - elif isinstance(v, torch.Tensor): - self._stats[k] = v[torch.as_tensor(keep, device=v.device)] - elif isinstance(v, np.ndarray): - self._stats[k] = v[keep.detach().cpu().numpy()] - elif isinstance(v, list) and keep.dtype == torch.bool: - self._stats[k] = [a for i, a in enumerate(v) if keep[i]] - elif isinstance(v, list): - self._stats[k] = [v[i] for i in keep] - else: - raise TypeError(f"MaskData key {k} has an unsupported type {type(v)}.") - - def cat(self, new_stats: "MaskData") -> None: - for k, v in new_stats.items(): - if k not in self._stats or self._stats[k] is None: - self._stats[k] = deepcopy(v) - elif isinstance(v, torch.Tensor): - self._stats[k] = torch.cat([self._stats[k], v], dim=0) - elif isinstance(v, np.ndarray): - self._stats[k] = np.concatenate([self._stats[k], v], axis=0) - elif isinstance(v, list): - self._stats[k] = self._stats[k] + deepcopy(v) - else: - raise TypeError(f"MaskData key {k} has an unsupported type {type(v)}.") - - def to_numpy(self) -> None: - for k, v in self._stats.items(): - if isinstance(v, torch.Tensor): - self._stats[k] = v.detach().cpu().numpy() - - -def is_box_near_crop_edge( - boxes: torch.Tensor, crop_box: List[int], orig_box: List[int], atol: float = 20.0 -) -> torch.Tensor: - """Filter masks at the edge of a crop, but not at the edge of the original image.""" - crop_box_torch = torch.as_tensor(crop_box, dtype=torch.float, device=boxes.device) - orig_box_torch = torch.as_tensor(orig_box, dtype=torch.float, device=boxes.device) - boxes = uncrop_boxes_xyxy(boxes, crop_box).float() - near_crop_edge = torch.isclose(boxes, crop_box_torch[None, :], atol=atol, rtol=0) - near_image_edge = torch.isclose(boxes, orig_box_torch[None, :], atol=atol, rtol=0) - near_crop_edge = torch.logical_and(near_crop_edge, ~near_image_edge) - return torch.any(near_crop_edge, dim=1) - - -def box_xyxy_to_xywh(box_xyxy: torch.Tensor) -> torch.Tensor: - box_xywh = deepcopy(box_xyxy) - box_xywh[2] = box_xywh[2] - box_xywh[0] - box_xywh[3] = box_xywh[3] - box_xywh[1] - return box_xywh - - -def batch_iterator(batch_size: int, *args) -> Generator[List[Any], None, None]: - assert len(args) > 0 and all( - len(a) == len(args[0]) for a in args - ), "Batched iteration must have inputs of all the same size." - n_batches = len(args[0]) // batch_size + int(len(args[0]) % batch_size != 0) - for b in range(n_batches): - yield [arg[b * batch_size : (b + 1) * batch_size] for arg in args] - - -def mask_to_rle_pytorch(tensor: torch.Tensor) -> List[Dict[str, Any]]: - """ - Encodes masks to an uncompressed RLE, in the format expected by - pycoco tools. - """ - # Put in fortran order and flatten h,w - b, h, w = tensor.shape - tensor = tensor.permute(0, 2, 1).flatten(1) - - # Compute change indices - diff = tensor[:, 1:] ^ tensor[:, :-1] - change_indices = diff.nonzero() - - # Encode run length - out = [] - for i in range(b): - cur_idxs = change_indices[change_indices[:, 0] == i, 1] - cur_idxs = torch.cat( - [ - torch.tensor([0], dtype=cur_idxs.dtype, device=cur_idxs.device), - cur_idxs + 1, - torch.tensor([h * w], dtype=cur_idxs.dtype, device=cur_idxs.device), - ] - ) - btw_idxs = cur_idxs[1:] - cur_idxs[:-1] - counts = [] if tensor[i, 0] == 0 else [0] - counts.extend(btw_idxs.detach().cpu().tolist()) - out.append({"size": [h, w], "counts": counts}) - return out - - -def rle_to_mask(rle: Dict[str, Any]) -> np.ndarray: - """Compute a binary mask from an uncompressed RLE.""" - h, w = rle["size"] - mask = np.empty(h * w, dtype=bool) - idx = 0 - parity = False - for count in rle["counts"]: - mask[idx : idx + count] = parity - idx += count - parity ^= True - mask = mask.reshape(w, h) - return mask.transpose() # Put in C order - - -def area_from_rle(rle: Dict[str, Any]) -> int: - return sum(rle["counts"][1::2]) - - -def calculate_stability_score(masks: torch.Tensor, mask_threshold: float, threshold_offset: float) -> torch.Tensor: - """ - Computes the stability score for a batch of masks. The stability - score is the IoU between the binary masks obtained by thresholding - the predicted mask logits at high and low values. - """ - # One mask is always contained inside the other. - # Save memory by preventing unnecesary cast to torch.int64 - intersections = (masks > (mask_threshold + threshold_offset)).sum(-1, dtype=torch.int16).sum(-1, dtype=torch.int32) - unions = (masks > (mask_threshold - threshold_offset)).sum(-1, dtype=torch.int16).sum(-1, dtype=torch.int32) - return intersections / unions - - -def build_point_grid(n_per_side: int) -> np.ndarray: - """Generates a 2D grid of points evenly spaced in [0,1]x[0,1].""" - offset = 1 / (2 * n_per_side) - points_one_side = np.linspace(offset, 1 - offset, n_per_side) - points_x = np.tile(points_one_side[None, :], (n_per_side, 1)) - points_y = np.tile(points_one_side[:, None], (1, n_per_side)) - points = np.stack([points_x, points_y], axis=-1).reshape(-1, 2) - return points - - -def build_all_layer_point_grids(n_per_side: int, n_layers: int, scale_per_layer: int) -> List[np.ndarray]: - """Generates point grids for all crop layers.""" - points_by_layer = [] - for i in range(n_layers + 1): - n_points = int(n_per_side / (scale_per_layer**i)) - points_by_layer.append(build_point_grid(n_points)) - return points_by_layer - - -def generate_crop_boxes( - im_size: Tuple[int, ...], n_layers: int, overlap_ratio: float -) -> Tuple[List[List[int]], List[int]]: - """ - Generates a list of crop boxes of different sizes. Each layer - has (2**i)**2 boxes for the ith layer. - """ - crop_boxes, layer_idxs = [], [] - im_h, im_w = im_size - short_side = min(im_h, im_w) - - # Original image - crop_boxes.append([0, 0, im_w, im_h]) - layer_idxs.append(0) - - def crop_len(orig_len, n_crops, overlap): - return int(math.ceil((overlap * (n_crops - 1) + orig_len) / n_crops)) - - for i_layer in range(n_layers): - n_crops_per_side = 2 ** (i_layer + 1) - overlap = int(overlap_ratio * short_side * (2 / n_crops_per_side)) - - crop_w = crop_len(im_w, n_crops_per_side, overlap) - crop_h = crop_len(im_h, n_crops_per_side, overlap) - - crop_box_x0 = [int((crop_w - overlap) * i) for i in range(n_crops_per_side)] - crop_box_y0 = [int((crop_h - overlap) * i) for i in range(n_crops_per_side)] - - # Crops in XYWH format - for x0, y0 in product(crop_box_x0, crop_box_y0): - box = [x0, y0, min(x0 + crop_w, im_w), min(y0 + crop_h, im_h)] - crop_boxes.append(box) - layer_idxs.append(i_layer + 1) - - return crop_boxes, layer_idxs - - -def uncrop_boxes_xyxy(boxes: torch.Tensor, crop_box: List[int]) -> torch.Tensor: - x0, y0, _, _ = crop_box - offset = torch.tensor([[x0, y0, x0, y0]], device=boxes.device) - # Check if boxes has a channel dimension - if len(boxes.shape) == 3: - offset = offset.unsqueeze(1) - return boxes + offset - - -def uncrop_points(points: torch.Tensor, crop_box: List[int]) -> torch.Tensor: - x0, y0, _, _ = crop_box - offset = torch.tensor([[x0, y0]], device=points.device) - # Check if points has a channel dimension - if len(points.shape) == 3: - offset = offset.unsqueeze(1) - return points + offset - - -def uncrop_masks(masks: torch.Tensor, crop_box: List[int], orig_h: int, orig_w: int) -> torch.Tensor: - x0, y0, x1, y1 = crop_box - if x0 == 0 and y0 == 0 and x1 == orig_w and y1 == orig_h: - return masks - # Coordinate transform masks - pad_x, pad_y = orig_w - (x1 - x0), orig_h - (y1 - y0) - pad = (x0, pad_x - x0, y0, pad_y - y0) - return torch.nn.functional.pad(masks, pad, value=0) - - -def remove_small_regions(mask: np.ndarray, area_thresh: float, mode: str) -> Tuple[np.ndarray, bool]: - """ - Removes small disconnected regions and holes in a mask. Returns the - mask and an indicator of if the mask has been modified. - """ - import cv2 # type: ignore - - assert mode in ["holes", "islands"] - correct_holes = mode == "holes" - working_mask = (correct_holes ^ mask).astype(np.uint8) - n_labels, regions, stats, _ = cv2.connectedComponentsWithStats(working_mask, 8) - sizes = stats[:, -1][1:] # Row 0 is background label - small_regions = [i + 1 for i, s in enumerate(sizes) if s < area_thresh] - if len(small_regions) == 0: - return mask, False - fill_labels = [0] + small_regions - if not correct_holes: - fill_labels = [i for i in range(n_labels) if i not in fill_labels] - # If every region is below threshold, keep largest - if len(fill_labels) == 0: - fill_labels = [int(np.argmax(sizes)) + 1] - mask = np.isin(regions, fill_labels) - return mask, True - - -def coco_encode_rle(uncompressed_rle: Dict[str, Any]) -> Dict[str, Any]: - from pycocotools import mask as mask_utils # type: ignore - - h, w = uncompressed_rle["size"] - rle = mask_utils.frPyObjects(uncompressed_rle, h, w) - rle["counts"] = rle["counts"].decode("utf-8") # Necessary to serialize with json - return rle - - -def batched_mask_to_box(masks: torch.Tensor) -> torch.Tensor: - """ - Calculates boxes in XYXY format around masks. Return [0,0,0,0] for - an empty mask. For input shape C1xC2x...xHxW, the output shape is C1xC2x...x4. - """ - # torch.max below raises an error on empty inputs, just skip in this case - if torch.numel(masks) == 0: - return torch.zeros(*masks.shape[:-2], 4, device=masks.device) - - # Normalize shape to CxHxW - shape = masks.shape - h, w = shape[-2:] - if len(shape) > 2: - masks = masks.flatten(0, -3) - else: - masks = masks.unsqueeze(0) - - # Get top and bottom edges - in_height, _ = torch.max(masks, dim=-1) - in_height_coords = in_height * torch.arange(h, device=in_height.device)[None, :] - bottom_edges, _ = torch.max(in_height_coords, dim=-1) - in_height_coords = in_height_coords + h * (~in_height) - top_edges, _ = torch.min(in_height_coords, dim=-1) - - # Get left and right edges - in_width, _ = torch.max(masks, dim=-2) - in_width_coords = in_width * torch.arange(w, device=in_width.device)[None, :] - right_edges, _ = torch.max(in_width_coords, dim=-1) - in_width_coords = in_width_coords + w * (~in_width) - left_edges, _ = torch.min(in_width_coords, dim=-1) - - # If the mask is empty the right edge will be to the left of the left edge. - # Replace these boxes with [0, 0, 0, 0] - empty_filter = (right_edges < left_edges) | (bottom_edges < top_edges) - out = torch.stack([left_edges, top_edges, right_edges, bottom_edges], dim=-1) - out = out * (~empty_filter).unsqueeze(-1) - - # Return to original shape - if len(shape) > 2: - out = out.reshape(*shape[:-2], 4) - else: - out = out[0] - - return out diff --git a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/utils/onnx.py b/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/utils/onnx.py deleted file mode 100644 index 9cd17c7..0000000 --- a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/utils/onnx.py +++ /dev/null @@ -1,138 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. - -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -from typing import Tuple - -import torch -import torch.nn as nn -from torch.nn import functional as F - -from ..modeling import Sam -from .amg import calculate_stability_score - - -class SamOnnxModel(nn.Module): - """ - This model should not be called directly, but is used in ONNX export. - It combines the prompt encoder, mask decoder, and mask postprocessing of Sam, - with some functions modified to enable model tracing. Also supports extra - options controlling what information. See the ONNX export script for details. - """ - - def __init__( - self, - model: Sam, - return_single_mask: bool, - use_stability_score: bool = False, - return_extra_metrics: bool = False, - ) -> None: - super().__init__() - self.mask_decoder = model.mask_decoder - self.model = model - self.img_size = model.image_encoder.img_size - self.return_single_mask = return_single_mask - self.use_stability_score = use_stability_score - self.stability_score_offset = 1.0 - self.return_extra_metrics = return_extra_metrics - - @staticmethod - def resize_longest_image_size(input_image_size: torch.Tensor, longest_side: int) -> torch.Tensor: - input_image_size = input_image_size.to(torch.float32) - scale = longest_side / torch.max(input_image_size) - transformed_size = scale * input_image_size - transformed_size = torch.floor(transformed_size + 0.5).to(torch.int64) - return transformed_size - - def _embed_points(self, point_coords: torch.Tensor, point_labels: torch.Tensor) -> torch.Tensor: - point_coords = point_coords + 0.5 - point_coords = point_coords / self.img_size - point_embedding = self.model.prompt_encoder.pe_layer._pe_encoding(point_coords) - point_labels = point_labels.unsqueeze(-1).expand_as(point_embedding) - - point_embedding = point_embedding * (point_labels != -1) - point_embedding = point_embedding + self.model.prompt_encoder.not_a_point_embed.weight * (point_labels == -1) - - for i in range(self.model.prompt_encoder.num_point_embeddings): - point_embedding = point_embedding + self.model.prompt_encoder.point_embeddings[i].weight * ( - point_labels == i - ) - - return point_embedding - - def _embed_masks(self, input_mask: torch.Tensor, has_mask_input: torch.Tensor) -> torch.Tensor: - mask_embedding = has_mask_input * self.model.prompt_encoder.mask_downscaling(input_mask) - mask_embedding = mask_embedding + (1 - has_mask_input) * self.model.prompt_encoder.no_mask_embed.weight.reshape( - 1, -1, 1, 1 - ) - return mask_embedding - - def mask_postprocessing(self, masks: torch.Tensor, orig_im_size: torch.Tensor) -> torch.Tensor: - masks = F.interpolate( - masks, - size=(self.img_size, self.img_size), - mode="bilinear", - align_corners=False, - ) - - prepadded_size = self.resize_longest_image_size(orig_im_size, self.img_size) - masks = masks[..., : int(prepadded_size[0]), : int(prepadded_size[1])] - - orig_im_size = orig_im_size.to(torch.int64) - h, w = orig_im_size[0], orig_im_size[1] - masks = F.interpolate(masks, size=(h, w), mode="bilinear", align_corners=False) - return masks - - def select_masks( - self, masks: torch.Tensor, iou_preds: torch.Tensor, num_points: int - ) -> Tuple[torch.Tensor, torch.Tensor]: - # Determine if we should return the multiclick mask or not from the number of points. - # The reweighting is used to avoid control flow. - score_reweight = torch.tensor([[1000] + [0] * (self.model.mask_decoder.num_mask_tokens - 1)]).to( - iou_preds.device - ) - score = iou_preds + (num_points - 2.5) * score_reweight - best_idx = torch.argmax(score, dim=1) - masks = masks[torch.arange(masks.shape[0]), best_idx, :, :].unsqueeze(1) - iou_preds = iou_preds[torch.arange(masks.shape[0]), best_idx].unsqueeze(1) - - return masks, iou_preds - - @torch.no_grad() - def forward( - self, - image_embeddings: torch.Tensor, - point_coords: torch.Tensor, - point_labels: torch.Tensor, - mask_input: torch.Tensor, - has_mask_input: torch.Tensor, - orig_im_size: torch.Tensor, - ): - sparse_embedding = self._embed_points(point_coords, point_labels) - dense_embedding = self._embed_masks(mask_input, has_mask_input) - - masks, scores = self.model.mask_decoder.predict_masks( - image_embeddings=image_embeddings, - image_pe=self.model.prompt_encoder.get_dense_pe(), - sparse_prompt_embeddings=sparse_embedding, - dense_prompt_embeddings=dense_embedding, - ) - - if self.use_stability_score: - scores = calculate_stability_score(masks, self.model.mask_threshold, self.stability_score_offset) - - if self.return_single_mask: - masks, scores = self.select_masks(masks, scores, point_coords.shape[1]) - - upscaled_masks = self.mask_postprocessing(masks, orig_im_size) - - if self.return_extra_metrics: - stability_scores = calculate_stability_score( - upscaled_masks, self.model.mask_threshold, self.stability_score_offset - ) - areas = (upscaled_masks > self.model.mask_threshold).sum(-1).sum(-1) - return upscaled_masks, scores, stability_scores, areas, masks - - return upscaled_masks, scores, masks diff --git a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/utils/transforms.py b/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/utils/transforms.py deleted file mode 100644 index 96a4ed6..0000000 --- a/monailabel/monaivista/lib/model/vista_point_2pt5/segment_anything/utils/transforms.py +++ /dev/null @@ -1,92 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. - -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -from copy import deepcopy -from typing import Tuple - -import numpy as np -import torch -from torch.nn import functional as F -from torchvision.transforms.functional import resize, to_pil_image # type: ignore - - -class ResizeLongestSide: - """ - Resizes images to longest side 'target_length', as well as provides - methods for resizing coordinates and boxes. Provides methods for - transforming both numpy array and batched torch tensors. - """ - - def __init__(self, target_length: int) -> None: - self.target_length = target_length - - def apply_image(self, image: np.ndarray) -> np.ndarray: - """ - Expects a numpy array with shape HxWxC in uint8 format. - """ - target_size = self.get_preprocess_shape(image.shape[0], image.shape[1], self.target_length) - return np.array(resize(to_pil_image(image), target_size)) - - def apply_coords(self, coords: np.ndarray, original_size: Tuple[int, ...]) -> np.ndarray: - """ - Expects a numpy array of length 2 in the final dimension. Requires the - original image size in (H, W) format. - """ - old_h, old_w = original_size - new_h, new_w = self.get_preprocess_shape(original_size[0], original_size[1], self.target_length) - coords = deepcopy(coords).astype(float) - coords[..., 0] = coords[..., 0] * (new_w / old_w) - coords[..., 1] = coords[..., 1] * (new_h / old_h) - return coords - - def apply_boxes(self, boxes: np.ndarray, original_size: Tuple[int, ...]) -> np.ndarray: - """ - Expects a numpy array shape Bx4. Requires the original image size - in (H, W) format. - """ - boxes = self.apply_coords(boxes.reshape(-1, 2, 2), original_size) - return boxes.reshape(-1, 4) - - def apply_image_torch(self, image: torch.Tensor) -> torch.Tensor: - """ - Expects batched images with shape BxCxHxW and float format. This - transformation may not exactly match apply_image. apply_image is - the transformation expected by the model. - """ - # Expects an image in BCHW format. May not exactly match apply_image. - target_size = self.get_preprocess_shape(image.shape[0], image.shape[1], self.target_length) - return F.interpolate(image, target_size, mode="bilinear", align_corners=False, antialias=True) - - def apply_coords_torch(self, coords: torch.Tensor, original_size: Tuple[int, ...]) -> torch.Tensor: - """ - Expects a torch tensor with length 2 in the last dimension. Requires the - original image size in (H, W) format. - """ - old_h, old_w = original_size - new_h, new_w = self.get_preprocess_shape(original_size[0], original_size[1], self.target_length) - coords = deepcopy(coords).to(torch.float) - coords[..., 0] = coords[..., 0] * (new_w / old_w) - coords[..., 1] = coords[..., 1] * (new_h / old_h) - return coords - - def apply_boxes_torch(self, boxes: torch.Tensor, original_size: Tuple[int, ...]) -> torch.Tensor: - """ - Expects a torch tensor with shape Bx4. Requires the original image - size in (H, W) format. - """ - boxes = self.apply_coords_torch(boxes.reshape(-1, 2, 2), original_size) - return boxes.reshape(-1, 4) - - @staticmethod - def get_preprocess_shape(oldh: int, oldw: int, long_side_length: int) -> Tuple[int, int]: - """ - Compute the output size given input size and target long side length. - """ - scale = long_side_length * 1.0 / max(oldh, oldw) - newh, neww = oldh * scale, oldw * scale - neww = int(neww + 0.5) - newh = int(newh + 0.5) - return (newh, neww) diff --git a/monailabel/monaivista/lib/model/vista_point_2pt5/utils/data_utils.py b/monailabel/monaivista/lib/model/vista_point_2pt5/utils/data_utils.py deleted file mode 100644 index 02bf82c..0000000 --- a/monailabel/monaivista/lib/model/vista_point_2pt5/utils/data_utils.py +++ /dev/null @@ -1,257 +0,0 @@ -# Copyright 2020 - 2022 MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import copy -import math -import os - -import numpy as np -import torch -from monai import data, transforms -from monai.transforms import ScaleIntensityRanged - - -class Sampler(torch.utils.data.Sampler): - def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True, make_even=True): - if num_replicas is None: - if not torch.distributed.is_available(): - raise RuntimeError("Requires distributed package to be available") - num_replicas = torch.distributed.get_world_size() - if rank is None: - if not torch.distributed.is_available(): - raise RuntimeError("Requires distributed package to be available") - rank = torch.distributed.get_rank() - self.shuffle = shuffle - self.make_even = make_even - self.dataset = dataset - self.num_replicas = num_replicas - self.rank = rank - self.epoch = 0 - self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas)) - self.total_size = self.num_samples * self.num_replicas - indices = list(range(len(self.dataset))) - self.valid_length = len(indices[self.rank : self.total_size : self.num_replicas]) - - def __iter__(self): - if self.shuffle: - g = torch.Generator() - g.manual_seed(self.epoch) - indices = torch.randperm(len(self.dataset), generator=g).tolist() - else: - indices = list(range(len(self.dataset))) - if self.make_even: - if len(indices) < self.total_size: - if self.total_size - len(indices) < len(indices): - indices += indices[: (self.total_size - len(indices))] - else: - extra_ids = np.random.randint(low=0, high=len(indices), size=self.total_size - len(indices)) - indices += [indices[ids] for ids in extra_ids] - assert len(indices) == self.total_size - indices = indices[self.rank : self.total_size : self.num_replicas] - self.num_samples = len(indices) - return iter(indices) - - def __len__(self): - return self.num_samples - - def set_epoch(self, epoch): - self.epoch = epoch - - -def get_loader(args): - # min_val = -1024 - # max_val = 1024 - train_files, val_files, test_files = split_data(args) - - train_transform = transforms.Compose( - [ - transforms.LoadImaged(keys=["image", "label"]), - transforms.EnsureChannelFirstd(keys=["image", "label"]), - transforms.Orientationd(keys=["image", "label"], axcodes="RAS"), - ScaleIntensityRanged( - keys=["image"], a_min=args.a_min, a_max=args.a_max, b_min=args.b_min, b_max=args.b_max, clip=True - ), - # transforms.Resized(keys=["image", "label"], spatial_size=[512, 512, -1], mode=["trilinear", "nearest"]), - # SpatialPadd(keys=["image", "label"], spatial_size=[256, 256, -1]), - # transforms.CropForegroundd(keys=["image", "label"], source_key="image") - # transforms.Spacingd(keys=["image", "label"], pixdim=[3.0, 3.0, 3.0], mode=["bilinear", "nearest"]) - # transforms.SpatialPadd - ] - ) - - val_transform = transforms.Compose( - [ - transforms.LoadImaged(keys=["image", "label"]), - transforms.EnsureChannelFirstd(keys=["image", "label"]), - transforms.Orientationd(keys=["image", "label"], axcodes="RAS"), - ScaleIntensityRanged( - keys=["image"], a_min=args.a_min, a_max=args.a_max, b_min=args.b_min, b_max=args.b_max, clip=True - ), - # transforms.CropForegroundd(keys=["image", "label"], source_key="image"), - # transforms.Spacingd(keys=["image", "label"], pixdim=[1.0, 1.0, 1.0], mode=["bilinear", "nearest"]) - ] - ) - - if args.test_mode: - pass - else: - datalist = train_files - if args.use_normal_dataset: - train_ds = data.Dataset(data=datalist[:1], transform=train_transform) - else: - if args.distributed: - datalist = data.partition_dataset( - data=datalist, - shuffle=True, - num_partitions=args.world_size, - even_divisible=True, - )[args.rank] - - train_ds = data.CacheDataset( - data=datalist, - transform=train_transform, - cache_rate=1.0, - num_workers=args.workers, - ) - # train_sampler = Sampler(train_ds) if args.distributed else None - train_sampler = None - - train_loader = data.DataLoader( - train_ds, - batch_size=args.batch_size, - shuffle=(train_sampler is None), - num_workers=args.workers, - sampler=train_sampler, - pin_memory=True, - ) - val_files = val_files - if args.distributed: - val_files = data.partition_dataset( - data=val_files, - shuffle=False, - num_partitions=args.world_size, - even_divisible=False, - )[args.rank] - val_ds = data.CacheDataset( - data=val_files, - transform=val_transform, - cache_rate=1.0, - num_workers=args.workers, - ) - val_sampler = None # Sampler(val_ds, shuffle=False) if args.distributed else None - val_loader = data.DataLoader( - val_ds, batch_size=1, shuffle=False, num_workers=args.workers, sampler=val_sampler, pin_memory=True - ) - loader = [train_loader, val_loader] - - return loader - - -def split_data(args): - data_dir = args.data_dir - import json - - with open(args.json_list, "r") as f: - json_data = json.load(f) - - list_train = [] - list_valid = [] - if "validation" in json_data.keys(): - list_train = json_data["training"] - list_valid = json_data["validation"] - list_test = json_data["testing"] - else: - for item in json_data["training"]: - if item["fold"] == args.fold: - item.pop("fold", None) - list_valid.append(item) - else: - item.pop("fold", None) - list_train.append(item) - if "testing" in json_data.keys() and "label" in json_data["testing"][0]: - list_test = json_data["testing"] - else: - list_test = copy.deepcopy(list_valid) - if args.splitval > 0: - list_train = sorted(list_train, key=lambda x: x["image"]) - l = int((len(list_train) + len(list_valid)) * args.splitval) - list_valid = list_train[-l:] - list_train = list_train[:-l] - - if hasattr(args, "rank") and args.rank == 0: - print("train files", len(list_train), [os.path.basename(_["image"]).split(".")[0] for _ in list_train]) - print("val files", len(list_valid), [os.path.basename(_["image"]).split(".")[0] for _ in list_valid]) - print("test files", len(list_test), [os.path.basename(_["image"]).split(".")[0] for _ in list_test]) - - # training data - files = [] - for _i in range(len(list_train)): - str_img = os.path.join(data_dir, list_train[_i]["image"]) - str_seg = os.path.join(data_dir, list_train[_i]["label"]) - - if (not os.path.exists(str_img)) or (not os.path.exists(str_seg)): - continue - - files.append({"image": str_img, "label": str_seg}) - - train_files = copy.deepcopy(files) - - files = [] - for _i in range(len(list_valid)): - str_img = os.path.join(data_dir, list_valid[_i]["image"]) - str_seg = os.path.join(data_dir, list_valid[_i]["label"]) - - if (not os.path.exists(str_img)) or (not os.path.exists(str_seg)): - continue - - files.append({"image": str_img, "label": str_seg}) - val_files = copy.deepcopy(files) - - files = [] - for _i in range(len(list_test)): - str_img = os.path.join(data_dir, list_test[_i]["image"]) - str_seg = os.path.join(data_dir, list_test[_i]["label"]) - - if (not os.path.exists(str_img)) or (not os.path.exists(str_seg)): - continue - - files.append({"image": str_img, "label": str_seg}) - test_files = copy.deepcopy(files) - # return train_files[:2], val_files[:2], test_files - return train_files, val_files, test_files - - -if __name__ == "__main__": - import argparse - - parser = argparse.ArgumentParser(description="dummy parser") - args = parser.parse_args() - args.data_dir = "/mnt/3td1/dummy_totalsegmentator_104" - args.json_list = "/home/pengfeig/code/samm_2pt5/dummy_totalsegmentator_104organs_folds_v2.json" - args.fold = 0 - args.splitval = 0 - train_files, val_files, test_files = split_data(args=args) - args.use_normal_dataset = True - args.test_mode = False - args.distributed = False - args.batch_size = 1 - args.workers = 0 - loaders = get_loader(args) - d = next(iter(loaders[0])) - volume = torch.squeeze(d["image"]) - import matplotlib - - matplotlib.use("TkAgg") - import matplotlib.pyplot as plt - - plt.imshow(volume[..., 50], cmap="gray") - plt.show() - print() diff --git a/monailabel/monaivista/lib/model/vista_point_2pt5/utils/utils.py b/monailabel/monaivista/lib/model/vista_point_2pt5/utils/utils.py deleted file mode 100644 index 695aeee..0000000 --- a/monailabel/monaivista/lib/model/vista_point_2pt5/utils/utils.py +++ /dev/null @@ -1,142 +0,0 @@ -# Copyright 2020 - 2022 MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import numpy as np -import scipy.ndimage as ndimage -import torch - -SAM_IMAGE_SIZE = 1024 - - -def resample_3d(img, target_size): - imx, imy, imz = img.shape - tx, ty, tz = target_size - zoom_ratio = (float(tx) / float(imx), float(ty) / float(imy), float(tz) / float(imz)) - img_resampled = ndimage.zoom(img, zoom_ratio, order=0, prefilter=False) - return img_resampled - - -def dice(x, y): - intersect = np.sum(np.sum(np.sum(x * y))) - y_sum = np.sum(np.sum(np.sum(y))) - if y_sum == 0: - return 0.0 - x_sum = np.sum(np.sum(np.sum(x))) - return 2 * intersect / (x_sum + y_sum) - - -class AverageMeter(object): - def __init__(self): - self.reset() - - def reset(self): - self.val = 0 - self.avg = 0 - self.sum = 0 - self.count = 0 - - def update(self, val, n=1): - self.val = val - self.sum += val * n - self.count += n - self.avg = np.where(self.count > 0, self.sum / self.count, self.sum) - - -def distributed_all_gather( - tensor_list, valid_batch_size=None, out_numpy=False, world_size=None, no_barrier=False, is_valid=None -): - if world_size is None: - world_size = torch.distributed.get_world_size() - if valid_batch_size is not None: - valid_batch_size = min(valid_batch_size, world_size) - elif is_valid is not None: - is_valid = torch.tensor(bool(is_valid), dtype=torch.bool, device=tensor_list[0].device) - if not no_barrier: - torch.distributed.barrier() - tensor_list_out = [] - with torch.no_grad(): - if is_valid is not None: - is_valid_list = [torch.zeros_like(is_valid) for _ in range(world_size)] - torch.distributed.all_gather(is_valid_list, is_valid) - is_valid = [x.item() for x in is_valid_list] - for tensor in tensor_list: - gather_list = [torch.zeros_like(tensor) for _ in range(world_size)] - torch.distributed.all_gather(gather_list, tensor) - if valid_batch_size is not None: - gather_list = gather_list[:valid_batch_size] - elif is_valid is not None: - gather_list = [g for g, v in zip(gather_list, is_valid_list) if v] - if out_numpy: - gather_list = [t.cpu().numpy() for t in gather_list] - tensor_list_out.append(gather_list) - return tensor_list_out - - -def prepare_sam_val_input(inputs, class_prompts, point_prompts, start_idx, original_affine=None, device=None): - # Don't exclude background in val but will ignore it in metric calculation - H, W = inputs.shape[1:] - foreground_all = point_prompts["foreground"] - background_all = point_prompts["background"] - - class_list = [[i + 1] for i in class_prompts] - unique_labels = torch.tensor(class_list).long() - if device == "cuda" or (isinstance(device, torch.device) and device.type == "cuda"): - unique_labels = unique_labels.cuda() - - volume_point_coords = [cp for cp in foreground_all] - volume_point_labels = [1] * len(foreground_all) - - for cp in background_all: - volume_point_coords.append(cp) - volume_point_labels.append(0) - - point_coords = [[]] - point_labels = [[]] - - # Reoriente point coord if not in RAS - if original_affine is not None: - IJK2orientation = np.diag(original_affine[:3, :3]) - negative_indices = np.where(IJK2orientation < 0)[0] - if len(negative_indices) > 0: - for idx, c in enumerate(volume_point_coords): - volume_point_coords[idx][negative_indices[0]] = H - volume_point_coords[idx][negative_indices[0]] - volume_point_coords[idx][negative_indices[1]] = W - volume_point_coords[idx][negative_indices[1]] - - for idx, cp in enumerate(volume_point_coords): - if cp[2] + 4 == start_idx: - new_H = cp[0] * (SAM_IMAGE_SIZE / H) - new_W = cp[1] * (SAM_IMAGE_SIZE / W) - point_coords[0].append([new_H, new_W]) - point_labels[0].append(volume_point_labels[idx]) - - if len(point_coords[0]) == 0: - point_coords = None - point_labels = None - - prepared_input = [{"image": inputs, "original_size": tuple(inputs.shape[1:])}] - - if len(class_prompts) == 0: - class_enabled = False - else: - class_enabled = True - if class_enabled: - prepared_input[0].update({"labels": unique_labels}) - - if point_coords: - point_coords = torch.tensor(point_coords).long() - point_labels = torch.tensor(point_labels).long() - if device == "cuda" or (isinstance(device, torch.device) and device.type == "cuda"): - point_coords = point_coords.cuda() - point_labels = point_labels.cuda() - - prepared_input[0].update({"point_coords": point_coords, "point_labels": point_labels}) - - return prepared_input, unique_labels diff --git a/monailabel/monaivista/lib/model/vista_point_2pt5/vista_2pt5_image_encoder.py b/monailabel/monaivista/lib/model/vista_point_2pt5/vista_2pt5_image_encoder.py deleted file mode 100644 index 166794e..0000000 --- a/monailabel/monaivista/lib/model/vista_point_2pt5/vista_2pt5_image_encoder.py +++ /dev/null @@ -1,138 +0,0 @@ -# Copyright (c) MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. - -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -from typing import Tuple, Type - -import torch -import torch.nn as nn -from segment_anything.modeling.image_encoder import ImageEncoderViT, PatchEmbed - - -# This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py -class VistaImageEncoderViT(ImageEncoderViT): - def __init__( - self, - img_size: int = 1024, - patch_size: int = 16, - in_chans: int = 3, - embed_dim: int = 768, - depth: int = 12, - num_heads: int = 12, - mlp_ratio: float = 4.0, - out_chans: int = 256, - qkv_bias: bool = True, - norm_layer: Type[nn.Module] = nn.LayerNorm, - act_layer: Type[nn.Module] = nn.GELU, - use_abs_pos: bool = True, - use_rel_pos: bool = False, - rel_pos_zero_init: bool = True, - window_size: int = 0, - global_attn_indexes: Tuple[int, ...] = (), - patch_embed_3d: bool = False, - ) -> None: - """ - Args: - img_size (int): Input image size. - patch_size (int): Patch size. - in_chans (int): Number of input image channels. - embed_dim (int): Patch embedding dimension. - depth (int): Depth of ViT. - num_heads (int): Number of attention heads in each ViT block. - mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. - qkv_bias (bool): If True, add a learnable bias to query, key, value. - norm_layer (nn.Module): Normalization layer. - act_layer (nn.Module): Activation layer. - use_abs_pos (bool): If True, use absolute positional embeddings. - use_rel_pos (bool): If True, add relative positional embeddings to the attention map. - rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. - window_size (int): Window size for window attention blocks. - global_attn_indexes (list): Indexes for blocks using global attention. - patch_embed_3d (bool): If True, use 3D Patch Embedding. - """ - super().__init__( - img_size, - patch_size, - in_chans, - embed_dim, - depth, - num_heads, - mlp_ratio, - out_chans, - qkv_bias, - norm_layer, - act_layer, - use_abs_pos, - use_rel_pos, - rel_pos_zero_init, - window_size, - global_attn_indexes, - ) - - self.img_size = img_size - - if in_chans > 3 and patch_embed_3d: - print("ImageEncoderViT: Using 3D PatchEmbed") - self.patch_embed = PatchEmbed2pt5D( - kernel_size=(patch_size, patch_size, in_chans // 3), - stride=(patch_size, patch_size, in_chans // 3), - in_chans=3, - embed_dim=embed_dim, - ) - else: - self.patch_embed = PatchEmbed( - kernel_size=(patch_size, patch_size), - stride=(patch_size, patch_size), - in_chans=in_chans, - embed_dim=embed_dim, - ) - - -class PatchEmbed2pt5D(nn.Module): - """ - Image to Patch Embedding by 3D Conv. - """ - - def __init__( - self, - kernel_size: Tuple[int, int, int] = (16, 16, 1), - stride: Tuple[int, int, int] = (16, 16, 1), - padding: Tuple[int, int, int] = (0, 0, 0), - in_chans: int = 3, - embed_dim: int = 768, - ) -> None: - """ - Args: - kernel_size (Tuple): kernel size of the projection layer. - stride (Tuple): stride of the projection layer. - padding (Tuple): padding size of the projection layer. - in_chans (int): Number of input image channels. - embed_dim (int): embed_dim (int): Patch embedding dimension. - """ - super().__init__() - - self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding) - - def forward(self, x: torch.Tensor) -> torch.Tensor: - # got restore RGB channel dim and the depth dim - c = x.shape[1] - x = torch.stack(x.chunk(c // 3, dim=1), dim=-1) - x = self.proj(x) - # remove dummy depth dim to make it 2d - x = x.squeeze(-1) - # B C H W -> B H W C - x = x.permute(0, 2, 3, 1) - return x diff --git a/monailabel/monaivista/lib/model/vista_point_2pt5/vista_2pt5_prompt_encoder.py b/monailabel/monaivista/lib/model/vista_point_2pt5/vista_2pt5_prompt_encoder.py deleted file mode 100644 index 16958e2..0000000 --- a/monailabel/monaivista/lib/model/vista_point_2pt5/vista_2pt5_prompt_encoder.py +++ /dev/null @@ -1,148 +0,0 @@ -# Copyright (c) MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. - -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -from typing import Any, Optional, Tuple, Type - -import numpy as np -import torch -from segment_anything.modeling.common import LayerNorm2d -from segment_anything.modeling.prompt_encoder import PromptEncoder -from torch import nn - - -class VistaPromptEncoder(PromptEncoder): - def __init__( - self, - embed_dim: int, - image_embedding_size: Tuple[int, int], - input_image_size: Tuple[int, int], - mask_in_chans: int, - activation: Type[nn.Module] = nn.GELU, - n_classes: int = 512, - clip_class_label_prompt: bool = False, - ) -> None: - """ - Encodes prompts for input to Segment Anything Model's mask decoder. - - Arguments: - embed_dim (int): The prompts' embedding dimension - image_embedding_size (tuple(int, int)): The spatial size of the - image embedding, as (H, W). - input_image_size (int): The padded size of the image as input - to the image encoder, as (H, W). - mask_in_chans (int): The number of hidden channels used for - encoding input masks. - activation (nn.Module): The activation to use when encoding - input masks. - n_classes (int): The number of pre-defined classes. - clip_class_label_prompt (bool): Using clip txt features - as class label prompt. - """ - super().__init__(embed_dim, image_embedding_size, input_image_size, mask_in_chans, activation) - - self.clip_class_label_prompt = clip_class_label_prompt - # Add support for onehot vector embedding for pre-defined classes - if self.clip_class_label_prompt: - raise NotImplementedError - else: - self.label_embeddings = nn.Embedding(n_classes, embed_dim) - self.no_label_embed = nn.Embedding(1, embed_dim) - - def _embed_labels(self, labels: torch.Tensor) -> torch.Tensor: - """Embeds onehot vector inputs.""" - if self.clip_class_label_prompt: - raise NotImplementedError - else: - # Add support for onehot vector embedding for pre-defined classes - label_embedding = self.label_embeddings(labels) - return label_embedding - - def _get_batch_size( - self, - points: Optional[Tuple[torch.Tensor, torch.Tensor]], - boxes: Optional[torch.Tensor], - masks: Optional[torch.Tensor], - labels: Optional[torch.Tensor], - ) -> int: - """ - Gets the batch size of the output given the batch size of the input prompts. - """ - if points is not None: - return points[0].shape[0] - elif boxes is not None: - return boxes.shape[0] - elif masks is not None: - return masks.shape[0] - elif labels is not None: - return labels.shape[0] - else: - return 1 - - def forward( - self, - points: Optional[Tuple[torch.Tensor, torch.Tensor]], - boxes: Optional[torch.Tensor], - masks: Optional[torch.Tensor], - class_labels: Optional[torch.Tensor], - ) -> Tuple[torch.Tensor, torch.Tensor]: - """ - Embeds different types of prompts, returning both sparse and dense - embeddings. - - Arguments: - points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates - and labels to embed. - boxes (torch.Tensor or none): boxes to embed - masks (torch.Tensor or none): masks to embed - class_labels (torch.Tensor or none): labels to embed - - Returns: - torch.Tensor: sparse embeddings for the points and boxes, with shape - BxNx(embed_dim), where N is determined by the number of input points - and boxes. - torch.Tensor: dense embeddings for the masks, in the shape - Bx(embed_dim)x(embed_H)x(embed_W) - """ - bs = self._get_batch_size(points, boxes, masks, class_labels) - - # Add support for onehot vector embedding for pre-defined classes - if class_labels is not None: - label_embeddings = self._embed_labels(class_labels) - else: - label_embeddings = self.no_label_embed.weight.reshape(1, 1, -1).expand(bs, -1, -1) - - sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self._get_device()) - - # Add support for onehot vector embedding for pre-defined classes - sparse_embeddings = torch.cat([sparse_embeddings, label_embeddings], dim=1) - - if points is not None: - coords, labels = points - point_embeddings = self._embed_points(coords, labels, pad=(boxes is None)) - sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1) - if boxes is not None: - box_embeddings = self._embed_boxes(boxes) - sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1) - - if masks is not None: - dense_embeddings = self._embed_masks(masks) - else: - dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand( - bs, -1, self.image_embedding_size[0], self.image_embedding_size[1] - ) - - return sparse_embeddings, dense_embeddings diff --git a/monailabel/monaivista/lib/trainers/__init__.py b/monailabel/monaivista/lib/trainers/__init__.py deleted file mode 100644 index 1e97f89..0000000 --- a/monailabel/monaivista/lib/trainers/__init__.py +++ /dev/null @@ -1,10 +0,0 @@ -# Copyright (c) MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. diff --git a/monailabel/monaivista/lib/transforms/__init__.py b/monailabel/monaivista/lib/transforms/__init__.py deleted file mode 100644 index 1e97f89..0000000 --- a/monailabel/monaivista/lib/transforms/__init__.py +++ /dev/null @@ -1,10 +0,0 @@ -# Copyright (c) MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. diff --git a/monailabel/monaivista/lib/transforms/transforms.py b/monailabel/monaivista/lib/transforms/transforms.py deleted file mode 100644 index 65a509b..0000000 --- a/monailabel/monaivista/lib/transforms/transforms.py +++ /dev/null @@ -1,528 +0,0 @@ -# Copyright (c) MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -import copy -import logging -from typing import Dict, Hashable, Mapping - -import numpy as np -import torch -from monai.config import KeysCollection, NdarrayOrTensor -from monai.transforms import ( - CropForeground, - GaussianSmooth, - Randomizable, - Resize, - ScaleIntensity, - SpatialCrop, -) -from monai.transforms.transform import MapTransform, Transform - -logger = logging.getLogger(__name__) - -THRESHOLD_DIC = { - "Spleen": 0.5, - "Right Kidney": 0.5, - "Left Kidney": 0.5, - "Gall Bladder": 0.5, - "Esophagus": 0.5, - "Liver": 0.5, - "Stomach": 0.5, - "Arota": 0.5, - "Postcava": 0.5, - "Portal Vein and Splenic Vein": 0.5, - "Pancreas": 0.5, - "Right Adrenal Gland": 0.5, - "Left Adrenal Gland": 0.5, - "Duodenum": 0.5, - "Hepatic Vessel": 0.5, - "Right Lung": 0.5, - "Left Lung": 0.5, - "Colon": 0.5, - "Intestine": 0.5, - "Rectum": 0.5, - "Bladder": 0.5, - "Prostate": 0.5, - "Left Head of Femur": 0.5, - "Right Head of Femur": 0.5, - "Celiac Truck": 0.5, - "Kidney Tumor": 0.5, - "Liver Tumor": 0.5, - "Pancreas Tumor": 0.5, - "Hepatic Vessel Tumor": 0.5, - "Lung Tumor": 0.5, - "Colon Tumor": 0.5, - "Kidney Cyst": 0.5, -} - - -THRESHOLD_DIC_PRO = { - "spleen": 0.5, - "Right Kidney": 0.5, - "Left Kidney": 0.5, - "Gall Bladder": 0.5, - "Esophagus": 0.5, - "Liver": 0.5, - "Stomach": 0.5, - "Arota": 0.5, - "Postcava": 0.5, - "Portal Vein and Splenic Vein": 0.5, - "Pancreas": 0.5, - "Right Adrenal Gland": 0.5, - "Left Adrenal Gland": 0.5, - "Duodenum": 0.5, - "Hepatic Vessel": 0.5, - "Right Lung": 0.5, - "Left Lung": 0.5, - "Colon": 0.5, - "Intestine": 0.5, - "Rectum": 0.5, - "Bladder": 0.5, - "Prostate": 0.5, - "Left Head of Femur": 0.5, - "Right Head of Femur": 0.5, - "Celiac Truck": 0.5, - "Kidney Tumor": 0.5, - "Liver Tumor": 0.5, - "Pancreas Tumor": 0.5, - "Hepatic Vessel Tumor": 0.5, - "Lung Tumor": 0.5, - "Colon Tumor": 0.5, - "Kidney Cyst": 0.5, - "Left Lung Upper Lobe": 0.5, - "Left Lung Lower Lobe": 0.5, - "Right Lung Upper Lobe": 0.5, - "Right Lung Middle Lobe": 0.5, - "Right Lung Lower Lobe": 0.5, - "Vertebrae L5": 0.5, - "Vertebrae L4": 0.5, - "Vertebrae L3": 0.5, - "Vertebrae L2": 0.5, - "Vertebrae L1": 0.5, - "Vertebrae T12": 0.5, - "Vertebrae T11": 0.5, - "Vertebrae T10": 0.5, - "Vertebrae T9": 0.5, - "Vertebrae T8": 0.5, - "Vertebrae T7": 0.5, - "Vertebrae T6": 0.5, - "Vertebrae T5": 0.5, - "Vertebrae T4": 0.5, - "Vertebrae T3": 0.5, - "Vertebrae T2": 0.5, - "Vertebrae T1": 0.5, - "Vertebrae C7": 0.5, - "Vertebrae C6": 0.5, - "Vertebrae C5": 0.5, - "Vertebrae C4": 0.5, - "Vertebrae C3": 0.5, - "Vertebrae C2": 0.5, - "Vertebrae C1": 0.5, - "Trachea": 0.5, - "Heart Myocardium": 0.5, - "Left Heart Atrium": 0.5, - "Left Heart Ventricle": 0.5, - "Right Heart Atrium": 0.5, - "Right Heart Ventricle": 0.5, - "Pulmonary Artery": 0.5, - "Brain": 0.5, - "Left Iliac Artery": 0.5, - "Right Iliac Artery": 0.5, - "Left Iliac Vena": 0.5, - "Right Iliac Vena": 0.5, - "Small Bowel": 0.5, - "Left Rib 1": 0.5, - "Left Rib 2": 0.5, - "Left Rib 3": 0.5, - "Left Rib 4": 0.5, - "Left Rib 5": 0.5, - "Left Rib 6": 0.5, - "Left Rib 7": 0.5, - "Left Rib 8": 0.5, - "Left Rib 9": 0.5, - "Left Rib 10": 0.5, - "Left Rib 11": 0.5, - "Left Rib 12": 0.5, - "Right Rib 1": 0.5, - "Right Rib 2": 0.5, - "Right Rib 3": 0.5, - "Right Rib 4": 0.5, - "Right Rib 5": 0.5, - "Right Rib 6": 0.5, - "Right Rib 7": 0.5, - "Right Rib 8": 0.5, - "Right Rib 9": 0.5, - "Right Rib 10": 0.5, - "Right Rib 11": 0.5, - "Right Rib 12": 0.5, - "Left Humerus": 0.5, - "Right Humerus": 0.5, - "Left Scapula": 0.5, - "Right Scapula": 0.5, - "Left Clavicula": 0.5, - "Right Clavicula": 0.5, - "Left Hip": 0.5, - "Right Hip": 0.5, - "Sacrum": 0.5, - "Face": 0.5, - "Left Gluteus Maximus": 0.5, - "Right Gluteus Maximus": 0.5, - "Left Gluteus Medius": 0.5, - "Right Gluteus Medius": 0.5, - "Left Gluteus Minimus": 0.5, - "Right Gluteus Minimus": 0.5, - "Left Autochthon": 0.5, - "Right Autochthon": 0.5, - "Left iliopsoas": 0.5, - "Right iliopsoas": 0.5, -} - - -class BinaryMaskd(MapTransform): - def __init__(self, keys: KeysCollection, allow_missing_keys: bool = False): - """ - Convert to single label - This should actually create the heat map for the first stage - - :param keys: The ``keys`` parameter will be used to get and set the actual data item to transform - - """ - super().__init__(keys, allow_missing_keys) - - def __call__(self, data): - d: Dict = dict(data) - for key in self.key_iterator(d): - d[key][d[key] > 0] = 1 - return d - - -class PlaceCroppedAread(MapTransform): - def __init__(self, keys: KeysCollection, allow_missing_keys: bool = False): - """ - Place the ROI predicted in the full image - - :param keys: The ``keys`` parameter will be used to get and set the actual data item to transform - - """ - super().__init__(keys, allow_missing_keys) - - def __call__(self, data): - d: Dict = dict(data) - for _ in self.key_iterator(d): - final_pred = np.zeros( - (1, d["original_size"][-3], d["original_size"][-2], d["original_size"][-1]), dtype=np.float32 - ) - # Undo/invert the resize of d["pred"] # - d["pred"] = Resize(spatial_size=d["cropped_size"], mode="nearest")(d["pred"]) - final_pred[ - :, - d["slices_cropped"][-3][0] : d["slices_cropped"][-3][1], - d["slices_cropped"][-2][0] : d["slices_cropped"][-2][1], - d["slices_cropped"][-1][0] : d["slices_cropped"][-1][1], - ] = d["pred"] - d["pred"] = final_pred * int(d["current_label"]) - return d - - -class CropAndCreateSignald(MapTransform): - def __init__(self, keys: KeysCollection, signal_key, allow_missing_keys: bool = False): - """ - Based on the centroids: - - 1/ Crop the image around the centroid, - 2/ Create Gaussian smoothed signal - - :param keys: The ``keys`` parameter will be used to get and set the actual data item to transform - - """ - super().__init__(keys, allow_missing_keys) - self.signal_key = signal_key - - def __call__(self, data): - d: Dict = dict(data) - for key in self.key_iterator(d): - ########### - # Crop the image - ########### - d["current_label"] = list(d["centroids"][0].values())[0][-4] - - ( - x, - y, - z, - ) = ( - list(d["centroids"][0].values())[0][-3], - list(d["centroids"][0].values())[0][-2], - list(d["centroids"][0].values())[0][-1], - ) - current_size = d[key].shape[1:] - original_size = d[key].meta["spatial_shape"] - x = int(x * current_size[0] / original_size[0]) - y = int(y * current_size[1] / original_size[1]) - z = int(z * current_size[2] / original_size[2]) - - # Cropping - cropper = SpatialCrop(roi_center=[x, y, z], roi_size=(96, 96, 64)) - - slices_cropped = [ - [cropper.slices[-3].start, cropper.slices[-3].stop], - [cropper.slices[-2].start, cropper.slices[-2].stop], - [cropper.slices[-1].start, cropper.slices[-1].stop], - ] - d["slices_cropped"] = slices_cropped - d[key] = cropper(d[key]) - - cropped_size = d[key].shape[1:] - d["cropped_size"] = cropped_size - - ################################# - # Create signal based on centroid - ################################# - signal = torch.zeros_like(d[key]) - signal[:, cropped_size[0] // 2, cropped_size[1] // 2, cropped_size[2] // 2] = 1.0 - - sigma = 1.6 + (d["current_label"] - 1.0) * 0.1 - signal = GaussianSmooth(sigma)(signal) - d[self.signal_key] = signal - - return d - - -class GetOriginalInformation(MapTransform): - def __init__(self, keys: KeysCollection, allow_missing_keys: bool = False): - """ - Get information from original image - - """ - super().__init__(keys, allow_missing_keys) - - def __call__(self, data): - d: Dict = dict(data) - for key in self.key_iterator(d): - d["original_size"] = d[key].shape[-3], d[key].shape[-2], d[key].shape[-1] - return d - - -class AddCentroidFromClicks(Transform, Randomizable): - def __init__(self, label_names, key_label="label", key_clicks="foreground", key_centroids="centroids"): - self.label_names = label_names - self.key_label = key_label - self.key_clicks = key_clicks - self.key_centroids = key_centroids - - def __call__(self, data): - d: Dict = dict(data) - - clicks = d.get(self.key_clicks, []) - if clicks: - label = d.get(self.key_label, "label") - label_idx = self.label_names.get(label, 0) - for click in clicks: - d[self.key_centroids] = [{f"label_{label_idx}": [label_idx, click[-3], click[-2], click[-1]]}] - - logger.info(f"Using Centroid: {label} => {d[self.key_centroids]}") - return d - - -class CacheObjectd(MapTransform): - def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: - d: Dict = dict(data) - for key in self.key_iterator(d): - cache_key = f"{key}_cached" - if d.get(cache_key) is None: - d[cache_key] = copy.deepcopy(d[key]) - return d - - -class ThreshMergeLabeld(MapTransform): - def __init__(self, keys: KeysCollection, allow_missing_keys: bool = False): - """ - Normalize label values according to label names dictionary - - Args: - keys: The ``keys`` parameter will be used to get and set the actual data item to transform - label_names: all label names - """ - super().__init__(keys, allow_missing_keys) - - def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: - d: Dict = dict(data) - class_prompts = d.get("class_prompts", None) - for key in self.key_iterator(d): - C, W, H, D = d[key].shape - - threshold_list = [] - if class_prompts: - for organ in class_prompts: - for idx, k in enumerate(THRESHOLD_DIC.keys()): - if organ == idx: - threshold_list.append(THRESHOLD_DIC[k]) - else: - for k, value in THRESHOLD_DIC.items(): - threshold_list.append(value) - threshold_list = torch.tensor(threshold_list).repeat(1).reshape(len(threshold_list), 1, 1, 1).cuda() - - pred_hard = d[key] > threshold_list - - print("in post transform before merge pred shape: {}".format(pred_hard.shape)) - new_pred = torch.zeros(1, W, H, D) - - if class_prompts: - for idx, item in enumerate(class_prompts): - new_pred[0][pred_hard[idx] == 1] = item + 1 - else: - for i in range(d[key].shape[0]): - new_pred[0][pred_hard[i] == 1] = i + 1 - - print("in post transform after merge pred shape: {}".format(new_pred.shape)) - print("Hey values: {}".format(np.unique(new_pred))) - - d[key] = new_pred - return d - - -class ThreshMergeLabelProd(MapTransform): - def __init__(self, keys: KeysCollection, allow_missing_keys: bool = False): - """ - Normalize label values according to label names dictionary - - Args: - keys: The ``keys`` parameter will be used to get and set the actual data item to transform - label_names: all label names - """ - super().__init__(keys, allow_missing_keys) - - def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: - d: Dict = dict(data) - class_prompts = d.get("class_prompts", None) - for key in self.key_iterator(d): - C, W, H, D = d[key].shape - - threshold_list = [] - if class_prompts: - for organ in class_prompts: - for idx, k in enumerate(THRESHOLD_DIC_PRO.keys()): - if organ == idx: - threshold_list.append(THRESHOLD_DIC_PRO[k]) - else: - for k, value in THRESHOLD_DIC_PRO.items(): - threshold_list.append(value) - threshold_list = torch.tensor(threshold_list).repeat(1).reshape(len(threshold_list), 1, 1, 1).cuda() - - pred_hard = d[key] > threshold_list - - print("in post transform before merge pred shape: {}".format(pred_hard.shape)) - new_pred = torch.zeros(1, W, H, D) - - if class_prompts: - for idx, item in enumerate(class_prompts): - new_pred[0][pred_hard[idx] == 1] = item + 1 - else: - for i in range(d[key].shape[0]): - new_pred[0][pred_hard[i] == 1] = i + 1 - - print("in post transform after merge pred shape: {}".format(new_pred.shape)) - print("Hey values: {}".format(np.unique(new_pred))) - - d[key] = new_pred - return d - - -class ThreshMergeLabeld_bk(MapTransform): - def __init__(self, keys: KeysCollection, allow_missing_keys: bool = False): - """ - Normalize label values according to label names dictionary - - Args: - keys: The ``keys`` parameter will be used to get and set the actual data item to transform - label_names: all label names - """ - super().__init__(keys, allow_missing_keys) - - def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: - d: Dict = dict(data) - class_prompts = None - for key in self.key_iterator(d): - C, W, H, D = d[key].shape - - threshold_list = [] - - if class_prompts: - for organ in class_prompts: - for idx, k in enumerate(THRESHOLD_DIC.keys()): - if organ == idx: - threshold_list.append(THRESHOLD_DIC[k]) - else: - for k, value in THRESHOLD_DIC.items(): - threshold_list.append(value) - threshold_list = torch.tensor(threshold_list).repeat(1).reshape(len(threshold_list), 1, 1, 1).cuda() - - pred_hard = d[key] > threshold_list - - print("in post transform before merge pred shape: {}".format(pred_hard.shape)) - new_pred = torch.zeros(1, W, H, D) - - if class_prompts: - for idx, item in enumerate(class_prompts): - new_pred[0][pred_hard[idx] == 1] = item + 1 - else: - for i in range(d[key].shape[0]): - new_pred[0][pred_hard[i] == 1] = i + 1 - - print("in post transform after merge pred shape: {}".format(new_pred.shape)) - - d[key].array = new_pred - return d - - -class ThreshMergeLabelPFd(MapTransform): - def __init__(self, keys: KeysCollection, allow_missing_keys: bool = False): - """ - Normalize label values according to label names dictionary - - Args: - keys: The ``keys`` parameter will be used to get and set the actual data item to transform - label_names: all label names - """ - super().__init__(keys, allow_missing_keys) - - def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: - d: Dict = dict(data) - class_prompts = d.get("class_prompts", None) - for key in self.key_iterator(d): - C, W, H, D = d[key].shape - - threshold_list = [] - if class_prompts: - for organ in class_prompts: - for idx, k in enumerate(THRESHOLD_DIC_PRO.keys()): - if organ == idx: - threshold_list.append(THRESHOLD_DIC_PRO[k]) - else: - for k, value in THRESHOLD_DIC_PRO.items(): - threshold_list.append(value) - threshold_list = torch.tensor(threshold_list).repeat(1).reshape(len(threshold_list), 1, 1, 1).cuda() - - pred_hard = d[key] > threshold_list - - print("in post transform before merge pred shape: {}".format(pred_hard.shape)) - new_pred = torch.zeros(1, W, H, D) - - if class_prompts: - for idx, item in enumerate(class_prompts): - new_pred[0][pred_hard[idx] == 1] = item + 1 - else: - for i in range(d[key].shape[0]): - new_pred[0][pred_hard[i] == 1] = i + 1 - - print("in post transform after merge pred shape: {}".format(new_pred.shape)) - print("Hey values: {}".format(np.unique(new_pred))) - - d[key] = new_pred - return d diff --git a/monailabel/monaivista/lib/writer.py b/monailabel/monaivista/lib/writer.py deleted file mode 100644 index b193225..0000000 --- a/monailabel/monaivista/lib/writer.py +++ /dev/null @@ -1,386 +0,0 @@ -# Copyright (c) MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import logging -import tempfile -from typing import Any, Dict, Iterable, List, Optional, Tuple - -import itk -import nrrd -import numpy as np -import torch -from monai.data import MetaTensor -from monai.data.image_writer import NibabelWriter -from monailabel.utils.others.detection import create_slicer_detection_json -from monailabel.utils.others.generic import file_ext -from monailabel.utils.others.pathology import ( - create_asap_annotations_xml, - create_dsa_annotations_json, -) - -logger = logging.getLogger(__name__) - - -def write_nifti(data, filename, affine=None, original_affine=None, output_dtype=np.float32): - writer = NibabelWriter(output_dtype=output_dtype) - writer.set_data_array(data, channel_dim=None, spatial_ndim=None) - writer.set_metadata({"affine": affine, "original_affine": original_affine}) - writer.write(filename) - - -def write_itk(image_np, output_file, affine, dtype, compress): - if isinstance(image_np, torch.Tensor): - image_np = image_np.numpy() - if isinstance(affine, torch.Tensor): - affine = affine.numpy() - if len(image_np.shape) >= 2: - image_np = image_np.transpose().copy() - if dtype: - image_np = image_np.astype(dtype) - - result_image = itk.image_from_array(image_np) - logger.debug(f"ITK Image size: {itk.size(result_image)}") - - # https://github.com/RSIP-Vision/medio/blob/master/medio/metadata/affine.py#L108-L121 - if affine is not None: - convert_aff_mat = np.diag([-1, -1, 1, 1]) - if affine.shape[0] == 3: # Handle RGB (2D Image) - convert_aff_mat = np.diag([-1, -1, 1]) - affine = convert_aff_mat @ affine - - dim = affine.shape[0] - 1 - _origin_key = (slice(-1), -1) - _m_key = (slice(-1), slice(-1)) - - origin = affine[_origin_key] - spacing = np.linalg.norm(affine[_m_key] @ np.eye(dim), axis=0) - direction = affine[_m_key] @ np.diag(1 / spacing) - - logger.debug(f"Affine: {affine}") - logger.debug(f"Origin: {origin}") - logger.debug(f"Spacing: {spacing}") - logger.debug(f"Direction: {direction}") - - result_image.SetDirection(itk.matrix_from_array(direction)) - result_image.SetSpacing(spacing) - result_image.SetOrigin(origin) - - itk.imwrite(result_image, output_file, compress) - - -def write_seg_nrrd( - image_np: np.ndarray, - output_file: str, - dtype: type, - affine: np.ndarray, - labels: List[str], - color_map: Optional[Dict[str, List[float]]] = None, - index_order: str = "C", - space: str = "left-posterior-superior", -) -> None: - """Write multi-channel seg.nrrd file. - - Args: - image_np: Image as numpy ndarray - output_file: Output file path that the seg.nrrd file should be saved to - dtype: numpy type e.g. float32 - affine: Affine matrix - labels: Labels of image segment which will be written to the nrrd header - color_map: Mapping from segment_name(str) to it's color e.g. {'heart': [255/255, 244/255, 209/255]} - index_order: Either 'C' or 'F' (see nrrd.write() documentation) - - Raises: - ValueError: In case affine is not provided - ValueError: In case labels are not provided - """ - if isinstance(image_np, torch.Tensor): - image_np = image_np.numpy() - if isinstance(affine, torch.Tensor): - affine = affine.numpy() - image_np = image_np.transpose().copy() - if dtype: - image_np = image_np.astype(dtype) - - if not isinstance(labels, Iterable): - raise ValueError("Labels have to be defined, e.g. as a list") - - header: Dict[str, Any] = {} - for i, segment_name in enumerate(labels): - header.update( - { - f"Segment{i}_ID": segment_name, - f"Segment{i}_Name": segment_name, - } - ) - if color_map is not None: - header[f"Segment{i}_Color"] = " ".join(list(map(str, color_map[segment_name]))) - - if affine is None: - raise ValueError("Affine matrix has to be defined") - - kinds = ["list", "domain", "domain", "domain"] - - convert_aff_mat = np.diag([-1, -1, 1, 1]) - affine = convert_aff_mat @ affine - - _origin_key = (slice(-1), -1) - origin = affine[_origin_key] - - space_directions = np.array( - [ - [np.nan, np.nan, np.nan], - affine[0, :3], - affine[1, :3], - affine[2, :3], - ] - ) - - header.update( - { - "kinds": kinds, - "space directions": space_directions, - "space origin": origin, - "space": space, - } - ) - nrrd.write( - output_file, - image_np, - header=header, - index_order=index_order, - ) - - -class Writer: - def __init__( - self, - label="pred", - json=None, - ref_image=None, - key_extension="result_extension", - key_dtype="result_dtype", - key_compress="result_compress", - key_write_to_file="result_write_to_file", - meta_key_postfix="meta_dict", - nibabel=False, - embedding=False, - ): - self.label = label - self.json = json - self.ref_image = ref_image if ref_image else label - - # User can specify through params - self.key_extension = key_extension - self.key_dtype = key_dtype - self.key_compress = key_compress - self.key_write_to_file = key_write_to_file - self.meta_key_postfix = meta_key_postfix - self.nibabel = nibabel - self.embedding = embedding - - def __call__(self, data) -> Tuple[Any, Any]: - logger.setLevel(data.get("logging", "INFO").upper()) - - path = data.get("image_path") - ext = file_ext(path) if path else None - dtype = data.get(self.key_dtype, None) - compress = data.get(self.key_compress, False) - write_to_file = data.get(self.key_write_to_file, True) - - ext = data.get(self.key_extension) if data.get(self.key_extension) else ext - write_to_file = write_to_file if ext else False - logger.info(f"Result ext: {ext}; write_to_file: {write_to_file}; dtype: {dtype}") - - if isinstance(data[self.label], MetaTensor): - image_np = data[self.label].array - else: - image_np = data[self.label] - - # Always using Restored as the last transform before writing - meta_dict = data.get(f"{self.ref_image}_{self.meta_key_postfix}") - affine = meta_dict.get("affine") if meta_dict else None - if affine is None and isinstance(data[self.ref_image], MetaTensor): - affine = data[self.ref_image].affine - - logger.debug(f"Image: {image_np.shape}; Data Image: {data[self.label].shape}") - - output_file = None - output_json = data.get(self.json, {}) - - if self.embedding: - write_to_file = False - output_file = tempfile.NamedTemporaryFile(suffix=ext).name - write_h5(image_np, output_file) - - if write_to_file: - output_file = tempfile.NamedTemporaryFile(suffix=ext).name - logger.debug(f"Saving Image to: {output_file}") - - if self.is_multichannel_image(image_np): - if ext != ".seg.nrrd": - logger.warning( - f"Using extension '{ext}' with multi-channel 4D label will probably fail" - + "Consider to use extension '.seg.nrrd'" - ) - labels = data.get("labels") - color_map = data.get("color_map") - logger.debug("Using write_seg_nrrd...") - write_seg_nrrd(image_np, output_file, dtype, affine, labels, color_map) - # Issue with slicer:: https://discourse.itk.org/t/saving-non-orthogonal-volume-in-nifti-format/2760/22 - elif self.nibabel and ext and ext.lower() in [".nii", ".nii.gz"]: - logger.debug("Using MONAI write_nifti...") - write_nifti(image_np, output_file, affine=affine, output_dtype=dtype) - else: - write_itk(image_np, output_file, affine if len(image_np.shape) > 2 else None, dtype, compress) - else: - output_file = image_np - - return output_file, output_json - - def is_multichannel_image(self, image_np: np.ndarray) -> bool: - """Check if the provided image contains multiple channels - - Args: - image_np : Expected shape (channels, width, height, batch) - - Returns: - bool: If this is a multi-channel image or not - """ - return len(image_np.shape) == 4 and image_np.shape[0] > 1 - - -def write_h5(data, filename, affine=None, original_affine=None, output_dtype=np.float32): - writer = NibabelWriter(output_dtype=output_dtype) - writer.set_data_array(data, channel_dim=None, spatial_ndim=None) - writer.set_metadata({"affine": affine, "original_affine": original_affine}) - writer.write(filename) - - -class ClassificationWriter: - def __init__(self, label="pred", label_names=None): - self.label = label - self.label_names = label_names - - def __call__(self, data) -> Tuple[Any, Any]: - logger.info(data[self.label].array) - - result = [] - for idx, score in enumerate(data[self.label]): - name = f"label_{idx}" - name = self.label_names.get(idx) if self.label_names else name - if name: - result.append({"idx": idx, "label": name, "score": float(score)}) - - return None, {"prediction": result} - - -class PolygonWriter: - def __init__( - self, - label="pred", - json="result", - key_write_to_file="result_write_to_file", - key_annotations="annotations", - key_label_colors="label_colors", - key_output_format="output", - ): - self.label = label - self.json = json - self.key_write_to_file = key_write_to_file - self.key_annotations = key_annotations - self.key_label_colors = key_label_colors - self.key_output_format = key_output_format - self.format = format - - def __call__(self, data) -> Tuple[Any, Any]: - loglevel = data.get("logging", "INFO").upper() - logger.setLevel(loglevel) - - output = data.get(self.key_output_format, "dsa") - logger.info(f"+++ Output Type: {output}") - - output_json = data.get(self.json, {}) - write_to_file = data.get(self.key_write_to_file, True) - if not write_to_file: - return None, output_json - - res_json = { - "name": f"MONAILabel Annotations - {data.get('model')}", - "description": data.get("description"), - "model": data.get("model"), - "location": data.get("location"), - "size": data.get("size"), - "annotations": [output_json], - "latencies": data.get("latencies"), - } - - output_file = None - if output == "asap": - logger.info("+++ Generating ASAP XML Annotation") - output_file, _ = create_asap_annotations_xml(res_json, loglevel=loglevel) - elif output == "dsa": - logger.info("+++ Generating DSA JSON Annotation") - output_file, _ = create_dsa_annotations_json(res_json, loglevel=loglevel) - else: - logger.info("+++ Return Default JSON Annotation") - - return output_file, res_json - - -class DetectionWriter: - def __init__( - self, - json="result", - pred_box_key="box", - pred_label_key="label", - key_write_to_file="result_write_to_file", - key_output_format="slicer", - ): - self.json = json - self.pred_box_key = pred_box_key - self.pred_label_key = pred_label_key - self.key_write_to_file = key_write_to_file - self.key_output_format = key_output_format - self.format = format - - def __call__(self, data) -> Tuple[Any, Any]: - loglevel = data.get("logging", "INFO").upper() - logger.setLevel(loglevel) - - output = data.get(self.key_output_format, "slicer") - logger.info(f"+++ Output Type: {output}") - - output_json = data.get(self.json, {}) - write_to_file = data.get(self.key_write_to_file, True) - if not write_to_file: - return None, output_json - - res_json = { - "name": f"MONAILabel Annotations - {data.get('model')}", - "description": data.get("description"), - "model": data.get("model"), - "location": data.get("location"), - "size": data.get("size"), - "box": data.get(self.pred_box_key).cpu().detach().tolist(), - "label": data.get(self.pred_label_key).cpu().detach().tolist(), - "image": data.get("image_path", None), - "latencies": data.get("latencies"), - } - - output_files = None - - if output == "slicer": - logger.info("+++ Generating Slicer Detection ROI Node JSON file") - output_files, _ = create_slicer_detection_json(res_json, loglevel=loglevel) - else: - logger.info("+++ Return Default JSON Annotation") - - return output_files, res_json diff --git a/monailabel/monaivista/main.py b/monailabel/monaivista/main.py deleted file mode 100644 index 963b1bd..0000000 --- a/monailabel/monaivista/main.py +++ /dev/null @@ -1,268 +0,0 @@ -# Copyright (c) MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import json -import logging -import os -from typing import Dict - -import lib.configs -from lib.class_utils import get_class_names -from monailabel.interfaces.app import MONAILabelApp -from monailabel.interfaces.config import TaskConfig -from monailabel.interfaces.datastore import Datastore -from monailabel.interfaces.tasks.infer_v2 import InferTask -from monailabel.interfaces.tasks.strategy import Strategy -from monailabel.interfaces.tasks.train import TrainTask -from monailabel.tasks.activelearning.first import First -from monailabel.tasks.activelearning.random import Random - -# bundle -from monailabel.tasks.infer.bundle import BundleInferTask -from monailabel.tasks.train.bundle import BundleTrainTask - -# from monailabel.utils.others.class_utils import get_class_names -from monailabel.utils.others.generic import get_bundle_models, strtobool -from monailabel.utils.others.planner import HeuristicPlanner - -import monailabel - -logger = logging.getLogger(__name__) - - -class MyApp(MONAILabelApp): - def __init__(self, app_dir, studies, conf): - self.model_dir = os.path.join(app_dir, "model") - - configs = {} - for c in get_class_names(lib.configs, "TaskConfig"): - # print("!!!!!!:{}".format(c)) - name = c.split(".")[-2].lower() - configs[name] = c - - configs = {k: v for k, v in sorted(configs.items())} - - # Load models from app model implementation, e.g., --conf models - models = conf.get("models") - if not models: - print("") - print("---------------------------------------------------------------------------------------") - print("Provide --conf models ") - print("Following are the available models. You can pass comma (,) seperated names to pass multiple") - print(f" {', '.join(configs.keys())}") - print("---------------------------------------------------------------------------------------") - print("") - exit(-1) - - models = models.split(",") - models = [m.strip() for m in models] - invalid = [m for m in models if m != "all" and not configs.get(m)] - if invalid: - print("") - print("---------------------------------------------------------------------------------------") - print(f"Invalid Model(s) are provided: {invalid}") - print("Following are the available models. You can pass comma (,) seperated names to pass multiple") - print(f" {', '.join(configs.keys())}") - print("---------------------------------------------------------------------------------------") - print("") - exit(-1) - - # Use Heuristic Planner to determine target spacing and spatial size based on dataset+gpu - spatial_size = json.loads(conf.get("spatial_size", "[48, 48, 32]")) - target_spacing = json.loads(conf.get("target_spacing", "[1.0, 1.0, 1.0]")) - self.heuristic_planner = strtobool(conf.get("heuristic_planner", "false")) - self.planner = HeuristicPlanner(spatial_size=spatial_size, target_spacing=target_spacing) - - # app models - self.models: Dict[str, TaskConfig] = {} - for n in models: - for k, v in configs.items(): - if self.models.get(k): - continue - if n == k or n == "all": - logger.info(f"+++ Adding Model: {k} => {v}") - self.models[k] = eval(f"{v}()") - self.models[k].init(k, self.model_dir, conf, self.planner) - logger.info(f"+++ Using Models: {list(self.models.keys())}") - - # Load models from bundle config files, local or released in Model-Zoo, e.g., --conf bundles - self.bundles = get_bundle_models(app_dir, conf, conf_key="bundles") if conf.get("bundles") else None - - super().__init__( - app_dir=app_dir, - studies=studies, - conf=conf, - name=f"MONAILabel - monaivista ({monailabel.__version__})", - description="MONAI VISTA: A foundational model for medical image segmentation", - version=monailabel.__version__, - ) - - def init_datastore(self) -> Datastore: - datastore = super().init_datastore() - if self.heuristic_planner: - self.planner.run(datastore) - return datastore - - def init_infers(self) -> Dict[str, InferTask]: - infers: Dict[str, InferTask] = {} - - ################################################# - # Models - ################################################# - for n, task_config in self.models.items(): - c = task_config.infer() - c = c if isinstance(c, dict) else {n: c} - for k, v in c.items(): - logger.info(f"+++ Adding Inferer:: {k} => {v}") - infers[k] = v - - ################################################# - # Bundle Models - ################################################# - if self.bundles: - for n, b in self.bundles.items(): - i = BundleInferTask(b, self.conf) - logger.info(f"+++ Adding Bundle Inferer:: {n} => {i}") - infers[n] = i - - logger.info(infers) - return infers - - def init_trainers(self) -> Dict[str, TrainTask]: - trainers: Dict[str, TrainTask] = {} - if strtobool(self.conf.get("skip_trainers", "false")): - return trainers - ################################################# - # Models - ################################################# - for n, task_config in self.models.items(): - t = task_config.trainer() - if not t: - continue - - logger.info(f"+++ Adding Trainer:: {n} => {t}") - trainers[n] = t - - ################################################# - # Bundle Models - ################################################# - if self.bundles: - for n, b in self.bundles.items(): - t = BundleTrainTask(b, self.conf) - if not t or not t.is_valid(): - continue - - logger.info(f"+++ Adding Bundle Trainer:: {n} => {t}") - trainers[n] = t - - return trainers - - def init_strategies(self) -> Dict[str, Strategy]: - strategies: Dict[str, Strategy] = { - "random": Random(), - "first": First(), - } - - if strtobool(self.conf.get("skip_strategies", "true")): - return strategies - - for n, task_config in self.models.items(): - s = task_config.strategy() - if not s: - continue - s = s if isinstance(s, dict) else {n: s} - for k, v in s.items(): - logger.info(f"+++ Adding Strategy:: {k} => {v}") - strategies[k] = v - - logger.info(f"Active Learning Strategies:: {list(strategies.keys())}") - return strategies - - -def main(): - """ - Example to run train/infer/scoring task(s) locally without actually running MONAI Label Server - """ - import argparse - import shutil - from pathlib import Path - - from monailabel.utils.others.generic import device_list, file_ext - - os.putenv("MASTER_ADDR", "127.0.0.1") - os.putenv("MASTER_PORT", "1234") - - logging.basicConfig( - level=logging.INFO, - format="[%(asctime)s] [%(process)s] [%(threadName)s] [%(levelname)s] (%(name)s:%(lineno)d) - %(message)s", - datefmt="%Y-%m-%d %H:%M:%S", - force=True, - ) - - home = str(Path.home()) - studies = f"{home}/Dataset/Radiology/WholeBodyCTDataset/test" - - parser = argparse.ArgumentParser() - parser.add_argument("-s", "--studies", default=studies) - parser.add_argument("-m", "--model", default="vista_point_2pt5") - parser.add_argument("-t", "--test", default="infer", choices=("train", "infer")) - args = parser.parse_args() - - app_dir = os.path.dirname(__file__) - studies = args.studies - conf = { - "models": args.model, - "preload": "false", - } - - app = MyApp(app_dir, studies, conf) - - # Infer - if args.test == "infer": - sample = app.next_sample(request={"strategy": "first"}) - image_id = sample["id"] - image_path = sample["path"] - - # Run on all devices - for device in device_list(): - res = app.infer(request={"model": args.model, "image": image_id, "device": device}) - label = res["file"] - label_json = res["params"] - test_dir = os.path.join(args.studies, "test_labels") - os.makedirs(test_dir, exist_ok=True) - - label_file = os.path.join(test_dir, image_id + file_ext(image_path)) - shutil.move(label, label_file) - - print(label_json) - print(f"++++ Image File: {image_path}") - print(f"++++ Label File: {label_file}") - break - return - - # Train - app.train( - request={ - "model": args.model, - "max_epochs": 10, - "dataset": "Dataset", # PersistentDataset, CacheDataset - "train_batch_size": 1, - "val_batch_size": 1, - "multi_gpu": False, - "val_split": 0.1, - }, - ) - - -if __name__ == "__main__": - # export PYTHONPATH=~/Projects/MONAILabel:`pwd` - # python main.py - main() diff --git a/monailabel/monaivista/requirements.txt b/monailabel/monaivista/requirements.txt deleted file mode 100644 index 1e97f89..0000000 --- a/monailabel/monaivista/requirements.txt +++ /dev/null @@ -1,10 +0,0 @@ -# Copyright (c) MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. diff --git a/monailabel/plugins/slicer/.gitignore b/monailabel/plugins/slicer/.gitignore deleted file mode 100644 index 1e97f89..0000000 --- a/monailabel/plugins/slicer/.gitignore +++ /dev/null @@ -1,10 +0,0 @@ -# Copyright (c) MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. diff --git a/monailabel/plugins/slicer/CMakeLists.txt b/monailabel/plugins/slicer/CMakeLists.txt deleted file mode 100644 index e6bf749..0000000 --- a/monailabel/plugins/slicer/CMakeLists.txt +++ /dev/null @@ -1,39 +0,0 @@ -# Copyright (c) MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -cmake_minimum_required(VERSION 3.13.4) - -project(MONAILabel) - -#----------------------------------------------------------------------------- -# Extension meta-information -set(EXTENSION_HOMEPAGE "https://github.com/Project-MONAI/MONAILabel/tree/main/plugins/slicer/MONAILabel") -set(EXTENSION_CATEGORY "Active Learning") -set(EXTENSION_CONTRIBUTORS "NVIDIA, KCL") -set(EXTENSION_DESCRIPTION "This is Active Learning solution developed under project MONAILabel") -set(EXTENSION_ICONURL "https://github.com/Project-MONAI/MONAILabel/raw/main/plugins/slicer/MONAILabel/Resources/Icons/MONAILabel.png") -set(EXTENSION_SCREENSHOTURLS "https://github.com/Project-MONAI/MONAILabel/raw/main/plugins/slicer/MONAILabel/Screenshots/1.png https://github.com/Project-MONAI/MONAILabel/raw/main/plugins/slicer/MONAILabel/Screenshots/2.png") -set(EXTENSION_DEPENDS "NA") # Specified as a list or "NA" if no dependencies - -#----------------------------------------------------------------------------- -# Extension dependencies -find_package(Slicer REQUIRED) -include(${Slicer_USE_FILE}) - -#----------------------------------------------------------------------------- -# Extension modules -add_subdirectory(MONAILabel) -add_subdirectory(MONAILabelReviewer) -## NEXT_MODULE - -#----------------------------------------------------------------------------- -include(${Slicer_EXTENSION_GENERATE_CONFIG}) -include(${Slicer_EXTENSION_CPACK}) diff --git a/monailabel/plugins/slicer/MONAI-Label.png b/monailabel/plugins/slicer/MONAI-Label.png deleted file mode 100644 index 614a736..0000000 Binary files a/monailabel/plugins/slicer/MONAI-Label.png and /dev/null differ diff --git a/monailabel/plugins/slicer/MONAILabel/CMakeLists.txt b/monailabel/plugins/slicer/MONAILabel/CMakeLists.txt deleted file mode 100644 index 7d0f07b..0000000 --- a/monailabel/plugins/slicer/MONAILabel/CMakeLists.txt +++ /dev/null @@ -1,57 +0,0 @@ -# Copyright (c) MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -#----------------------------------------------------------------------------- -set(MODULE_NAME MONAILabel) - -#----------------------------------------------------------------------------- -set(MODULE_PYTHON_SCRIPTS - ${MODULE_NAME}.py - ${MODULE_NAME}Lib/__init__.py - ${MODULE_NAME}Lib/client.py - ${MODULE_NAME}Lib/labelcolors.py - ) - -set(MODULE_PYTHON_RESOURCES - Resources/Icons/${MODULE_NAME}.png - Resources/Icons/refresh-icon.png - Resources/Icons/download.png - Resources/Icons/save.png - Resources/Icons/segment.png - Resources/Icons/stop.png - Resources/Icons/training.png - Resources/Icons/upload.svg - Resources/Icons/contour.svg - Resources/Icons/paint.png - Resources/Icons/eraser.png - Resources/Icons/fg_green.png - Resources/Icons/bg_red.png - Resources/UI/${MODULE_NAME}.ui - ) - -#----------------------------------------------------------------------------- -slicerMacroBuildScriptedModule( - NAME ${MODULE_NAME} - SCRIPTS ${MODULE_PYTHON_SCRIPTS} - RESOURCES ${MODULE_PYTHON_RESOURCES} - WITH_GENERIC_TESTS - ) - -#----------------------------------------------------------------------------- -if(BUILD_TESTING) - - # Register the unittest subclass in the main script as a ctest. - # Note that the test will also be available at runtime. - slicer_add_python_unittest(SCRIPT ${MODULE_NAME}.py) - - # Additional build-time testing - add_subdirectory(Testing) -endif() diff --git a/monailabel/plugins/slicer/MONAILabel/MONAILabel.py b/monailabel/plugins/slicer/MONAILabel/MONAILabel.py deleted file mode 100644 index 7056586..0000000 --- a/monailabel/plugins/slicer/MONAILabel/MONAILabel.py +++ /dev/null @@ -1,2665 +0,0 @@ -# Copyright (c) MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import json -import logging -import os -import shutil -import tempfile -import time -import traceback -from collections import OrderedDict -from urllib.parse import quote_plus - -import ctk -import qt -import SampleData -import SimpleITK as sitk -import sitkUtils -import slicer -import vtk -import vtkSegmentationCore -from MONAILabelLib import GenericAnatomyColors, MONAILabelClient -from slicer.ScriptedLoadableModule import * -from slicer.util import VTKObservationMixin - - -class MONAILabel(ScriptedLoadableModule): - def __init__(self, parent): - ScriptedLoadableModule.__init__(self, parent) - self.parent.title = "MONAILabel" - self.parent.categories = ["Active Learning"] - self.parent.dependencies = [] - self.parent.contributors = ["NVIDIA, KCL"] - self.parent.helpText = """ -Active Learning solution. -See more information in module documentation. -""" - self.parent.acknowledgementText = """ -Developed by NVIDIA, KCL -""" - - # Additional initialization step after application startup is complete - slicer.app.connect("startupCompleted()", self.initializeAfterStartup) - - def initializeAfterStartup(self): - if not slicer.app.commandOptions().noMainWindow: - self.settingsPanel = MONAILabelSettingsPanel() - slicer.app.settingsDialog().addPanel("MONAI Label", self.settingsPanel) - - -class _ui_MONAILabelSettingsPanel: - def __init__(self, parent): - vBoxLayout = qt.QVBoxLayout(parent) - - # settings - groupBox = ctk.ctkCollapsibleGroupBox() - groupBox.title = "MONAI Label Server" - groupLayout = qt.QFormLayout(groupBox) - - serverUrl = qt.QLineEdit() - groupLayout.addRow("Server address:", serverUrl) - parent.registerProperty("MONAILabel/serverUrl", serverUrl, "text", str(qt.SIGNAL("textChanged(QString)"))) - - serverUrlHistory = qt.QLineEdit() - groupLayout.addRow("Server address history:", serverUrlHistory) - parent.registerProperty( - "MONAILabel/serverUrlHistory", serverUrlHistory, "text", str(qt.SIGNAL("textChanged(QString)")) - ) - - fileExtension = qt.QLineEdit() - fileExtension.setText(".nii.gz") - fileExtension.toolTip = "Default extension for uploading images/labels" - groupLayout.addRow("File Extension:", fileExtension) - parent.registerProperty( - "MONAILabel/fileExtension", fileExtension, "text", str(qt.SIGNAL("textChanged(QString)")) - ) - - clientId = qt.QLineEdit() - clientId.setText("user-xyz") - clientId.toolTip = "Client/User ID that will be sent to MONAI Label server for reference" - groupLayout.addRow("Client/User-ID:", clientId) - parent.registerProperty("MONAILabel/clientId", clientId, "text", str(qt.SIGNAL("textChanged(QString)"))) - - autoRunSegmentationCheckBox = qt.QCheckBox() - autoRunSegmentationCheckBox.checked = False - autoRunSegmentationCheckBox.toolTip = ( - "Enable this option to auto run segmentation if pre-trained model exists when Next Sample is fetched" - ) - groupLayout.addRow("Auto-Run Pre-Trained Model:", autoRunSegmentationCheckBox) - parent.registerProperty( - "MONAILabel/autoRunSegmentationOnNextSample", - ctk.ctkBooleanMapper(autoRunSegmentationCheckBox, "checked", str(qt.SIGNAL("toggled(bool)"))), - "valueAsInt", - str(qt.SIGNAL("valueAsIntChanged(int)")), - ) - - autoFetchNextSampleCheckBox = qt.QCheckBox() - autoFetchNextSampleCheckBox.checked = False - autoFetchNextSampleCheckBox.toolTip = "Enable this option to fetch Next Sample after saving the label" - groupLayout.addRow("Auto-Fetch Next Sample:", autoFetchNextSampleCheckBox) - parent.registerProperty( - "MONAILabel/autoFetchNextSample", - ctk.ctkBooleanMapper(autoFetchNextSampleCheckBox, "checked", str(qt.SIGNAL("toggled(bool)"))), - "valueAsInt", - str(qt.SIGNAL("valueAsIntChanged(int)")), - ) - - autoUpdateModelCheckBox = qt.QCheckBox() - autoUpdateModelCheckBox.checked = False - autoUpdateModelCheckBox.toolTip = "Enable this option to auto update model after submitting the label" - groupLayout.addRow("Auto-Update Model:", autoUpdateModelCheckBox) - parent.registerProperty( - "MONAILabel/autoUpdateModelV2", - ctk.ctkBooleanMapper(autoUpdateModelCheckBox, "checked", str(qt.SIGNAL("toggled(bool)"))), - "valueAsInt", - str(qt.SIGNAL("valueAsIntChanged(int)")), - ) - - askForUserNameCheckBox = qt.QCheckBox() - askForUserNameCheckBox.checked = False - askForUserNameCheckBox.toolTip = ( - "Enable this option to ask for the user name every time the MONAILabel " - + "extension is loaded for the first time" - ) - groupLayout.addRow("Ask For User Name:", askForUserNameCheckBox) - parent.registerProperty( - "MONAILabel/askForUserName", - ctk.ctkBooleanMapper(askForUserNameCheckBox, "checked", str(qt.SIGNAL("toggled(bool)"))), - "valueAsInt", - str(qt.SIGNAL("valueAsIntChanged(int)")), - ) - - allowOverlapCheckBox = qt.QCheckBox() - allowOverlapCheckBox.checked = False - allowOverlapCheckBox.toolTip = "Enable this option to allow overlapping segmentations" - groupLayout.addRow("Allow Overlapping Segmentations:", allowOverlapCheckBox) - parent.registerProperty( - "MONAILabel/allowOverlappingSegments", - ctk.ctkBooleanMapper(allowOverlapCheckBox, "checked", str(qt.SIGNAL("toggled(bool)"))), - "valueAsInt", - str(qt.SIGNAL("valueAsIntChanged(int)")), - ) - allowOverlapCheckBox.connect("toggled(bool)", self.onUpdateAllowOverlap) - - originalLabelCheckBox = qt.QCheckBox() - originalLabelCheckBox.checked = True - originalLabelCheckBox.toolTip = "Enable this option to first read original label (predictions)" - groupLayout.addRow("Original Labels:", originalLabelCheckBox) - parent.registerProperty( - "MONAILabel/originalLabel", - ctk.ctkBooleanMapper(originalLabelCheckBox, "checked", str(qt.SIGNAL("toggled(bool)"))), - "valueAsInt", - str(qt.SIGNAL("valueAsIntChanged(int)")), - ) - - developerModeCheckBox = qt.QCheckBox() - developerModeCheckBox.checked = True - developerModeCheckBox.toolTip = "Enable this option to find options tab etc..." - groupLayout.addRow("Developer Mode:", developerModeCheckBox) - parent.registerProperty( - "MONAILabel/developerMode", - ctk.ctkBooleanMapper(developerModeCheckBox, "checked", str(qt.SIGNAL("toggled(bool)"))), - "valueAsInt", - str(qt.SIGNAL("valueAsIntChanged(int)")), - ) - - preComputeEmbeddingCheckBox = qt.QCheckBox() - preComputeEmbeddingCheckBox.checked = True - preComputeEmbeddingCheckBox.toolTip = "Enable this option to automatically pre-compute image embedding" - groupLayout.addRow("Pre-Compute Embedding:", preComputeEmbeddingCheckBox) - parent.registerProperty( - "MONAILabel/preComputeEmbeddingMode", - ctk.ctkBooleanMapper(preComputeEmbeddingCheckBox, "checked", str(qt.SIGNAL("toggled(bool)"))), - "valueAsInt", - str(qt.SIGNAL("valueAsIntChanged(int)")), - ) - - showSegmentsIn3DCheckBox = qt.QCheckBox() - showSegmentsIn3DCheckBox.checked = False - showSegmentsIn3DCheckBox.toolTip = "Enable this option to show segments in 3D (slow) after mask update..." - groupLayout.addRow("Show Segments In 3D:", showSegmentsIn3DCheckBox) - parent.registerProperty( - "MONAILabel/showSegmentsIn3D", - ctk.ctkBooleanMapper(showSegmentsIn3DCheckBox, "checked", str(qt.SIGNAL("toggled(bool)"))), - "valueAsInt", - str(qt.SIGNAL("valueAsIntChanged(int)")), - ) - - vBoxLayout.addWidget(groupBox) - vBoxLayout.addStretch(1) - - def onUpdateAllowOverlap(self): - if slicer.util.settingsValue("MONAILabel/allowOverlappingSegments", True, converter=slicer.util.toBool): - if slicer.util.settingsValue("MONAILabel/fileExtension", None) != ".seg.nrrd": - slicer.util.warningDisplay( - "Overlapping segmentations are only availabel with the '.seg.nrrd' file extension! " - + "Consider changing MONAILabel file extension." - ) - - -class MONAILabelSettingsPanel(ctk.ctkSettingsPanel): - def __init__(self, *args, **kwargs): - ctk.ctkSettingsPanel.__init__(self, *args, **kwargs) - self.ui = _ui_MONAILabelSettingsPanel(self) - - -class MONAILabelWidget(ScriptedLoadableModuleWidget, VTKObservationMixin): - def __init__(self, parent=None): - """ - Called when the user opens the module the first time and the widget is initialized. - """ - ScriptedLoadableModuleWidget.__init__(self, parent) - VTKObservationMixin.__init__(self) # needed for parameter node observation - - self.logic = None - self._parameterNode = None - self._volumeNode = None - self._segmentNode = None - self._scribblesROINode = None - self._volumeNodes = [] - self._updatingGUIFromParameterNode = False - - self.info = {} - self.models = OrderedDict() - self.trainers = OrderedDict() - self.config = OrderedDict() - self.current_sample = None - self.samples = {} - self.state = { - "SegmentationModel": "", - "DeepgrowModel": "", - "ScribblesMethod": "", - "CurrentStrategy": "", - "CurrentTrainer": "", - } - self.file_ext = ".nii.gz" - - self.dgPositivePointListNode = None - self.dgPositivePointListNodeObservers = [] - self.dgNegativePointListNode = None - self.dgNegativePointListNodeObservers = [] - self.ignorePointListNodeAddEvent = False - - self.progressBar = None - self.tmpdir = None - self.timer = None - - self.scribblesMode = None - self.ignoreScribblesLabelChangeEvent = False - self.deepedit_multi_label = False - - self.optionsSectionIndex = 0 - self.optionsNameIndex = 0 - - self.sammPositivePointListNode = None - self.sammPositivePointListNodeObservers = [] - self.sammNegativePointListNode = None - self.sammNegativePointListNodeObservers = [] - self.ignoreSAMMPointListNodeAddEvent = False - - def setup(self): - """ - Called when the user opens the module the first time and the widget is initialized. - """ - ScriptedLoadableModuleWidget.setup(self) - - # Load widget from .ui file (created by Qt Designer). - # Additional widgets can be instantiated manually and added to self.layout. - uiWidget = slicer.util.loadUI(self.resourcePath("UI/MONAILabel.ui")) - self.layout.addWidget(uiWidget) - self.ui = slicer.util.childWidgetVariables(uiWidget) - - # Set scene in MRML widgets. Make sure that in Qt designer the top-level qMRMLWidget's - # "mrmlSceneChanged(vtkMRMLScene*)" signal in is connected to each MRML widget's. - # "setMRMLScene(vtkMRMLScene*)" slot. - uiWidget.setMRMLScene(slicer.mrmlScene) - - # These connections ensure that we update parameter node when scene is closed - self.addObserver(slicer.mrmlScene, slicer.mrmlScene.StartCloseEvent, self.onSceneStartClose) - self.addObserver(slicer.mrmlScene, slicer.mrmlScene.EndCloseEvent, self.onSceneEndClose) - self.addObserver(slicer.mrmlScene, slicer.mrmlScene.NodeAddedEvent, self.onSceneEndImport) - - # Create logic class. Logic implements all computations that should be possible to run - # in batch mode, without a graphical user interface. - self.tmpdir = slicer.util.tempDirectory("slicer-monai-label") - self.logic = MONAILabelLogic(self.tmpdir, resourcePath=self.resourcePath) - - # Set icons and tune widget properties - self.ui.serverComboBox.lineEdit().setPlaceholderText("enter server address or leave empty to use default") - self.ui.anatomyComboBox.setPlaceholderText("enter and search anatomy or leave empty") - - self.ui.fetchServerInfoButton.setIcon(self.icon("refresh-icon.png")) - self.ui.sammButton.setIcon(self.icon("samm_everything.png")) - self.ui.nextSampleButton.setIcon(self.icon("segment.png")) - self.ui.saveLabelButton.setIcon(self.icon("save.png")) - self.ui.trainingButton.setIcon(self.icon("training.png")) - self.ui.stopTrainingButton.setIcon(self.icon("stop.png")) - self.ui.uploadImageButton.setIcon(self.icon("upload.svg")) - self.ui.importLabelButton.setIcon(self.icon("download.png")) - self.ui.pointSegButton.setIcon(self.icon("samm_points.png")) - self.ui.promptSegButton.setIcon(self.icon("samm_class.png")) - self.ui.uncheckPromptButton.setIcon(self.icon("samm_reset.png")) - - self.ui.sammPosPlacementWidget.setMRMLScene(slicer.mrmlScene) - self.ui.sammPosPlacementWidget.placeButton().toolTip = "Select +ve points" - self.ui.sammPosPlacementWidget.buttonsVisible = True - self.ui.sammPosPlacementWidget.placeButton().show() - self.ui.sammPosPlacementWidget.deleteButton().show() - # self.ui.sammPosPlacementWidget.setEnabled(True) - # self.ui.sammPosPlacementWidget.setPlaceModeEnabled(True) - - self.ui.sammNegPlacementWidget.setMRMLScene(slicer.mrmlScene) - self.ui.sammNegPlacementWidget.placeButton().toolTip = "Select -ve points" - self.ui.sammNegPlacementWidget.buttonsVisible = True - self.ui.sammNegPlacementWidget.placeButton().show() - self.ui.sammNegPlacementWidget.deleteButton().show() - # self.ui.sammNegPlacementWidget.setEnabled(True) - # self.ui.sammNegPlacementWidget.setPlaceModeEnabled(True) - - self.ui.dgPositiveControlPointPlacementWidget.setMRMLScene(slicer.mrmlScene) - self.ui.dgPositiveControlPointPlacementWidget.placeButton().toolTip = "Select +ve points" - self.ui.dgPositiveControlPointPlacementWidget.buttonsVisible = False - self.ui.dgPositiveControlPointPlacementWidget.placeButton().show() - self.ui.dgPositiveControlPointPlacementWidget.deleteButton().show() - - self.ui.dgNegativeControlPointPlacementWidget.setMRMLScene(slicer.mrmlScene) - self.ui.dgNegativeControlPointPlacementWidget.placeButton().toolTip = "Select -ve points" - self.ui.dgNegativeControlPointPlacementWidget.buttonsVisible = False - self.ui.dgNegativeControlPointPlacementWidget.placeButton().show() - self.ui.dgNegativeControlPointPlacementWidget.deleteButton().show() - - self.ui.dgUpdateButton.setIcon(self.icon("segment.png")) - - # Connections - self.ui.fetchServerInfoButton.connect("clicked(bool)", self.onClickFetchInfo) - self.ui.serverComboBox.connect("currentIndexChanged(int)", self.onClickFetchInfo) - self.ui.sammModelSelector.connect("currentIndexChanged(int)", self.updateParameterNodeFromGUI) - self.ui.sammButton.connect("clicked(bool)", self.onClickSegmentation) - self.ui.deepgrowModelSelector.connect("currentIndexChanged(int)", self.updateParameterNodeFromGUI) - self.ui.nextSampleButton.connect("clicked(bool)", self.onNextSampleButton) - # self.ui.trainingButton.connect("clicked(bool)", self.onTraining) - self.ui.stopTrainingButton.connect("clicked(bool)", self.onStopTraining) - self.ui.saveLabelButton.connect("clicked(bool)", self.onSaveLabel) - self.ui.uploadImageButton.connect("clicked(bool)", self.onUploadImage) - self.ui.importLabelButton.connect("clicked(bool)", self.onImportLabel) - self.ui.labelComboBox.connect("currentIndexChanged(int)", self.onSelectLabel) - self.ui.scribLabelComboBox.connect("currentIndexChanged(int)", self.onSelectScribLabel) - self.ui.dgUpdateButton.connect("clicked(bool)", self.onUpdateDeepgrow) - self.ui.dgUpdateCheckBox.setStyleSheet("padding-left: 10px;") - self.ui.optionsSection.connect("currentIndexChanged(int)", self.onSelectOptionsSection) - self.ui.optionsName.connect("currentIndexChanged(int)", self.onSelectOptionsName) - - self.ui.promptSegButton.connect("clicked(bool)", self.onSetPromptSegmentation) - self.ui.uncheckPromptButton.connect("clicked(bool)", self.updateClassPromptTable) - - self.ui.pointSegButton.connect("clicked(bool)", self.onPointPromptSegmentation) - - self.ui.anatomyComboBox.textChanged.connect(self.filterClassPromptTable) - - # self.ui.sammModelSelector.connect("currentIndexChanged(int)", self.updateParameterNodeFromGUI) - - # Scribbles - # brush and eraser icon from: https://tablericons.com/ - self.ui.scribblesMethodSelector.connect("currentIndexChanged(int)", self.updateParameterNodeFromGUI) - - self.ui.paintScribblesButton.setIcon(self.icon("paint.png")) - self.ui.paintScribblesButton.setToolTip("Paint scribbles for selected scribble layer") - self.ui.eraseScribblesButton.setIcon(self.icon("eraser.png")) - self.ui.eraseScribblesButton.setToolTip("Erase scribbles for selected scribble layer") - self.ui.updateScribblesButton.setIcon(self.icon("segment.png")) - self.ui.updateScribblesButton.setToolTip( - "Update label by sending scribbles to server to apply selected post processing method" - ) - - self.ui.brushSizeSlider.connect("valueChanged(double)", self.updateBrushSize) - self.ui.brushSizeSlider.setToolTip("Change brush size for scribbles tool") - self.ui.brush3dCheckbox.stateChanged.connect(self.on3dBrushCheckbox) - self.ui.brush3dCheckbox.setToolTip("Use 3D brush to paint/erase in multiple slices in 3D") - self.ui.updateScribblesButton.clicked.connect(self.onUpdateScribbles) - self.ui.paintScribblesButton.clicked.connect(self.onPaintScribbles) - self.ui.eraseScribblesButton.clicked.connect(self.onEraseScribbles) - self.ui.scribblesSelector.connect("currentIndexChanged(int)", self.onSelectScribblesLabel) - - # creating editable combo box - self.ui.scribblesSelector.addItem(self.icon("fg_green.png"), "Foreground") - self.ui.scribblesSelector.addItem(self.icon("bg_red.png"), "Background") - self.ui.scribblesSelector.setCurrentIndex(0) - - # ROI placement for scribbles - self.ui.scribblesPlaceWidget.setButtonsVisible(False) - self.ui.scribblesPlaceWidget.placeButton().show() - self.ui.scribblesPlaceWidget.setMRMLScene(slicer.mrmlScene) - - # start with scribbles section disabled - self.ui.scribblesCollapsibleButton.setEnabled(False) - self.ui.scribblesCollapsibleButton.collapsed = True - - # embedded segment editor - self.ui.embeddedSegmentEditorWidget.setMRMLScene(slicer.mrmlScene) - self.ui.embeddedSegmentEditorWidget.setSegmentationNodeSelectorVisible(False) - self.ui.embeddedSegmentEditorWidget.setSourceVolumeNodeSelectorVisible(False) - self.ui.embeddedSegmentEditorWidget.setMRMLSegmentEditorNode(self.logic.get_segment_editor_node()) - - # options section - self.ui.optionsSection.addItem("infer") - self.ui.optionsSection.addItem("train") - self.ui.optionsSection.addItem("activelearning") - self.ui.optionsSection.addItem("scoring") - - self.initializeParameterNode() - self.updateServerUrlGUIFromSettings() - # self.onClickFetchInfo() - - if slicer.util.settingsValue("MONAILabel/askForUserName", False, converter=slicer.util.toBool): - text = qt.QInputDialog().getText( - self.parent, - "User Name", - "Please enter your name:", - qt.QLineEdit.Normal, - slicer.util.settingsValue("MONAILabel/clientId", None), - ) - if text: - settings = qt.QSettings() - settings.setValue("MONAILabel/clientId", text) - - def cleanup(self): - self.removeObservers() - shutil.rmtree(self.tmpdir, ignore_errors=True) - - def enter(self): - self.initializeParameterNode() - if self._segmentNode: - self.updateGUIFromParameterNode() - - def exit(self): - self.removeObserver(self._parameterNode, vtk.vtkCommand.ModifiedEvent, self.updateGUIFromParameterNode) - - def onSceneStartClose(self, caller, event): - self.state = { - "SegmentationModel": self.ui.sammModelSelector.currentText, - "DeepgrowModel": self.ui.deepgrowModelSelector.currentText, - "ScribblesMethod": self.ui.scribblesMethodSelector.currentText, - "CurrentStrategy": self.ui.strategyBox.currentText, - "CurrentTrainer": self.ui.trainerBox.currentText, - # "SAMMModel": self.ui.sammModelSelector.currentText, - } - - self._volumeNode = None - self._segmentNode = None - self._volumeNodes.clear() - self.setParameterNode(None) - self.current_sample = None - self.samples.clear() - self._scribblesROINode = None - - self.resetPointList( - self.ui.dgPositiveControlPointPlacementWidget, - self.dgPositivePointListNode, - self.dgPositivePointListNodeObservers, - ) - self.dgPositivePointListNode = None - self.resetPointList( - self.ui.dgNegativeControlPointPlacementWidget, - self.dgNegativePointListNode, - self.dgNegativePointListNodeObservers, - ) - self.dgNegativePointListNode = None - - self.sammPositivePointListNode = None - self.resetPointList( - self.ui.sammPosPlacementWidget, - self.sammPositivePointListNode, - self.sammPositivePointListNodeObservers, - ) - self.sammNegativePointListNode = None - self.resetPointList( - self.ui.sammNegPlacementWidget, - self.sammNegativePointListNode, - self.sammNegativePointListNodeObservers, - ) - - self.onResetScribbles() - - def resetPointList(self, markupsPlaceWidget, pointListNode, pointListNodeObservers): - if markupsPlaceWidget.placeModeEnabled: - markupsPlaceWidget.setPlaceModeEnabled(False) - - if pointListNode: - slicer.mrmlScene.RemoveNode(pointListNode) - self.removePointListNodeObservers(pointListNode, pointListNodeObservers) - - def onSceneEndClose(self, caller, event): - if self.parent.isEntered: - self.initializeParameterNode() - - def onSceneEndImport(self, caller, event): - if not self._volumeNode: - self.updateGUIFromParameterNode() - - def initializeParameterNode(self): - self.setParameterNode(self.logic.getParameterNode()) - - # Select default input nodes if nothing is selected yet to save a few clicks for the user - if not self._parameterNode.GetNodeReference("InputVolume"): - firstVolumeNode = slicer.mrmlScene.GetFirstNodeByClass("vtkMRMLScalarVolumeNode") - if firstVolumeNode: - self._parameterNode.SetNodeReferenceID("InputVolume", firstVolumeNode.GetID()) - - def setParameterNode(self, inputParameterNode): - if inputParameterNode: - self.logic.setDefaultParameters(inputParameterNode) - - if self._parameterNode is not None: - self.removeObserver(self._parameterNode, vtk.vtkCommand.ModifiedEvent, self.updateGUIFromParameterNode) - self._parameterNode = inputParameterNode - if self._parameterNode is not None: - self.addObserver(self._parameterNode, vtk.vtkCommand.ModifiedEvent, self.updateGUIFromParameterNode) - - # Initial GUI update - self.updateGUIFromParameterNode() - - def monitorTraining(self): - status = self.isTrainingRunning(check_only=False) - if status and status.get("status") == "RUNNING": - info = self.logic.info() - train_stats = info.get("train_stats") - if not train_stats: - return - - train_stats = next(iter(train_stats.values())) - - current = 0 if train_stats.get("total_time") else train_stats.get("epoch", 1) - total = train_stats.get("total_epochs", 1) - percent = max(1, 100 * current / total) - if self.ui.trainingProgressBar.value != percent: - self.ui.trainingProgressBar.setValue(percent) - self.ui.trainingProgressBar.setToolTip(f"{current}/{total} epoch is completed") - - dice = train_stats.get("best_metric", 0) - self.updateAccuracyBar(dice) - return - - print("Training completed") - self.ui.trainingProgressBar.setValue(100) - self.timer.stop() - self.timer = None - self.ui.trainingProgressBar.setToolTip(f"Training: {status.get('status', 'DONE')}") - - self.ui.trainingButton.setEnabled(True) - self.ui.stopTrainingButton.setEnabled(False) - self.fetchInfo() - - def updateGUIFromParameterNode(self, caller=None, event=None): - if self._parameterNode is None or self._updatingGUIFromParameterNode: - return - - # Make sure GUI changes do not call updateParameterNodeFromGUI (it could cause infinite loop) - self._updatingGUIFromParameterNode = True - - file_ext = slicer.util.settingsValue("MONAILabel/fileExtension", self.file_ext) - self.file_ext = file_ext if file_ext else self.file_ext - - # Update node selectors and sliders - self.ui.inputSelector.clear() - for v in self._volumeNodes: - self.ui.inputSelector.addItem(v.GetName()) - self.ui.inputSelector.setToolTip(self.current_sample.get("name", "") if self.current_sample else "") - if self._volumeNode: - self.ui.inputSelector.setCurrentIndex(self.ui.inputSelector.findText(self._volumeNode.GetName())) - self.ui.inputSelector.setEnabled(False) # Allow only one active scene - - self.ui.uploadImageButton.setEnabled(False) - if self.info and slicer.mrmlScene.GetFirstNodeByClass("vtkMRMLScalarVolumeNode") and self._volumeNode is None: - self._volumeNode = slicer.mrmlScene.GetFirstNodeByClass("vtkMRMLScalarVolumeNode") - self.initSample({"id": self._volumeNode.GetName(), "session": True}, autosegment=False) - self.ui.inputSelector.setEnabled(False) - - self.ui.uploadImageButton.setEnabled(self.current_sample and self.current_sample.get("session")) - - self.updateSelector(self.ui.sammModelSelector, ["segmentation", "detection"], "SegmentationModel", 0) - self.updateSelector(self.ui.deepgrowModelSelector, ["deepgrow", "deepedit"], "DeepgrowModel", 0) - self.updateSelector(self.ui.scribblesMethodSelector, ["scribbles"], "ScribblesMethod", 0) - # self.updateSelector(self.ui.sammModelSelector, ["segmentation", "detection"], "SegmentationModel", 0) - - if self.models and [k for k, v in self.models.items() if v["type"] in ("segmentation", "detection")]: - self.ui.promptCollapsibleButton.collapsed = False - self.ui.promptCollapsibleButton.show() - self.ui.segmentationCollapsibleButton.hide() - - # self.ui.segmentationCollapsibleButton.collapsed = False - # self.ui.segmentationCollapsibleButton.show() - else: - self.ui.segmentationCollapsibleButton.hide() - - if self.models and [k for k, v in self.models.items() if v["type"] in ("deepgrow", "deepedit")]: - self.ui.deepgrowCollapsibleButton.collapsed = False - self.ui.deepgrowCollapsibleButton.show() - else: - self.ui.deepgrowCollapsibleButton.hide() - - if self.models and [k for k, v in self.models.items() if v["type"] == "scribbles"]: - self.ui.scribblesCollapsibleButton.collapsed = False - self.ui.scribblesCollapsibleButton.show() - else: - self.ui.scribblesCollapsibleButton.hide() - - if self.info.get("trainers", {}): - self.ui.trainWidget.show() - else: - self.ui.trainWidget.hide() - - self.ignoreScribblesLabelChangeEvent = True - self.ui.labelComboBox.clear() - self.ui.scribLabelComboBox.clear() - if self._segmentNode: - segmentation = self._segmentNode.GetSegmentation() - totalSegments = segmentation.GetNumberOfSegments() - segmentIds = [segmentation.GetNthSegmentID(i) for i in range(totalSegments)] - for idx, segmentId in enumerate(segmentIds): - segment = segmentation.GetSegment(segmentId) - label = segment.GetName() - if label not in ["foreground_scribbles", "background_scribbles"]: - self.ui.labelComboBox.addItem(label) - if label not in ["background", "foreground_scribbles", "background_scribbles"]: - self.ui.scribLabelComboBox.addItem(label) - else: - for label in self.info.get("labels", {}): - self.ui.labelComboBox.addItem(label) - if label != "background": - self.ui.scribLabelComboBox.addItem(label) - - currentLabel = self._parameterNode.GetParameter("CurrentLabel") - idx = self.ui.labelComboBox.findText(currentLabel) if currentLabel else 0 - idx = 0 if idx < 0 < self.ui.labelComboBox.count else idx - self.ui.labelComboBox.setCurrentIndex(idx) - - currentScribbleLabel = self._parameterNode.GetParameter("CurrentScribLabel") - idx = self.ui.scribLabelComboBox.findText(currentScribbleLabel) if currentScribbleLabel else 0 - idx = 0 if idx < 0 < self.ui.scribLabelComboBox.count else idx - self.ui.scribLabelComboBox.setCurrentIndex(idx) - self.ignoreScribblesLabelChangeEvent = False - - self.ui.appComboBox.clear() - self.ui.appComboBox.addItem(self.info.get("name", "")) - - datastore_stats = self.info.get("datastore", {}) - current = datastore_stats.get("completed", 0) - total = datastore_stats.get("total", 0) - self.ui.activeLearningProgressBar.setValue(current / max(total, 1) * 100) - self.ui.activeLearningProgressBar.setToolTip(f"{current}/{total} samples are labeled") - - train_stats = self.info.get("train_stats", {}) - train_stats = next(iter(train_stats.values())) if train_stats else train_stats - - dice = train_stats.get("best_metric", 0) - self.updateAccuracyBar(dice) - - self.ui.strategyBox.clear() - for strategy in self.info.get("strategies", {}): - self.ui.strategyBox.addItem(strategy) - currentStrategy = self._parameterNode.GetParameter("CurrentStrategy") - currentStrategy = currentStrategy if currentStrategy else self.state["CurrentStrategy"] - self.ui.strategyBox.setCurrentIndex(self.ui.strategyBox.findText(currentStrategy) if currentStrategy else 0) - - self.ui.trainerBox.clear() - trainers = self.info.get("trainers", {}) - for t in trainers: - self.ui.trainerBox.addItem(t) - if trainers: - currentTrainer = self._parameterNode.GetParameter("CurrentTrainer") - currentTrainer = currentTrainer if currentTrainer else self.state["CurrentTrainer"] - self.ui.trainerBox.setCurrentIndex(self.ui.trainerBox.findText(currentTrainer) if currentTrainer else 0) - - developer_mode = slicer.util.settingsValue("MONAILabel/developerMode", True, converter=slicer.util.toBool) - self.ui.optionsCollapsibleButton.setVisible(developer_mode) - self.ui.promptCollapsibleButton.setVisible(developer_mode) - - self.computeEmbedding = slicer.util.settingsValue( - "MONAILabel/preComputeEmbeddingMode", True, converter=slicer.util.toBool - ) - - # Enable/Disable - self.ui.nextSampleButton.setEnabled(self.ui.strategyBox.count) - - is_training_running = True if self.info and self.isTrainingRunning() else False - self.ui.trainingButton.setEnabled(self.info and not is_training_running and current) - self.ui.stopTrainingButton.setEnabled(is_training_running) - if is_training_running and self.timer is None: - self.timer = qt.QTimer() - self.timer.setInterval(5000) - self.timer.connect("timeout()", self.monitorTraining) - self.timer.start() - - self.ui.sammButton.setEnabled(self.ui.sammModelSelector.currentText and self._volumeNode is not None) - - self.ui.pointSegButton.setEnabled(self.ui.sammModelSelector.currentText and self._volumeNode is not None) - - # self.ui.sammButton.setEnabled( - # self.ui.sammModelSelector.currentText and self._volumeNode is not None - # ) - - self.ui.promptSegButton.setEnabled(self.ui.sammModelSelector.currentText and self._volumeNode is not None) - self.ui.uncheckPromptButton.setEnabled(self.ui.sammModelSelector.currentText and self._volumeNode is not None) - # self.ui.uncheckPromptButton.setEnabled() - - self.ui.saveLabelButton.setEnabled(self._segmentNode is not None) - self.ui.importLabelButton.setEnabled(self._segmentNode is not None) - - # Create empty markup point list node for deep grow +ve and -ve - if self._segmentNode: - if not self.dgPositivePointListNode: - self.dgPositivePointListNode, self.dgPositivePointListNodeObservers = self.createPointListNode( - "P", self.onDeepGrowPointListNodeModified, [0.5, 1, 0.5] - ) - self.ui.dgPositiveControlPointPlacementWidget.setCurrentNode(self.dgPositivePointListNode) - self.ui.dgPositiveControlPointPlacementWidget.setPlaceModeEnabled(False) - - if not self.dgNegativePointListNode: - self.dgNegativePointListNode, self.dgNegativePointListNodeObservers = self.createPointListNode( - "N", self.onDeepGrowPointListNodeModified, [0.5, 0.5, 1] - ) - self.ui.dgNegativeControlPointPlacementWidget.setCurrentNode(self.dgNegativePointListNode) - self.ui.dgNegativeControlPointPlacementWidget.setPlaceModeEnabled(False) - - self.ui.scribblesCollapsibleButton.setEnabled(self.ui.scribblesMethodSelector.count) - self.ui.scribblesCollapsibleButton.collapsed = False - - if not self.sammPositivePointListNode: - self.sammPositivePointListNode, self.sammPositivePointListNodeObservers = self.createPointListNode( - "SAMM Pos", self.onSAMMPointListNodeModified, [0.5, 1, 0.5] - ) - sammPosCPDisplayNode = self.sammPositivePointListNode.GetDisplayNode() - sammPosCPDisplayNode.SetGlyphScale(0.8) - - self.ui.sammPosPlacementWidget.setCurrentNode(self.sammPositivePointListNode) - self.ui.sammPosPlacementWidget.setPlaceModeEnabled(False) - - if not self.sammNegativePointListNode: - self.sammNegativePointListNode, self.sammNegativePointListNodeObservers = self.createPointListNode( - "SAMM Neg", self.onSAMMPointListNodeModified, [0.4, 0.4, 0.9] - ) - sammNegCPDisplayNode = self.sammNegativePointListNode.GetDisplayNode() - sammNegCPDisplayNode.SetGlyphScale(0.8) - self.ui.sammNegPlacementWidget.setCurrentNode(self.sammNegativePointListNode) - self.ui.sammNegPlacementWidget.setPlaceModeEnabled(False) - - self.ui.dgPositiveControlPointPlacementWidget.setEnabled(self.ui.deepgrowModelSelector.currentText) - self.ui.dgNegativeControlPointPlacementWidget.setEnabled(self.ui.deepgrowModelSelector.currentText) - - self.ui.sammPosPlacementWidget.setEnabled(True) - self.ui.sammNegPlacementWidget.setEnabled(True) - - self.deepedit_multi_label = False - m = self.models.get(self.ui.deepgrowModelSelector.currentText) if self.models else None - self.deepedit_multi_label = m and m.get("type") == "deepedit" and len(m.get("labels")) > 0 - - if self.deepedit_multi_label: - self.ui.dgLabelBackground.hide() - self.ui.dgNegativeControlPointPlacementWidget.hide() - self.ui.freezeUpdateCheckBox.show() - self.ui.dgLabelForeground.setText("Landmarks:") - else: - self.ui.dgNegativeControlPointPlacementWidget.show() - self.ui.freezeUpdateCheckBox.hide() - self.ui.dgLabelForeground.setText("Foreground:") - - self.ui.dgUpdateCheckBox.setEnabled(self.ui.deepgrowModelSelector.currentText and self._segmentNode) - self.ui.dgUpdateButton.setEnabled(self.ui.deepgrowModelSelector.currentText and self._segmentNode) - - # All the GUI updates are done - self._updatingGUIFromParameterNode = False - - def updateParameterNodeFromGUI(self, caller=None, event=None): - if self._parameterNode is None or self._updatingGUIFromParameterNode: - return - - wasModified = self._parameterNode.StartModify() # Modify all properties in a single batch - - segmentationModelIndex = self.ui.sammModelSelector.currentIndex - if segmentationModelIndex >= 0: - segmentationModel = self.ui.sammModelSelector.itemText(segmentationModelIndex) - self._parameterNode.SetParameter("SegmentationModel", segmentationModel) - - # sammModelIndex = self.ui.sammModelSelector.currentIndex - # if sammModelIndex >= 0: - # segmentationModel = self.ui.sammModelSelector.itemText(sammModelIndex) - # self._parameterNode.SetParameter("SegmentationModel", segmentationModel) - - deepgrowModelIndex = self.ui.deepgrowModelSelector.currentIndex - if deepgrowModelIndex >= 0: - deepgrowModel = self.ui.deepgrowModelSelector.itemText(deepgrowModelIndex) - self._parameterNode.SetParameter("DeepgrowModel", deepgrowModel) - - scribblesMethodIndex = self.ui.scribblesMethodSelector.currentIndex - if scribblesMethodIndex >= 0: - scribblesMethod = self.ui.scribblesMethodSelector.itemText(scribblesMethodIndex) - self._parameterNode.SetParameter("ScribblesMethod", scribblesMethod) - - currentLabelIndex = self.ui.labelComboBox.currentIndex - if currentLabelIndex >= 0: - currentLabel = self.ui.labelComboBox.itemText(currentLabelIndex) - self._parameterNode.SetParameter("CurrentLabel", currentLabel) - - currentScribLabelIndex = self.ui.scribLabelComboBox.currentIndex - if currentScribLabelIndex >= 0: - currentScribLabel = self.ui.scribLabelComboBox.itemText(currentScribLabelIndex) - self._parameterNode.SetParameter("CurrentScribLabel", currentScribLabel) - - currentStrategyIndex = self.ui.strategyBox.currentIndex - if currentStrategyIndex >= 0: - currentStrategy = self.ui.strategyBox.itemText(currentStrategyIndex) - self._parameterNode.SetParameter("CurrentStrategy", currentStrategy) - - currentTrainerIndex = self.ui.trainerBox.currentIndex - if currentTrainerIndex >= 0: - currentTrainer = self.ui.trainerBox.itemText(currentTrainerIndex) - self._parameterNode.SetParameter("CurrentTrainer", currentTrainer) - - self._parameterNode.EndModify(wasModified) - - def updateSelector(self, selector, model_types, param, defaultIndex=0): - wasSelectorBlocked = selector.blockSignals(True) - selector.clear() - - for model_name, model in self.models.items(): - if model["type"] in model_types: - selector.addItem(model_name) - selector.setItemData(selector.count - 1, model["description"], qt.Qt.ToolTipRole) - - model = self._parameterNode.GetParameter(param) - model = model if model else self.state.get(param, "") - modelIndex = selector.findText(model) - modelIndex = defaultIndex if modelIndex < 0 < selector.count else modelIndex - selector.setCurrentIndex(modelIndex) - - try: - modelInfo = self.models[model] - selector.setToolTip(modelInfo["description"]) - except BaseException: - selector.setToolTip("") - selector.blockSignals(wasSelectorBlocked) - - def getSelectedOptionSection(self, index=-1): - optionsSectionIndex = index if index >= 0 else self.ui.optionsSection.currentIndex - optionsSectionIndex = optionsSectionIndex if optionsSectionIndex > 0 else 0 - optionsSection = self.ui.optionsSection.itemText(optionsSectionIndex) - - logging.info(f"Current Selection Options Section: {optionsSection}") - mapping = {"infer": "models", "train": "trainers", "activelearning": "strategies", "scoring": "scoring"} - - return mapping.get(optionsSection) - - def getSelectedOptionName(self, index=-1): - optionsNameIndex = index if index >= 0 else self.ui.optionsName.currentIndex - optionsNameIndex = optionsNameIndex if optionsNameIndex > 0 else 0 - optionsName = self.ui.optionsName.itemText(optionsNameIndex) - - logging.info(f"Current Selection Options Name: {optionsName}") - return optionsName - - def invalidateConfigTable(self, selection=-1, name=-1): - section = self.getSelectedOptionSection(selection) - name = self.getSelectedOptionName(name) - if not section or not name: - return - - mapping = {"infer": "models", "train": "trainers", "activelearning": "strategies", "scoring": "scoring"} - section = mapping.get(section, section) - for row in range(self.ui.configTable.rowCount): - key = str(self.ui.configTable.item(row, 0).text()) - value = self.ui.configTable.item(row, 1) - - v = self.info.get(section, {}).get(name, {}).get("config", {}).get(key, {}) - if value is None: - value = self.ui.configTable.cellWidget(row, 1) - if isinstance(value, qt.QCheckBox): - value = True if value.checked else False - else: - value = value.currentText - else: - value = str(value.text()) - - if isinstance(v, bool): - value = True if value else False - elif isinstance(v, int): - value = int(value) if value else 0 - elif isinstance(v, float): - value = float(value) if value else 0.0 - elif isinstance(v, list): - v.remove(value) - v.insert(0, value) - value = v - - logging.info(f"Invalidate:: {section} => {name} => {key} => {value} => {type(v)}") - self.info.get(section, {}).get(name, {}).get("config", {})[key] = value - - def updateConfigTable(self, refresh=True): - logging.info(f"updateConfigTable => refresh:{refresh}") - section = self.getSelectedOptionSection() - sectionConfig = self.info.get(section, {}) - if refresh: - self.ui.optionsName.blockSignals(True) - self.ui.optionsName.clear() - for k in sectionConfig.keys(): - if sectionConfig[k].get("config"): - self.ui.optionsName.addItem(k) - if self.ui.optionsName.count: - self.ui.optionsName.setCurrentIndex(0) - self.ui.optionsName.blockSignals(False) - - name = self.getSelectedOptionName() - nameConfig = sectionConfig.get(name, {}).get("config", {}) - - table = self.ui.configTable - table.clear() - headers = ["key", "value"] - table.setColumnCount(len(headers)) - table.setHorizontalHeaderLabels(headers) - table.setColumnWidth(0, 250) - table.setRowCount(len(nameConfig)) - - n = 0 - for key, val in nameConfig.items(): - item = qt.QTableWidgetItem(key) - table.setItem(n, 0, item) - item.setFlags(item.flags() & ~qt.Qt.ItemIsEditable) - - if isinstance(val, dict) or isinstance(val, list): - combo = qt.QComboBox() - for m, v in enumerate(val): - combo.addItem(v) - combo.setCurrentIndex(0) - table.setCellWidget(n, 1, combo) - elif isinstance(val, bool): - checkbox = qt.QCheckBox() - checkbox.setChecked(val) - table.setCellWidget(n, 1, checkbox) - else: - table.setItem(n, 1, qt.QTableWidgetItem(str(val) if val else "")) - - logging.info(f"{n} => {section} => {name} => {key} => {val}") - n = n + 1 - - def updateAccuracyBar(self, dice): - self.ui.accuracyProgressBar.setValue(dice * 100) - css = ["stop: 0 red"] - if dice > 0.5: - css.append(f"stop: {0.5 / dice} orange") - if dice > 0.6: - css.append(f"stop: {0.6 / dice} yellow") - if dice > 0.7: - css.append(f"stop: {0.7 / dice} lightgreen") - if dice > 0.8: - css.append(f"stop: {0.8 / dice} green") - if dice > 0.9: - css.append(f"stop: {0.9 / dice} darkgreen") - self.ui.accuracyProgressBar.setStyleSheet( - "QProgressBar {text-align: center;} " - "QProgressBar::chunk {background-color: " - "qlineargradient(x0: 0, x2: 1, " + ",".join(css) + ")}" - ) - self.ui.accuracyProgressBar.setToolTip(f"Accuracy: {dice:.4f}") - - def getParamsFromConfig(self, section, name): - self.invalidateConfigTable() - - mapping = {"infer": "models", "train": "trainers", "activelearning": "strategies", "scoring": "scoring"} - section = mapping.get(section, section) - sectionConfig = self.info.get(section, {}) - nameConfig = sectionConfig.get(name, {}).get("config", {}) - - return {k: v[0] if isinstance(v, list) else v for k, v in nameConfig.items()} - - def onDeepGrowPointListNodeModified(self, observer, eventid): - logging.debug("Deepgrow Point Event!!") - - if self.ignorePointListNodeAddEvent: - return - - markupsNode = observer - movingMarkupIndex = markupsNode.GetDisplayNode().GetActiveControlPoint() - logging.debug(f"Markup point added; point ID = {movingMarkupIndex}") - - current_point = self.getControlPointXYZ(markupsNode, movingMarkupIndex) - - if not self.ui.dgUpdateCheckBox.checked: - self.onClickDeepgrow(current_point, skip_infer=True) - return - - self.onClickDeepgrow(current_point) - - self.ignorePointListNodeAddEvent = True - self.onEditControlPoints(self.dgPositivePointListNode, "MONAILabel.ForegroundPoints") - self.onEditControlPoints(self.dgNegativePointListNode, "MONAILabel.BackgroundPoints") - self.ignorePointListNodeAddEvent = False - - def onSAMMPointListNodeModified(self, observer, eventid): - logging.debug("SAMM Point Event!") - - if self.ignoreSAMMPointListNodeAddEvent: - return - - markupsNode = observer - movingMarkupIndex = markupsNode.GetDisplayNode().GetActiveControlPoint() - logging.debug(f"Markup point added; point ID = {movingMarkupIndex}") - - self.getControlPointXYZ(markupsNode, movingMarkupIndex) - - # if not self.ui.dgUpdateCheckBox.checked: - # self.onClickDeepgrow(current_point, skip_infer=True) - # return - - # self.onClickSAMMPoint(current_point) - - self.ignoreSAMMPointListNodeAddEvent = True - # self.onEditControlPoints(self.sammPositivePointListNode, "MONAILabel.ForegroundPoints") - # self.onEditControlPoints(self.sammNegativePointListNode, "MONAILabel.BackgroundPoints") - self.ignoreSAMMPointListNodeAddEvent = False - - def getControlPointsXYZ(self, pointListNode, name): - v = self._volumeNode - RasToIjkMatrix = vtk.vtkMatrix4x4() - v.GetRASToIJKMatrix(RasToIjkMatrix) - - point_set = [] - n = pointListNode.GetNumberOfControlPoints() - for i in range(n): - coord = pointListNode.GetNthControlPointPosition(i) - - world = [0, 0, 0] - pointListNode.GetNthControlPointPositionWorld(i, world) - - p_Ras = [coord[0], coord[1], coord[2], 1.0] - p_Ijk = RasToIjkMatrix.MultiplyDoublePoint(p_Ras) - p_Ijk = [round(i) for i in p_Ijk] - - logging.debug(f"RAS: {coord}; WORLD: {world}; IJK: {p_Ijk}") - point_set.append(p_Ijk[0:3]) - - logging.info(f"{name} => Current control points: {point_set}") - return point_set - - def getControlPointXYZ(self, pointListNode, index): - v = self._volumeNode - RasToIjkMatrix = vtk.vtkMatrix4x4() - v.GetRASToIJKMatrix(RasToIjkMatrix) - - coord = pointListNode.GetNthControlPointPosition(index) - - world = [0, 0, 0] - pointListNode.GetNthControlPointPositionWorld(index, world) - - p_Ras = [coord[0], coord[1], coord[2], 1.0] - p_Ijk = RasToIjkMatrix.MultiplyDoublePoint(p_Ras) - p_Ijk = [round(i) for i in p_Ijk] - - logging.debug(f"RAS: {coord}; WORLD: {world}; IJK: {p_Ijk}") - return p_Ijk[0:3] - - def onEditControlPoints(self, pointListNode, tagName): - if pointListNode is None: - return - - pointListNode.RemoveAllControlPoints() - segmentId, segment = self.currentSegment() - if segment and segmentId: - v = self._volumeNode - IjkToRasMatrix = vtk.vtkMatrix4x4() - v.GetIJKToRASMatrix(IjkToRasMatrix) - - fPosStr = vtk.mutable("") - segment.GetTag(tagName, fPosStr) - pointset = str(fPosStr) - logging.debug(f"{segmentId} => {segment.GetName()} Control points are: {pointset}") - - if fPosStr is not None and len(pointset) > 0: - points = json.loads(pointset) - for p in points: - p_Ijk = [p[0], p[1], p[2], 1.0] - p_Ras = IjkToRasMatrix.MultiplyDoublePoint(p_Ijk) - logging.debug(f"Add Control Point: {p_Ijk} => {p_Ras}") - pointListNode.AddControlPoint(p_Ras[0:3]) - - def currentSegment(self): - segmentation = self._segmentNode.GetSegmentation() - segmentId = segmentation.GetSegmentIdBySegmentName(self.ui.labelComboBox.currentText) - segment = segmentation.GetSegment(segmentId) - - logging.debug(f"Current SegmentID: {segmentId}; Segment: {segment}") - return segmentId, segment - - def currentScribSegment(self): - segmentation = self._segmentNode.GetSegmentation() - segmentId = segmentation.GetSegmentIdBySegmentName(self.ui.scribLabelComboBox.currentText) - segment = segmentation.GetSegment(segmentId) - - logging.debug(f"Current SegmentID: {segmentId}; Segment: {segment}") - return segmentId, segment - - def onSelectLabel(self, caller=None, event=None): - self.updateParameterNodeFromGUI(caller, event) - - self.ignorePointListNodeAddEvent = True - self.onEditControlPoints(self.dgPositivePointListNode, "MONAILabel.ForegroundPoints") - self.onEditControlPoints(self.dgNegativePointListNode, "MONAILabel.BackgroundPoints") - self.ignorePointListNodeAddEvent = False - - def onSelectOptionsSection(self, index, caller=None, event=None): - self.updateParameterNodeFromGUI(caller, event) - logging.info(f"Options Section Selection Changed.... current:{index}; prev: {self.optionsSectionIndex}") - - self.invalidateConfigTable(self.optionsSectionIndex, self.optionsNameIndex) - self.optionsSectionIndex = index - self.optionsNameIndex = 0 - self.updateConfigTable() - - def onSelectOptionsName(self, index, caller=None, event=None): - self.updateParameterNodeFromGUI(caller, event) - logging.info(f"Options Name Selection Changed.... current:{index}; prev: {self.optionsNameIndex}") - - self.invalidateConfigTable(self.optionsSectionIndex, self.optionsNameIndex) - self.optionsNameIndex = index - self.updateConfigTable(refresh=False) - - def onSelectScribLabel(self, caller=None, event=None): - if self.scribblesLayersPresent() and not self.ignoreScribblesLabelChangeEvent: - if not slicer.util.confirmOkCancelDisplay( - "This will clear current scribbles session.\n" "Are you sure to continue?" - ): - # undo changes to combobox - currentScribLabel = self._parameterNode.GetParameter("CurrentScribLabel") - logging.info(f"Cancel: reverting to original selection {currentScribLabel}") - self.ignoreScribblesLabelChangeEvent = True - self.ui.scribLabelComboBox.setCurrentIndex(self.ui.scribLabelComboBox.findText(currentScribLabel)) - self.ignoreScribblesLabelChangeEvent = False - return - self.onClearScribbles() - - self.updateParameterNodeFromGUI(caller, event) - - def icon(self, name="MONAILabel.png"): - # It should not be necessary to modify this method - iconPath = os.path.join(os.path.dirname(__file__), "Resources", "Icons", name) - if os.path.exists(iconPath): - return qt.QIcon(iconPath) - return qt.QIcon() - - def updateServerSettings(self): - self.logic.setServer(self.serverUrl()) - self.logic.setClientId(slicer.util.settingsValue("MONAILabel/clientId", "user-xyz")) - self.saveServerUrl() - - def serverUrl(self): - serverUrl = self.ui.serverComboBox.currentText - if not serverUrl: - serverUrl = "http://127.0.0.1:8000" - return serverUrl.rstrip("/") - - def saveServerUrl(self): - self.updateParameterNodeFromGUI() - - # Save selected server URL - settings = qt.QSettings() - serverUrl = self.ui.serverComboBox.currentText - settings.setValue("MONAILabel/serverUrl", serverUrl) - - # Save current server URL to the top of history - serverUrlHistory = settings.value("MONAILabel/serverUrlHistory") - if serverUrlHistory: - serverUrlHistory = serverUrlHistory.split(";") - else: - serverUrlHistory = [] - try: - serverUrlHistory.remove(serverUrl) - except ValueError: - pass - - serverUrlHistory.insert(0, serverUrl) - serverUrlHistory = serverUrlHistory[:10] # keep up to first 10 elements - settings.setValue("MONAILabel/serverUrlHistory", ";".join(serverUrlHistory)) - - self.updateServerUrlGUIFromSettings() - - def onClickFetchInfo(self): - self.fetchInfo() - self.updateConfigTable() - self.updateClassPromptTable() - - def fetchInfo(self, showInfo=False): - if not self.logic: - return - - start = time.time() - try: - self.updateServerSettings() - info = self.logic.info() - self.info = info - if self.info.get("config"): - slicer.util.errorDisplay( - "Please upgrade the monai server to latest version", - detailedText=traceback.format_exc(), - ) - return - except BaseException as e: - msg = f"Message:: {e.msg}" if hasattr(e, "msg") else "" - slicer.util.errorDisplay( - "Failed to fetch models from remote server. " - "Make sure server address is correct and /info/ " - f"is accessible in browser.\n{msg}", - detailedText=traceback.format_exc(), - ) - return - - self.models.clear() - self.config = info.get("config", {}) - - model_count = {} - models = info.get("models", {}) - for k, v in models.items(): - model_type = v.get("type", "segmentation") - model_count[model_type] = model_count.get(model_type, 0) + 1 - - logging.debug(f"{k} = {model_type}") - self.models[k] = v - - self.updateGUIFromParameterNode() - - msg = "" - msg += "-----------------------------------------------------\t\n" - msg += "Total Models Available: \t" + str(len(models)) + "\t\n" - msg += "-----------------------------------------------------\t\n" - for model_type in model_count.keys(): - msg += model_type.capitalize() + " Models: \t" + str(model_count[model_type]) + "\t\n" - msg += "-----------------------------------------------------\t\n" - - if showInfo: - qt.QMessageBox.information(slicer.util.mainWindow(), "MONAI Label", msg) - logging.info(msg) - logging.info(f"Time consumed by fetch info: {time.time() - start:3.1f}") - - def setProgressBarLabelText(self, label): - if not self.progressBar: - self.progressBar = slicer.util.createProgressDialog(windowTitle="Wait...", maximum=100) - self.progressBar.labelText = label - - def reportProgress(self, progressPercentage): - if not self.progressBar: - self.progressBar = slicer.util.createProgressDialog(windowTitle="Wait...", maximum=100) - self.progressBar.show() - self.progressBar.activateWindow() - self.progressBar.setValue(progressPercentage) - slicer.app.processEvents() - - def onTraining(self): - start = time.time() - status = None - try: - qt.QApplication.setOverrideCursor(qt.Qt.WaitCursor) - self.updateServerSettings() - - model = self.ui.trainerBox.currentText - if not model: - slicer.util.errorDisplay( - "No Model selected is to run the training", detailedText=traceback.format_exc() - ) - return - - params = self.getParamsFromConfig("train", model) - status = self.logic.train_start(model, params) - - self.ui.trainingProgressBar.setValue(1) - self.ui.trainingProgressBar.setToolTip("Training: STARTED") - - time.sleep(1) - self.updateGUIFromParameterNode() - except BaseException as e: - msg = f"Message:: {e.msg}" if hasattr(e, "msg") else "" - slicer.util.errorDisplay( - f"Failed to run training in MONAI Label Server.\n{msg}", - detailedText=traceback.format_exc(), - ) - finally: - qt.QApplication.restoreOverrideCursor() - - if status: - msg = "ID: {}\nStatus: {}\nStart Time: {}\n".format( - status.get("id"), - status.get("status"), - status.get("start_ts"), - ) - # slicer.util.infoDisplay(msg, detailedText=json.dumps(status, indent=2)) - logging.info(msg) - - logging.info(f"Time consumed by training: {time.time() - start:3.1f}") - - def onStopTraining(self): - start = time.time() - status = None - if not slicer.util.confirmOkCancelDisplay( - "This will kill/stop current Training task. Are you sure to continue?" - ): - return - - try: - qt.QApplication.setOverrideCursor(qt.Qt.WaitCursor) - self.updateServerSettings() - status = self.logic.train_stop() - except BaseException as e: - msg = f"Message:: {e.msg}" if hasattr(e, "msg") else "" - slicer.util.errorDisplay( - f"Failed to stop Training Task.\n{msg}", - detailedText=traceback.format_exc(), - ) - finally: - qt.QApplication.restoreOverrideCursor() - - if status: - msg = "Status: {}\nStart Time: {}\nEnd Time: {}\nResult: {}".format( - status.get("status"), - status.get("start_ts"), - status.get("end_ts"), - status.get("result", status.get("details", [])[-1]), - ) - # slicer.util.infoDisplay(msg, detailedText=json.dumps(status, indent=2)) - logging.info(msg) - self.updateGUIFromParameterNode() - - logging.info(f"Time consumed by stop training: {time.time() - start:3.1f}") - - def isTrainingRunning(self, check_only=True): - if not self.logic: - return False - self.updateServerSettings() - return self.logic.train_status(check_only) - - def onNextSampleButton(self): - if not self.logic: - return - - if self._volumeNode or len(slicer.util.getNodesByClass("vtkMRMLScalarVolumeNode")): - if not slicer.util.confirmOkCancelDisplay( - "This will close current scene. Please make sure you have saved your current work.\n" - "Are you sure to continue?" - ): - return - self.onResetScribbles() - slicer.mrmlScene.Clear(0) - - start = time.time() - try: - qt.QApplication.setOverrideCursor(qt.Qt.WaitCursor) - - self.updateServerSettings() - strategy = self.ui.strategyBox.currentText - if not strategy: - slicer.util.errorDisplay("No Strategy Found/Selected\t") - return - - sample = self.logic.next_sample(strategy, self.getParamsFromConfig("activelearning", strategy)) - logging.debug(sample) - if not sample.get("id"): - slicer.util.warningDisplay( - "Unlabeled samples or images not found at server.\n" - "Instead please go to File -> Add Data to load image." - ) - return - - if self.samples.get(sample["id"]) is not None: - self.current_sample = self.samples[sample["id"]] - name = self.current_sample["VolumeNodeName"] - index = self.ui.inputSelector.findText(name) - self.ui.inputSelector.setCurrentIndex(index) - return - - logging.info(sample) - image_id = sample["id"] - image_file = sample.get("path") - image_name = sample.get("name", image_id) - node_name = sample.get("PatientID", sample.get("name", image_id)) - checksum = sample.get("checksum") - local_exists = image_file and os.path.exists(image_file) - - logging.info(f"Check if file exists/shared locally: {image_file} => {local_exists}") - if local_exists: - self._volumeNode = slicer.util.loadVolume(image_file) - self._volumeNode.SetName(node_name) - else: - download_uri = f"{self.serverUrl()}/datastore/image?image={quote_plus(image_id)}" - logging.info(download_uri) - - sampleDataLogic = SampleData.SampleDataLogic() - self._volumeNode = sampleDataLogic.downloadFromURL( - nodeNames=node_name, fileNames=image_name, uris=download_uri, checksums=checksum - )[0] - - self.computeEmbedding = True - if self.computeEmbedding: - model = self.ui.sammModelSelector.currentText - # image_file = self.current_sample["id"] - params = self.getParamsFromConfig("infer", model) - params.update({"computeEmbedding": True}) - - if not self.progressBar: - self.progressBar = slicer.util.createProgressDialog( - windowTitle="Extracting 3D embedding...", maximum=100 - ) - self.progressBar.setLabelText("Initializing...") - self.progressBar.setFixedSize(400, 100) - self.progressBar.show() - # self.progressBar.activateWindow() - self.progressBar.setValue(0) - self.progressBar.setCancelButton(None) - - slicer.app.processEvents() - - _, params = self.logic.infer(model, image_file, params, session_id=self.getSessionId()) - - if slicer.util.settingsValue("MONAILabel/originalLabel", True, converter=slicer.util.toBool): - try: - datastore = self.logic.datastore() - label_info = datastore["objects"][image_id]["labels"]["original"]["info"] - labels = label_info.get("params", {}).get("label_names", {}) - - if labels: - # labels are available in original label info - labels = labels.keys() - else: - # labels not available - # assume labels in app info are valid for original label file - labels = self.logic.info().get("labels") - - # ext = datastore['objects'][image_id]['labels']['original']['ext'] - maskFile = self.logic.download_label(image_id, "original") - self.updateSegmentationMask(maskFile, list(labels)) - print("Original label uploaded! ") - - except BaseException as e: - print(f"Original label not found ... {e}") - - self.initSample(sample) - - except BaseException as e: - print(e) - msg = f"Message:: {e.msg}" if hasattr(e, "msg") else "" - slicer.util.errorDisplay( - f"Failed to fetch Sample from MONAI Label Server.\n{msg}", - detailedText=traceback.format_exc(), - ) - finally: - qt.QApplication.restoreOverrideCursor() - - self.updateGUIFromParameterNode() - logging.info(f"Time consumed by next_sample: {time.time() - start:3.1f}") - - def initSample(self, sample, autosegment=True): - sample["VolumeNodeName"] = self._volumeNode.GetName() - self.current_sample = sample - self.samples[sample["id"]] = sample - self._volumeNodes.append(self._volumeNode) - - # Create Empty Segments for all labels for this node - self.createSegmentNode() - self.ui.embeddedSegmentEditorWidget.setSegmentationNode(self._segmentNode) - self.ui.embeddedSegmentEditorWidget.setSourceVolumeNode(self._volumeNode) - - self.createScribblesROINode() - self.ui.scribblesPlaceWidget.setCurrentNode(self._scribblesROINode) - - # check if user allows overlapping segments - if slicer.util.settingsValue("MONAILabel/allowOverlappingSegments", False, converter=slicer.util.toBool): - # set segment editor to allow overlaps - self.logic.get_segment_editor_node().SetOverwriteMode(slicer.vtkMRMLSegmentEditorNode.OverwriteNone) - - if self.info.get("labels"): - self.updateSegmentationMask(None, self.info.get("labels")) - - # Check if user wants to run auto-segmentation on new sample - if autosegment and slicer.util.settingsValue( - "MONAILabel/autoRunSegmentationOnNextSample", True, converter=slicer.util.toBool - ): - for label in self.info.get("labels", []): - for name, model in self.models.items(): - if label in model.get("labels", []): - qt.QApplication.restoreOverrideCursor() - self.ui.sammModelSelector.currentText = name - self.onClickSegmentation() - return - - def getPermissionForImageDataUpload(self): - return slicer.util.confirmOkCancelDisplay( - "Source volume - without any additional patient information -" - " will be sent to remote data processing server: {}.\n\n" - "Click 'OK' to proceed with the segmentation.\n" - "Click 'Cancel' to not upload any data and cancel segmentation.\n".format(self.serverUrl()), - dontShowAgainSettingsKey="MONAILabel/showImageDataSendWarning", - ) - - def onUploadImage(self, init_sample=True, session=False): - volumeNode = slicer.mrmlScene.GetFirstNodeByClass("vtkMRMLScalarVolumeNode") - image_id = volumeNode.GetName() - - if not self.getPermissionForImageDataUpload(): - return False - - try: - qt.QApplication.setOverrideCursor(qt.Qt.WaitCursor) - in_file = tempfile.NamedTemporaryFile(suffix=self.file_ext, dir=self.tmpdir).name - self.reportProgress(5) - - start = time.time() - slicer.util.saveNode(volumeNode, in_file) - logging.info(f"Saved Input Node into {in_file} in {time.time() - start:3.1f}s") - self.reportProgress(30) - - if session: - self.current_sample["session_id"] = self.logic.create_session(in_file)["session_id"] - else: - self.logic.upload_image(in_file, image_id) - self.current_sample["session"] = False - self.reportProgress(100) - - self._volumeNode = volumeNode - if init_sample: - self.initSample({"id": image_id}, autosegment=False) - qt.QApplication.restoreOverrideCursor() - - self.updateGUIFromParameterNode() - return True - except BaseException as e: - msg = f"Message:: {e.msg}" if hasattr(e, "msg") else "" - self.reportProgress(100) - qt.QApplication.restoreOverrideCursor() - if session: - slicer.util.errorDisplay( - "Server Error:: Session creation Failed\nPlease upgrade to latest monailable version (> 0.2.0)", - detailedText=traceback.format_exc(), - ) - self.current_sample["session"] = None - else: - slicer.util.errorDisplay( - f"Failed to upload volume to Server.\n{msg}", - detailedText=traceback.format_exc(), - ) - return False - - def onImportLabel(self): - if not self.ui.labelPathLineEdit.currentPath or not os.path.exists(self.ui.labelPathLineEdit.currentPath): - slicer.util.warningDisplay("Label File not selected") - return - - try: - qt.QApplication.setOverrideCursor(qt.Qt.WaitCursor) - self.updateSegmentationMask(self.ui.labelPathLineEdit.currentPath, self.info["labels"]) - qt.QApplication.restoreOverrideCursor() - except BaseException: - qt.QApplication.restoreOverrideCursor() - slicer.util.errorDisplay("Failed to import label", detailedText=traceback.format_exc()) - - def onSaveLabel(self): - start = time.time() - labelmapVolumeNode = None - result = None - self.onResetScribbles() - - if self.current_sample.get("session"): - if not self.onUploadImage(init_sample=False): - return - - try: - qt.QApplication.setOverrideCursor(qt.Qt.WaitCursor) - model = self.ui.sammModelSelector.currentText - - if model and self.models[model]["type"] == "detection": - label_in, label_info = self.onGenerateJSONFromMulipltROIs() - self.reportProgress(30) - else: - segmentationNode = self._segmentNode - segmentation = segmentationNode.GetSegmentation() - totalSegments = segmentation.GetNumberOfSegments() - segmentIds = [segmentation.GetNthSegmentID(i) for i in range(totalSegments)] - - # remove background and scribbles labels - label_info = [] - save_segment_ids = vtk.vtkStringArray() - for idx, segmentId in enumerate(segmentIds): - segment = segmentation.GetSegment(segmentId) - if segment.GetName() in ["background", "foreground_scribbles", "background_scribbles"]: - logging.info(f"Removing segment {segmentId}: {segment.GetName()}") - continue - - save_segment_ids.InsertNextValue(segmentId) - label_info.append({"name": segment.GetName(), "idx": idx + 1}) - # label_info.append({"color": segment.GetColor()}) - - # export labelmap - labelmapVolumeNode = slicer.mrmlScene.AddNewNodeByClass("vtkMRMLLabelMapVolumeNode") - slicer.modules.segmentations.logic().ExportSegmentsToLabelmapNode( - segmentationNode, save_segment_ids, labelmapVolumeNode, self._volumeNode - ) - - label_in = tempfile.NamedTemporaryFile(suffix=self.file_ext, dir=self.tmpdir).name - self.reportProgress(5) - - if ( - slicer.util.settingsValue("MONAILabel/allowOverlappingSegments", True, converter=slicer.util.toBool) - and slicer.util.settingsValue("MONAILabel/fileExtension", self.file_ext) == ".seg.nrrd" - ): - slicer.util.saveNode(segmentationNode, label_in) - else: - slicer.util.saveNode(labelmapVolumeNode, label_in) - self.reportProgress(30) - - self.updateServerSettings() - result = self.logic.save_label(self.current_sample["id"], label_in, {"label_info": label_info}) - self.fetchInfo() - - if slicer.util.settingsValue("MONAILabel/autoUpdateModelV2", False, converter=slicer.util.toBool): - try: - if self.isTrainingRunning(check_only=True): - self.logic.train_stop() - except BaseException: - logging.info("Failed to stop training; or already stopped") - self.onTraining() - except BaseException as e: - msg = f"Message:: {e.msg}" if hasattr(e, "msg") else "" - slicer.util.errorDisplay( - f"Failed to save Label to MONAI Label Server.\n{msg}", - detailedText=traceback.format_exc(), - ) - finally: - qt.QApplication.restoreOverrideCursor() - self.reportProgress(100) - - if labelmapVolumeNode: - slicer.mrmlScene.RemoveNode(labelmapVolumeNode) - if result: - slicer.util.infoDisplay( - "Label-Mask saved into MONAI Label Server\t\t", detailedText=json.dumps(result, indent=2) - ) - - if slicer.util.settingsValue("MONAILabel/autoFetchNextSample", False, converter=slicer.util.toBool): - slicer.mrmlScene.Clear(0) - self.onNextSampleButton() - - logging.info(f"Time consumed by save label: {time.time() - start:3.1f}") - - def getSessionId(self): - session_id = None - if self.current_sample.get("session", False): - session_id = self.current_sample.get("session_id") - if not session_id or not self.logic.get_session(session_id): - self.onUploadImage(init_sample=False, session=True) - session_id = self.current_sample["session_id"] - return session_id - - def onClickSegmentation(self): - if not self.current_sample: - return - - start = time.time() - result_file = None - try: - qt.QApplication.setOverrideCursor(qt.Qt.WaitCursor) - - self.updateServerSettings() - - model = self.ui.sammModelSelector.currentText - image_file = self.current_sample["id"] - params = self.getParamsFromConfig("infer", model) - - result_file, params = self.logic.infer(model, image_file, params, session_id=self.getSessionId()) - print(f"Result Params for Segmentation: {params}") - - labels = ( - params.get("label_names") if params and params.get("label_names") else self.models[model].get("labels") - ) - if labels and isinstance(labels, dict): - labels = [k for k, _ in sorted(labels.items(), key=lambda item: item[1])] - self.updateSegmentationMask(result_file, labels) - except BaseException as e: - msg = f"Message:: {e.msg}" if hasattr(e, "msg") else "" - slicer.util.errorDisplay( - f"Failed to run inference in MONAI Label Server.\n{msg}", - detailedText=traceback.format_exc(), - ) - finally: - qt.QApplication.restoreOverrideCursor() - if result_file and os.path.exists(result_file): - os.unlink(result_file) - - self.updateGUIFromParameterNode() - logging.info(f"Time consumed by segmentation: {time.time() - start:3.1f}") - - def onUpdateDeepgrow(self): - self.onClickDeepgrow(None) - - def onClickDeepgrow(self, current_point, skip_infer=False): - model = self.ui.deepgrowModelSelector.currentText - if not model: - slicer.util.warningDisplay("Please select a deepgrow model") - return - - _, segment = self.currentSegment() - if not segment: - slicer.util.warningDisplay("Please add the required label to run deepgrow") - return - - foreground_all = self.getControlPointsXYZ(self.dgPositivePointListNode, "foreground") - background_all = self.getControlPointsXYZ(self.dgNegativePointListNode, "background") - - segment.SetTag("MONAILabel.ForegroundPoints", json.dumps(foreground_all)) - segment.SetTag("MONAILabel.BackgroundPoints", json.dumps(background_all)) - if skip_infer: - return - - # use model info "deepgrow" to determine - deepgrow_3d = False if self.models[model].get("dimension", 3) == 2 else True - print(f"Is DeepGrow 3D: {deepgrow_3d}") - start = time.time() - - label = segment.GetName() - operationDescription = f"Run Deepgrow for segment: {label}; model: {model}; 3d {deepgrow_3d}" - logging.debug(operationDescription) - - if not current_point: - if not foreground_all and not deepgrow_3d: - slicer.util.warningDisplay(operationDescription + " - points not added") - return - current_point = foreground_all[-1] if foreground_all else background_all[-1] if background_all else None - - try: - qt.QApplication.setOverrideCursor(qt.Qt.WaitCursor) - - sliceIndex = None - if self.deepedit_multi_label: - params = {} - segmentation = self._segmentNode.GetSegmentation() - for name in self.info.get("labels", []): - points = [] - segmentId = segmentation.GetSegmentIdBySegmentName(name) - segment = segmentation.GetSegment(segmentId) if segmentId else None - if segment: - fPosStr = vtk.mutable("") - segment.GetTag("MONAILabel.ForegroundPoints", fPosStr) - pointset = str(fPosStr) - print(f"{segmentId} => {name} Control points are: {pointset}") - if fPosStr is not None and len(pointset) > 0: - points = json.loads(pointset) - - params[name] = points - params["label"] = label - labels = None - else: - sliceIndex = current_point[2] if current_point else None - print(f"Slice Index: {sliceIndex}") - - if deepgrow_3d or not sliceIndex: - foreground = foreground_all - background = background_all - else: - foreground = [x for x in foreground_all if x[2] == sliceIndex] - background = [x for x in background_all if x[2] == sliceIndex] - - logging.debug(f"Foreground: {foreground}") - logging.debug(f"Background: {background}") - logging.debug(f"Current point: {current_point}") - - params = { - "label": label, - "foreground": foreground, - "background": background, - } - labels = [label] - - params["label"] = label - params.update(self.getParamsFromConfig("infer", model)) - print(f"Request Params for Deepgrow/Deepedit: {params}") - - image_file = self.current_sample["id"] - result_file, params = self.logic.infer(model, image_file, params, session_id=self.getSessionId()) - print(f"Result Params for Deepgrow/Deepedit: {params}") - if labels is None: - labels = ( - params.get("label_names") - if params and params.get("label_names") - else self.models[model].get("labels") - ) - if labels and isinstance(labels, dict): - labels = [k for k, _ in sorted(labels.items(), key=lambda item: item[1])] - - freeze = label if self.ui.freezeUpdateCheckBox.checked else None - self.updateSegmentationMask(result_file, labels, None if deepgrow_3d else sliceIndex, freeze=freeze) - except BaseException as e: - msg = f"Message:: {e.msg}" if hasattr(e, "msg") else "" - slicer.util.errorDisplay( - operationDescription + f" - unexpected error.\n{msg}", - detailedText=traceback.format_exc(), - ) - finally: - qt.QApplication.restoreOverrideCursor() - - self.updateGUIFromParameterNode() - logging.info(f"Time consumed by Deepgrow: {time.time() - start:3.1f}") - - def updateClassPromptTable(self, refresh=True): - logging.info(f"updateClassPromptTable => refresh:{refresh}") - model = self.ui.sammModelSelector.currentText - params = self.getParamsFromConfig("infer", model) - print(params) - labels = params.get("label_names") if params and params.get("label_names") else self.models[model].get("labels") - - class_table = self.ui.classPromptsTable - class_table.clear() - headers = ["Anatomy", "Prompt"] - class_table.setColumnCount(len(headers)) - class_table.setHorizontalHeaderLabels(headers) - class_table.setColumnWidth(0, 250) - class_table.setRowCount(len(labels)) - - n = 0 - for key in labels: - item = qt.QTableWidgetItem(key) - class_table.setItem(n, 0, item) - item.setFlags(item.flags() & ~qt.Qt.ItemIsEditable) - - checkbox = qt.QCheckBox() - # checkbox.setChecked(val) - class_table.setCellWidget(n, 1, checkbox) - - logging.info(f"{n} => Add class checkbox => {key}") - n = n + 1 - - def getClassPromptTable(self): - class_prompts = [] - for row in range(self.ui.classPromptsTable.rowCount): - key = str(self.ui.classPromptsTable.item(row, 0).text()) - value = self.ui.classPromptsTable.item(row, 1) - - if value is None: - value = self.ui.classPromptsTable.cellWidget(row, 1) - if isinstance(value, qt.QCheckBox): - value = True if value.checked else False - else: - value = value.currentText - else: - value = str(value.text()) - - value = True if value else False - - if value is True: - class_prompts.append(key) - - logging.info(f"Class prompts:: => {class_prompts}") - return class_prompts - - def filterClassPromptTable(self, text): - self.ui.classPromptsTable.setUpdatesEnabled(False) - - for row in range(self.ui.classPromptsTable.rowCount): - key = str(self.ui.classPromptsTable.item(row, 0).text()) - showRow = text.lower() in key.lower() - self.ui.classPromptsTable.setRowHidden(row, not showRow) - - self.ui.classPromptsTable.setUpdatesEnabled(True) - - def onSetPromptSegmentation(self): - if not self.current_sample: - return - - start = time.time() - result_file = None - try: - qt.QApplication.setOverrideCursor(qt.Qt.WaitCursor) - self.updateServerSettings() - model = self.ui.sammModelSelector.currentText - image_file = self.current_sample["id"] - - # get class prompt from checkbox - params = self.getParamsFromConfig("infer", model) - labels = ( - params.get("label_names") if params and params.get("label_names") else self.models[model].get("labels") - ) - class_names = self.getClassPromptTable() - - class_prompts = [] - - for k in class_names: - class_prompts.append(labels[k] - 1) - - # params = { - # "class_prompts": class_prompts, - # } - # ------- - params.update({"class_prompts": class_prompts}) - - result_file, params = self.logic.infer(model, image_file, params, session_id=self.getSessionId()) - print(f"Result Params for Segmentation: {params}") - - if labels and isinstance(labels, dict): - labels = [k for k, _ in sorted(labels.items(), key=lambda item: item[1])] - self.updateSegmentationMask(result_file, labels) - except BaseException as e: - msg = f"Message:: {e.msg}" if hasattr(e, "msg") else "" - slicer.util.errorDisplay( - f"Failed to run inference in MONAI Label Server.\n{msg}", - detailedText=traceback.format_exc(), - ) - finally: - qt.QApplication.restoreOverrideCursor() - if result_file and os.path.exists(result_file): - os.unlink(result_file) - - self.updateGUIFromParameterNode() - logging.info(f"Time consumed by segmentation: {time.time() - start:3.1f}") - - def onPointPromptSegmentation(self): - if not self.current_sample: - return - start = time.time() - result_file = None - try: - qt.QApplication.setOverrideCursor(qt.Qt.WaitCursor) - self.updateServerSettings() - model = self.ui.sammModelSelector.currentText - image_file = self.current_sample["id"] - - # get class prompt from checkbox - params = self.getParamsFromConfig("infer", model) - labels = ( - params.get("label_names") if params and params.get("label_names") else self.models[model].get("labels") - ) - class_names = self.getClassPromptTable() - - class_prompts = [] - - for k in class_names: - class_prompts.append(labels[k] - 1) - - foreground_all = self.getControlPointsXYZ(self.sammPositivePointListNode, "foreground") - background_all = self.getControlPointsXYZ(self.sammNegativePointListNode, "background") - foreground = foreground_all - background = background_all - - logging.debug(f"Foreground: {foreground}") - logging.debug(f"Background: {background}") - point_prompts = { - "foreground": foreground, - "background": background, - } - - params.update({"class_prompts": class_prompts, "point_prompts": point_prompts}) - - result_file, params = self.logic.infer(model, image_file, params, session_id=self.getSessionId()) - print(f"Result Params for Segmentation: {params}") - - if labels and isinstance(labels, dict): - labels = [k for k, _ in sorted(labels.items(), key=lambda item: item[1])] - self.updateSegmentationMask(result_file, labels) - except BaseException as e: - msg = f"Message:: {e.msg}" if hasattr(e, "msg") else "" - slicer.util.errorDisplay( - f"Failed to run inference in MONAI Label Server.\n{msg}", - detailedText=traceback.format_exc(), - ) - finally: - qt.QApplication.restoreOverrideCursor() - if result_file and os.path.exists(result_file): - os.unlink(result_file) - - self.updateGUIFromParameterNode() - logging.info(f"Time consumed by segmentation: {time.time() - start:3.1f}") - - def createCursor(self, widget): - return slicer.util.mainWindow().cursor - - def createSegmentNode(self): - if self._volumeNode is None: - return - if self._segmentNode is None: - name = "segmentation_" + self._volumeNode.GetName() - self._segmentNode = slicer.mrmlScene.AddNewNodeByClass("vtkMRMLSegmentationNode") - self._segmentNode.SetReferenceImageGeometryParameterFromVolumeNode(self._volumeNode) - self._segmentNode.SetName(name) - - def createScribblesROINode(self): - if self._volumeNode is None: - return - if self._scribblesROINode is None: - scribblesROINode = slicer.mrmlScene.AddNewNodeByClass("vtkMRMLMarkupsROINode") - scribblesROINode.SetName("Scribbles ROI") - scribblesROINode.CreateDefaultDisplayNodes() - scribblesROINode.GetDisplayNode().SetFillOpacity(0.4) - scribblesROINode.GetDisplayNode().SetSelectedColor(1, 1, 1) - scribblesROINode.GetDisplayNode().SetColor(1, 1, 1) - scribblesROINode.GetDisplayNode().SetActiveColor(1, 1, 1) - self._scribblesROINode = scribblesROINode - - def getLabelColor(self, name): - color = GenericAnatomyColors.get(name.lower()) - return [c / 255.0 for c in color] if color else None - - def updateSegmentationMask(self, in_file, labels, sliceIndex=None, freeze=None): - # TODO:: Add ROI Node (for Bounding Box if provided in the result) - start = time.time() - logging.debug(f"Update Segmentation Mask from: {in_file}") - if in_file and not os.path.exists(in_file): - return False - - segmentationNode = self._segmentNode - segmentation = segmentationNode.GetSegmentation() - - if in_file is None: - for label in labels: - if not segmentation.GetSegmentIdBySegmentName(label): - segmentation.AddEmptySegment(label, label, self.getLabelColor(label)) - return True - - if in_file.endswith(".seg.nrrd") and self.file_ext == ".seg.nrrd": - source_node = slicer.modules.segmentations.logic().LoadSegmentationFromFile(in_file, False) - destination_node = segmentationNode - destination_segmentations = destination_node.GetSegmentation() - source_segmentations = source_node.GetSegmentation() - - destination_segmentations.DeepCopy(source_segmentations) - - if self._volumeNode: - destination_node.SetReferenceImageGeometryParameterFromVolumeNode(self._volumeNode) - - slicer.mrmlScene.RemoveNode(source_node) - elif in_file.endswith(".json"): - # Add bounding box ROI nodes, load multiple ROI nodes in the same scene. - logging.info("Update Detection ROI Bounding Box") - slicer.util.loadMarkups(in_file) - detectionROIs = slicer.mrmlScene.GetNodesByClass("vtkMRMLMarkupsROINode") # Get all ROI node from scene - numNodes = detectionROIs.GetNumberOfItems() - for i in range(numNodes): - ROINode = detectionROIs.GetItemAsObject(i) - if ROINode.GetName() != "Scribbles ROI": - ROINode.SetName(f"Detection ROI - {i}") - ROINode.GetDisplayNode().SetInteractionHandleScale(0.7) # set handle size - else: - labels = [label for label in labels if label != "background"] - logging.info(f"Update Segmentation Mask using Labels: {labels}") - - # segmentId, segment = self.currentSegment() - labelImage = sitk.ReadImage(in_file) - labelmapVolumeNode = sitkUtils.PushVolumeToSlicer(labelImage, None, className="vtkMRMLLabelMapVolumeNode") - logging.info(f"Time consumed by Import LabelMask: {time.time() - start:3.1f}") - - freeze = [freeze] if freeze and isinstance(freeze, str) else freeze - logging.info(f"Import only Freezed label: {freeze}") - - if sliceIndex is None and not freeze: - # List of segments to import - segmentIds = vtk.vtkStringArray() - for label in labels: - segmentIds.InsertNextValue(label) - - # faster import (based on selected segmentIds) - slicer.modules.segmentations.logic().ImportLabelmapToSegmentationNode( - labelmapVolumeNode, segmentationNode, segmentIds - ) - slicer.mrmlScene.RemoveNode(labelmapVolumeNode) - else: - existingCount = segmentation.GetNumberOfSegments() - existing_label_ids = {} - for label in labels: - id = segmentation.GetSegmentIdBySegmentName(label) - if id: - existing_label_ids[label] = id - - # slower import (import all - use only when you have to update one particular slice for 2D) - slicer.modules.segmentations.logic().ImportLabelmapToSegmentationNode( - labelmapVolumeNode, segmentationNode - ) - slicer.mrmlScene.RemoveNode(labelmapVolumeNode) - - addedCount = segmentation.GetNumberOfSegments() - existingCount - addedSegmentIds = [segmentation.GetNthSegmentID(existingCount + i) for i in range(addedCount)] - - self.ui.embeddedSegmentEditorWidget.setSegmentationNode(segmentationNode) - self.ui.embeddedSegmentEditorWidget.setSourceVolumeNode(self._volumeNode) - - for i, segmentId in enumerate(addedSegmentIds): - label = labels[i] if i < len(labels) else f"unknown {i}" - if freeze and label not in freeze: - logging.info(f"Discard label update for: {label}") - else: - segment = segmentation.GetSegment(segmentId) - logging.info(f"select segmentation with id: {segmentId} => {segment.GetName()} => {label}") - if label in existing_label_ids: - l_start = time.time() - label_id = existing_label_ids[label] - - self.ui.embeddedSegmentEditorWidget.setCurrentSegmentID(label_id) - effect = self.ui.embeddedSegmentEditorWidget.effectByName("Logical operators") - - if sliceIndex is not None: - selectedSegmentLabelmap = effect.selectedSegmentLabelmap() - dims = selectedSegmentLabelmap.GetDimensions() - for x in range(dims[0]): - for y in range(dims[1]): - selectedSegmentLabelmap.SetScalarComponentFromDouble(x, y, sliceIndex, 0, 0) - - logging.info(f"{label} - Time to Clean the slice: {time.time() - l_start:3.1f}") - - l_start = time.time() - newLabelmap = slicer.vtkOrientedImageData() - segmentationNode.GetBinaryLabelmapRepresentation(segmentId, newLabelmap) - op = ( - slicer.qSlicerSegmentEditorAbstractEffect.ModificationModeSet - if sliceIndex is None - else slicer.qSlicerSegmentEditorAbstractEffect.ModificationModeAdd - ) - effect.modifySelectedSegmentByLabelmap(newLabelmap, op) - logging.info(f"{label} - Time to Update the segment: {time.time() - l_start:3.1f}") - - segmentationNode.RemoveSegment(segmentId) - logging.info(f"Time consumed until Import Segment => {label}: {time.time() - start:3.1f}") - - if slicer.util.settingsValue("MONAILabel/showSegmentsIn3D", False, converter=slicer.util.toBool): - self.showSegmentationsIn3D() - - logging.info(f"Time consumed by updateSegmentationMask: {time.time() - start:3.1f}") - return True - - def showSegmentationsIn3D(self): - # add closed surface representation - if self._segmentNode: - self._segmentNode.CreateClosedSurfaceRepresentation() - view = slicer.app.layoutManager().threeDWidget(0).threeDView() - view.resetFocalPoint() - - def updateServerUrlGUIFromSettings(self): - # Save current server URL to the top of history - settings = qt.QSettings() - serverUrlHistory = settings.value("MONAILabel/serverUrlHistory") - - wasBlocked = self.ui.serverComboBox.blockSignals(True) - self.ui.serverComboBox.clear() - if serverUrlHistory: - self.ui.serverComboBox.addItems(serverUrlHistory.split(";")) - self.ui.serverComboBox.setCurrentText(settings.value("MONAILabel/serverUrl")) - self.ui.serverComboBox.blockSignals(wasBlocked) - - def createPointListNode(self, name, onMarkupNodeModified, color): - displayNode = slicer.mrmlScene.AddNewNodeByClass("vtkMRMLMarkupsDisplayNode") - displayNode.SetTextScale(0) - displayNode.SetSelectedColor(color) - - pointListNode = slicer.mrmlScene.AddNewNodeByClass("vtkMRMLMarkupsFiducialNode") - pointListNode.SetName(name) - pointListNode.SetAndObserveDisplayNodeID(displayNode.GetID()) - - pointListNodeObservers = [] - self.addPointListNodeObserver(pointListNode, onMarkupNodeModified) - return pointListNode, pointListNodeObservers - - def removePointListNodeObservers(self, pointListNode, pointListNodeObservers): - if pointListNode and pointListNodeObservers: - for observer in pointListNodeObservers: - pointListNode.RemoveObserver(observer) - - def addPointListNodeObserver(self, pointListNode, onMarkupNodeModified): - pointListNodeObservers = [] - if pointListNode: - eventIds = [slicer.vtkMRMLMarkupsNode.PointPositionDefinedEvent] - for eventId in eventIds: - pointListNodeObservers.append(pointListNode.AddObserver(eventId, onMarkupNodeModified)) - return pointListNodeObservers - - def scribblesLayersPresent(self): - scribbles_exist = False - if self._segmentNode is not None: - segmentationNode = self._segmentNode - segmentation = segmentationNode.GetSegmentation() - numSegments = segmentation.GetNumberOfSegments() - segmentIds = [segmentation.GetNthSegmentID(i) for i in range(numSegments)] - scribbles_exist = sum(int("scribbles" in sid) for sid in segmentIds) > 0 - return scribbles_exist - - def ensureScribblesLayersPresent(self): - if (not self._segmentNode) or self.scribblesLayersPresent(): - return - - # add background, layer index = -2 [2], color = red - self._segmentNode.GetSegmentation().AddEmptySegment( - "background_scribbles", "background_scribbles", [1.0, 0.0, 0.0] - ) - - # add foreground, layer index = -1 [3], color = green - self._segmentNode.GetSegmentation().AddEmptySegment( - "foreground_scribbles", "foreground_scribbles", [0.0, 1.0, 0.0] - ) - - # change segmentation display properties to "see through" the scribbles - # further explanation at: - # https://apidocs.slicer.org/main/classvtkMRMLSegmentationDisplayNode.html - segmentationDisplayNode = self._segmentNode.GetDisplayNode() - - # background - opacity = 0.2 - segmentationDisplayNode.SetSegmentOpacity2DFill("background_scribbles", opacity) - segmentationDisplayNode.SetSegmentOpacity2DOutline("background_scribbles", opacity) - - # foreground - segmentationDisplayNode.SetSegmentOpacity2DFill("foreground_scribbles", opacity) - segmentationDisplayNode.SetSegmentOpacity2DOutline("foreground_scribbles", opacity) - - def onUpdateScribbles(self): - logging.info("Scribbles update event") - scribblesMethod = self.ui.scribblesMethodSelector.currentText - scribbles_in = None - result_file = None - - try: - qt.QApplication.setOverrideCursor(qt.Qt.WaitCursor) - - # get scribbles + label - segmentationNode = self._segmentNode - labelmapVolumeNode = slicer.mrmlScene.AddNewNodeByClass("vtkMRMLLabelMapVolumeNode") - save_segment_ids = vtk.vtkStringArray() - segmentationNode.GetSegmentation().GetSegmentIDs(save_segment_ids) - slicer.modules.segmentations.logic().ExportSegmentsToLabelmapNode( - segmentationNode, save_segment_ids, labelmapVolumeNode, self._volumeNode - ) - segmentation = segmentationNode.GetSegmentation() - totalSegments = segmentation.GetNumberOfSegments() - segmentIds = [segmentation.GetNthSegmentID(i) for i in range(totalSegments)] - - label_info = [] - for idx, segmentId in enumerate(segmentIds): - segment = segmentation.GetSegment(segmentId) - label_info.append({"name": segment.GetName(), "id": idx + 1}) - - scribbles_in = tempfile.NamedTemporaryFile(suffix=self.file_ext, dir=self.tmpdir).name - self.reportProgress(5) - - # save scribbles + label to file - slicer.util.saveNode(labelmapVolumeNode, scribbles_in) - slicer.mrmlScene.RemoveNode(labelmapVolumeNode) - self.reportProgress(30) - self.updateServerSettings() - self.reportProgress(60) - - # try to get roi if placed - roiNode = self.ui.scribblesPlaceWidget.currentNode() - selected_roi = [] - if roiNode and roiNode.GetControlPointPlacementComplete(): - selected_roi = self.getROIPointsXYZ(roiNode) - - # send scribbles + label to server along with selected scribbles method - params = self.getParamsFromConfig("infer", scribblesMethod) - params.update({"roi": selected_roi}) - params.update({"label_info": label_info}) - _, segment = self.currentScribSegment() - selected_label_name = segment.GetName() - params.update({"selected_label_name": selected_label_name}) - - image_file = self.current_sample["id"] - result_file, params = self.logic.infer( - scribblesMethod, image_file, params, scribbles_in, session_id=self.getSessionId() - ) - - # display result from server - self.reportProgress(90) - self.updateSegmentationMask(result_file, [selected_label_name]) - except BaseException as e: - msg = f"Message:: {e.msg}" if hasattr(e, "msg") else "" - slicer.util.errorDisplay( - f"Failed to post process label on MONAI Label Server using {scribblesMethod}.\n{msg}", - detailedText=traceback.format_exc(), - ) - finally: - qt.QApplication.restoreOverrideCursor() - self.reportProgress(100) - - # clear all temporary files - if scribbles_in and os.path.exists(scribbles_in): - os.unlink(scribbles_in) - - if result_file and os.path.exists(result_file): - os.unlink(result_file) - - def getROIPointsXYZ(self, roiNode): - if roiNode is None: - return [] - - v = self._volumeNode - RasToIjkMatrix = vtk.vtkMatrix4x4() - v.GetRASToIJKMatrix(RasToIjkMatrix) - - roi_points_ras = [0.0] * 6 - center = [0] * 3 - roiNode.GetCenter(center) - roi_points_ras = [(x - s / 2, x + s / 2) for x, s in zip(center, roiNode.GetSize())] - roi_points_ras = [item for sublist in roi_points_ras for item in sublist] - - min_points_ras = [roi_points_ras[0], roi_points_ras[2], roi_points_ras[4], 1.0] - max_points_ras = [roi_points_ras[0 + 1], roi_points_ras[2 + 1], roi_points_ras[4 + 1], 1.0] - - min_points_ijk = RasToIjkMatrix.MultiplyDoublePoint(min_points_ras) - max_points_ijk = RasToIjkMatrix.MultiplyDoublePoint(max_points_ras) - - min_points_ijk = [round(i) for i in min_points_ijk] - max_points_ijk = [round(i) for i in max_points_ijk] - - roi_points_ijk = [val for pair in zip(min_points_ijk[0:3], max_points_ijk[0:3]) for val in pair] - logging.debug(f"RAS: {roi_points_ras}; IJK: {roi_points_ijk}") - # print("RAS: {}; IJK: {}".format(roi_points_ras, roi_points_ijk)) - - return roi_points_ijk - - def onClearScribblesSegmentNodes(self): - # more explanation on this at: - # https://discourse.slicer.org/t/how-to-clear-segmentation/7433/4 - # clear "scribbles" segment before saving the label - if not self._segmentNode: - return - - segmentation = self._segmentNode - num_segments = segmentation.GetSegmentation().GetNumberOfSegments() - for i in range(num_segments): - segmentId = segmentation.GetSegmentation().GetNthSegmentID(i) - if "scribbles" in segmentId: - logging.info(f"clearing {segmentId}") - labelMapRep = slicer.vtkOrientedImageData() - segmentation.GetBinaryLabelmapRepresentation(segmentId, labelMapRep) - vtkSegmentationCore.vtkOrientedImageDataResample.FillImage(labelMapRep, 0, labelMapRep.GetExtent()) - slicer.vtkSlicerSegmentationsModuleLogic.SetBinaryLabelmapToSegment( - labelMapRep, segmentation, segmentId, slicer.vtkSlicerSegmentationsModuleLogic.MODE_REPLACE - ) - - # refresh segmentation view to clear scribbles segmentations - # help from: https://discourse.slicer.org/t/refresh-volume-rendering/11847/6 - segmentation.SetDisplayVisibility(False) - segmentation.SetDisplayVisibility(True) - - def resetScribblesROI(self): - if self._scribblesROINode: - self._scribblesROINode.RemoveAllControlPoints() - - def onClearScribbles(self): - # for clearing scribbles and resetting tools to default - # remove "scribbles" segments from label - self.onClearScribblesSegmentNodes() - - self.resetScribblesROI() - - self.ui.paintScribblesButton.setChecked(True) - self.ui.eraseScribblesButton.setChecked(False) - - self.ui.scribblesSelector.setCurrentIndex(0) - - def onResetScribbles(self): - # reset scribbles mode - self.scribblesMode = None - - # remove "scribbles" segments from label - self.onClearScribblesSegmentNodes() - - self.ui.paintScribblesButton.setChecked(False) - self.ui.eraseScribblesButton.setChecked(False) - - self.ui.scribblesSelector.setCurrentIndex(0) - self.ignoreScribblesLabelChangeEvent = True - self.ui.scribLabelComboBox.setCurrentIndex(0) - self.ignoreScribblesLabelChangeEvent = False - - def updateScribToolLayerFromMode(self): - if not self._segmentNode: - return - - logging.info(f"Scribbles mode {self.scribblesMode} ") - - if self.scribblesMode is None: - self.changeScribblesMode(tool="Paint", layer="foreground_scribbles") - self.updateScribToolLayerFromMode() - - # update tool/layer select for scribblesEditorWidget - tool, layer = self.getToolAndLayerFromScribblesMode() - if self.scribblesMode is not None: - self.ensureScribblesLayersPresent() - - # adding new scribbles can overwrite a new one-hot vector, hence erase any existing - # labels - this is not a desired behaviour hence we swith to overlay mode that enables drawing - # scribbles without changing existing labels. Further explanation at: - # https://discourse.slicer.org/t/how-can-i-set-masking-settings-on-a-segment-editor-effect-in-python/4406/7 - self.logic.get_segment_editor_node().SetOverwriteMode(slicer.vtkMRMLSegmentEditorNode.OverwriteNone) - - self.ui.embeddedSegmentEditorWidget.setActiveEffectByName(tool) - self.ui.embeddedSegmentEditorWidget.setCurrentSegmentID(layer) - - # update brush type from checkbox - if tool in ("Paint", "Erase"): - is3dbrush = self.ui.brush3dCheckbox.checkState() - self.on3dBrushCheckbox(state=is3dbrush) - - # update brush size from slider - brushSize = self.ui.brushSizeSlider.value - self.updateBrushSize(value=brushSize) - - def getToolAndLayerFromScribblesMode(self): - if self.scribblesMode is not None: - return self.scribblesMode.split("+") - else: - # default modes - return "Paint", "foreground_scribbles" - - def changeScribblesMode(self, tool=None, layer=None): - ctool, clayer = self.getToolAndLayerFromScribblesMode() - - ctool = tool if tool is not None else ctool - clayer = layer if layer is not None else clayer - - self.scribblesMode = "+".join([ctool, clayer]) - - def onPaintScribbles(self): - if not self._segmentNode: - return - - if self.ui.eraseScribblesButton.checked: - self.ui.eraseScribblesButton.setChecked(False) - - self.changeScribblesMode(tool="Paint" if self.ui.paintScribblesButton.checked else "None") - self.updateScribToolLayerFromMode() - - def onEraseScribbles(self): - if not self._segmentNode: - return - - if self.ui.paintScribblesButton.checked: - self.ui.paintScribblesButton.setChecked(False) - - self.changeScribblesMode(tool="Erase" if self.ui.eraseScribblesButton.checked else "None") - self.updateScribToolLayerFromMode() - - def onSelectScribblesLabel(self): - if not self._segmentNode: - return - - index = self.ui.scribblesSelector.currentIndex - index = 0 if index < 0 else index - selected = self.ui.scribblesSelector.itemText(index) - - layer = "foreground_scribbles" if selected == "Foreground" else "background_scribbles" - self.changeScribblesMode(layer=layer) - self.updateScribToolLayerFromMode() - - def on3dBrushCheckbox(self, state): - logging.info(f"3D brush update {state}") - # enable scribbles in 3d using a sphere brush - effect = self.ui.embeddedSegmentEditorWidget.effectByName("Paint") - effect.setParameter("BrushSphere", state) - - def updateBrushSize(self, value): - logging.info(f"brush size update {value}") - effect = self.ui.embeddedSegmentEditorWidget.effectByName("Paint") - effect.setParameter("BrushAbsoluteDiameter", value) - - def onGenerateJSONFromMulipltROIs(self): - """ - The functon to generate output JSON label fils with multiple ROI nodes. - """ - detectionROIs = slicer.mrmlScene.GetNodesByClass("vtkMRMLMarkupsROINode") - numNodes = detectionROIs.GetNumberOfItems() - - label_in = tempfile.NamedTemporaryFile(suffix=".json", dir=self.tmpdir).name - total_count = 0 - with open(label_in, "w") as fp: - fp.write("{\n") - fp.write( - ' "@schema": "https://raw.githubusercontent.com/slicer/slicer/master/Modules/Loadable/Markups/Resources/Schema/markups-schema-v1.0.3.json#",\n' - ) - fp.write(' "markups": [\n') - for i in range(numNodes): - ROINode = detectionROIs.GetItemAsObject(i) - if ROINode.GetName() != "Scribbles ROI": - box_label = tempfile.NamedTemporaryFile(suffix=".json", dir=self.tmpdir).name - slicer.util.saveNode(ROINode, box_label) - f = open(box_label) - jsob = json.load(f) - markupsDict = jsob["markups"][0] - if total_count > 0: - fp.write(",\n") - fp.write(f" {json.dumps(markupsDict)}") - total_count += 1 - f.close() - fp.write("]\n") # close elements - fp.write("}") # end of root - label_info = [] - return label_in, label_info - - -class MONAILabelLogic(ScriptedLoadableModuleLogic): - def __init__(self, tmpdir=None, server_url=None, progress_callback=None, client_id=None, resourcePath=None): - ScriptedLoadableModuleLogic.__init__(self) - - self.server_url = server_url - self.tmpdir = slicer.util.tempDirectory("slicer-monai-label") if tmpdir is None else tmpdir - self.client_id = client_id - self.resourcePath = resourcePath - self.username = None - self.password = None - self.auth_token = None - - self.volumeToSessions = dict() - self.progress_callback = progress_callback - - def setDefaultParameters(self, parameterNode): - if not parameterNode.GetParameter("SegmentationModel"): - parameterNode.SetParameter("SegmentationModel", "") - if not parameterNode.GetParameter("DeepgrowModel"): - parameterNode.SetParameter("DeepgrowModel", "") - if not parameterNode.GetParameter("ScribblesMethod"): - parameterNode.SetParameter("ScribblesMethod", "") - - def __del__(self): - shutil.rmtree(self.tmpdir, ignore_errors=True) - - def setServer(self, server_url=None): - if self.server_url != server_url: - self.username = None - self.password = None - self.auth_token = None - - self.server_url = server_url if server_url else "http://127.0.0.1:8000" - - def setClientId(self, client_id): - self.client_id = client_id if client_id else "user-xyz" - - def setProgressCallback(self, progress_callback=None): - self.progress_callback = progress_callback - - def reportProgress(self, progress): - if self.progress_callback: - self.progress_callback(progress) - - def get_segment_editor_node(self): - # Use the Segment Editor module's parameter node for the embedded segment editor widget. - # This ensures that if the user switches to the Segment Editor then the selected - # segmentation node, volume node, etc. are the same. - segmentEditorSingletonTag = "SegmentEditor" - segmentEditorNode = slicer.mrmlScene.GetSingletonNode(segmentEditorSingletonTag, "vtkMRMLSegmentEditorNode") - if segmentEditorNode is None: - segmentEditorNode = slicer.mrmlScene.CreateNodeByClass("vtkMRMLSegmentEditorNode") - segmentEditorNode.UnRegister(None) - segmentEditorNode.SetSingletonTag(segmentEditorSingletonTag) - segmentEditorNode = slicer.mrmlScene.AddNode(segmentEditorNode) - return segmentEditorNode - - def _client(self): - mc = MONAILabelClient(self.server_url, self.tmpdir, self.client_id) - if mc.auth_enabled(): - if not self.username or not self.password: - dlg = LoginDialog(username=self.client_id, password="", resourcePath=self.resourcePath) - dlg.exec() - - self.username = dlg.ui.username.text - self.password = dlg.ui.password.text - - if self.auth_token: - mc.update_auth(self.auth_token) - - # TODO:: JWT token can be validated (with additional py dependencies) to avoid further calls to server - if not self.auth_token or not mc.auth_valid_token(): - try: - print(f"Fetching new Token for: {self.username}") - self.auth_token = mc.auth_token(self.username, self.password) - mc.update_auth(self.auth_token) - except BaseException: - self.username = None - self.password = None - self.auth_token = None - return mc - - def info(self): - return self._client().info() - - def datastore(self): - return self._client().datastore() - - def download_label(self, label_id, tag): - return self._client().download_label(label_id, tag) - - def next_sample(self, strategy, params={}): - return self._client().next_sample(strategy, params) - - def create_session(self, image_in): - return self._client().create_session(image_in) - - def get_session(self, session_id): - return self._client().get_session(session_id) - - def remove_session(self, session_id): - return self._client().remove_session(session_id) - - def upload_image(self, image_in, image_id=None): - return self._client().upload_image(image_in, image_id) - - def save_label(self, image_in, label_in, params): - return self._client().save_label(image_in, label_in, params=params) - - def infer(self, model, image_in, params={}, label_in=None, file=None, session_id=None): - logging.debug("Preparing input data for segmentation") - self.reportProgress(0) - - client = self._client() - params["result_extension"] = ".nrrd" # expect .nrrd - params["result_dtype"] = "uint8" - result_file, params = client.infer(model, image_in, params, label_in, file, session_id) - - logging.debug(f"Image Response: {result_file}") - logging.debug(f"JSON Response: {params}") - - self.reportProgress(100) - return result_file, params - - def train_start(self, model=None, params={}): - return self._client().train_start(model, params) - - def train_status(self, check_if_running): - return self._client().train_status(check_if_running) - - def train_stop(self): - return self._client().train_stop() - - -class LoginDialog(qt.QDialog): - def __init__(self, username, password, resourcePath): - super().__init__() - self.setWindowTitle("User Login") - - layout = qt.QVBoxLayout() - uiWidget = slicer.util.loadUI(resourcePath("UI/LoginDialog.ui")) - layout.addWidget(uiWidget) - - self.ui = slicer.util.childWidgetVariables(uiWidget) - self.setLayout(layout) - self.ui.username.setText(username) - self.ui.password.setText(password if password else "") - self.ui.loginButton.connect("clicked(bool)", self.onLogin) - - def onLogin(self): - self.close() - - -class MONAILabelTest(ScriptedLoadableModuleTest): - def setUp(self): - slicer.mrmlScene.Clear() - - def runTest(self): - self.setUp() - self.test_MONAILabel1() - - def test_MONAILabel1(self): - self.delayDisplay("Test passed") diff --git a/monailabel/plugins/slicer/MONAILabel/MONAILabelLib/__init__.py b/monailabel/plugins/slicer/MONAILabel/MONAILabelLib/__init__.py deleted file mode 100644 index b59d6bb..0000000 --- a/monailabel/plugins/slicer/MONAILabel/MONAILabelLib/__init__.py +++ /dev/null @@ -1,13 +0,0 @@ -# Copyright (c) MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from .client import * -from .labelcolors import * diff --git a/monailabel/plugins/slicer/MONAILabel/MONAILabelLib/client.py b/monailabel/plugins/slicer/MONAILabel/MONAILabelLib/client.py deleted file mode 100644 index 920dda2..0000000 --- a/monailabel/plugins/slicer/MONAILabel/MONAILabelLib/client.py +++ /dev/null @@ -1,672 +0,0 @@ -# Copyright (c) MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import cgi -import http.client -import json -import logging -import mimetypes -import os -import re -import ssl -import tempfile -from pathlib import Path -from urllib.parse import quote_plus, unquote, urlencode, urlparse - -import requests - -logger = logging.getLogger(__name__) - - -def bytes_to_str(b): - return b.decode("utf-8") if isinstance(b, bytes) else b - - -class MONAILabelClient: - """ - Basic MONAILabel Client to invoke infer/train APIs over http/https - """ - - def __init__(self, server_url, tmpdir=None, client_id=None): - """ - :param server_url: Server URL for MONAILabel (e.g. http://127.0.0.1:8000) - :param tmpdir: Temp directory to save temporary files. If None then it uses tempfile.tempdir - :param client_id: Client ID that will be added for all basic requests - """ - - self._server_url = server_url.rstrip("/").strip() - self._tmpdir = tmpdir if tmpdir else tempfile.tempdir if tempfile.tempdir else "/tmp" - self._client_id = client_id - self._headers = {} - - def _update_client_id(self, params): - if params: - params["client_id"] = self._client_id - else: - params = {"client_id": self._client_id} - return params - - def update_auth(self, token): - if token: - self._headers["Authorization"] = f"{token['token_type']} {token['access_token']}" - - def get_server_url(self): - """ - Return server url - - :return: the url for monailabel server - """ - return self._server_url - - def set_server_url(self, server_url): - """ - Set url for monailabel server - - :param server_url: server url for monailabel - """ - self._server_url = server_url.rstrip("/").strip() - - def auth_enabled(self) -> bool: - """ - Check if Auth is enabled - - """ - selector = "/auth/" - status, response, _, _ = MONAILabelUtils.http_method("GET", self._server_url, selector) - if status != 200: - return False - - response = bytes_to_str(response) - logger.debug(f"Response: {response}") - enabled = json.loads(response).get("enabled", False) - return True if enabled else False - - def auth_token(self, username, password): - """ - Fetch Auth Token. Currently only basic authentication is supported. - - :param username: UserName for basic authentication - :param password: Password for basic authentication - """ - selector = "/auth/token" - data = urlencode({"username": username, "password": password, "grant_type": "password"}) - status, response, _, _ = MONAILabelUtils.http_method( - "POST", self._server_url, selector, data, None, "application/x-www-form-urlencoded" - ) - if status != 200: - raise MONAILabelClientException( - MONAILabelError.SERVER_ERROR, f"Status: {status}; Response: {bytes_to_str(response)}", status, response - ) - - response = bytes_to_str(response) - logger.debug(f"Response: {response}") - return json.loads(response) - - def auth_valid_token(self) -> bool: - selector = "/auth/token/valid" - status, _, _, _ = MONAILabelUtils.http_method("GET", self._server_url, selector, headers=self._headers) - return True if status == 200 else False - - def info(self): - """ - Invoke /info/ request over MONAILabel Server - - :return: json response - """ - selector = "/info/" - status, response, _, _ = MONAILabelUtils.http_method("GET", self._server_url, selector, headers=self._headers) - if status != 200: - raise MONAILabelClientException( - MONAILabelError.SERVER_ERROR, f"Status: {status}; Response: {bytes_to_str(response)}", status, response - ) - - response = bytes_to_str(response) - logging.debug(f"Response: {response}") - return json.loads(response) - - def next_sample(self, strategy, params): - """ - Get Next sample - - :param strategy: Name of strategy to be used for fetching next sample - :param params: Additional JSON params as part of strategy request - :return: json response which contains information about next image selected for annotation - """ - params = self._update_client_id(params) - selector = f"/activelearning/{MONAILabelUtils.urllib_quote_plus(strategy)}" - status, response, _, _ = MONAILabelUtils.http_method( - "POST", self._server_url, selector, params, headers=self._headers - ) - if status != 200: - raise MONAILabelClientException( - MONAILabelError.SERVER_ERROR, f"Status: {status}; Response: {bytes_to_str(response)}", status, response - ) - - response = bytes_to_str(response) - logging.debug(f"Response: {response}") - return json.loads(response) - - def create_session(self, image_in, params=None): - """ - Create New Session - - :param image_in: filepath for image to be sent to server as part of session creation - :param params: additional JSON params as part of session reqeust - :return: json response which contains session id and other details - """ - selector = "/session/" - params = self._update_client_id(params) - - status, response, _ = MONAILabelUtils.http_upload( - "PUT", self._server_url, selector, params, [image_in], headers=self._headers - ) - if status != 200: - raise MONAILabelClientException( - MONAILabelError.SERVER_ERROR, f"Status: {status}; Response: {bytes_to_str(response)}", status, response - ) - - response = bytes_to_str(response) - logging.debug(f"Response: {response}") - return json.loads(response) - - def get_session(self, session_id): - """ - Get Session - - :param session_id: Session Id - :return: json response which contains more details about the session - """ - selector = f"/session/{MONAILabelUtils.urllib_quote_plus(session_id)}" - status, response, _, _ = MONAILabelUtils.http_method("GET", self._server_url, selector, headers=self._headers) - if status != 200: - raise MONAILabelClientException( - MONAILabelError.SERVER_ERROR, f"Status: {status}; Response: {bytes_to_str(response)}", status, response - ) - - response = bytes_to_str(response) - logging.debug(f"Response: {response}") - return json.loads(response) - - def remove_session(self, session_id): - """ - Remove any existing Session - - :param session_id: Session Id - :return: json response - """ - selector = f"/session/{MONAILabelUtils.urllib_quote_plus(session_id)}" - status, response, _, _ = MONAILabelUtils.http_method( - "DELETE", self._server_url, selector, headers=self._headers - ) - if status != 200: - raise MONAILabelClientException( - MONAILabelError.SERVER_ERROR, f"Status: {status}; Response: {bytes_to_str(response)}", status, response - ) - - response = bytes_to_str(response) - logging.debug(f"Response: {response}") - return json.loads(response) - - def upload_image(self, image_in, image_id=None, params=None): - """ - Upload New Image to MONAILabel Datastore - - :param image_in: Image File Path - :param image_id: Force Image ID; If not provided then Server it auto generate new Image ID - :param params: Additional JSON params - :return: json response which contains image id and other details - """ - selector = f"/datastore/?image={MONAILabelUtils.urllib_quote_plus(image_id)}" - - files = {"file": image_in} - params = self._update_client_id(params) - fields = {"params": json.dumps(params) if params else "{}"} - - status, response, _, _ = MONAILabelUtils.http_multipart( - "PUT", self._server_url, selector, fields, files, headers=self._headers - ) - if status != 200: - raise MONAILabelClientException( - MONAILabelError.SERVER_ERROR, - f"Status: {status}; Response: {bytes_to_str(response)}", - ) - - response = bytes_to_str(response) - logging.debug(f"Response: {response}") - return json.loads(response) - - def save_label(self, image_id, label_in, tag="", params=None): - """ - Save/Submit Label - - :param image_id: Image Id for which label needs to saved/submitted - :param label_in: Label File path which shall be saved/submitted - :param tag: Save label against tag in datastore - :param params: Additional JSON params for the request - :return: json response - """ - selector = f"/datastore/label?image={MONAILabelUtils.urllib_quote_plus(image_id)}" - if tag: - selector += f"&tag={MONAILabelUtils.urllib_quote_plus(tag)}" - - params = self._update_client_id(params) - fields = { - "params": json.dumps(params), - } - files = {"label": label_in} - - status, response, _, _ = MONAILabelUtils.http_multipart( - "PUT", self._server_url, selector, fields, files, headers=self._headers - ) - if status != 200: - raise MONAILabelClientException( - MONAILabelError.SERVER_ERROR, - f"Status: {status}; Response: {bytes_to_str(response)}", - ) - - response = bytes_to_str(response) - logging.debug(f"Response: {response}") - return json.loads(response) - - def datastore(self): - selector = "/datastore/?output=all" - status, response, _, _ = MONAILabelUtils.http_method("GET", self._server_url, selector, headers=self._headers) - if status != 200: - raise MONAILabelClientException( - MONAILabelError.SERVER_ERROR, f"Status: {status}; Response: {bytes_to_str(response)}", status, response - ) - - response = bytes_to_str(response) - logging.debug(f"Response: {response}") - return json.loads(response) - - def download_label(self, label_id, tag): - selector = "/datastore/label?label={}&tag={}".format( - MONAILabelUtils.urllib_quote_plus(label_id), MONAILabelUtils.urllib_quote_plus(tag) - ) - status, response, _, headers = MONAILabelUtils.http_method( - "GET", self._server_url, selector, headers=self._headers - ) - if status != 200: - raise MONAILabelClientException( - MONAILabelError.SERVER_ERROR, f"Status: {status}; Response: {bytes_to_str(response)}", status, response - ) - - content_disposition = headers.get("content-disposition") - - if not content_disposition: - logging.warning("Filename not found. Fall back to no loaded labels") - file_name = MONAILabelUtils.get_filename(content_disposition) - - file_ext = "".join(Path(file_name).suffixes) - local_filename = tempfile.NamedTemporaryFile(dir=self._tmpdir, suffix=file_ext).name - with open(local_filename, "wb") as f: - f.write(response) - - return local_filename - - def infer(self, model, image_id, params, label_in=None, file=None, session_id=None): - """ - Run Infer - - :param model: Name of Model - :param image_id: Image Id - :param params: Additional configs/json params as part of Infer request - :param label_in: File path for label mask which is needed to run Inference (e.g. In case of Scribbles) - :param file: File path for Image (use raw image instead of image_id) - :param session_id: Session ID (use existing session id instead of image_id) - :return: response_file (label mask), response_body (json result/output params) - """ - selector = "/infer/{}?image={}".format( - MONAILabelUtils.urllib_quote_plus(model), - MONAILabelUtils.urllib_quote_plus(image_id), - ) - if session_id: - selector += f"&session_id={MONAILabelUtils.urllib_quote_plus(session_id)}" - - params = self._update_client_id(params) - fields = {"params": json.dumps(params) if params else "{}"} - files = {"label": label_in} if label_in else {} - files.update({"file": file} if file and not session_id else {}) - - status, form, files, _ = MONAILabelUtils.http_multipart( - "POST", self._server_url, selector, fields, files, headers=self._headers - ) - if status != 200: - raise MONAILabelClientException( - MONAILabelError.SERVER_ERROR, - f"Status: {status}; Response: {bytes_to_str(form)}", - ) - - form = json.loads(form) if isinstance(form, str) else form - params = form.get("params") if files else form - params = json.loads(params) if isinstance(params, str) else params - - image_out = MONAILabelUtils.save_result(files, self._tmpdir) - return image_out, params - - def wsi_infer(self, model, image_id, body=None, output="dsa", session_id=None): - """ - Run WSI Infer in case of Pathology App - - :param model: Name of Model - :param image_id: Image Id - :param body: Additional configs/json params as part of Infer request - :param output: Output File format (dsa|asap|json) - :param session_id: Session ID (use existing session id instead of image_id) - :return: response_file (None), response_body - """ - selector = "/infer/wsi/{}?image={}".format( - MONAILabelUtils.urllib_quote_plus(model), - MONAILabelUtils.urllib_quote_plus(image_id), - ) - if session_id: - selector += f"&session_id={MONAILabelUtils.urllib_quote_plus(session_id)}" - if output: - selector += f"&output={MONAILabelUtils.urllib_quote_plus(output)}" - - body = self._update_client_id(body if body else {}) - status, form, _, _ = MONAILabelUtils.http_method("POST", self._server_url, selector, body) - if status != 200: - raise MONAILabelClientException( - MONAILabelError.SERVER_ERROR, - f"Status: {status}; Response: {bytes_to_str(form)}", - ) - - return None, form - - def train_start(self, model, params): - """ - Run Train Task - - :param model: Name of Model - :param params: Additional configs/json params as part of Train request - :return: json response - """ - params = self._update_client_id(params) - - selector = "/train/" - if model: - selector += MONAILabelUtils.urllib_quote_plus(model) - - status, response, _, _ = MONAILabelUtils.http_method( - "POST", self._server_url, selector, params, headers=self._headers - ) - if status != 200: - raise MONAILabelClientException( - MONAILabelError.SERVER_ERROR, - f"Status: {status}; Response: {bytes_to_str(response)}", - ) - - response = bytes_to_str(response) - logging.debug(f"Response: {response}") - return json.loads(response) - - def train_stop(self): - """ - Stop any running Train Task(s) - - :return: json response - """ - selector = "/train/" - status, response, _, _ = MONAILabelUtils.http_method( - "DELETE", self._server_url, selector, headers=self._headers - ) - if status != 200: - raise MONAILabelClientException( - MONAILabelError.SERVER_ERROR, - f"Status: {status}; Response: {bytes_to_str(response)}", - ) - - response = bytes_to_str(response) - logging.debug(f"Response: {response}") - return json.loads(response) - - def train_status(self, check_if_running=False): - """ - Check Train Task Status - - :param check_if_running: Fast mode. Only check if training is Running - :return: boolean if check_if_running is enabled; else json response that contains of full details - """ - selector = "/train/" - if check_if_running: - selector += "?check_if_running=true" - status, response, _, _ = MONAILabelUtils.http_method("GET", self._server_url, selector, headers=self._headers) - if check_if_running: - return status == 200 - - if status != 200: - raise MONAILabelClientException( - MONAILabelError.SERVER_ERROR, - f"Status: {status}; Response: {bytes_to_str(response)}", - ) - - response = bytes_to_str(response) - logging.debug(f"Response: {response}") - return json.loads(response) - - -class MONAILabelError: - """ - Type of Inference Model - - Attributes: - SERVER_ERROR - Server Error - SESSION_EXPIRED - Session Expired - UNKNOWN - Unknown Error - """ - - SERVER_ERROR = 1 - SESSION_EXPIRED = 2 - UNKNOWN = 3 - - -class MONAILabelClientException(Exception): - """ - MONAILabel Client Exception - """ - - __slots__ = ["error", "msg"] - - def __init__(self, error, msg, status_code=None, response=None): - """ - :param error: Error code represented by MONAILabelError - :param msg: Error message - :param status_code: HTTP Response code - :param response: HTTP Response - """ - self.error = error - self.msg = msg - self.status_code = status_code - self.response = response - - -class MONAILabelUtils: - @staticmethod - def http_method(method, server_url, selector, body=None, headers=None, content_type=None): - logging.debug(f"{method} {server_url}{selector}") - - parsed = urlparse(server_url) - path = parsed.path.rstrip("/") - selector = path + "/" + selector.lstrip("/") - logging.debug(f"URI Path: {selector}") - - parsed = urlparse(server_url) - if parsed.scheme == "https": - logger.debug("Using HTTPS mode") - # noinspection PyProtectedMember - conn = http.client.HTTPSConnection(parsed.hostname, parsed.port, context=ssl._create_unverified_context()) - else: - conn = http.client.HTTPConnection(parsed.hostname, parsed.port) - - headers = headers if headers else {} - if body: - if not content_type: - if isinstance(body, dict): - body = json.dumps(body) - content_type = "application/json" - else: - content_type = "text/plain" - headers.update({"content-type": content_type, "content-length": str(len(body))}) - - conn.request(method, selector, body=body, headers=headers) - return MONAILabelUtils.send_response(conn) - - @staticmethod - def http_upload(method, server_url, selector, fields, files, headers=None): - logging.debug(f"{method} {server_url}{selector}") - - url = server_url.rstrip("/") + "/" + selector.lstrip("/") - logging.debug(f"URL: {url}") - - files = [("files", (os.path.basename(f), open(f, "rb"))) for f in files] - headers = headers if headers else {} - response = ( - requests.post(url, files=files, headers=headers) - if method == "POST" - else requests.put(url, files=files, data=fields, headers=headers) - ) - return response.status_code, response.text, None - - @staticmethod - def http_multipart(method, server_url, selector, fields, files, headers={}): - logging.debug(f"{method} {server_url}{selector}") - - content_type, body = MONAILabelUtils.encode_multipart_formdata(fields, files) - headers = headers if headers else {} - headers.update({"content-type": content_type, "content-length": str(len(body))}) - - parsed = urlparse(server_url) - path = parsed.path.rstrip("/") - selector = path + "/" + selector.lstrip("/") - logging.debug(f"URI Path: {selector}") - - if parsed.scheme == "https": - logger.debug("Using HTTPS mode") - # noinspection PyProtectedMember - conn = http.client.HTTPSConnection(parsed.hostname, parsed.port, context=ssl._create_unverified_context()) - else: - conn = http.client.HTTPConnection(parsed.hostname, parsed.port) - - conn.request(method, selector, body, headers) - return MONAILabelUtils.send_response(conn, content_type) - - @staticmethod - def send_response(conn, content_type="application/json"): - response = conn.getresponse() - logging.debug(f"HTTP Response Code: {response.status}") - logging.debug(f"HTTP Response Message: {response.reason}") - logging.debug(f"HTTP Response Headers: {response.getheaders()}") - - response_content_type = response.getheader("content-type", content_type) - logging.debug(f"HTTP Response Content-Type: {response_content_type}") - - if "multipart" in response_content_type: - if response.status == 200: - form, files = MONAILabelUtils.parse_multipart(response.fp if response.fp else response, response.msg) - logging.debug(f"Response FORM: {form}") - logging.debug(f"Response FILES: {files.keys()}") - return response.status, form, files, response.headers - else: - return response.status, response.read(), None, response.headers - - logging.debug("Reading status/content from simple response!") - return response.status, response.read(), None, response.headers - - @staticmethod - def save_result(files, tmpdir): - if files is None: - return - for name in files: - data = files[name] - result_file = os.path.join(tmpdir, name) - - logging.debug(f"Saving {name} to {result_file}; Size: {len(data)}") - dir_path = os.path.dirname(os.path.realpath(result_file)) - if not os.path.exists(dir_path): - os.makedirs(dir_path) - - with open(result_file, "wb") as f: - if isinstance(data, bytes): - f.write(data) - else: - f.write(data.encode("utf-8")) - - # Currently only one file per response supported - return result_file - - @staticmethod - def encode_multipart_formdata(fields, files): - limit = "----------lImIt_of_THE_fIle_eW_$" - lines = [] - for key, value in fields.items(): - lines.append("--" + limit) - lines.append('Content-Disposition: form-data; name="%s"' % key) - lines.append("") - lines.append(value) - for key, filename in files.items(): - lines.append("--" + limit) - lines.append(f'Content-Disposition: form-data; name="{key}"; filename="{filename}"') - lines.append("Content-Type: %s" % MONAILabelUtils.get_content_type(filename)) - lines.append("") - with open(filename, mode="rb") as f: - data = f.read() - lines.append(data) - lines.append("--" + limit + "--") - lines.append("") - - body = bytearray() - for line in lines: - body.extend(line if isinstance(line, bytes) else line.encode("utf-8")) - body.extend(b"\r\n") - - content_type = "multipart/form-data; boundary=%s" % limit - return content_type, body - - @staticmethod - def get_content_type(filename): - return mimetypes.guess_type(filename)[0] or "application/octet-stream" - - @staticmethod - def parse_multipart(fp, headers): - fs = cgi.FieldStorage( - fp=fp, - environ={"REQUEST_METHOD": "POST"}, - headers=headers, - keep_blank_values=True, - ) - form = {} - files = {} - if hasattr(fs, "list") and isinstance(fs.list, list): - for f in fs.list: - logger.debug(f"FILE-NAME: {f.filename}; NAME: {f.name}; SIZE: {len(f.value)}") - if f.filename: - files[f.filename] = f.value - else: - form[f.name] = f.value - return form, files - - @staticmethod - def urllib_quote_plus(s): - return quote_plus(s) - - @staticmethod - def get_filename(content_disposition): - file_name = re.findall(r"filename\*=([^;]+)", content_disposition, flags=re.IGNORECASE) - if not file_name: - file_name = re.findall('filename="(.+)"', content_disposition, flags=re.IGNORECASE) - if "utf-8''" in file_name[0].lower(): - file_name = re.sub("utf-8''", "", file_name[0], flags=re.IGNORECASE) - file_name = unquote(file_name) - else: - file_name = file_name[0] - return file_name diff --git a/monailabel/plugins/slicer/MONAILabel/MONAILabelLib/labelcolors.py b/monailabel/plugins/slicer/MONAILabel/MONAILabelLib/labelcolors.py deleted file mode 100644 index ad9ee36..0000000 --- a/monailabel/plugins/slicer/MONAILabel/MONAILabelLib/labelcolors.py +++ /dev/null @@ -1,323 +0,0 @@ -# Copyright (c) MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -GenericAnatomyColors = { - "background": (0, 0, 0), - "tissue": (128, 174, 128), - "bone": (241, 214, 145), - "skin": (177, 122, 101), - "connective tissue": (111, 184, 210), - "blood": (216, 101, 79), - "organ": (221, 130, 101), - "mass": (144, 238, 144), - "muscle": (192, 104, 88), - "foreign object": (220, 245, 20), - "waste": (78, 63, 0), - "teeth": (255, 250, 220), - "fat": (230, 220, 70), - "gray matter": (200, 200, 235), - "white matter": (250, 250, 210), - "nerve": (244, 214, 49), - "vein": (0, 151, 206), - "artery": (216, 101, 79), - "capillary": (183, 156, 220), - "ligament": (183, 214, 211), - "tendon": (152, 189, 207), - "cartilage": (111, 184, 210), - "meniscus": (178, 212, 242), - "lymph node": (68, 172, 100), - "lymphatic vessel": (111, 197, 131), - "cerebro-spinal fluid": (85, 188, 255), - "bile": (0, 145, 30), - "urine": (214, 230, 130), - "feces": (78, 63, 0), - "gas": (218, 255, 255), - "fluid": (170, 250, 250), - "edema": (140, 224, 228), - "bleeding": (188, 65, 28), - "necrosis": (216, 191, 216), - "clot": (145, 60, 66), - "embolism": (150, 98, 83), - "head": (177, 122, 101), - "central nervous system": (244, 214, 49), - "brain": (250, 250, 225), - "gray matter of brain": (200, 200, 215), - "telencephalon": (68, 131, 98), - "cerebral cortex": (128, 174, 128), - "right frontal lobe": (83, 146, 164), - "left frontal lobe": (83, 146, 164), - "right temporal lobe": (162, 115, 105), - "left temporal lobe": (162, 115, 105), - "right parietal lobe": (141, 93, 137), - "left parietal lobe": (141, 93, 137), - "right occipital lobe": (182, 166, 110), - "left occipital lobe": (182, 166, 110), - "right insular lobe": (188, 135, 166), - "left insular lobe": (188, 135, 166), - "right limbic lobe": (154, 150, 201), - "left limbic lobe": (154, 150, 201), - "right striatum": (177, 140, 190), - "left striatum": (177, 140, 190), - "right caudate nucleus": (30, 111, 85), - "left caudate nucleus": (30, 111, 85), - "right putamen": (210, 157, 166), - "left putamen": (210, 157, 166), - "right pallidum": (48, 129, 126), - "left pallidum": (48, 129, 126), - "right amygdaloid complex": (98, 153, 112), - "left amygdaloid complex": (98, 153, 112), - "diencephalon": (69, 110, 53), - "thalamus": (166, 113, 137), - "right thalamus": (122, 101, 38), - "left thalamus": (122, 101, 38), - "pineal gland": (253, 135, 192), - "midbrain": (145, 92, 109), - "substantia nigra": (46, 101, 131), - "right substantia nigra": (0, 108, 112), - "left substantia nigra": (0, 108, 112), - "cerebral white matter": (250, 250, 225), - "right superior longitudinal fasciculus": (127, 150, 88), - "left superior longitudinal fasciculus": (127, 150, 88), - "right inferior longitudinal fasciculus": (159, 116, 163), - "left inferior longitudinal fasciculus": (159, 116, 163), - "right arcuate fasciculus": (125, 102, 154), - "left arcuate fasciculus": (125, 102, 154), - "right uncinate fasciculus": (106, 174, 155), - "left uncinate fasciculus": (106, 174, 155), - "right cingulum bundle": (154, 146, 83), - "left cingulum bundle": (154, 146, 83), - "projection fibers": (126, 126, 55), - "right corticospinal tract": (201, 160, 133), - "left corticospinal tract": (201, 160, 133), - "right optic radiation": (78, 152, 141), - "left optic radiation": (78, 152, 141), - "right medial lemniscus": (174, 140, 103), - "left medial lemniscus": (174, 140, 103), - "right superior cerebellar peduncle": (139, 126, 177), - "left superior cerebellar peduncle": (139, 126, 177), - "right middle cerebellar peduncle": (148, 120, 72), - "left middle cerebellar peduncle": (148, 120, 72), - "right inferior cerebellar peduncle": (186, 135, 135), - "left inferior cerebellar peduncle": (186, 135, 135), - "optic chiasm": (99, 106, 24), - "right optic tract": (156, 171, 108), - "left optic tract": (156, 171, 108), - "right fornix": (64, 123, 147), - "left fornix": (64, 123, 147), - "commissural fibers": (138, 95, 74), - "corpus callosum": (97, 113, 158), - "posterior commissure": (126, 161, 197), - "cerebellar white matter": (194, 195, 164), - "CSF space": (85, 188, 255), - "ventricles of brain": (88, 106, 215), - "right lateral ventricle": (88, 106, 215), - "left lateral ventricle": (88, 106, 215), - "right third ventricle": (88, 106, 215), - "left third ventricle": (88, 106, 215), - "cerebral aqueduct": (88, 106, 215), - "fourth ventricle": (88, 106, 215), - "subarachnoid space": (88, 106, 215), - "spinal cord": (244, 214, 49), - "gray matter of spinal cord": (200, 200, 215), - "white matter of spinal cord": (250, 250, 225), - "endocrine system of brain": (82, 174, 128), - "pituitary gland": (57, 157, 110), - "adenohypophysis": (60, 143, 83), - "neurohypophysis": (92, 162, 109), - "meninges": (255, 244, 209), - "dura mater": (255, 244, 209), - "arachnoid": (255, 244, 209), - "pia mater": (255, 244, 209), - "muscles of head": (201, 121, 77), - "salivary glands": (70, 163, 117), - "lips": (188, 91, 95), - "nose": (177, 122, 101), - "tongue": (166, 84, 94), - "soft palate": (182, 105, 107), - "right inner ear": (229, 147, 118), - "left inner ear": (229, 147, 118), - "right external ear": (174, 122, 90), - "left external ear": (174, 122, 90), - "right middle ear": (201, 112, 73), - "left middle ear": (201, 112, 73), - "right eyeball": (194, 142, 0), - "left eyeball": (194, 142, 0), - "skull": (241, 213, 144), - "right frontal bone": (203, 179, 77), - "left frontal bone": (203, 179, 77), - "right parietal bone": (229, 204, 109), - "left parietal bone": (229, 204, 109), - "right temporal bone": (255, 243, 152), - "left temporal bone": (255, 243, 152), - "right sphenoid bone": (209, 185, 85), - "left sphenoid bone": (209, 185, 85), - "right ethmoid bone": (248, 223, 131), - "left ethmoid bone": (248, 223, 131), - "occipital bone": (255, 230, 138), - "maxilla": (196, 172, 68), - "right zygomatic bone": (255, 255, 167), - "right lacrimal bone": (255, 250, 160), - "vomer bone": (255, 237, 145), - "right palatine bone": (242, 217, 123), - "left palatine bone": (242, 217, 123), - "mandible": (222, 198, 101), - "neck": (177, 122, 101), - "muscles of neck": (213, 124, 109), - "pharynx": (184, 105, 108), - "larynx": (150, 208, 243), - "thyroid gland": (62, 162, 114), - "right parathyroid glands": (62, 162, 114), - "left parathyroid glands": (62, 162, 114), - "skeleton of neck": (242, 206, 142), - "hyoid bone": (250, 210, 139), - "cervical vertebral column": (255, 255, 207), - "thorax": (177, 122, 101), - "trachea": (182, 228, 255), - "bronchi": (175, 216, 244), - "right lung": (197, 165, 145), - "left lung": (197, 165, 180), - "superior lobe of right lung": (172, 138, 115), - "superior lobe of left lung": (172, 138, 115), - "middle lobe of right lung": (202, 164, 140), - "inferior lobe of right lung": (224, 186, 162), - "inferior lobe of left lung": (224, 186, 162), - "pleura": (255, 245, 217), - "heart": (206, 110, 84), - "right atrium": (210, 115, 89), - "left atrium": (203, 108, 81), - "atrial septum": (233, 138, 112), - "ventricular septum": (195, 100, 73), - "right ventricle of heart": (181, 85, 57), - "left ventricle of heart": (152, 55, 13), - "mitral valve": (159, 63, 27), - "tricuspid valve": (166, 70, 38), - "aortic valve": (218, 123, 97), - "pulmonary valve": (225, 130, 104), - "aorta": (224, 97, 76), - "pericardium": (255, 244, 209), - "pericardial cavity": (184, 122, 154), - "esophagus": (211, 171, 143), - "thymus": (47, 150, 103), - "mediastinum": (255, 244, 209), - "skin of thoracic wall": (173, 121, 88), - "muscles of thoracic wall": (188, 95, 76), - "skeleton of thorax": (255, 239, 172), - "thoracic vertebral column": (226, 202, 134), - "ribs": (253, 232, 158), - "sternum": (244, 217, 154), - "right clavicle": (205, 179, 108), - "left clavicle": (205, 179, 108), - "abdominal cavity": (186, 124, 161), - "abdomen": (177, 122, 101), - "peritoneum": (255, 255, 220), - "omentum": (234, 234, 194), - "peritoneal cavity": (204, 142, 178), - "retroperitoneal space": (180, 119, 153), - "stomach": (216, 132, 105), - "duodenum": (255, 253, 229), - "small bowel": (205, 167, 142), - "colon": (204, 168, 143), - "anus": (255, 224, 199), - "liver": (221, 130, 101), - "biliary tree": (0, 145, 30), - "gallbladder": (139, 150, 98), - "pancreas": (249, 180, 111), - "spleen": (157, 108, 162), - "urinary system": (203, 136, 116), - "right kidney": (185, 102, 83), - "left kidney": (185, 102, 140), - "right ureter": (247, 182, 164), - "left ureter": (247, 182, 164), - "urinary bladder": (222, 154, 132), - "urethra": (124, 186, 223), - "right adrenal gland": (249, 186, 150), - "left adrenal gland": (249, 186, 195), - "female internal genitalia": (244, 170, 147), - "uterus": (255, 181, 158), - "right fallopian tube": (255, 190, 165), - "left fallopian tube": (227, 153, 130), - "right ovary": (213, 141, 113), - "left ovary": (213, 141, 113), - "vagina": (193, 123, 103), - "male internal genitalia": (216, 146, 127), - "prostate": (230, 158, 140), - "right seminal vesicle": (245, 172, 147), - "left seminal vesicle": (245, 172, 147), - "right deferent duct": (241, 172, 151), - "left deferent duct": (241, 172, 151), - "skin of abdominal wall": (177, 124, 92), - "muscles of abdominal wall": (171, 85, 68), - "skeleton of abdomen": (217, 198, 131), - "lumbar vertebral column": (212, 188, 102), - "female external genitalia": (185, 135, 134), - "male external genitalia": (185, 135, 134), - "skeleton of upper limb": (198, 175, 125), - "muscles of upper limb": (194, 98, 79), - "right upper limb": (177, 122, 101), - "left upper limb": (177, 122, 101), - "right shoulder": (177, 122, 101), - "left shoulder": (177, 122, 101), - "right arm": (177, 122, 101), - "left arm": (177, 122, 101), - "right elbow": (177, 122, 101), - "left elbow": (177, 122, 101), - "right forearm": (177, 122, 101), - "left forearm": (177, 122, 101), - "right wrist": (177, 122, 101), - "left wrist": (177, 122, 101), - "right hand": (177, 122, 101), - "left hand": (177, 122, 101), - "skeleton of lower limb": (255, 238, 170), - "muscles of lower limb": (206, 111, 93), - "right lower limb": (177, 122, 101), - "left lower limb": (177, 122, 101), - "right hip": (177, 122, 101), - "left hip": (177, 122, 101), - "right thigh": (177, 122, 101), - "left thigh": (177, 122, 101), - "right knee": (177, 122, 101), - "left knee": (177, 122, 101), - "right leg": (177, 122, 101), - "left leg": (177, 122, 101), - "right foot": (177, 122, 101), - "left foot": (177, 122, 101), - "peripheral nervous system": (216, 186, 0), - "autonomic nerve": (255, 226, 77), - "sympathetic trunk": (255, 243, 106), - "cranial nerves": (255, 234, 92), - "vagus nerve": (240, 210, 35), - "peripheral nerve": (224, 194, 0), - "circulatory system": (213, 99, 79), - "systemic arterial system": (217, 102, 81), - "systemic venous system": (0, 147, 202), - "pulmonary arterial system": (0, 122, 171), - "pulmonary venous system": (186, 77, 64), - "lymphatic system": (111, 197, 131), - "needle": (240, 255, 30), - "region 0": (185, 232, 61), - "region 1": (0, 226, 255), - "region 2": (251, 159, 255), - "region 3": (230, 169, 29), - "region 4": (0, 194, 113), - "region 5": (104, 160, 249), - "region 6": (221, 108, 158), - "region 7": (137, 142, 0), - "region 8": (230, 70, 0), - "region 9": (0, 147, 0), - "region 10": (0, 147, 248), - "region 11": (231, 0, 206), - "region 12": (129, 78, 0), - "region 13": (0, 116, 0), - "region 14": (0, 0, 255), - "region 15": (157, 0, 0), - "unknown": (100, 100, 130), - "cyst": (205, 205, 100), -} diff --git a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/MONAILabel.png b/monailabel/plugins/slicer/MONAILabel/Resources/Icons/MONAILabel.png deleted file mode 100644 index 614a736..0000000 Binary files a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/MONAILabel.png and /dev/null differ diff --git a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/bg_red.png b/monailabel/plugins/slicer/MONAILabel/Resources/Icons/bg_red.png deleted file mode 100644 index 0b52f69..0000000 Binary files a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/bg_red.png and /dev/null differ diff --git a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/contour.svg b/monailabel/plugins/slicer/MONAILabel/Resources/Icons/contour.svg deleted file mode 100644 index 54fad6b..0000000 --- a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/contour.svg +++ /dev/null @@ -1 +0,0 @@ - diff --git a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/download.png b/monailabel/plugins/slicer/MONAILabel/Resources/Icons/download.png deleted file mode 100644 index 31a8275..0000000 Binary files a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/download.png and /dev/null differ diff --git a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/eraser.png b/monailabel/plugins/slicer/MONAILabel/Resources/Icons/eraser.png deleted file mode 100644 index 15a86c3..0000000 Binary files a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/eraser.png and /dev/null differ diff --git a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/fg_green.png b/monailabel/plugins/slicer/MONAILabel/Resources/Icons/fg_green.png deleted file mode 100644 index 34615c7..0000000 Binary files a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/fg_green.png and /dev/null differ diff --git a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/gray.svg b/monailabel/plugins/slicer/MONAILabel/Resources/Icons/gray.svg deleted file mode 100644 index 6cea84f..0000000 --- a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/gray.svg +++ /dev/null @@ -1 +0,0 @@ - diff --git a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/paint.png b/monailabel/plugins/slicer/MONAILabel/Resources/Icons/paint.png deleted file mode 100644 index 87e3a2c..0000000 Binary files a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/paint.png and /dev/null differ diff --git a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/refresh-icon.png b/monailabel/plugins/slicer/MONAILabel/Resources/Icons/refresh-icon.png deleted file mode 100644 index 602c760..0000000 Binary files a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/refresh-icon.png and /dev/null differ diff --git a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/samm_box.png b/monailabel/plugins/slicer/MONAILabel/Resources/Icons/samm_box.png deleted file mode 100755 index a3d6b36..0000000 Binary files a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/samm_box.png and /dev/null differ diff --git a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/samm_class.png b/monailabel/plugins/slicer/MONAILabel/Resources/Icons/samm_class.png deleted file mode 100755 index 03acac9..0000000 Binary files a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/samm_class.png and /dev/null differ diff --git a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/samm_everything.png b/monailabel/plugins/slicer/MONAILabel/Resources/Icons/samm_everything.png deleted file mode 100755 index 9b673b2..0000000 Binary files a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/samm_everything.png and /dev/null differ diff --git a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/samm_points.png b/monailabel/plugins/slicer/MONAILabel/Resources/Icons/samm_points.png deleted file mode 100755 index a20fbab..0000000 Binary files a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/samm_points.png and /dev/null differ diff --git a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/samm_reset.png b/monailabel/plugins/slicer/MONAILabel/Resources/Icons/samm_reset.png deleted file mode 100755 index efaab32..0000000 Binary files a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/samm_reset.png and /dev/null differ diff --git a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/save.png b/monailabel/plugins/slicer/MONAILabel/Resources/Icons/save.png deleted file mode 100644 index 1451506..0000000 Binary files a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/save.png and /dev/null differ diff --git a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/segment.png b/monailabel/plugins/slicer/MONAILabel/Resources/Icons/segment.png deleted file mode 100644 index 99940a4..0000000 Binary files a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/segment.png and /dev/null differ diff --git a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/stop.png b/monailabel/plugins/slicer/MONAILabel/Resources/Icons/stop.png deleted file mode 100644 index 09f649c..0000000 Binary files a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/stop.png and /dev/null differ diff --git a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/training.png b/monailabel/plugins/slicer/MONAILabel/Resources/Icons/training.png deleted file mode 100644 index b5703c9..0000000 Binary files a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/training.png and /dev/null differ diff --git a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/upload.svg b/monailabel/plugins/slicer/MONAILabel/Resources/Icons/upload.svg deleted file mode 100644 index 970305d..0000000 --- a/monailabel/plugins/slicer/MONAILabel/Resources/Icons/upload.svg +++ /dev/null @@ -1 +0,0 @@ -Upload diff --git a/monailabel/plugins/slicer/MONAILabel/Resources/UI/LoginDialog.ui b/monailabel/plugins/slicer/MONAILabel/Resources/UI/LoginDialog.ui deleted file mode 100644 index 378488f..0000000 --- a/monailabel/plugins/slicer/MONAILabel/Resources/UI/LoginDialog.ui +++ /dev/null @@ -1,72 +0,0 @@ - - - Dialog - - - - 0 - 0 - 375 - 76 - - - - - 375 - 76 - - - - Login - - - - - - - - - Password: - - - - - - - QLineEdit::Password - - - - - - - UserName: - - - - - - - - 0 - 44 - - - - Login - - - true - - - - - - - password - username - loginButton - - - - diff --git a/monailabel/plugins/slicer/MONAILabel/Resources/UI/MONAILabel.ui b/monailabel/plugins/slicer/MONAILabel/Resources/UI/MONAILabel.ui deleted file mode 100644 index a10dde5..0000000 --- a/monailabel/plugins/slicer/MONAILabel/Resources/UI/MONAILabel.ui +++ /dev/null @@ -1,1067 +0,0 @@ - - - MONAILabel - - - - 0 - 0 - 448 - 1055 - - - - - 400 - 0 - - - - - 5 - - - 5 - - - 5 - - - 5 - - - - - - - true - - - Fetch/Refresh models from Server - - - - - - - - - - App Name: - - - - - - - - - - - 0 - 0 - - - - true - - - - - - - MONAI Label server: - - - - - - - Source Volume: - - - - - - - - - - Select Node - - - Qt::ElideMiddle - - - - - - - true - - - Upload Volume - - - - - - - - - - - - Options - - - true - - - 9 - - - - 0 - - - 0 - - - - - true - - - true - - - 2 - - - true - - - 21 - - - - - - - - - - - - Section: - - - - - - - - 0 - 0 - - - - - - - - Name: - - - - - - - - - - - - - - - Active Learning - - - false - - - 9 - - - - 0 - - - 0 - - - - - 0 - - - - - - - - - - Status: - - - - - - - 0 - - - - - - - Accuracy: - - - - - - - Average Dice score computed over submitted labels - - - 0 - - - - - - - Model: - - - - - - - - - - 0 - 0 - - - - - - - - Train - - - - - - - Stop - - - - - - - - - - - - Submit Label - - - - - - - Strategy: - - - - - - - Next Sample - - - - - - - - - - - - - Segment Editor - - - true - - - 9 - - - - - - true - - - 10 - - - - - - - - - - Auto Segmentation - - - true - - - 9 - - - - 0 - - - 0 - - - - - - 0 - 0 - - - - Select pre-trained segmentation model - - - - - - - Model: - - - - - - - false - - - Run - - - - - - - - - - SmartEdit / Deepgrow - - - true - - - 9 - - - - 0 - - - 0 - - - - - - - Model: - - - - - - - false - - - - 0 - 0 - - - - Update - - - - - - - - 0 - 0 - - - - Select Deepgrow/DeepEdit Model - - - - - - - Label: - - - - - - - - - - 0 - 0 - - - - false - - - - - - - - 16777215 - 16777211 - - - - Freeze - - - - - - - - - Foreground: - - - - - - - - - - 0 - 0 - - - - qSlicerMarkupsPlaceWidget::ForcePlaceMultipleMarkups - - - - - - - Background: - - - - - - - - 0 - 0 - - - - qSlicerMarkupsPlaceWidget::ForcePlaceMultipleMarkups - - - - - - - - - Auto - - - true - - - - - - - - - - - - - MONAI VISTA - - - true - - - 9 - - - - - 0 - - - 0 - - - - - - - true - - - true - - - - - - 2 - - - true - - - 17 - - - - - - - - - - - - - Model: - - - - - - - - 0 - 0 - - - - - - - - false - - - Everything - - - - - - - - - Point prompts: - - - - - - - - - - - - - - - Foreground: - - - - - - - - 0 - 0 - - - - qSlicerMarkupsPlaceWidget::ForcePlaceMultipleMarkups - - - - - - - - - - - - - Background: - - - - - - - - 0 - 0 - - - - qSlicerMarkupsPlaceWidget::ForcePlaceMultipleMarkups - - - - - - - false - - - Points - - - - - - - - - - - - - - Class prompts: - - - - - - - - - - - - - - - - - - - - false - - - Reset - - - - - - - - - - - false - - - Classes - - - - - - - - - - - - - - - - - Scribbles - - - - 0 - - - 0 - - - - - - - - - Update - - - - - - - Paint - - - true - - - - - - - Erase - - - true - - - - - - - - - - - Size: - - - Qt::AlignCenter - - - - - - - - 0 - 0 - - - - 0 - - - 5.000000000000000 - - - 80.000000000000000 - - - 10.000000000000000 - - - - - - - Qt::LeftToRight - - - false - - - 3D - - - true - - - - - - - - - Scribbles: - - - - - - - Label: - - - - - - - - 0 - 0 - - - - - - - - Qt::LeftToRight - - - Model: - - - - - - - - 0 - 0 - - - - - - - - - - - - - ROI: - - - - - - - qSlicerMarkupsPlaceWidget::ForcePlaceSingleMarkup - - - - 0 - 0 - - - - - - - - - - - - - - - Tools - - - true - - - 9 - - - - 0 - - - 0 - - - - - - - - Import Label: - - - - - - - - - - - - - - - - - Qt::Vertical - - - - 20 - 40 - - - - - - - - - ctkCollapsibleButton - QWidget -
ctkCollapsibleButton.h
- 1 -
- - ctkComboBox - QComboBox -
ctkComboBox.h
-
- - ctkPathLineEdit - QWidget -
ctkPathLineEdit.h
-
- - ctkSliderWidget - QWidget -
ctkSliderWidget.h
-
- - qMRMLWidget - QWidget -
qMRMLWidget.h
- 1 -
- - qSlicerWidget - QWidget -
qSlicerWidget.h
- 1 -
- - qSlicerMarkupsPlaceWidget - qSlicerWidget -
qSlicerMarkupsPlaceWidget.h
-
- - qMRMLSegmentEditorWidget - qMRMLWidget -
qMRMLSegmentEditorWidget.h
-
-
- - -
diff --git a/monailabel/plugins/slicer/MONAILabel/Screenshots/1.png b/monailabel/plugins/slicer/MONAILabel/Screenshots/1.png deleted file mode 100644 index 2da5a92..0000000 Binary files a/monailabel/plugins/slicer/MONAILabel/Screenshots/1.png and /dev/null differ diff --git a/monailabel/plugins/slicer/MONAILabel/Screenshots/2.png b/monailabel/plugins/slicer/MONAILabel/Screenshots/2.png deleted file mode 100644 index 39a60b5..0000000 Binary files a/monailabel/plugins/slicer/MONAILabel/Screenshots/2.png and /dev/null differ diff --git a/monailabel/plugins/slicer/MONAILabel/Screenshots/3.png b/monailabel/plugins/slicer/MONAILabel/Screenshots/3.png deleted file mode 100644 index edb54d0..0000000 Binary files a/monailabel/plugins/slicer/MONAILabel/Screenshots/3.png and /dev/null differ diff --git a/monailabel/plugins/slicer/MONAILabel/Testing/CMakeLists.txt b/monailabel/plugins/slicer/MONAILabel/Testing/CMakeLists.txt deleted file mode 100644 index b3dd1c9..0000000 --- a/monailabel/plugins/slicer/MONAILabel/Testing/CMakeLists.txt +++ /dev/null @@ -1,12 +0,0 @@ -# Copyright (c) MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -add_subdirectory(Python) diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/.qt_for_python/uic/MONAILabelReviewer.py b/monailabel/plugins/slicer/MONAILabelReviewer/.qt_for_python/uic/MONAILabelReviewer.py deleted file mode 100644 index 104649f..0000000 --- a/monailabel/plugins/slicer/MONAILabelReviewer/.qt_for_python/uic/MONAILabelReviewer.py +++ /dev/null @@ -1,706 +0,0 @@ -################################################################################ -# Form generated from reading UI file 'MONAILabelReviewer.ui' -# -# Created by: Qt User Interface Compiler version 5.15.2 -# -# WARNING! All changes made in this file will be lost when recompiling UI file! -################################################################################ - -from ctkCollapsibleButton import ctkCollapsibleButton -from PySide2.QtCore import * -from PySide2.QtGui import * -from PySide2.QtWidgets import * - - -class Ui_MONAILabelReviewer: - def setupUi(self, MONAILabelReviewer): - if not MONAILabelReviewer.objectName(): - MONAILabelReviewer.setObjectName("MONAILabelReviewer") - MONAILabelReviewer.resize(517, 752) - self.gridLayout = QGridLayout(MONAILabelReviewer) - self.gridLayout.setObjectName("gridLayout") - self.horizontalLayout_9 = QHBoxLayout() - self.horizontalLayout_9.setObjectName("horizontalLayout_9") - self.btn_basic_mode = QPushButton(MONAILabelReviewer) - self.btn_basic_mode.setObjectName("btn_basic_mode") - self.btn_basic_mode.setStyleSheet("background-color: rgb(118, 214, 255);") - self.btn_basic_mode.setCheckable(True) - self.btn_basic_mode.setChecked(True) - - self.horizontalLayout_9.addWidget(self.btn_basic_mode) - - self.btn_reviewers_mode = QPushButton(MONAILabelReviewer) - self.btn_reviewers_mode.setObjectName("btn_reviewers_mode") - self.btn_reviewers_mode.setStyleSheet("background-color: rgb(255, 126, 121);") - self.btn_reviewers_mode.setCheckable(True) - - self.horizontalLayout_9.addWidget(self.btn_reviewers_mode) - - self.gridLayout.addLayout(self.horizontalLayout_9, 2, 0, 1, 1) - - self.collapsibleButton_search_image = ctkCollapsibleButton(MONAILabelReviewer) - self.collapsibleButton_search_image.setObjectName("collapsibleButton_search_image") - self.collapsibleButton_search_image.setEnabled(False) - self.collapsibleButton_search_image.setCollapsed(True) - self.horizontalLayout = QHBoxLayout(self.collapsibleButton_search_image) - self.horizontalLayout.setObjectName("horizontalLayout") - self.verticalLayout_15 = QVBoxLayout() - self.verticalLayout_15.setObjectName("verticalLayout_15") - self.tabWidget = QTabWidget(self.collapsibleButton_search_image) - self.tabWidget.setObjectName("tabWidget") - self.ById = QWidget() - self.ById.setObjectName("ById") - self.ById.setMinimumSize(QSize(252, 0)) - self.verticalLayout_4 = QVBoxLayout(self.ById) - self.verticalLayout_4.setObjectName("verticalLayout_4") - self.label_18 = QLabel(self.ById) - self.label_18.setObjectName("label_18") - - self.verticalLayout_4.addWidget(self.label_18) - - self.textEdit_search = QTextEdit(self.ById) - self.textEdit_search.setObjectName("textEdit_search") - - self.verticalLayout_4.addWidget(self.textEdit_search) - - self.btn_search = QPushButton(self.ById) - self.btn_search.setObjectName("btn_search") - self.btn_search.setStyleSheet("background-color: rgb(146, 146, 146);") - - self.verticalLayout_4.addWidget(self.btn_search) - - self.tabWidget.addTab(self.ById, "") - self.tab_8 = QWidget() - self.tab_8.setObjectName("tab_8") - self.verticalLayout_6 = QVBoxLayout(self.tab_8) - self.verticalLayout_6.setObjectName("verticalLayout_6") - self.label = QLabel(self.tab_8) - self.label.setObjectName("label") - - self.verticalLayout_6.addWidget(self.label) - - self.comboBox_search_annotator = QComboBox(self.tab_8) - self.comboBox_search_annotator.setObjectName("comboBox_search_annotator") - - self.verticalLayout_6.addWidget(self.comboBox_search_annotator) - - self.label_3 = QLabel(self.tab_8) - self.label_3.setObjectName("label_3") - - self.verticalLayout_6.addWidget(self.label_3) - - self.comboBox_search_reviewer = QComboBox(self.tab_8) - self.comboBox_search_reviewer.setObjectName("comboBox_search_reviewer") - - self.verticalLayout_6.addWidget(self.comboBox_search_reviewer) - - self.checkBox_search_approved = QCheckBox(self.tab_8) - self.checkBox_search_approved.setObjectName("checkBox_search_approved") - - self.verticalLayout_6.addWidget(self.checkBox_search_approved) - - self.checkBox_search_flagged = QCheckBox(self.tab_8) - self.checkBox_search_flagged.setObjectName("checkBox_search_flagged") - - self.verticalLayout_6.addWidget(self.checkBox_search_flagged) - - self.verticalSpacer_2 = QSpacerItem(20, 40, QSizePolicy.Minimum, QSizePolicy.Expanding) - - self.verticalLayout_6.addItem(self.verticalSpacer_2) - - self.btn_search_annotator_reviewer = QPushButton(self.tab_8) - self.btn_search_annotator_reviewer.setObjectName("btn_search_annotator_reviewer") - self.btn_search_annotator_reviewer.setStyleSheet("background-color: rgb(146, 146, 146);") - - self.verticalLayout_6.addWidget(self.btn_search_annotator_reviewer) - - self.tabWidget.addTab(self.tab_8, "") - self.tab = QWidget() - self.tab.setObjectName("tab") - self.verticalLayout_7 = QVBoxLayout(self.tab) - self.verticalLayout_7.setObjectName("verticalLayout_7") - self.label_2 = QLabel(self.tab) - self.label_2.setObjectName("label_2") - - self.verticalLayout_7.addWidget(self.label_2) - - self.verticalSpacer_3 = QSpacerItem(20, 40, QSizePolicy.Minimum, QSizePolicy.Expanding) - - self.verticalLayout_7.addItem(self.verticalSpacer_3) - - self.checkBox_search_easy = QCheckBox(self.tab) - self.checkBox_search_easy.setObjectName("checkBox_search_easy") - - self.verticalLayout_7.addWidget(self.checkBox_search_easy) - - self.checkBox_search_medium = QCheckBox(self.tab) - self.checkBox_search_medium.setObjectName("checkBox_search_medium") - - self.verticalLayout_7.addWidget(self.checkBox_search_medium) - - self.checkBox_search_hard = QCheckBox(self.tab) - self.checkBox_search_hard.setObjectName("checkBox_search_hard") - - self.verticalLayout_7.addWidget(self.checkBox_search_hard) - - self.verticalSpacer_4 = QSpacerItem(20, 40, QSizePolicy.Minimum, QSizePolicy.Expanding) - - self.verticalLayout_7.addItem(self.verticalSpacer_4) - - self.btn_search_level = QPushButton(self.tab) - self.btn_search_level.setObjectName("btn_search_level") - self.btn_search_level.setStyleSheet("background-color: rgb(146, 146, 146);") - - self.verticalLayout_7.addWidget(self.btn_search_level) - - self.tabWidget.addTab(self.tab, "") - - self.verticalLayout_15.addWidget(self.tabWidget) - - self.horizontalLayout.addLayout(self.verticalLayout_15) - - self.verticalLayout_16 = QVBoxLayout() - self.verticalLayout_16.setObjectName("verticalLayout_16") - self.label_search_result = QLabel(self.collapsibleButton_search_image) - self.label_search_result.setObjectName("label_search_result") - - self.verticalLayout_16.addWidget(self.label_search_result) - - self.tableWidge_imageMeta = QTableWidget(self.collapsibleButton_search_image) - if self.tableWidge_imageMeta.columnCount() < 3: - self.tableWidge_imageMeta.setColumnCount(3) - font = QFont() - font.setPointSize(10) - __qtablewidgetitem = QTableWidgetItem() - __qtablewidgetitem.setTextAlignment(Qt.AlignCenter) - __qtablewidgetitem.setFont(font) - self.tableWidge_imageMeta.setHorizontalHeaderItem(0, __qtablewidgetitem) - __qtablewidgetitem1 = QTableWidgetItem() - __qtablewidgetitem1.setTextAlignment(Qt.AlignCenter) - __qtablewidgetitem1.setFont(font) - self.tableWidge_imageMeta.setHorizontalHeaderItem(1, __qtablewidgetitem1) - __qtablewidgetitem2 = QTableWidgetItem() - self.tableWidge_imageMeta.setHorizontalHeaderItem(2, __qtablewidgetitem2) - self.tableWidge_imageMeta.setObjectName("tableWidge_imageMeta") - self.tableWidge_imageMeta.setSortingEnabled(True) - - self.verticalLayout_16.addWidget(self.tableWidge_imageMeta) - - self.btn_show_image = QPushButton(self.collapsibleButton_search_image) - self.btn_show_image.setObjectName("btn_show_image") - self.btn_show_image.setEnabled(False) - - self.verticalLayout_16.addWidget(self.btn_show_image) - - self.horizontalLayout.addLayout(self.verticalLayout_16) - - self.gridLayout.addWidget(self.collapsibleButton_search_image, 8, 0, 1, 1) - - self.CollapsibleButton = ctkCollapsibleButton(MONAILabelReviewer) - self.CollapsibleButton.setObjectName("CollapsibleButton") - self.gridLayout_2 = QGridLayout(self.CollapsibleButton) - self.gridLayout_2.setObjectName("gridLayout_2") - self.gridLayout_3 = QGridLayout() - self.gridLayout_3.setObjectName("gridLayout_3") - self.comboBox_server_url = QComboBox(self.CollapsibleButton) - self.comboBox_server_url.setObjectName("comboBox_server_url") - self.comboBox_server_url.setEditable(True) - - self.gridLayout_3.addWidget(self.comboBox_server_url, 1, 1, 1, 1) - - self.label_idx_seg_image = QLabel(self.CollapsibleButton) - self.label_idx_seg_image.setObjectName("label_idx_seg_image") - self.label_idx_seg_image.setAlignment(Qt.AlignCenter) - - self.gridLayout_3.addWidget(self.label_idx_seg_image, 3, 2, 1, 1) - - self.label_idx_appr_image = QLabel(self.CollapsibleButton) - self.label_idx_appr_image.setObjectName("label_idx_appr_image") - self.label_idx_appr_image.setAlignment(Qt.AlignCenter) - - self.gridLayout_3.addWidget(self.label_idx_appr_image, 4, 2, 1, 1) - - self.btn_connect_monai = QPushButton(self.CollapsibleButton) - self.btn_connect_monai.setObjectName("btn_connect_monai") - self.btn_connect_monai.setStyleSheet("background-color: rgba(0, 144, 81, 1);") - - self.gridLayout_3.addWidget(self.btn_connect_monai, 1, 2, 1, 1) - - self.label_8 = QLabel(self.CollapsibleButton) - self.label_8.setObjectName("label_8") - - self.gridLayout_3.addWidget(self.label_8, 3, 0, 1, 1) - - self.progressBar_approved_total = QProgressBar(self.CollapsibleButton) - self.progressBar_approved_total.setObjectName("progressBar_approved_total") - self.progressBar_approved_total.setStyleSheet("selection-background-color: rgb(255, 147, 0);") - self.progressBar_approved_total.setValue(0) - - self.gridLayout_3.addWidget(self.progressBar_approved_total, 4, 1, 1, 1) - - self.label_17 = QLabel(self.CollapsibleButton) - self.label_17.setObjectName("label_17") - - self.gridLayout_3.addWidget(self.label_17, 4, 0, 1, 1) - - self.progressBar_segmentation = QProgressBar(self.CollapsibleButton) - self.progressBar_segmentation.setObjectName("progressBar_segmentation") - self.progressBar_segmentation.setValue(0) - - self.gridLayout_3.addWidget(self.progressBar_segmentation, 3, 1, 1, 1) - - self.label_19 = QLabel(self.CollapsibleButton) - self.label_19.setObjectName("label_19") - - self.gridLayout_3.addWidget(self.label_19, 1, 0, 1, 1) - - self.comboBox_reviewers = QComboBox(self.CollapsibleButton) - self.comboBox_reviewers.setObjectName("comboBox_reviewers") - self.comboBox_reviewers.setEnabled(True) - self.comboBox_reviewers.setEditable(True) - - self.gridLayout_3.addWidget(self.comboBox_reviewers, 2, 1, 1, 1) - - self.label_20 = QLabel(self.CollapsibleButton) - self.label_20.setObjectName("label_20") - - self.gridLayout_3.addWidget(self.label_20, 2, 0, 1, 1) - - self.gridLayout_2.addLayout(self.gridLayout_3, 0, 0, 1, 1) - - self.gridLayout.addWidget(self.CollapsibleButton, 4, 0, 1, 1) - - self.collapsibleButton_dicom_evaluation = ctkCollapsibleButton(MONAILabelReviewer) - self.collapsibleButton_dicom_evaluation.setObjectName("collapsibleButton_dicom_evaluation") - self.collapsibleButton_dicom_evaluation.setEnabled(False) - self.collapsibleButton_dicom_evaluation.setCollapsed(False) - self.verticalLayout_12 = QVBoxLayout(self.collapsibleButton_dicom_evaluation) - self.verticalLayout_12.setObjectName("verticalLayout_12") - self.verticalLayout_11 = QVBoxLayout() - self.verticalLayout_11.setObjectName("verticalLayout_11") - self.verticalLayout_2 = QVBoxLayout() - self.verticalLayout_2.setObjectName("verticalLayout_2") - self.label_level_difficulty = QLabel(self.collapsibleButton_dicom_evaluation) - self.label_level_difficulty.setObjectName("label_level_difficulty") - - self.verticalLayout_2.addWidget(self.label_level_difficulty) - - self.horizontalLayout_5 = QHBoxLayout() - self.horizontalLayout_5.setObjectName("horizontalLayout_5") - self.btn_easy = QPushButton(self.collapsibleButton_dicom_evaluation) - self.btn_easy.setObjectName("btn_easy") - self.btn_easy.setStyleSheet("background-color: rgb(0, 250, 146);") - - self.horizontalLayout_5.addWidget(self.btn_easy) - - self.btn_medium = QPushButton(self.collapsibleButton_dicom_evaluation) - self.btn_medium.setObjectName("btn_medium") - self.btn_medium.setStyleSheet("background-color: rgba(255, 251, 0, 179);") - - self.horizontalLayout_5.addWidget(self.btn_medium) - - self.btn_hard = QPushButton(self.collapsibleButton_dicom_evaluation) - self.btn_hard.setObjectName("btn_hard") - self.btn_hard.setStyleSheet("background-color: rgba(255, 38, 0, 179);") - - self.horizontalLayout_5.addWidget(self.btn_hard) - - self.verticalLayout_2.addLayout(self.horizontalLayout_5) - - self.verticalLayout_11.addLayout(self.verticalLayout_2) - - self.horizontalLayout_3 = QHBoxLayout() - self.horizontalLayout_3.setObjectName("horizontalLayout_3") - self.btn_previous = QPushButton(self.collapsibleButton_dicom_evaluation) - self.btn_previous.setObjectName("btn_previous") - self.btn_previous.setStyleSheet("background-color: rgb(255, 147, 0);") - - self.horizontalLayout_3.addWidget(self.btn_previous) - - self.btn_next = QPushButton(self.collapsibleButton_dicom_evaluation) - self.btn_next.setObjectName("btn_next") - self.btn_next.setStyleSheet("background-color: rgb(118, 214, 255);") - - self.horizontalLayout_3.addWidget(self.btn_next) - - self.btn_mark_revision = QPushButton(self.collapsibleButton_dicom_evaluation) - self.btn_mark_revision.setObjectName("btn_mark_revision") - - self.horizontalLayout_3.addWidget(self.btn_mark_revision) - - self.btn_approved = QPushButton(self.collapsibleButton_dicom_evaluation) - self.btn_approved.setObjectName("btn_approved") - - self.horizontalLayout_3.addWidget(self.btn_approved) - - self.verticalLayout_11.addLayout(self.horizontalLayout_3) - - self.verticalLayout = QVBoxLayout() - self.verticalLayout.setObjectName("verticalLayout") - self.label_idx_image = QLabel(self.collapsibleButton_dicom_evaluation) - self.label_idx_image.setObjectName("label_idx_image") - - self.verticalLayout.addWidget(self.label_idx_image) - - self.horizontalSlider_image_idx = QSlider(self.collapsibleButton_dicom_evaluation) - self.horizontalSlider_image_idx.setObjectName("horizontalSlider_image_idx") - self.horizontalSlider_image_idx.setEnabled(False) - self.horizontalSlider_image_idx.setOrientation(Qt.Horizontal) - - self.verticalLayout.addWidget(self.horizontalSlider_image_idx) - - self.verticalLayout_11.addLayout(self.verticalLayout) - - self.verticalLayout_12.addLayout(self.verticalLayout_11) - - self.verticalLayout_10 = QVBoxLayout() - self.verticalLayout_10.setObjectName("verticalLayout_10") - self.label_version_labels = QLabel(self.collapsibleButton_dicom_evaluation) - self.label_version_labels.setObjectName("label_version_labels") - - self.verticalLayout_10.addWidget(self.label_version_labels) - - self.splitter = QSplitter(self.collapsibleButton_dicom_evaluation) - self.splitter.setObjectName("splitter") - self.splitter.setOrientation(Qt.Horizontal) - self.comboBox_label_version = QComboBox(self.splitter) - self.comboBox_label_version.setObjectName("comboBox_label_version") - self.splitter.addWidget(self.comboBox_label_version) - self.btn_edit_label = QPushButton(self.splitter) - self.btn_edit_label.setObjectName("btn_edit_label") - self.btn_edit_label.setStyleSheet("background-color: rgb(0, 150, 255);") - self.splitter.addWidget(self.btn_edit_label) - - self.verticalLayout_10.addWidget(self.splitter) - - self.splitter_3 = QSplitter(self.collapsibleButton_dicom_evaluation) - self.splitter_3.setObjectName("splitter_3") - self.splitter_3.setOrientation(Qt.Horizontal) - self.btn_overwrite_version = QPushButton(self.splitter_3) - self.btn_overwrite_version.setObjectName("btn_overwrite_version") - self.btn_overwrite_version.setStyleSheet("") - self.splitter_3.addWidget(self.btn_overwrite_version) - self.btn_save_new_version = QPushButton(self.splitter_3) - self.btn_save_new_version.setObjectName("btn_save_new_version") - self.btn_save_new_version.setStyleSheet("") - self.splitter_3.addWidget(self.btn_save_new_version) - self.btn_delete_version = QPushButton(self.splitter_3) - self.btn_delete_version.setObjectName("btn_delete_version") - self.splitter_3.addWidget(self.btn_delete_version) - - self.verticalLayout_10.addWidget(self.splitter_3) - - self.btn_update_version = QPushButton(self.collapsibleButton_dicom_evaluation) - self.btn_update_version.setObjectName("btn_update_version") - self.btn_update_version.setStyleSheet("background-color: rgb(115, 250, 121);") - - self.verticalLayout_10.addWidget(self.btn_update_version) - - self.verticalLayout_12.addLayout(self.verticalLayout_10) - - self.horizontalLayout_4 = QHBoxLayout() - self.horizontalLayout_4.setObjectName("horizontalLayout_4") - self.horizontalLayout_2 = QHBoxLayout() - self.horizontalLayout_2.setObjectName("horizontalLayout_2") - self.verticalLayout_9 = QVBoxLayout() - self.verticalLayout_9.setObjectName("verticalLayout_9") - self.label_12 = QLabel(self.collapsibleButton_dicom_evaluation) - self.label_12.setObjectName("label_12") - - self.verticalLayout_9.addWidget(self.label_12) - - self.label_13 = QLabel(self.collapsibleButton_dicom_evaluation) - self.label_13.setObjectName("label_13") - - self.verticalLayout_9.addWidget(self.label_13) - - self.label_15 = QLabel(self.collapsibleButton_dicom_evaluation) - self.label_15.setObjectName("label_15") - - self.verticalLayout_9.addWidget(self.label_15) - - self.label_16 = QLabel(self.collapsibleButton_dicom_evaluation) - self.label_16.setObjectName("label_16") - - self.verticalLayout_9.addWidget(self.label_16) - - self.label_14 = QLabel(self.collapsibleButton_dicom_evaluation) - self.label_14.setObjectName("label_14") - - self.verticalLayout_9.addWidget(self.label_14) - - self.label_5 = QLabel(self.collapsibleButton_dicom_evaluation) - self.label_5.setObjectName("label_5") - - self.verticalLayout_9.addWidget(self.label_5) - - self.label_11 = QLabel(self.collapsibleButton_dicom_evaluation) - self.label_11.setObjectName("label_11") - - self.verticalLayout_9.addWidget(self.label_11) - - self.horizontalLayout_2.addLayout(self.verticalLayout_9) - - self.verticalLayout_8 = QVBoxLayout() - self.verticalLayout_8.setObjectName("verticalLayout_8") - self.lineEdit_image_id = QLineEdit(self.collapsibleButton_dicom_evaluation) - self.lineEdit_image_id.setObjectName("lineEdit_image_id") - self.lineEdit_image_id.setEnabled(False) - - self.verticalLayout_8.addWidget(self.lineEdit_image_id) - - self.lineEdit_segmentator = QLineEdit(self.collapsibleButton_dicom_evaluation) - self.lineEdit_segmentator.setObjectName("lineEdit_segmentator") - self.lineEdit_segmentator.setEnabled(False) - - self.verticalLayout_8.addWidget(self.lineEdit_segmentator) - - self.lineEdit_date = QLineEdit(self.collapsibleButton_dicom_evaluation) - self.lineEdit_date.setObjectName("lineEdit_date") - self.lineEdit_date.setEnabled(False) - - self.verticalLayout_8.addWidget(self.lineEdit_date) - - self.lineEdit_level = QLineEdit(self.collapsibleButton_dicom_evaluation) - self.lineEdit_level.setObjectName("lineEdit_level") - self.lineEdit_level.setEnabled(False) - - self.verticalLayout_8.addWidget(self.lineEdit_level) - - self.lineEdit_status = QLineEdit(self.collapsibleButton_dicom_evaluation) - self.lineEdit_status.setObjectName("lineEdit_status") - self.lineEdit_status.setEnabled(False) - - self.verticalLayout_8.addWidget(self.lineEdit_status) - - self.lineEdit_editor = QLineEdit(self.collapsibleButton_dicom_evaluation) - self.lineEdit_editor.setObjectName("lineEdit_editor") - - self.verticalLayout_8.addWidget(self.lineEdit_editor) - - self.lineEdit_editing_date = QLineEdit(self.collapsibleButton_dicom_evaluation) - self.lineEdit_editing_date.setObjectName("lineEdit_editing_date") - - self.verticalLayout_8.addWidget(self.lineEdit_editing_date) - - self.horizontalLayout_2.addLayout(self.verticalLayout_8) - - self.horizontalLayout_4.addLayout(self.horizontalLayout_2) - - self.plainText_comment = QPlainTextEdit(self.collapsibleButton_dicom_evaluation) - self.plainText_comment.setObjectName("plainText_comment") - - self.horizontalLayout_4.addWidget(self.plainText_comment) - - self.verticalLayout_12.addLayout(self.horizontalLayout_4) - - self.gridLayout.addWidget(self.collapsibleButton_dicom_evaluation, 7, 0, 1, 1) - - self.collapsibleButton_dicom_stream = ctkCollapsibleButton(MONAILabelReviewer) - self.collapsibleButton_dicom_stream.setObjectName("collapsibleButton_dicom_stream") - self.collapsibleButton_dicom_stream.setEnabled(False) - self.collapsibleButton_dicom_stream.setCollapsed(True) - self.gridLayout_5 = QGridLayout(self.collapsibleButton_dicom_stream) - self.gridLayout_5.setObjectName("gridLayout_5") - self.gridLayout_4 = QGridLayout() - self.gridLayout_4.setObjectName("gridLayout_4") - self.btn_load = QPushButton(self.collapsibleButton_dicom_stream) - self.btn_load.setObjectName("btn_load") - - self.gridLayout_4.addWidget(self.btn_load, 0, 2, 1, 1) - - self.progressBar_approved_client = QProgressBar(self.collapsibleButton_dicom_stream) - self.progressBar_approved_client.setObjectName("progressBar_approved_client") - self.progressBar_approved_client.setStyleSheet("selection-background-color: rgba(255, 147, 0, 209);") - self.progressBar_approved_client.setValue(0) - - self.gridLayout_4.addWidget(self.progressBar_approved_client, 2, 1, 1, 1) - - self.comboBox_clients = QComboBox(self.collapsibleButton_dicom_stream) - self.comboBox_clients.setObjectName("comboBox_clients") - - self.gridLayout_4.addWidget(self.comboBox_clients, 0, 1, 1, 1) - - self.label_10 = QLabel(self.collapsibleButton_dicom_stream) - self.label_10.setObjectName("label_10") - - self.gridLayout_4.addWidget(self.label_10, 2, 0, 1, 1) - - self.label_9 = QLabel(self.collapsibleButton_dicom_stream) - self.label_9.setObjectName("label_9") - - self.gridLayout_4.addWidget(self.label_9, 1, 0, 1, 1) - - self.label_7 = QLabel(self.collapsibleButton_dicom_stream) - self.label_7.setObjectName("label_7") - - self.gridLayout_4.addWidget(self.label_7, 0, 0, 1, 1) - - self.progressBar_segmented_client = QProgressBar(self.collapsibleButton_dicom_stream) - self.progressBar_segmented_client.setObjectName("progressBar_segmented_client") - self.progressBar_segmented_client.setStyleSheet("selection-background-color: rgba(78, 157, 246, 209);") - self.progressBar_segmented_client.setValue(0) - self.progressBar_segmented_client.setTextVisible(True) - - self.gridLayout_4.addWidget(self.progressBar_segmented_client, 1, 1, 1, 1) - - self.label_6 = QLabel(self.collapsibleButton_dicom_stream) - self.label_6.setObjectName("label_6") - - self.gridLayout_4.addWidget(self.label_6, 3, 0, 1, 1) - - self.horizontalLayout_6 = QHBoxLayout() - self.horizontalLayout_6.setObjectName("horizontalLayout_6") - self.verticalLayout_3 = QVBoxLayout() - self.verticalLayout_3.setObjectName("verticalLayout_3") - self.checkBox_not_segmented = QCheckBox(self.collapsibleButton_dicom_stream) - self.checkBox_not_segmented.setObjectName("checkBox_not_segmented") - self.checkBox_not_segmented.setEnabled(False) - - self.verticalLayout_3.addWidget(self.checkBox_not_segmented) - - self.checkBox_flagged = QCheckBox(self.collapsibleButton_dicom_stream) - self.checkBox_flagged.setObjectName("checkBox_flagged") - - self.verticalLayout_3.addWidget(self.checkBox_flagged) - - self.horizontalLayout_6.addLayout(self.verticalLayout_3) - - self.verticalLayout_5 = QVBoxLayout() - self.verticalLayout_5.setObjectName("verticalLayout_5") - self.checkBox_segmented = QCheckBox(self.collapsibleButton_dicom_stream) - self.checkBox_segmented.setObjectName("checkBox_segmented") - - self.verticalLayout_5.addWidget(self.checkBox_segmented) - - self.checkBox_approved = QCheckBox(self.collapsibleButton_dicom_stream) - self.checkBox_approved.setObjectName("checkBox_approved") - - self.verticalLayout_5.addWidget(self.checkBox_approved) - - self.horizontalLayout_6.addLayout(self.verticalLayout_5) - - self.gridLayout_4.addLayout(self.horizontalLayout_6, 3, 1, 1, 1) - - self.label_idx_seg_image_client = QLabel(self.collapsibleButton_dicom_stream) - self.label_idx_seg_image_client.setObjectName("label_idx_seg_image_client") - self.label_idx_seg_image_client.setAlignment(Qt.AlignCenter) - - self.gridLayout_4.addWidget(self.label_idx_seg_image_client, 1, 2, 1, 1) - - self.label_idx_appr_image_client = QLabel(self.collapsibleButton_dicom_stream) - self.label_idx_appr_image_client.setObjectName("label_idx_appr_image_client") - self.label_idx_appr_image_client.setAlignment(Qt.AlignCenter) - - self.gridLayout_4.addWidget(self.label_idx_appr_image_client, 2, 2, 1, 1) - - self.gridLayout_5.addLayout(self.gridLayout_4, 0, 0, 1, 1) - - self.gridLayout.addWidget(self.collapsibleButton_dicom_stream, 6, 0, 1, 1) - - self.verticalSpacer = QSpacerItem(20, 40, QSizePolicy.Minimum, QSizePolicy.Expanding) - - self.gridLayout.addItem(self.verticalSpacer, 9, 0, 1, 1) - - self.retranslateUi(MONAILabelReviewer) - - self.tabWidget.setCurrentIndex(2) - - QMetaObject.connectSlotsByName(MONAILabelReviewer) - - # setupUi - - def retranslateUi(self, MONAILabelReviewer): - self.btn_basic_mode.setText(QCoreApplication.translate("MONAILabelReviewer", "Basic mode", None)) - self.btn_reviewers_mode.setText(QCoreApplication.translate("MONAILabelReviewer", "Reviewer's mode", None)) - self.collapsibleButton_search_image.setText( - QCoreApplication.translate("MONAILabelReviewer", "Search Images", None) - ) - self.label_18.setText(QCoreApplication.translate("MONAILabelReviewer", "Image Ids", None)) - self.textEdit_search.setPlaceholderText( - QCoreApplication.translate("MONAILabelReviewer", "imageId_1, imageId2, ...", None) - ) - self.btn_search.setText(QCoreApplication.translate("MONAILabelReviewer", "Search", None)) - self.tabWidget.setTabText( - self.tabWidget.indexOf(self.ById), QCoreApplication.translate("MONAILabelReviewer", "Ids", None) - ) - self.label.setText(QCoreApplication.translate("MONAILabelReviewer", "Select annotator", None)) - self.label_3.setText(QCoreApplication.translate("MONAILabelReviewer", "Select reviewer", None)) - self.checkBox_search_approved.setText(QCoreApplication.translate("MONAILabelReviewer", "approved", None)) - self.checkBox_search_flagged.setText(QCoreApplication.translate("MONAILabelReviewer", "flagged", None)) - self.btn_search_annotator_reviewer.setText(QCoreApplication.translate("MONAILabelReviewer", "Search", None)) - self.tabWidget.setTabText( - self.tabWidget.indexOf(self.tab_8), - QCoreApplication.translate("MONAILabelReviewer", "Annotator/Reviewer", None), - ) - self.label_2.setText(QCoreApplication.translate("MONAILabelReviewer", "Select level of difficulty", None)) - self.checkBox_search_easy.setText(QCoreApplication.translate("MONAILabelReviewer", "easy", None)) - self.checkBox_search_medium.setText(QCoreApplication.translate("MONAILabelReviewer", "medium", None)) - self.checkBox_search_hard.setText(QCoreApplication.translate("MONAILabelReviewer", "hard", None)) - self.btn_search_level.setText(QCoreApplication.translate("MONAILabelReviewer", "Search", None)) - self.tabWidget.setTabText( - self.tabWidget.indexOf(self.tab), QCoreApplication.translate("MONAILabelReviewer", "Quality", None) - ) - self.label_search_result.setText(QCoreApplication.translate("MONAILabelReviewer", "Result:", None)) - ___qtablewidgetitem = self.tableWidge_imageMeta.horizontalHeaderItem(0) - ___qtablewidgetitem.setText(QCoreApplication.translate("MONAILabelReviewer", "Image Id", None)) - ___qtablewidgetitem1 = self.tableWidge_imageMeta.horizontalHeaderItem(1) - ___qtablewidgetitem1.setText(QCoreApplication.translate("MONAILabelReviewer", "found", None)) - ___qtablewidgetitem2 = self.tableWidge_imageMeta.horizontalHeaderItem(2) - ___qtablewidgetitem2.setText(QCoreApplication.translate("MONAILabelReviewer", "segmented", None)) - self.btn_show_image.setText(QCoreApplication.translate("MONAILabelReviewer", "Show", None)) - self.CollapsibleButton.setText(QCoreApplication.translate("MONAILabelReviewer", "Server", None)) - self.label_idx_seg_image.setText("") - self.label_idx_appr_image.setText("") - self.btn_connect_monai.setText(QCoreApplication.translate("MONAILabelReviewer", "Connect", None)) - self.label_8.setText(QCoreApplication.translate("MONAILabelReviewer", "Segmented", None)) - self.label_17.setText(QCoreApplication.translate("MONAILabelReviewer", "Approved", None)) - self.label_19.setText(QCoreApplication.translate("MONAILabelReviewer", "Server IP:", None)) - self.label_20.setText(QCoreApplication.translate("MONAILabelReviewer", "Reviewer:", None)) - self.collapsibleButton_dicom_evaluation.setText( - QCoreApplication.translate("MONAILabelReviewer", "Data Evaluation", None) - ) - self.label_level_difficulty.setText( - QCoreApplication.translate("MONAILabelReviewer", "Level of difficulty", None) - ) - self.btn_easy.setText(QCoreApplication.translate("MONAILabelReviewer", "Easy", None)) - self.btn_medium.setText(QCoreApplication.translate("MONAILabelReviewer", "Medium", None)) - self.btn_hard.setText(QCoreApplication.translate("MONAILabelReviewer", "Hard", None)) - self.btn_previous.setText(QCoreApplication.translate("MONAILabelReviewer", "Previous", None)) - self.btn_next.setText(QCoreApplication.translate("MONAILabelReviewer", "Next", None)) - self.btn_mark_revision.setText(QCoreApplication.translate("MONAILabelReviewer", "Flag", None)) - self.btn_approved.setText(QCoreApplication.translate("MONAILabelReviewer", "Approve", None)) - self.label_idx_image.setText(QCoreApplication.translate("MONAILabelReviewer", "Image: x/y", None)) - self.label_version_labels.setText(QCoreApplication.translate("MONAILabelReviewer", "Version of labels", None)) - self.btn_edit_label.setText(QCoreApplication.translate("MONAILabelReviewer", "Start label edit", None)) - self.btn_overwrite_version.setText( - QCoreApplication.translate("MONAILabelReviewer", "Overwrite this version", None) - ) - self.btn_save_new_version.setText(QCoreApplication.translate("MONAILabelReviewer", "Save as new version", None)) - self.btn_delete_version.setText(QCoreApplication.translate("MONAILabelReviewer", "Delete this version", None)) - self.btn_update_version.setText(QCoreApplication.translate("MONAILabelReviewer", "Confirm", None)) - self.label_12.setText(QCoreApplication.translate("MONAILabelReviewer", "Image Id: ", None)) - self.label_13.setText(QCoreApplication.translate("MONAILabelReviewer", "Annotator:", None)) - self.label_15.setText(QCoreApplication.translate("MONAILabelReviewer", "Annotation Date:", None)) - self.label_16.setText(QCoreApplication.translate("MONAILabelReviewer", "Difficulty Level:", None)) - self.label_14.setText(QCoreApplication.translate("MONAILabelReviewer", "Status:", None)) - self.label_5.setText(QCoreApplication.translate("MONAILabelReviewer", "Editor: ", None)) - self.label_11.setText(QCoreApplication.translate("MONAILabelReviewer", "Editing Date:", None)) - self.plainText_comment.setPlaceholderText(QCoreApplication.translate("MONAILabelReviewer", "Add Comment", None)) - self.collapsibleButton_dicom_stream.setText( - QCoreApplication.translate("MONAILabelReviewer", "Data Set Explorer", None) - ) - self.btn_load.setText(QCoreApplication.translate("MONAILabelReviewer", "Load", None)) - self.label_10.setText(QCoreApplication.translate("MONAILabelReviewer", "Approved", None)) - self.label_9.setText(QCoreApplication.translate("MONAILabelReviewer", "Segmented", None)) - self.label_7.setText(QCoreApplication.translate("MONAILabelReviewer", "Annotator", None)) - self.label_6.setText(QCoreApplication.translate("MONAILabelReviewer", "Filter", None)) - self.checkBox_not_segmented.setText(QCoreApplication.translate("MONAILabelReviewer", "not segmented", None)) - self.checkBox_flagged.setText(QCoreApplication.translate("MONAILabelReviewer", "flagged", None)) - self.checkBox_segmented.setText(QCoreApplication.translate("MONAILabelReviewer", "segmented", None)) - self.checkBox_approved.setText(QCoreApplication.translate("MONAILabelReviewer", "approved", None)) - self.label_idx_seg_image_client.setText("") - self.label_idx_appr_image_client.setText("") - pass - - # retranslateUi diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/CMakeLists.txt b/monailabel/plugins/slicer/MONAILabelReviewer/CMakeLists.txt deleted file mode 100644 index 5e3dd65..0000000 --- a/monailabel/plugins/slicer/MONAILabelReviewer/CMakeLists.txt +++ /dev/null @@ -1,52 +0,0 @@ -# Copyright (c) MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -#----------------------------------------------------------------------------- -set(MODULE_NAME MONAILabelReviewer) - -#----------------------------------------------------------------------------- -set(MODULE_PYTHON_SCRIPTS - ${MODULE_NAME}.py - ${MODULE_NAME}Lib/__init__ - ${MODULE_NAME}Lib/DataStoreKeys.py - ${MODULE_NAME}Lib/ImageData.py - ${MODULE_NAME}Lib/ImageDataController.py - ${MODULE_NAME}Lib/ImageDataExtractor.py - ${MODULE_NAME}Lib/ImageDataStatistics.py - ${MODULE_NAME}Lib/JsonParser.py - ${MODULE_NAME}Lib/MONAILabelReviewerEnum.py - ${MODULE_NAME}Lib/MonaiServerREST.py - ${MODULE_NAME}Lib/SegmentationMeta.py - ) - -set(MODULE_PYTHON_RESOURCES - Resources/Icons/${MODULE_NAME}.png - Resources/UI/${MODULE_NAME}.ui - ) - -#----------------------------------------------------------------------------- -slicerMacroBuildScriptedModule( - NAME ${MODULE_NAME} - SCRIPTS ${MODULE_PYTHON_SCRIPTS} - RESOURCES ${MODULE_PYTHON_RESOURCES} - WITH_GENERIC_TESTS - ) - -#----------------------------------------------------------------------------- -if(BUILD_TESTING) - - # Register the unittest subclass in the main script as a ctest. - # Note that the test will also be available at runtime. - slicer_add_python_unittest(SCRIPT ${MODULE_NAME}.py) - - # Additional build-time testing - add_subdirectory(Testing) -endif() diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewer.py b/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewer.py deleted file mode 100644 index 3b7b7ee..0000000 --- a/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewer.py +++ /dev/null @@ -1,1772 +0,0 @@ -# Copyright (c) MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import datetime -import logging -import os -import re -import tempfile -from typing import Dict, List - -import qt -import requests -import SampleData -import slicer -from MONAILabelReviewerLib.ImageData import ImageData -from MONAILabelReviewerLib.ImageDataController import ( - ImageDataController, - ImageDataStatistics, -) -from MONAILabelReviewerLib.MONAILabelReviewerEnum import Label, Level, SegStatus -from slicer.ScriptedLoadableModule import * -from slicer.util import VTKObservationMixin - - -class MONAILabelReviewer(ScriptedLoadableModule): - """Uses ScriptedLoadableModule base class, available at: - https://github.com/Slicer/Slicer/blob/main/Base/Python/slicer/ScriptedLoadableModule.py - """ - - def __init__(self, parent): - ScriptedLoadableModule.__init__(self, parent) - self.parent.title = "MONAILabel Reviewer" - self.parent.categories = ["Active Learning"] - self.parent.dependencies = [] - self.parent.contributors = ["Minh Duc, Do (rAIdiance)"] - self.parent.helpText = """ -This module provides the user to review on segmentations on X-Ray-dicom images. -See more information in module documentation. -""" - self.parent.acknowledgementText = """ -Developed by rAiDiance, and funded by Berlin Institute of Health (BIH). -""" - - -class MONAILabelReviewerWidget(ScriptedLoadableModuleWidget, VTKObservationMixin): - """Uses ScriptedLoadableModuleWidget base class, available at: - https://github.com/Slicer/Slicer/blob/main/Base/Python/slicer/ScriptedLoadableModule.py - """ - - def __init__(self, parent=None): - """ - Called when the user opens the module the first time and the widget is initialized. - """ - ScriptedLoadableModuleWidget.__init__(self, parent) - VTKObservationMixin.__init__(self) # needed for parameter node observation - - # Color set - self.colorGreenPressedButton = "background-color : rgb(0, 250, 146)" - self.colorDarkGrayButton = "background-color : rgb(169, 169, 169)" - self.colorGreenButtonAfterSuccessfulLoad = "background-color : rgb(0, 144, 81)" - self.colorGreenEasyButton = "background-color : rgb(0, 250, 146)" - self.colorYellowMediumButton = "background-color : rgba(255, 251, 0, 179)" - self.colorRedHardButton = "background-color : rgba(255, 38, 0, 179)" - self.colorLightGreenButton = "background-color : rgb(115, 250, 121)" - self.colorRedReviewerModeButton = "background-color : rgb(255, 126, 121)" - self.colorBlueBasicModeButton = "background-color : rgb(118, 214, 255)" - self.colorRed = "color: red" - self.colorGreen = "color: green" - self.colorLightYellow = "background-color : rgb(255,255,153)" - - self.logic = None - self._parameterNode = None - self._updatingGUIFromParameterNode = False - - self.STATUS = SegStatus() - self.LEVEL = Level() - self.LABEL = Label() - - self.selectedReviewer: str = "" - self.selectedClientId: str = "" - self.currentImageId: str = "" - self.currentLabelVersion: str = "" - self.listImageData: List[ImageData] = None - self.imageCounter: int = 0 - self.currentImageData: ImageData = None - self.idToimageData: Dict[str, ImageData] = None - - # Meta Information - self.finalStatus: str = "" - self.finalLevel: str = "" - self.finalComment: str = "" - self.tmpdir = "" - - self.reviewersModeIsActive = False - self.isSelectableByLabelVersion = False - - self.mapFiltersToBool: Dict[str, bool] = { - "segmented": False, - "notSegemented": False, - "approved": False, - "flagged": False, - } - - def setup(self): - """ - Called when the user opens the module the first time and the widget is initialized. - """ - ScriptedLoadableModuleWidget.setup(self) - - # Load widget from .ui file (created by Qt Designer). - # Additional widgets can be instantiated manually and added to self.layout. - uiWidget = slicer.util.loadUI(self.resourcePath("UI/MONAILabelReviewer.ui")) - self.layout.addWidget(uiWidget) - self.ui = slicer.util.childWidgetVariables(uiWidget) - - # Set scene in MRML widgets. Make sure that in Qt designer the top-level qMRMLWidget's - # "mrmlSceneChanged(vtkMRMLScene*)" signal in is connected to each MRML widget's. - # "setMRMLScene(vtkMRMLScene*)" slot. - uiWidget.setMRMLScene(slicer.mrmlScene) - - # Create logic class. Logic implements all computations that should be possible to run - # in batch mode, without a graphical user interface. - self.logic = MONAILabelReviewerLogic() - - # set segmentator editor - self.segmentEditorWidget = slicer.qMRMLSegmentEditorWidget() - self.addSegmentator() - self.setLightVersion() - - self.ui.verticalLayout_10.addWidget(self.segmentEditorWidget) - self.loadServerSelection() - - # Section: Widget Elements - self.ui.btn_connect_monai.clicked.connect(self.init_dicom_stream) - self.ui.btn_load.clicked.connect(self.loadImageData) - - self.ui.btn_approved.clicked.connect(self.approveSegmentation) - self.ui.btn_mark_revision.clicked.connect(self.flagSegmentation) - - self.ui.btn_next.clicked.connect(self.getNextSegmentation) - self.ui.btn_previous.clicked.connect(self.getPreviousSegmenation) - - self.ui.btn_easy.clicked.connect(self.setEasy) - self.ui.btn_medium.clicked.connect(self.setMedium) - self.ui.btn_hard.clicked.connect(self.setHard) - - self.ui.btn_search.clicked.connect(self.search) - self.ui.btn_search_annotator_reviewer.clicked.connect(self.searchByAnnotatorReviewer) - self.ui.btn_search_level.clicked.connect(self.searchByLevel) - - self.ui.checkBox_search_approved.clicked.connect(self.checkedAppprovedSearch) - self.ui.checkBox_search_flagged.clicked.connect(self.checkedFlaggedSearch) - - self.ui.btn_show_image.clicked.connect(self.showSearchedImage) - - self.ui.checkBox_flagged.clicked.connect(self.checkedFlagged) - self.ui.checkBox_approved.clicked.connect(self.checkApproved) - self.ui.checkBox_not_segmented.clicked.connect(self.checkNotSegmented) - self.ui.checkBox_segmented.clicked.connect(self.checkSegmented) - - self.ui.btn_basic_mode.clicked.connect(self.setLightVersion) - self.ui.btn_reviewers_mode.clicked.connect(self.setReviewerVersion) - self.ui.comboBox_clients.currentIndexChanged.connect(self.index_changed) - self.ui.comboBox_reviewers.currentIndexChanged.connect(self.indexReviewerchanged) - - self.ui.comboBox_label_version.currentIndexChanged.connect(self.indexLabelVersionChanged) - self.ui.btn_save_new_version.clicked.connect(self.setSaveAsNewVersion) - self.ui.btn_overwrite_version.clicked.connect(self.setOverwriteCurrentVersion) - self.ui.btn_update_version.clicked.connect(self.updateAfterEditingSegmentation) - self.ui.btn_edit_label.clicked.connect(self.displayEditorTools) - self.ui.btn_delete_version.clicked.connect(self.setDeleteVersion) - - def getCurrentTime(self): - return datetime.datetime.now() - - def getCurrentMetaStatus(self) -> str: - if not self.finalStatus: - return "" - return self.finalStatus - - def setCurrentMetaStatus(self, status=""): - self.finalStatus = status - - def getCurrentMetaLevel(self) -> str: - if not self.finalLevel: - return "" - return self.finalLevel - - def setCurrentMetaLevel(self, level=""): - self.finalLevel = level - - def getCurrentComment(self) -> str: - comment = self.ui.plainText_comment.toPlainText() - if not comment: - return "" - return comment - - def setCurrentComment(self, comment=""): - self.finalComment = comment - - def getSelectedReviewer(self) -> str: - selectedReviewer = self.ui.comboBox_reviewers.currentText - if not selectedReviewer: - return "" - return selectedReviewer - - def getSelectedClientFromComboBox(self) -> str: - selectedClient = self.ui.comboBox_clients.currentText - if not selectedClient: - return "" - return selectedClient - - def cleanup(self): - """ - Called when the application closes and the module widget is destroyed. - """ - self.removeObservers() - - def indexReviewerchanged(self, index): - logging.info(f"{self.getCurrentTime()}: Selected reviewer: '{self.ui.comboBox_reviewers.currentText}'") - self.selectedReviewer = self.ui.comboBox_reviewers.currentText - - def index_changed(self, index): - self.loadImageData() - - def indexLabelVersionChanged(self, index): - logging.warn( - f"{self.getCurrentTime()}: Selected labal version: '{self.getCurrentLabelVersionFromComboBox()}', " - f"is enabled '{self.isSelectableByLabelVersion}'" - ) - self.displayAdditionalMetaIfEdited(self.getCurrentLabelVersionFromComboBox()) - if self.isSelectableByLabelVersion: - self.disableDifficultyButtons(tag=self.getCurrentLabelVersion()) - self.loadNextImage(imageData=self.currentImageData, tag=self.getCurrentLabelVersion()) - - def getCurrentLabelVersionFromComboBox(self) -> str: - labelString = self.ui.comboBox_label_version.currentText - return self.parseSelectedVersionFromComboBox(labelString) - - def getCurrentLabelVersion(self) -> str: - label = self.getCurrentLabelVersionFromComboBox() - if label == "": - label = self.LABEL.FINAL - return label - - def disableDifficultyButtons(self, tag: str): - if self.LABEL.VERSION in tag: - self.ui.btn_easy.hide() - self.ui.btn_medium.hide() - self.ui.btn_hard.hide() - else: - self.ui.btn_easy.show() - self.ui.btn_medium.show() - self.ui.btn_hard.show() - - def setSaveAsNewVersion(self) -> bool: - setToSave = bool(self.ui.btn_save_new_version.isChecked()) - self.ui.btn_update_version.enabled = True - if setToSave: - self.ui.btn_overwrite_version.setChecked(False) - self.ui.btn_overwrite_version.setStyleSheet(self.colorDarkGrayButton) - - self.ui.btn_delete_version.setChecked(False) - self.ui.btn_delete_version.setStyleSheet(self.colorDarkGrayButton) - - self.ui.btn_save_new_version.setStyleSheet(self.colorGreenPressedButton) - self.ui.btn_update_version.setText("Confirm: Saving") - return setToSave - - def setOverwriteCurrentVersion(self) -> bool: - setToOverwrite = bool(self.ui.btn_overwrite_version.isChecked()) - self.ui.btn_update_version.enabled = True - if setToOverwrite: - self.ui.btn_save_new_version.setChecked(False) - self.ui.btn_save_new_version.setStyleSheet(self.colorDarkGrayButton) - - self.ui.btn_delete_version.setChecked(False) - self.ui.btn_delete_version.setStyleSheet(self.colorDarkGrayButton) - - self.ui.btn_overwrite_version.setStyleSheet(self.colorGreenPressedButton) - self.ui.btn_update_version.setText("Confirm: Overwriting") - - return setToOverwrite - - def setDeleteVersion(self) -> bool: - setToDelete = bool(self.ui.btn_delete_version.isChecked()) - self.ui.btn_update_version.enabled = True - if setToDelete: - self.ui.btn_save_new_version.setChecked(False) - self.ui.btn_save_new_version.setStyleSheet(self.colorDarkGrayButton) - - self.ui.btn_overwrite_version.setChecked(False) - self.ui.btn_overwrite_version.setStyleSheet(self.colorDarkGrayButton) - - self.ui.btn_delete_version.setStyleSheet(self.colorGreenPressedButton) - self.ui.btn_update_version.setText("Confirm: Deletion") - - return setToDelete - - def setButtonColorReviewerOrBasicMode(self, isReviewerMode: bool): - if isReviewerMode: - self.ui.btn_reviewers_mode.setStyleSheet(self.colorRedReviewerModeButton) - self.ui.btn_basic_mode.setStyleSheet(self.colorDarkGrayButton) - else: - self.ui.btn_reviewers_mode.setStyleSheet(self.colorDarkGrayButton) - self.ui.btn_basic_mode.setStyleSheet(self.colorBlueBasicModeButton) - - def setReviewerVersion(self): - self.reviewersModeIsActive = True - self.setButtonColorReviewerOrBasicMode(isReviewerMode=self.reviewersModeIsActive) - # section: Server - # Reviewer Field - self.ui.label_20.show() - self.ui.comboBox_reviewers.show() - - # Approved bar - self.ui.label_17.show() - self.ui.progressBar_approved_total.show() - self.ui.label_idx_appr_image.show() - - # section: Data set explorer - - # Approved bar - self.ui.label_10.show() - self.ui.progressBar_approved_client.show() - self.ui.label_idx_appr_image_client.show() - - # filter option - self.ui.label_6.show() - self.ui.checkBox_not_segmented.show() - self.ui.checkBox_flagged.show() - self.ui.checkBox_segmented.show() - self.ui.checkBox_approved.show() - - # section: Data evaluation - self.ui.btn_easy.show() - self.ui.btn_medium.show() - self.ui.btn_hard.show() - self.ui.label_level_difficulty.show() - self.ui.btn_mark_revision.show() - self.ui.btn_approved.show() - - # imag information - self.ui.label_14.show() - self.ui.lineEdit_status.show() - self.ui.label_16.show() - self.ui.lineEdit_level.show() - self.ui.plainText_comment.show() - if self.ui.btn_basic_mode.isChecked(): - self.ui.btn_basic_mode.setChecked(False) - - self.collapseAllSecions() - - self.activateSegmentatorEditor(activated=False) - self.hideEditingSelectionOption(isHidden=False) - - # Section: Light version Option - def setLightVersion(self): - self.reviewersModeIsActive = False - self.setButtonColorReviewerOrBasicMode(isReviewerMode=self.reviewersModeIsActive) - # section: Server - # Reviewer Field - self.ui.label_20.hide() - self.ui.comboBox_reviewers.hide() - - # Approved bar - self.ui.label_17.hide() - self.ui.progressBar_approved_total.hide() - self.ui.label_idx_appr_image.hide() - - # section: Data set explorer - # Approved bar - self.ui.label_10.hide() - self.ui.progressBar_approved_client.hide() - self.ui.label_idx_appr_image_client.hide() - - # filter option - self.ui.label_6.hide() - self.ui.checkBox_not_segmented.hide() - self.ui.checkBox_flagged.hide() - self.ui.checkBox_segmented.hide() - self.ui.checkBox_approved.hide() - - # section: Data evaluation - self.ui.btn_easy.hide() - self.ui.btn_medium.hide() - self.ui.btn_hard.hide() - self.ui.label_level_difficulty.hide() - self.ui.btn_mark_revision.hide() - self.ui.btn_approved.hide() - - # imag information - self.ui.label_14.hide() - self.ui.lineEdit_status.hide() - self.ui.label_16.hide() - self.ui.lineEdit_level.hide() - self.ui.plainText_comment.hide() - if self.ui.btn_reviewers_mode.isChecked(): - self.ui.btn_reviewers_mode.setChecked(False) - - self.collapseAllSecions() - - self.activateSegmentatorEditor(activated=False) - self.hideEditingSelectionOption(isHidden=True) - - def cleanCache(self): - self.logic = MONAILabelReviewerLogic() - self.selectedReviewer = "" - self.selectedClientId = "" - - self.listImageData = None - self.imageCounter = 0 - self.currentImageData = None - self.idToimageData = None - - # Meta Information - self.setCurrentMetaStatus(status="") - self.setCurrentMetaLevel(level="") - self.setCurrentComment(comment="") - - logging.info(f"{self.getCurrentTime()}: Cache is cleaned") - - # Section: Server - def loadServerSelection(self): - settings = qt.QSettings() - serverUrlHistory = settings.value("MONAILabel/serverUrlHistory") - - self.ui.comboBox_server_url.clear() - self.ui.comboBox_server_url.addItems(serverUrlHistory.split(";")) - - def init_dicom_stream(self): - """ - initiates connection to monai server - Default: client listens on "http://127.0.0.1:8000" - """ - # Check Connection - self.cleanCache() - serverUrl: str = self.ui.comboBox_server_url.currentText - isConnected: bool = self.logic.connectToMonaiServer(serverUrl) - if not isConnected: - warningMessage = f"Connection to server failed \ndue to invalid ip '{serverUrl}'" - slicer.util.warningDisplay(warningMessage) - return - self.ui.btn_connect_monai.setStyleSheet(self.colorGreenButtonAfterSuccessfulLoad) - self.processDataStoreRecords() - self.initUI() - - def collapseAllSecions(self): - self.ui.collapsibleButton_search_image.enabled = False - self.ui.collapsibleButton_dicom_stream.enabled = False - self.ui.collapsibleButton_dicom_evaluation.enabled = False - - self.ui.collapsibleButton_search_image.collapsed = True - self.ui.collapsibleButton_dicom_stream.collapsed = True - self.ui.collapsibleButton_dicom_evaluation.collapsed = True - - def initUI(self): - self.selectedReviewer = self.ui.comboBox_reviewers.currentText - if self.reviewersModeIsActive and self.selectedReviewer == "": - warningMessage = "Missing reviewer's name.\nPlease enter your id or name in the reviewer's field!" - slicer.util.warningDisplay(warningMessage) - return - self.ui.collapsibleButton_search_image.enabled = True - self.ui.collapsibleButton_dicom_stream.enabled = True - - # set Segmentation progress bar - self.setProgessBar() - - # fill combobox - self.fillComboBoxes() - - # set up buttons - self.setButtons() - - self.selectedClientId = "" - - def setButtons(self): - self.ui.btn_approved.setCheckable(True) - self.ui.btn_mark_revision.setCheckable(True) - self.ui.btn_easy.setCheckable(True) - self.ui.btn_medium.setCheckable(True) - self.ui.btn_hard.setCheckable(True) - self.ui.btn_reviewers_mode.setCheckable(True) - self.ui.btn_basic_mode.setCheckable(True) - - self.ui.btn_edit_label.setCheckable(True) - self.ui.btn_save_new_version.setCheckable(True) - self.ui.btn_overwrite_version.setCheckable(True) - self.ui.btn_delete_version.setCheckable(True) - self.ui.btn_update_version.setCheckable(True) - - self.ui.btn_delete_version.hide() - self.ui.btn_save_new_version.hide() - self.ui.btn_overwrite_version.hide() - self.ui.btn_update_version.hide() - self.ui.btn_update_version.enabled = False - - self.ui.btn_show_image.enabled = False - - def setProgessBar(self): - statistics = self.logic.getStatistics() - - self.ui.progressBar_segmentation.setProperty("value", statistics.getSegmentationProgress()) - self.ui.label_idx_seg_image.setText(statistics.getIdxTotalSegmented()) - self.ui.label_idx_appr_image.setText(statistics.getIdxTotalApproved()) - self.ui.progressBar_approved_total.setProperty("value", statistics.getProgressPercentage()) - - def fillComboBoxes(self): - # clients - clientIds = self.logic.getClientIds() - - self.ui.comboBox_clients.clear() - self.ui.comboBox_clients.addItem("All") - for clientId in clientIds: - self.ui.comboBox_clients.addItem(str(clientId)) - - # combobox in search section - self.ui.comboBox_search_annotator.clear() - self.ui.comboBox_search_annotator.addItem("All") - for clientId in clientIds: - self.ui.comboBox_search_annotator.addItem(str(clientId)) - - # reviewers - self.ui.comboBox_reviewers.clear() - reviewers = self.logic.getReviewers() - self.ui.comboBox_reviewers.addItem(self.selectedReviewer) - - for reviewer in reviewers: - if reviewer == self.selectedReviewer: - continue - self.ui.comboBox_reviewers.addItem(str(reviewer)) - self.ui.comboBox_reviewers.setCurrentText(self.selectedReviewer) - - # combobox in search section - self.ui.comboBox_search_reviewer.clear() - self.ui.comboBox_search_reviewer.addItem("All") - for reviewer in reviewers: - self.ui.comboBox_search_reviewer.addItem(str(reviewer)) - - def cleanDicomStreamSection(self): - self.setCurrentMetaStatus(status="") - self.setCurrentMetaLevel(level="") - self.setCurrentComment(comment="") - - self.selectedClientId = None - self.imageCounter = 0 - self.currentImageData = None - self.idToimageData = None - self.listImageData = None - - self.cleanProgressBarDicomStreamSection() - self.cleanCheckBoxes() - self.resetHorizontalSlider() - - # Section: Loading images - def loadImageData(self): - if (self.selectedClientId == self.getSelectedClientFromComboBox()) and (self.isDifferentFilter() is False): - return - self.imageCounter = 0 - - self.cleanSearchSection() - # select segmentator: ALL - self.selectedClientId = self.getSelectedClientFromComboBox() - if self.selectedClientId == "All": - self.listImageData = self.loadImageDataWithFilter(selectedClientId="") - self.ui.checkBox_segmented.setEnabled(True) - self.ui.checkBox_not_segmented.setEnabled(True) - self.setProgressBarOfAll() - - # select segmentator: client was selected - if self.selectedClientId != "All": - self.listImageData = self.loadImageDataWithFilter(selectedClientId=self.selectedClientId) - self.setCheckBoxesClient() - self.setProgressBarOfClient(self.selectedClientId) - - logging.info( - "{}: Successfully loaded Image data [total = {}, category = '{}']".format( - self.getCurrentTime(), len(self.listImageData), self.selectedClientId - ) - ) - - if len(self.listImageData) > 0: - self.currentImageData = self.listImageData[self.imageCounter] - self.loadNextImage(self.currentImageData) - - self.ui.collapsibleButton_dicom_evaluation.enabled = True - self.ui.collapsibleButton_dicom_evaluation.collapsed = False - self.setHorizontalSlider(len(self.listImageData)) - self.collectFilters() - self.setLoadButtonColor(reload=False) - - def loadImageDataWithFilter(self, selectedClientId: str) -> list: - isApproved = bool(self.ui.checkBox_approved.isChecked()) - isFlagged = bool(self.ui.checkBox_flagged.isChecked()) - isNotSegmented = bool(self.ui.checkBox_not_segmented.isChecked()) - segmented = bool(self.ui.checkBox_segmented.isChecked()) - logging.info( - "{}: Selected filters: segmented= {} | isNotSegmented= {} | isApproved= {} | isFlagged= {}".format( - self.getCurrentTime(), segmented, isNotSegmented, isApproved, isFlagged - ) - ) - if selectedClientId == "": - return self.logic.getAllImageData(segmented, isNotSegmented, isApproved, isFlagged) - return self.logic.getImageDataByClientId(selectedClientId, isApproved, isFlagged) - - def setProgressBarOfAll(self): - statistics: ImageDataStatistics = self.logic.getStatistics() - # Progress bar: Segmented/TotalImage - self.ui.progressBar_segmented_client.setProperty("value", statistics.getSegmentationProgressAllPercentage()) - self.ui.label_idx_seg_image_client.setText(statistics.getIdxTotalSegmented()) - # Progress bar: approvalCount/TotalImage - self.ui.progressBar_approved_client.setProperty("value", statistics.getApprovalProgressPercentage()) - self.ui.label_idx_appr_image_client.setText(statistics.getIdxTotalApproved()) - - def cleanProgressBarDicomStreamSection(self): - self.ui.progressBar_segmented_client.setProperty("value", 0) - self.ui.progressBar_approved_client.setProperty("value", 0) - self.ui.label_idx_seg_image_client.setText("x/y") - self.ui.label_idx_appr_image_client.setText("x/y") - - def setLoadButtonColor(self, reload: bool): - if reload: # reload required - self.ui.btn_load.setStyleSheet(self.colorDarkGrayButton) - return - self.ui.btn_load.setStyleSheet(self.colorGreenButtonAfterSuccessfulLoad) - - def setProgressBarOfClient(self, selectedClientId: str): - percentageApprovedOfClient, idxApprovedOfClient = self.logic.getPercentageApproved(selectedClientId) - self.ui.progressBar_approved_client.setProperty("value", percentageApprovedOfClient) - self.ui.label_idx_appr_image_client.setText(idxApprovedOfClient) - - percentageSemgmentedByClient, idxSegmentedByClient = self.logic.getPercentageSemgmentedByClient( - selectedClientId - ) - self.ui.progressBar_segmented_client.setProperty("value", percentageSemgmentedByClient) - self.ui.label_idx_seg_image_client.setText(idxSegmentedByClient) - - def setHorizontalSlider(self, loadesImageCount: int): - self.ui.horizontalSlider_image_idx.setMinimum(0) - self.ui.horizontalSlider_image_idx.setMaximum(loadesImageCount - 1) - idxImage = f"Image: {self.imageCounter + 1}/{len(self.listImageData)}" - self.ui.label_idx_image.setText(idxImage) - - def updateHorizontalSlider(self): - self.ui.horizontalSlider_image_idx.setValue(self.imageCounter) - idxImage = f"Image: {self.imageCounter + 1}/{len(self.listImageData)}" - self.ui.label_idx_image.setText(idxImage) - - def resetHorizontalSlider(self): - self.ui.horizontalSlider_image_idx.setValue(1) - self.ui.label_idx_image.setText("Image:") - - # Section: Filter - def collectFilters(self): - self.mapFiltersToBool["segmented"] = self.ui.checkBox_segmented.isChecked() - self.mapFiltersToBool["notSegemented"] = self.ui.checkBox_not_segmented.isChecked() - self.mapFiltersToBool["approved"] = self.ui.checkBox_approved.isChecked() - self.mapFiltersToBool["flagged"] = self.ui.checkBox_flagged.isChecked() - - def isDifferentFilter(self) -> bool: - if self.mapFiltersToBool["segmented"] != self.ui.checkBox_segmented.isChecked(): - return True - if self.mapFiltersToBool["notSegemented"] != self.ui.checkBox_not_segmented.isChecked(): - return True - if self.mapFiltersToBool["approved"] != self.ui.checkBox_approved.isChecked(): - return True - if self.mapFiltersToBool["flagged"] != self.ui.checkBox_flagged.isChecked(): - return True - return False - - # CheckBox: clean - def cleanCheckBoxes(self): - self.ui.checkBox_segmented.setChecked(False) - self.ui.checkBox_not_segmented.setChecked(False) - self.ui.checkBox_flagged.setChecked(False) - self.ui.checkBox_approved.setChecked(False) - - # CheckBox: flagged - def setCheckBoxesClient(self): - self.setLoadButtonColor(reload=True) - self.ui.checkBox_not_segmented.setEnabled(False) - self.ui.checkBox_segmented.setChecked(True) - self.ui.checkBox_segmented.setEnabled(False) - - # CheckBox: flagged - def checkedFlagged(self): - self.setLoadButtonColor(reload=True) - self.ui.checkBox_segmented.setChecked(True) - if self.ui.checkBox_approved.isChecked(): - self.ui.checkBox_approved.setChecked(False) - if self.ui.checkBox_not_segmented.isChecked(): - self.ui.checkBox_not_segmented.setChecked(False) - - # CheckBox: approved - def checkApproved(self): - self.setLoadButtonColor(reload=True) - self.ui.checkBox_segmented.setChecked(True) - if self.ui.checkBox_flagged.isChecked(): - self.ui.checkBox_flagged.setChecked(False) - if self.ui.checkBox_not_segmented.isChecked(): - self.ui.checkBox_not_segmented.setChecked(False) - - # CheckBox: NOT segmented - def checkNotSegmented(self): - self.setLoadButtonColor(reload=True) - if self.ui.checkBox_approved.isChecked(): - self.ui.checkBox_approved.setChecked(False) - if self.ui.checkBox_flagged.isChecked(): - self.ui.checkBox_flagged.setChecked(False) - if self.ui.checkBox_segmented.isChecked(): - self.ui.checkBox_segmented.setChecked(False) - - # CheckBox: segmented - def checkSegmented(self): - self.setLoadButtonColor(reload=True) - if self.ui.checkBox_segmented.isChecked() is False: - self.ui.checkBox_approved.setChecked(False) - self.ui.checkBox_flagged.setChecked(False) - return - - if self.ui.checkBox_not_segmented.isChecked(): - self.ui.checkBox_not_segmented.setChecked(False) - - # Section: Search Image - def cleanSearchSection(self): - self.ui.tableWidge_imageMeta.setRowCount(0) - self.ui.tableWidge_imageMeta.clearContents() - self.ui.textEdit_search.clear() - - def search(self): - """ - After triggering search button, load images and segmentation by input ids - """ - self.cleanDicomStreamSection() - - if self.ui.textEdit_search.toPlainText() == "": - logging.info(f"{self.getCurrentTime()}: Search input field is empty") - return - - idsStr = self.ui.textEdit_search.toPlainText() - idList = self.getIdsFromString(idsStr) - - self.idToimageData = self.logic.getMultImageDataByIds(idList) - self.listImageData = [*self.idToimageData.values()] - - foundIdList = [imageData.getName() for imageData in self.listImageData] - notFoundIdList = [id for id in idList if (id not in foundIdList)] - self.loadSearchImageMetaInTable(self.listImageData, notFoundIdList) - - self.ui.collapsibleButton_dicom_evaluation.enabled = True - self.setHorizontalSlider(len(foundIdList)) - if len(foundIdList) > 0: - self.setSearchResultMessage(numOfFound=len(foundIdList)) - self.loadFirstImage() - else: - self.setSearchResultMessage(numOfFound=0) - - def searchByAnnotatorReviewer(self): - selectedAnnotator: str = self.ui.comboBox_search_annotator.currentText - selectedReviewer: str = self.ui.comboBox_search_reviewer.currentText - isApproved: bool = bool(self.ui.checkBox_search_approved.isChecked()) - isFlagged: bool = bool(self.ui.checkBox_search_flagged.isChecked()) - logging.warn( - f"{self.getCurrentTime()}: Search by annontator: '{selectedAnnotator}' | reviewer: '{selectedReviewer}' " - f"| isApproved: '{isApproved}' | isFlagged: '{isFlagged}'" - ) - - self.idToimageData = self.logic.searchByAnnotatorReviewer( - selectedAnnotator, selectedReviewer, isApproved, isFlagged - ) - self.listImageData = [*self.idToimageData.values()] - - self.loadSearchImageMetaInTable(self.listImageData, []) - if len(self.listImageData) > 0: - self.ui.collapsibleButton_dicom_evaluation.enabled = True - self.setSearchResultMessage(numOfFound=len(self.idToimageData)) - self.setHorizontalSlider(len(self.idToimageData)) - self.loadFirstImage() - else: - self.setSearchResultMessage(numOfFound=0) - - def searchByLevel(self): - isEasy: bool = bool(self.ui.checkBox_search_easy.isChecked()) - isMedium: bool = bool(self.ui.checkBox_search_medium.isChecked()) - isHard: bool = bool(self.ui.checkBox_search_hard.isChecked()) - - self.idToimageData = self.logic.searchByLevel(isEasy, isMedium, isHard) - self.listImageData = [*self.idToimageData.values()] - - self.loadSearchImageMetaInTable(self.listImageData, []) - if len(self.listImageData) > 0: - self.ui.collapsibleButton_dicom_evaluation.enabled = True - self.setSearchResultMessage(numOfFound=len(self.idToimageData)) - self.setHorizontalSlider(len(self.idToimageData)) - self.loadFirstImage() - else: - self.setSearchResultMessage(numOfFound=0) - - def setSearchResultMessage(self, numOfFound: int): - if numOfFound == 0: - self.ui.label_search_result.setText("Result: No images found.") - self.ui.label_search_result.setStyleSheet(self.colorRed) - else: - resultMessage = f"Result: {numOfFound} images found." - self.ui.label_search_result.setText(resultMessage) - self.ui.label_search_result.setStyleSheet(self.colorGreen) - - def checkedAppprovedSearch(self): - isFlagged = bool(self.ui.checkBox_search_flagged.isChecked()) - if isFlagged: - self.ui.checkBox_search_flagged.setChecked(False) - - def checkedFlaggedSearch(self): - isApproved = bool(self.ui.checkBox_search_approved.isChecked()) - if isApproved: - self.ui.checkBox_search_approved.setChecked(False) - - def loadSearchImageMetaInTable(self, foundlist: List[ImageData], notFoundIdList: List[str]): - """ - Set table content after triggering button "show" - Parameters: - foundlist (list): list contains found ids - notFoundIdList (list): list contains not found ids - """ - rowCount = len(foundlist) + len(notFoundIdList) - self.ui.tableWidge_imageMeta.setRowCount(rowCount) - rowCounter = 0 - for row, imageData in enumerate(foundlist): - self.ui.tableWidge_imageMeta.setItem(row, 0, qt.QTableWidgetItem(imageData.getName())) - self.ui.tableWidge_imageMeta.setItem(row, 1, qt.QTableWidgetItem("Yes")) - self.ui.tableWidge_imageMeta.setItem(row, 2, qt.QTableWidgetItem(str(imageData.isSegemented()))) - rowCounter += 1 - - for row, notFoundId in enumerate(notFoundIdList): - self.ui.tableWidge_imageMeta.setItem(rowCounter, 0, qt.QTableWidgetItem(notFoundId)) - self.ui.tableWidge_imageMeta.setItem(rowCounter, 1, qt.QTableWidgetItem("No")) - self.ui.tableWidge_imageMeta.setItem(rowCounter, 2, qt.QTableWidgetItem("No")) - rowCounter += 1 - - self.ui.btn_show_image.enabled = True - - def loadFirstImage(self): - self.imageCounter = 0 - self.currentImageData = self.listImageData[self.imageCounter] - self.loadNextImage(self.currentImageData) - self.updateHorizontalSlider() - - def showSearchedImage(self): - """ - displays dicom & segmentation to corresponding selected row in listed ids - """ - selectedRow = self.ui.tableWidge_imageMeta.currentRow() - if selectedRow == -1: - logging.warn(f"{self.getCurrentTime()}: Selected row [row number = {selectedRow}]is not valid") - return - selectedImageId = self.ui.tableWidge_imageMeta.item(selectedRow, 0).text() - - if selectedImageId not in self.idToimageData: - logging.info(f"{self.getCurrentTime()}: Selected image id [id = {selectedImageId}] was not found") - return - self.currentImageData = self.idToimageData[selectedImageId] - self.loadNextImage(self.currentImageData) - - def removeAllWhiteSpaces(self, strChain) -> str: - """ - removes white spaces within string - """ - pattern = r"\s+" - return re.sub(pattern, "", strChain) - - def getIdsFromString(self, idStr: str) -> List[str]: - """ - parses string which contains comma seperated ids - Parameters: - idStr (str): string which contains comma seperated ids - Returns: - list: contains ids - """ - cleanedStr = self.removeAllWhiteSpaces(idStr) - idsList = cleanedStr.split(",") - return list(dict.fromkeys(idsList)) # remove all duplicates - - # Section: Dicom stream - # Button: Approve - def approveSegmentation(self): - statusApproved = self.ui.btn_approved.isChecked() - statusFlagged = self.ui.btn_mark_revision.isChecked() - - if statusFlagged or self.getCurrentMetaStatus() == self.STATUS.FLAGGED: - self.ui.btn_mark_revision.setChecked(False) - self.ui.btn_mark_revision.setDown(False) - self.ui.btn_mark_revision.setStyleSheet(self.colorDarkGrayButton) - - if statusApproved: - self.setCurrentMetaStatus(status=self.STATUS.APPROVED) - self.ui.btn_approved.setChecked(True) - self.ui.btn_approved.setStyleSheet(self.colorLightGreenButton) - self.ui.btn_mark_revision.setStyleSheet(self.colorDarkGrayButton) - self.ui.lineEdit_status.setStyleSheet(self.colorLightGreenButton) - else: - self.setCurrentMetaStatus(status="") - self.resetButtonsOfApproveOrFlag() - self.updateDisplayImageMetaData() - - # Button: Flagge - def flagSegmentation(self): - statusApproved = self.ui.btn_approved.isChecked() - statusFlagged = self.ui.btn_mark_revision.isChecked() - - if statusApproved or self.getCurrentMetaStatus() == self.STATUS.APPROVED: - self.ui.btn_approved.setChecked(False) - self.ui.btn_approved.setDown(False) - self.ui.btn_approved.setStyleSheet(self.colorDarkGrayButton) - if statusFlagged: - self.setCurrentMetaStatus(status=self.STATUS.FLAGGED) - self.ui.btn_mark_revision.setChecked(True) - self.ui.btn_mark_revision.setStyleSheet(self.colorLightGreenButton) - self.ui.btn_approved.setStyleSheet(self.colorDarkGrayButton) - self.ui.lineEdit_status.setStyleSheet(self.colorLightYellow) - else: - self.setCurrentMetaStatus(status="") - self.resetButtonsOfApproveOrFlag() - self.updateDisplayImageMetaData() - - def resetButtonsOfApproveOrFlag(self): - self.ui.btn_mark_revision.setStyleSheet("") - self.ui.btn_approved.setStyleSheet("") - self.ui.lineEdit_status.setStyleSheet("") - - # Button: Clear - def clearButtons(self): - self.ui.btn_mark_revision.setChecked(False) - self.ui.btn_approved.setChecked(False) - - self.ui.btn_mark_revision.setDown(False) - self.ui.btn_approved.setDown(False) - - self.resetButtonsOfApproveOrFlag() - - self.ui.btn_easy.setChecked(False) - self.ui.btn_medium.setChecked(False) - self.ui.btn_hard.setChecked(False) - - self.ui.btn_easy.setDown(False) - self.ui.btn_medium.setDown(False) - self.ui.btn_hard.setDown(False) - - self.resetButtonOfDifficulty() - - def disableButtons(self): - self.ui.btn_easy.setDown(False) - self.ui.btn_medium.setDown(False) - self.ui.btn_hard.setDown(False) - - def setDifficultyButtonAccordingColorAndChecked(self, difficulty: str): - if difficulty == self.LEVEL.EASY: - self.ui.btn_easy.setStyleSheet(self.colorGreenEasyButton) - self.ui.lineEdit_level.setStyleSheet(self.colorGreenEasyButton) - - self.ui.btn_medium.setChecked(False) - self.ui.btn_hard.setChecked(False) - - self.ui.btn_medium.setDown(False) - self.ui.btn_hard.setDown(False) - - self.ui.btn_medium.setStyleSheet(self.colorDarkGrayButton) - self.ui.btn_hard.setStyleSheet(self.colorDarkGrayButton) - - elif difficulty == self.LEVEL.MEDIUM: - self.ui.btn_medium.setStyleSheet(self.colorYellowMediumButton) - self.ui.lineEdit_level.setStyleSheet(self.colorYellowMediumButton) - - self.ui.btn_easy.setChecked(False) - self.ui.btn_hard.setChecked(False) - - self.ui.btn_easy.setDown(False) - self.ui.btn_hard.setDown(False) - - self.ui.btn_easy.setStyleSheet(self.colorDarkGrayButton) - self.ui.btn_hard.setStyleSheet(self.colorDarkGrayButton) - - elif difficulty == self.LEVEL.HARD: - self.ui.btn_hard.setStyleSheet(self.colorRedHardButton) - self.ui.lineEdit_level.setStyleSheet(self.colorRedHardButton) - - self.ui.btn_easy.setChecked(False) - self.ui.btn_medium.setChecked(False) - - self.ui.btn_easy.setDown(False) - self.ui.btn_medium.setDown(False) - - self.ui.btn_easy.setStyleSheet(self.colorDarkGrayButton) - self.ui.btn_medium.setStyleSheet(self.colorDarkGrayButton) - - # Button: Easy - def setEasy(self): - levelEasy = self.ui.btn_easy.isChecked() - if levelEasy: - self.setCurrentMetaLevel(level=self.LEVEL.EASY) - self.setDifficultyButtonAccordingColorAndChecked(difficulty=self.LEVEL.EASY) - self.ui.lineEdit_level.setText(self.getCurrentMetaLevel()) - - if levelEasy is False and self.getCurrentMetaLevel() == self.LEVEL.EASY: - self.setCurrentMetaLevel(level="") - self.resetButtonOfDifficulty() - self.ui.lineEdit_level.setStyleSheet("") - - self.updateDisplayImageMetaData() - - # Button: Medium - def setMedium(self): - levelMedium = self.ui.btn_medium.isChecked() - if levelMedium: - self.setCurrentMetaLevel(level=self.LEVEL.MEDIUM) - self.setDifficultyButtonAccordingColorAndChecked(difficulty=self.LEVEL.MEDIUM) - self.ui.lineEdit_level.setText(self.getCurrentMetaLevel()) - - if levelMedium is False and self.getCurrentMetaLevel() == self.LEVEL.MEDIUM: - self.setCurrentMetaLevel(level="") - self.resetButtonOfDifficulty() - self.ui.lineEdit_level.setStyleSheet("") - - self.updateDisplayImageMetaData() - - # Button: Hard - def setHard(self): - levelHard = self.ui.btn_hard.isChecked() - - if levelHard: - self.setCurrentMetaLevel(level=self.LEVEL.HARD) - self.setDifficultyButtonAccordingColorAndChecked(difficulty=self.LEVEL.HARD) - self.ui.lineEdit_level.setText(self.getCurrentMetaLevel()) - - if levelHard is False and self.getCurrentMetaLevel() == self.LEVEL.HARD: - self.setCurrentMetaLevel(level="") - self.resetButtonOfDifficulty() - self.ui.lineEdit_level.setStyleSheet("") - - self.updateDisplayImageMetaData() - - def resetButtonOfDifficulty(self): - self.ui.btn_easy.setStyleSheet(self.colorGreenEasyButton) - self.ui.btn_medium.setStyleSheet(self.colorYellowMediumButton) - self.ui.btn_hard.setStyleSheet(self.colorRedHardButton) - - # Button: Next - def getNextSegmentation(self): - """ - after triggering next button: - 1. persist meta data in monai server - 2. update progess bar - 3. load next dicom & segmentation - """ - - self.persistMetaInMonaiServer() - - # Re process Meta Data after image data was persisted - self.reloadOverallStatistic() - # Request Next Image - self.imageCounter += 1 - - if self.imageCounter >= len(self.listImageData): - message = f"{self.getCurrentTime()}: End of list has been reached." - slicer.util.warningDisplay(message) - self.imageCounter = len(self.listImageData) - 1 - return - self.updateHorizontalSlider() - self.currentImageData = self.listImageData[self.imageCounter] - - # Displays Next Image - self.loadNextImage(self.currentImageData) - self.resetSegmentationEditorTools() - self.activateSegmentatorEditor(activated=False) - - # Monai Server: Put - def persistMetaInMonaiServer(self): - """ - Sends the updated meta data of dicom and segmentation to monai-server - Monai-server incorporates that information into datastore.json file - """ - self.logic.updateLabelInfo( - imageData=self.currentImageData, - versionTag=self.getCurrentLabelVersion(), - status=self.getCurrentMetaStatus(), - level=self.getCurrentMetaLevel(), - approvedBy=self.selectedReviewer, - comment=self.getCurrentComment(), - ) - - # Button: Previouse - def getPreviousSegmenation(self): - """ - Loads the previous dicom and corresponding segmentation - after useres tiggers Previous-Button - """ - self.imageCounter -= 1 - if self.imageCounter < 0: - message = f"{self.getCurrentTime()}: Lower limit of data set has been reached." - slicer.util.warningDisplay(message) - self.imageCounter = 0 - return - self.updateHorizontalSlider() - self.currentImageData = self.listImageData[self.imageCounter] - self.currentImageData.display() - - self.fillComboBoxLabelVersions(self.currentImageData) - approvedOrLatestVersionTag = self.currentImageData.getApprovedVersionTagElseReturnLatestVersion() - self.loadNextImage(self.currentImageData, tag=approvedOrLatestVersionTag) - self.resetSegmentationEditorTools() - - def cleanLineEditsContainingSegMeta(self): - self.ui.lineEdit_image_id.setText("") - self.ui.lineEdit_status.setText("") - self.ui.lineEdit_segmentator.setText("") - self.ui.lineEdit_level.setText("") - self.ui.lineEdit_level.setStyleSheet("") - self.ui.lineEdit_date.setText("") - self.ui.plainText_comment.setPlainText("") - - def displayImageMetaData(self, imageData: ImageData, currentLabelVersion: str): - """ - Displays meta info of dicom and segmentation in the info box on slicer - - Parameters: - imageData (ImageData): Contains meta data (of dicom and segmenation) - """ - self.cleanLineEditsContainingSegMeta() - self.clearButtons() - - self.setCurrentMetaStatus(status=imageData.getStatus(currentLabelVersion)) - - self.fillLineEditsWithSegmenationMeta(imageData, currentLabelVersion) - self.setMetaButtonsAccordingToImageData(imageData, currentLabelVersion) - - self.setCurrentMetaLevel(level=imageData.getLevel(currentLabelVersion)) - - def setMetaButtonsAccordingToImageData(self, imageData: ImageData, currentLabelVersion: str): - finalLevel = imageData.getLevel(currentLabelVersion) - if finalLevel != "": - self.activateBtnLevelOfDifficulty(finalLevel) - - if imageData.isApprovedVersion(currentLabelVersion): - self.activateBtnApproved(True) - - if imageData.isFlagged(currentLabelVersion): - self.activateBtnApproved(False) - - def fillLineEditsWithSegmenationMeta(self, imageData: ImageData, currentLabelVersion: str): - logging.info(f"==== currentLabelVersion: {currentLabelVersion}") - logging.info(f"==== getName: {imageData.getName()}") - logging.info(f"==== getClientId: {imageData.getClientId(currentLabelVersion)}") - logging.info(f"==== getTime: {imageData.getTimeOfAnnotation()}") - logging.info(f"==== getStatus: {imageData.getStatus(currentLabelVersion)}") - logging.info(f"==== getComment: {imageData.getComment(currentLabelVersion)}") - logging.info(f"==== getLevel: {imageData.getLevel(currentLabelVersion)}") - logging.info(f"==== edtitingTme: {imageData.getTimeOfEditing(currentLabelVersion)}") - - name = imageData.getName() - annotator = imageData.getClientId(currentLabelVersion) - editor = imageData.getApprovedBy(currentLabelVersion) - edtitingTme = imageData.getTimeOfEditing(currentLabelVersion) - annotationTime = imageData.getTimeOfAnnotation() - status = imageData.getStatus(currentLabelVersion) - comment = imageData.getComment(currentLabelVersion) - - self.ui.lineEdit_image_id.setText(name) - self.ui.lineEdit_segmentator.setText(annotator) - self.ui.lineEdit_editor.setText(editor) - self.ui.lineEdit_editing_date.setText(edtitingTme) - self.ui.lineEdit_date.setText(annotationTime) - self.ui.lineEdit_status.setText(status) - self.ui.plainText_comment.setPlainText(comment) - - finalLevel = imageData.getLevel(currentLabelVersion) - self.ui.lineEdit_level.setText(finalLevel) - - def activateBtnLevelOfDifficulty(self, finalLevel): - if finalLevel == self.LEVEL.EASY: - self.ui.btn_easy.setDown(True) - self.ui.btn_easy.setChecked(True) - - self.ui.btn_easy.setStyleSheet(self.colorGreenEasyButton) - self.ui.btn_medium.setStyleSheet(self.colorDarkGrayButton) - self.ui.btn_hard.setStyleSheet(self.colorDarkGrayButton) - - self.ui.lineEdit_level.setStyleSheet(self.colorGreenEasyButton) - self.setEasy() - - elif finalLevel == self.LEVEL.MEDIUM: - self.ui.btn_medium.setDown(True) - self.ui.btn_medium.setChecked(True) - - self.ui.btn_easy.setStyleSheet(self.colorDarkGrayButton) - self.ui.btn_medium.setStyleSheet(self.colorYellowMediumButton) - self.ui.btn_hard.setStyleSheet(self.colorDarkGrayButton) - - self.ui.lineEdit_level.setStyleSheet(self.colorYellowMediumButton) - self.setMedium() - - elif finalLevel == self.LEVEL.HARD: - self.ui.btn_hard.setDown(True) - self.ui.btn_hard.setChecked(True) - - self.ui.btn_easy.setStyleSheet(self.colorDarkGrayButton) - self.ui.btn_medium.setStyleSheet(self.colorDarkGrayButton) - self.ui.btn_hard.setStyleSheet(self.colorRedHardButton) - - self.ui.lineEdit_level.setStyleSheet(self.colorRedHardButton) - self.setHard() - - def activateBtnApproved(self, activated: bool): - self.ui.btn_mark_revision.setChecked(not activated) - self.ui.btn_mark_revision.setDown(not activated) - self.ui.btn_approved.setChecked(activated) - self.ui.btn_approved.setDown(activated) - if activated: - self.ui.btn_approved.setStyleSheet(self.colorLightGreenButton) - self.ui.btn_mark_revision.setStyleSheet(self.colorDarkGrayButton) - self.ui.lineEdit_status.setStyleSheet(self.colorLightGreenButton) - else: - self.ui.btn_approved.setStyleSheet(self.colorDarkGrayButton) - self.ui.btn_mark_revision.setStyleSheet(self.colorLightGreenButton) - self.ui.lineEdit_status.setStyleSheet(self.colorLightYellow) - - def updateDisplayImageMetaData(self): - """ - Displays updated level (easy, medium, hard) - in the info box on slicer - """ - self.ui.lineEdit_status.setText(self.getCurrentMetaStatus()) - - def loadNextImage(self, imageData: ImageData, tag=""): - """ - Loads original Dicom image and Segmentation into slicer window - Parameters: - imageData (ImageData): Contains meta data (of dicom and segmenation) - which is required for rest request to monai server - in order to get dicom and segmenation (.nrrd). - """ - slicer.mrmlScene.Clear() - self.clearInformationFields() - - if tag == "": - tag = self.currentImageData.getApprovedVersionTagElseReturnLatestVersion() - if tag == "": - tag = self.getCurrentLabelVersion() - logging.warn(f"{self.getCurrentTime()} Loading image (id='{imageData.getName()}', tag='{tag}')") - self.disableDifficultyButtons(tag=tag) - self.displayImageMetaData(imageData, tag) - - self.logic.loadDicomAndSegmentation(imageData, tag) - - if imageData.getStatus() != self.STATUS.NOT_SEGMENTED: - self.displayLabelOfSegmentation() - - if self.currentImageId is not imageData.getName(): - self.currentImageId = imageData.getName() - self.fillComboBoxLabelVersions(imageData) - - def fillComboBoxLabelVersions(self, imageData: ImageData): - self.isSelectableByLabelVersion = False - self.ui.comboBox_label_version.clear() - labelVersions = imageData.getVersionNames() - approvedVersion = "" - labelVersion = "" - for labelVersion in labelVersions: - if imageData.isApprovedVersion(versionTag=labelVersion) is True: - labelVersion = "{} ({})".format(labelVersion, "approved") - approvedVersion = labelVersion - self.ui.comboBox_label_version.addItem(labelVersion) - if approvedVersion != "": - self.setVersionTagInComboBox(approvedVersion) - elif labelVersion != "": - self.setVersionTagInComboBox(labelVersion) - self.isSelectableByLabelVersion = True - - def setVersionTagInComboBox(self, versionTag="", currentImageData=None): - if self.isBlank(versionTag): - return - if (currentImageData is not None) and (currentImageData.isApprovedVersion(versionTag=versionTag) is True): - versionTag = "{} ({})".format(versionTag, "approved") - self.ui.comboBox_label_version.setCurrentText(versionTag) - - def parseSelectedVersionFromComboBox(self, versionTagString: str) -> str: - if self.isBlank(versionTagString): - return "" - array = versionTagString.split() - if len(array) == 0: - return "" - return array[0] - - # Sub Section: Display version selection option - def activateSegmentatorEditor(self, activated=False): - self.segmentEditorWidget.setSourceVolumeNodeSelectorVisible(activated) - self.segmentEditorWidget.setSegmentationNodeSelectorVisible(activated) - self.segmentEditorWidget.setSwitchToSegmentationsButtonVisible(activated) - self.segmentEditorWidget.unorderedEffectsVisible = activated - self.segmentEditorWidget.setReadOnly(not activated) - - def displayEditorTools(self): - isCheckedForEdit = self.ui.btn_edit_label.isChecked() - if isCheckedForEdit: - self.clearButtons() - self.ui.btn_edit_label.setText("Reset current label edit") - self.cleanLineEditsContainingSegMetaWhenStartEditing() - self.activatedEditorTools() - else: - self.deactivatedEditorTools() - self.loadNextImage(imageData=self.currentImageData, tag=self.getCurrentLabelVersion()) - - def cleanLineEditsContainingSegMetaWhenStartEditing(self): - self.setCurrentMetaStatus(status="") - self.setCurrentComment(comment="") - self.ui.lineEdit_status.setText("") - self.ui.lineEdit_editing_date.setText("") - self.ui.plainText_comment.setPlainText("") - - def clearInformationFields(self): - self.setCurrentMetaStatus(status="") - self.setCurrentComment(comment="") - self.setCurrentMetaLevel(level="") - - def activatedEditorTools(self): - self.activateSegmentatorEditor(activated=True) - self.ui.btn_save_new_version.setChecked(False) - self.ui.btn_overwrite_version.setChecked(False) - self.ui.btn_delete_version.setChecked(False) - - self.ui.btn_save_new_version.show() - self.ui.btn_save_new_version.setStyleSheet("") - - self.ui.btn_overwrite_version.show() - self.ui.btn_overwrite_version.setStyleSheet("") - - self.ui.btn_delete_version.show() - self.ui.btn_delete_version.setStyleSheet("") - self.ui.btn_update_version.show() - - self.ui.btn_next.enabled = False - self.ui.btn_previous.enabled = False - self.ui.btn_easy.enabled = False - self.ui.btn_medium.enabled = False - self.ui.btn_hard.enabled = False - self.ui.btn_mark_revision.enabled = False - self.ui.btn_approved.enabled = False - - def deactivatedEditorTools(self): - self.activateSegmentatorEditor(activated=False) - self.ui.btn_save_new_version.setChecked(False) - self.ui.btn_overwrite_version.setChecked(False) - self.ui.btn_delete_version.setChecked(False) - - self.ui.btn_save_new_version.hide() - self.ui.btn_overwrite_version.hide() - self.ui.btn_delete_version.hide() - self.ui.btn_update_version.hide() - self.ui.btn_update_version.enabled = False - - self.ui.btn_next.enabled = True - self.ui.btn_previous.enabled = True - self.ui.btn_easy.enabled = True - self.ui.btn_medium.enabled = True - self.ui.btn_hard.enabled = True - self.ui.btn_mark_revision.enabled = True - self.ui.btn_approved.enabled = True - - self.ui.btn_update_version.setText("Confirm") - self.ui.btn_edit_label.setText("Start label edit") - - def resetSegmentationEditorTools(self): - self.ui.btn_edit_label.setChecked(False) - self.deactivatedEditorTools() - - def hideEditingSelectionOption(self, isHidden: bool): - if isHidden: - self.ui.btn_edit_label.hide() - else: - self.ui.btn_edit_label.show() - - # Section: Display label - def addSegmentator(self): - self.segmentEditorWidget.setMRMLScene(slicer.mrmlScene) - self.selectParameterNode() - self.segmentEditorWidget.setEffectNameOrder([]) - - def displayLabelOfSegmentation(self): - self.selectParameterNode() - self.getDefaultSourceVolumeNodeID() - self.segmentEditorWidget.SegmentationNodeComboBox.setCurrentNodeIndex(0) - self.segmentEditorWidget.SourceVolumeNodeComboBox.setCurrentNodeIndex(0) - - def selectParameterNode(self): - # Select parameter set node if one is found in the scene, and create one otherwise - segmentEditorSingletonTag = "SegmentEditor" - segmentEditorNode = slicer.mrmlScene.GetSingletonNode(segmentEditorSingletonTag, "vtkMRMLSegmentEditorNode") - if segmentEditorNode is None: - segmentEditorNode = slicer.mrmlScene.CreateNodeByClass("vtkMRMLSegmentEditorNode") - segmentEditorNode.UnRegister(None) - segmentEditorNode.SetSingletonTag(segmentEditorSingletonTag) - segmentEditorNode = slicer.mrmlScene.AddNode(segmentEditorNode) - self.segmentEditorWidget.setMRMLSegmentEditorNode(segmentEditorNode) - - def getDefaultSourceVolumeNodeID(self): - layoutManager = slicer.app.layoutManager() - firstForegroundVolumeID = None - # Use first background volume node in any of the displayed layouts. - # If no beackground volume node is in any slice view then use the first - # foreground volume node. - for sliceViewName in layoutManager.sliceViewNames(): - sliceWidget = layoutManager.sliceWidget(sliceViewName) - if not sliceWidget: - continue - compositeNode = sliceWidget.mrmlSliceCompositeNode() - if compositeNode.GetBackgroundVolumeID(): - return compositeNode.GetBackgroundVolumeID() - if compositeNode.GetForegroundVolumeID() and not firstForegroundVolumeID: - firstForegroundVolumeID = compositeNode.GetForegroundVolumeID() - # No background volume was found, so use the foreground volume (if any was found) - return firstForegroundVolumeID - - def getVersionName(self) -> str: - if self.setOverwriteCurrentVersion(): - return self.getCurrentLabelVersion() - else: - return self.currentImageData.getNewVersionName() - - def persistEditedSegmentation(self, newVersionName: str): - self.currentImageData.updateSegmentationMetaByVerionTag( - tag=newVersionName, - status=self.getCurrentMetaStatus(), - level=self.getCurrentMetaLevel(), - approvedBy=self.selectedReviewer, - comment=self.getCurrentComment(), - ) - - segmentationNode = self.segmentEditorWidget.segmentationNode() - self.tmpdir = slicer.util.tempDirectory("slicer-monai-reviewer") - label_in = tempfile.NamedTemporaryFile(suffix=".nrrd", dir=self.tmpdir).name - slicer.util.saveNode(segmentationNode, label_in) - - self.logic.saveLabelInMonaiServer(imageData=self.currentImageData, label_in=label_in, tag=newVersionName) - - def deleteLabelByVersionTag(self): - imageVersionTag = self.getCurrentLabelVersion() - if self.isBlank(imageVersionTag): - return - if self.currentImageData.hasVersionTag(versionTag=imageVersionTag) is False: - return - self.logic.deleteLabelByVersionTag(imageData=self.currentImageData, versionTag=imageVersionTag) - - def updateAfterEditingSegmentation(self): - imageVersionTag = self.getCurrentLabelVersion() - setToSave = bool(self.ui.btn_save_new_version.isChecked()) - setToOverwrite = bool(self.ui.btn_overwrite_version.isChecked()) - setToDelete = bool(self.ui.btn_delete_version.isChecked()) - newLabelNameCreated = "" - if setToSave: - newLabelNameCreated = self.currentImageData.getNewVersionName() - self.persistEditedSegmentation(newVersionName=newLabelNameCreated) - - elif setToOverwrite: - if (imageVersionTag == self.LABEL.FINAL) or (imageVersionTag == self.LABEL.ORIGINAL): - warningMessage: str = ( - "Initial Segmentation with label 'final' or 'original' \n" - "cannot be overwritten.\n Please save current edit as new version." - ) - slicer.util.warningDisplay(warningMessage) - logging.warn(warningMessage) - return - - self.persistEditedSegmentation(newVersionName=imageVersionTag) - - elif setToDelete: - if (imageVersionTag == self.LABEL.FINAL) or (imageVersionTag == self.LABEL.ORIGINAL): - warningMessage: str = "Initial Segmentation with label 'final' or 'original' \ncannot be deleted." - slicer.util.warningDisplay(warningMessage) - logging.warn(warningMessage) - return - - self.deleteLabelByVersionTag() - - self.resetSegmentationEditorTools() - self.reloadImageAfterEditingLabel() - if newLabelNameCreated != "": - self.setVersionTagInComboBox(versionTag=newLabelNameCreated) - - def reloadImageAfterEditingLabel(self): - imageId = self.currentImageData.getFileName() - latestVersion = self.currentImageData.getLatestVersionTag() - logging.info(f"{self.getCurrentTime()}: Loading image (id='{imageId}') with version tag = '{latestVersion}'") - self.loadNextImage(imageData=self.currentImageData, tag=latestVersion) - self.fillComboBoxLabelVersions(self.currentImageData) - - def processDataStoreRecords(self): - serverUrl: str = self.ui.comboBox_server_url.currentText - result: bool = self.logic.initMetaDataProcessing() - if result is False: - warningMessage = ( - "Request for datastore-info failed.\nPlease check if server address is correct \n('{}')!".format( - serverUrl - ) - ) - slicer.util.warningDisplay(warningMessage) - logging.warn(warningMessage) - return - logging.info(f"{self.getCurrentTime()}: Successfully processed all records in datastore.") - - def reloadOverallStatistic(self): - if self.reviewersModeIsActive: - self.processDataStoreRecords() - self.setProgessBar() - self.setProgressBarOfAll() - - def displayAdditionalMetaIfEdited(self, tag: str): - if tag == self.LABEL.FINAL or tag == self.LABEL.ORIGINAL: - self.ui.lineEdit_editor.hide() - self.ui.lineEdit_editing_date.hide() - self.ui.label_editor.hide() - self.ui.label_editing_date.hide() - else: - self.ui.lineEdit_editor.show() - self.ui.lineEdit_editing_date.show() - self.ui.label_editor.show() - self.ui.label_editing_date.show() - - def isBlank(self, string) -> bool: - return not (string and string.strip()) - - -class MONAILabelReviewerLogic(ScriptedLoadableModuleLogic): - """This class should implement all the actual - computation done by module. The interface - should be such that other python code can import - this class and make use of the functionality without - requiring an instance of the Widget. - Uses ScriptedLoadableModuleLogic base class, available at: - https://github.com/Slicer/Slicer/blob/main/Base/Python/slicer/ScriptedLoadableModule.py - """ - - def __init__(self): - """ - Called when the logic class is instantiated. Can be used for initializing member variables. - """ - ScriptedLoadableModuleLogic.__init__(self) - self.temp_dir = None - self.imageDataController: ImageDataController = ImageDataController() - - # Section: Server - def getServerUrl(self) -> str: - return self.imageDataController.getServerUrl() - - def getCurrentTime(self) -> datetime: - return datetime.datetime.now() - - def connectToMonaiServer(self, serverUrl: str) -> bool: - return self.imageDataController.connectToMonaiServer(serverUrl) - - def getMapIdToImageData(self) -> Dict[str, ImageData]: - """ - Returns dictionary (Dict[str:ImageData]) which maps id to Imagedata-object - """ - return self.imageDataController.getMapIdToImageData() - - def initMetaDataProcessing(self) -> bool: - return self.imageDataController.initMetaDataProcessing() - - def getStatistics(self) -> ImageDataStatistics: - return self.imageDataController.getStatistics() - - def getClientIds(self) -> List[str]: - return self.imageDataController.getClientIds() - - def getReviewers(self) -> List[str]: - return self.imageDataController.getReviewers() - - # Section: Loading images - def getAllImageData( - self, segmented: str, isNotSegmented: str, isApproved: bool, isFlagged: bool - ) -> List[ImageData]: - return self.imageDataController.getAllImageData(segmented, isNotSegmented, isApproved, isFlagged) - - def getImageDataByClientId(self, selectedClientId: str, isApproved: bool, isFlagged: bool) -> List[ImageData]: - return self.imageDataController.getImageDataByClientId(selectedClientId, isApproved, isFlagged) - - def getPercentageApproved(self, selectedClientId: str): - percentageApprovedOfClient, idxApprovedOfClient = self.imageDataController.getPercentageApproved( - selectedClientId - ) - return percentageApprovedOfClient, idxApprovedOfClient - - def getPercentageSemgmentedByClient(self, selectedClientId: str): - percentageSemgmentedByClient, idxSegmentedByClient = self.imageDataController.getPercentageSemgmentedByClient( - selectedClientId - ) - return percentageSemgmentedByClient, idxSegmentedByClient - - # Section: Search Image - def getMultImageDataByIds(self, idList: List[str]) -> Dict[str, ImageData]: - return self.imageDataController.getMultImageDataByIds(idList) - - def searchByAnnotatorReviewer( - self, selectedAnnotator: str, selectedReviewer: str, isApproved: bool, isFlagged: bool - ) -> Dict[str, ImageData]: - return self.imageDataController.searchByAnnotatorReviewer( - selectedAnnotator, selectedReviewer, isApproved, isFlagged - ) - - def searchByLevel(self, isEasy: bool, isMedium: bool, isHard: bool) -> Dict[str, ImageData]: - return self.imageDataController.getImageDataByLevel(isEasy=isEasy, isMedium=isMedium, isHard=isHard) - - def updateImageData( - self, imageData: ImageData, versionTag: str, status: str, level: str, approvedBy: str, comment: str - ) -> dict: - """ - update meta data in information box - Returns: jsonDict: json dictionary which contains updated meta data - """ - imageId = imageData.getName() - isEqual = imageData.isEqualSegmentationMeta( - tag=versionTag, status=status, level=level, approvedBy=approvedBy, comment=comment - ) - if isEqual: - logging.info(f"{self.getCurrentTime()}: No changes for image (id='{imageId}')") - return "" - - imageData.updateSegmentationMetaByVerionTag( - tag=versionTag, status=status, level=level, approvedBy=approvedBy, comment=comment - ) - jsonDict = imageData.getMetaByVersionTag(tag=versionTag) - - if jsonDict is None: - logging.info(f"{self.getCurrentTime()}: No update for Image (id='{imageId}')") - return "" - logging.info(f"{self.getCurrentTime()}: Successfully updated Image (id='{imageId}')") - return jsonDict - - # Section: Dicom stream - def updateLabelInfo( - self, imageData: ImageData, versionTag: str, status: str, level: str, approvedBy: str, comment: str - ): - imageId = imageData.getName() - updatedMetaJson = self.updateImageData(imageData, versionTag, status, level, approvedBy, comment) - if updatedMetaJson == "": - logging.info( - "{} : Image update (id='{}', version tag='{}') is empty".format( - self.getCurrentTime(), imageId, versionTag - ) - ) - return - - logging.info(f"{self.getCurrentTime()} : Image update (id='{imageId}', version tag='{versionTag}')") - logging.info(updatedMetaJson) - self.imageDataController.updateLabelInfoOfAllVersionTags( - imageData=imageData, versionTag=versionTag, level=level, updatedMetaJson=updatedMetaJson - ) - - def loadDicomAndSegmentation(self, imageData: ImageData, tag: str): - """ - Loads original Dicom image and Segmentation into slicer window - Parameters: - imageData (ImageData): Contains meta data (of dicom and segmenation) - which is required for rest request to monai server - in order to get dicom and segmenation (.nrrd). - """ - # Request dicom - image_name = imageData.getFileName() - image_id = imageData.getName() - node_name = imageData.getNodeName() - logging.info( - "{}: Request Data image_name='{}', node_name='{}', image_id='{}'".format( - self.getCurrentTime(), image_name, node_name, image_id - ) - ) - - self.requestDicomImage(image_id, image_name, node_name) - self.setTempFolderDir() - - # Request segmentation - if imageData.isSegemented(): - segmentationFileName = imageData.getSegmentationFileName() - img_blob = self.imageDataController.reuqestSegmentation(image_id, tag) - destination = self.storeSegmentation(img_blob, segmentationFileName, self.temp_dir.name) - self.displaySegmention(destination) - os.remove(destination) - logging.info(f"{self.getCurrentTime()}: Removed file at {destination}") - - def storeSegmentation( - self, response: requests.models.Response, segmentationFileName: str, tempDirectory: str - ) -> str: - """ - stores loaded segmenation temporarily in local directory - Parameters: - response (requests.models.Response): contains segmentation data - image_id (str): image id of segmentation - """ - segmentation = response.content - destination = self.getPathToStore(segmentationFileName, tempDirectory) - with open(destination, "wb") as img_file: - img_file.write(segmentation) - logging.info(f"{self.getCurrentTime()}: Image segmentation is stored temoparily in: {destination}") - return destination - - def getPathToStore(self, segmentationFileName: str, tempDirectory: str) -> str: - return tempDirectory + "/" + segmentationFileName - - def displaySegmention(self, destination: str): - """ - Displays the segmentation in slicer window - """ - slicer.util.loadSegmentation(destination) - - def requestDicomImage(self, image_id: str, image_name: str, node_name: str): - download_uri = self.imageDataController.getDicomDownloadUri(image_id) - SampleData.SampleDataLogic().downloadFromURL(nodeNames=node_name, fileNames=image_name, uris=download_uri) - - def setTempFolderDir(self): - """ - Create temporary dirctory to store the downloaded segmentation (.nrrd) - """ - if self.temp_dir is None: - self.temp_dir = tempfile.TemporaryDirectory() - logging.info(f"{self.getCurrentTime()}: Temporary Directory: '{self.temp_dir.name}'") - - def saveLabelInMonaiServer(self, imageData: ImageData, label_in: str, tag: str): - imageName = imageData.getName() - params = imageData.obtainUpdatedParams(tag) - self.imageDataController.saveLabelInMonaiServer(imageName, label_in, tag, params) - - def deleteLabelByVersionTag(self, imageData: ImageData, versionTag: str) -> bool: - imageId = imageData.getName() - imageData.deleteVersionName(versionTag) - successfullyDeleted: bool = self.imageDataController.deleteLabelByVersionTag(imageId, versionTag) - return successfullyDeleted - - -class MONAILabelReviewerTest(ScriptedLoadableModuleTest): - """ - This is the test case for your scripted module. - Uses ScriptedLoadableModuleTest base class, available at: - https://github.com/Slicer/Slicer/blob/main/Base/Python/slicer/ScriptedLoadableModule.py - """ - - def setUp(self): - """Do whatever is needed to reset the state - typically a scene clear will be enough.""" - slicer.mrmlScene.Clear() - - def runTest(self): - """Run as few or as many tests as needed here.""" - self.setUp() - self.test_MONAILabelReviewer1() - - def test_MONAILabelReviewer1(self): - """Ideally you should have several levels of tests. At the lowest level - tests should exercise the functionality of the logic with different inputs - (both valid and invalid). At higher levels your tests should emulate the - way the user would interact with your code and confirm that it still works - the way you intended. - One of the most important features of the tests is that it should alert other - developers when their changes will have an impact on the behavior of your - module. For example, if a developer removes a feature that you depend on, - your test should break so they know that the feature is needed. - """ - - self.delayDisplay("Starting the test") diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/DataStoreKeys.py b/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/DataStoreKeys.py deleted file mode 100644 index 5c38878..0000000 --- a/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/DataStoreKeys.py +++ /dev/null @@ -1,81 +0,0 @@ -# Copyright (c) MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from typing import List - - -class DataStoreKeys: - """ - DataStoreKeys contains arrays which represent the structure of datastore.json - That provides an overview of keys which are relevant for the access the key-value-pair - within json file. - Below please have a look on an example of such entry in datastore.json. - """ - - def __init__(self): - self.OBJECT = "objects" - self.FINAL = "final" - self.ORIGINAL = "original" - self.ANNOTATE = "annotate" - self.RANDOM = "Random" - self.INFO = "info" - self.LABEL_INFO = "label_info" - - self.IMAGE_INFO = ["image", "info"] - self.FILENAME = ["image", "info", "name"] - self.NODE_NAME = ["image", "info", "name"] - - self.TIMESTAMP = ["image", "info", "ts"] - self.TIMESTAMP_ANNOTATE = ["image", "info", "strategy", "annotate", "ts"] - self.TIMESTAMP_RANDOM = ["image", "info", "strategy", "Random", "ts"] - - self.STRATEGY = ["image", "info", "strategy"] - self.CLIENT_ID_BY_ANNOTATE = ["image", "info", "strategy", "annotate", "client_id"] - self.CLIENT_ID_BY_RANDOM = ["image", "info", "strategy", "Random", "client_id"] - self.CLIENT_ID = ["labels", "final", "info", "client_id"] - - self.LABELS = ["labels"] - self.LABELS_FINAL = ["labels", "final"] - self.LABELS_FINAL_INFO = ["labels", "final", "info"] - self.LABELS_INFO = ["labels", "original", "info", "label_info"] - self.LABELS_FINAL_INFO_LABELS_INFO = ["labels", "final", "info", "label_info"] - self.SEGMENTATION_NAME_BY_FINAL = ["labels", "final", "info", "name"] - self.SEGMENTATION_NAME_BY_ORIGINAL = ["labels", "original", "info", "name"] - - # Additional entries in json file which contains meta data - self.META = "segmentationMeta" - self.META_STATUS = "status" - self.META_LEVEL = "level" - self.APPROVED_BY = "approvedBy" - - self.META_EDIT_TIME = "editTime" - self.META_COMMENT = "comment" - - def getMeta(self, key: str, label: str) -> List[str]: - return ["labels"] + [label] + ["info", "segmentationMeta"] + [key] - - def getMetaStatus(self, label: str): - return self.getMeta(key=self.META_STATUS, label=label) - - def getMetaLevel(self, label: str): - return self.getMeta(key=self.META_LEVEL, label=label) - - def getMetaApprovedBy(self, label: str): - return self.getMeta(key=self.APPROVED_BY, label=label) - - def getMetaEditTime(self, label: str): - return self.getMeta(key=self.META_EDIT_TIME, label=label) - - def getMetaComment(self, label: str): - return self.getMeta(key=self.META_COMMENT, label=label) - - def getInfoInLabels(self, label: str): - return ["labels"] + [label] + ["info"] diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/ImageData.py b/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/ImageData.py deleted file mode 100644 index 895c396..0000000 --- a/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/ImageData.py +++ /dev/null @@ -1,422 +0,0 @@ -# Copyright (c) MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import logging -from datetime import datetime -from typing import Dict, List - -from MONAILabelReviewerLib.MONAILabelReviewerEnum import SegStatus -from MONAILabelReviewerLib.SegmentationMeta import SegmentationMeta - - -class ImageData: - """ - ImageData is a container for each segmentation/image. - Such ImageData contains the meta data of corresponding segmentation/image (e.g. fileName, checkSum, comment, etc.) - Each change (regarding the review process) will be monitored within ImageData. - Once a user select the next segmentation during review the information in ImageData will be send to MONAI-Server in order - to persist the data in datastore_v2.json file. - - """ - - def __init__(self, name, fileName, nodeName, segmented, timeStamp, comment=""): - self.name: str = name # equals imageId - self.fileName: str = fileName - self.nodeName: str = nodeName - self.segmented: bool = segmented - self.timeStamp: int = timeStamp - self.comment: str = comment - - self.versionNames: List[str] = [] # equals to labelNames - self.labelContent: dict = {} - """ - example of 'labelContent' - "label_info": [ - { - "name": "Lung", - "idx": 1 - }, - { - "name": "Heart", - "idx": 2 - }, - { - "name": "Trachea", - "idx": 3 - }, - { - "name": "Mediastinum", - "idx": 4 - }, - { - "name": "Clavicle", - "idx": 5 - } - ], - """ - self.segmentationMetaDict: Dict[str, SegmentationMeta] = {} - - self.STATUS = SegStatus() - - self.client_id: str = None - self.segmentationFileName: str = None - self.tempDirectory: str = None - self.prefixVersion = "version_" - self.FINAL = "final" - self.ORIGIN = "origin" - - def setVersionNames(self, versionNames: List[str]): - self.versionNames: List[str] = versionNames - - def setLabelContent(self, labelContent: dict): - self.labelContent: dict = labelContent - - def setSegmentationMetaDict(self, segmentationMetaDict: Dict[str, SegmentationMeta]): - self.segmentationMetaDict = segmentationMetaDict - - def getName(self) -> str: - return self.name - - def getFileName(self) -> str: - return self.fileName - - def getNodeName(self) -> str: - return self.nodeName - - def getsegmentationMetaDict(self) -> dict: - return self.segmentationMetaDict - - def getClientId(self, versionTag="final") -> str: - return self.client_id - - def getTimeStamp(self) -> int: - return self.timeStamp - - def formatTimeStamp(self, timeStamp) -> str: - if type(timeStamp) == str: - return timeStamp - return str(datetime.fromtimestamp(timeStamp)) - - def getTimeOfAnnotation(self) -> str: - return self.formatTimeStamp(self.timeStamp) - - def getTimeOfEditing(self, versionTag="final"): - if self.isSegemented() is False or self.hasSegmentationMeta(tag=versionTag) is False: - return "" - - segmentationMeta = self.getSegmentationMetaByVersionTag(tag=versionTag) - if segmentationMeta is None: - return "" - - formattedTime = self.formatTimeStamp(segmentationMeta.getEditTime()) - return formattedTime - - def isSegemented(self) -> bool: - return self.segmented - - def getLabelContent(self) -> dict: - return self.labelContent - - def getComment(self, versionTag="final") -> str: - if self.isSegemented() is False or self.hasSegmentationMeta(tag=versionTag) is False: - return "" - - segmentationMeta = self.getSegmentationMetaByVersionTag(tag=versionTag) - if segmentationMeta is None: - return "" - - return segmentationMeta.getComment() - - def getSegmentationMetaDict(self) -> dict: - return self.segmentationMetaDict - - def getStatus(self, versionTag="final") -> str: - if self.isSegemented() is False: - return self.STATUS.NOT_SEGMENTED - - segmentationMeta = self.getSegmentationMetaByVersionTag(tag=versionTag) - if segmentationMeta is None: - return "" - - return segmentationMeta.getStatus() - - def getApprovedBy(self, versionTag="final") -> str: - if self.isSegemented() is False or self.hasSegmentationMeta(tag=versionTag) is False: - return "" - - segmentationMeta = self.getSegmentationMetaByVersionTag(tag=versionTag) - if segmentationMeta is None: - return "" - - return segmentationMeta.getApprovedBy() - - def isApprovedVersion(self, versionTag="final") -> bool: - if self.isSegemented() is False or self.hasSegmentationMeta(tag=versionTag) is False: - return False - - segmentationMeta = self.getSegmentationMetaByVersionTag(tag=versionTag) - if segmentationMeta is None: - return False - - status = segmentationMeta.getStatus() - if status == self.STATUS.APPROVED: - return True - - return False - - def isApproved(self, versionTag="final") -> bool: - if self.isSegemented() is False: - return False - - for segmentationMeta in self.segmentationMetaDict.values(): - status = segmentationMeta.getStatus() - if status == self.STATUS.APPROVED: - return True - return False - - def isFlagged(self, versionTag="final") -> bool: - if self.isSegemented() is False or self.hasSegmentationMeta(tag=versionTag) is False: - return False - - segmentationMeta = self.getSegmentationMetaByVersionTag(tag=versionTag) - if segmentationMeta is None: - return False - - status = segmentationMeta.getStatus() - if status == self.STATUS.FLAGGED: - return True - - return False - - def getLevel(self, versionTag="final") -> str: - if self.isSegemented() is False or self.hasSegmentationMeta(tag=versionTag) is False: - return "" - - segmentationMeta = self.getSegmentationMetaByVersionTag(tag=versionTag) - if segmentationMeta is None: - return "" - return segmentationMeta.getLevel() - - def setSegmentationFileName(self, fileName: str): - self.segmentationFileName = fileName - - def getSegmentationFileName(self) -> str: - return self.segmentationFileName - - def setClientId(self, client_id: str): - self.client_id = client_id - - def addNewSegmentationMeta(self, tag: str, status: str, level: str, approvedBy: str, comment: str): - segmentationMeta = SegmentationMeta() - segmentationMeta.build(status=status, level=level, approvedBy=approvedBy, comment=comment, editTime="") - segmentationMeta.setVersionNumber(versionTag=tag) - self.segmentationMetaDict[tag] = segmentationMeta - - def getSegmentationMetaByVersionTag(self, tag: str): - if tag not in self.segmentationMetaDict: - return None - return self.segmentationMetaDict[tag] - - def isEqualSegmentationMeta(self, tag: str, status: str, level: str, approvedBy: str, comment: str) -> bool: - segmentationMeta = self.getSegmentationMetaByVersionTag(tag) - if ( - segmentationMeta is None - and self.isBlank(status) - and self.isBlank(level) - and self.isBlank(approvedBy) - and self.isBlank(comment) - ): - return True - - if segmentationMeta is None: - self.addNewSegmentationMeta(tag, status, level, approvedBy, comment) - return False - - return segmentationMeta.isEqual(status=status, level=level, approvedBy=approvedBy, comment=comment) - - def isBlank(self, string) -> bool: - return not (string and string.strip()) - - def getMetaByVersionTag(self, tag: str) -> dict: - if tag not in self.segmentationMetaDict: - return {} - segmentationMeta = self.getSegmentationMetaByVersionTag(tag) - return segmentationMeta.getMeta() - - def hasSegmentationMeta(self, tag="final") -> bool: - segmentationMeta = self.getSegmentationMetaByVersionTag(tag=tag) - if segmentationMeta is None: - return False - return True - - def addSegementationMetaByVersionTag(self, tag="", status="", level="", approvedBy="", comment=""): - segmentationMeta = SegmentationMeta() - segmentationMeta.build(status=status, level=level, approvedBy=approvedBy, comment=comment) - segmentationMeta.setVersionNumber(versionTag=tag) - self.segmentationMetaDict[tag] = segmentationMeta - - def getSegementationMetaByVersionTag(self, tag: str) -> SegmentationMeta: - if self.isBlank(tag): - return None - if tag not in self.segmentationMetaDict.keys(): - return None - return self.segmentationMetaDict[tag] - - def obtainUpdatedParams(self, tag: str) -> dict: - params = self.labelContent.copy() - segementationMeta = self.getSegementationMetaByVersionTag(tag=tag) - if segementationMeta is None: - return params - segementationMeta.setEditTime() - metaData = segementationMeta.getMeta() - if len(metaData) > 0: - params["segmentationMeta"] = metaData["segmentationMeta"] - return params - - def updateSegmentationMetaByVerionTag(self, tag="", status="", level="", approvedBy="", comment="") -> bool: - if self.isBlank(tag): - return False - segmentationMeta = self.getSegementationMetaByVersionTag(tag=tag) - if segmentationMeta is None: - segmentationMeta = SegmentationMeta() - segmentationMeta.build(status=status, level=level, approvedBy=approvedBy, comment=comment) - segmentationMeta.setVersionNumber(versionTag=tag) - else: - segmentationMeta.update(status=status, level=level, approvedBy=approvedBy, comment=comment) - segmentationMeta.setEditTime() - self.segmentationMetaDict[tag] = segmentationMeta - - return True - - def updateApprovedStatusOfOtherThanSubjectedVersion( - self, subjectedTag: str, difficultyLevel: str - ) -> Dict[str, dict]: - tagToSegmentationMetaJson = {} - for tag, segmentationMeta in self.segmentationMetaDict.items(): - if subjectedTag == tag: - continue - - updated = False - if segmentationMeta.getStatus() == self.STATUS.APPROVED: - segmentationMeta.setStatus("") - updated = True - - if segmentationMeta.getLevel != difficultyLevel: - segmentationMeta.setLevel(difficultyLevel) - updated = True - - if updated: - self.segmentationMetaDict[tag] = segmentationMeta - tagToSegmentationMetaJson[tag] = segmentationMeta.getMeta() - return tagToSegmentationMetaJson - - def getApprovedVersionTagElseReturnLatestVersion(self) -> str: - latest = 0 - latestVersion = "" - - if len(self.segmentationMetaDict) == 1: - return [*self.segmentationMetaDict.keys()][0] - - for tag, segmentationMeta in self.segmentationMetaDict.items(): - if segmentationMeta.getStatus() == self.STATUS.APPROVED: - return tag - - version = segmentationMeta.getVersionNumber() - - if latest < version: - latest = version - latestVersion = tag - - return latestVersion - - # methods dealing with versions - - def getLatestVersionTag(self) -> str: - if len(self.versionNames) == 0: - return "" - return self.versionNames[len(self.versionNames) - 1] - - def getOldestVersion(self) -> str: - if len(self.versionNames) == 0: - return "" - return self.versionNames[0] - - def getNewVersionName(self) -> str: - subsequentIndex = self.obtainSubsequentIndexFromVersionName(self.versionNames) - newVersionName = self.obtainNextVersionName(subsequentIndex) - self.versionNames.append(newVersionName) - return newVersionName - - def getNumberOfVersions(self) -> int: - return len(self.versionNames) - - def getVersionName(self, version: int) -> str: - if version >= len(self.versionNames): - return "" - - return self.versionNames[version] - - def hasVersionTag(self, versionTag: str): - return versionTag in self.versionNames - - def getVersionNames(self) -> List[str]: - return self.versionNames - - def obtainNextVersionName(self, index: int) -> str: - return self.prefixVersion + str(index) - - def deleteVersionName(self, versionTag: str): - if versionTag not in self.versionNames: - return - - self.versionNames.remove(versionTag) - - if versionTag in self.segmentationMetaDict.items(): - self.segmentationMetaDict.pop(versionTag) - - def obtainSubsequentIndexFromVersionName(self, versionNames) -> int: - if len(versionNames) == 0: - return 1 - lastVersionTag = versionNames[len(versionNames) - 1] - if lastVersionTag == self.FINAL or lastVersionTag == self.ORIGIN: - return 1 - try: - indexOfDelimeter = lastVersionTag.index("_") - except BaseException: - exceptionIndex = len(versionNames) + 100 - logging.info( - f"Version name is incorrect. Format should be like 'version_1' but was {lastVersionTag}. " - f"Hence, following id will be used {exceptionIndex}." - ) - return exceptionIndex - - lastCharIndex = len(lastVersionTag) - versionTagIndex = lastVersionTag[indexOfDelimeter + 1 : lastCharIndex] - return int(versionTagIndex) + 1 - - def display(self): - print("name: ", self.name) - print("fileName: ", self.fileName) - print("nodeName: ", self.nodeName) - print("isSegmented: ", self.segmented) - print("getTimeStamp: ", self.getTimeOfAnnotation()) - print("=== Version labels ====") - for version in self.versionNames: - print("version: ", version) - if self.isSegemented(): - print("Client Id: ", self.client_id) - print("segmentationFileName: ", self.segmentationFileName) - print("=== Segmentation Meta ====") - - if self.hasSegmentationMeta(): - for k, segmentationMeta in self.segmentationMetaDict.items(): - print("version: ", k) - segmentationMeta.display() diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/ImageDataController.py b/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/ImageDataController.py deleted file mode 100644 index a027fc5..0000000 --- a/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/ImageDataController.py +++ /dev/null @@ -1,247 +0,0 @@ -# Copyright (c) MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import datetime -import logging -from typing import Dict, List - -import requests -from MONAILabelReviewerLib.ImageData import ImageData -from MONAILabelReviewerLib.ImageDataExtractor import ImageDataExtractor -from MONAILabelReviewerLib.ImageDataStatistics import ImageDataStatistics -from MONAILabelReviewerLib.JsonParser import JsonParser -from MONAILabelReviewerLib.MonaiServerREST import MonaiServerREST - - -class ImageDataController: - """ - ImageDataController manages all data processing and data transactions via - - 1. MonaiServerREST (requests and peristency of meta data, image data, segmentation data from monai server) - 2. ImageDataExtractor (handling of logical operations coming from set of imageData) - 3. JsonParser (parsing information from datastore_v2.json) - 4. ImageData (container which caches information of single image and corresponding segmenation information and meta data) - - content of meta data: - 1. "status" (flagged or approved) - 2. "approvedBy" (name of reviewer) - 3. "level" (level of difficulty of segmentation: easy, medium, hard) - 4. "comment" (any comment on image and segmenation) - 5. "editTime" - - list of meta information can be extanded - - """ - - def __init__(self): - self.monaiServerREST: MonaiServerREST = None - self.imageDataExtractor: ImageDataExtractor = None - self.temp_dir = None - - def getCurrentTime(self) -> datetime: - return datetime.datetime.now() - - # ImageDataExtractor methods - - def initMetaDataProcessing(self) -> bool: - """ - Passes mapIdToImageData to ImageDataExtractor object in order to process the meta information - for each imageData - - returns True if it was successful - else False - """ - mapIdToImageData = self.getMapIdToImageData() - if mapIdToImageData is None: - return False - self.imageDataExtractor = ImageDataExtractor(mapIdToImageData) - self.imageDataExtractor.init() - return True - - # returns only client id of those images which are segemented - def getClientIds(self) -> List[str]: - return self.imageDataExtractor.getClientIds() - - def getReviewers(self) -> List[str]: - return self.imageDataExtractor.getReviewers() - - def getStatistics(self) -> ImageDataStatistics: - """ - returns a map which contains statistical values which are comming from ImageDataExtractor object - """ - statistics = ImageDataStatistics() - - statistics.build( - segmentationProgress=self.imageDataExtractor.getSegmentationProgessInPercentage(), - idxTotalSegmented=self.imageDataExtractor.getSegmentationVsTotalStr(), - idxTotalApproved=self.imageDataExtractor.getApprovalVsTotal(), - progressPercentage=self.imageDataExtractor.getApprovalProgressInPercentage(), - segmentationProgressAllPercentage=self.imageDataExtractor.getSegmentationProgessInPercentage(), - approvalProgressPercentage=self.imageDataExtractor.getApprovalProgressInPercentage(), - ) - - return statistics - - # Section: Loading images - def getAllImageData(self, segmented, isNotSegmented, isApproved, isFlagged) -> List[ImageData]: - return self.imageDataExtractor.getAllImageData( - segmented=segmented, notSegmented=isNotSegmented, approved=isApproved, flagged=isFlagged - ) - - def getImageDataByClientId(self, selectedClientId, isApproved, isFlagged) -> List[ImageData]: - return self.imageDataExtractor.getImageDataByClientId( - clientId=selectedClientId, approved=isApproved, flagged=isFlagged - ) - - def getPercentageApproved(self, selectedClientId): - percentageApprovedOfClient, idxApprovedOfClient = self.imageDataExtractor.getPercentageApproved( - selectedClientId - ) - return percentageApprovedOfClient, idxApprovedOfClient - - def getPercentageSemgmentedByClient(self, selectedClientId): - percentageSemgmentedByClient, idxSegmentedByClient = self.imageDataExtractor.getPercentageSemgmentedByClient( - selectedClientId - ) - return percentageSemgmentedByClient, idxSegmentedByClient - - # Section: Search Image - def getMultImageDataByIds(self, imageIds) -> Dict[str, ImageData]: - return self.imageDataExtractor.getMultImageDataByIds(imageIds) - - def searchByAnnotatorReviewer( - self, selectedAnnotator: str, selectedReviewer: str, isApproved: bool, isFlagged: bool - ) -> Dict[str, ImageData]: - """ - returns set of imageData (imageId mapped to ImageData) according to given filter options - """ - idToImageData: Dict[str, ImageData] = {} - imageIdsOfAnnotator = None - if selectedAnnotator == "All" and selectedReviewer != "All": - imageIdsOfAnnotator = self.imageDataExtractor.getImageDataByReviewer( - selectedReviewer, isApproved, isFlagged - ) - - if selectedAnnotator != "All" and selectedReviewer == "All": - imageIdsOfAnnotator = self.imageDataExtractor.getImageDataByClientId( - selectedAnnotator, isApproved, isFlagged - ) - - if selectedReviewer == "All" and selectedAnnotator == "All": - imageIdsOfAnnotator = self.imageDataExtractor.getAllImageData( - segmented=True, notSegmented=False, approved=isApproved, flagged=isFlagged - ) - - if selectedReviewer != "All" and selectedAnnotator != "All": - imageIdsOfAnnotator = self.imageDataExtractor.getImageDataByClientAndReviewer( - selectedAnnotator, selectedReviewer, isApproved, isFlagged - ) - - if imageIdsOfAnnotator is None: - return idToImageData - - for imageData in imageIdsOfAnnotator: - idToImageData[imageData.getName()] = imageData - - return idToImageData - - def getImageDataByLevel(self, isEasy: bool, isMedium: bool, isHard: bool) -> Dict[str, ImageData]: - """ - returns set of imageData (imageId mapped to ImageData) according to given level of difficulty - """ - imageIdsOfAnnotator = self.imageDataExtractor.getImageDataByLevel( - isEasy=isEasy, isMedium=isMedium, isHard=isHard - ) - return imageIdsOfAnnotator - - # MONAI server methods - - def getServerUrl(self) -> str: - return self.monaiServerREST.getServerUrl() - - def setMonaiServer(self, serverUrl: str): - self.monaiServerREST = MonaiServerREST(serverUrl) - - def connectToMonaiServer(self, serverUrl: str) -> bool: - self.setMonaiServer(serverUrl) - return self.monaiServerREST.checkServerConnection() - - def getMapIdToImageData(self) -> Dict[str, ImageData]: - """ - Returns dictionary (Dict[str:ImageData]) which maps id to Imagedata-object - """ - jsonObj = self.monaiServerREST.requestDataStoreInfo() - if jsonObj is None: - return None - - # Parse json file to ImageData object - jsonParser = JsonParser(jsonObj) - jsonParser.init() - mapIdToImageData = jsonParser.getMapIdToImageData() - return mapIdToImageData - - # Section: Dicom stream - def updateLabelInfoOfAllVersionTags( - self, imageData: ImageData, versionTag: str, level: str, updatedMetaJson: dict - ) -> bool: - imageId = imageData.getName() - self.updateLabelInfo(imageId, versionTag, updatedMetaJson) - - tagToSegmentationMetaJson = imageData.updateApprovedStatusOfOtherThanSubjectedVersion( - subjectedTag=versionTag, difficultyLevel=level - ) - for tag, segmentationMetaJson in tagToSegmentationMetaJson.items(): - self.updateLabelInfo(imageId, tag, segmentationMetaJson) - - def updateLabelInfo(self, imageId, versionTag, updatedMetaJson) -> bool: - """ - sends meta information via http request to monai server - in order to perist the information in datastore_v2.json file - - returns True if successfully sent http request - else False - """ - repsonseCode = self.monaiServerREST.updateLabelInfo(image_id=imageId, tag=versionTag, params=updatedMetaJson) - if repsonseCode == 200: - logging.info(f"{self.getCurrentTime()}: Successfully persist meta data for image (id='{imageId}')") - return True - else: - logging.info( - "{}: Failed meta date persistence for image (id='{}', response code = '{}')".format( - self.getCurrentTime(), imageId, repsonseCode - ) - ) - return False - - def reuqestSegmentation(self, image_id: str, tag: str) -> requests.models.Response: - """ - after sending request to monai server - rerturns response body (img_blob) which contains the segmentation data - """ - img_blob = self.monaiServerREST.requestSegmentation(image_id, tag) - logging.info( - "{}: Segmentation successfully requested from MONAIServer (image id: {})".format( - self.getCurrentTime(), image_id - ) - ) - return img_blob - - def getDicomDownloadUri(self, image_id: str) -> str: - return self.monaiServerREST.getDicomDownloadUri(image_id) - - def saveLabelInMonaiServer(self, image_in: str, label_in: str, tag: str, params: Dict): - self.monaiServerREST.saveLabel(image_in, label_in, tag, params) - - def deleteLabelByVersionTag(self, imageId: str, versionTag: str) -> bool: - reponseCode = self.monaiServerREST.deleteLabelByVersionTag(imageId, versionTag) - if reponseCode == 200: - return True - return False diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/ImageDataExtractor.py b/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/ImageDataExtractor.py deleted file mode 100644 index aae2d41..0000000 --- a/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/ImageDataExtractor.py +++ /dev/null @@ -1,378 +0,0 @@ -# Copyright (c) MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import datetime -import logging -from typing import Dict, List - -from MONAILabelReviewerLib.ImageData import ImageData -from MONAILabelReviewerLib.MONAILabelReviewerEnum import Level - - -class ImageDataExtractor: - """ - ImageDataExtractor gets dictionary (mapping from id to ImageData from JsonParser) and caches - Mapping: - - imageIds TO ImageData, - - client TO list of imageIds - List: - - imageIds of all images which are not segemented yet - - imageIds of all images which are approved - - all reviewers - - Each modification during review process will be stored in corresponding ImageData - ImageDataExtractor provides the meta data across all ImageData-Containers when the user selects the filter option - """ - - def __init__(self, nameToImageData: dict): - self.LEVEL = Level() - self.nameToImageData: Dict[str, ImageData] = nameToImageData - - self.clientToImageIds: Dict[str, list] = {} - self.idsOfNotSegmented: List[str] = [] - self.idsOfApprovedSementations: List[str] = [] - self.reviewers: List[str] = [] - - def init(self): - self.groupImageDataByClientId() - self.extractAllReviewers() - self.extractNotSegmentedImageIds() - - def getCurrentTime(self) -> datetime: - return datetime.datetime.now() - - def groupImageDataByClientId(self): - for imageId, imageData in self.nameToImageData.items(): - if imageData.isSegemented(): - clientId = imageData.getClientId() - if clientId: - if clientId not in self.clientToImageIds: - self.clientToImageIds[clientId] = [] - self.clientToImageIds[clientId].append(imageId) - - def extractAllReviewers(self): - for imageData in self.nameToImageData.values(): - if imageData.isSegemented(): - reviewer = imageData.getApprovedBy() - if reviewer not in self.reviewers and reviewer != "": - self.reviewers.append(reviewer) - - def extractNotSegmentedImageIds(self): - for imageId, imageData in self.nameToImageData.items(): - if imageData.isSegemented() is False: - self.idsOfNotSegmented.append(imageId) - - def getTotalNumImages(self) -> int: - return len(self.nameToImageData) - - def getImageDataIds(self) -> List[str]: - return [*self.nameToImageData.keys()] - - def getClientIds(self) -> List[str]: - return [*self.clientToImageIds.keys()] - - def getReviewers(self) -> List[str]: - return self.reviewers - - def getImageDataNotsegmented(self) -> List[ImageData]: - """ - returns list of ImageData of corresponingd image studies wich has not been segemeted - """ - notSegmented = [] - for id in self.idsOfNotSegmented: - imageData = self.nameToImageData[id] - notSegmented.append(imageData) - return notSegmented - - def getNumOfNotSegmented(self) -> int: - return len(self.idsOfNotSegmented) - - def getNumOfSegmented(self) -> int: - count = 0 - for idList in self.clientToImageIds.values(): - count += len(idList) - return count - - def getSegmentationProgessInPercentage(self) -> int: - """ - returns percentage of already segmented images out of all available images - """ - segmentedCount = self.getNumOfSegmented() - float_Num = segmentedCount / self.getTotalNumImages() - return int(float_Num * 100) - - def getSegmentationVsTotalStr(self) -> str: - """ - returns the index of subjected imageData within imageData data set - """ - segmentedCount = self.getNumOfSegmented() - idxTotalSegmented = f"{segmentedCount}/{self.getTotalNumImages()}" - return idxTotalSegmented - - def getApprovalProgressInPercentage(self) -> int: - """ - returns percentage of already approved imageData out of all available imageData - """ - approvalCount = self.getNumApprovedSegmentation() - fraction = approvalCount / self.getTotalNumImages() - return int(fraction * 100) - - def getApprovalVsTotal(self) -> str: - approvalCount = self.getNumApprovedSegmentation() - idxTotalApproved = f"{approvalCount}/{self.getTotalNumImages()}" - return idxTotalApproved - - def invalidFilterCombination(self, segmented: bool, notSegmented: bool, approved: bool, flagged: bool) -> bool: - return ( - (notSegmented is True and segmented is True) - or (approved is True and flagged is True) - or (notSegmented is True and approved is True) - or (notSegmented is True and flagged is True) - ) - - def getAllImageData(self, segmented=False, notSegmented=False, approved=False, flagged=False) -> List[ImageData]: - """ - returns fitered list of imageData which are filtered according to input parameters - """ - if self.invalidFilterCombination(segmented, notSegmented, approved, flagged): - logging.warning( - f"{self.getCurrentTime()}: Selected filter options are not valid: segmented='{segmented}' | " - f"notSegmented='{notSegmented}' | approved='{approved}' | flagged='{flagged}')" - ) - return None - - if notSegmented is False and segmented is False and approved is False and flagged is False: - return [*self.nameToImageData.values()] - - selectedImageData = [] - for imagedata in self.nameToImageData.values(): - if notSegmented is True and segmented is False and imagedata.isSegemented() is False: - selectedImageData.append(imagedata) - continue - - if imagedata.isSegemented() is segmented and imagedata.isApproved() is True and approved is True: - selectedImageData.append(imagedata) - continue - - if ( - imagedata.isSegemented() is segmented - # and imagedata.isApproved() is approved - and imagedata.isFlagged() is True - and flagged is True - ): - selectedImageData.append(imagedata) - continue - - return selectedImageData - - def getImageDataByClientId(self, clientId: str, approved=False, flagged=False) -> List[ImageData]: - """ - returns fitered list of imageData which are filtered according to client (=annotator) and parameters (approved, flagged) - """ - if clientId == "": - return None - if approved and flagged: - logging.warning( - "{}: Selected filter options are not valid: approved='{}' and flagged='{}')".format( - self.getCurrentTime(), approved, flagged - ) - ) - return None - - imageIds = self.clientToImageIds[clientId] - - if approved is False and flagged is False: - return self.extractImageDataByIds(imageIds) - else: - return self.extractImageDataByApprovedAndFlaggedStatus(clientId, approved, flagged, imageIds) - - def extractImageDataByIds(self, imageIds: List[str]) -> List[ImageData]: - imageDataList = [] - for id in imageIds: - imageData = self.nameToImageData[id] - imageDataList.append(imageData) - return imageDataList - - def extractImageDataByApprovedAndFlaggedStatus( - self, clientId: str, approved: bool, flagged: bool, imageIds: List[str] - ) -> List[ImageData]: - imageDataList = [] - for id in imageIds: - if id not in self.nameToImageData: - logging.error( - "{}: Image data [id = {}] not found for [clientId = {}] ".format( - self.getCurrentTime(), id, clientId - ) - ) - continue - imageData = self.nameToImageData[id] - if imageData.hasSegmentationMeta() is False: - continue - if approved and imageData.isApproved() is False: - continue - if flagged and imageData.isFlagged() is False: - continue - - imageDataList.append(imageData) - return imageDataList - - def getImageDataByClientAndReviewer( - self, clientId: str, reviewerId: str, approved=False, flagged=False - ) -> List[ImageData]: - """ - returns fitered list of imageData which are filtered according to client (=annotator) and - reviewer and parameters (approved, flagged) - """ - - imageDatas = self.getImageDataByClientId(clientId, approved, flagged) - filteredByRewiewer = list(filter(lambda imageData: (imageData.getApprovedBy() == reviewerId), imageDatas)) - return filteredByRewiewer - - def getImageDataByReviewer(self, reviewerId: str, approved=False, flagged=False) -> List[ImageData]: - if reviewerId == "": - return None - if approved and flagged: - logging.warning( - "{}: Selected filter options are not valid: approved='{}' and flagged='{}')".format( - self.getCurrentTime(), approved, flagged - ) - ) - return None - - filteredImageDataList = [] - - for imageData in self.nameToImageData.values(): - if imageData.isSegemented() is False: - continue - if approved and imageData.isApproved() is False: - continue - if flagged and imageData.isFlagged() is False: - continue - if imageData.getApprovedBy() == reviewerId: - filteredImageDataList.append(imageData) - - return filteredImageDataList - - def getImageDataByLevel(self, isEasy: bool, isMedium: bool, isHard: bool) -> Dict[str, ImageData]: - """ - returns filtered list of imageData which are filtered according to level of difficulty - (regarding segmentation): easy, medium, hard - """ - filteredImageData = {} - for id, imagedata in self.nameToImageData.items(): - if imagedata is None: - continue - if imagedata.isSegemented() is False: - continue - if isEasy and imagedata.getLevel() == self.LEVEL.EASY: - filteredImageData[id] = imagedata - continue - - if isMedium and imagedata.getLevel() == self.LEVEL.MEDIUM: - filteredImageData[id] = imagedata - continue - - if isHard and imagedata.getLevel() == self.LEVEL.HARD: - filteredImageData[id] = imagedata - return filteredImageData - - def getSingleImageDataById(self, imageId: str) -> ImageData: - """ - returns imageData by given imageId - """ - if self.isBlank(imageId): - return None - if imageId not in self.nameToImageData: - logging.warning(f"{self.getCurrentTime()}: Image data for requested id [{imageId}] not found") - return None - return self.nameToImageData[imageId] - - def getMultImageDataByIds(self, ids: List[str]) -> Dict[str, ImageData]: - """ - returns multiple imageData by given list of imageId - """ - idToimageData: Dict[str, ImageData] = {} - if len(ids) == 0: - logging.warning(f"{self.getCurrentTime()}: Given id list is empty.") - return {} - for id in ids: - imageData = self.getSingleImageDataById(id) - if imageData is None: - continue - idToimageData[imageData.getName()] = imageData - return idToimageData - - def getNumApprovedSegmentation(self) -> int: - """ - returns total number of imageData which are approved - """ - count = self.countApprovedSegmentation(self.nameToImageData.values()) - return count - - def countApprovedSegmentation(self, imageDatas: List[ImageData]) -> int: - if imageDatas is None: - return 0 - approvedCount = 0 - for imageData in imageDatas: - if imageData is None: - continue - if imageData.isApproved(): - approvedCount += 1 - return approvedCount - - def getPercentageApproved(self, clientId: str): - """ - returns the percentage of images that have already been approved by given client (=Annotator) - and the value: (total number of images approved by given client (=Annotator))/(total number of imageData) - """ - listImageData = self.getImageDataByClientId(clientId=clientId) - approvedCount = self.countApprovedSegmentation(listImageData) - if len(listImageData) == 0: - logging.warning(f"{self.getCurrentTime()}: There are no images") - return 0 - fraction = approvedCount / len(listImageData) - precentage = int(fraction * 100) - idxApprovedOfClient: str = f"{approvedCount}/{len(listImageData)}" - return precentage, idxApprovedOfClient - - def getPercentageSemgmentedByClient(self, clientId: str): - """ - returns the percentage of images that have already been segmented by given client (=Annotator) - and the value: (total number of images segmented by given client (=Annotator))/(total number of imageData) - """ - numSegementedByClient = len(self.clientToImageIds[clientId]) - fraction = numSegementedByClient / self.getTotalNumImages() - precentage = int(fraction * 100) - idxSegmentedByClient: str = f"{numSegementedByClient}/{self.getTotalNumImages()}" - return precentage, idxSegmentedByClient - - def getApprovedSegmentationIds(self) -> List[str]: - """ - returns list of ids of all approved imageData - """ - idsOfApprovedSementations = [] - for imageId, imageData in self.nameToImageData.items(): - if imageData.isApproved(): - idsOfApprovedSementations.append(imageId) - return idsOfApprovedSementations - - def getSegmentedImageIds(self) -> List[str]: - """ - returns list of ids of all segmented imageData - """ - idsOfSegmented = [] - for imageId, imageData in self.nameToImageData.items(): - if imageData.isSegemented(): - idsOfSegmented.append(imageId) - return idsOfSegmented - - def isBlank(self, string) -> bool: - return not (string and string.strip()) diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/ImageDataStatistics.py b/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/ImageDataStatistics.py deleted file mode 100644 index 423584a..0000000 --- a/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/ImageDataStatistics.py +++ /dev/null @@ -1,55 +0,0 @@ -# Copyright (c) MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - - -class ImageDataStatistics: - def __init__(self): - self.segmentationProgress: int = 0 - self.idxTotalSegmented: str = "" - self.idxTotalApproved: str = "" - self.progressPercentage: int = 0 - - self.segmentationProgressAllPercentage: int = 0 - self.approvalProgressPercentage: int = 0 - - def build( - self, - segmentationProgress=0, - idxTotalSegmented="", - idxTotalApproved="", - progressPercentage=0, - segmentationProgressAllPercentage=0, - approvalProgressPercentage=0, - ): - self.segmentationProgress = segmentationProgress - self.idxTotalSegmented = idxTotalSegmented - self.idxTotalApproved = idxTotalApproved - self.progressPercentage = progressPercentage - self.segmentationProgressAllPercentage = segmentationProgressAllPercentage - self.approvalProgressPercentage = approvalProgressPercentage - - def getSegmentationProgress(self) -> int: - return self.segmentationProgress - - def getIdxTotalSegmented(self) -> str: - return self.idxTotalSegmented - - def getIdxTotalApproved(self) -> str: - return self.idxTotalApproved - - def getProgressPercentage(self) -> int: - return self.progressPercentage - - def getSegmentationProgressAllPercentage(self) -> int: - return self.segmentationProgressAllPercentage - - def getApprovalProgressPercentage(self) -> int: - return self.approvalProgressPercentage diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/JsonParser.py b/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/JsonParser.py deleted file mode 100644 index 4b4a976..0000000 --- a/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/JsonParser.py +++ /dev/null @@ -1,240 +0,0 @@ -# Copyright (c) MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from typing import Dict, List - -from MONAILabelReviewerLib.DataStoreKeys import DataStoreKeys -from MONAILabelReviewerLib.ImageData import ImageData -from MONAILabelReviewerLib.MONAILabelReviewerEnum import Label -from MONAILabelReviewerLib.SegmentationMeta import SegmentationMeta - - -class JsonParser: - """ - JsonParser parses the datastore.json file - and caches the information in dictionary: Mapping from id to ImageData - """ - - def __init__(self, jsonObject: dict): - self.LABEL = Label() - self.dataStoreKeys = DataStoreKeys() - - self.jsonObject = jsonObject - self.mapIdToImageData: Dict[str, ImageData] = {} - - def init(self): - self.parseJsonToImageData() - - def getValueByKey(self, keyArr: List[str], jsonObj: dict): - if len(keyArr) == 0: - return "" - for key in keyArr: - if key not in jsonObj: - return "" - jsonObj = jsonObj[key] - return jsonObj - - def getFileName(self, obj: dict) -> str: - return self.getValueByKey(self.dataStoreKeys.FILENAME, obj) - - def getNodeName(self, obj: dict) -> str: - return self.getValueByKey(self.dataStoreKeys.NODE_NAME, obj) - - def getTimeStamp(self, obj: dict) -> int: - if self.hasKeyAnnotate(obj): - return self.getValueByKey(self.dataStoreKeys.TIMESTAMP_ANNOTATE, obj) - if self.hasKeyRandom(obj): - return self.getValueByKey(self.dataStoreKeys.TIMESTAMP_RANDOM, obj) - return self.getValueByKey(self.dataStoreKeys.TIMESTAMP, obj) - - def getInfo(self, obj: dict) -> str: - return self.getValueByKey(self.dataStoreKeys.IMAGE_INFO, obj) - - def getInfoInLabels(self, label: str, obj: dict) -> Dict[str, str]: - keys = self.dataStoreKeys.getInfoInLabels(label) - return self.getValueByKey(keys, obj) - - def hasLabels(self, obj: dict) -> bool: - lablesSection = self.getValueByKey(self.dataStoreKeys.LABELS, obj) - if len(lablesSection) == 0: - return False - return True - - def hasSegemantatorsId(self, obj: dict) -> bool: - labels = self.getValueByKey(self.dataStoreKeys.LABELS, obj) - - if len(labels) == 0: - return False - - if self.dataStoreKeys.FINAL not in labels: - return False - - final = self.getValueByKey(self.dataStoreKeys.LABELS_FINAL, obj) - if self.dataStoreKeys.INFO not in final: - return False - - info = self.getValueByKey(self.dataStoreKeys.LABELS_FINAL_INFO, obj) - if self.dataStoreKeys.LABEL_INFO not in info: - return False - - labelsInfo = self.getValueByKey(self.dataStoreKeys.LABELS_FINAL_INFO_LABELS_INFO, obj) - if len(labelsInfo) == 0: - return False - return True - - def extractLabels(self, obj: dict) -> dict: - return self.getValueByKey(self.dataStoreKeys.LABELS, obj) - - def extractLabelNames(self, labelsDict: dict) -> List[str]: - return list(labelsDict.keys()) - - def extractLabelContentByName(self, labels: dict, labelName="final") -> Dict[str, str]: - if labelName not in labels: - return {} - content = labels[labelName][self.dataStoreKeys.INFO] - - if self.dataStoreKeys.LABEL_INFO not in content: - return {} - - labelDict = {} - labelDict[self.dataStoreKeys.LABEL_INFO] = content[self.dataStoreKeys.LABEL_INFO] - return labelDict - - def extractSegmentationMetaOfVersion(self, labels: dict, labelName: str) -> dict: - if labelName not in labels: - return {} - content = labels[labelName][self.dataStoreKeys.INFO] - - if self.dataStoreKeys.META not in content: - return {} - return content[self.dataStoreKeys.META] - - def getAllSegmentationMetaOfAllLabels(self, labels: dict, labelNames: List[str]) -> Dict[str, SegmentationMeta]: - if len(labelNames) == 0: - return {} - - allSegMetaOfLabels = {} - for labelName in labelNames: - segMetaSingle = self.extractSegmentationMetaOfVersion(labels, labelName) - if len(segMetaSingle) == 0: - continue - segmentationMeta = self.produceSegementationData(segMetaSingle) - segmentationMeta.setVersionNumber(versionTag=labelName) - allSegMetaOfLabels[labelName] = segmentationMeta - return allSegMetaOfLabels - - def produceSegementationData(self, segmenatationDict: dict) -> SegmentationMeta: - segmentationMeta = SegmentationMeta() - segmentationMeta.build( - status=segmenatationDict[self.dataStoreKeys.META_STATUS], - level=segmenatationDict[self.dataStoreKeys.META_LEVEL], - approvedBy=segmenatationDict[self.dataStoreKeys.APPROVED_BY], - comment=segmenatationDict[self.dataStoreKeys.META_COMMENT], - editTime=segmenatationDict[self.dataStoreKeys.META_EDIT_TIME], - ) - - return segmentationMeta - - def isSegmented(self, obj: dict) -> bool: - labels = self.getValueByKey(self.dataStoreKeys.LABELS, obj) - if len(labels) == 0: - return False - if self.dataStoreKeys.FINAL not in labels: - return False - return True - - def hasKeyFinal(self, obj: dict) -> bool: - labelsDict = self.getValueByKey(self.dataStoreKeys.LABELS, obj) - return self.dataStoreKeys.FINAL in labelsDict - - def hasKeyOriginal(self, obj: dict) -> bool: - labelsDict = self.getValueByKey(self.dataStoreKeys.LABELS, obj) - return self.dataStoreKeys.ORIGINAL in labelsDict - - def getSegmentationName(self, obj: dict) -> dict: - if self.hasKeyFinal(obj): - return self.getValueByKey(self.dataStoreKeys.SEGMENTATION_NAME_BY_FINAL, obj) - if self.hasKeyOriginal(obj): - return self.getValueByKey(self.dataStoreKeys.SEGMENTATION_NAME_BY_ORIGINAL, obj) - - def hasKeyAnnotate(self, obj: dict) -> bool: - strategyDict = self.getValueByKey(self.dataStoreKeys.STRATEGY, obj) - return self.dataStoreKeys.ANNOTATE in strategyDict - - def hasKeyRandom(self, obj: dict) -> bool: - strategyDict = self.getValueByKey(self.dataStoreKeys.STRATEGY, obj) - return self.dataStoreKeys.RANDOM in strategyDict - - def getClientId(self, obj: dict) -> str: - if self.hasKeyAnnotate(obj): - return self.getValueByKey(self.dataStoreKeys.CLIENT_ID_BY_ANNOTATE, obj) - if self.hasKeyRandom(obj): - return self.getValueByKey(self.dataStoreKeys.CLIENT_ID_BY_RANDOM, obj) - if self.hasSegemantatorsId(obj): - return self.getValueByKey(self.dataStoreKeys.CLIENT_ID, obj) - return "Segmented without annotator's id" - - def getMetaStatus(self, label: str, obj: dict) -> str: - return self.getValueByKey(self.dataStoreKeys.getMetaStatus(label), obj) - - def getMetaLevel(self, label: str, obj: dict) -> str: - return self.getValueByKey(self.dataStoreKeys.getMetaLevel(label), obj) - - def getMetaApprovedBy(self, label: str, obj: dict) -> str: - return self.getValueByKey(self.dataStoreKeys.getMetaApprovedBy(label), obj) - - def getMetaEditTime(self, label: str, obj: dict) -> str: - return self.getValueByKey(self.dataStoreKeys.getMetaEditTime(label), obj) - - def getMetaComment(self, label: str, obj: dict) -> str: - return self.getValueByKey(self.dataStoreKeys.getMetaComment(label), obj) - - def parseJsonToImageData(self): - objects = self.jsonObject[self.dataStoreKeys.OBJECT] - for key, value in objects.items(): - imageData = self.jsonToImageData(key, value) - self.mapIdToImageData[key] = imageData - - def jsonToImageData(self, key: str, value: dict) -> ImageData: - imageData = ImageData( - name=key, - fileName=self.getFileName(value), - nodeName=self.getNodeName(value), - segmented=self.isSegmented(value), - timeStamp=self.getTimeStamp(value), - ) - - if self.isSegmented(value): - segName = self.getSegmentationName(value) - imageData.setSegmentationFileName(segName) - - clientId = self.getClientId(value) - imageData.setClientId(clientId) - - if self.hasLabels(value): - labelsDict = self.extractLabels(value) - labelNames = self.extractLabelNames(labelsDict) - labelContent = self.extractLabelContentByName(labelsDict) - labelSegmentationMeta: Dict[str, SegmentationMeta] = self.getAllSegmentationMetaOfAllLabels( - labelsDict, labelNames - ) - - imageData.setVersionNames(labelNames) - imageData.setLabelContent(labelContent) - imageData.setSegmentationMetaDict(labelSegmentationMeta) - - return imageData - - def hasSegmentationMeta(self, info: dict) -> bool: - return self.dataStoreKeys.META in info.keys() - - def getMapIdToImageData(self) -> Dict[str, ImageData]: - return self.mapIdToImageData diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/MONAILabelReviewerEnum.py b/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/MONAILabelReviewerEnum.py deleted file mode 100644 index ce33c8d..0000000 --- a/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/MONAILabelReviewerEnum.py +++ /dev/null @@ -1,32 +0,0 @@ -# Copyright (c) MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - - -class SegStatus: - def __init__(self): - self.NOT_SEGMENTED = "not segmented" - self.APPROVED = "approved" - self.SEGMENTED = "segmented" - self.FLAGGED = "flagged" - - -class Level: - def __init__(self): - self.EASY = "easy" - self.MEDIUM = "medium" - self.HARD = "hard" - - -class Label: - def __init__(self): - self.ORIGINAL = "original" - self.FINAL = "final" - self.VERSION = "version" diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/MonaiServerREST.py b/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/MonaiServerREST.py deleted file mode 100644 index 3527a95..0000000 --- a/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/MonaiServerREST.py +++ /dev/null @@ -1,199 +0,0 @@ -# Copyright (c) MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import datetime -import json -import logging -import os -from urllib.parse import quote_plus - -import requests -from requests.structures import CaseInsensitiveDict - - -class MonaiServerREST: - """ - MonaiServerREST provides the REST endpoints to the MONAIServer - """ - - def __init__(self, serverUrl: str): - self.PARAMS_PREFIX_REST_REQUEST = "params" - self.serverUrl = serverUrl - - def getServerUrl(self) -> str: - return self.serverUrl - - def getCurrentTime(self) -> datetime: - return datetime.datetime.now() - - def requestDataStoreInfo(self) -> dict: - download_uri = f"{self.serverUrl}/datastore/?output=all" - - try: - response = requests.get(download_uri, timeout=5) - except Exception as exception: - logging.warning(f"{self.getCurrentTime()}: Request for DataStoreInfo failed due to '{exception}'") - return None - if response.status_code != 200: - logging.warning( - "{}: Request for datastore-info failed (url: '{}'). Response code is {}".format( - self.getCurrentTime(), download_uri, response.status_code - ) - ) - return None - - return response.json() - - def getDicomDownloadUri(self, image_id: str) -> str: - download_uri = f"{self.serverUrl}/datastore/image?image={quote_plus(image_id)}" - logging.info(f"{self.getCurrentTime()}: REST: request dicom image '{download_uri}'") - return download_uri - - def requestSegmentation(self, image_id: str, tag: str) -> requests.models.Response: - if tag == "": - tag = "final" - download_uri = f"{self.serverUrl}/datastore/label?label={quote_plus(image_id)}&tag={quote_plus(tag)}" - logging.info(f"{self.getCurrentTime()}: REST: request segmentation '{download_uri}'") - - try: - response = requests.get(download_uri, timeout=5) - except Exception as exception: - logging.warning( - "{}: Segmentation request (image id: '{}') failed due to '{}'".format( - self.getCurrentTime(), image_id, exception - ) - ) - return None - if response.status_code != 200: - logging.warn( - "{}: Segmentation request (image id: '{}') failed due to response code: '{}'".format( - self.getCurrentTime(), image_id, response.status_code - ) - ) - return None - - return response - - def checkServerConnection(self) -> bool: - if not self.serverUrl: - self.serverUrl = "http://127.0.0.1:8000" - url = self.serverUrl.rstrip("/") - - try: - response = requests.get(url, timeout=5) - except Exception as exception: - logging.warning(f"{self.getCurrentTime()}: Connection to Monai Server failed due to '{exception}'") - return False - if response.status_code != 200: - logging.warn( - "{}: Server connection Failed. (response code = {}) ".format( - self.getCurrentTime(), response.status_code - ) - ) - return False - - logging.info(f"{self.getCurrentTime()}: Successfully connected to server (server url: '{url}').") - return True - - def updateLabelInfo(self, image_id: str, tag: str, params: dict) -> int: - """ - the image_id is the unique ID of an radiographic image - If the image has a label/segmentation, its label/label_id corresponds to its image_id - """ - embeddedParams = self.embeddedLabelContentInParams(params) - logging.info(f"Sending updated label info: {embeddedParams}") - - url = f"{self.serverUrl}/datastore/updatelabelinfo?label={quote_plus(image_id)}&tag={quote_plus(tag)}" - headers = CaseInsensitiveDict() - headers["Content-Type"] = "application/x-www-form-urlencoded" - headers["accept"] = "application/json" - - try: - response = requests.put(url, headers=headers, data=embeddedParams) - except Exception as exception: - logging.warning( - "{}: Update meta data (image id: '{}') failed due to '{}'".format( - self.getCurrentTime(), image_id, exception - ) - ) - return None - if response.status_code != 200: - logging.warn( - "{}: Update meta data (image id: '{}') failed due to response code = {}) ".format( - self.getCurrentTime(), image_id, response.status_code - ) - ) - return response.status_code - - logging.info(f"{self.getCurrentTime()}: Meta data was updated successfully (image id: '{image_id}').") - return response.status_code - - def embeddedLabelContentInParams(self, labelContent: dict) -> dict: - params = {} - params[self.PARAMS_PREFIX_REST_REQUEST] = json.dumps(labelContent) - return params - - def saveLabel(self, imageId: str, labelDirectory: str, tag: str, params: dict): - if params is not None: - embeddedParams = self.embeddedLabelContentInParams(params) - logging.info(f"{self.getCurrentTime()}: Label and Meta data (image id: '{imageId}'): '{embeddedParams}'") - - url = f"{self.serverUrl}/datastore/label?image={imageId}" - if tag: - url += f"&tag={tag}" - - try: - with open(os.path.abspath(labelDirectory), "rb") as f: - response = requests.put(url, data=embeddedParams, files={"label": (imageId + ".nrrd", f)}) - - except Exception as exception: - logging.error( - "{}: Label and Meta data update failed (image id: '{}', meta data: '{}', due to '{}'".format( - self.getCurrentTime(), imageId, embeddedParams, exception - ) - ) - - if response.status_code == 200: - logging.info( - f"{self.getCurrentTime()}: Label and Meta data was updated successfully (image id: '{imageId}')." - ) - logging.warn(f"{self.getCurrentTime()}: Meta : '{embeddedParams}'") - else: - logging.warn( - "{}: Update label (image id: '{}') failed due to response code = {}) ".format( - self.getCurrentTime(), imageId, response.status_code - ) - ) - return response.status_code - - def deleteLabelByVersionTag(self, imageId: str, versionTag: str) -> int: - url = f"{self.serverUrl}/datastore/label?id={imageId}&tag={versionTag}" - try: - response = requests.delete(url) - except Exception as exception: - logging.error( - "{}: Label and Meta data deletion failed (image id: '{}', version tag: '{}') due to '{}'".format( - self.getCurrentTime(), imageId, versionTag, exception - ) - ) - - if response.status_code == 200: - logging.info( - f"{self.getCurrentTime()}: Label and Meta data was deleted successfully (image id: '{imageId}') " - f"| tae: '{versionTag}'." - ) - else: - logging.warn( - "{}: Deletion of label (image id: '{}') failed due to response code = {}) ".format( - self.getCurrentTime(), imageId, response.status_code - ) - ) - return response.status_code diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/SegmentationMeta.py b/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/SegmentationMeta.py deleted file mode 100644 index 87baebf..0000000 --- a/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/SegmentationMeta.py +++ /dev/null @@ -1,144 +0,0 @@ -# Copyright (c) MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import logging -import time - -from MONAILabelReviewerLib.MONAILabelReviewerEnum import Label - - -class SegmentationMeta: - """ - SegmentationMeta stores all the meta data of its corresponding ImageData - The class returns a json string which will be send to MONAI-Server to persist the - information in datastore.json - """ - - def __init__(self): - self.preFix = "params=" - self.LABEL = Label() - - self.status: str = "" - self.level: str = "" - self.approvedBy: str = "" - self.editTime: str = "" - self.comment: str = "" - - self.versionNumber: int = 0 - - def build(self, status="", level="", approvedBy="", comment="", editTime=""): - self.setEditTime() - self.status = status - self.level = level - self.approvedBy = approvedBy - self.comment = comment - self.editTime = editTime - - def setVersionNumber(self, versionTag: str): - if versionTag == self.LABEL.FINAL or versionTag == self.LABEL.ORIGINAL: - self.versionNumber = 0 - else: - self.versionNumber = self.parsNumberFromVersionTagString(versionTag=versionTag) - - def parsNumberFromVersionTagString(self, versionTag: str) -> int: - lastCharIndex = len(versionTag) - indexOfDelimeter = versionTag.index("_") - versionTagIndex = versionTag[indexOfDelimeter + 1 : lastCharIndex] - return int(versionTagIndex) - - def getVersionNumber(self) -> int: - return self.versionNumber - - def update(self, status="", level="", approvedBy="", comment="") -> bool: - logging.warn("=============== HEER ==============") - logging.warn(f"status={status}, level={level}, approvedBy={approvedBy}, comment={comment}") - isChanged = False - if self.isBlank(status) is False and status != self.status: - self.status = status - isChanged = True - - if self.isBlank(level) is False and level != self.level: - self.level = level - isChanged = True - - if self.isBlank(comment) is False and comment != self.comment: - self.comment = comment - isChanged = True - - if isChanged: - if self.isBlank(approvedBy) is False and approvedBy != self.approvedBy: - self.approvedBy = approvedBy - - return isChanged - - def setApprovedBy(self, approvedBy: str): - self.approvedBy = approvedBy - - def setStatus(self, status: str): - self.status = status - - def setLevel(self, level: str): - self.level = level - - def setComment(self, comment: str): - self.comment = comment - - def setEditTime(self): - self.editTime = int(time.time()) - - def getMeta(self) -> dict: - metaJson = { - "segmentationMeta": { - "status": self.status, - "approvedBy": self.approvedBy, - "level": self.level, - "comment": self.comment, - "editTime": self.editTime, - } - } - return metaJson - - def getStatus(self) -> str: - return self.status - - def getLevel(self) -> str: - return self.level - - def getApprovedBy(self) -> str: - return self.approvedBy - - def getComment(self) -> str: - return self.comment - - def getEditTime(self) -> str: - return self.editTime - - def isEqual(self, status="", level="", approvedBy="", comment=""): - if status != self.status: - return False - if approvedBy != self.approvedBy: - return False - if level != self.level: - return False - if comment != self.comment: - return False - return True - - def isBlank(self, string) -> bool: - return not (string and string.strip()) - - def display(self): - print("versionNumber: ", self.getVersionNumber) - print("status: ", self.status) - print("level: ", self.level) - print("approvedBy: ", self.approvedBy) - print("editTime: ", self.editTime) - print("comment: ", self.comment) diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/__init__.py b/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/__init__.py deleted file mode 100644 index 80d5f98..0000000 --- a/monailabel/plugins/slicer/MONAILabelReviewer/MONAILabelReviewerLib/__init__.py +++ /dev/null @@ -1,19 +0,0 @@ -# Copyright (c) MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from .DataStoreKeys import DataStoreKeys -from .ImageData import ImageData -from .ImageDataController import ImageDataController -from .ImageDataExtractor import ImageDataExtractor -from .JsonParser import JsonParser -from .MONAILabelReviewerEnum import * -from .MonaiServerREST import MonaiServerREST -from .SegmentationMeta import SegmentationMeta diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/README.md b/monailabel/plugins/slicer/MONAILabelReviewer/README.md deleted file mode 100644 index 2774ce1..0000000 --- a/monailabel/plugins/slicer/MONAILabelReviewer/README.md +++ /dev/null @@ -1,130 +0,0 @@ - - -# Purpose -Radiologists have different levels of experience reading X-ray images. -Therefore, agreement of several radiologists on X-ray segmentations (especially in difficult cases) is required to increase the overall quality of a data set, which is then used to model a neural network. -MONAILABELReviewer is a tool for research groups to check the quality of the segmentation of their data sets. - -![distributedWork](https://user-images.githubusercontent.com/30056369/158844144-94769304-cd4c-4630-ac6a-3dc124a9fc22.png) - - -# Import MONAILABELReviewer into 3D Slicer -1. Select "Edit" -2. Select "Application Settings" -3. Select "Modules" -4. Select "Add" -5. Within Browser select folder "MONAILabelReviewer" - -![ImportReviewerIntoSlicer](https://user-images.githubusercontent.com/30056369/158845199-1f723b8b-a64e-4bdc-8596-974e952569d9.png) - -# MonaiLabelReviewer UI -MonaiLabelReviewer has two usage modes, "Reviewer Mode" and "Basic Mode". The latter can be enabled by checking the checkbox next to "Basic Mode". -"Reviewer Mode" provides advanced features such as filer options and segmentation classification by difficulty (see subsection "UI in Reviewer Mode" for further description) - -# UI in basic mode -1. If checkbox is selected, "basic mode" is activated (just for streaming through the segmentations) -2. Progress bar displays how many images have already been segmented in total. -3. Progress bar displays how many images have already been segmented by the selected annotator -4. Combobox: Selection of annotator (if option "All" is selected, the dataset includes segmentations of all annotators) -5. Slide bar: Displays currently index of image within the selected dataset -6. Lines which displays the meta data: imageId, annotator's name, date -7. Segmentation selection box: Hide/Show-option of segmentation layers - -![UiBasicMode](https://user-images.githubusercontent.com/30056369/158844598-cd6a0ea9-2e2f-4da6-b2e7-7900c8e00b83.png) - - -#Required extensions in MonaiLabel - -In order to persist the information created by MonaiLabelReviewer during the review process, an additional rest endpoint needs to be introduced into MonaiLabel. -In particular, the following methods (see below) need to be added in the datastore.py file. -(We will apply these changes in the monai community, so the workflow in MonaiLabelReviewer will be available without any additional manual changes in MonaiLabel.) - -├── MONAILAIBEL - ├── monailabel - ├── endpoints - ├── datastore.py - -``` -@router.put("/updatelabelinfo", summary="Update label info") -async def api_update_label_info(label_id: str, label_tag : str, params: str = Form("{}")): - return update_label_info(label_id, label_tag, params) - -def update_label_info(label_id: str, label_tag : str, params: str = Form("{}")): - save_params: Dict[str, Any] = json.loads(params) if params else {} - instance: MONAILabelApp = app_instance() - instance.datastore().update_label_info(label_id=label_id, label_tag=label_tag, info=save_params) - return {} -``` - -# UI in Reviewer mode -1. If checkbox is not selected, "Reviewer Mode" is activated (the enables all feature for reviewing the segmentations) -2. Selection of reviewer's name or add new reviewer -3. Progress bar displays how many images have already been approved in total. -4. Progress bar displays how many images of selected Annotator have already been approved -5. Buttons (Easy, Medium, Hard) allows reviewer to classify the difficulty of segmentation to Easy, Medium, Hard -6. "Approve" Button: After the reviewer approves the segmentation, it can be included in the neural network modelling dataset -7. "Flag" Button allows the reviewer to mark a segmentation for later evaluation by another radiologist -8. Comment field: Reviewer can add comment into that box regarding the segmentation. If commented review is flagged additionally, the annotator can improve the segmentation according to comment -9. Filter options allows the reviewer to select a subset of image data set (not segmented, segmented, flagged, approved) - -![UiReviewerMode](https://user-images.githubusercontent.com/30056369/158844810-27848c54-29d5-4d74-b1f2-27e38e92b150.png) - - -# Search by Image Id -After entering a list of comma-separated image IDs in the left field, the right field displays a list of IDs of the corresponding found images. -That data set can be reviewed using the "Next"-"Previous"-Button. - -![MonaiLabelReviewer SearchField](https://user-images.githubusercontent.com/30056369/159154537-0f97f004-0c61-4b63-947b-b7b55a3e61b1.png) - -# Editing/Improving segmentation & Version control -1. After clicking the combo box, a list of segmentation version tags will appear. -(The tag of the initial segmentation is "final". The tag of all subsequent improved/edited segmentations starts with "version_" (followed by a number). - -2. By clicking the "Start Label Editing" button, the user can start improving the subjected segmentation. - - - -3. Three new buttons appear: - * 1. Overwrite this version (Warning: "final" segmentation, cannot be overwritten, however) - * 2. Save as new version (Version_2 --> Version_3, ascending numbering) - * 3. Delete this version (Warning: "final" segmentation, cannot be deleted) - -4. Editing tools appear on the left side of the Hide/Show toolbar. - -5. Also, all buttons (like "Easy", "Medium", "Hard", "Previous", "Next") are disabled -during the editing process; except for the "Flagged" and "Approved" buttons. - - - -6. After finishing editing the segmentation (a cross is drawn on the image for demonstration purposes) - -7. The user has 3 options: - * 1. Overwrite current version (Caution: "final" segmentation cannot be overwritten because it is the original segmentation) - * 2. Save as new version (e.g. Version_2 --> Version_3, ascending numbering) - * 3. Delete technical version (Caution: "final" segmentation cannot be deleted because it is the original segmentation) -8. When one of the three options has been selected, the user must confirm their choice by clicking on the "Confirm:..." button. - - - -9. After confirming "Save as new version", the edited segmentation remains in the MONAIServer. -In addition, the version (e.g. "version_1") now appears in the drop-down list. - -10. When you click the "Approve" button, the version tag (of the currently depicted segmentation) is marked as "Version_1 (approved)" in the drop-down list. Consequently, the previously approved segmentation is no longer approved. - - - -11. When you click the "Approve" button, the version tag (of the currently depicted segmentation) is marked as "Version_1 (approved)" in the drop-down list. -12. The status "approved" is also displayed in the information field in green. - - diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/ReadMeImages/MONAILabelReviewerEditorTools_1.png b/monailabel/plugins/slicer/MONAILabelReviewer/ReadMeImages/MONAILabelReviewerEditorTools_1.png deleted file mode 100644 index 2513291..0000000 Binary files a/monailabel/plugins/slicer/MONAILabelReviewer/ReadMeImages/MONAILabelReviewerEditorTools_1.png and /dev/null differ diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/ReadMeImages/MONAILabelReviewerEditorTools_2.png b/monailabel/plugins/slicer/MONAILabelReviewer/ReadMeImages/MONAILabelReviewerEditorTools_2.png deleted file mode 100644 index 0824772..0000000 Binary files a/monailabel/plugins/slicer/MONAILabelReviewer/ReadMeImages/MONAILabelReviewerEditorTools_2.png and /dev/null differ diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/ReadMeImages/MONAILabelReviewerEditorTools_3.png b/monailabel/plugins/slicer/MONAILabelReviewer/ReadMeImages/MONAILabelReviewerEditorTools_3.png deleted file mode 100644 index 90d95ba..0000000 Binary files a/monailabel/plugins/slicer/MONAILabelReviewer/ReadMeImages/MONAILabelReviewerEditorTools_3.png and /dev/null differ diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/ReadMeImages/MONAILabelReviewerEditorTools_4.png b/monailabel/plugins/slicer/MONAILabelReviewer/ReadMeImages/MONAILabelReviewerEditorTools_4.png deleted file mode 100644 index b58ccb8..0000000 Binary files a/monailabel/plugins/slicer/MONAILabelReviewer/ReadMeImages/MONAILabelReviewerEditorTools_4.png and /dev/null differ diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/ReadMeImages/MONAILabelReviewerEditorTools_5.png b/monailabel/plugins/slicer/MONAILabelReviewer/ReadMeImages/MONAILabelReviewerEditorTools_5.png deleted file mode 100644 index 0c66e36..0000000 Binary files a/monailabel/plugins/slicer/MONAILabelReviewer/ReadMeImages/MONAILabelReviewerEditorTools_5.png and /dev/null differ diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/Resources/Icons/MONAILabelReviewer.png b/monailabel/plugins/slicer/MONAILabelReviewer/Resources/Icons/MONAILabelReviewer.png deleted file mode 100644 index 5d83ab4..0000000 Binary files a/monailabel/plugins/slicer/MONAILabelReviewer/Resources/Icons/MONAILabelReviewer.png and /dev/null differ diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/Resources/UI/MONAILabelReviewer.ui b/monailabel/plugins/slicer/MONAILabelReviewer/Resources/UI/MONAILabelReviewer.ui deleted file mode 100644 index b5d9429..0000000 --- a/monailabel/plugins/slicer/MONAILabelReviewer/Resources/UI/MONAILabelReviewer.ui +++ /dev/null @@ -1,884 +0,0 @@ - - - MONAILabelReviewer - - - - 0 - 0 - 555 - 752 - - - - - - - - - background-color: rgb(118, 214, 255); - - - Basic mode - - - true - - - true - - - - - - - background-color: rgb(255, 126, 121); - - - Reviewer's mode - - - true - - - - - - - - - false - - - Search Images - - - true - - - - - - - - 0 - - - - - 252 - 0 - - - - Ids - - - - - - Image Ids - - - - - - - imageId_1, imageId2, ... - - - - - - - background-color: rgb(146, 146, 146); - - - Search - - - - - - - - Annotator/Reviewer - - - - - - Select annotator - - - - - - - - - - Select reviewer - - - - - - - - - - approved - - - - - - - flagged - - - - - - - Qt::Vertical - - - - 20 - 40 - - - - - - - - background-color: rgb(146, 146, 146); - - - Search - - - - - - - - Quality - - - - - - Select level of difficulty - - - - - - - Qt::Vertical - - - - 20 - 40 - - - - - - - - easy - - - - - - - medium - - - - - - - hard - - - - - - - Qt::Vertical - - - - 20 - 40 - - - - - - - - background-color: rgb(146, 146, 146); - - - Search - - - - - - - - - - - - - - - Result: - - - - - - - true - - - - Image Id - - - - 10 - - - - AlignCenter - - - - - found - - - - 10 - - - - AlignCenter - - - - - segmented - - - - - - - - false - - - Show - - - - - - - - - - - - Server - - - - - - - - true - - - - - - - - - - Qt::AlignCenter - - - - - - - - - - Qt::AlignCenter - - - - - - - background-color: rgb(169, 169, 169) - - - Connect - - - - - - - Segmented - - - - - - - selection-background-color: rgb(255, 147, 0); - - - 0 - - - - - - - Approved - - - - - - - 0 - - - - - - - Server Url - - - - - - - true - - - true - - - - - - - Reviewer - - - - - - - - - - - - false - - - Data Evaluation - - - false - - - - - - - - - - Level of difficulty - - - - - - - - - background-color: rgb(0, 250, 146); - - - Easy - - - - - - - background-color: rgba(255, 251, 0, 179); - - - Medium - - - - - - - background-color: rgba(255, 38, 0, 179); - - - Hard - - - - - - - - - - - - - background-color: rgb(255, 147, 0); - - - Previous - - - - - - - background-color: rgb(118, 214, 255); - - - Next - - - - - - - Flag - - - - - - - Approve - - - - - - - - - - - Image: x/y - - - - - - - false - - - Qt::Horizontal - - - - - - - - - - - - - Version of labels - - - - - - - Qt::Horizontal - - - - - background-color: rgb(0, 150, 255); - - - Start label edit - - - - - - - - Qt::Horizontal - - - - - - - Overwrite this version - - - - - - - - Save as new version - - - - - Delete this version - - - - - - - - background-color: rgb(115, 250, 121); - - - Confirm - - - - - - - - - - - - - - - Image Id: - - - - - - - Annotator: - - - - - - - Annotation Date: - - - - - - - Difficulty Level: - - - - - - - Status: - - - - - - - Editor: - - - - - - - Editing Date: - - - - - - - - - - - false - - - - - - - false - - - - - - - false - - - - - - - false - - - - - - - false - - - - - - - - - - - - - - - - - Add Comment - - - - - - - - - - - - false - - - Data Set Explorer - - - true - - - - - - - - Load - - - - - - - selection-background-color: rgba(255, 147, 0, 209); - - - 0 - - - - - - - - - - Approved - - - - - - - Segmented - - - - - - - Annotator - - - - - - - selection-background-color: rgba(78, 157, 246, 209); - - - 0 - - - true - - - - - - - Filter - - - - - - - - - - - false - - - not segmented - - - - - - - flagged - - - - - - - - - - - segmented - - - - - - - approved - - - - - - - - - - - - - - Qt::AlignCenter - - - - - - - - - - Qt::AlignCenter - - - - - - - - - - - - Qt::Vertical - - - - 20 - 40 - - - - - - - - - ctkCollapsibleButton - QWidget -
ctkCollapsibleButton.h
- 1 -
- - qMRMLWidget - QWidget -
qMRMLWidget.h
- 1 -
-
- - -
diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/Testing/CMakeLists.txt b/monailabel/plugins/slicer/MONAILabelReviewer/Testing/CMakeLists.txt deleted file mode 100644 index b3dd1c9..0000000 --- a/monailabel/plugins/slicer/MONAILabelReviewer/Testing/CMakeLists.txt +++ /dev/null @@ -1,12 +0,0 @@ -# Copyright (c) MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -add_subdirectory(Python) diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/Testing/Python/CMakeLists.txt b/monailabel/plugins/slicer/MONAILabelReviewer/Testing/Python/CMakeLists.txt deleted file mode 100644 index d7649ab..0000000 --- a/monailabel/plugins/slicer/MONAILabelReviewer/Testing/Python/CMakeLists.txt +++ /dev/null @@ -1,13 +0,0 @@ -# Copyright (c) MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - - -#slicer_add_python_unittest(SCRIPT ${MODULE_NAME}ModuleTest.py) diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/UnitTests/ImageDataControllerTest.py b/monailabel/plugins/slicer/MONAILabelReviewer/UnitTests/ImageDataControllerTest.py deleted file mode 100644 index 3db960d..0000000 --- a/monailabel/plugins/slicer/MONAILabelReviewer/UnitTests/ImageDataControllerTest.py +++ /dev/null @@ -1,402 +0,0 @@ -# Copyright (c) MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import json -import os -import sys -import unittest -from typing import Dict -from unittest.mock import Mock, patch - -# sys.path.append("..") -from MONAILabelReviewerLib.ImageData import ImageData -from MONAILabelReviewerLib.ImageDataController import ImageDataController -from MONAILabelReviewerLib.MONAILabelReviewerEnum import Level, SegStatus -from MONAILabelReviewerLib.MonaiServerREST import MonaiServerREST - - -class ImageDataControllerTest(unittest.TestCase): - @classmethod - def setUp(self): - self.STATUS = SegStatus() - self.LEVEL = Level() - self.url = "http://127.0.0.1:8000" - self.controller = ImageDataController() - - self.nameToImageData: Dict[str, ImageData] = {} - self.createImageData() - self.testDataStore_V2_json = "" - self.loadJsonStr() - - @classmethod - def loadJsonStr(self) -> str: - with open(os.path.join(sys.path[0], "TestDataSet/test_json_datastore_v2.json")) as f: - self.testDataStore_V2_json = json.dumps(json.load(f)) - - @classmethod - def createImageData(self): - # is segmented - imageDataTest_1 = ImageData( - name="6667571", - fileName="6667571.dcm", - nodeName="6667571.dcm", - checkSum="SHA256:2a454e9ab8a33dc74996784163a362a53e04adcee2fd73a8b6299bf0ce5060d3", - segmented=True, - timeStamp=1639985938, - comment="", - ) - imageDataTest_1.setClientId("Test-Radiolgist-Segmented") - imageDataTest_1.setSegmentationFileName("6667571.seg.nrrd") - imageDataTest_1.addNewSegmentationMeta( - tag="final", status=self.STATUS.APPROVED, level=self.LEVEL.HARD, approvedBy="Test-Reviewer", comment="" - ) - - # is segmented - imageDataTest_2 = ImageData( - name="imageId_2", - fileName="fileName_2", - nodeName="nodeName_2", - checkSum="checkSum_2", - segmented=True, - timeStamp=1640171961, - comment="comment_2", - ) - imageDataTest_2.setClientId("client_id_1") - imageDataTest_2.setSegmentationFileName("testSegementation_2.nrrd") - imageDataTest_2.addNewSegmentationMeta( - tag="final", - status=self.STATUS.FLAGGED, - level=self.LEVEL.MEDIUM, - approvedBy="theRadologist_2", - comment="comment_2", - ) - - # is not segmented - imageDataTest_3 = ImageData( - name="6213798", - fileName="6213798.dcm", - nodeName="6213798.dcm", - checkSum="SHA256:5ca275af76a8fe88939058f9c91ecb72ce96bd5f012198fc366e4ef0214849b9", - segmented=False, - timeStamp=1642170835, - comment="", - ) - - self.nameToImageData["6667571"] = imageDataTest_1 - self.nameToImageData["imageId_2"] = imageDataTest_2 - self.nameToImageData["6213798"] = imageDataTest_3 - - @classmethod - def areEqual(self, imageData_1: ImageData, imageData_2: ImageData) -> bool: - if ( - imageData_1.getClientId() == imageData_2.getClientId() - and imageData_1.getName() == imageData_2.getName() - and imageData_1.getFileName() == imageData_2.getFileName() - and imageData_1.getNodeName() == imageData_2.getNodeName() - and imageData_1.isSegemented() == imageData_2.isSegemented() - ): - if imageData_1.isSegemented() is False: - return True - - if ( - imageData_1.getSegmentationFileName() == imageData_2.getSegmentationFileName() - and imageData_1.isApproved() == imageData_2.isApproved() - and imageData_1.isFlagged() == imageData_2.isFlagged() - and imageData_1.getLevel() == imageData_2.getLevel() - and imageData_1.getApprovedBy() == imageData_2.getApprovedBy() - ): - return True - - return False - - @patch.object(MonaiServerREST, "getServerUrl", return_value="http://127.0.0.1:8000") - def test_returnedUrl(self, getServerUrl): - self.controller.setMonaiServer(self.url) - url = self.controller.getServerUrl() - getServerUrl.assert_called_once() - self.assertEqual(self.url, url) - - @patch.object(MonaiServerREST, "checkServerConnection", return_value=True) - def test_connectToMonaiServer(self, checkServerConnection): - isConnected = self.controller.connectToMonaiServer(self.url) - checkServerConnection.assert_called_once() - self.assertTrue(isConnected) - - def test_getMapIdToImageData(self): - json_with_segmentation = json.loads(self.testDataStore_V2_json) - - self.controller.monaiServerREST = MonaiServerREST(self.url) - mockObject = self.controller.monaiServerREST - mockObject.requestDataStoreInfo = Mock(return_value=json_with_segmentation) - returnedMap = self.controller.getMapIdToImageData() - - selectedImageData = returnedMap["6213798"] - expectedImageData = self.nameToImageData["6213798"] - - self.assertTrue(self.areEqual(expectedImageData, selectedImageData)) - - def test_initMetaDataProcessing(self): - json_with_segmentation = json.loads(self.testDataStore_V2_json) - - self.controller.monaiServerREST = MonaiServerREST(self.url) - mockObject = self.controller.monaiServerREST - mockObject.requestDataStoreInfo = Mock(return_value=json_with_segmentation) - success = self.controller.initMetaDataProcessing() - self.assertTrue(success) - - def test_getStatistics(self): - json_with_segmentation = json.loads(self.testDataStore_V2_json) - - self.controller.monaiServerREST = MonaiServerREST(self.url) - mockObject = self.controller.monaiServerREST - mockObject.requestDataStoreInfo = Mock(return_value=json_with_segmentation) - - success = self.controller.initMetaDataProcessing() - self.assertTrue(success) - - statistics = self.controller.getStatistics() - - self.assertEqual(50, statistics["segmentationProgress"]) - self.assertEqual("2/4", statistics["idxTotalSegmented"]) - self.assertEqual("1/4", statistics["idxTotalApproved"]) - self.assertEqual(25, statistics["progressPercentage"]) - self.assertEqual(50, statistics["segmentationProgressAllPercentage"]) - self.assertEqual(25, statistics["approvalProgressPercentage"]) - - def test_getClientIds(self): - # Set up - json_with_segmentation = json.loads(self.testDataStore_V2_json) - - self.controller.monaiServerREST = MonaiServerREST(self.url) - mockObject = self.controller.monaiServerREST - mockObject.requestDataStoreInfo = Mock(return_value=json_with_segmentation) - - success = self.controller.initMetaDataProcessing() - self.assertTrue(success) - - # Test - clientIds = self.controller.getClientIds() - - # Verify - self.assertListEqual(clientIds, ["Test-Radiolgist-Segmented"]) - - def test_getReviewers(self): - # Set up - json_with_segmentation = json.loads(self.testDataStore_V2_json) - - self.controller.monaiServerREST = MonaiServerREST(self.url) - mockObject = self.controller.monaiServerREST - mockObject.requestDataStoreInfo = Mock(return_value=json_with_segmentation) - - success = self.controller.initMetaDataProcessing() - self.assertTrue(success) - - # Test - clientIds = self.controller.getReviewers() - - # Verify - self.assertListEqual(clientIds, ["Test-Reviewer"]) - - def test_getAllImageData(self): - # Set up - json_with_segmentation = json.loads(self.testDataStore_V2_json) - - self.controller.monaiServerREST = MonaiServerREST(self.url) - mockObject = self.controller.monaiServerREST - mockObject.requestDataStoreInfo = Mock(return_value=json_with_segmentation) - - success = self.controller.initMetaDataProcessing() - self.assertTrue(success) - - # Test - imageDatas = self.controller.getAllImageData( - segmented=True, isNotSegmented=False, isApproved=True, isFlagged=False - ) - - # Verify - self.assertEqual(1, len(imageDatas)) - returnedImageData = imageDatas[0] - expectedImageData = self.nameToImageData["6667571"] - self.assertTrue(self.areEqual(expectedImageData, returnedImageData)) - - def test_getImageDataByClientId(self): - # Set up - json_with_segmentation = json.loads(self.testDataStore_V2_json) - - self.controller.monaiServerREST = MonaiServerREST(self.url) - mockObject = self.controller.monaiServerREST - mockObject.requestDataStoreInfo = Mock(return_value=json_with_segmentation) - - success = self.controller.initMetaDataProcessing() - self.assertTrue(success) - - # Test - imageDatas = self.controller.getImageDataByClientId( - selectedClientId="Test-Radiolgist-Segmented", isApproved=True, isFlagged=False - ) - - # Verify - self.assertEqual(1, len(imageDatas)) - returnedImageData = imageDatas[0] - expectedImageData = self.nameToImageData["6667571"] - self.assertTrue(self.areEqual(expectedImageData, returnedImageData)) - - def test_getPercentageApproved(self): - # Set up - json_with_segmentation = json.loads(self.testDataStore_V2_json) - - self.controller.monaiServerREST = MonaiServerREST(self.url) - mockObject = self.controller.monaiServerREST - mockObject.requestDataStoreInfo = Mock(return_value=json_with_segmentation) - - success = self.controller.initMetaDataProcessing() - self.assertTrue(success) - - # Test - percentageApprovedOfClient, idxApprovedOfClient = self.controller.getPercentageApproved( - selectedClientId="Test-Radiolgist-Segmented" - ) - - # Verify - self.assertEqual(50, percentageApprovedOfClient) - self.assertEqual("1/2", idxApprovedOfClient) - - def test_getPercentageSemgmentedByClient(self): - # Set up - json_with_segmentation = json.loads(self.testDataStore_V2_json) - - self.controller.monaiServerREST = MonaiServerREST(self.url) - mockObject = self.controller.monaiServerREST - mockObject.requestDataStoreInfo = Mock(return_value=json_with_segmentation) - - success = self.controller.initMetaDataProcessing() - self.assertTrue(success) - - # Test - percentageSemgmentedByClient, idxSegmentedByClient = self.controller.getPercentageSemgmentedByClient( - selectedClientId="Test-Radiolgist-Segmented" - ) - - # Verify - self.assertEqual(50, percentageSemgmentedByClient) - self.assertEqual("2/4", idxSegmentedByClient) - - def test_getMultImageDataByIds(self): - # Set up - json_with_segmentation = json.loads(self.testDataStore_V2_json) - - self.controller.monaiServerREST = MonaiServerREST(self.url) - mockObject = self.controller.monaiServerREST - mockObject.requestDataStoreInfo = Mock(return_value=json_with_segmentation) - - success = self.controller.initMetaDataProcessing() - self.assertTrue(success) - - # Test - imageIdDummy = "1234567" - idToImage: Dict[str, ImageData] = self.controller.getMultImageDataByIds( - imageIds=["6213798", "6667571", imageIdDummy] - ) - - # Verify - self.assertTrue("6213798" in idToImage.keys()) - self.assertTrue("6667571" in idToImage.keys()) - self.assertTrue(imageIdDummy not in idToImage.keys()) - - expectedImageData_1 = self.nameToImageData["6213798"] - expectedImageData_2 = self.nameToImageData["6667571"] - - self.assertTrue(self.areEqual(expectedImageData_1, idToImage["6213798"])) - self.assertTrue(self.areEqual(expectedImageData_2, idToImage["6667571"])) - - def test_searchByAnnotatorReviewer_selectedReviewer_is_all(self): - # Set up - json_with_segmentation = json.loads(self.testDataStore_V2_json) - - self.controller.monaiServerREST = MonaiServerREST(self.url) - mockObject = self.controller.monaiServerREST - mockObject.requestDataStoreInfo = Mock(return_value=json_with_segmentation) - - success = self.controller.initMetaDataProcessing() - self.assertTrue(success) - - # Test - idToImage: Dict[str, ImageData] = self.controller.searchByAnnotatorReviewer( - selectedAnnotator="Test-Radiolgist-Segmented", selectedReviewer="All", isApproved=True, isFlagged=False - ) - - # Verify - self.assertTrue("6667571" in idToImage.keys()) - expectedImageData = self.nameToImageData["6667571"] - self.assertTrue(self.areEqual(expectedImageData, idToImage["6667571"])) - - def test_searchByAnnotatorReviewer_selectedReviewer_is_all_and_selectedReviewer_is_all(self): - # Set up - json_with_segmentation = json.loads(self.testDataStore_V2_json) - - self.controller.monaiServerREST = MonaiServerREST(self.url) - mockObject = self.controller.monaiServerREST - mockObject.requestDataStoreInfo = Mock(return_value=json_with_segmentation) - - success = self.controller.initMetaDataProcessing() - self.assertTrue(success) - - # Test - idToImage: Dict[str, ImageData] = self.controller.searchByAnnotatorReviewer( - selectedAnnotator="All", selectedReviewer="All", isApproved=True, isFlagged=False - ) - - # Verify - self.assertTrue("6667571" in idToImage.keys()) - expectedImageData = self.nameToImageData["6667571"] - self.assertTrue(self.areEqual(expectedImageData, idToImage["6667571"])) - - def test_updateLabelInfo_successfully_update_label_info(self): - # Set up - json_with_segmentation = json.loads(self.testDataStore_V2_json) - - self.controller.monaiServerREST = MonaiServerREST(self.url) - mockObject = self.controller.monaiServerREST - mockObject.requestDataStoreInfo = Mock(return_value=json_with_segmentation) - - success = self.controller.initMetaDataProcessing() - self.assertTrue(success) - - mockObject.updateLabelInfo = Mock(return_value=200) - - # Test - successfullyUpdate = self.controller.updateLabelInfo(imageId="6667571", updatedMetaJson="") - - # Verify - self.assertTrue(successfullyUpdate) - - def test_updateLabelInfo_failed_update_label_info(self): - # Set up - json_with_segmentation = json.loads(self.testDataStore_V2_json) - - self.controller.monaiServerREST = MonaiServerREST(self.url) - mockObject = self.controller.monaiServerREST - mockObject.requestDataStoreInfo = Mock(return_value=json_with_segmentation) - - success = self.controller.initMetaDataProcessing() - self.assertTrue(success) - - mockObject.updateLabelInfo = Mock(return_value=400) - - # Test - failedUpdate = self.controller.updateLabelInfo(imageId="6667571", updatedMetaJson="") - - # Verify - self.assertFalse(failedUpdate) - - -if __name__ == "__main__": - unittest.main() diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/UnitTests/ImageDataExtractorTest.py b/monailabel/plugins/slicer/MONAILabelReviewer/UnitTests/ImageDataExtractorTest.py deleted file mode 100644 index c8836e7..0000000 --- a/monailabel/plugins/slicer/MONAILabelReviewer/UnitTests/ImageDataExtractorTest.py +++ /dev/null @@ -1,361 +0,0 @@ -# Copyright (c) MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import sys -import unittest -from typing import Dict, List - -# sys.path.append("..") -from MONAILabelReviewerLib.ImageData import ImageData -from MONAILabelReviewerLib.ImageDataExtractor import ImageDataExtractor -from MONAILabelReviewerLib.MONAILabelReviewerEnum import Level, SegStatus - - -class ImageDataExtractorTest(unittest.TestCase): - @classmethod - def setUp(self): - self.STATUS = SegStatus() - self.LEVEL = Level() - self.createImageData() - - @classmethod - def createImageData(self): - # is segmented - imageDataTest_1 = ImageData( - name="imageId_1", - fileName="fileName_1", - nodeName="nodeName_1", - checkSum="checkSum_1", - segmented=True, - timeStamp=1640171961, - comment="comment_1", - ) - imageDataTest_1.setClientId("client_id_1") - imageDataTest_1.setSegmentationFileName("testSegementation_1.nrrd") - imageDataTest_1.addNewSegmentationMeta( - tag="final", - status=self.STATUS.APPROVED, - level=self.LEVEL.HARD, - approvedBy="theRadologist_1", - comment="comment_1", - ) - - # is segmented - imageDataTest_2 = ImageData( - name="imageId_2", - fileName="fileName_2", - nodeName="nodeName_2", - checkSum="checkSum_2", - segmented=True, - timeStamp=1640171961, - comment="comment_2", - ) - imageDataTest_2.setClientId("client_id_1") - imageDataTest_2.setSegmentationFileName("testSegementation_2.nrrd") - imageDataTest_2.addNewSegmentationMeta( - tag="final", - status=self.STATUS.FLAGGED, - level=self.LEVEL.MEDIUM, - approvedBy="theRadologist_2", - comment="comment_2", - ) - - # is not segmented - imageDataTest_3 = ImageData( - name="imageId_3", - fileName="fileName_3", - nodeName="nodeName_3", - checkSum="checkSum_3", - segmented=False, - timeStamp=1640171961, - comment="comment_3", - ) - imageDataTest_3.setClientId("client_id_3") - - self.nameToImageData: Dict[str, ImageData] = {} - self.nameToImageData["imageId_1"] = imageDataTest_1 - self.nameToImageData["imageId_2"] = imageDataTest_2 - self.nameToImageData["imageId_3"] = imageDataTest_3 - self.imageDataExtractor = ImageDataExtractor(nameToImageData=self.nameToImageData) - self.imageDataExtractor.init() - - @classmethod - def areEqual(self, imageData_1: ImageData, imageData_2: ImageData) -> bool: - if ( - imageData_1.getClientId() == imageData_2.getClientId() - and imageData_1.getName() == imageData_2.getName() - and imageData_1.getFileName() == imageData_2.getFileName() - and imageData_1.getNodeName() == imageData_2.getNodeName() - and imageData_1.isSegemented() == imageData_2.isSegemented() - and imageData_1.getSegmentationFileName() == imageData_2.getSegmentationFileName() - and imageData_1.isApproved() == imageData_2.isApproved() - and imageData_1.isFlagged() == imageData_2.isFlagged() - and imageData_1.getLevel() == imageData_2.getLevel() - and imageData_1.getApprovedBy() == imageData_2.getApprovedBy() - ): - return True - return False - - def test_getTotalNumImages(self): - totalNumOfImages = self.imageDataExtractor.getTotalNumImages() - print(totalNumOfImages) - self.assertEqual(len(self.nameToImageData), totalNumOfImages) - - def test_getImageDataIds(self): - ids = self.imageDataExtractor.getImageDataIds() - expectedIds = [*self.nameToImageData.keys()] - containsAll = all(id in ids for id in expectedIds) - self.assertEqual(True, containsAll) - - def test_getClientIds(self): - expectedClientIds = ["client_id_1"] - clientIds = self.imageDataExtractor.getClientIds() - self.assertEqual(len(expectedClientIds), len(clientIds)) - containsClients = all(id in clientIds for id in expectedClientIds) - self.assertEqual(True, containsClients) - - def test_getReviewers(self): - expectedReviewersIds = ["theRadologist_1", "theRadologist_2"] - reviewerIds = self.imageDataExtractor.getReviewers() - self.assertEqual(len(expectedReviewersIds), len(reviewerIds)) - containsReviewers = all(id in reviewerIds for id in expectedReviewersIds) - self.assertEqual(True, containsReviewers) - - def test_getImageDataNotsegmented(self): - notSegmentedImages: List[ImageData] = self.imageDataExtractor.getImageDataNotsegmented() - self.assertEqual(1, len(notSegmentedImages)) - notSegementedImage = notSegmentedImages[0] - self.assertEqual("client_id_3", notSegementedImage.getClientId()) - self.assertEqual(False, notSegementedImage.isSegemented()) - - def test_getNumOfNotSegmented(self): - numOfNotSegmented = self.imageDataExtractor.getNumOfNotSegmented() - self.assertEqual(1, numOfNotSegmented) - - def test_getNumOfSegmented(self): - numOfNotSegmented = self.imageDataExtractor.getNumOfSegmented() - self.assertEqual(2, numOfNotSegmented) - - def test_getSegmentationProgessInPercentage(self): - percentage = self.imageDataExtractor.getSegmentationProgessInPercentage() - self.assertEqual(66, percentage) - - def test_getSegmentationProgessInPercentage_as_fraction(self): - idxTotalSegmented = self.imageDataExtractor.getSegmentationVsTotalStr() - self.assertEqual("2/3", idxTotalSegmented) - - def test_getApprovalProgressInPercentage(self): - fraction = self.imageDataExtractor.getApprovalProgressInPercentage() - self.assertEqual(33, fraction) - - def test_getApprovalVsTotal(self): - idxTotalApproved = self.imageDataExtractor.getApprovalVsTotal() - self.assertEqual("1/3", idxTotalApproved) - - def test_getAllImageData_segmented_is_true_approved_is_true(self): - imageDatas = self.imageDataExtractor.getAllImageData( - segmented=True, notSegmented=False, approved=True, flagged=False - ) - self.assertEqual(1, len(imageDatas)) - expectedImageData = self.nameToImageData["imageId_1"] - self.assertEqual(True, self.areEqual(expectedImageData, imageDatas[0])) - - def test_getAllImageData_segmented_is_true_flagges_is_true(self): - imageDatas = self.imageDataExtractor.getAllImageData( - segmented=True, notSegmented=False, approved=False, flagged=True - ) - self.assertEqual(1, len(imageDatas)) - expectedImageData = self.nameToImageData["imageId_2"] - self.assertEqual(True, self.areEqual(expectedImageData, imageDatas[0])) - - def test_getAllImageData_isNotSegmented_is_false_approved_is_false(self): - imageDatas = self.imageDataExtractor.getAllImageData( - segmented=False, notSegmented=True, approved=False, flagged=False - ) - self.assertEqual(1, len(imageDatas)) - expectedImageData = self.nameToImageData["imageId_3"] - self.assertEqual(True, self.areEqual(expectedImageData, imageDatas[0])) - - def test_getImageDataByClientId_approved_is_true(self): - imageDataTest_4 = ImageData( - name="imageId_4", - fileName="fileName_4", - nodeName="nodeName_4", - checkSum="checkSum_4", - segmented=True, - timeStamp=1640171961, - comment="comment_4", - ) - imageDataTest_4.setClientId("client_id_1") - imageDataTest_4.setSegmentationFileName("testSegementation_4.nrrd") - imageDataTest_4.addNewSegmentationMeta( - tag="final", - status=self.STATUS.APPROVED, - level=self.LEVEL.MEDIUM, - approvedBy="theRadologist_4", - comment="comment_4", - ) - self.nameToImageData["imageId_4"] = imageDataTest_4 - - imageDataExtractor = ImageDataExtractor(nameToImageData=self.nameToImageData) - imageDataExtractor.init() - returnedImageDatas = imageDataExtractor.getImageDataByClientId( - clientId="client_id_1", approved=True, flagged=False - ) - self.assertEqual(2, len(returnedImageDatas)) - returnedImageData_1 = list(filter(lambda image: (image.getName() == "imageId_1"), returnedImageDatas)) - returnedImageData_4 = list(filter(lambda image: (image.getName() == "imageId_4"), returnedImageDatas)) - - self.assertEqual(True, self.areEqual(self.nameToImageData["imageId_1"], returnedImageData_1[0])) - self.assertEqual(True, self.areEqual(self.nameToImageData["imageId_4"], returnedImageData_4[0])) - - def test_getImageDataByClientAndReviewer_approved_is_true(self): - imageDataExtractor = ImageDataExtractor(nameToImageData=self.nameToImageData) - imageDataExtractor.init() - returnedImageDatas = imageDataExtractor.getImageDataByClientAndReviewer( - clientId="client_id_1", reviewerId="theRadologist_1", approved=True, flagged=False - ) - for imageData in returnedImageDatas: - imageData.display() - - self.assertEqual(1, len(returnedImageDatas)) - imageData = returnedImageDatas[0] - self.assertEqual(True, self.areEqual(self.nameToImageData["imageId_1"], imageData)) - - def test_getImageDataByClientId_flagged_is_true(self): - returnedImageDatas = self.imageDataExtractor.getImageDataByClientId( - clientId="client_id_1", approved=False, flagged=True - ) - self.assertEqual(1, len(returnedImageDatas)) - returnedImageData = returnedImageDatas[0] - expectedImageData = self.nameToImageData["imageId_2"] - self.assertEqual(True, self.areEqual(expectedImageData, returnedImageData)) - - def test_getImageDataByReviewer_approved_is_true(self): - returnedImageDatas = self.imageDataExtractor.getImageDataByReviewer( - reviewerId="theRadologist_1", approved=True, flagged=False - ) - self.assertEqual(1, len(returnedImageDatas)) - returnedImageData = returnedImageDatas[0] - expectedImageData = self.nameToImageData["imageId_1"] - self.assertEqual(True, self.areEqual(expectedImageData, returnedImageData)) - - def test_getImageDataByReviewer_flagged_is_true(self): - returnedImageDatas = self.imageDataExtractor.getImageDataByReviewer( - reviewerId="theRadologist_2", approved=False, flagged=True - ) - self.assertEqual(1, len(returnedImageDatas)) - returnedImageData = returnedImageDatas[0] - expectedImageData = self.nameToImageData["imageId_2"] - self.assertEqual(True, self.areEqual(expectedImageData, returnedImageData)) - - def test_getImageDataByLevel_level_hard(self): - returnedImageDatas = self.imageDataExtractor.getImageDataByLevel(isEasy=False, isMedium=False, isHard=True) - self.assertEqual(1, len(returnedImageDatas)) - returnedImageData = returnedImageDatas["imageId_1"] - expectedImageData = self.nameToImageData["imageId_1"] - self.assertEqual(True, self.areEqual(expectedImageData, returnedImageData)) - - def test_getSingleImageDataById_found_ImageData(self): - returnedImageData = self.imageDataExtractor.getSingleImageDataById(imageId="imageId_1") - expectedImageData = self.nameToImageData["imageId_1"] - self.assertTrue(self.areEqual(expectedImageData, returnedImageData)) - - def test_getSingleImageDataById_isBlank(self): - returnedImageData = self.imageDataExtractor.getSingleImageDataById(imageId=" ") - self.assertIsNone(returnedImageData) - - def test_getMultImageDataByIds(self): - returnedImageDatas: Dict[str, ImageData] = self.imageDataExtractor.getMultImageDataByIds( - ids=["imageId_1", "imageId_3", "dummy"] - ) - self.assertEqual(2, len(returnedImageDatas)) - - imageDataWithimageId_1 = returnedImageDatas["imageId_1"] - imageDataWithimageId_3 = returnedImageDatas["imageId_3"] - self.assertTrue(self.areEqual(self.nameToImageData["imageId_1"], imageDataWithimageId_1)) - self.assertTrue(self.areEqual(self.nameToImageData["imageId_3"], imageDataWithimageId_3)) - - def test_getMultImageDataByIds_given_empty_idList(self): - returnedImageDatas: Dict[str, ImageData] = self.imageDataExtractor.getMultImageDataByIds(ids=[]) - self.assertEqual(0, len(returnedImageDatas)) - - def test_getNumApprovedSegmentation(self): - numApprovedSegmentation = self.imageDataExtractor.getNumApprovedSegmentation() - self.assertEqual(1, numApprovedSegmentation) - - def test_getPercentageApproved(self): - imageDataTest_4 = ImageData( - name="imageId_4", - fileName="fileName_4", - nodeName="nodeName_4", - checkSum="checkSum_4", - segmented=True, - timeStamp=1640171961, - comment="comment_4", - ) - imageDataTest_4.setClientId("client_id_1") - imageDataTest_4.setSegmentationFileName("testSegementation_4.nrrd") - imageDataTest_4.addNewSegmentationMeta( - tag="final", - status=self.STATUS.APPROVED, - level=self.LEVEL.MEDIUM, - approvedBy="theRadologist_4", - comment="comment_4", - ) - self.nameToImageData["imageId_4"] = imageDataTest_4 - - imageDataExtractor = ImageDataExtractor(nameToImageData=self.nameToImageData) - imageDataExtractor.init() - - precentage, idxApprovedOfClient = imageDataExtractor.getPercentageApproved(clientId="client_id_1") - self.assertEqual(66, precentage) - self.assertEqual("2/3", idxApprovedOfClient) - - def test_getPercentageSemgmentedByClient(self): - imageDataTest_4 = ImageData( - name="imageId_4", - fileName="fileName_4", - nodeName="nodeName_4", - checkSum="checkSum_4", - segmented=True, - timeStamp=1640171961, - comment="comment_4", - ) - imageDataTest_4.setClientId("client_id_1") - imageDataTest_4.setSegmentationFileName("testSegementation_4.nrrd") - imageDataTest_4.addNewSegmentationMeta( - tag="final", - status=self.STATUS.APPROVED, - level=self.LEVEL.MEDIUM, - approvedBy="theRadologist_4", - comment="comment_4", - ) - self.nameToImageData["imageId_4"] = imageDataTest_4 - - imageDataExtractor = ImageDataExtractor(nameToImageData=self.nameToImageData) - imageDataExtractor.init() - - precentage, idxSegmentedByClien = imageDataExtractor.getPercentageSemgmentedByClient(clientId="client_id_1") - self.assertEqual(75, precentage) - self.assertEqual("3/4", idxSegmentedByClien) - - def test_getApprovedSegmentationIds(self): - idsOfApprovedSementations = self.imageDataExtractor.getApprovedSegmentationIds() - self.assertEqual(1, len(idsOfApprovedSementations)) - - def test_getSegmentedImageIds(self): - idsOfSegmented = self.imageDataExtractor.getSegmentedImageIds() - self.assertEqual(2, len(idsOfSegmented)) - - -if __name__ == "__main__": - unittest.main() diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/UnitTests/ImageDataTest.py b/monailabel/plugins/slicer/MONAILabelReviewer/UnitTests/ImageDataTest.py deleted file mode 100644 index 4541a75..0000000 --- a/monailabel/plugins/slicer/MONAILabelReviewer/UnitTests/ImageDataTest.py +++ /dev/null @@ -1,267 +0,0 @@ -# Copyright (c) MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import json -import os -import sys -import unittest - -# sys.path.append("..") -from MONAILabelReviewerLib.ImageData import ImageData -from MONAILabelReviewerLib.JsonParser import JsonParser -from MONAILabelReviewerLib.SegmentationMeta import SegmentationMeta - - -class ImageDataTest(unittest.TestCase): - @classmethod - def setUp(self): - self.jsonParser = JsonParser(None) - self.imageData = self.createTestImageData() - - fileNameWithMultipleVersions = "test_datastore_v2_image_with_multiple_versions.json" - self.parsedImageDataWithMultiVersions = self.parseJsonToImageData( - path=fileNameWithMultipleVersions, fileName="lan.dcm" - ) - - fileNameWithSingleVersion = "test_datastore_v2_image_with_segmentation.json" - self.parsedImageDataWithSingleVersions = self.parseJsonToImageData( - path=fileNameWithSingleVersion, fileName="mai.dcm" - ) - - @classmethod - def parseJsonToImageData(self, path: str, fileName: str) -> ImageData: - path_str = self.loadJsonStr(path) - json_str = json.loads(path_str) - return self.jsonParser.jsonToImageData(fileName, json_str) - - @classmethod - def loadJsonStr(self, fileName: str) -> str: - with open(os.path.join(sys.path[0], "TestDataSet/" + fileName)) as f: - data = json.dumps(json.load(f)) - return data - - @classmethod - def createTestImageData(self) -> ImageData: - name = "6667571" - fileName = "6667571.dcm" - nodeName = "6667571.dcm" - checkSum = "SHA256:2a454e9ab8a33dc74996784163a362a53e04adcee2fd73a8b6299bf0ce5060d3" - isSegmented = True - timeStamp = 1639647550 - comment = "test-comment" - - imageData = ImageData( - name=name, - fileName=fileName, - nodeName=nodeName, - checkSum=checkSum, - segmented=isSegmented, - timeStamp=timeStamp, - comment=comment, - ) - - # imageData.addNewSegmentationMeta(status="flagged", level="hard", approvedBy="Dr.Faust", - # comment="Damit ich erkenne, was die Menchenwelt im Innerstern zusammenhaelt") - imageData.setSegmentationFileName("6662775.seg.nrrd") - imageData.setClientId("segmentator") - imageData.setVersionNames(["final", "version_1", "version_2"]) - - segMeta_final = self.createSegMeta( - status="flagged", - level="hard", - approvedBy="annotator", - comment="Errare humanum est", - editTime="Thu Jan 13 12:21:01 2022", - ) - segMeta_version1 = self.createSegMeta( - status="flagged", - level="medium", - approvedBy="radiologist_1", - comment="Irren ist menschlisch", - editTime="Thu Jan 14 12:21:01 2022", - ) - segMeta_version2 = self.createSegMeta( - status="flagged", - level="easy", - approvedBy="radiologist_2", - comment="Menschlische Gebrechen sühnet reine Menschlichkeit", - editTime="Thu Jan 15 12:21:01 2022", - ) - - segmentationMetaDict = {} - segmentationMetaDict["final"] = segMeta_final - segmentationMetaDict["version_1"] = segMeta_version1 - segmentationMetaDict["version_2"] = segMeta_version2 - - imageData.setSegmentationMetaDict(segmentationMetaDict) - - return imageData - - @classmethod - def createSegMeta(self, status, level, approvedBy, comment, editTime) -> SegmentationMeta: - segmentationMeta = SegmentationMeta() - segmentationMeta.build(status=status, level=level, approvedBy=approvedBy, comment=comment, editTime=editTime) - return segmentationMeta - - def test_getStatus(self): - status = self.imageData.getStatus(versionTag="final") - self.assertEqual(status, "flagged") - - def test_getLatestVersionTag(self): - latestVersion = self.imageData.getLatestVersionTag() - self.assertEqual(latestVersion, "version_2") - - def test_getLatestVersionTag_remove_last_version(self): - self.imageData.deleteVersionName("version_2") - versionNames = self.imageData.getVersionNames() - self.assertListEqual(["final", "version_1"], versionNames) - - def test_getLatestVersionTag_remove_version_inbetween(self): - self.imageData.deleteVersionName("version_1") - versionNames = self.imageData.getVersionNames() - self.assertListEqual(["final", "version_2"], versionNames) - - def test_getMetaByVersionTag(self): - segMeta_version2 = self.imageData.getMetaByVersionTag("version_2") - - exspectMeta = { - "segmentationMeta": { - "status": "flagged", - "approvedBy": "radiologist_2", - "level": "easy", - "comment": "Menschlische Gebrechen sühnet reine Menschlichkeit", - "editTime": "Thu Jan 15 12:21:01 2022", - } - } - - self.assertDictEqual(exspectMeta, segMeta_version2) - - def test_obtainUpdatedParams(self): - params = self.parsedImageDataWithMultiVersions.obtainUpdatedParams("version_3") - exspectedParams = { - "label_info": [ - {"name": "Lung", "idx": 1}, - {"name": "Heart", "idx": 2}, - {"name": "Trachea", "idx": 3}, - {"name": "Mediastinum", "idx": 4}, - {"name": "Clavicle", "idx": 5}, - ], - "segmentationMeta": { - "status": "self.status_3", - "approvedBy": "self.approvedBy_3", - "level": "self.level_3", - "comment": "self.comment_3", - }, - } - - self.assertEqual(exspectedParams["label_info"], params["label_info"]) - self.assertEqual(exspectedParams["segmentationMeta"]["status"], params["segmentationMeta"]["status"]) - self.assertEqual(exspectedParams["segmentationMeta"]["approvedBy"], params["segmentationMeta"]["approvedBy"]) - self.assertEqual(exspectedParams["segmentationMeta"]["level"], params["segmentationMeta"]["level"]) - self.assertEqual(exspectedParams["segmentationMeta"]["comment"], params["segmentationMeta"]["comment"]) - - def test_isEqualSegmentationMeta(self): - isEqual = self.parsedImageDataWithMultiVersions.isEqualSegmentationMeta( - tag="version_3", - status="self.status_3", - level="self.level_3", - approvedBy="self.approvedBy_3", - comment="self.comment_3", - ) - self.assertTrue(isEqual) - - def test_isEqualSegmentationMeta_when_segmentationmetadata_does_not_exit_add(self): - isEqual = self.parsedImageDataWithMultiVersions.isEqualSegmentationMeta( - tag="version_4", - status="self.status_4", - level="self.level_4", - approvedBy="self.approvedBy_4", - comment="self.comment_4", - ) - - self.assertFalse(isEqual) - metas = self.parsedImageDataWithMultiVersions.getsegmentationMetaDict() - self.assertTrue("version_4" in metas) - - def test_getClientId_when_request_init_segmentation(self): - clientId = self.parsedImageDataWithMultiVersions.getClientId("final") - self.assertEqual("user-xyz", clientId) - - def test_getClientId_when_request_edit_version(self): - clientId = self.parsedImageDataWithMultiVersions.getClientId("version_3") - self.assertEqual("user-xyz", clientId) - - def test_getComment_when_request_init_segmentation(self): - comment = self.parsedImageDataWithMultiVersions.getComment("final") - self.assertEqual("self.comment_final", comment) - - def test_getComment_when_request_edit_version(self): - comment = self.parsedImageDataWithMultiVersions.getComment("version_3") - self.assertEqual("self.comment_3", comment) - - def test_getApprovedBy_when_request_init_segmentation(self): - approvedBy = self.parsedImageDataWithMultiVersions.getApprovedBy("final") - self.assertEqual("self.approvedBy_final", approvedBy) - - def test_getApprovedBy_when_request_edit_version(self): - approvedBy = self.parsedImageDataWithMultiVersions.getApprovedBy("version_3") - self.assertEqual("self.approvedBy_3", approvedBy) - - def test_isFlagged_when_segmentation_is_not_flagged(self): - isFlagged = self.parsedImageDataWithMultiVersions.isFlagged("version_3") - self.assertFalse(isFlagged) - - def test_isFlagged_when_segmentation_is_flagged(self): - isFlagged = self.imageData.isFlagged("version_1") - self.assertTrue(isFlagged) - - def test_hasSegmentationMeta_when_has_segmentation(self): - hasSegmentationMeta = self.imageData.hasSegmentationMeta("version_1") - self.assertTrue(hasSegmentationMeta) - - def test_hasSegmentationMeta_when_version_does_not_exit(self): - hasSegmentationMeta = self.imageData.hasSegmentationMeta("version_4") - self.assertFalse(hasSegmentationMeta) - - def test_getTimeOfEditing(self): - editTime = self.parsedImageDataWithMultiVersions.getTimeOfEditing("version_1") - self.assertEqual("2022-06-27 08:43:00", editTime) - - def test_getSegmentationMetaByVersionTag(self): - segmentationData: SegmentationMeta = self.parsedImageDataWithMultiVersions.getSegmentationMetaByVersionTag( - "version_1" - ) - self.assertEqual("self.status_1", segmentationData.getStatus()) - self.assertEqual("self.level_1", segmentationData.getLevel()) - self.assertEqual("self.approvedBy_1", segmentationData.getApprovedBy()) - self.assertEqual(1656312180, segmentationData.getEditTime()) - self.assertEqual("self.comment_1", segmentationData.getComment()) - - def test_isApproved(self): - isApproved = self.parsedImageDataWithMultiVersions.isApproved() - self.assertTrue(isApproved) - - def test_getApprovedVersionTagElseReturnLatestVersion_imagedata_with_multiple_versions(self): - self.parsedImageDataWithMultiVersions.getsegmentationMetaDict() - latestVersion = self.parsedImageDataWithMultiVersions.getApprovedVersionTagElseReturnLatestVersion() - self.assertEqual("version_4", latestVersion) - - def test_getApprovedVersionTagElseReturnLatestVersion_imagedata_with_single_version(self): - metas = self.parsedImageDataWithSingleVersions.getsegmentationMetaDict() - for k, v in metas.items(): - print("key: ", k) - v.display() - latestVersion = self.parsedImageDataWithSingleVersions.getApprovedVersionTagElseReturnLatestVersion() - self.assertEqual("final", latestVersion) - - -if __name__ == "__main__": - unittest.main() diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/UnitTests/JsonParserTest.py b/monailabel/plugins/slicer/MONAILabelReviewer/UnitTests/JsonParserTest.py deleted file mode 100644 index 106e30a..0000000 --- a/monailabel/plugins/slicer/MONAILabelReviewer/UnitTests/JsonParserTest.py +++ /dev/null @@ -1,220 +0,0 @@ -# Copyright (c) MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import json -import os -import sys -import unittest - -# sys.path.append("..") -from MONAILabelReviewerLib.ImageData import ImageData -from MONAILabelReviewerLib.JsonParser import JsonParser - - -class JsonParserTest(unittest.TestCase): - @classmethod - def setUp(self): - self.jsonParser = JsonParser(None) - - fileNameWithOutSegmentation = "test_datastore_v2_image_without_segmentation.json" - json_without_segmentation_str = self.loadJsonStr(fileNameWithOutSegmentation) - - self.json_without_segmentation = json.loads(json_without_segmentation_str) - - fileNameWithSegmentation = "test_datastore_v2_image_with_segmentation.json" - json_with_segmentation_str = self.loadJsonStr(fileNameWithSegmentation) - self.json_with_segmentation = json.loads(json_with_segmentation_str) - - fileNameWithMultipleVersions = "test_datastore_v2_image_with_multiple_versions.json" - fileNameWithMultipleVersions_str = self.loadJsonStr(fileNameWithMultipleVersions) - self.json_with_multiple_versions = json.loads(fileNameWithMultipleVersions_str) - - @classmethod - def loadJsonStr(self, fileName: str) -> str: - with open(os.path.join(sys.path[0], "TestDataSet/" + fileName)) as f: - data = json.dumps(json.load(f)) - return data - - def test_getFileName(self): - name = self.jsonParser.getFileName(self.json_without_segmentation) - self.assertEqual(name, "6245968.dcm") - - def test_getNodeName(self): - name = self.jsonParser.getNodeName(self.json_without_segmentation) - self.assertEqual(name, "6245968.dcm") - - def test_getCheckSum(self): - name = self.jsonParser.getCheckSum(self.json_without_segmentation) - self.assertEqual(name, "SHA256:f1f8ef13433b1f0966e589818f3180750606eff69b3bc4a55e0181d7a9da8da1") - - def test_getTimeStamp(self): - name = self.jsonParser.getTimeStamp(self.json_without_segmentation) - self.assertEqual(name, 1642371057) - - def test_getInfo(self): - name = self.jsonParser.getInfo(self.json_without_segmentation) - info = ( - '{"ts": 1642170799,' - '"checksum": "SHA256:f1f8ef13433b1f0966e589818f3180750606eff69b3bc4a55e0181d7a9da8da1",' - '"name": "6245968.dcm", "strategy": {"Random": {"ts": 1642371057,' - '"client_id": "Dr Radiologist"}}}' - ) - infoDict = json.loads(info) - self.assertEqual(name, infoDict) - - def test_isSegmented(self): - name = self.jsonParser.isSegmented(self.json_without_segmentation) - self.assertEqual(False, name) - - def test_getSegmentationName(self): - name = self.jsonParser.getSegmentationName(self.json_without_segmentation) - self.assertEqual(name, "6245968.seg.nrrd") - - def test_hasKeyAnnotate(self): - result = self.jsonParser.hasKeyAnnotate(self.json_without_segmentation) - self.assertEqual(result, False) - - def test_hasKeyRandom(self): - result = self.jsonParser.hasKeyRandom(self.json_without_segmentation) - self.assertEqual(result, True) - - def test_getClientId(self): - result = self.jsonParser.getClientId(self.json_without_segmentation) - self.assertEqual(result, "Dr Radiologist") - - def test_getMetaStatus(self): - result = self.jsonParser.getMetaStatus("final", self.json_with_segmentation) - self.assertEqual(result, "flagged") - - def test_getMetaLevel(self): - result = self.jsonParser.getMetaLevel("final", self.json_with_segmentation) - self.assertEqual(result, "easy") - - def test_getMetaApprovedBy(self): - result = self.jsonParser.getMetaApprovedBy("final", self.json_with_segmentation) - self.assertEqual(result, "Prof Radiogolist") - - def test_getMetaEditTime(self): - result = self.jsonParser.getMetaEditTime("final", self.json_with_segmentation) - self.assertEqual(result, "Thu Jan 13 12:21:01 2022") - - def test_getMetaComment(self): - result = self.jsonParser.getMetaComment("final", self.json_with_segmentation) - self.assertEqual(result, "Segementation was not easy") - - def test_jsonToImageData(self): - imageData: ImageData = self.jsonParser.jsonToImageData("6662775.dcm", self.json_with_segmentation) - self.assertEqual(imageData.getName(), "6662775.dcm") - self.assertEqual(imageData.getFileName(), "6662775.dcm") - self.assertEqual( - imageData.getCheckSum(), "SHA256:1b474d23bda3de0c28f4287a7c0380d461e9f71d0dc468e64f336412cb575327" - ) - self.assertEqual(imageData.isSegemented(), True) - self.assertEqual(imageData.getClientId(), "Annotator") - self.assertEqual(imageData.getStatus(), "flagged") - self.assertEqual(imageData.getLevel(), "easy") - self.assertEqual(imageData.getApprovedBy(), "Prof Radiogolist") - self.assertEqual(imageData.getTimeOfAnnotation(), "2021-12-16 10:35:51") - - def test_extractLabelNames(self): - labelsDict = self.jsonParser.extractLabels(self.json_with_multiple_versions) - labelNames = self.jsonParser.extractLabelNames(labelsDict) - self.assertListEqual(labelNames, ["final", "version_1", "version_2", "version_3", "version_4"]) - - def test_jsonToImageData_with_multiple_versions(self): - imageData: ImageData = self.jsonParser.jsonToImageData("lan.dcm", self.json_with_multiple_versions) - - self.assertEqual(imageData.getName(), "lan.dcm") - self.assertEqual(imageData.getFileName(), "lan.dcm") - self.assertEqual( - imageData.getCheckSum(), "SHA256:a48c454592a36c1d2895322320e5ab5479eb5e93d9d4f3e16825625033875d6f" - ) - - self.assertEqual(imageData.isSegemented(), True) - self.assertEqual(imageData.getClientId(), "user-xyz") - self.assertEqual(imageData.getTimeOfAnnotation(), "2022-01-02 17:52:47") - self.assertListEqual(imageData.getVersionNames(), ["final", "version_1", "version_2", "version_3", "version_4"]) - # dictMeta = imageData.getsegmentationMetaDict() - # for k,v in dictMeta.items(): - # print("------- key: ", k) - # v.display() - - def test_extractLabelContentByName(self): - labelsDict = self.jsonParser.extractLabels(self.json_with_multiple_versions) - labelContent = self.jsonParser.extractLabelContentByName(labelsDict) - exspectedLabelContent = { - "label_info": [ - {"name": "Lung", "idx": 1}, - {"name": "Heart", "idx": 2}, - {"name": "Trachea", "idx": 3}, - {"name": "Mediastinum", "idx": 4}, - {"name": "Clavicle", "idx": 5}, - ] - } - self.assertDictEqual(exspectedLabelContent, labelContent) - - def test_extractSegmentationMetaOfVersion(self): - labelsDict = self.jsonParser.extractLabels(self.json_with_multiple_versions) - labelContent = self.jsonParser.extractSegmentationMetaOfVersion(labelsDict, labelName="version_3") - segmentationMeta = self.jsonParser.produceSegementationData(labelContent) - - self.assertEqual("self.status_3", segmentationMeta.getStatus()) - self.assertEqual("self.level_3", segmentationMeta.getLevel()) - self.assertEqual("self.approvedBy_3", segmentationMeta.getApprovedBy()) - self.assertEqual("self.comment_3", segmentationMeta.getComment()) - self.assertEqual(1656312200, segmentationMeta.getEditTime()) - - def test_extractSegmentationMetaOfVersion_final_as_label(self): - labelsDict = self.jsonParser.extractLabels(self.json_with_multiple_versions) - labelContent = self.jsonParser.extractSegmentationMetaOfVersion(labelsDict, labelName="final") - segmentationMeta = self.jsonParser.produceSegementationData(labelContent) - - self.assertEqual("self.status_final", segmentationMeta.getStatus()) - self.assertEqual("self.level_final", segmentationMeta.getLevel()) - self.assertEqual("self.approvedBy_final", segmentationMeta.getApprovedBy()) - self.assertEqual("self.comment_final", segmentationMeta.getComment()) - self.assertEqual(1656312100, segmentationMeta.getEditTime()) - - def test_getAllSegmentationMetaOfAllLabels(self): - labelsDict = self.jsonParser.extractLabels(self.json_with_multiple_versions) - labelNames = self.jsonParser.extractLabelNames(labelsDict) - segmentationMetaDict = self.jsonParser.getAllSegmentationMetaOfAllLabels(labelsDict, labelNames) - - self.assertNotIn("version_2", segmentationMetaDict) - self.assertListEqual(list(segmentationMetaDict.keys()), ["final", "version_1", "version_3", "version_4"]) - - self.assertEqual("self.status_final", segmentationMetaDict["final"].getStatus()) - self.assertEqual("self.level_final", segmentationMetaDict["final"].getLevel()) - self.assertEqual("self.approvedBy_final", segmentationMetaDict["final"].getApprovedBy()) - self.assertEqual("self.comment_final", segmentationMetaDict["final"].getComment()) - self.assertEqual(1656312100, segmentationMetaDict["final"].getEditTime()) - - self.assertEqual("self.status_1", segmentationMetaDict["version_1"].getStatus()) - self.assertEqual("self.level_1", segmentationMetaDict["version_1"].getLevel()) - self.assertEqual("self.approvedBy_1", segmentationMetaDict["version_1"].getApprovedBy()) - self.assertEqual("self.comment_1", segmentationMetaDict["version_1"].getComment()) - self.assertEqual(1656312180, segmentationMetaDict["version_1"].getEditTime()) - - self.assertEqual("self.status_3", segmentationMetaDict["version_3"].getStatus()) - self.assertEqual("self.level_3", segmentationMetaDict["version_3"].getLevel()) - self.assertEqual("self.approvedBy_3", segmentationMetaDict["version_3"].getApprovedBy()) - self.assertEqual("self.comment_3", segmentationMetaDict["version_3"].getComment()) - self.assertEqual(1656312200, segmentationMetaDict["version_3"].getEditTime()) - - self.assertEqual("approved", segmentationMetaDict["version_4"].getStatus()) - self.assertEqual("self.level_4", segmentationMetaDict["version_4"].getLevel()) - self.assertEqual("self.approvedBy_4", segmentationMetaDict["version_4"].getApprovedBy()) - self.assertEqual("self.comment_4", segmentationMetaDict["version_4"].getComment()) - self.assertEqual(1656312200, segmentationMetaDict["version_4"].getEditTime()) - - -if __name__ == "__main__": - unittest.main() diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/UnitTests/MonaiServerRESTTest.py b/monailabel/plugins/slicer/MONAILabelReviewer/UnitTests/MonaiServerRESTTest.py deleted file mode 100644 index 874d031..0000000 --- a/monailabel/plugins/slicer/MONAILabelReviewer/UnitTests/MonaiServerRESTTest.py +++ /dev/null @@ -1,257 +0,0 @@ -# Copyright (c) MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - - -import json -import logging -import os -import sys -import time -import unittest - -import requests -from mockserver_friendly import ( - MockServerFriendlyClient, - json_equals, - request, - response, - times, -) - -# sys.path.append("..") -from MONAILabelReviewerLib.MonaiServerREST import MonaiServerREST -from python_on_whales import docker - - -class MonaiServerRESTTest(unittest.TestCase): - @classmethod - def setUpClass(cls) -> None: - logging.info("Start test sets of MonaiServerREST-Test-class") - cls.MOCK_SERVER_URL = "http://localhost:1080" - cls.strJson = cls.loadJsonStr("test_json_datastore_v2.json") - cls.mockServerContainer = docker.run( - "jamesdbloom/mockserver:mockserver-5.4.1", publish=[(1080, 1080)], detach=True - ) - if cls.mockServerContainer.state.running is True: - logging.info(f"Mock server started successfully. Listening on port {1080}") - else: - logging.info("Starting mockserver failed") - time.sleep(8) - return super().setUpClass() - - @classmethod - def tearDownClass(cls) -> None: - cls.mockServerContainer.stop() - if cls.mockServerContainer.state.running is False: - logging.info("Mock server terminated successfully") - cls.mockServerContainer.remove() - return super().tearDownClass() - - @classmethod - def loadJsonStr(cls, fileName: str) -> str: - with open(os.path.join(sys.path[0], "TestDataSet/" + fileName)) as f: - data = json.dumps(json.load(f)) - return data - - def test_requestDataStoreInfo(cls): - client = MockServerFriendlyClient(cls.MOCK_SERVER_URL) - urlToBeTested = "http://localhost:1080/datastore?output=all" - client.expect( - request(method="GET", path="/datastore", querystring={"output": "all"}, body=json_equals(cls.strJson)), - response(code=200), - times(1), - ) - - result = requests.get( - cls.MOCK_SERVER_URL + "/datastore", - params={"output": "all"}, - json=cls.strJson, - headers={"Content-Type": "application/json"}, - ) - - cls.assertEqual(200, result.status_code) - cls.assertEqual(urlToBeTested, result.url) - client.reset() - - def test_request_for_image_with_segmentation_meta_data(cls): - client = MockServerFriendlyClient(cls.MOCK_SERVER_URL) - - urlToBeTested = cls.MOCK_SERVER_URL + "/datastore/updatelabelinfo?label=6662775" - body = { - "segmentationMeta": { - "status": "approved", - "approvedBy": "", - "level": "hard", - "comment": "", - "editTime": "Fri May 27 07:41:08 2022", - } - } - - client.expect( - request( - method="PUT", - path="/datastore/updatelabelinfo", - querystring={"label": "6662775"}, - headers={"content-Type": "application/json"}, - body=json_equals(body), - ), - response(code=200), - times(1), - ) - - result = requests.put( - cls.MOCK_SERVER_URL + "/datastore/updatelabelinfo", - params={"label": "6662775"}, - json=body, - headers={"content-Type": "application/json"}, - ) - - cls.assertEqual(200, result.status_code) - cls.assertEqual(urlToBeTested, result.url) - client.reset() - - def test_updateLabelInfo(cls): - client = MockServerFriendlyClient(cls.MOCK_SERVER_URL) - - urlToBeTested = "{}/datastore/updatelabelinfo?label={}&tag={}".format( - cls.MOCK_SERVER_URL, str(6662775), "final" - ) - body = { - "segmentationMeta": { - "status": "approved", - "approvedBy": "", - "level": "hard", - "comment": "", - "editTime": "Fri May 27 07:41:08 2022", - } - } - - client.expect( - request( - method="PUT", - path="/datastore/updatelabelinfo", - querystring={"label": "6662775", "tag": "final"}, - headers={"content-Type": "application/json"}, - body=json_equals(body), - ), - response(code=200), - times(1), - ) - - result = requests.put( - cls.MOCK_SERVER_URL + "/datastore/updatelabelinfo", - params={"label": "6662775", "tag": "final"}, - json=body, - headers={"content-Type": "application/json"}, - ) - cls.assertEqual(200, result.status_code) - - cls.assertEqual(urlToBeTested, result.url) - client.reset() - - def test_saveLabel(cls): - client = MockServerFriendlyClient(cls.MOCK_SERVER_URL) - urlToBeTested = "{}/datastore/label?image={}&tag={}".format(cls.MOCK_SERVER_URL, 6662775, "version_1") - body = { - "params": { - "label_info": [ - {"name": "Lung", "idx": 1}, - {"name": "Heart", "idx": 2}, - {"name": "Trachea", "idx": 3}, - {"name": "Mediastinum", "idx": 4}, - {"name": "Clavicle", "idx": 5}, - ], - "segmentationMeta": { - "status": "approved", - "approvedBy": "Approver", - "level": "hard", - "comment": "the_comment", - "editTime": 1660488836, - }, - } - } - - client.expect( - request( - method="PUT", - path="/datastore/label", - querystring={"image": "6662775", "tag": "version_1"}, - headers={"content-Type": "application/json"}, - body=json_equals(body), - ), - response(code=200), - times(1), - ) - - result = requests.put( - cls.MOCK_SERVER_URL + "/datastore/label", - params={"image": "6662775", "tag": "version_1"}, - json=body, - headers={"content-Type": "application/json"}, - ) - - cls.assertEqual(200, result.status_code) - cls.assertEqual(urlToBeTested, result.url) - client.reset() - - def test_deleteLabelByVersionTag(cls): - client = MockServerFriendlyClient(cls.MOCK_SERVER_URL) - - urlToBeTested = "{}/datastore/label?id={}&tag={}".format(cls.MOCK_SERVER_URL, "6662775", "final") - - client.expect( - request(method="DELETE", path="/datastore/label", querystring={"id": "6662775", "tag": "final"}), - response(code=200), - times(1), - ) - - result = requests.delete( - cls.MOCK_SERVER_URL + "/datastore/label", - params={"id": "6662775", "tag": "final"}, - ) - cls.assertEqual(200, result.status_code) - - cls.assertEqual(urlToBeTested, result.url) - client.reset() - - def test_checkServerConnection(cls): - client = MockServerFriendlyClient(cls.MOCK_SERVER_URL) - client.expect(request(method="GET"), response(code=200), times(1)) - - result = requests.get(cls.MOCK_SERVER_URL) - - cls.assertEqual(200, result.status_code) - cls.assertEqual(cls.MOCK_SERVER_URL + "/", result.url) - - def test_requestSegmentation(cls): - urlToBeTested = cls.MOCK_SERVER_URL + "/datastore/label?label=6662775&tag=final" - client = MockServerFriendlyClient(cls.MOCK_SERVER_URL) - - client.expect( - request(method="GET", path="/datastore/label", querystring={"label": "6662775", "tag": "final"}), - response(code=200), - times(1), - ) - - result = requests.get(cls.MOCK_SERVER_URL + "/datastore/label", params={"label": "6662775", "tag": "final"}) - - cls.assertEqual(200, result.status_code) - cls.assertEqual(urlToBeTested, result.url) - - def test_getDicomDownloadUri(cls): - monaiServerREST = MonaiServerREST(cls.MOCK_SERVER_URL) - imageId = "6662775" - url = monaiServerREST.getDicomDownloadUri(imageId) - cls.assertEqual("http://localhost:1080/datastore/image?image=6662775", url) - - -if __name__ == "__main__": - unittest.main() diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/UnitTests/TestDataSet/test_datastore_v2_image_with_multiple_versions.json b/monailabel/plugins/slicer/MONAILabelReviewer/UnitTests/TestDataSet/test_datastore_v2_image_with_multiple_versions.json deleted file mode 100644 index 36ecec3..0000000 --- a/monailabel/plugins/slicer/MONAILabelReviewer/UnitTests/TestDataSet/test_datastore_v2_image_with_multiple_versions.json +++ /dev/null @@ -1,204 +0,0 @@ -{ - "image": { - "ext": ".dcm", - "info": { - "ts": 1640005767, - "checksum": "SHA256:a48c454592a36c1d2895322320e5ab5479eb5e93d9d4f3e16825625033875d6f", - "name": "lan.dcm", - "strategy": { - "annotate": { - "ts": 1641142367, - "client_id": "user-xyz" - } - }, - "segmentationMeta": { - "status": "approved", - "approvedBy": "", - "level": "medium", - "comment": "", - "editTime": 1641142567 - } - } - }, - "labels": { - "final": { - "ext": ".nrrd", - "info": { - "label_info": [ - { - "name": "Lung", - "idx": 1 - }, - { - "name": "Heart", - "idx": 2 - }, - { - "name": "Trachea", - "idx": 3 - }, - { - "name": "Mediastinum", - "idx": 4 - }, - { - "name": "Clavicle", - "idx": 5 - } - ], - "client_id": "user-xyz", - "ts": 1641142448, - "checksum": "SHA256:46f01fd17dbe3e812e03ca3495b0282e90c7224d02ec85e63e9b5b4da83ba5af", - "name": "lan.nrrd", - "segmentationMeta": { - "status": "self.status_final", - "approvedBy": "self.approvedBy_final", - "level": "self.level_final", - "comment": "self.comment_final", - "editTime": 1656312100 - } - } - }, - "version_1": { - "ext": ".nrrd", - "info": { - "label_info": [ - { - "name": "Lung", - "idx": 1 - }, - { - "name": "Heart", - "idx": 2 - }, - { - "name": "Trachea", - "idx": 3 - }, - { - "name": "Mediastinum", - "idx": 4 - }, - { - "name": "Clavicle", - "idx": 5 - } - ], - "segmentationMeta": { - "status": "self.status_1", - "approvedBy": "self.approvedBy_1", - "level": "self.level_1", - "comment": "self.comment_1", - "editTime": 1656312180 - }, - "ts": 1656312180, - "checksum": "SHA256:6abdbcacccd5dabaeaf1c933802b6964c4a021a04d56cbe1a342cc04d6049cb5", - "name": "lan.nrrd" - } - }, - "version_2": { - "ext": ".nrrd", - "info": { - "label_info": [ - { - "name": "Lung", - "idx": 1 - }, - { - "name": "Heart", - "idx": 2 - }, - { - "name": "Trachea", - "idx": 3 - }, - { - "name": "Mediastinum", - "idx": 4 - }, - { - "name": "Clavicle", - "idx": 5 - } - ], - "ts": 1656312196, - "checksum": "SHA256:6abdbcacccd5dabaeaf1c933802b6964c4a021a04d56cbe1a342cc04d6049cb5", - "name": "lan.nrrd" - } - }, - "version_3": { - "ext": ".nrrd", - "info": { - "label_info": [ - { - "name": "Lung", - "idx": 1 - }, - { - "name": "Heart", - "idx": 2 - }, - { - "name": "Trachea", - "idx": 3 - }, - { - "name": "Mediastinum", - "idx": 4 - }, - { - "name": "Clavicle", - "idx": 5 - } - ], - "segmentationMeta": { - "status": "self.status_3", - "approvedBy": "self.approvedBy_3", - "level": "self.level_3", - "comment": "self.comment_3", - "editTime": 1656312200 - }, - "ts": 1656312200, - "checksum": "SHA256:6abdbcacccd5dabaeaf1c933802b6964c4a021a04d56cbe1a342cc04d6049cb5", - "name": "lan.nrrd" - } - }, - "version_4": { - "ext": ".nrrd", - "info": { - "label_info": [ - { - "name": "Lung", - "idx": 1 - }, - { - "name": "Heart", - "idx": 2 - }, - { - "name": "Trachea", - "idx": 3 - }, - { - "name": "Mediastinum", - "idx": 4 - }, - { - "name": "Clavicle", - "idx": 5 - } - ], - "segmentationMeta": { - "status": "approved", - "approvedBy": "self.approvedBy_4", - "level": "self.level_4", - "comment": "self.comment_4", - "editTime": 1656312200 - }, - "ts": 1656312200, - "checksum": "SHA256:6abdbcacccd5dabaeaf1c933802b6964c4a021a04d56cbe1a342cc04d6049cb5", - "name": "lan.nrrd" - } - } - } -} diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/UnitTests/TestDataSet/test_datastore_v2_image_with_segmentation.json b/monailabel/plugins/slicer/MONAILabelReviewer/UnitTests/TestDataSet/test_datastore_v2_image_with_segmentation.json deleted file mode 100644 index 0d65231..0000000 --- a/monailabel/plugins/slicer/MONAILabelReviewer/UnitTests/TestDataSet/test_datastore_v2_image_with_segmentation.json +++ /dev/null @@ -1,56 +0,0 @@ -{ - "image": { - "ext": ".dcm", - "info": { - "ts": 1639519453, - "checksum": "SHA256:1b474d23bda3de0c28f4287a7c0380d461e9f71d0dc468e64f336412cb575327", - "name": "6662775.dcm", - "strategy": { - "annotate": { - "ts": 1639647351, - "client_id": "Annotator" - } - } - } - }, - "labels": { - "final": { - "ext": ".seg.nrrd", - "info": { - "label_info": [ - { - "name": "Lung", - "idx": 1 - }, - { - "name": "Heart", - "idx": 2 - }, - { - "name": "Trachea", - "idx": 3 - }, - { - "name": "Mediastinum", - "idx": 4 - }, - { - "name": "Clavicle", - "idx": 5 - } - ], - "client_id": "Annotator", - "ts": 1639647550, - "checksum": "SHA256:7563c2dda16ac2db37fdcc0587f6bbf7c3c6646dcb5676891a264388cfb1c8ba", - "name": "6662775.seg.nrrd", - "segmentationMeta": { - "status": "flagged", - "approvedBy": "Prof Radiogolist", - "level": "easy", - "comment": "Segementation was not easy", - "editTime": "Thu Jan 13 12:21:01 2022" - } - } - } - } -} diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/UnitTests/TestDataSet/test_datastore_v2_image_without_segmentation.json b/monailabel/plugins/slicer/MONAILabelReviewer/UnitTests/TestDataSet/test_datastore_v2_image_without_segmentation.json deleted file mode 100644 index 25f1311..0000000 --- a/monailabel/plugins/slicer/MONAILabelReviewer/UnitTests/TestDataSet/test_datastore_v2_image_without_segmentation.json +++ /dev/null @@ -1,34 +0,0 @@ -{ - "image": { - "ext": ".dcm", - "info": { - "ts": 1642170799, - "checksum": "SHA256:f1f8ef13433b1f0966e589818f3180750606eff69b3bc4a55e0181d7a9da8da1", - "name": "6245968.dcm", - "strategy": { - "Random": { - "ts": 1642371057, - "client_id": "Dr Radiologist" - } - } - } - }, - "labels": { - "original": { - "ext": ".seg.nrrd", - "info": { - "label_names": [ - "Background", - "Mediastinum", - "Lung", - "Heart", - "Trachea", - "Clavicle" - ], - "ts": 1642371078, - "checksum": "SHA256:18f67b39871c68c7d62292b0b8bbec97dafeee66c607cf823d67303b8a59c953", - "name": "6245968.seg.nrrd" - } - } - } -} diff --git a/monailabel/plugins/slicer/MONAILabelReviewer/UnitTests/TestDataSet/test_json_datastore_v2.json b/monailabel/plugins/slicer/MONAILabelReviewer/UnitTests/TestDataSet/test_json_datastore_v2.json deleted file mode 100644 index 2852485..0000000 --- a/monailabel/plugins/slicer/MONAILabelReviewer/UnitTests/TestDataSet/test_json_datastore_v2.json +++ /dev/null @@ -1,171 +0,0 @@ -{ - "name": "new-dataset", - "description": "New Dataset", - "images_dir": ".", - "labels_dir": "labels", - "objects": { - "6213798": { - "image": { - "ext": ".dcm", - "info": { - "ts": 1642170799, - "checksum": "SHA256:5ca275af76a8fe88939058f9c91ecb72ce96bd5f012198fc366e4ef0214849b9", - "name": "6213798.dcm", - "strategy": { - "Random": { - "ts": 1642170835, - "client_id": "Test-Radiologist-not-segmented" - } - } - } - }, - "labels": {} - }, - "6245968": { - "image": { - "ext": ".dcm", - "info": { - "ts": 1642170799, - "checksum": "SHA256:f1f8ef13433b1f0966e589818f3180750606eff69b3bc4a55e0181d7a9da8da1", - "name": "6245968.dcm", - "strategy": { - "Random": { - "ts": 1642371057, - "client_id": "Test-Radiologist" - } - } - } - }, - "labels": { - "original": { - "ext": ".seg.nrrd", - "info": { - "label_names": [ - "Background", - "Mediastinum", - "Lung", - "Heart", - "Trachea", - "Clavicle" - ], - "ts": 1642371078, - "checksum": "SHA256:18f67b39871c68c7d62292b0b8bbec97dafeee66c607cf823d67303b8a59c953", - "name": "6245968.seg.nrrd" - } - } - } - }, - "6667571": { - "image": { - "ext": ".dcm", - "info": { - "ts": 1639519453, - "checksum": "SHA256:2a454e9ab8a33dc74996784163a362a53e04adcee2fd73a8b6299bf0ce5060d3", - "name": "6667571.dcm", - "strategy": { - "annotate": { - "ts": 1639985938, - "client_id": "Test-Radiolgist-Segmented" - } - } - } - }, - "labels": { - "final": { - "ext": ".seg.nrrd", - "info": { - "label_info": [ - { - "name": "Lung", - "idx": 1 - }, - { - "name": "Heart", - "idx": 2 - }, - { - "name": "Trachea", - "idx": 3 - }, - { - "name": "Mediastinum", - "idx": 4 - }, - { - "name": "Clavicle", - "idx": 5 - } - ], - "client_id": "Test-Radiolgist-Segmented", - "ts": 1639986085, - "checksum": "SHA256:d58542b4ac321b137dd33edc86cd69a84aa6c1fd1c2cb704a124756ef8788e79", - "name": "6667571.seg.nrrd", - "segmentationMeta": { - "status": "approved", - "approvedBy": "Test-Reviewer", - "level": "hard", - "comment": "", - "editTime": "Thu Apr 28 16:56:36 2022" - } - } - } - } - }, - "8887571": { - "image": { - "ext": ".dcm", - "info": { - "ts": 1639519453, - "checksum": "SHA256:2a454e9ab8a33dc74996784163a362a53e04adcee2fd73a8b6299bf0ce5060d3", - "name": "8887571.dcm", - "strategy": { - "annotate": { - "ts": 1639985938, - "client_id": "Test-Radiolgist-Segmented" - } - } - } - }, - "labels": { - "final": { - "ext": ".seg.nrrd", - "info": { - "label_info": [ - { - "name": "Lung", - "idx": 1 - }, - { - "name": "Heart", - "idx": 2 - }, - { - "name": "Trachea", - "idx": 3 - }, - { - "name": "Mediastinum", - "idx": 4 - }, - { - "name": "Clavicle", - "idx": 5 - } - ], - "client_id": "Test-Radiolgist-Segmented", - "ts": 1639986085, - "checksum": "SHA256:d58542b4ac321b137dd33edc86cd69a84aa6c1fd1c2cb704a124756ef8788e79", - "name": "8887571.seg.nrrd", - "segmentationMeta": { - "status": "flagged", - "approvedBy": "Test-Reviewer", - "level": "hard", - "comment": "", - "editTime": "Thu Apr 28 16:56:36 2022" - } - } - } - } - } - } -} diff --git a/monailabel/plugins/slicer/README.md b/monailabel/plugins/slicer/README.md deleted file mode 100644 index 404246e..0000000 --- a/monailabel/plugins/slicer/README.md +++ /dev/null @@ -1,54 +0,0 @@ - - -## MONAI Label Plugin for 3D Slicer - -3D Slicer is a free, open-source software for visualization, processing, segmentation, registration, and other 3D images and meshes. MONAI Label supports 3D Slicer with radiology and monaibundle applications. With its advanced features, 3D Slicer is a mature and well-tested viewer for radiology studies and algorithms. - - - -### Table of Contents -- [Supported Applications](#supported-applications) -- [Installing 3D Slicer](#installing-3d-slicer) -- [Installing MONAI Label Plugin](#installing-monai-label-plugin) -- [Plugin in Developer Mode](#plugin-in-developer-mode) -- [Plugin Settings](#plugin-settings) - -### Supported Applications -Users can find supported applications in the [sample-apps](../../sample-apps/radiology/) folder under the radiology section. They'll find models like DeepEdit, DeepGrow, Segmentation, and more. These applications can be used to create and refine labels for various medical imaging tasks. - -### Installing 3D Slicer -To use MONAI Label with 3D Slicer, you'll need to download and install 3D Slicer. MONAI Label supports stable and preview versions of 3D Slicer, version 5.0 or higher. For more information on installing 3D Slicer, check out the [3D Slicer Documentation](https://slicer.readthedocs.io/en/latest/user_guide/getting_started.html#installing-3d-slicer) - -### Installing MONAI Label Plugin - -- Go to **View** -> **Extension Manager** -> **Active Learning** -> **MONAI Label** -- Install MONAI Label plugin -- _**Restart**_ 3D Slicer - -**Note:** To update the plugin to the latest version, you have to uninstall the existing 3D Slicer version and download and install the new preview version of 3D Slicer again - -### Plugin in Developer Mode - -- `git clone git@github.com:Project-MONAI/MONAILabel.git` -- Open 3D Slicer: Go to **Edit** -> **Application Settings** -> **Modules** -> **Additional Module Paths** -- Add New Module Path: __/plugins/slicer/MONAILabel -- _**Restart**_ 3D Slicer - -### Plugin Settings -You can change some default behaviors for the MONAI Label plugin by following these steps: - -1. Go to **Edit** -> **Application Settings** -> **MONAI Label** -2. Customize the settings as per your requirement. - - diff --git a/pyproject.toml b/pyproject.toml deleted file mode 100644 index 84f836b..0000000 --- a/pyproject.toml +++ /dev/null @@ -1,32 +0,0 @@ -[tool.black] -line-length = 120 -target-version = ['py38', 'py39', 'py310'] -include = '\.pyi?$' -exclude = ''' -( - /( - # exclude a few common directories in the root of the project - \.eggs - | \.git - | \.hg - | \.mypy_cache - | \.tox - | \.venv - | venv - | \.pytype - | _build - | buck-out - | build - | dist - )/ -) -''' - -[tool.pycln] -all = true -exclude = "monai/bundle/__main__.py" - -[tool.ruff] -line-length = 133 -ignore-init-module-imports = true -ignore = ["F401", "E741", "F403", "F405"] diff --git a/training/README.md b/training/README.md deleted file mode 100644 index d682e67..0000000 --- a/training/README.md +++ /dev/null @@ -1,116 +0,0 @@ -# Model Overview -![image](../assets/img.png) -This repository contains the training code for MONAI VISTA 2.5D model. MONAI VISTA 2.5D is based on SAM [1] but we finetune -the model (image encoder, prompt encoder, and mask decoder) on 3D medical data. MONAI VISTA introduces -the class-label prompt and enables the fully automatic inference on known classes. It also shows the potential of -generalizing to unknown class. In addition, MONAI VISTA takes 2.5D input, so our model can leverage the information -from multiple slices. - - -# Works in progress -We are still actively developing this model. Features coming soon: -1. **MONAI VISTA 3D Model**. It will support 3D volumetric inputs to enable a larger field of view and reduce user’s annotation efforts. -2. **Text-based class-label prompt**. It will support encoding input text (e.g., “A computerized tomography of {Liver}”) as the class-label prompt. -3. **Multiple Datasets Training**. We are working on supporting more pre-defined class labels for the fully automatic inference pipeline. Due to the nature of prompt-based segmentation, our model is compatible with the partial label training. - - -# Installing Dependencies -Dependencies can be installed using: -``` bash -pip install -r requirements.txt -``` - -# Models - -Please download the pre-trained weights from this - link. - -# Data Preparation -![image](../assets/img_1.png) -Figure source from the TotalSegmentator [2]. - -The training data is from the [TotalSegmentator](https://github.com/wasserth/TotalSegmentator) [2]. - -- Target: 104 anatomical structures. -- Task: Segmentation -- Modality: CT -- Size: 1204 3D volumes -- Spacing: [1.5, 1.5, 1.5] - -More details about preprocessing this dataset can be found at - link. - -The json file containing the data list that is used to train our models can be downloaded from - link. - - -Note that you need to provide the location of your dataset directory and json file by using ```--data_dir``` and ```--json_list```. - -# Training - -A MONAI VISTA 2.5D model (ViT-B base) with standard hyperparameters is defined as: - -```py -_build_vista2pt5d( - encoder_in_chans=27, - encoder_embed_dim=768, - encoder_depth=12, - encoder_num_heads=12, - encoder_global_attn_indexes=[2, 5, 8, 11], - checkpoint=None, - image_size=1024, - clip_class_label_prompt=False, - patch_embed_3d=False, - ) -``` - -Or, you may directly call: - -```py -build_vista2pt5d_vit_b() -``` - -The above VISTA 2.5D model is used for CT images (9 slices 2.5D) with input spacing size ```(1.5, 1.5, 1.5)``` and for ```104``` class promptable segmentation. - -Using the default values for hyperparameters, -the following command can be used to initiate training using PyTorch native AMP package: - -``` bash -python main_2pt5d.py --max_epochs 100 --val_every 1 --optim_lr 0.000005 \ ---num_patch 24 --num_prompt 32 \ ---json_list ./totalsegmentator_104organs_folds_v2.json \ ---data_dir /data/ \ ---roi_z_iter 9 --save_checkpoint \ ---sam_base_model vit_b \ ---logdir finetune_ckpt_example --point_prompt --label_prompt --distributed --seed 12346 \ ---iterative_training_warm_up_epoch 50 --reuse_img_embedding \ ---label_prompt_warm_up_epoch 25 \ ---checkpoint ./runs/9s_2dembed_model.pt -``` - -Above command will start the finetune training for the provided pre-trained weights -(50 epochs single-step training and 50 epochs iterative training). - -# Evaluation - -To evaluate the `VISTA 2.5D model` using MONAI Label, please find the detailed instructions from - here. - - -# Reference - -``` -[1]: @article{kirillov2023segany, - title={Segment Anything}, - author={Kirillov, Alexander and Mintun, Eric and Ravi, Nikhila and Mao, Hanzi and Rolland, Chloe and Gustafson, Laura and Xiao, Tete and Whitehead, Spencer and Berg, Alexander C. and Lo, Wan-Yen and Doll{\'a}r, Piotr and Girshick, Ross}, - journal={arXiv:2304.02643}, - year={2023} - } - -[2]: @article{wasserthal2022totalsegmentator, - title={TotalSegmentator: robust segmentation of 104 anatomical structures in CT images}, - author={Wasserthal, Jakob and Meyer, Manfred and Breit, Hanns-Christian and Cyriac, Joshy and Yang, Shan and Segeroth, Martin}, - journal={arXiv preprint arXiv:2208.05868}, - year={2022} - } -``` diff --git a/training/example_train_script.sh b/training/example_train_script.sh deleted file mode 100644 index 4976c56..0000000 --- a/training/example_train_script.sh +++ /dev/null @@ -1,11 +0,0 @@ -#!/bin/bash -python main_2pt5d.py --max_epochs 100 --val_every 1 --optim_lr 0.000005 \ ---num_patch 24 --num_prompt 32 \ ---json_list ./totalsegmentator_104organs_folds_v2.json \ ---data_dir /data/ \ ---roi_z_iter 9 --save_checkpoint \ ---sam_base_model vit_b \ ---logdir finetune_ckpt_example --point_prompt --label_prompt --distributed --seed 12346 \ ---iterative_training_warm_up_epoch 50 --reuse_img_embedding \ ---label_prompt_warm_up_epoch 25 \ ---checkpoint ./runs/9s_2dembed_model.pt diff --git a/training/main_2pt5d.py b/training/main_2pt5d.py deleted file mode 100644 index 46f3637..0000000 --- a/training/main_2pt5d.py +++ /dev/null @@ -1,258 +0,0 @@ -# Copyright 2020 - 2022 MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import argparse -import sys -import warnings -from subprocess import Popen - -import numpy as np -import torch -import torch.distributed as dist -import torch.multiprocessing as mp -import torch.nn.parallel -import torch.utils.data.distributed -from monai.losses import DiceCELoss -from monai.metrics import DiceMetric -from monai.transforms import Activations, AsDiscrete, Compose -from monai.utils import set_determinism -from monai.utils.enums import MetricReduction -from optimizers.lr_scheduler import LinearWarmupCosineAnnealingLR -from trainer_2pt5d import run_training -from utils.data_utils import get_loader -from vista_2pt5d.model import sam_model_registry - -warnings.filterwarnings("ignore", category=UserWarning, module="monai") -warnings.filterwarnings("ignore", category=UserWarning, module="torch") -warnings.filterwarnings("ignore", category=UserWarning, module="nibabel") -parser = argparse.ArgumentParser(description="Swin UNETR segmentation pipeline") -parser.add_argument("--checkpoint", default=None, help="start training from saved checkpoint") -parser.add_argument("--logdir", default="vista2pt5d", type=str, help="directory to save the tensorboard logs") -parser.add_argument("--data_dir", default="/dataset/dataset0/", type=str, help="dataset directory") -parser.add_argument("--json_list", default="dataset_0.json", type=str, help="dataset json file") -parser.add_argument("--save_checkpoint", action="store_true", help="save checkpoint during training") -parser.add_argument("--max_epochs", default=1600, type=int, help="max number of training epochs") -parser.add_argument("--batch_size", default=1, type=int, help="number of batch size") -parser.add_argument("--optim_lr", default=1e-4, type=float, help="optimization learning rate") -parser.add_argument("--optim_name", default="adamw", type=str, help="optimization algorithm") -parser.add_argument("--reg_weight", default=1e-5, type=float, help="regularization weight") -parser.add_argument("--momentum", default=0.99, type=float, help="momentum") -parser.add_argument("--noamp", action="store_true", help="do NOT use amp for training") -parser.add_argument("--val_every", default=1, type=int, help="validation frequency") -parser.add_argument("--distributed", action="store_true", help="start distributed training") -parser.add_argument("--world_size", default=1, type=int, help="number of nodes for distributed training") -parser.add_argument("--rank", default=0, type=int, help="node rank for distributed training") -parser.add_argument("--dist-url", default="tcp://127.0.0.1:23456", type=str, help="distributed url") -parser.add_argument("--dist-backend", default="nccl", type=str, help="distributed backend") -parser.add_argument("--workers", default=8, type=int, help="number of workers") -parser.add_argument("--use_normal_dataset", action="store_true", help="use monai Dataset class") -parser.add_argument("--a_min", default=-1024, type=float, help="a_min in ScaleIntensityRanged") -parser.add_argument("--a_max", default=1024, type=float, help="a_max in ScaleIntensityRanged") -parser.add_argument("--b_min", default=0.0, type=float, help="b_min in ScaleIntensityRanged") -parser.add_argument("--b_max", default=1.0, type=float, help="b_max in ScaleIntensityRanged") -parser.add_argument("--fold", default=0, type=int, help="fold") -parser.add_argument( - "--splitval", default=0, type=float, help="if not zero, split the last portion to validation and validation to test" -) -parser.add_argument("--roi_z_iter", default=9, type=int, help="roi size in z direction") -parser.add_argument("--roi_z_iter_dilation", default=0, type=int, help="dilation size in z direction") -parser.add_argument("--lrschedule", default="No", type=str, help="type of learning rate scheduler") -parser.add_argument("--warmup_epochs", default=50, type=int, help="number of warmup epochs") -parser.add_argument("--resume_ckpt", action="store_true", help="resume training from pretrained checkpoint") -parser.add_argument("--num_patch", default=4, type=int, help="number of patches in each volume") -parser.add_argument("--num_patch_val", default=30, type=int, help="number of patches in each volume during validation") -parser.add_argument("--num_prompt", default=8, type=int, help="number of prompts for each training instance") -parser.add_argument("--clip", default=None, type=float, help="gradient clip") -parser.add_argument("--seed", default=-1, type=int, help="seed") -parser.add_argument("--sam_pretrain_ckpt", type=str, default=None, help="sam_pretrain_ckpt") -parser.add_argument("--sam_base_model", type=str, default="vit_b", help="sam_pretrain_ckpt") -parser.add_argument("--sam_image_size", type=int, default=1024, help="sam input res") -parser.add_argument("--label_prompt", action="store_true", help="using class label prompt in training") -parser.add_argument("--drop_label_prob", default=0.5, type=float, help="prob for dropping label prompt in training") -parser.add_argument( - "--label_prompt_warm_up_epoch", - default=20, - type=int, - help="before this number of epoch, we will drop label prompt with low prob.", -) -parser.add_argument("--point_prompt", action="store_true", help="using point prompt in training") -parser.add_argument("--drop_point_prob", default=0.5, type=float, help="prob for dropping point prompt in training") -parser.add_argument( - "--max_points", - default=8, - type=int, - help="max number of point prompts in training for the first ponit prompt generation", -) -parser.add_argument("--points_val_pos", default=1, type=int, help="number of positive point prompts in evaluation") -parser.add_argument("--points_val_neg", default=0, type=int, help="number of negative point prompts in evaluation") -parser.add_argument("--num_iterative_step", default=5, type=int, help="number of iterative step in training") -parser.add_argument("--reuse_img_embedding", action="store_true", help="reuse image embedding in iterative training") -parser.add_argument( - "--no_more_points_for_cp_only", - action="store_true", - help="if no point prompt at the first prompt generation we will not add " - "more additional pointa during iterative training.", -) -parser.add_argument( - "--iterative_training_warm_up_epoch", - default=100, - type=int, - help="before this number of epoch, we will not start iterative_training_.", -) -parser.add_argument("--data_aug", action="store_true", help="using data augmentation in training") -parser.add_argument("--pop_pos_embed", action="store_true", help="remove pos embedding when load checkpoint") -parser.add_argument("--pop_point_embed", action="store_true", help="remove point embedding when load checkpoint") -parser.add_argument("--skip_bk", action="store_true", help="skip background (0) during training") -parser.add_argument("--patch_embed_3d", action="store_true", help="using 3d patch embedding layer") - - -def start_tb(log_dir): - cmd = ["tensorboard", "--logdir", log_dir] - Popen(cmd, stderr=sys.stderr, stdout=sys.stdout, shell=False) - - -def main(): - args = parser.parse_args() - args.amp = not args.noamp - args.logdir = "./runs/" + args.logdir - # start_tb(args.logdir) - if args.seed > -1: - set_determinism(seed=args.seed) - if args.distributed: - args.ngpus_per_node = torch.cuda.device_count() - print("Found total gpus", args.ngpus_per_node) - args.world_size = args.ngpus_per_node * args.world_size - mp.spawn(main_worker, nprocs=args.ngpus_per_node, args=(args,)) - else: - main_worker(gpu=0, args=args) - - -def main_worker(gpu, args): - if args.distributed: - torch.multiprocessing.set_start_method("fork", force=True) - np.set_printoptions(formatter={"float": "{: 0.3f}".format}, suppress=True) - args.gpu = gpu - if args.distributed: - args.rank = args.rank * args.ngpus_per_node + gpu - dist.init_process_group( - backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank - ) - torch.cuda.set_device(args.gpu) - torch.backends.cudnn.benchmark = True - args.test_mode = False - loader = get_loader(args) - print(args.rank, " gpu", args.gpu) - if args.rank == 0: - print("Batch size is:", args.batch_size, "epochs", args.max_epochs) - - model = sam_model_registry[args.sam_base_model]( - args.sam_pretrain_ckpt, - image_size=args.sam_image_size, - encoder_in_chans=args.roi_z_iter * 3, - patch_embed_3d=args.patch_embed_3d, - ) - - dice_loss = DiceCELoss(sigmoid=True) - - post_label = AsDiscrete(to_onehot=105) - post_pred = Compose([Activations(sigmoid=True), AsDiscrete(threshold=0.5)]) - dice_acc = DiceMetric(include_background=False, reduction=MetricReduction.MEAN, get_not_nans=True) - - pytorch_total_params = sum(p.numel() for p in model.parameters() if p.requires_grad) - print("Total trainable parameters count", pytorch_total_params * 1.0e-6, "M") - - best_acc = 0 - start_epoch = 0 - optimizer_state = None - - if args.checkpoint is not None: - checkpoint = torch.load(args.checkpoint, map_location="cpu") - from collections import OrderedDict - - new_state_dict = OrderedDict() - for k, v in checkpoint["state_dict"].items(): - new_state_dict[k] = v - if args.pop_pos_embed: - print("pop_pos_embed") - new_state_dict.pop("image_encoder.patch_embed.proj.weight") - new_state_dict.pop("image_encoder.patch_embed.proj.bias") - model.load_state_dict(new_state_dict, strict=False) - elif args.pop_point_embed: - print("pop_point_embed") - new_state_dict.pop("prompt_encoder.point_embeddings.0.weight") - new_state_dict.pop("prompt_encoder.point_embeddings.1.weight") - new_state_dict.pop("prompt_encoder.point_embeddings.2.weight") - new_state_dict.pop("prompt_encoder.point_embeddings.3.weight") - model.load_state_dict(new_state_dict, strict=False) - else: - model.load_state_dict(new_state_dict, strict=True) - if args.resume_ckpt: - if "epoch" in checkpoint: - start_epoch = checkpoint["epoch"] - if "best_acc" in checkpoint: - best_acc = checkpoint["best_acc"] - if "optimizer" in checkpoint: - optimizer_state = checkpoint["optimizer"] - print("=> loaded checkpoint '{}' (epoch {}) (bestacc {})".format(args.checkpoint, start_epoch, best_acc)) - - model.cuda(args.gpu) - - if args.distributed: - torch.cuda.set_device(args.gpu) - model.cuda(args.gpu) - model = torch.nn.parallel.DistributedDataParallel( - model, device_ids=[args.gpu], output_device=args.gpu, find_unused_parameters=True - ) - if args.optim_name == "adam": - optimizer = torch.optim.Adam(model.parameters(), lr=args.optim_lr, weight_decay=args.reg_weight) - elif args.optim_name == "adamw": - optimizer = torch.optim.AdamW(model.parameters(), lr=args.optim_lr, weight_decay=args.reg_weight) - elif args.optim_name == "sgd": - optimizer = torch.optim.SGD( - model.parameters(), lr=args.optim_lr, momentum=args.momentum, nesterov=True, weight_decay=args.reg_weight - ) - else: - raise ValueError("Unsupported Optimization Procedure: " + str(args.optim_name)) - - if optimizer_state is not None: - optimizer.load_state_dict(optimizer_state) - # override lr by the given value - for param_group in optimizer.param_groups: - param_group["lr"] = args.optim_lr - - if args.lrschedule == "warmup_cosine": - scheduler = LinearWarmupCosineAnnealingLR( - optimizer, warmup_epochs=args.warmup_epochs, max_epochs=args.max_epochs - ) - elif args.lrschedule == "cosine_anneal": - scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.max_epochs) - if args.checkpoint is not None: - scheduler.step(epoch=start_epoch) - else: - scheduler = None - accuracy = run_training( - model=model, - train_loader=loader[0], - val_loader=loader[1], - optimizer=optimizer, - loss_func=dice_loss, - acc_func=dice_acc, - args=args, - scheduler=scheduler, - start_epoch=start_epoch, - post_label=post_label, - post_pred=post_pred, - ) - return accuracy - - -if __name__ == "__main__": - main() diff --git a/training/optimizers/__init__.py b/training/optimizers/__init__.py deleted file mode 100644 index e69de29..0000000 diff --git a/training/optimizers/lr_scheduler.py b/training/optimizers/lr_scheduler.py deleted file mode 100644 index 0c35292..0000000 --- a/training/optimizers/lr_scheduler.py +++ /dev/null @@ -1,172 +0,0 @@ -# Copyright 2020 - 2021 MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import math -import warnings -from typing import List - -from torch import nn as nn -from torch.optim import Adam, Optimizer -from torch.optim.lr_scheduler import LambdaLR, _LRScheduler - -__all__ = ["LinearLR", "ExponentialLR"] - - -class _LRSchedulerMONAI(_LRScheduler): - """Base class for increasing the learning rate between two boundaries over a number - of iterations""" - - def __init__(self, optimizer: Optimizer, end_lr: float, num_iter: int, last_epoch: int = -1) -> None: - """ - Args: - optimizer: wrapped optimizer. - end_lr: the final learning rate. - num_iter: the number of iterations over which the test occurs. - last_epoch: the index of last epoch. - Returns: - None - """ - self.end_lr = end_lr - self.num_iter = num_iter - super(_LRSchedulerMONAI, self).__init__(optimizer, last_epoch) - - -class LinearLR(_LRSchedulerMONAI): - """Linearly increases the learning rate between two boundaries over a number of - iterations. - """ - - def get_lr(self): - r = self.last_epoch / (self.num_iter - 1) - return [base_lr + r * (self.end_lr - base_lr) for base_lr in self.base_lrs] - - -class ExponentialLR(_LRSchedulerMONAI): - """Exponentially increases the learning rate between two boundaries over a number of - iterations. - """ - - def get_lr(self): - r = self.last_epoch / (self.num_iter - 1) - return [base_lr * (self.end_lr / base_lr) ** r for base_lr in self.base_lrs] - - -class WarmupCosineSchedule(LambdaLR): - """Linear warmup and then cosine decay. - Based on https://huggingface.co/ implementation. - """ - - def __init__( - self, optimizer: Optimizer, warmup_steps: int, t_total: int, cycles: float = 0.5, last_epoch: int = -1 - ) -> None: - """ - Args: - optimizer: wrapped optimizer. - warmup_steps: number of warmup iterations. - t_total: total number of training iterations. - cycles: cosine cycles parameter. - last_epoch: the index of last epoch. - Returns: - None - """ - self.warmup_steps = warmup_steps - self.t_total = t_total - self.cycles = cycles - super(WarmupCosineSchedule, self).__init__(optimizer, self.lr_lambda, last_epoch) - - def lr_lambda(self, step): - if step < self.warmup_steps: - return float(step) / float(max(1.0, self.warmup_steps)) - progress = float(step - self.warmup_steps) / float(max(1, self.t_total - self.warmup_steps)) - return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(self.cycles) * 2.0 * progress))) - - -class LinearWarmupCosineAnnealingLR(_LRScheduler): - def __init__( - self, - optimizer: Optimizer, - warmup_epochs: int, - max_epochs: int, - warmup_start_lr: float = 0.0, - eta_min: float = 0.0, - last_epoch: int = -1, - ) -> None: - """ - Args: - optimizer (Optimizer): Wrapped optimizer. - warmup_epochs (int): Maximum number of iterations for linear warmup - max_epochs (int): Maximum number of iterations - warmup_start_lr (float): Learning rate to start the linear warmup. Default: 0. - eta_min (float): Minimum learning rate. Default: 0. - last_epoch (int): The index of last epoch. Default: -1. - """ - self.warmup_epochs = warmup_epochs - self.max_epochs = max_epochs - self.warmup_start_lr = warmup_start_lr - self.eta_min = eta_min - - super(LinearWarmupCosineAnnealingLR, self).__init__(optimizer, last_epoch) - - def get_lr(self) -> List[float]: - """ - Compute learning rate using chainable form of the scheduler - """ - if not self._get_lr_called_within_step: - warnings.warn( - "To get the last learning rate computed by the scheduler, " "please use `get_last_lr()`.", UserWarning - ) - - if self.last_epoch == 0: - return [self.warmup_start_lr] * len(self.base_lrs) - elif self.last_epoch < self.warmup_epochs: - return [ - group["lr"] + (base_lr - self.warmup_start_lr) / (self.warmup_epochs - 1) - for base_lr, group in zip(self.base_lrs, self.optimizer.param_groups) - ] - elif self.last_epoch == self.warmup_epochs: - return self.base_lrs - elif (self.last_epoch - 1 - self.max_epochs) % (2 * (self.max_epochs - self.warmup_epochs)) == 0: - return [ - group["lr"] - + (base_lr - self.eta_min) * (1 - math.cos(math.pi / (self.max_epochs - self.warmup_epochs))) / 2 - for base_lr, group in zip(self.base_lrs, self.optimizer.param_groups) - ] - - return [ - (1 + math.cos(math.pi * (self.last_epoch - self.warmup_epochs) / (self.max_epochs - self.warmup_epochs))) - / ( - 1 - + math.cos( - math.pi * (self.last_epoch - self.warmup_epochs - 1) / (self.max_epochs - self.warmup_epochs) - ) - ) - * (group["lr"] - self.eta_min) - + self.eta_min - for group in self.optimizer.param_groups - ] - - def _get_closed_form_lr(self) -> List[float]: - """ - Called when epoch is passed as a param to the `step` function of the scheduler. - """ - if self.last_epoch < self.warmup_epochs: - return [ - self.warmup_start_lr + self.last_epoch * (base_lr - self.warmup_start_lr) / (self.warmup_epochs - 1) - for base_lr in self.base_lrs - ] - - return [ - self.eta_min - + 0.5 - * (base_lr - self.eta_min) - * (1 + math.cos(math.pi * (self.last_epoch - self.warmup_epochs) / (self.max_epochs - self.warmup_epochs))) - for base_lr in self.base_lrs - ] diff --git a/training/requirements.txt b/training/requirements.txt deleted file mode 100644 index 4666771..0000000 --- a/training/requirements.txt +++ /dev/null @@ -1,20 +0,0 @@ -monai>=1.2.0 -nibabel -fvcore -tqdm -einops -tensorboardX -scipy -positional-encodings[pytorch] -SimpleITK -tensorboard -scipy -scikit-learn -scikit-image -ptflops -pillow -timm -nnunet -h5py -torch -torchvision diff --git a/training/segment_anything/__init__.py b/training/segment_anything/__init__.py deleted file mode 100644 index 718fdc3..0000000 --- a/training/segment_anything/__init__.py +++ /dev/null @@ -1,15 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. - -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -from .automatic_mask_generator import SamAutomaticMaskGenerator -from .build_sam import ( - build_sam, - build_sam_vit_b, - build_sam_vit_h, - build_sam_vit_l, - sam_model_registry, -) -from .predictor import SamPredictor diff --git a/training/segment_anything/automatic_mask_generator.py b/training/segment_anything/automatic_mask_generator.py deleted file mode 100644 index 2cd252d..0000000 --- a/training/segment_anything/automatic_mask_generator.py +++ /dev/null @@ -1,368 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. - -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -from typing import Any, Dict, List, Optional, Tuple - -import numpy as np -import torch -from torchvision.ops.boxes import batched_nms, box_area # type: ignore - -from .modeling import Sam -from .predictor import SamPredictor -from .utils.amg import ( - MaskData, - area_from_rle, - batch_iterator, - batched_mask_to_box, - box_xyxy_to_xywh, - build_all_layer_point_grids, - calculate_stability_score, - coco_encode_rle, - generate_crop_boxes, - is_box_near_crop_edge, - mask_to_rle_pytorch, - remove_small_regions, - rle_to_mask, - uncrop_boxes_xyxy, - uncrop_masks, - uncrop_points, -) - - -class SamAutomaticMaskGenerator: - def __init__( - self, - model: Sam, - points_per_side: Optional[int] = 32, - points_per_batch: int = 64, - pred_iou_thresh: float = 0.88, - stability_score_thresh: float = 0.95, - stability_score_offset: float = 1.0, - box_nms_thresh: float = 0.7, - crop_n_layers: int = 0, - crop_nms_thresh: float = 0.7, - crop_overlap_ratio: float = 512 / 1500, - crop_n_points_downscale_factor: int = 1, - point_grids: Optional[List[np.ndarray]] = None, - min_mask_region_area: int = 0, - output_mode: str = "binary_mask", - ) -> None: - """ - Using a SAM model, generates masks for the entire image. - Generates a grid of point prompts over the image, then filters - low quality and duplicate masks. The default settings are chosen - for SAM with a ViT-H backbone. - - Arguments: - model (Sam): The SAM model to use for mask prediction. - points_per_side (int or None): The number of points to be sampled - along one side of the image. The total number of points is - points_per_side**2. If None, 'point_grids' must provide explicit - point sampling. - points_per_batch (int): Sets the number of points run simultaneously - by the model. Higher numbers may be faster but use more GPU memory. - pred_iou_thresh (float): A filtering threshold in [0,1], using the - model's predicted mask quality. - stability_score_thresh (float): A filtering threshold in [0,1], using - the stability of the mask under changes to the cutoff used to binarize - the model's mask predictions. - stability_score_offset (float): The amount to shift the cutoff when - calculated the stability score. - box_nms_thresh (float): The box IoU cutoff used by non-maximal - suppression to filter duplicate masks. - crops_n_layers (int): If >0, mask prediction will be run again on - crops of the image. Sets the number of layers to run, where each - layer has 2**i_layer number of image crops. - crops_nms_thresh (float): The box IoU cutoff used by non-maximal - suppression to filter duplicate masks between different crops. - crop_overlap_ratio (float): Sets the degree to which crops overlap. - In the first crop layer, crops will overlap by this fraction of - the image length. Later layers with more crops scale down this overlap. - crop_n_points_downscale_factor (int): The number of points-per-side - sampled in layer n is scaled down by crop_n_points_downscale_factor**n. - point_grids (list(np.ndarray) or None): A list over explicit grids - of points used for sampling, normalized to [0,1]. The nth grid in the - list is used in the nth crop layer. Exclusive with points_per_side. - min_mask_region_area (int): If >0, postprocessing will be applied - to remove disconnected regions and holes in masks with area smaller - than min_mask_region_area. Requires opencv. - output_mode (str): The form masks are returned in. Can be 'binary_mask', - 'uncompressed_rle', or 'coco_rle'. 'coco_rle' requires pycocotools. - For large resolutions, 'binary_mask' may consume large amounts of - memory. - """ - - assert (points_per_side is None) != ( - point_grids is None - ), "Exactly one of points_per_side or point_grid must be provided." - if points_per_side is not None: - self.point_grids = build_all_layer_point_grids( - points_per_side, - crop_n_layers, - crop_n_points_downscale_factor, - ) - elif point_grids is not None: - self.point_grids = point_grids - else: - raise ValueError("Can't have both points_per_side and point_grid be None.") - - assert output_mode in [ - "binary_mask", - "uncompressed_rle", - "coco_rle", - ], f"Unknown output_mode {output_mode}." - if output_mode == "coco_rle": - from pycocotools import mask as mask_utils # type: ignore # noqa: F401 - - if min_mask_region_area > 0: - import cv2 # type: ignore # noqa: F401 - - self.predictor = SamPredictor(model) - self.points_per_batch = points_per_batch - self.pred_iou_thresh = pred_iou_thresh - self.stability_score_thresh = stability_score_thresh - self.stability_score_offset = stability_score_offset - self.box_nms_thresh = box_nms_thresh - self.crop_n_layers = crop_n_layers - self.crop_nms_thresh = crop_nms_thresh - self.crop_overlap_ratio = crop_overlap_ratio - self.crop_n_points_downscale_factor = crop_n_points_downscale_factor - self.min_mask_region_area = min_mask_region_area - self.output_mode = output_mode - - @torch.no_grad() - def generate(self, image: np.ndarray) -> List[Dict[str, Any]]: - """ - Generates masks for the given image. - - Arguments: - image (np.ndarray): The image to generate masks for, in HWC uint8 format. - - Returns: - list(dict(str, any)): A list over records for masks. Each record is - a dict containing the following keys: - segmentation (dict(str, any) or np.ndarray): The mask. If - output_mode='binary_mask', is an array of shape HW. Otherwise, - is a dictionary containing the RLE. - bbox (list(float)): The box around the mask, in XYWH format. - area (int): The area in pixels of the mask. - predicted_iou (float): The model's own prediction of the mask's - quality. This is filtered by the pred_iou_thresh parameter. - point_coords (list(list(float))): The point coordinates input - to the model to generate this mask. - stability_score (float): A measure of the mask's quality. This - is filtered on using the stability_score_thresh parameter. - crop_box (list(float)): The crop of the image used to generate - the mask, given in XYWH format. - """ - - # Generate masks - mask_data = self._generate_masks(image) - - # Filter small disconnected regions and holes in masks - if self.min_mask_region_area > 0: - mask_data = self.postprocess_small_regions( - mask_data, - self.min_mask_region_area, - max(self.box_nms_thresh, self.crop_nms_thresh), - ) - - # Encode masks - if self.output_mode == "coco_rle": - mask_data["segmentations"] = [coco_encode_rle(rle) for rle in mask_data["rles"]] - elif self.output_mode == "binary_mask": - mask_data["segmentations"] = [rle_to_mask(rle) for rle in mask_data["rles"]] - else: - mask_data["segmentations"] = mask_data["rles"] - - # Write mask records - curr_anns = [] - for idx in range(len(mask_data["segmentations"])): - ann = { - "segmentation": mask_data["segmentations"][idx], - "area": area_from_rle(mask_data["rles"][idx]), - "bbox": box_xyxy_to_xywh(mask_data["boxes"][idx]).tolist(), - "predicted_iou": mask_data["iou_preds"][idx].item(), - "point_coords": [mask_data["points"][idx].tolist()], - "stability_score": mask_data["stability_score"][idx].item(), - "crop_box": box_xyxy_to_xywh(mask_data["crop_boxes"][idx]).tolist(), - } - curr_anns.append(ann) - - return curr_anns - - def _generate_masks(self, image: np.ndarray) -> MaskData: - orig_size = image.shape[:2] - crop_boxes, layer_idxs = generate_crop_boxes(orig_size, self.crop_n_layers, self.crop_overlap_ratio) - - # Iterate over image crops - data = MaskData() - for crop_box, layer_idx in zip(crop_boxes, layer_idxs): - crop_data = self._process_crop(image, crop_box, layer_idx, orig_size) - data.cat(crop_data) - - # Remove duplicate masks between crops - if len(crop_boxes) > 1: - # Prefer masks from smaller crops - scores = 1 / box_area(data["crop_boxes"]) - scores = scores.to(data["boxes"].device) - keep_by_nms = batched_nms( - data["boxes"].float(), - scores, - torch.zeros(len(data["boxes"])), # categories - iou_threshold=self.crop_nms_thresh, - ) - data.filter(keep_by_nms) - - data.to_numpy() - return data - - def _process_crop( - self, - image: np.ndarray, - crop_box: List[int], - crop_layer_idx: int, - orig_size: Tuple[int, ...], - ) -> MaskData: - # Crop the image and calculate embeddings - x0, y0, x1, y1 = crop_box - cropped_im = image[y0:y1, x0:x1, :] - cropped_im_size = cropped_im.shape[:2] - self.predictor.set_image(cropped_im) - - # Get points for this crop - points_scale = np.array(cropped_im_size)[None, ::-1] - points_for_image = self.point_grids[crop_layer_idx] * points_scale - - # Generate masks for this crop in batches - data = MaskData() - for (points,) in batch_iterator(self.points_per_batch, points_for_image): - batch_data = self._process_batch(points, cropped_im_size, crop_box, orig_size) - data.cat(batch_data) - del batch_data - self.predictor.reset_image() - - # Remove duplicates within this crop. - keep_by_nms = batched_nms( - data["boxes"].float(), - data["iou_preds"], - torch.zeros(len(data["boxes"])), # categories - iou_threshold=self.box_nms_thresh, - ) - data.filter(keep_by_nms) - - # Return to the original image frame - data["boxes"] = uncrop_boxes_xyxy(data["boxes"], crop_box) - data["points"] = uncrop_points(data["points"], crop_box) - data["crop_boxes"] = torch.tensor([crop_box for _ in range(len(data["rles"]))]) - - return data - - def _process_batch( - self, - points: np.ndarray, - im_size: Tuple[int, ...], - crop_box: List[int], - orig_size: Tuple[int, ...], - ) -> MaskData: - orig_h, orig_w = orig_size - - # Run model on this batch - transformed_points = self.predictor.transform.apply_coords(points, im_size) - in_points = torch.as_tensor(transformed_points, device=self.predictor.device) - in_labels = torch.ones(in_points.shape[0], dtype=torch.int, device=in_points.device) - masks, iou_preds, _ = self.predictor.predict_torch( - in_points[:, None, :], - in_labels[:, None], - multimask_output=True, - return_logits=True, - ) - - # Serialize predictions and store in MaskData - data = MaskData( - masks=masks.flatten(0, 1), - iou_preds=iou_preds.flatten(0, 1), - points=torch.as_tensor(points.repeat(masks.shape[1], axis=0)), - ) - del masks - - # Filter by predicted IoU - if self.pred_iou_thresh > 0.0: - keep_mask = data["iou_preds"] > self.pred_iou_thresh - data.filter(keep_mask) - - # Calculate stability score - data["stability_score"] = calculate_stability_score( - data["masks"], self.predictor.model.mask_threshold, self.stability_score_offset - ) - if self.stability_score_thresh > 0.0: - keep_mask = data["stability_score"] >= self.stability_score_thresh - data.filter(keep_mask) - - # Threshold masks and calculate boxes - data["masks"] = data["masks"] > self.predictor.model.mask_threshold - data["boxes"] = batched_mask_to_box(data["masks"]) - - # Filter boxes that touch crop boundaries - keep_mask = ~is_box_near_crop_edge(data["boxes"], crop_box, [0, 0, orig_w, orig_h]) - if not torch.all(keep_mask): - data.filter(keep_mask) - - # Compress to RLE - data["masks"] = uncrop_masks(data["masks"], crop_box, orig_h, orig_w) - data["rles"] = mask_to_rle_pytorch(data["masks"]) - del data["masks"] - - return data - - @staticmethod - def postprocess_small_regions(mask_data: MaskData, min_area: int, nms_thresh: float) -> MaskData: - """ - Removes small disconnected regions and holes in masks, then reruns - box NMS to remove any new duplicates. - - Edits mask_data in place. - - Requires open-cv as a dependency. - """ - if len(mask_data["rles"]) == 0: - return mask_data - - # Filter small disconnected regions and holes - new_masks = [] - scores = [] - for rle in mask_data["rles"]: - mask = rle_to_mask(rle) - - mask, changed = remove_small_regions(mask, min_area, mode="holes") - unchanged = not changed - mask, changed = remove_small_regions(mask, min_area, mode="islands") - unchanged = unchanged and not changed - - new_masks.append(torch.as_tensor(mask).unsqueeze(0)) - # Give score=0 to changed masks and score=1 to unchanged masks - # so NMS will prefer ones that didn't need postprocessing - scores.append(float(unchanged)) - - # Recalculate boxes and remove any new duplicates - masks = torch.cat(new_masks, dim=0) - boxes = batched_mask_to_box(masks) - keep_by_nms = batched_nms( - boxes.float(), - torch.as_tensor(scores), - torch.zeros(len(boxes)), # categories - iou_threshold=nms_thresh, - ) - - # Only recalculate RLEs for masks that have changed - for i_mask in keep_by_nms: - if scores[i_mask] == 0.0: - mask_torch = masks[i_mask].unsqueeze(0) - mask_data["rles"][i_mask] = mask_to_rle_pytorch(mask_torch)[0] - mask_data["boxes"][i_mask] = boxes[i_mask] # update res directly - mask_data.filter(keep_by_nms) - - return mask_data diff --git a/training/segment_anything/build_sam.py b/training/segment_anything/build_sam.py deleted file mode 100644 index fef9980..0000000 --- a/training/segment_anything/build_sam.py +++ /dev/null @@ -1,113 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. - -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -from functools import partial - -import torch - -from .modeling import ( - ImageEncoderViT, - MaskDecoder, - PromptEncoder, - Sam, - TwoWayTransformer, -) - - -def build_sam_vit_h(checkpoint=None): - return _build_sam( - encoder_embed_dim=1280, - encoder_depth=32, - encoder_num_heads=16, - encoder_global_attn_indexes=[7, 15, 23, 31], - checkpoint=checkpoint, - ) - - -build_sam = build_sam_vit_h - - -def build_sam_vit_l(checkpoint=None): - return _build_sam( - encoder_embed_dim=1024, - encoder_depth=24, - encoder_num_heads=16, - encoder_global_attn_indexes=[5, 11, 17, 23], - checkpoint=checkpoint, - ) - - -def build_sam_vit_b(checkpoint=None): - return _build_sam( - encoder_embed_dim=768, - encoder_depth=12, - encoder_num_heads=12, - encoder_global_attn_indexes=[2, 5, 8, 11], - checkpoint=checkpoint, - ) - - -sam_model_registry = { - "default": build_sam, - "vit_h": build_sam, - "vit_l": build_sam_vit_l, - "vit_b": build_sam_vit_b, -} - - -def _build_sam( - encoder_embed_dim, - encoder_depth, - encoder_num_heads, - encoder_global_attn_indexes, - checkpoint=None, -): - prompt_embed_dim = 256 - image_size = 1024 - vit_patch_size = 16 - image_embedding_size = image_size // vit_patch_size - sam = Sam( - image_encoder=ImageEncoderViT( - depth=encoder_depth, - embed_dim=encoder_embed_dim, - img_size=image_size, - mlp_ratio=4, - norm_layer=partial(torch.nn.LayerNorm, eps=1e-6), - num_heads=encoder_num_heads, - patch_size=vit_patch_size, - qkv_bias=True, - use_rel_pos=True, - global_attn_indexes=encoder_global_attn_indexes, - window_size=14, - out_chans=prompt_embed_dim, - ), - prompt_encoder=PromptEncoder( - embed_dim=prompt_embed_dim, - image_embedding_size=(image_embedding_size, image_embedding_size), - input_image_size=(image_size, image_size), - mask_in_chans=16, - ), - mask_decoder=MaskDecoder( - num_multimask_outputs=3, - transformer=TwoWayTransformer( - depth=2, - embedding_dim=prompt_embed_dim, - mlp_dim=2048, - num_heads=8, - ), - transformer_dim=prompt_embed_dim, - iou_head_depth=3, - iou_head_hidden_dim=256, - ), - pixel_mean=[123.675, 116.28, 103.53], - pixel_std=[58.395, 57.12, 57.375], - ) - sam.eval() - if checkpoint is not None: - with open(checkpoint, "rb") as f: - state_dict = torch.load(f) - sam.load_state_dict(state_dict) - return sam diff --git a/training/segment_anything/modeling/__init__.py b/training/segment_anything/modeling/__init__.py deleted file mode 100644 index 088af38..0000000 --- a/training/segment_anything/modeling/__init__.py +++ /dev/null @@ -1,11 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. - -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -from .image_encoder import ImageEncoderViT -from .mask_decoder import MaskDecoder -from .prompt_encoder import PromptEncoder -from .sam import Sam -from .transformer import TwoWayTransformer diff --git a/training/segment_anything/modeling/common.py b/training/segment_anything/modeling/common.py deleted file mode 100644 index e872781..0000000 --- a/training/segment_anything/modeling/common.py +++ /dev/null @@ -1,43 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. - -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -from typing import Type - -import torch -import torch.nn as nn - - -class MLPBlock(nn.Module): - def __init__( - self, - embedding_dim: int, - mlp_dim: int, - act: Type[nn.Module] = nn.GELU, - ) -> None: - super().__init__() - self.lin1 = nn.Linear(embedding_dim, mlp_dim) - self.lin2 = nn.Linear(mlp_dim, embedding_dim) - self.act = act() - - def forward(self, x: torch.Tensor) -> torch.Tensor: - return self.lin2(self.act(self.lin1(x))) - - -# From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa -# Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa -class LayerNorm2d(nn.Module): - def __init__(self, num_channels: int, eps: float = 1e-6) -> None: - super().__init__() - self.weight = nn.Parameter(torch.ones(num_channels)) - self.bias = nn.Parameter(torch.zeros(num_channels)) - self.eps = eps - - def forward(self, x: torch.Tensor) -> torch.Tensor: - u = x.mean(1, keepdim=True) - s = (x - u).pow(2).mean(1, keepdim=True) - x = (x - u) / torch.sqrt(s + self.eps) - x = self.weight[:, None, None] * x + self.bias[:, None, None] - return x diff --git a/training/segment_anything/modeling/image_encoder.py b/training/segment_anything/modeling/image_encoder.py deleted file mode 100644 index 31360d3..0000000 --- a/training/segment_anything/modeling/image_encoder.py +++ /dev/null @@ -1,389 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. - -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -from typing import Optional, Tuple, Type - -import torch -import torch.nn as nn -import torch.nn.functional as F - -from .common import LayerNorm2d, MLPBlock - - -# This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py # noqa -class ImageEncoderViT(nn.Module): - def __init__( - self, - img_size: int = 1024, - patch_size: int = 16, - in_chans: int = 3, - embed_dim: int = 768, - depth: int = 12, - num_heads: int = 12, - mlp_ratio: float = 4.0, - out_chans: int = 256, - qkv_bias: bool = True, - norm_layer: Type[nn.Module] = nn.LayerNorm, - act_layer: Type[nn.Module] = nn.GELU, - use_abs_pos: bool = True, - use_rel_pos: bool = False, - rel_pos_zero_init: bool = True, - window_size: int = 0, - global_attn_indexes: Tuple[int, ...] = (), - ) -> None: - """ - Args: - img_size (int): Input image size. - patch_size (int): Patch size. - in_chans (int): Number of input image channels. - embed_dim (int): Patch embedding dimension. - depth (int): Depth of ViT. - num_heads (int): Number of attention heads in each ViT block. - mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. - qkv_bias (bool): If True, add a learnable bias to query, key, value. - norm_layer (nn.Module): Normalization layer. - act_layer (nn.Module): Activation layer. - use_abs_pos (bool): If True, use absolute positional embeddings. - use_rel_pos (bool): If True, add relative positional embeddings to the attention map. - rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. - window_size (int): Window size for window attention blocks. - global_attn_indexes (list): Indexes for blocks using global attention. - """ - super().__init__() - self.img_size = img_size - - self.patch_embed = PatchEmbed( - kernel_size=(patch_size, patch_size), - stride=(patch_size, patch_size), - in_chans=in_chans, - embed_dim=embed_dim, - ) - - self.pos_embed: Optional[nn.Parameter] = None - if use_abs_pos: - # Initialize absolute positional embedding with pretrain image size. - self.pos_embed = nn.Parameter(torch.zeros(1, img_size // patch_size, img_size // patch_size, embed_dim)) - - self.blocks = nn.ModuleList() - for i in range(depth): - block = Block( - dim=embed_dim, - num_heads=num_heads, - mlp_ratio=mlp_ratio, - qkv_bias=qkv_bias, - norm_layer=norm_layer, - act_layer=act_layer, - use_rel_pos=use_rel_pos, - rel_pos_zero_init=rel_pos_zero_init, - window_size=window_size if i not in global_attn_indexes else 0, - input_size=(img_size // patch_size, img_size // patch_size), - ) - self.blocks.append(block) - - self.neck = nn.Sequential( - nn.Conv2d( - embed_dim, - out_chans, - kernel_size=1, - bias=False, - ), - LayerNorm2d(out_chans), - nn.Conv2d( - out_chans, - out_chans, - kernel_size=3, - padding=1, - bias=False, - ), - LayerNorm2d(out_chans), - ) - - def forward(self, x: torch.Tensor) -> torch.Tensor: - x = self.patch_embed(x) - if self.pos_embed is not None: - x = x + self.pos_embed - - for blk in self.blocks: - x = blk(x) - - x = self.neck(x.permute(0, 3, 1, 2)) - - return x - - -class Block(nn.Module): - """Transformer blocks with support of window attention and residual propagation blocks""" - - def __init__( - self, - dim: int, - num_heads: int, - mlp_ratio: float = 4.0, - qkv_bias: bool = True, - norm_layer: Type[nn.Module] = nn.LayerNorm, - act_layer: Type[nn.Module] = nn.GELU, - use_rel_pos: bool = False, - rel_pos_zero_init: bool = True, - window_size: int = 0, - input_size: Optional[Tuple[int, int]] = None, - ) -> None: - """ - Args: - dim (int): Number of input channels. - num_heads (int): Number of attention heads in each ViT block. - mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. - qkv_bias (bool): If True, add a learnable bias to query, key, value. - norm_layer (nn.Module): Normalization layer. - act_layer (nn.Module): Activation layer. - use_rel_pos (bool): If True, add relative positional embeddings to the attention map. - rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. - window_size (int): Window size for window attention blocks. If it equals 0, then - use global attention. - input_size (tuple(int, int) or None): Input resolution for calculating the relative - positional parameter size. - """ - super().__init__() - self.norm1 = norm_layer(dim) - self.attn = Attention( - dim, - num_heads=num_heads, - qkv_bias=qkv_bias, - use_rel_pos=use_rel_pos, - rel_pos_zero_init=rel_pos_zero_init, - input_size=input_size if window_size == 0 else (window_size, window_size), - ) - - self.norm2 = norm_layer(dim) - self.mlp = MLPBlock(embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer) - - self.window_size = window_size - - def forward(self, x: torch.Tensor) -> torch.Tensor: - shortcut = x - x = self.norm1(x) - # Window partition - if self.window_size > 0: - H, W = x.shape[1], x.shape[2] - x, pad_hw = window_partition(x, self.window_size) - - x = self.attn(x) - # Reverse window partition - if self.window_size > 0: - x = window_unpartition(x, self.window_size, pad_hw, (H, W)) - - x = shortcut + x - x = x + self.mlp(self.norm2(x)) - - return x - - -class Attention(nn.Module): - """Multi-head Attention block with relative position embeddings.""" - - def __init__( - self, - dim: int, - num_heads: int = 8, - qkv_bias: bool = True, - use_rel_pos: bool = False, - rel_pos_zero_init: bool = True, - input_size: Optional[Tuple[int, int]] = None, - ) -> None: - """ - Args: - dim (int): Number of input channels. - num_heads (int): Number of attention heads. - qkv_bias (bool): If True, add a learnable bias to query, key, value. - rel_pos (bool): If True, add relative positional embeddings to the attention map. - rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. - input_size (tuple(int, int) or None): Input resolution for calculating the relative - positional parameter size. - """ - super().__init__() - self.num_heads = num_heads - head_dim = dim // num_heads - self.scale = head_dim**-0.5 - - self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) - self.proj = nn.Linear(dim, dim) - - self.use_rel_pos = use_rel_pos - if self.use_rel_pos: - assert input_size is not None, "Input size must be provided if using relative positional encoding." - # initialize relative positional embeddings - self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim)) - self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim)) - - def forward(self, x: torch.Tensor) -> torch.Tensor: - B, H, W, _ = x.shape - # qkv with shape (3, B, nHead, H * W, C) - qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) - # q, k, v with shape (B * nHead, H * W, C) - q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0) - - attn = (q * self.scale) @ k.transpose(-2, -1) - - if self.use_rel_pos: - attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W)) - - attn = attn.softmax(dim=-1) - x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1) - x = self.proj(x) - - return x - - -def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]: - """ - Partition into non-overlapping windows with padding if needed. - Args: - x (tensor): input tokens with [B, H, W, C]. - window_size (int): window size. - - Returns: - windows: windows after partition with [B * num_windows, window_size, window_size, C]. - (Hp, Wp): padded height and width before partition - """ - B, H, W, C = x.shape - - pad_h = (window_size - H % window_size) % window_size - pad_w = (window_size - W % window_size) % window_size - if pad_h > 0 or pad_w > 0: - x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h)) - Hp, Wp = H + pad_h, W + pad_w - - x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C) - windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) - return windows, (Hp, Wp) - - -def window_unpartition( - windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int], hw: Tuple[int, int] -) -> torch.Tensor: - """ - Window unpartition into original sequences and removing padding. - Args: - windows (tensor): input tokens with [B * num_windows, window_size, window_size, C]. - window_size (int): window size. - pad_hw (Tuple): padded height and width (Hp, Wp). - hw (Tuple): original height and width (H, W) before padding. - - Returns: - x: unpartitioned sequences with [B, H, W, C]. - """ - Hp, Wp = pad_hw - H, W = hw - B = windows.shape[0] // (Hp * Wp // window_size // window_size) - x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1) - x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1) - - if Hp > H or Wp > W: - x = x[:, :H, :W, :].contiguous() - return x - - -def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor: - """ - Get relative positional embeddings according to the relative positions of - query and key sizes. - Args: - q_size (int): size of query q. - k_size (int): size of key k. - rel_pos (Tensor): relative position embeddings (L, C). - - Returns: - Extracted positional embeddings according to relative positions. - """ - max_rel_dist = int(2 * max(q_size, k_size) - 1) - # Interpolate rel pos if needed. - if rel_pos.shape[0] != max_rel_dist: - # Interpolate rel pos. - rel_pos_resized = F.interpolate( - rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1), - size=max_rel_dist, - mode="linear", - ) - rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0) - else: - rel_pos_resized = rel_pos - - # Scale the coords with short length if shapes for q and k are different. - q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0) - k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0) - relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0) - - return rel_pos_resized[relative_coords.long()] - - -def add_decomposed_rel_pos( - attn: torch.Tensor, - q: torch.Tensor, - rel_pos_h: torch.Tensor, - rel_pos_w: torch.Tensor, - q_size: Tuple[int, int], - k_size: Tuple[int, int], -) -> torch.Tensor: - """ - Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`. - https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950 - Args: - attn (Tensor): attention map. - q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C). - rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis. - rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis. - q_size (Tuple): spatial sequence size of query q with (q_h, q_w). - k_size (Tuple): spatial sequence size of key k with (k_h, k_w). - - Returns: - attn (Tensor): attention map with added relative positional embeddings. - """ - q_h, q_w = q_size - k_h, k_w = k_size - Rh = get_rel_pos(q_h, k_h, rel_pos_h) - Rw = get_rel_pos(q_w, k_w, rel_pos_w) - - B, _, dim = q.shape - r_q = q.reshape(B, q_h, q_w, dim) - rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh) - rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw) - - attn = (attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]).view( - B, q_h * q_w, k_h * k_w - ) - - return attn - - -class PatchEmbed(nn.Module): - """ - Image to Patch Embedding. - """ - - def __init__( - self, - kernel_size: Tuple[int, int] = (16, 16), - stride: Tuple[int, int] = (16, 16), - padding: Tuple[int, int] = (0, 0), - in_chans: int = 3, - embed_dim: int = 768, - ) -> None: - """ - Args: - kernel_size (Tuple): kernel size of the projection layer. - stride (Tuple): stride of the projection layer. - padding (Tuple): padding size of the projection layer. - in_chans (int): Number of input image channels. - embed_dim (int): Patch embedding dimension. - """ - super().__init__() - - self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding) - - def forward(self, x: torch.Tensor) -> torch.Tensor: - x = self.proj(x) - # B C H W -> B H W C - x = x.permute(0, 2, 3, 1) - return x diff --git a/training/segment_anything/modeling/mask_decoder.py b/training/segment_anything/modeling/mask_decoder.py deleted file mode 100644 index dfacfe5..0000000 --- a/training/segment_anything/modeling/mask_decoder.py +++ /dev/null @@ -1,170 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. - -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -from typing import List, Tuple, Type - -import torch -from torch import nn -from torch.nn import functional as F - -from .common import LayerNorm2d - - -class MaskDecoder(nn.Module): - def __init__( - self, - *, - transformer_dim: int, - transformer: nn.Module, - num_multimask_outputs: int = 3, - activation: Type[nn.Module] = nn.GELU, - iou_head_depth: int = 3, - iou_head_hidden_dim: int = 256, - ) -> None: - """ - Predicts masks given an image and prompt embeddings, using a - tranformer architecture. - - Arguments: - transformer_dim (int): the channel dimension of the transformer - transformer (nn.Module): the transformer used to predict masks - num_multimask_outputs (int): the number of masks to predict - when disambiguating masks - activation (nn.Module): the type of activation to use when - upscaling masks - iou_head_depth (int): the depth of the MLP used to predict - mask quality - iou_head_hidden_dim (int): the hidden dimension of the MLP - used to predict mask quality - """ - super().__init__() - self.transformer_dim = transformer_dim - self.transformer = transformer - - self.num_multimask_outputs = num_multimask_outputs - - self.iou_token = nn.Embedding(1, transformer_dim) - self.num_mask_tokens = num_multimask_outputs + 1 - self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim) - - self.output_upscaling = nn.Sequential( - nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2), - LayerNorm2d(transformer_dim // 4), - activation(), - nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2), - activation(), - ) - self.output_hypernetworks_mlps = nn.ModuleList( - [MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) for i in range(self.num_mask_tokens)] - ) - - self.iou_prediction_head = MLP(transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth) - - def forward( - self, - image_embeddings: torch.Tensor, - image_pe: torch.Tensor, - sparse_prompt_embeddings: torch.Tensor, - dense_prompt_embeddings: torch.Tensor, - multimask_output: bool, - ) -> Tuple[torch.Tensor, torch.Tensor]: - """ - Predict masks given image and prompt embeddings. - - Arguments: - image_embeddings (torch.Tensor): the embeddings from the image encoder - image_pe (torch.Tensor): positional encoding with the shape of image_embeddings - sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes - dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs - multimask_output (bool): Whether to return multiple masks or a single - mask. - - Returns: - torch.Tensor: batched predicted masks - torch.Tensor: batched predictions of mask quality - """ - masks, iou_pred = self.predict_masks( - image_embeddings=image_embeddings, - image_pe=image_pe, - sparse_prompt_embeddings=sparse_prompt_embeddings, - dense_prompt_embeddings=dense_prompt_embeddings, - ) - - # Select the correct mask or masks for output - if multimask_output: - mask_slice = slice(1, None) - else: - mask_slice = slice(0, 1) - masks = masks[:, mask_slice, :, :] - iou_pred = iou_pred[:, mask_slice] - - # Prepare output - return masks, iou_pred - - def predict_masks( - self, - image_embeddings: torch.Tensor, - image_pe: torch.Tensor, - sparse_prompt_embeddings: torch.Tensor, - dense_prompt_embeddings: torch.Tensor, - ) -> Tuple[torch.Tensor, torch.Tensor]: - """Predicts masks. See 'forward' for more details.""" - # Concatenate output tokens - output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0) - output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1) - tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1) - - # Expand per-image data in batch direction to be per-mask - src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0) - src = src + dense_prompt_embeddings - pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0) - b, c, h, w = src.shape - - # Run the transformer - hs, src = self.transformer(src, pos_src, tokens) - iou_token_out = hs[:, 0, :] - mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :] - - # Upscale mask embeddings and predict masks using the mask tokens - src = src.transpose(1, 2).view(b, c, h, w) - upscaled_embedding = self.output_upscaling(src) - hyper_in_list: List[torch.Tensor] = [] - for i in range(self.num_mask_tokens): - hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :])) - hyper_in = torch.stack(hyper_in_list, dim=1) - b, c, h, w = upscaled_embedding.shape - - masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w) - - # Generate mask quality predictions - iou_pred = self.iou_prediction_head(iou_token_out) - - return masks, iou_pred - - -# Lightly adapted from -# https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa -class MLP(nn.Module): - def __init__( - self, - input_dim: int, - hidden_dim: int, - output_dim: int, - num_layers: int, - sigmoid_output: bool = False, - ) -> None: - super().__init__() - self.num_layers = num_layers - h = [hidden_dim] * (num_layers - 1) - self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) - self.sigmoid_output = sigmoid_output - - def forward(self, x): - for i, layer in enumerate(self.layers): - x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) - if self.sigmoid_output: - x = F.sigmoid(x) - return x diff --git a/training/segment_anything/modeling/prompt_encoder.py b/training/segment_anything/modeling/prompt_encoder.py deleted file mode 100644 index 1887c8d..0000000 --- a/training/segment_anything/modeling/prompt_encoder.py +++ /dev/null @@ -1,212 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. - -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -from typing import Any, Optional, Tuple, Type - -import numpy as np -import torch -from torch import nn - -from .common import LayerNorm2d - - -class PromptEncoder(nn.Module): - def __init__( - self, - embed_dim: int, - image_embedding_size: Tuple[int, int], - input_image_size: Tuple[int, int], - mask_in_chans: int, - activation: Type[nn.Module] = nn.GELU, - ) -> None: - """ - Encodes prompts for input to SAM's mask decoder. - - Arguments: - embed_dim (int): The prompts' embedding dimension - image_embedding_size (tuple(int, int)): The spatial size of the - image embedding, as (H, W). - input_image_size (int): The padded size of the image as input - to the image encoder, as (H, W). - mask_in_chans (int): The number of hidden channels used for - encoding input masks. - activation (nn.Module): The activation to use when encoding - input masks. - """ - super().__init__() - self.embed_dim = embed_dim - self.input_image_size = input_image_size - self.image_embedding_size = image_embedding_size - self.pe_layer = PositionEmbeddingRandom(embed_dim // 2) - - self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners - point_embeddings = [nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings)] - self.point_embeddings = nn.ModuleList(point_embeddings) - self.not_a_point_embed = nn.Embedding(1, embed_dim) - - self.mask_input_size = (4 * image_embedding_size[0], 4 * image_embedding_size[1]) - self.mask_downscaling = nn.Sequential( - nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2), - LayerNorm2d(mask_in_chans // 4), - activation(), - nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2), - LayerNorm2d(mask_in_chans), - activation(), - nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1), - ) - self.no_mask_embed = nn.Embedding(1, embed_dim) - - def get_dense_pe(self) -> torch.Tensor: - """ - Returns the positional encoding used to encode point prompts, - applied to a dense set of points the shape of the image encoding. - - Returns: - torch.Tensor: Positional encoding with shape - 1x(embed_dim)x(embedding_h)x(embedding_w) - """ - return self.pe_layer(self.image_embedding_size).unsqueeze(0) - - def _embed_points( - self, - points: torch.Tensor, - labels: torch.Tensor, - pad: bool, - ) -> torch.Tensor: - """Embeds point prompts.""" - points = points + 0.5 # Shift to center of pixel - if pad: - padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device) - padding_label = -torch.ones((labels.shape[0], 1), device=labels.device) - points = torch.cat([points, padding_point], dim=1) - labels = torch.cat([labels, padding_label], dim=1) - point_embedding = self.pe_layer.forward_with_coords(points, self.input_image_size) - point_embedding[labels == -1] = 0.0 - point_embedding[labels == -1] += self.not_a_point_embed.weight - point_embedding[labels == 0] += self.point_embeddings[0].weight - point_embedding[labels == 1] += self.point_embeddings[1].weight - return point_embedding - - def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor: - """Embeds box prompts.""" - boxes = boxes + 0.5 # Shift to center of pixel - coords = boxes.reshape(-1, 2, 2) - corner_embedding = self.pe_layer.forward_with_coords(coords, self.input_image_size) - corner_embedding[:, 0, :] += self.point_embeddings[2].weight - corner_embedding[:, 1, :] += self.point_embeddings[3].weight - return corner_embedding - - def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor: - """Embeds mask inputs.""" - mask_embedding = self.mask_downscaling(masks) - return mask_embedding - - def _get_batch_size( - self, - points: Optional[Tuple[torch.Tensor, torch.Tensor]], - boxes: Optional[torch.Tensor], - masks: Optional[torch.Tensor], - ) -> int: - """ - Gets the batch size of the output given the batch size of the input prompts. - """ - if points is not None: - return points[0].shape[0] - elif boxes is not None: - return boxes.shape[0] - elif masks is not None: - return masks.shape[0] - else: - return 1 - - def _get_device(self) -> torch.device: - return self.point_embeddings[0].weight.device - - def forward( - self, - points: Optional[Tuple[torch.Tensor, torch.Tensor]], - boxes: Optional[torch.Tensor], - masks: Optional[torch.Tensor], - ) -> Tuple[torch.Tensor, torch.Tensor]: - """ - Embeds different types of prompts, returning both sparse and dense - embeddings. - - Arguments: - points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates - and labels to embed. - boxes (torch.Tensor or none): boxes to embed - masks (torch.Tensor or none): masks to embed - - Returns: - torch.Tensor: sparse embeddings for the points and boxes, with shape - BxNx(embed_dim), where N is determined by the number of input points - and boxes. - torch.Tensor: dense embeddings for the masks, in the shape - Bx(embed_dim)x(embed_H)x(embed_W) - """ - bs = self._get_batch_size(points, boxes, masks) - sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self._get_device()) - if points is not None: - coords, labels = points - point_embeddings = self._embed_points(coords, labels, pad=(boxes is None)) - sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1) - if boxes is not None: - box_embeddings = self._embed_boxes(boxes) - sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1) - - if masks is not None: - dense_embeddings = self._embed_masks(masks) - else: - dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand( - bs, -1, self.image_embedding_size[0], self.image_embedding_size[1] - ) - - return sparse_embeddings, dense_embeddings - - -class PositionEmbeddingRandom(nn.Module): - """ - Positional encoding using random spatial frequencies. - """ - - def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None: - super().__init__() - if scale is None or scale <= 0.0: - scale = 1.0 - self.register_buffer( - "positional_encoding_gaussian_matrix", - scale * torch.randn((2, num_pos_feats)), - ) - - def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor: - """Positionally encode points that are normalized to [0,1].""" - # assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape - coords = 2 * coords - 1 - coords = coords @ self.positional_encoding_gaussian_matrix - coords = 2 * np.pi * coords - # outputs d_1 x ... x d_n x C shape - return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1) - - def forward(self, size: Tuple[int, int]) -> torch.Tensor: - """Generate positional encoding for a grid of the specified size.""" - h, w = size - device: Any = self.positional_encoding_gaussian_matrix.device - grid = torch.ones((h, w), device=device, dtype=torch.float32) - y_embed = grid.cumsum(dim=0) - 0.5 - x_embed = grid.cumsum(dim=1) - 0.5 - y_embed = y_embed / h - x_embed = x_embed / w - - pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1)) - return pe.permute(2, 0, 1) # C x H x W - - def forward_with_coords(self, coords_input: torch.Tensor, image_size: Tuple[int, int]) -> torch.Tensor: - """Positionally encode points that are not normalized to [0,1].""" - coords = coords_input.clone() - coords[:, :, 0] = coords[:, :, 0] / image_size[1] - coords[:, :, 1] = coords[:, :, 1] / image_size[0] - return self._pe_encoding(coords.to(torch.float)) # B x N x C diff --git a/training/segment_anything/modeling/sam.py b/training/segment_anything/modeling/sam.py deleted file mode 100644 index c1ce4ec..0000000 --- a/training/segment_anything/modeling/sam.py +++ /dev/null @@ -1,174 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. - -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -from typing import Any, Dict, List, Tuple - -import torch -from torch import nn -from torch.nn import functional as F - -from .image_encoder import ImageEncoderViT -from .mask_decoder import MaskDecoder -from .prompt_encoder import PromptEncoder - - -class Sam(nn.Module): - mask_threshold: float = 0.0 - image_format: str = "RGB" - - def __init__( - self, - image_encoder: ImageEncoderViT, - prompt_encoder: PromptEncoder, - mask_decoder: MaskDecoder, - pixel_mean: List[float] = [123.675, 116.28, 103.53], - pixel_std: List[float] = [58.395, 57.12, 57.375], - ) -> None: - """ - SAM predicts object masks from an image and input prompts. - - Arguments: - image_encoder (ImageEncoderViT): The backbone used to encode the - image into image embeddings that allow for efficient mask prediction. - prompt_encoder (PromptEncoder): Encodes various types of input prompts. - mask_decoder (MaskDecoder): Predicts masks from the image embeddings - and encoded prompts. - pixel_mean (list(float)): Mean values for normalizing pixels in the input image. - pixel_std (list(float)): Std values for normalizing pixels in the input image. - """ - super().__init__() - self.image_encoder = image_encoder - self.prompt_encoder = prompt_encoder - self.mask_decoder = mask_decoder - self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False) - self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False) - - @property - def device(self) -> Any: - return self.pixel_mean.device - - @torch.no_grad() - def forward( - self, - batched_input: List[Dict[str, Any]], - multimask_output: bool, - ) -> List[Dict[str, torch.Tensor]]: - """ - Predicts masks end-to-end from provided images and prompts. - If prompts are not known in advance, using SamPredictor is - recommended over calling the model directly. - - Arguments: - batched_input (list(dict)): A list over input images, each a - dictionary with the following keys. A prompt key can be - excluded if it is not present. - 'image': The image as a torch tensor in 3xHxW format, - already transformed for input to the model. - 'original_size': (tuple(int, int)) The original size of - the image before transformation, as (H, W). - 'point_coords': (torch.Tensor) Batched point prompts for - this image, with shape BxNx2. Already transformed to the - input frame of the model. - 'point_labels': (torch.Tensor) Batched labels for point prompts, - with shape BxN. - 'boxes': (torch.Tensor) Batched box inputs, with shape Bx4. - Already transformed to the input frame of the model. - 'mask_inputs': (torch.Tensor) Batched mask inputs to the model, - in the form Bx1xHxW. - multimask_output (bool): Whether the model should predict multiple - disambiguating masks, or return a single mask. - - Returns: - (list(dict)): A list over input images, where each element is - as dictionary with the following keys. - 'masks': (torch.Tensor) Batched binary mask predictions, - with shape BxCxHxW, where B is the number of input promts, - C is determiend by multimask_output, and (H, W) is the - original size of the image. - 'iou_predictions': (torch.Tensor) The model's predictions - of mask quality, in shape BxC. - 'low_res_logits': (torch.Tensor) Low resolution logits with - shape BxCxHxW, where H=W=256. Can be passed as mask input - to subsequent iterations of prediction. - """ - input_images = torch.stack([self.preprocess(x["image"]) for x in batched_input], dim=0) - image_embeddings = self.image_encoder(input_images) - - outputs = [] - for image_record, curr_embedding in zip(batched_input, image_embeddings): - if "point_coords" in image_record: - points = (image_record["point_coords"], image_record["point_labels"]) - else: - points = None - sparse_embeddings, dense_embeddings = self.prompt_encoder( - points=points, - boxes=image_record.get("boxes", None), - masks=image_record.get("mask_inputs", None), - ) - low_res_masks, iou_predictions = self.mask_decoder( - image_embeddings=curr_embedding.unsqueeze(0), - image_pe=self.prompt_encoder.get_dense_pe(), - sparse_prompt_embeddings=sparse_embeddings, - dense_prompt_embeddings=dense_embeddings, - multimask_output=multimask_output, - ) - masks = self.postprocess_masks( - low_res_masks, - input_size=image_record["image"].shape[-2:], - original_size=image_record["original_size"], - ) - masks = masks > self.mask_threshold - outputs.append( - { - "masks": masks, - "iou_predictions": iou_predictions, - "low_res_logits": low_res_masks, - } - ) - return outputs - - def postprocess_masks( - self, - masks: torch.Tensor, - input_size: Tuple[int, ...], - original_size: Tuple[int, ...], - ) -> torch.Tensor: - """ - Remove padding and upscale masks to the original image size. - - Arguments: - masks (torch.Tensor): Batched masks from the mask_decoder, - in BxCxHxW format. - input_size (tuple(int, int)): The size of the image input to the - model, in (H, W) format. Used to remove padding. - original_size (tuple(int, int)): The original size of the image - before resizing for input to the model, in (H, W) format. - - Returns: - (torch.Tensor): Batched masks in BxCxHxW format, where (H, W) - is given by original_size. - """ - masks = F.interpolate( - masks, - (self.image_encoder.img_size, self.image_encoder.img_size), - mode="bilinear", - align_corners=False, - ) - masks = masks[..., : input_size[0], : input_size[1]] - masks = F.interpolate(masks, original_size, mode="bilinear", align_corners=False) - return masks - - def preprocess(self, x: torch.Tensor) -> torch.Tensor: - """Normalize pixel values and pad to a square input.""" - # Normalize colors - x = (x - self.pixel_mean) / self.pixel_std - - # Pad - h, w = x.shape[-2:] - padh = self.image_encoder.img_size - h - padw = self.image_encoder.img_size - w - x = F.pad(x, (0, padw, 0, padh)) - return x diff --git a/training/segment_anything/predictor.py b/training/segment_anything/predictor.py deleted file mode 100644 index fb252a4..0000000 --- a/training/segment_anything/predictor.py +++ /dev/null @@ -1,264 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. - -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -from typing import Optional, Tuple - -import numpy as np -import torch -from segment_anything.modeling import Sam - -from .utils.transforms import ResizeLongestSide - - -class SamPredictor: - def __init__( - self, - sam_model: Sam, - ) -> None: - """ - Uses SAM to calculate the image embedding for an image, and then - allow repeated, efficient mask prediction given prompts. - - Arguments: - sam_model (Sam): The model to use for mask prediction. - """ - super().__init__() - self.model = sam_model - self.transform = ResizeLongestSide(sam_model.image_encoder.img_size) - self.reset_image() - - def set_image( - self, - image: np.ndarray, - image_format: str = "RGB", - ) -> None: - """ - Calculates the image embeddings for the provided image, allowing - masks to be predicted with the 'predict' method. - - Arguments: - image (np.ndarray): The image for calculating masks. Expects an - image in HWC uint8 format, with pixel values in [0, 255]. - image_format (str): The color format of the image, in ['RGB', 'BGR']. - """ - assert image_format in [ - "RGB", - "BGR", - ], f"image_format must be in ['RGB', 'BGR'], is {image_format}." - if image_format != self.model.image_format: - image = image[..., ::-1] - - # Transform the image to the form expected by the model - input_image = self.transform.apply_image(image) - input_image_torch = torch.as_tensor(input_image, device=self.device) - input_image_torch = input_image_torch.permute(2, 0, 1).contiguous()[None, :, :, :] - - self.set_torch_image(input_image_torch, image.shape[:2]) - - @torch.no_grad() - def set_torch_image( - self, - transformed_image: torch.Tensor, - original_image_size: Tuple[int, ...], - ) -> None: - """ - Calculates the image embeddings for the provided image, allowing - masks to be predicted with the 'predict' method. Expects the input - image to be already transformed to the format expected by the model. - - Arguments: - transformed_image (torch.Tensor): The input image, with shape - 1x3xHxW, which has been transformed with ResizeLongestSide. - original_image_size (tuple(int, int)): The size of the image - before transformation, in (H, W) format. - """ - assert ( - len(transformed_image.shape) == 4 - and transformed_image.shape[1] == 3 - and max(*transformed_image.shape[2:]) == self.model.image_encoder.img_size - ), f"set_torch_image input must be BCHW with long side {self.model.image_encoder.img_size}." - self.reset_image() - - self.original_size = original_image_size - self.input_size = tuple(transformed_image.shape[-2:]) - input_image = self.model.preprocess(transformed_image) - self.features = self.model.image_encoder(input_image) - self.is_image_set = True - - def predict( - self, - point_coords: Optional[np.ndarray] = None, - point_labels: Optional[np.ndarray] = None, - box: Optional[np.ndarray] = None, - mask_input: Optional[np.ndarray] = None, - multimask_output: bool = True, - return_logits: bool = False, - ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: - """ - Predict masks for the given input prompts, using the currently set image. - - Arguments: - point_coords (np.ndarray or None): A Nx2 array of point prompts to the - model. Each point is in (X,Y) in pixels. - point_labels (np.ndarray or None): A length N array of labels for the - point prompts. 1 indicates a foreground point and 0 indicates a - background point. - box (np.ndarray or None): A length 4 array given a box prompt to the - model, in XYXY format. - mask_input (np.ndarray): A low resolution mask input to the model, typically - coming from a previous prediction iteration. Has form 1xHxW, where - for SAM, H=W=256. - multimask_output (bool): If true, the model will return three masks. - For ambiguous input prompts (such as a single click), this will often - produce better masks than a single prediction. If only a single - mask is needed, the model's predicted quality score can be used - to select the best mask. For non-ambiguous prompts, such as multiple - input prompts, multimask_output=False can give better results. - return_logits (bool): If true, returns un-thresholded masks logits - instead of a binary mask. - - Returns: - (np.ndarray): The output masks in CxHxW format, where C is the - number of masks, and (H, W) is the original image size. - (np.ndarray): An array of length C containing the model's - predictions for the quality of each mask. - (np.ndarray): An array of shape CxHxW, where C is the number - of masks and H=W=256. These low resolution logits can be passed to - a subsequent iteration as mask input. - """ - if not self.is_image_set: - raise RuntimeError("An image must be set with .set_image(...) before mask prediction.") - - # Transform input prompts - coords_torch, labels_torch, box_torch, mask_input_torch = None, None, None, None - if point_coords is not None: - assert point_labels is not None, "point_labels must be supplied if point_coords is supplied." - point_coords = self.transform.apply_coords(point_coords, self.original_size) - coords_torch = torch.as_tensor(point_coords, dtype=torch.float, device=self.device) - labels_torch = torch.as_tensor(point_labels, dtype=torch.int, device=self.device) - coords_torch, labels_torch = coords_torch[None, :, :], labels_torch[None, :] - if box is not None: - box = self.transform.apply_boxes(box, self.original_size) - box_torch = torch.as_tensor(box, dtype=torch.float, device=self.device) - box_torch = box_torch[None, :] - if mask_input is not None: - mask_input_torch = torch.as_tensor(mask_input, dtype=torch.float, device=self.device) - mask_input_torch = mask_input_torch[None, :, :, :] - - masks, iou_predictions, low_res_masks = self.predict_torch( - coords_torch, - labels_torch, - box_torch, - mask_input_torch, - multimask_output, - return_logits=return_logits, - ) - - masks = masks[0].detach().cpu().numpy() - iou_predictions = iou_predictions[0].detach().cpu().numpy() - low_res_masks = low_res_masks[0].detach().cpu().numpy() - return masks, iou_predictions, low_res_masks - - @torch.no_grad() - def predict_torch( - self, - point_coords: Optional[torch.Tensor], - point_labels: Optional[torch.Tensor], - boxes: Optional[torch.Tensor] = None, - mask_input: Optional[torch.Tensor] = None, - multimask_output: bool = True, - return_logits: bool = False, - ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: - """ - Predict masks for the given input prompts, using the currently set image. - Input prompts are batched torch tensors and are expected to already be - transformed to the input frame using ResizeLongestSide. - - Arguments: - point_coords (torch.Tensor or None): A BxNx2 array of point prompts to the - model. Each point is in (X,Y) in pixels. - point_labels (torch.Tensor or None): A BxN array of labels for the - point prompts. 1 indicates a foreground point and 0 indicates a - background point. - box (np.ndarray or None): A Bx4 array given a box prompt to the - model, in XYXY format. - mask_input (np.ndarray): A low resolution mask input to the model, typically - coming from a previous prediction iteration. Has form Bx1xHxW, where - for SAM, H=W=256. Masks returned by a previous iteration of the - predict method do not need further transformation. - multimask_output (bool): If true, the model will return three masks. - For ambiguous input prompts (such as a single click), this will often - produce better masks than a single prediction. If only a single - mask is needed, the model's predicted quality score can be used - to select the best mask. For non-ambiguous prompts, such as multiple - input prompts, multimask_output=False can give better results. - return_logits (bool): If true, returns un-thresholded masks logits - instead of a binary mask. - - Returns: - (torch.Tensor): The output masks in BxCxHxW format, where C is the - number of masks, and (H, W) is the original image size. - (torch.Tensor): An array of shape BxC containing the model's - predictions for the quality of each mask. - (torch.Tensor): An array of shape BxCxHxW, where C is the number - of masks and H=W=256. These low res logits can be passed to - a subsequent iteration as mask input. - """ - if not self.is_image_set: - raise RuntimeError("An image must be set with .set_image(...) before mask prediction.") - - if point_coords is not None: - points = (point_coords, point_labels) - else: - points = None - - # Embed prompts - sparse_embeddings, dense_embeddings = self.model.prompt_encoder( - points=points, - boxes=boxes, - masks=mask_input, - ) - - # Predict masks - low_res_masks, iou_predictions = self.model.mask_decoder( - image_embeddings=self.features, - image_pe=self.model.prompt_encoder.get_dense_pe(), - sparse_prompt_embeddings=sparse_embeddings, - dense_prompt_embeddings=dense_embeddings, - multimask_output=multimask_output, - ) - - # Upscale the masks to the original image resolution - masks = self.model.postprocess_masks(low_res_masks, self.input_size, self.original_size) - - if not return_logits: - masks = masks > self.model.mask_threshold - - return masks, iou_predictions, low_res_masks - - def get_image_embedding(self) -> torch.Tensor: - """ - Returns the image embeddings for the currently set image, with - shape 1xCxHxW, where C is the embedding dimension and (H,W) are - the embedding spatial dimension of SAM (typically C=256, H=W=64). - """ - if not self.is_image_set: - raise RuntimeError("An image must be set with .set_image(...) to generate an embedding.") - assert self.features is not None, "Features must exist if an image has been set." - return self.features - - @property - def device(self) -> torch.device: - return self.model.device - - def reset_image(self) -> None: - """Resets the currently set image.""" - self.is_image_set = False - self.features = None - self.orig_h = None - self.orig_w = None - self.input_h = None - self.input_w = None diff --git a/training/segment_anything/utils/__init__.py b/training/segment_anything/utils/__init__.py deleted file mode 100644 index 5277f46..0000000 --- a/training/segment_anything/utils/__init__.py +++ /dev/null @@ -1,5 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. - -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. diff --git a/training/segment_anything/utils/amg.py b/training/segment_anything/utils/amg.py deleted file mode 100644 index 1c9c491..0000000 --- a/training/segment_anything/utils/amg.py +++ /dev/null @@ -1,330 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. - -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -import math -from copy import deepcopy -from itertools import product -from typing import Any, Dict, Generator, ItemsView, List, Tuple - -import numpy as np -import torch - - -class MaskData: - """ - A structure for storing masks and their related data in batched format. - Implements basic filtering and concatenation. - """ - - def __init__(self, **kwargs) -> None: - for v in kwargs.values(): - assert isinstance( - v, (list, np.ndarray, torch.Tensor) - ), "MaskData only supports list, numpy arrays, and torch tensors." - self._stats = dict(**kwargs) - - def __setitem__(self, key: str, item: Any) -> None: - assert isinstance( - item, (list, np.ndarray, torch.Tensor) - ), "MaskData only supports list, numpy arrays, and torch tensors." - self._stats[key] = item - - def __delitem__(self, key: str) -> None: - del self._stats[key] - - def __getitem__(self, key: str) -> Any: - return self._stats[key] - - def items(self) -> ItemsView[str, Any]: - return self._stats.items() - - def filter(self, keep: torch.Tensor) -> None: - for k, v in self._stats.items(): - if v is None: - self._stats[k] = None - elif isinstance(v, torch.Tensor): - self._stats[k] = v[torch.as_tensor(keep, device=v.device)] - elif isinstance(v, np.ndarray): - self._stats[k] = v[keep.detach().cpu().numpy()] - elif isinstance(v, list) and keep.dtype == torch.bool: - self._stats[k] = [a for i, a in enumerate(v) if keep[i]] - elif isinstance(v, list): - self._stats[k] = [v[i] for i in keep] - else: - raise TypeError(f"MaskData key {k} has an unsupported type {type(v)}.") - - def cat(self, new_stats: "MaskData") -> None: - for k, v in new_stats.items(): - if k not in self._stats or self._stats[k] is None: - self._stats[k] = deepcopy(v) - elif isinstance(v, torch.Tensor): - self._stats[k] = torch.cat([self._stats[k], v], dim=0) - elif isinstance(v, np.ndarray): - self._stats[k] = np.concatenate([self._stats[k], v], axis=0) - elif isinstance(v, list): - self._stats[k] = self._stats[k] + deepcopy(v) - else: - raise TypeError(f"MaskData key {k} has an unsupported type {type(v)}.") - - def to_numpy(self) -> None: - for k, v in self._stats.items(): - if isinstance(v, torch.Tensor): - self._stats[k] = v.detach().cpu().numpy() - - -def is_box_near_crop_edge( - boxes: torch.Tensor, crop_box: List[int], orig_box: List[int], atol: float = 20.0 -) -> torch.Tensor: - """Filter masks at the edge of a crop, but not at the edge of the original image.""" - crop_box_torch = torch.as_tensor(crop_box, dtype=torch.float, device=boxes.device) - orig_box_torch = torch.as_tensor(orig_box, dtype=torch.float, device=boxes.device) - boxes = uncrop_boxes_xyxy(boxes, crop_box).float() - near_crop_edge = torch.isclose(boxes, crop_box_torch[None, :], atol=atol, rtol=0) - near_image_edge = torch.isclose(boxes, orig_box_torch[None, :], atol=atol, rtol=0) - near_crop_edge = torch.logical_and(near_crop_edge, ~near_image_edge) - return torch.any(near_crop_edge, dim=1) - - -def box_xyxy_to_xywh(box_xyxy: torch.Tensor) -> torch.Tensor: - box_xywh = deepcopy(box_xyxy) - box_xywh[2] = box_xywh[2] - box_xywh[0] - box_xywh[3] = box_xywh[3] - box_xywh[1] - return box_xywh - - -def batch_iterator(batch_size: int, *args) -> Generator[List[Any], None, None]: - assert len(args) > 0 and all( - len(a) == len(args[0]) for a in args - ), "Batched iteration must have inputs of all the same size." - n_batches = len(args[0]) // batch_size + int(len(args[0]) % batch_size != 0) - for b in range(n_batches): - yield [arg[b * batch_size : (b + 1) * batch_size] for arg in args] - - -def mask_to_rle_pytorch(tensor: torch.Tensor) -> List[Dict[str, Any]]: - """ - Encodes masks to an uncompressed RLE, in the format expected by - pycoco tools. - """ - # Put in fortran order and flatten h,w - b, h, w = tensor.shape - tensor = tensor.permute(0, 2, 1).flatten(1) - - # Compute change indices - diff = tensor[:, 1:] ^ tensor[:, :-1] - change_indices = diff.nonzero() - - # Encode run length - out = [] - for i in range(b): - cur_idxs = change_indices[change_indices[:, 0] == i, 1] - cur_idxs = torch.cat( - [ - torch.tensor([0], dtype=cur_idxs.dtype, device=cur_idxs.device), - cur_idxs + 1, - torch.tensor([h * w], dtype=cur_idxs.dtype, device=cur_idxs.device), - ] - ) - btw_idxs = cur_idxs[1:] - cur_idxs[:-1] - counts = [] if tensor[i, 0] == 0 else [0] - counts.extend(btw_idxs.detach().cpu().tolist()) - out.append({"size": [h, w], "counts": counts}) - return out - - -def rle_to_mask(rle: Dict[str, Any]) -> np.ndarray: - """Compute a binary mask from an uncompressed RLE.""" - h, w = rle["size"] - mask = np.empty(h * w, dtype=bool) - idx = 0 - parity = False - for count in rle["counts"]: - mask[idx : idx + count] = parity - idx += count - parity ^= True - mask = mask.reshape(w, h) - return mask.transpose() # Put in C order - - -def area_from_rle(rle: Dict[str, Any]) -> int: - return sum(rle["counts"][1::2]) - - -def calculate_stability_score(masks: torch.Tensor, mask_threshold: float, threshold_offset: float) -> torch.Tensor: - """ - Computes the stability score for a batch of masks. The stability - score is the IoU between the binary masks obtained by thresholding - the predicted mask logits at high and low values. - """ - # One mask is always contained inside the other. - # Save memory by preventing unnecesary cast to torch.int64 - intersections = (masks > (mask_threshold + threshold_offset)).sum(-1, dtype=torch.int16).sum(-1, dtype=torch.int32) - unions = (masks > (mask_threshold - threshold_offset)).sum(-1, dtype=torch.int16).sum(-1, dtype=torch.int32) - return intersections / unions - - -def build_point_grid(n_per_side: int) -> np.ndarray: - """Generates a 2D grid of points evenly spaced in [0,1]x[0,1].""" - offset = 1 / (2 * n_per_side) - points_one_side = np.linspace(offset, 1 - offset, n_per_side) - points_x = np.tile(points_one_side[None, :], (n_per_side, 1)) - points_y = np.tile(points_one_side[:, None], (1, n_per_side)) - points = np.stack([points_x, points_y], axis=-1).reshape(-1, 2) - return points - - -def build_all_layer_point_grids(n_per_side: int, n_layers: int, scale_per_layer: int) -> List[np.ndarray]: - """Generates point grids for all crop layers.""" - points_by_layer = [] - for i in range(n_layers + 1): - n_points = int(n_per_side / (scale_per_layer**i)) - points_by_layer.append(build_point_grid(n_points)) - return points_by_layer - - -def generate_crop_boxes( - im_size: Tuple[int, ...], n_layers: int, overlap_ratio: float -) -> Tuple[List[List[int]], List[int]]: - """ - Generates a list of crop boxes of different sizes. Each layer - has (2**i)**2 boxes for the ith layer. - """ - crop_boxes, layer_idxs = [], [] - im_h, im_w = im_size - short_side = min(im_h, im_w) - - # Original image - crop_boxes.append([0, 0, im_w, im_h]) - layer_idxs.append(0) - - def crop_len(orig_len, n_crops, overlap): - return int(math.ceil((overlap * (n_crops - 1) + orig_len) / n_crops)) - - for i_layer in range(n_layers): - n_crops_per_side = 2 ** (i_layer + 1) - overlap = int(overlap_ratio * short_side * (2 / n_crops_per_side)) - - crop_w = crop_len(im_w, n_crops_per_side, overlap) - crop_h = crop_len(im_h, n_crops_per_side, overlap) - - crop_box_x0 = [int((crop_w - overlap) * i) for i in range(n_crops_per_side)] - crop_box_y0 = [int((crop_h - overlap) * i) for i in range(n_crops_per_side)] - - # Crops in XYWH format - for x0, y0 in product(crop_box_x0, crop_box_y0): - box = [x0, y0, min(x0 + crop_w, im_w), min(y0 + crop_h, im_h)] - crop_boxes.append(box) - layer_idxs.append(i_layer + 1) - - return crop_boxes, layer_idxs - - -def uncrop_boxes_xyxy(boxes: torch.Tensor, crop_box: List[int]) -> torch.Tensor: - x0, y0, _, _ = crop_box - offset = torch.tensor([[x0, y0, x0, y0]], device=boxes.device) - # Check if boxes has a channel dimension - if len(boxes.shape) == 3: - offset = offset.unsqueeze(1) - return boxes + offset - - -def uncrop_points(points: torch.Tensor, crop_box: List[int]) -> torch.Tensor: - x0, y0, _, _ = crop_box - offset = torch.tensor([[x0, y0]], device=points.device) - # Check if points has a channel dimension - if len(points.shape) == 3: - offset = offset.unsqueeze(1) - return points + offset - - -def uncrop_masks(masks: torch.Tensor, crop_box: List[int], orig_h: int, orig_w: int) -> torch.Tensor: - x0, y0, x1, y1 = crop_box - if x0 == 0 and y0 == 0 and x1 == orig_w and y1 == orig_h: - return masks - # Coordinate transform masks - pad_x, pad_y = orig_w - (x1 - x0), orig_h - (y1 - y0) - pad = (x0, pad_x - x0, y0, pad_y - y0) - return torch.nn.functional.pad(masks, pad, value=0) - - -def remove_small_regions(mask: np.ndarray, area_thresh: float, mode: str) -> Tuple[np.ndarray, bool]: - """ - Removes small disconnected regions and holes in a mask. Returns the - mask and an indicator of if the mask has been modified. - """ - import cv2 # type: ignore - - assert mode in ["holes", "islands"] - correct_holes = mode == "holes" - working_mask = (correct_holes ^ mask).astype(np.uint8) - n_labels, regions, stats, _ = cv2.connectedComponentsWithStats(working_mask, 8) - sizes = stats[:, -1][1:] # Row 0 is background label - small_regions = [i + 1 for i, s in enumerate(sizes) if s < area_thresh] - if len(small_regions) == 0: - return mask, False - fill_labels = [0] + small_regions - if not correct_holes: - fill_labels = [i for i in range(n_labels) if i not in fill_labels] - # If every region is below threshold, keep largest - if len(fill_labels) == 0: - fill_labels = [int(np.argmax(sizes)) + 1] - mask = np.isin(regions, fill_labels) - return mask, True - - -def coco_encode_rle(uncompressed_rle: Dict[str, Any]) -> Dict[str, Any]: - from pycocotools import mask as mask_utils # type: ignore - - h, w = uncompressed_rle["size"] - rle = mask_utils.frPyObjects(uncompressed_rle, h, w) - rle["counts"] = rle["counts"].decode("utf-8") # Necessary to serialize with json - return rle - - -def batched_mask_to_box(masks: torch.Tensor) -> torch.Tensor: - """ - Calculates boxes in XYXY format around masks. Return [0,0,0,0] for - an empty mask. For input shape C1xC2x...xHxW, the output shape is C1xC2x...x4. - """ - # torch.max below raises an error on empty inputs, just skip in this case - if torch.numel(masks) == 0: - return torch.zeros(*masks.shape[:-2], 4, device=masks.device) - - # Normalize shape to CxHxW - shape = masks.shape - h, w = shape[-2:] - if len(shape) > 2: - masks = masks.flatten(0, -3) - else: - masks = masks.unsqueeze(0) - - # Get top and bottom edges - in_height, _ = torch.max(masks, dim=-1) - in_height_coords = in_height * torch.arange(h, device=in_height.device)[None, :] - bottom_edges, _ = torch.max(in_height_coords, dim=-1) - in_height_coords = in_height_coords + h * (~in_height) - top_edges, _ = torch.min(in_height_coords, dim=-1) - - # Get left and right edges - in_width, _ = torch.max(masks, dim=-2) - in_width_coords = in_width * torch.arange(w, device=in_width.device)[None, :] - right_edges, _ = torch.max(in_width_coords, dim=-1) - in_width_coords = in_width_coords + w * (~in_width) - left_edges, _ = torch.min(in_width_coords, dim=-1) - - # If the mask is empty the right edge will be to the left of the left edge. - # Replace these boxes with [0, 0, 0, 0] - empty_filter = (right_edges < left_edges) | (bottom_edges < top_edges) - out = torch.stack([left_edges, top_edges, right_edges, bottom_edges], dim=-1) - out = out * (~empty_filter).unsqueeze(-1) - - # Return to original shape - if len(shape) > 2: - out = out.reshape(*shape[:-2], 4) - else: - out = out[0] - - return out diff --git a/training/segment_anything/utils/onnx.py b/training/segment_anything/utils/onnx.py deleted file mode 100644 index 9cd17c7..0000000 --- a/training/segment_anything/utils/onnx.py +++ /dev/null @@ -1,138 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. - -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -from typing import Tuple - -import torch -import torch.nn as nn -from torch.nn import functional as F - -from ..modeling import Sam -from .amg import calculate_stability_score - - -class SamOnnxModel(nn.Module): - """ - This model should not be called directly, but is used in ONNX export. - It combines the prompt encoder, mask decoder, and mask postprocessing of Sam, - with some functions modified to enable model tracing. Also supports extra - options controlling what information. See the ONNX export script for details. - """ - - def __init__( - self, - model: Sam, - return_single_mask: bool, - use_stability_score: bool = False, - return_extra_metrics: bool = False, - ) -> None: - super().__init__() - self.mask_decoder = model.mask_decoder - self.model = model - self.img_size = model.image_encoder.img_size - self.return_single_mask = return_single_mask - self.use_stability_score = use_stability_score - self.stability_score_offset = 1.0 - self.return_extra_metrics = return_extra_metrics - - @staticmethod - def resize_longest_image_size(input_image_size: torch.Tensor, longest_side: int) -> torch.Tensor: - input_image_size = input_image_size.to(torch.float32) - scale = longest_side / torch.max(input_image_size) - transformed_size = scale * input_image_size - transformed_size = torch.floor(transformed_size + 0.5).to(torch.int64) - return transformed_size - - def _embed_points(self, point_coords: torch.Tensor, point_labels: torch.Tensor) -> torch.Tensor: - point_coords = point_coords + 0.5 - point_coords = point_coords / self.img_size - point_embedding = self.model.prompt_encoder.pe_layer._pe_encoding(point_coords) - point_labels = point_labels.unsqueeze(-1).expand_as(point_embedding) - - point_embedding = point_embedding * (point_labels != -1) - point_embedding = point_embedding + self.model.prompt_encoder.not_a_point_embed.weight * (point_labels == -1) - - for i in range(self.model.prompt_encoder.num_point_embeddings): - point_embedding = point_embedding + self.model.prompt_encoder.point_embeddings[i].weight * ( - point_labels == i - ) - - return point_embedding - - def _embed_masks(self, input_mask: torch.Tensor, has_mask_input: torch.Tensor) -> torch.Tensor: - mask_embedding = has_mask_input * self.model.prompt_encoder.mask_downscaling(input_mask) - mask_embedding = mask_embedding + (1 - has_mask_input) * self.model.prompt_encoder.no_mask_embed.weight.reshape( - 1, -1, 1, 1 - ) - return mask_embedding - - def mask_postprocessing(self, masks: torch.Tensor, orig_im_size: torch.Tensor) -> torch.Tensor: - masks = F.interpolate( - masks, - size=(self.img_size, self.img_size), - mode="bilinear", - align_corners=False, - ) - - prepadded_size = self.resize_longest_image_size(orig_im_size, self.img_size) - masks = masks[..., : int(prepadded_size[0]), : int(prepadded_size[1])] - - orig_im_size = orig_im_size.to(torch.int64) - h, w = orig_im_size[0], orig_im_size[1] - masks = F.interpolate(masks, size=(h, w), mode="bilinear", align_corners=False) - return masks - - def select_masks( - self, masks: torch.Tensor, iou_preds: torch.Tensor, num_points: int - ) -> Tuple[torch.Tensor, torch.Tensor]: - # Determine if we should return the multiclick mask or not from the number of points. - # The reweighting is used to avoid control flow. - score_reweight = torch.tensor([[1000] + [0] * (self.model.mask_decoder.num_mask_tokens - 1)]).to( - iou_preds.device - ) - score = iou_preds + (num_points - 2.5) * score_reweight - best_idx = torch.argmax(score, dim=1) - masks = masks[torch.arange(masks.shape[0]), best_idx, :, :].unsqueeze(1) - iou_preds = iou_preds[torch.arange(masks.shape[0]), best_idx].unsqueeze(1) - - return masks, iou_preds - - @torch.no_grad() - def forward( - self, - image_embeddings: torch.Tensor, - point_coords: torch.Tensor, - point_labels: torch.Tensor, - mask_input: torch.Tensor, - has_mask_input: torch.Tensor, - orig_im_size: torch.Tensor, - ): - sparse_embedding = self._embed_points(point_coords, point_labels) - dense_embedding = self._embed_masks(mask_input, has_mask_input) - - masks, scores = self.model.mask_decoder.predict_masks( - image_embeddings=image_embeddings, - image_pe=self.model.prompt_encoder.get_dense_pe(), - sparse_prompt_embeddings=sparse_embedding, - dense_prompt_embeddings=dense_embedding, - ) - - if self.use_stability_score: - scores = calculate_stability_score(masks, self.model.mask_threshold, self.stability_score_offset) - - if self.return_single_mask: - masks, scores = self.select_masks(masks, scores, point_coords.shape[1]) - - upscaled_masks = self.mask_postprocessing(masks, orig_im_size) - - if self.return_extra_metrics: - stability_scores = calculate_stability_score( - upscaled_masks, self.model.mask_threshold, self.stability_score_offset - ) - areas = (upscaled_masks > self.model.mask_threshold).sum(-1).sum(-1) - return upscaled_masks, scores, stability_scores, areas, masks - - return upscaled_masks, scores, masks diff --git a/training/segment_anything/utils/transforms.py b/training/segment_anything/utils/transforms.py deleted file mode 100644 index 96a4ed6..0000000 --- a/training/segment_anything/utils/transforms.py +++ /dev/null @@ -1,92 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. - -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -from copy import deepcopy -from typing import Tuple - -import numpy as np -import torch -from torch.nn import functional as F -from torchvision.transforms.functional import resize, to_pil_image # type: ignore - - -class ResizeLongestSide: - """ - Resizes images to longest side 'target_length', as well as provides - methods for resizing coordinates and boxes. Provides methods for - transforming both numpy array and batched torch tensors. - """ - - def __init__(self, target_length: int) -> None: - self.target_length = target_length - - def apply_image(self, image: np.ndarray) -> np.ndarray: - """ - Expects a numpy array with shape HxWxC in uint8 format. - """ - target_size = self.get_preprocess_shape(image.shape[0], image.shape[1], self.target_length) - return np.array(resize(to_pil_image(image), target_size)) - - def apply_coords(self, coords: np.ndarray, original_size: Tuple[int, ...]) -> np.ndarray: - """ - Expects a numpy array of length 2 in the final dimension. Requires the - original image size in (H, W) format. - """ - old_h, old_w = original_size - new_h, new_w = self.get_preprocess_shape(original_size[0], original_size[1], self.target_length) - coords = deepcopy(coords).astype(float) - coords[..., 0] = coords[..., 0] * (new_w / old_w) - coords[..., 1] = coords[..., 1] * (new_h / old_h) - return coords - - def apply_boxes(self, boxes: np.ndarray, original_size: Tuple[int, ...]) -> np.ndarray: - """ - Expects a numpy array shape Bx4. Requires the original image size - in (H, W) format. - """ - boxes = self.apply_coords(boxes.reshape(-1, 2, 2), original_size) - return boxes.reshape(-1, 4) - - def apply_image_torch(self, image: torch.Tensor) -> torch.Tensor: - """ - Expects batched images with shape BxCxHxW and float format. This - transformation may not exactly match apply_image. apply_image is - the transformation expected by the model. - """ - # Expects an image in BCHW format. May not exactly match apply_image. - target_size = self.get_preprocess_shape(image.shape[0], image.shape[1], self.target_length) - return F.interpolate(image, target_size, mode="bilinear", align_corners=False, antialias=True) - - def apply_coords_torch(self, coords: torch.Tensor, original_size: Tuple[int, ...]) -> torch.Tensor: - """ - Expects a torch tensor with length 2 in the last dimension. Requires the - original image size in (H, W) format. - """ - old_h, old_w = original_size - new_h, new_w = self.get_preprocess_shape(original_size[0], original_size[1], self.target_length) - coords = deepcopy(coords).to(torch.float) - coords[..., 0] = coords[..., 0] * (new_w / old_w) - coords[..., 1] = coords[..., 1] * (new_h / old_h) - return coords - - def apply_boxes_torch(self, boxes: torch.Tensor, original_size: Tuple[int, ...]) -> torch.Tensor: - """ - Expects a torch tensor with shape Bx4. Requires the original image - size in (H, W) format. - """ - boxes = self.apply_coords_torch(boxes.reshape(-1, 2, 2), original_size) - return boxes.reshape(-1, 4) - - @staticmethod - def get_preprocess_shape(oldh: int, oldw: int, long_side_length: int) -> Tuple[int, int]: - """ - Compute the output size given input size and target long side length. - """ - scale = long_side_length * 1.0 / max(oldh, oldw) - newh, neww = oldh * scale, oldw * scale - neww = int(neww + 0.5) - newh = int(newh + 0.5) - return (newh, neww) diff --git a/training/trainer_2pt5d.py b/training/trainer_2pt5d.py deleted file mode 100644 index 1d1e906..0000000 --- a/training/trainer_2pt5d.py +++ /dev/null @@ -1,654 +0,0 @@ -# Copyright 2020 - 2023 MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import json -import os -import random -import time -from copy import deepcopy - -import numpy as np -import torch -import torch.nn.functional as F -import torch.nn.parallel -import torch.utils.data.distributed -from monai.data import decollate_batch -from monai.metrics import compute_dice -from tensorboardX import SummaryWriter -from torch.cuda.amp import GradScaler, autocast -from utils.utils import AverageMeter, distributed_all_gather - - -def apply_coords_torch(coords, original_size, sam_image_size) -> np.ndarray: - """ - Expects a numpy array of length 2 in the final dimension. Requires the - original image size in (H, W) format. - """ - old = original_size - new = sam_image_size - coords = deepcopy(coords).float() - # Here, we can apply a same scale factor to h and w, because we first pad the input to a square image along the - # longest side then resize it to sam_image_size. In other words, the scale factor is determined by the longest side. - coords[..., 0] = coords[..., 0] * (new / old) - coords[..., 1] = coords[..., 1] * (new / old) - return coords - - -def sample_points(labelpoints, n_points): - idx = torch.randperm(len(labelpoints), dtype=torch.long, device=labelpoints.device)[:n_points] - return [labelpoints[idx]] - - -def generate_point_prompt(batch_labels_, args, points_pos=None, points_neg=None, previous_pred=None): - max_point = args.max_points - Np = ( - points_pos - if points_pos is not None - else min(max_point, int(np.abs(random.gauss(mu=0, sigma=max_point // 2))) + 1) - ) - Nn = points_neg if points_neg is not None else min(max_point, int(np.abs(random.gauss(mu=0, sigma=max_point // 2)))) - # To follow original SAM, with equal probability either a foreground point - # is selected randomly for the target mask - _point = [] - _point_label = [] - b, h, w = batch_labels_.shape - device = batch_labels_.device - for i in range(b): - plabels = batch_labels_[i, ...] - nlabels = (plabels == 0.0).float() - if previous_pred is not None: - ppred = previous_pred[i, 0, ...] - npred = (previous_pred[i, 0, ...] == 0.0).float() - - # False positive mask (pixels that are predicted as positive but are actually negative) - fp_mask = torch.logical_and(nlabels, ppred) - # False negative mask (pixels that are predicted as negative but are actually positive) - fn_mask = torch.logical_and(plabels, npred) - # we sample positive points from false negative pred. - # we sample negative points from false positive pred. - plabelpoints = torch.nonzero(fn_mask) - nlabelpoints = torch.nonzero(fp_mask) - - else: - plabelpoints = torch.nonzero(plabels) - nlabelpoints = torch.nonzero(nlabels) - # 1 indicates a foreground point and 0 indicates a background point. - # -1 indicates a dummy non-point as the placeholder. - n_placeholder = Np + Nn - min(len(plabelpoints), Np) - min(len(nlabelpoints), Nn) - - # Use torch.randperm to generate indices on a GPU tensor - _point.append( - torch.cat( - sample_points(plabelpoints, min(len(plabelpoints), Np)) - + sample_points(nlabelpoints, min(len(nlabelpoints), Nn)) - + [torch.zeros((1, 2), device=device)] * n_placeholder, - dim=0, - ) - ) - _point_label.append( - torch.tensor([1] * min(len(plabelpoints), Np) + [0] * min(len(nlabelpoints), Nn) + [-1] * n_placeholder).to( - device - ) - ) - - point = torch.stack(_point) - point_label = torch.stack(_point_label) - point_coords = apply_coords_torch(point, max(h, w), args.sam_image_size) - - return point_coords, point_label - - -def prepare_sam_training_input(inputs, labels, args, model): - unique_labels = torch.unique(labels).as_tensor().long() - - if args.skip_bk: - unique_labels = unique_labels[1:] - - if len(unique_labels) == 0: - prepared_input = [{"image": inputs, "original_size": tuple(labels.shape)}] - batch_labels = torch.zeros(1, 1, args.sam_image_size // 4, args.sam_image_size // 4).cuda(args.rank) - skip = True - return prepared_input, batch_labels, None, skip - - # random sample args.num_prompt prompts, this will help to manage the GPU memory upper bound. - if len(unique_labels) > args.num_prompt: - idxs = random.sample(range(len(unique_labels)), args.num_prompt) - idxs = torch.tensor(idxs) - unique_labels = unique_labels[idxs] - if len(unique_labels) < args.num_prompt: - while len(unique_labels) < args.num_prompt: - unique_labels = torch.cat([unique_labels, unique_labels], 0) - unique_labels = unique_labels[: args.num_prompt] - - # add 4 background labels to every batch - background_labels = list(set([i for i in range(1, 105)]) - set(unique_labels.cpu().numpy())) - random.shuffle(background_labels) - unique_labels = torch.cat([unique_labels, torch.tensor(background_labels[:4]).cuda(args.rank)]) - - # preprocess make the size of label same as low_res_logit - batch_labels_ = torch.stack([labels == unique_labels[i] for i in range(len(unique_labels))], dim=0).float() - - if args.distributed: - batch_labels = model.module.preprocess(batch_labels_, is_input=False) - else: - batch_labels = model.preprocess(batch_labels_, is_input=False) - - # TODO: we currently only use class-label and points prompt. - - prepared_input = [{"image": inputs, "original_size": tuple(labels.shape)}] - if args.label_prompt: - labels_prompt = unique_labels.unsqueeze(-1) - prepared_input[0].update({"labels": labels_prompt}) - - if args.point_prompt: - point_coords, point_labels = generate_point_prompt(batch_labels_, args) - prepared_input[0].update({"point_coords": point_coords, "point_labels": point_labels}) - - if args.label_prompt and args.point_prompt: - # if we use both two kinds of prompts, then we randomly drop one kind. - if random.uniform(0, 1) < args.drop_label_prob: - prepared_input[0].pop("labels") - else: - if random.uniform(0, 1) < args.drop_point_prob: - prepared_input[0].pop("point_coords") - prepared_input[0].pop("point_labels") - - return prepared_input, batch_labels.unsqueeze(1).cuda(args.rank), batch_labels_, False - - -def train_epoch(model, loader, optimizer, scaler, epoch, loss_func, args): - model.train() - start_time = time.time() - run_loss = AverageMeter() - # we need to make sure the number of 2.5D input is an odd number. - assert args.roi_z_iter % 2 == 1 - for idx, batch_data in enumerate(loader): - # only take 1 batch - inputs_l = batch_data["image"] - labels_l = batch_data["label"] - # TODO: we only support batch_size = 1 for data loader. - inputs_l = inputs_l.squeeze() - labels_l = labels_l.squeeze() - n_z_before_pad = labels_l.shape[-1] - - n_slice = args.roi_z_iter - # pad the z direction, so we can easily extract 2.5D input and predict labels for the center slice - pd = (n_slice // 2, n_slice // 2) - inputs_l = F.pad(inputs_l, pd, "constant", 0) - labels_l = F.pad(labels_l, pd, "constant", 0) - _loss = torch.tensor(0.0).cuda(args.rank) - - for _k in range(args.num_patch): - # Return random integers from `low` (inclusive) to `high` (exclusive). - start_idx = int(np.random.randint(low=n_slice // 2, high=(n_slice // 2 + n_z_before_pad))) - - inputs = inputs_l[..., start_idx - n_slice // 2 : start_idx + n_slice // 2 + 1].permute(2, 0, 1) - - # we only need the label for the center slice - labels = labels_l[..., start_idx - n_slice // 2 : start_idx + n_slice // 2 + 1][..., n_slice // 2] - - data, target, target_original, skip = prepare_sam_training_input( - inputs.cuda(args.rank), labels.cuda(args.rank), args, model - ) - - for param in model.parameters(): - param.grad = None - - with autocast(enabled=args.amp): - outputs = model(data, is_train=True) - loss = loss_func(outputs[0]["low_res_logits"], target) - - if skip: - loss = loss * 0.0 - - if args.amp: - scaler.scale(loss).backward() - if args.clip is not None: - scaler.unscale_(optimizer) - torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip) - scaler.step(optimizer) - scaler.update() - else: - loss.backward() - if args.clip is not None: - torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip) - optimizer.step() - - _loss += loss.detach() - _loss /= min(args.num_patch, n_z_before_pad) - if args.distributed: - loss_list = distributed_all_gather( - [_loss], - out_numpy=True, - ) - run_loss.update( - np.mean(np.mean(np.stack(loss_list, axis=0), axis=0), axis=0), n=args.batch_size * args.world_size - ) - else: - run_loss.update(_loss.item(), n=args.num_patch) - if args.rank == 0: - print( - "Epoch {}/{} {}/{}".format(epoch, args.max_epochs, idx, len(loader)), - "loss: {:.4f}".format(run_loss.avg), - "time {:.2f}s".format(time.time() - start_time), - ) - start_time = time.time() - for param in model.parameters(): - param.grad = None - return run_loss.avg - - -def train_epoch_iterative(model, loader, optimizer, scaler, epoch, loss_func, args): - model.train() - start_time = time.time() - run_loss = AverageMeter() - # we need to make sure the number of 2.5D input is an odd number. - assert args.roi_z_iter % 2 == 1 - for idx, batch_data in enumerate(loader): - # only take 1 batch - inputs_l = batch_data["image"] - labels_l = batch_data["label"] - # TODO: we only support batch_size = 1 for data loader. - inputs_l = inputs_l.squeeze() - labels_l = labels_l.squeeze() - n_z_before_pad = labels_l.shape[-1] - - n_slice = args.roi_z_iter - # pad the z direction, so we can easily extract 2.5D input and predict labels for the center slice - pd = (n_slice // 2, n_slice // 2) - inputs_l = F.pad(inputs_l, pd, "constant", 0) - labels_l = F.pad(labels_l, pd, "constant", 0) - _loss = torch.tensor(0.0).cuda(args.rank) - for _k in range(min(args.num_patch, n_z_before_pad)): - # Return random integers from `low` (inclusive) to `high` (exclusive). - start_idx = int(np.random.randint(low=n_slice // 2, high=(n_slice // 2 + n_z_before_pad))) - - inputs = inputs_l[..., start_idx - n_slice // 2 : start_idx + n_slice // 2 + 1].permute(2, 0, 1) - - # we only need the label for the center slice - labels = labels_l[..., start_idx - n_slice // 2 : start_idx + n_slice // 2 + 1][..., n_slice // 2] - - data, target, target_original, skip = prepare_sam_training_input( - inputs.cuda(args.rank), labels.cuda(args.rank), args, model - ) - for param in model.parameters(): - param.grad = None - - with autocast(enabled=args.amp): - if args.distributed: - image_embeddings = model.module.get_image_embeddings(data) - else: - image_embeddings = model.get_image_embeddings(data) - - if skip: - with autocast(enabled=args.amp): - if args.distributed: - outputs = model.module.get_mask_prediction(data, image_embeddings) - else: - outputs = model.get_mask_prediction(data, image_embeddings) - loss = loss_func(outputs[0]["low_res_logits"], target) * 0.0 - else: - # iterative training - loss = 0 - drop_iter = random.randint(0, args.num_iterative_step - 2) - for i in range(args.num_iterative_step): - with autocast(enabled=args.amp): - if args.distributed: - outputs = model.module.get_mask_prediction(data, image_embeddings) - else: - outputs = model.get_mask_prediction(data, image_embeddings) - loss += loss_func(outputs[0]["low_res_logits"], target) - if i == args.num_iterative_step - 1: - # no need to perform the following operations after the last step - continue - # we also supply the mask prediction from the previous iteration - # as an additional prompt to our model (follow original SAM). - data[0]["mask_inputs"] = outputs[0]["low_res_logits"].detach() - if i == drop_iter: - # for drop iter, no additional points are sampled (follow original SAM). - continue - - previous_point_coords = data[0].get("point_coords", None) - previous_point_labels = data[0].get("point_labels", None) - - if previous_point_coords is None and args.no_more_points_for_cp_only: - # if no point prompt at the first prompt generation, - # we will not add more additional pointa during iterative training. - continue - - # sample one pos and on neg point based on previous prediction - previous_pred = (F.sigmoid(outputs[0]["high_res_logits"].detach()) > 0.5).float() - point_coords, point_labels = generate_point_prompt( - target_original, args=args, points_pos=1, points_neg=1, previous_pred=previous_pred - ) - - if previous_point_coords is not None: - data[0]["point_coords"] = torch.cat([previous_point_coords, point_coords], dim=1) - data[0]["point_labels"] = torch.cat([previous_point_labels, point_labels], dim=1) - else: - data[0]["point_coords"] = point_coords - data[0]["point_labels"] = point_labels - - if args.amp: - scaler.scale(loss).backward() - if args.clip is not None: - scaler.unscale_(optimizer) - torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip) - scaler.step(optimizer) - scaler.update() - else: - loss.backward() - if args.clip is not None: - torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip) - optimizer.step() - - _loss += loss.detach() / args.num_iterative_step - _loss /= min(args.num_patch, n_z_before_pad) - if args.distributed: - loss_list = distributed_all_gather( - [_loss], - out_numpy=True, - ) - run_loss.update( - np.mean(np.mean(np.stack(loss_list, axis=0), axis=0), axis=0), n=args.batch_size * args.world_size - ) - else: - run_loss.update(_loss.item(), n=args.num_patch) - if args.rank == 0: - print( - "Epoch {}/{} {}/{}".format(epoch, args.max_epochs, idx, len(loader)), - "loss: {:.4f}".format(run_loss.avg), - "time {:.2f}s".format(time.time() - start_time), - ) - start_time = time.time() - for param in model.parameters(): - param.grad = None - return run_loss.avg - - -def prepare_sam_test_input(inputs, labels, args, previous_pred=None): - unique_labels = torch.tensor([i for i in range(1, 105)]).cuda(args.rank) - - # preprocess make the size of lable same as high_res_logit - batch_labels = torch.stack([labels == unique_labels[i] for i in range(len(unique_labels))], dim=0).float() - - prepared_input = [{"image": inputs, "original_size": tuple(labels.shape)}] - if args.label_prompt: - labels_prompt = unique_labels.unsqueeze(-1) - prepared_input[0].update({"labels": labels_prompt}) - - if args.point_prompt: - point_coords, point_labels = generate_point_prompt( - batch_labels, - args, - points_pos=args.points_val_pos, - points_neg=args.points_val_neg, - previous_pred=previous_pred, - ) - prepared_input[0].update({"point_coords": point_coords, "point_labels": point_labels}) - - return prepared_input, batch_labels.unsqueeze(1).cuda(args.rank), unique_labels - - -def prepare_sam_val_input_cp_only(inputs, labels, args): - # Don't exclude background in val but will ignore it in metric calculation - unique_labels = torch.tensor([i for i in range(1, 105)]).cuda(args.rank) - - # preprocess make the size of lable same as high_res_logit - batch_labels = torch.stack([labels == unique_labels[i] for i in range(len(unique_labels))], dim=0).float() - - prepared_input = [{"image": inputs, "original_size": tuple(labels.shape)}] - - labels_prompt = unique_labels.unsqueeze(-1) - prepared_input[0].update({"labels": labels_prompt}) - - return prepared_input, batch_labels.unsqueeze(1).cuda(args.rank), unique_labels - - -def val_epoch(model, loader, epoch, acc_func, args, iterative=False, post_label=None, post_pred=None): - model.eval() - run_acc = AverageMeter() - start_time = time.time() - with torch.no_grad(): - for idx, batch_data in enumerate(loader): - # only take 1 batch - inputs_l = batch_data["image"] - labels_l = batch_data["label"] - labels_l.shape[-1] - # assert n_z_before_pad >= args.num_patch_val + args.roi_z_iter - - # TODO: we only support batch_size = 1 for data loader. - inputs_l = inputs_l.squeeze() - labels_l = labels_l.squeeze() - - n_slice = args.roi_z_iter - # pad the z direction, so we can easily extract 2.5D input and predict labels for the center slice - pd = (n_slice // 2, n_slice // 2) - - inputs_l = F.pad(inputs_l, pd, "constant", 0) - labels_l = F.pad(labels_l, pd, "constant", 0) - n_z_after_pad = labels_l.shape[-1] - - acc_sum_total = 0.0 - not_nans_total = 0.0 - # We only loop the center args.num_patch_val slices to save val time - for start_idx in range( - n_z_after_pad // 2 - args.num_patch_val // 2, n_z_after_pad // 2 + args.num_patch_val // 2 - ): - inputs = inputs_l[..., start_idx - n_slice // 2 : start_idx + n_slice // 2 + 1].permute(2, 0, 1) - - # we only need the label for the center slice - labels = labels_l[..., start_idx - n_slice // 2 : start_idx + n_slice // 2 + 1][..., n_slice // 2] - - data, target, _ = prepare_sam_val_input_cp_only(inputs.cuda(args.rank), labels.cuda(args.rank), args) - - with autocast(enabled=args.amp): - outputs = model(data) - logit = outputs[0]["high_res_logits"] - - y_pred = torch.stack(post_pred(decollate_batch(logit)), 0) - - # TODO: we compute metric for each prompt for simplicity in validation. - acc_batch = compute_dice(y_pred=y_pred, y=target) - acc_sum, not_nans = ( - torch.nansum(acc_batch).item(), - 104 - torch.sum(torch.isnan(acc_batch).float()).item(), - ) - acc_sum_total += acc_sum - not_nans_total += not_nans - - acc, not_nans = acc_sum_total / not_nans_total, not_nans_total - f_name = batch_data["image"].meta["filename_or_obj"] - print(f"Rank: {args.rank}, Case: {f_name}, Acc: {acc:.4f}, N_prompts: {int(not_nans)} ") - - acc = torch.tensor(acc).cuda(args.rank) - not_nans = torch.tensor(not_nans).cuda(args.rank) - - if args.distributed: - acc_list, not_nans_list = distributed_all_gather([acc, not_nans], out_numpy=True) - for al, nl in zip(acc_list, not_nans_list): - run_acc.update(al, n=nl) - - else: - run_acc.update(acc.cpu().numpy(), n=not_nans.cpu().numpy()) - - if args.rank == 0: - avg_acc = np.mean(run_acc.avg) - print( - "Val {}/{} {}/{}".format(epoch, args.max_epochs, idx + 1, len(loader)), - "acc", - avg_acc, - "time {:.2f}s".format(time.time() - start_time), - ) - start_time = time.time() - return run_acc.avg - - -def save_checkpoint(model, epoch, args, filename="model.pt", best_acc=0, optimizer=None, scheduler=None): - state_dict = model.state_dict() if not args.distributed else model.module.state_dict() - save_dict = {"epoch": epoch, "best_acc": best_acc, "state_dict": state_dict} - if optimizer is not None: - save_dict["optimizer"] = optimizer.state_dict() - if scheduler is not None: - save_dict["scheduler"] = scheduler.state_dict() - filename = os.path.join(args.logdir, filename) - torch.save(save_dict, filename) - print("Saving checkpoint", filename) - - -def run_training( - model, - train_loader, - val_loader, - optimizer, - loss_func, - acc_func, - args, - scheduler=None, - start_epoch=0, - post_label=None, - post_pred=None, -): - writer = None - if args.logdir is not None and args.rank == 0: - writer = SummaryWriter(log_dir=args.logdir) - if args.rank == 0: - print("Writing Tensorboard logs to ", args.logdir) - scaler = None - if args.amp: - scaler = GradScaler() - val_acc_max = 0.0 - best_epoch = -1 - val_MA = None - best_log = {} - for epoch in range(start_epoch, args.max_epochs): - if args.distributed: - torch.distributed.barrier() - print(args.rank, time.ctime(), "Epoch:", epoch) - epoch_time = time.time() - if args.rank == 0: - if scheduler is not None: - print("Current lr:", scheduler.get_last_lr()) - else: - print("Current lr:", optimizer.param_groups[0]["lr"]) - - if args.label_prompt and args.point_prompt: - if epoch < args.label_prompt_warm_up_epoch: - # during warm up, we drop class label prompt embedding with less prob, - # since class label prompt embedding layer is trained from scratch. - args.drop_label_prob = 0.2 - args.drop_point_prob = 0.5 - else: - # after warmp up, we evenly drop two kinds of prompts - args.drop_label_prob = 0.5 - args.drop_point_prob = 0.5 - print( - "rank:", - args.rank, - "label_prompt (train):", - args.label_prompt, - ", label_drop_prob:", - args.drop_label_prob, - "| point_prompt (train):", - args.point_prompt, - ", point_drop_prob:", - args.drop_point_prob, - ) - - # we don't perform iterative training for the first args.iterative_training_warm_up_epoch epochs - if epoch > args.iterative_training_warm_up_epoch: - if args.reuse_img_embedding: - if args.rank == 0: - print("Iterative Training: Reuse image embedding!") - train_loss = train_epoch_iterative( - model, train_loader, optimizer, scaler=scaler, epoch=epoch, loss_func=loss_func, args=args - ) - else: - if args.rank == 0: - print("Iterative Training: Don't reuse image embedding!") - raise NotImplementedError - else: - print(f" Rank: {args.rank} Single-step Training") - train_loss = train_epoch( - model, train_loader, optimizer, scaler=scaler, epoch=epoch, loss_func=loss_func, args=args - ) - - if args.rank == 0: - print( - "Final training {}/{}".format(epoch, args.max_epochs - 1), - "loss: {:.4f}".format(train_loss), - "time {:.2f}s".format(time.time() - epoch_time), - ) - if args.rank == 0 and writer is not None: - writer.add_scalar("train_loss", train_loss, epoch) - - if (epoch + 1) % args.val_every == 0: - if args.distributed: - torch.distributed.barrier() - if args.rank == 0: - print("Start validation") - print("label_prompt (val):", args.label_prompt, "point_prompt (val):", args.point_prompt) - epoch_time = time.time() - val_avg_acc = val_epoch( - model, - val_loader, - iterative=False, - epoch=epoch, - acc_func=acc_func, - args=args, - post_label=post_label, - post_pred=post_pred, - ) - - val_avg_acc = np.mean(val_avg_acc) - if val_MA is None: - val_MA = val_avg_acc - else: - val_MA = 0.9 * val_MA + 0.1 * val_avg_acc - if args.rank == 0: - print( - "Final validation {}/{},".format(epoch, args.max_epochs - 1), - f"Acc {val_avg_acc:.4f},", - f"mv Acc {val_MA:.4f},", - "Previous Best validation at epoch {} is {:.4f},".format(best_epoch, val_acc_max), - "time {:.2f}s".format(time.time() - epoch_time), - ) - if writer is not None: - writer.add_scalar("val_acc", val_avg_acc, epoch) - if val_avg_acc > val_acc_max: - print("new best ({:.6f} --> {:.6f}). ".format(val_acc_max, val_avg_acc)) - val_acc_max = val_avg_acc - best_log[epoch] = float(val_acc_max) - best_epoch = epoch - if args.rank == 0 and args.logdir is not None and args.save_checkpoint: - save_checkpoint( - model, - epoch, - args, - best_acc=val_acc_max, - filename="model_best.pt", - optimizer=optimizer, - scheduler=scheduler, - ) - with open(os.path.join(args.logdir, "train.log"), "w") as f: - json.dump(best_log, f) - if args.rank == 0 and args.logdir is not None and args.save_checkpoint: - save_checkpoint(model, epoch, args, best_acc=val_acc_max, filename="model_final.pt") - - if scheduler is not None: - scheduler.step() - - if args.rank == 0 and writer is not None: - writer.close() - - print("Training Finished !, Best Accuracy: ", val_acc_max, "at epoch", best_epoch) - - return val_acc_max diff --git a/training/utils/__init__.py b/training/utils/__init__.py deleted file mode 100644 index e69de29..0000000 diff --git a/training/utils/data_utils.py b/training/utils/data_utils.py deleted file mode 100644 index 5d4064b..0000000 --- a/training/utils/data_utils.py +++ /dev/null @@ -1,251 +0,0 @@ -# Copyright 2020 - 2023 MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import copy -import math -import os - -import numpy as np -import torch -from monai import data, transforms -from monai.transforms import ( - EnsureChannelFirstd, - LoadImaged, - Orientationd, - RandRotate90d, - RandShiftIntensityd, - ScaleIntensityRanged, - Spacingd, -) - - -class Sampler(torch.utils.data.Sampler): - def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True, make_even=True): - if num_replicas is None: - if not torch.distributed.is_available(): - raise RuntimeError("Requires distributed package to be available") - num_replicas = torch.distributed.get_world_size() - if rank is None: - if not torch.distributed.is_available(): - raise RuntimeError("Requires distributed package to be available") - rank = torch.distributed.get_rank() - self.shuffle = shuffle - self.make_even = make_even - self.dataset = dataset - self.num_replicas = num_replicas - self.rank = rank - self.epoch = 0 - self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas)) - self.total_size = self.num_samples * self.num_replicas - indices = list(range(len(self.dataset))) - self.valid_length = len(indices[self.rank : self.total_size : self.num_replicas]) - - def __iter__(self): - if self.shuffle: - g = torch.Generator() - g.manual_seed(self.epoch) - indices = torch.randperm(len(self.dataset), generator=g).tolist() - else: - indices = list(range(len(self.dataset))) - if self.make_even: - if len(indices) < self.total_size: - if self.total_size - len(indices) < len(indices): - indices += indices[: (self.total_size - len(indices))] - else: - extra_ids = np.random.randint(low=0, high=len(indices), size=self.total_size - len(indices)) - indices += [indices[ids] for ids in extra_ids] - assert len(indices) == self.total_size - indices = indices[self.rank : self.total_size : self.num_replicas] - self.num_samples = len(indices) - return iter(indices) - - def __len__(self): - return self.num_samples - - def set_epoch(self, epoch): - self.epoch = epoch - - -def get_loader(args): - train_files, val_files, test_files = split_data(args) - - random_transforms = ( - [ - RandRotate90d( - keys=["image", "label"], - prob=0.10, - max_k=3, - ), - RandShiftIntensityd( - keys=["image"], - offsets=0.10, - prob=0.10, - ), - ] - if args.data_aug - else [] - ) - - if args.data_aug: - print("using data augmentation") - else: - print("No data augmentation") - - train_transform = transforms.Compose( - [ - LoadImaged(keys=["image", "label"], image_only=True), - EnsureChannelFirstd(keys=["image", "label"]), - Orientationd(keys=["image", "label"], axcodes="RAS"), - Spacingd(keys=["image", "label"], pixdim=(1.5, 1.5, 1.5), mode=("bilinear", "nearest")), - ScaleIntensityRanged( - keys=["image"], a_min=args.a_min, a_max=args.a_max, b_min=args.b_min, b_max=args.b_max, clip=True - ), - ] - + random_transforms - ) - - val_transform = transforms.Compose( - [ - LoadImaged(keys=["image", "label"], image_only=True), - EnsureChannelFirstd(keys=["image", "label"]), - Orientationd(keys=["image", "label"], axcodes="RAS"), - Spacingd(keys=["image", "label"], pixdim=(1.5, 1.5, 1.5), mode=("bilinear", "nearest")), - ScaleIntensityRanged( - keys=["image"], a_min=args.a_min, a_max=args.a_max, b_min=args.b_min, b_max=args.b_max, clip=True - ), - ] - ) - - if args.test_mode: - pass - else: - datalist = train_files - if args.use_normal_dataset: - train_ds = data.Dataset(data=datalist[:1], transform=train_transform) - else: - if args.distributed: - datalist = data.partition_dataset( - data=datalist, - shuffle=True, - num_partitions=args.world_size, - even_divisible=True, - )[args.rank] - - train_ds = data.CacheDataset( - data=datalist, - transform=train_transform, - cache_rate=1.0, - num_workers=args.workers, - ) - train_sampler = None - - train_loader = data.DataLoader( - train_ds, - batch_size=args.batch_size, - shuffle=(train_sampler is None), - num_workers=args.workers, - sampler=train_sampler, - pin_memory=True, - ) - val_files = val_files - if args.distributed: - val_files = data.partition_dataset( - data=val_files, - shuffle=False, - num_partitions=args.world_size, - even_divisible=False, - )[args.rank] - val_ds = data.CacheDataset( - data=val_files, - transform=val_transform, - cache_rate=1.0, - num_workers=args.workers, - ) - val_sampler = None - val_loader = data.DataLoader( - val_ds, batch_size=1, shuffle=False, num_workers=args.workers, sampler=val_sampler, pin_memory=True - ) - loader = [train_loader, val_loader] - - return loader - - -def split_data(args): - data_dir = args.data_dir - import json - - with open(args.json_list, "r") as f: - json_data = json.load(f) - - list_train = [] - list_valid = [] - if "validation" in json_data.keys(): - list_train = json_data["training"] - list_valid = json_data["validation"] - list_test = json_data["testing"] - else: - for item in json_data["training"]: - if item["fold"] == args.fold: - item.pop("fold", None) - list_valid.append(item) - else: - item.pop("fold", None) - list_train.append(item) - if "testing" in json_data.keys() and "label" in json_data["testing"][0]: - list_test = json_data["testing"] - else: - list_test = copy.deepcopy(list_valid) - if args.splitval > 0: - list_train = sorted(list_train, key=lambda x: x["image"]) - l = int((len(list_train) + len(list_valid)) * args.splitval) - list_valid = list_train[-l:] - list_train = list_train[:-l] - - if hasattr(args, "rank") and args.rank == 0: - print("train files", len(list_train), [os.path.basename(_["image"]).split(".")[0] for _ in list_train]) - print("val files", len(list_valid), [os.path.basename(_["image"]).split(".")[0] for _ in list_valid]) - print("test files", len(list_test), [os.path.basename(_["image"]).split(".")[0] for _ in list_test]) - - # training data - files = [] - for _i in range(len(list_train)): - str_img = os.path.join(data_dir, list_train[_i]["image"]) - str_seg = os.path.join(data_dir, list_train[_i]["label"]) - - if (not os.path.exists(str_img)) or (not os.path.exists(str_seg)): - continue - - files.append({"image": str_img, "label": str_seg}) - - train_files = copy.deepcopy(files) - - files = [] - for _i in range(len(list_valid)): - str_img = os.path.join(data_dir, list_valid[_i]["image"]) - str_seg = os.path.join(data_dir, list_valid[_i]["label"]) - - if (not os.path.exists(str_img)) or (not os.path.exists(str_seg)): - continue - - files.append({"image": str_img, "label": str_seg}) - val_files = copy.deepcopy(files) - - files = [] - for _i in range(len(list_test)): - str_img = os.path.join(data_dir, list_test[_i]["image"]) - str_seg = os.path.join(data_dir, list_test[_i]["label"]) - - if (not os.path.exists(str_img)) or (not os.path.exists(str_seg)): - continue - - files.append({"image": str_img, "label": str_seg}) - test_files = copy.deepcopy(files) - return train_files, val_files, test_files diff --git a/training/utils/utils.py b/training/utils/utils.py deleted file mode 100644 index 8ac31c6..0000000 --- a/training/utils/utils.py +++ /dev/null @@ -1,78 +0,0 @@ -# Copyright 2020 - 2022 MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import numpy as np -import scipy.ndimage as ndimage -import torch - - -def resample_3d(img, target_size): - imx, imy, imz = img.shape - tx, ty, tz = target_size - zoom_ratio = (float(tx) / float(imx), float(ty) / float(imy), float(tz) / float(imz)) - img_resampled = ndimage.zoom(img, zoom_ratio, order=0, prefilter=False) - return img_resampled - - -def dice(x, y): - intersect = np.sum(np.sum(np.sum(x * y))) - y_sum = np.sum(np.sum(np.sum(y))) - if y_sum == 0: - return 0.0 - x_sum = np.sum(np.sum(np.sum(x))) - return 2 * intersect / (x_sum + y_sum) - - -class AverageMeter(object): - def __init__(self): - self.reset() - - def reset(self): - self.val = 0 - self.avg = 0 - self.sum = 0 - self.count = 0 - - def update(self, val, n=1): - self.val = val - self.sum += val * n - self.count += n - self.avg = np.where(self.count > 0, self.sum / self.count, self.sum) - - -def distributed_all_gather( - tensor_list, valid_batch_size=None, out_numpy=False, world_size=None, no_barrier=False, is_valid=None -): - if world_size is None: - world_size = torch.distributed.get_world_size() - if valid_batch_size is not None: - valid_batch_size = min(valid_batch_size, world_size) - elif is_valid is not None: - is_valid = torch.tensor(bool(is_valid), dtype=torch.bool, device=tensor_list[0].device) - if not no_barrier: - torch.distributed.barrier() - tensor_list_out = [] - with torch.no_grad(): - if is_valid is not None: - is_valid_list = [torch.zeros_like(is_valid) for _ in range(world_size)] - torch.distributed.all_gather(is_valid_list, is_valid) - is_valid = [x.item() for x in is_valid_list] - for tensor in tensor_list: - gather_list = [torch.zeros_like(tensor) for _ in range(world_size)] - torch.distributed.all_gather(gather_list, tensor) - if valid_batch_size is not None: - gather_list = gather_list[:valid_batch_size] - elif is_valid is not None: - gather_list = [g for g, v in zip(gather_list, is_valid_list) if v] - if out_numpy: - gather_list = [t.cpu().numpy() for t in gather_list] - tensor_list_out.append(gather_list) - return tensor_list_out diff --git a/training/vista_2pt5d/__init__.py b/training/vista_2pt5d/__init__.py deleted file mode 100644 index e69de29..0000000 diff --git a/training/vista_2pt5d/model.py b/training/vista_2pt5d/model.py deleted file mode 100644 index 1df8097..0000000 --- a/training/vista_2pt5d/model.py +++ /dev/null @@ -1,441 +0,0 @@ -# Copyright (c) MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. - -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -from functools import partial -from typing import Any, Dict, List, Tuple - -import monai -import torch -from segment_anything.modeling import TwoWayTransformer -from segment_anything.modeling.mask_decoder import MaskDecoder -from torch import nn -from torch.nn import functional as F -from vista_2pt5d.vista_image_encoder import VistaImageEncoderViT -from vista_2pt5d.vista_prompt_encoder import VistaPromptEncoder - - -class Vista2pt5D(nn.Module): - mask_threshold: float = 0.5 - image_format: str = "RGB" - - def __init__( - self, - image_encoder: VistaImageEncoderViT, - prompt_encoder: VistaPromptEncoder, - mask_decoder: MaskDecoder, - pixel_mean: List[float] = [123.675, 116.28, 103.53], - pixel_std: List[float] = [58.395, 57.12, 57.375], - ) -> None: - """ - SAM predicts object masks from an image and input prompts. - - Arguments: - image_encoder (ImageEncoderViT): The backbone used to encode the - image into image embeddings that allow for efficient mask prediction. - prompt_encoder (PromptEncoder): Encodes various types of input prompts. - mask_decoder (MaskDecoder): Predicts masks from the image embeddings - and encoded prompts. - pixel_mean (list(float)): Mean values for normalizing pixels in the input image. - pixel_std (list(float)): Std values for normalizing pixels in the input image. - """ - super().__init__() - self.image_encoder = image_encoder - self.prompt_encoder = prompt_encoder - self.mask_decoder = mask_decoder - self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False) - self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False) - - @property - def device(self) -> Any: - return self.pixel_mean.device - - def get_image_embeddings( - self, - batched_input: List[Dict[str, Any]], - ): - input_images = torch.stack([self.preprocess(x["image"]) for x in batched_input], dim=0) - image_embeddings = self.image_encoder(input_images) - return image_embeddings - - def get_mask_prediction( - self, batched_input: List[Dict[str, Any]], image_embeddings, multimask_output: bool = False - ): - outputs = [] - for image_record, curr_embedding in zip(batched_input, image_embeddings): - if "point_coords" in image_record: - points = (image_record["point_coords"], image_record["point_labels"]) - # raise NotImplementedError - else: - points = None - sparse_embeddings, dense_embeddings = self.prompt_encoder( - points=points, - boxes=image_record.get("boxes", None), - masks=image_record.get("mask_inputs", None), - class_labels=image_record.get("labels", None), - ) - low_res_masks, iou_predictions = self.mask_decoder( - image_embeddings=curr_embedding.unsqueeze(0), - image_pe=self.prompt_encoder.get_dense_pe(), - sparse_prompt_embeddings=sparse_embeddings, - dense_prompt_embeddings=dense_embeddings, - multimask_output=multimask_output, - ) - - high_res_masks = self.postprocess_masks( - low_res_masks, - # input_size=image_record["image"].shape[-2:], - original_size=image_record["original_size"], - ) - masks = high_res_masks > self.mask_threshold - outputs.append( - { - "masks": masks, - "iou_predictions": iou_predictions, - "low_res_logits": low_res_masks, - "high_res_logits": high_res_masks, - } - ) - return outputs - - def forward( - self, - batched_input: List[Dict[str, Any]], - multimask_output: bool = False, - is_train: bool = False, - ) -> List[Dict[str, torch.Tensor]]: - """ - Predicts masks end-to-end from provided images and prompts. - If prompts are not known in advance, using SamPredictor is - recommended over calling the model directly. - - Arguments: - batched_input (list(dict)): A list over input images, each a - dictionary with the following keys. A prompt key can be - excluded if it is not present. - 'image': The image as a torch tensor in 3xHxW format, - already transformed for input to the model. - 'original_size': (tuple(int, int)) The original size of - the image before transformation, as (H, W). - 'point_coords': (torch.Tensor) Batched point prompts for - this image, with shape BxNx2. Already transformed to the - input frame of the model. - 'point_labels': (torch.Tensor) Batched labels for point prompts, - with shape BxN. - 'labels': (torch.Tensor) Batched labels for class-label prompt, - with shape BxN. - 'boxes': (torch.Tensor) Batched box inputs, with shape Bx4. - Already transformed to the input frame of the model. - 'mask_inputs': (torch.Tensor) Batched mask inputs to the model, - in the form Bx1xHxW. - multimask_output (bool): Whether the model should predict multiple - disambiguating masks, or return a single mask. - - Returns: - (list(dict)): A list over input images, where each element is - as dictionary with the following keys. - 'masks': (torch.Tensor) Batched binary mask predictions, - with shape BxCxHxW, where B is the number of input promts, - C is determiend by multimask_output, and (H, W) is the - original size of the image. - 'iou_predictions': (torch.Tensor) The model's predictions - of mask quality, in shape BxC. - 'low_res_logits': (torch.Tensor) Low resolution logits with - shape BxCxHxW, where H=W=256. Can be passed as mask input - to subsequent iterations of prediction. - """ - input_images = torch.stack([self.preprocess(x["image"]) for x in batched_input], dim=0) - image_embeddings = self.image_encoder(input_images) - - outputs = [] - for image_record, curr_embedding in zip(batched_input, image_embeddings): - if "point_coords" in image_record: - points = (image_record["point_coords"], image_record["point_labels"]) - # raise NotImplementedError - else: - points = None - sparse_embeddings, dense_embeddings = self.prompt_encoder( - points=points, - boxes=image_record.get("boxes", None), - masks=image_record.get("mask_inputs", None), - class_labels=image_record.get("labels", None), - ) - low_res_masks, iou_predictions = self.mask_decoder( - image_embeddings=curr_embedding.unsqueeze(0), - image_pe=self.prompt_encoder.get_dense_pe(), - sparse_prompt_embeddings=sparse_embeddings, - dense_prompt_embeddings=dense_embeddings, - multimask_output=multimask_output, - ) - if is_train: - outputs.append( - { - "iou_predictions": iou_predictions, - "low_res_logits": low_res_masks, - } - ) - else: - high_res_masks = self.postprocess_masks( - low_res_masks, - # input_size=image_record["image"].shape[-2:], - original_size=image_record["original_size"], - ) - masks = high_res_masks > self.mask_threshold - outputs.append( - { - "masks": masks, - "iou_predictions": iou_predictions, - "low_res_logits": low_res_masks, - "high_res_logits": high_res_masks, - } - ) - return outputs - - def postprocess_masks( - self, - masks: torch.Tensor, - # input_size: Tuple[int, ...], - original_size: Tuple[int, ...], - ) -> torch.Tensor: - """ - Remove padding and upscale masks to the original image size. - - Arguments: - masks (torch.Tensor): Batched masks from the mask_decoder, - in BxCxHxW format. - input_size (tuple(int, int)): The size of the image input to the - model, in (H, W) format. Used to remove padding. - original_size (tuple(int, int)): The original size of the image - before resizing for input to the model, in (H, W) format. - - Returns: - (torch.Tensor): Batched masks in BxCxHxW format, where (H, W) - is given by original_size. - """ - # make it high resolution - masks = F.interpolate( - masks, - (self.image_encoder.img_size, self.image_encoder.img_size), - mode="bilinear", - align_corners=False, - ) - # resize it back to the longest dim (square image) - masks = F.interpolate(masks, max(original_size), mode="bilinear", align_corners=False) - # remove padding - masks = masks[..., : original_size[0], : original_size[1]] - return masks - - def preprocess(self, x: torch.Tensor, is_input=True) -> torch.Tensor: - """Normalize pixel values and pad to a square input.""" - if is_input: - if x.shape[0] == 1: - # Normalize colors map the values in [0,1] to [0,255] for input images and then using - # original pixel_mean and pixel_std to do normalization - x = (x * 255.0 - self.pixel_mean) / self.pixel_std - else: - # for other 2.5d data, we normalize each input slice - x = torch.cat( - [(x[i].unsqueeze(0) * 255.0 - self.pixel_mean) / self.pixel_std for i in range(x.shape[0])], dim=0 - ) - - # Pad image and make it a square image - h, w = x.shape[-2:] - # find the longest dim - target_length = max(h, w) - padh = target_length - h - padw = target_length - w - x = F.pad(x, (0, padw, 0, padh)) - if is_input: - # Resize it to self.image_encoder.img_size - x = F.interpolate( - x.unsqueeze(0), - (self.image_encoder.img_size, self.image_encoder.img_size), - mode="bilinear", - align_corners=False, - ).squeeze(0) - else: - # Resize it to self.image_encoder.img_size // 4 (for labels). the size is same as low-res logit - x = F.interpolate( - x.unsqueeze(0), (self.image_encoder.img_size // 4, self.image_encoder.img_size // 4), mode="nearest" - ).squeeze(0) - return x - - -def _build_vista2pt5d( - encoder_in_chans, - encoder_embed_dim, - encoder_depth, - encoder_num_heads, - encoder_global_attn_indexes, - checkpoint=None, - image_size=1024, - clip_class_label_prompt=False, - patch_embed_3d=False, -): - prompt_embed_dim = 256 - image_size = image_size # TODO: Shall we try to adapt model to 512x512 ? - vit_patch_size = 16 - image_embedding_size = image_size // vit_patch_size - sam = Vista2pt5D( - image_encoder=VistaImageEncoderViT( - in_chans=encoder_in_chans, - depth=encoder_depth, - embed_dim=encoder_embed_dim, - img_size=image_size, - mlp_ratio=4, - norm_layer=partial(torch.nn.LayerNorm, eps=1e-6), - num_heads=encoder_num_heads, - patch_size=vit_patch_size, - qkv_bias=True, - use_rel_pos=True, - global_attn_indexes=encoder_global_attn_indexes, - window_size=14, - out_chans=prompt_embed_dim, - patch_embed_3d=patch_embed_3d, - ), - prompt_encoder=VistaPromptEncoder( - embed_dim=prompt_embed_dim, - image_embedding_size=(image_embedding_size, image_embedding_size), - input_image_size=(image_size, image_size), - mask_in_chans=16, - clip_class_label_prompt=clip_class_label_prompt, - ), - mask_decoder=MaskDecoder( - num_multimask_outputs=3, # TODO: only predict one binary mask - transformer=TwoWayTransformer( - depth=2, - embedding_dim=prompt_embed_dim, - mlp_dim=2048, - num_heads=8, - ), - transformer_dim=prompt_embed_dim, - iou_head_depth=3, - iou_head_hidden_dim=256, - ), - pixel_mean=[123.675, 116.28, 103.53], - pixel_std=[58.395, 57.12, 57.375], - ) - - if checkpoint is not None: - with open(checkpoint, "rb") as f: - state_dict = torch.load(f) - - if image_size == 1024: - # we try to use all pretrained weights - new_dict = state_dict - else: - new_dict = {} - for k, v in state_dict.items(): - # skip weights in position embedding and learned relative positional embeddings - # due to the change of input size - if ("pos_embed" in k and k.startswith("image_encoder")) or ( - "attn.rel_pos" in k and k.startswith("image_encoder") - ): - continue - else: - new_dict[k] = v - - if encoder_in_chans != 3: - new_dict.pop("image_encoder.patch_embed.proj.weight") - new_dict.pop("image_encoder.patch_embed.proj.bias") - - sam.load_state_dict(new_dict, strict=False) - print(f"Load {len(new_dict)} keys from checkpoint {checkpoint}, current model has {len(sam.state_dict())} keys") - - total_params = [] - image_encoder_params = [] - prompt_encoder_params = [] - mask_decoder_params = [] - for name, param in sam.named_parameters(): - n_param = param.numel() - total_params.append(n_param) - if name.startswith("image_encoder"): - image_encoder_params.append(n_param) - elif name.startswith("prompt_encoder"): - prompt_encoder_params.append(n_param) - elif name.startswith("mask_decoder"): - mask_decoder_params.append(n_param) - - print( - f"{sam.__class__.__name__} has {sum(total_params) * 1.e-6:.2f} M params, " - f"{sum(image_encoder_params) * 1.e-6:.2f} M params in image encoder," - f"{sum(prompt_encoder_params) * 1.e-6:.2f} M params in prompt encoder," - f"{sum(mask_decoder_params) * 1.e-6:.2f} M params in mask decoder." - ) - - total_trainable_params = sum(p.numel() if p.requires_grad else 0 for p in sam.parameters()) - print(f"{sam.__class__.__name__} has {total_trainable_params * 1.e-6:.2f} M trainable params.") - return sam - - -def build_vista2pt5d_vit_h( - checkpoint=None, image_size=1024, encoder_in_chans=3, clip_class_label_prompt=False, patch_embed_3d=False -): - return _build_vista2pt5d( - encoder_in_chans=encoder_in_chans, - encoder_embed_dim=1280, - encoder_depth=32, - encoder_num_heads=16, - encoder_global_attn_indexes=[7, 15, 23, 31], - checkpoint=checkpoint, - image_size=image_size, - clip_class_label_prompt=clip_class_label_prompt, - patch_embed_3d=patch_embed_3d, - ) - - -def build_vista2pt5d_vit_l( - checkpoint=None, image_size=1024, encoder_in_chans=3, clip_class_label_prompt=False, patch_embed_3d=False -): - return _build_vista2pt5d( - encoder_in_chans=encoder_in_chans, - encoder_embed_dim=1024, - encoder_depth=24, - encoder_num_heads=16, - encoder_global_attn_indexes=[5, 11, 17, 23], - checkpoint=checkpoint, - image_size=image_size, - clip_class_label_prompt=clip_class_label_prompt, - patch_embed_3d=patch_embed_3d, - ) - - -def build_vista2pt5d_vit_b( - checkpoint=None, image_size=1024, encoder_in_chans=3, clip_class_label_prompt=False, patch_embed_3d=False -): - return _build_vista2pt5d( - encoder_in_chans=encoder_in_chans, - encoder_embed_dim=768, - encoder_depth=12, - encoder_num_heads=12, - encoder_global_attn_indexes=[2, 5, 8, 11], - checkpoint=checkpoint, - image_size=image_size, - clip_class_label_prompt=clip_class_label_prompt, - patch_embed_3d=patch_embed_3d, - ) - - -sam_model_registry = { - "default": build_vista2pt5d_vit_h, - "vit_h": build_vista2pt5d_vit_h, - "vit_l": build_vista2pt5d_vit_l, - "vit_b": build_vista2pt5d_vit_b, -} - -if __name__ == "__main__": - model = build_vista2pt5d_vit_b() - model.cuda() diff --git a/training/vista_2pt5d/vista_image_encoder.py b/training/vista_2pt5d/vista_image_encoder.py deleted file mode 100644 index 4382425..0000000 --- a/training/vista_2pt5d/vista_image_encoder.py +++ /dev/null @@ -1,138 +0,0 @@ -# Copyright (c) MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. - -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -from typing import Tuple, Type - -import torch -import torch.nn as nn -from segment_anything.modeling.image_encoder import ImageEncoderViT, PatchEmbed - - -# This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py # noqa -class VistaImageEncoderViT(ImageEncoderViT): - def __init__( - self, - img_size: int = 1024, - patch_size: int = 16, - in_chans: int = 3, - embed_dim: int = 768, - depth: int = 12, - num_heads: int = 12, - mlp_ratio: float = 4.0, - out_chans: int = 256, - qkv_bias: bool = True, - norm_layer: Type[nn.Module] = nn.LayerNorm, - act_layer: Type[nn.Module] = nn.GELU, - use_abs_pos: bool = True, - use_rel_pos: bool = False, - rel_pos_zero_init: bool = True, - window_size: int = 0, - global_attn_indexes: Tuple[int, ...] = (), - patch_embed_3d: bool = False, - ) -> None: - """ - Args: - img_size (int): Input image size. - patch_size (int): Patch size. - in_chans (int): Number of input image channels. - embed_dim (int): Patch embedding dimension. - depth (int): Depth of ViT. - num_heads (int): Number of attention heads in each ViT block. - mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. - qkv_bias (bool): If True, add a learnable bias to query, key, value. - norm_layer (nn.Module): Normalization layer. - act_layer (nn.Module): Activation layer. - use_abs_pos (bool): If True, use absolute positional embeddings. - use_rel_pos (bool): If True, add relative positional embeddings to the attention map. - rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. - window_size (int): Window size for window attention blocks. - global_attn_indexes (list): Indexes for blocks using global attention. - patch_embed_3d (bool): If True, use 3D Patch Embedding. - """ - super().__init__( - img_size, - patch_size, - in_chans, - embed_dim, - depth, - num_heads, - mlp_ratio, - out_chans, - qkv_bias, - norm_layer, - act_layer, - use_abs_pos, - use_rel_pos, - rel_pos_zero_init, - window_size, - global_attn_indexes, - ) - - self.img_size = img_size - - if in_chans > 3 and patch_embed_3d: - print("ImageEncoderViT: Using 3D PatchEmbed") - self.patch_embed = PatchEmbed2pt5D( - kernel_size=(patch_size, patch_size, in_chans // 3), - stride=(patch_size, patch_size, in_chans // 3), - in_chans=3, - embed_dim=embed_dim, - ) - else: - self.patch_embed = PatchEmbed( - kernel_size=(patch_size, patch_size), - stride=(patch_size, patch_size), - in_chans=in_chans, - embed_dim=embed_dim, - ) - - -class PatchEmbed2pt5D(nn.Module): - """ - Image to Patch Embedding by 3D Conv. - """ - - def __init__( - self, - kernel_size: Tuple[int, int, int] = (16, 16, 1), - stride: Tuple[int, int, int] = (16, 16, 1), - padding: Tuple[int, int, int] = (0, 0, 0), - in_chans: int = 3, - embed_dim: int = 768, - ) -> None: - """ - Args: - kernel_size (Tuple): kernel size of the projection layer. - stride (Tuple): stride of the projection layer. - padding (Tuple): padding size of the projection layer. - in_chans (int): Number of input image channels. - embed_dim (int): embed_dim (int): Patch embedding dimension. - """ - super().__init__() - - self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding) - - def forward(self, x: torch.Tensor) -> torch.Tensor: - # got restore RGB channel dim and the depth dim - c = x.shape[1] - x = torch.stack(x.chunk(c // 3, dim=1), dim=-1) - x = self.proj(x) - # remove dummy depth dim to make it 2d - x = x.squeeze(-1) - # B C H W -> B H W C - x = x.permute(0, 2, 3, 1) - return x diff --git a/training/vista_2pt5d/vista_prompt_encoder.py b/training/vista_2pt5d/vista_prompt_encoder.py deleted file mode 100644 index 42568f8..0000000 --- a/training/vista_2pt5d/vista_prompt_encoder.py +++ /dev/null @@ -1,148 +0,0 @@ -# Copyright (c) MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. - -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -from typing import Any, Optional, Tuple, Type - -import numpy as np -import torch -from segment_anything.modeling.common import LayerNorm2d -from segment_anything.modeling.prompt_encoder import PromptEncoder -from torch import nn - - -class VistaPromptEncoder(PromptEncoder): - def __init__( - self, - embed_dim: int, - image_embedding_size: Tuple[int, int], - input_image_size: Tuple[int, int], - mask_in_chans: int, - activation: Type[nn.Module] = nn.GELU, - n_classes: int = 512, - clip_class_label_prompt: bool = False, - ) -> None: - """ - Encodes prompts for input to SAM's mask decoder. - - Arguments: - embed_dim (int): The prompts' embedding dimension - image_embedding_size (tuple(int, int)): The spatial size of the - image embedding, as (H, W). - input_image_size (int): The padded size of the image as input - to the image encoder, as (H, W). - mask_in_chans (int): The number of hidden channels used for - encoding input masks. - activation (nn.Module): The activation to use when encoding - input masks. - n_classes (int): The number of pre-defined classes. - clip_class_label_prompt (bool): Using clip txt features - as class label prompt. - """ - super().__init__(embed_dim, image_embedding_size, input_image_size, mask_in_chans, activation) - - self.clip_class_label_prompt = clip_class_label_prompt - # Add support for onehot vector embedding for pre-defined classes - if self.clip_class_label_prompt: - raise NotImplementedError - else: - self.label_embeddings = nn.Embedding(n_classes, embed_dim) - self.no_label_embed = nn.Embedding(1, embed_dim) - - def _embed_labels(self, labels: torch.Tensor) -> torch.Tensor: - """Embeds onehot vector inputs.""" - if self.clip_class_label_prompt: - raise NotImplementedError - else: - # Add support for onehot vector embedding for pre-defined classes - label_embedding = self.label_embeddings(labels) - return label_embedding - - def _get_batch_size( - self, - points: Optional[Tuple[torch.Tensor, torch.Tensor]], - boxes: Optional[torch.Tensor], - masks: Optional[torch.Tensor], - labels: Optional[torch.Tensor], - ) -> int: - """ - Gets the batch size of the output given the batch size of the input prompts. - """ - if points is not None: - return points[0].shape[0] - elif boxes is not None: - return boxes.shape[0] - elif masks is not None: - return masks.shape[0] - elif labels is not None: - return labels.shape[0] - else: - return 1 - - def forward( - self, - points: Optional[Tuple[torch.Tensor, torch.Tensor]], - boxes: Optional[torch.Tensor], - masks: Optional[torch.Tensor], - class_labels: Optional[torch.Tensor], - ) -> Tuple[torch.Tensor, torch.Tensor]: - """ - Embeds different types of prompts, returning both sparse and dense - embeddings. - - Arguments: - points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates - and labels to embed. - boxes (torch.Tensor or none): boxes to embed - masks (torch.Tensor or none): masks to embed - class_labels (torch.Tensor or none): labels to embed - - Returns: - torch.Tensor: sparse embeddings for the points and boxes, with shape - BxNx(embed_dim), where N is determined by the number of input points - and boxes. - torch.Tensor: dense embeddings for the masks, in the shape - Bx(embed_dim)x(embed_H)x(embed_W) - """ - bs = self._get_batch_size(points, boxes, masks, class_labels) - - # Add support for onehot vector embedding for pre-defined classes - if class_labels is not None: - label_embeddings = self._embed_labels(class_labels) - else: - label_embeddings = self.no_label_embed.weight.reshape(1, 1, -1).expand(bs, -1, -1) - - sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self._get_device()) - - # Add support for onehot vector embedding for pre-defined classes - sparse_embeddings = torch.cat([sparse_embeddings, label_embeddings], dim=1) - - if points is not None: - coords, labels = points - point_embeddings = self._embed_points(coords, labels, pad=(boxes is None)) - sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1) - if boxes is not None: - box_embeddings = self._embed_boxes(boxes) - sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1) - - if masks is not None: - dense_embeddings = self._embed_masks(masks) - else: - dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand( - bs, -1, self.image_embedding_size[0], self.image_embedding_size[1] - ) - - return sparse_embeddings, dense_embeddings diff --git a/LICENSE b/vista3d/LICENSE similarity index 100% rename from LICENSE rename to vista3d/LICENSE diff --git a/vista3d/README.md b/vista3d/README.md new file mode 100644 index 0000000..1ac5bc9 --- /dev/null +++ b/vista3d/README.md @@ -0,0 +1,146 @@ + + +# MONAI **V**ersatile **I**maging **S**egmen**T**ation and **A**nnotation +[[`Paper`](https://arxiv.org/pdf/2406.05285)] [[`Demo`](https://build.nvidia.com/nvidia/vista-3d)] [[`Container`](https://docs.nvidia.com/ai-enterprise/nim-medical-imaging/latest/vista-3d.html)] +## Overview + +The **VISTA3D** is a foundation model trained systematically on 11,454 volumes encompassing 127 types of human anatomical structures and various lesions. It provides accurate out-of-the-box segmentation that matches state-of-the-art supervised models which are trained on each dataset. The model also achieves state-of-the-art zero-shot interactive segmentation in 3D, representing a promising step toward developing a versatile medical image foundation model. +
+ +### Out-of box automatic segmentation +For supported 127 classes, the model can perform highly accurate out-of-box segmentation. The fully automated process adopts a patch-based sliding-window inference and only requires a class prompt. +Compared to supervised segmentation models trained on each dataset separately, VISTA3D showed comparable out-of-box performances and strong generalizability ('VISTA3D auto' in Table.1). + +
+
+ +
NIM Demo supports "Segment Everything"
+
+
+ + + +### Interactive editing +The interactive segmentation is based on user-provided clicks. Each click point will impact a local 3D patch. User can either effectively refine the automatic results with clicks ('VISTA3D auto+point' in Table.1) or simply provide a click without specifying the target class ('VISTA3D point' in Table.1) . + +
+
+ +
Specify a supported class and edit the automatic results
+
+
+
+
+ +
Interactive supported class segmentation without specifying class
+
+
+ +### Zero-shot interactive segmentation +VISTA3D is built to produce visually plausible segmentations on previously unseen classes. +This capability makes the model even more flexible and accelerates practical segmentation data curation processes. +
+
+ +
Add a new unseen class and do annotation
+
+
+ +### Fine-tuning +VISTA3D checkpoint showed improvements when finetuning in few-shot settings. Once a few annotated examples are provided, user can start finetune with the VISTA3D checkpoint. +
+ +## Usage + +### Installation +The code requires `monai>=1.3`. Download the [model checkpoint](xxxx) and save it at ./models/model.pt. +``` +docker pull projectmonai/monai:1.3.2 +``` + + +### Inference +We provide two ways to use the model for inference. +1. We recommend users to use the optimized and standardized [MONAI bundle]() model. The bundle provides a unified API for inference. +The [VISTA3D NVIDIA Inference Microservices (NIM)]() deploys the bundle with an interactive front-end. +2. For quick debugging and model development purposes, we also provide the `infer.py` script and its light-weight front-end `debugger.py`. `python -m scripts.debugger run`. Note we will prioritize [NIM]() and [monai bundle]() developments and those functions will be deprecated in the future. +``` +export CUDA_VISIBLE_DEVICES=0; python -m scripts.infer --config_file 'configs/infer.yaml' - infer --image_file 'example-1.nii.gz' --label_prompt [1] --save_mask true +export CUDA_VISIBLE_DEVICES=0; python -m scripts.infer --config_file 'configs/infer.yaml' - infer_everything --image_file 'example-1.nii.gz' +``` + +### Training +#### Dataset and SuperVoxel Curation +All dataset must contain a json data list file. We provide the json lists for all our training data in `data/jsons`. More details can be found [here](./data/README.md). For datasets used in VISTA3D training, we already included the json splits and registered their data specific label index to the global index as [label_mapping](./data/jsons/label_mappings.json) and their data path coded in `./data/datasets.py`. The supported global class index is defined in [label_dict](./data/jsons/label_dict.json). To generate supervoxels, refer to the [instruction](./data/README.md). +#### Execute training +VISTA3D has four stages training. The configurations represents the training procedure but may not fully reproduce the weights of VISTA3D since each stage has multiple rounds with slightly varying configuration changes. +``` +export CUDA_VISIBLE_DEVICES=0; python -m scripts.train run --config_file "['configs/train/hyper_parameters_stage1.yaml']" +``` + +Execute multi-GPU model training (the codebase also supports multi-node training): + +``` +export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7;torchrun --nnodes=1 --nproc_per_node=8 -m scripts.train run --config_file "['configs/train/hyper_parameters_stage1.yaml']" +``` +### Evaluation +We provide code for supported class fully automatic dice score evaluation (val_multigpu_point_patch), point click only (val_multigpu_point_patch), and auto + point (val_multigpu_autopoint_patch). + +``` +export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7;torchrun --nnodes=1 --nproc_per_node=8 -m scripts.validation.val_multigpu_point_patch run --config_file "['configs/supported_eval/infer_patch_auto.yaml']" --dataset_name 'xxxx' + +export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7;torchrun --nnodes=1 --nproc_per_node=8 -m scripts.validation.val_multigpu_point_patch run --config_file "['configs/supported_eval/infer_patch_point.yaml']" --dataset_name 'xxxx' + +export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7;torchrun --nnodes=1 --nproc_per_node=8 -m scripts.validation.val_multigpu_autopoint_patch run --config_file "['configs/supported_eval/infer_patch_autopoint.yaml']" --dataset_name 'xxxx' +``` +For zero-shot, we perform iterative point sampling. To create a new zero-shot evaluation dataset, user only need to change `label_set` in the json config to match the class indexes in the original groundtruth. +``` +export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7;torchrun --nnodes=1 --nproc_per_node=8 -m scripts.validation.val_multigpu_point_iterative run --config_file "['configs/zeroshot_eval/infer_iter_point_hcc.yaml']" +``` +### Finetune +For finetuning, user need to change `label_set` and `mapped_label_set` in the json config, where `label_set` matches the index values in the groundtruth files. The `mapped_label_set` can be random selected but we recommend pick the most related global index defined in [label_dict](./data/jsons/label_dict.json). User should modify the transforms, resolutions, patch sizes e.t.c regarding to their dataset for optimal finetuning performances, we recommend using configs generated by auto3dseg. The learning rate 5e-5 should be good enough for finetuning purposes. +``` +export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7;torchrun --nnodes=1 --nproc_per_node=8 -m scripts.train_finetune run --config_file "['configs/finetune/train_finetune_word.yaml']" +``` + + +## Community + +Join the conversation on Twitter [@ProjectMONAI](https://twitter.com/ProjectMONAI) or join +our [Slack channel](https://projectmonai.slack.com/archives/C031QRE0M1C). + +Ask and answer questions on [MONAI VISTA's GitHub discussions tab](https://github.com/Project-MONAI/VISTA/discussions). + +## License + +The codebase is under Apache 2.0 Licence. The model weight is under special NVIDIA license. + +## Reference + +``` +@article{he2024vista3d, + title={VISTA3D: Versatile Imaging SegmenTation and Annotation model for 3D Computed Tomography}, + author={He, Yufan and Guo, Pengfei and Tang, Yucheng and Myronenko, Andriy and Nath, Vishwesh and Xu, Ziyue and Yang, Dong and Zhao, Can and Simon, Benjamin and Belue, Mason and others}, + journal={arXiv preprint arXiv:2406.05285}, + year={2024} +} +``` + +## Acknowledgement +- [segment-anything](https://github.com/facebookresearch/segment-anything) +- [TotalSegmentator](https://github.com/wasserth/TotalSegmentator) diff --git a/assets/imgs/demo_gif.gif b/vista3d/assets/imgs/demo_gif.gif similarity index 100% rename from assets/imgs/demo_gif.gif rename to vista3d/assets/imgs/demo_gif.gif diff --git a/vista3d/assets/imgs/everything.gif b/vista3d/assets/imgs/everything.gif new file mode 100644 index 0000000..b6373d4 Binary files /dev/null and b/vista3d/assets/imgs/everything.gif differ diff --git a/vista3d/assets/imgs/finetune.png b/vista3d/assets/imgs/finetune.png new file mode 100644 index 0000000..c18081f Binary files /dev/null and b/vista3d/assets/imgs/finetune.png differ diff --git a/vista3d/assets/imgs/liver.gif b/vista3d/assets/imgs/liver.gif new file mode 100644 index 0000000..903a63e Binary files /dev/null and b/vista3d/assets/imgs/liver.gif differ diff --git a/vista3d/assets/imgs/model.png b/vista3d/assets/imgs/model.png new file mode 100644 index 0000000..0c129b3 Binary files /dev/null and b/vista3d/assets/imgs/model.png differ diff --git a/assets/imgs/montage.png b/vista3d/assets/imgs/montage.png similarity index 100% rename from assets/imgs/montage.png rename to vista3d/assets/imgs/montage.png diff --git a/vista3d/assets/imgs/scores.png b/vista3d/assets/imgs/scores.png new file mode 100644 index 0000000..9ea520c Binary files /dev/null and b/vista3d/assets/imgs/scores.png differ diff --git a/vista3d/assets/imgs/unspecified.gif b/vista3d/assets/imgs/unspecified.gif new file mode 100644 index 0000000..5f66cbc Binary files /dev/null and b/vista3d/assets/imgs/unspecified.gif differ diff --git a/assets/imgs/wholeBody.png b/vista3d/assets/imgs/wholeBody.png similarity index 100% rename from assets/imgs/wholeBody.png rename to vista3d/assets/imgs/wholeBody.png diff --git a/vista3d/assets/imgs/zeroshot.gif b/vista3d/assets/imgs/zeroshot.gif new file mode 100644 index 0000000..f93dcb3 Binary files /dev/null and b/vista3d/assets/imgs/zeroshot.gif differ diff --git a/vista3d/configs/finetune/infer_patch_auto_murine.yaml b/vista3d/configs/finetune/infer_patch_auto_murine.yaml new file mode 100644 index 0000000..965dbf0 --- /dev/null +++ b/vista3d/configs/finetune/infer_patch_auto_murine.yaml @@ -0,0 +1,43 @@ +amp: true +output_path: "$'/workspace/vista3d/work_dir_finetune_murine_' + str(@train_number)" +ckpt: "$@output_path + '/model_fold0/best_metric_model.pt'" +dataset_name: "murine" +label_set: [0,1,2,3,4] +mapped_label_set: [0,115,121,30,28] +val_auto: true +overlap: 0.625 +data_file_base_dir: '/data/micro-ct-murine/1_nativeCTdata_nifti/' +data_list_file_path: './data/external/micro-ct-murine-native_5_folds.json' +log_output_file: "$@output_path + '/test_set.log'" +list_key: 'testing' +five_fold: true +fold: 0 +train_number: 89 +argmax_first: false +input_channels: 1 +image_key: image +label_key: label +pixdim: [1,1,1] +patch_size: [128, 128, 128] +transforms_infer: + _target_: Compose + transforms: + - _target_: LoadImaged + ensure_channel_first: true + image_only: true + keys: ['@image_key','@label_key'] + - _target_: CopyItemsd + names: 'label_gt' + keys: '@label_key' + - {_target_: ScaleIntensityRanged, a_max: 1053.678477684517, a_min: -963.8247715525971, + b_max: 1.0, b_min: 0.0, clip: true, keys: '@image_key'} + - _target_: Orientationd + axcodes: RAS + keys: ['@image_key','@label_key'] + - _target_: CastToTyped + dtype: [$torch.float32, $torch.uint8] + keys: ['@image_key','@label_key'] + - _target_: EnsureTyped + keys: ['@image_key','@label_key'] + track_meta: true +model: "vista3d_segresnet_d" diff --git a/vista3d/configs/finetune/infer_patch_auto_word.yaml b/vista3d/configs/finetune/infer_patch_auto_word.yaml new file mode 100644 index 0000000..2db3cb9 --- /dev/null +++ b/vista3d/configs/finetune/infer_patch_auto_word.yaml @@ -0,0 +1,48 @@ +amp: true +output_path: "$'/workspace/vista3d/work_dir_finetune_word_' + str(@train_number)" +ckpt: "$@output_path + '/model_fold0/best_metric_model.pt'" +dataset_name: "WORD" +label_set: [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16] +mapped_label_set: [0,1,3,14,5,12,10,11,4,13,62,19,8,18,15,93,94] +val_auto: true +overlap: 0.625 +data_file_base_dir: '/data/WORD' +data_list_file_path: './data/external/WORD.json' +log_output_file: "$@output_path + '/test_set.log'" +list_key: 'testing' +five_fold: false +fold: 0 +train_number: 100 +argmax_first: false +input_channels: 1 +image_key: image +label_key: label +pixdim: [1,1,1] +patch_size: [224, 224, 144] +transforms_infer: + _target_: Compose + transforms: + - _target_: LoadImaged + ensure_channel_first: true + image_only: true + keys: ['@image_key','@label_key'] + - _target_: CopyItemsd + names: 'label_gt' + keys: '@label_key' + - _target_: Spacingd + keys: ["@image_key",'@label_key'] + pixdim: '@pixdim' + mode: [bilinear,nearest] + align_corners: [true, true] + - {_target_: ScaleIntensityRanged, a_max: 1053.678477684517, a_min: -963.8247715525971, + b_max: 1.0, b_min: 0.0, clip: true, keys: '@image_key'} + - _target_: Orientationd + axcodes: RAS + keys: ['@image_key','@label_key'] + - _target_: CastToTyped + dtype: [$torch.float32, $torch.uint8] + keys: ['@image_key','@label_key'] + - _target_: EnsureTyped + keys: ['@image_key','@label_key'] + track_meta: true +model: "vista3d_segresnet_d" diff --git a/vista3d/configs/finetune/train_finetune_murine.yaml b/vista3d/configs/finetune/train_finetune_murine.yaml new file mode 100644 index 0000000..3aa68ed --- /dev/null +++ b/vista3d/configs/finetune/train_finetune_murine.yaml @@ -0,0 +1,163 @@ +amp: true +train_number: 89 +comment: 'finetune on murine datasets.' +bundle_root: $'./work_dir_ft_final_finetune_murine_' + str(@train_number) +label_set: [0,1,2,3,4] +mapped_label_set: [0,115,121,30,28] +model: "vista3d_segresnet_d" +use_folds: true +data_file_base_dir: '/data/micro-ct-murine/1_nativeCTdata_nifti/' +data_list_file_path: './data/external/micro-ct-murine-native_5_folds.json' +ckpt_path: $@bundle_root + '/model_fold' + str(@fold) +drop_label_prob: 0 +drop_point_prob: 1 +finetune: {activate: true, exclude_vars: null, pretrained_ckpt_name: $'/workspace/vista3d/models/model.pt'} +fold: 0 +image_key: image +input_channels: 1 +iter_num: 5 +label_key: label +learning_rate: 0.00005 +log_output_file: $@bundle_root + '/model_fold' + str(@fold) + '/finetune_word.log' +loss: {_target_: DiceCELoss, include_background: false, sigmoid: true, smooth_dr: 1.0e-05, smooth_nr: 0, softmax: false, squared_pred: true, + to_onehot_y: false} +lr_scheduler: {_target_: monai.optimizers.WarmupCosineSchedule, optimizer: $@optimizer, + t_total: $@num_epochs+1, warmup_multiplier: 0.1, warmup_steps: 0} +max_backprompt: null +max_foreprompt: null +ignore_labelset: false +max_point: 3 +max_prompt: null +num_epochs: 200 +freeze_epoch: 0 +freeze_head: 'point' +save_last: false +save_all: false +num_epochs_per_validation: 5 +num_images_per_batch: 1 +num_patches_per_image: 2 +num_patches_per_iter: 1 +optimizer: {_target_: torch.optim.AdamW, lr: '@learning_rate', weight_decay: 1.0e-05} +output_classes: 133 +overlap_ratio: 0.625 +patch_size: [224, 224, 144] +random_seed: 0 +skip_iter_prob: 1 +transforms_train: + _target_: Compose + transforms: + - _target_: LoadImaged + ensure_channel_first: true + image_only: true + keys: ['@image_key', '@label_key'] + allow_missing_keys: true + - _target_: CropForegroundd + allow_smaller: true + end_coord_key: null + keys: ['@image_key', '@label_key'] + margin: 10 + source_key: '@image_key' + start_coord_key: null + allow_missing_keys: true + - {_target_: ScaleIntensityRanged, a_max: 1053.678477684517, a_min: -963.8247715525971, + b_max: 1.0, b_min: 0.0, clip: true, keys: '@image_key'} + - _target_: Orientationd + axcodes: RAS + keys: ['@image_key', '@label_key'] + allow_missing_keys: true + - _target_: EnsureTyped + keys: ['@image_key', '@label_key'] + allow_missing_keys: true + track_meta: false + - _target_: SpatialPadd + keys: ['@image_key', '@label_key'] + allow_missing_keys: true + mode: [constant, constant] + spatial_size: '@patch_size' + - _target_: RandCropByLabelClassesd + keys: + - '@image_key' + - '@label_key' + label_key: '@label_key' + num_classes: 5 + num_samples: '@num_patches_per_image' + spatial_size: '@patch_size' + ratios: $tuple(float(i >= 0) for i in range(5)) + warn: false + allow_missing_keys: true + - _target_: RandZoomd + keys: + - '@image_key' + - '@label_key' + min_zoom: 0.8 + max_zoom: 1.2 + mode: + - trilinear + - nearest + prob: 0.2 + allow_missing_keys: true + - _target_: RandSimulateLowResolutiond + keys: + - '@image_key' + zoom_range: + - 0.3 + - 1 + prob: 0.2 + allow_missing_keys: true + - _target_: RandGaussianSmoothd + keys: + - '@image_key' + prob: 0.2 + sigma_x: + - 0.5 + - 1 + sigma_y: + - 0.5 + - 1 + sigma_z: + - 0.5 + - 1 + - _target_: RandScaleIntensityd + keys: + - '@image_key' + factors: 0.1 + prob: 0.2 + - _target_: RandShiftIntensityd + keys: + - '@image_key' + offsets: 0.1 + prob: 0.2 + - _target_: RandGaussianNoised + keys: + - '@image_key' + prob: 0.2 + mean: 0 + std: 0.2 + - _target_: CastToTyped + dtype: [$torch.float32, $torch.int32] + keys: ['@image_key', '@label_key'] + allow_missing_keys: true + +transforms_validate: + _target_: Compose + transforms: + - _target_: LoadImaged + ensure_channel_first: true + image_only: true + keys: ['@image_key', '@label_key'] + - _target_: CopyItemsd + names: 'label_gt' + keys: '@label_key' + - {_target_: ScaleIntensityRanged, a_max: 1053.678477684517, a_min: -963.8247715525971, + b_max: 1.0, b_min: 0.0, clip: true, keys: '@image_key'} + - _target_: Orientationd + axcodes: RAS + keys: ['@image_key', '@label_key'] + - _target_: CastToTyped + dtype: [$torch.float32, $torch.uint8] + keys: ['@image_key', '@label_key'] + - _target_: EnsureTyped + keys: ['@image_key', '@label_key'] + track_meta: true + +transforms_infer: $@transforms_validate diff --git a/vista3d/configs/finetune/train_finetune_word.yaml b/vista3d/configs/finetune/train_finetune_word.yaml new file mode 100644 index 0000000..b4a11b0 --- /dev/null +++ b/vista3d/configs/finetune/train_finetune_word.yaml @@ -0,0 +1,173 @@ +amp: true +train_number: 100 +bundle_root: $'./work_dir_finetune_word_' + str(@train_number) +comment: 'finetune on WORD datasets.' +label_set: [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16] +mapped_label_set: [0,1,3,14,5,12,10,11,4,13,62,19,8,18,15,93,94] +model: "vista3d_segresnet_d" +data_file_base_dir: '/data/WORD' +data_list_file_path: './data/external/WORD.json' +ckpt_path: $@bundle_root + '/model_fold' + str(@fold) +drop_label_prob: 0 +drop_point_prob: 1 +finetune: {activate: true, exclude_vars: null, pretrained_ckpt_name: $'/workspace/vista3d/models/model.pt'} +fold: 0 +image_key: image +input_channels: 1 +iter_num: 5 +label_key: label +learning_rate: 0.00005 +log_output_file: $@bundle_root + '/model_fold' + str(@fold) + '/finetune_word.log' +loss: {_target_: DiceCELoss, include_background: false, sigmoid: true, smooth_dr: 1.0e-05, smooth_nr: 0, softmax: false, squared_pred: true, + to_onehot_y: false} +lr_scheduler: {_target_: monai.optimizers.WarmupCosineSchedule, optimizer: $@optimizer, + t_total: $@num_epochs+1, warmup_multiplier: 0.1, warmup_steps: 0} +max_backprompt: null +max_foreprompt: null +ignore_labelset: false +max_point: 3 +max_prompt: null +num_epochs: 200 +freeze_epoch: 0 +freeze_head: 'point' +save_last: false +save_all: false +num_epochs_per_validation: 1 +num_images_per_batch: 1 +num_patches_per_image: 2 +num_patches_per_iter: 1 +optimizer: {_target_: torch.optim.AdamW, lr: '@learning_rate', weight_decay: 1.0e-05} +output_classes: 133 +overlap_ratio: 0.625 +patch_size: [224, 224, 144] +random_seed: 0 +resample_to_spacing: [1., 1., 1.] +skip_iter_prob: 1 +transforms_train: + _target_: Compose + transforms: + - _target_: LoadImaged + ensure_channel_first: true + image_only: true + keys: ['@image_key', '@label_key'] + allow_missing_keys: true + - _target_: CropForegroundd + allow_smaller: true + end_coord_key: null + keys: ['@image_key', '@label_key'] + margin: 10 + source_key: '@image_key' + start_coord_key: null + allow_missing_keys: true + - _target_: Spacingd + keys: ["@image_key", "@label_key"] + pixdim: '@resample_to_spacing' + mode: [bilinear, nearest] + align_corners: [true, true] + allow_missing_keys: true + - {_target_: ScaleIntensityRanged, a_max: 1053.678477684517, a_min: -963.8247715525971, + b_max: 1.0, b_min: 0.0, clip: true, keys: '@image_key'} + - _target_: Orientationd + axcodes: RAS + keys: ['@image_key', '@label_key'] + allow_missing_keys: true + - _target_: EnsureTyped + keys: ['@image_key', '@label_key'] + allow_missing_keys: true + track_meta: false + - _target_: SpatialPadd + keys: ['@image_key', '@label_key'] + allow_missing_keys: true + mode: [constant, constant] + spatial_size: '@patch_size' + - _target_: RandCropByLabelClassesd + keys: + - '@image_key' + - '@label_key' + label_key: '@label_key' + num_classes: 133 + num_samples: '@num_patches_per_image' + spatial_size: '@patch_size' + ratios: $tuple(float(i >= 0) for i in range(133)) + warn: false + allow_missing_keys: true + - _target_: RandZoomd + keys: + - '@image_key' + - '@label_key' + min_zoom: 0.8 + max_zoom: 1.2 + mode: + - trilinear + - nearest + prob: 0.2 + allow_missing_keys: true + - _target_: RandSimulateLowResolutiond + keys: + - '@image_key' + zoom_range: + - 0.3 + - 1 + prob: 0.2 + allow_missing_keys: true + - _target_: RandGaussianSmoothd + keys: + - '@image_key' + prob: 0.2 + sigma_x: + - 0.5 + - 1 + sigma_y: + - 0.5 + - 1 + sigma_z: + - 0.5 + - 1 + - _target_: RandScaleIntensityd + keys: + - '@image_key' + factors: 0.1 + prob: 0.2 + - _target_: RandShiftIntensityd + keys: + - '@image_key' + offsets: 0.1 + prob: 0.2 + - _target_: RandGaussianNoised + keys: + - '@image_key' + prob: 0.2 + mean: 0 + std: 0.2 + - _target_: CastToTyped + dtype: [$torch.float32, $torch.int32] + keys: ['@image_key', '@label_key'] + allow_missing_keys: true + +transforms_validate: + _target_: Compose + transforms: + - _target_: LoadImaged + ensure_channel_first: true + image_only: true + keys: ['@image_key', '@label_key'] + - _target_: CopyItemsd + names: 'label_gt' + keys: '@label_key' + - _target_: Spacingd + keys: ["@image_key", "@label_key"] + pixdim: '@resample_to_spacing' + mode: [bilinear, nearest] + align_corners: [true, true] + - {_target_: ScaleIntensityRanged, a_max: 1053.678477684517, a_min: -963.8247715525971, + b_max: 1.0, b_min: 0.0, clip: true, keys: '@image_key'} + - _target_: Orientationd + axcodes: RAS + keys: ['@image_key', '@label_key'] + - _target_: CastToTyped + dtype: [$torch.float32, $torch.uint8] + keys: ['@image_key', '@label_key'] + - _target_: EnsureTyped + keys: ['@image_key', '@label_key'] + track_meta: true +transforms_infer: $@transforms_validate diff --git a/vista3d/configs/infer.yaml b/vista3d/configs/infer.yaml new file mode 100644 index 0000000..89d018b --- /dev/null +++ b/vista3d/configs/infer.yaml @@ -0,0 +1,37 @@ +amp: true +input_channels: 1 +patch_size: [128, 128, 128] +bundle_root: './models' +fold: 0 +infer: {ckpt_name: $@bundle_root + '/model.pt', + output_path: $@bundle_root + '/prediction', + log_output_file: $@bundle_root + '/inference.log'} +resample_to_spacing: [1.5, 1.5, 1.5] +model: "vista3d_segresnet_d" +image_key: "image" +transforms_infer: + _target_: Compose + transforms: + - _target_: LoadImaged + keys: "@image_key" + image_only: True + - _target_: EnsureChannelFirstd + keys: "@image_key" + - _target_: ScaleIntensityRanged + a_max: 1053.678477684517 + a_min: -963.8247715525971 + b_max: 1.0 + b_min: 0.0 + clip: true + keys: '@image_key' + - _target_: Orientationd + keys: "@image_key" + axcodes: RAS + - _target_: Spacingd + keys: ["@image_key"] + pixdim: "@resample_to_spacing" + mode: [bilinear] + align_corners: [true] + - _target_: CastToTyped + keys: "@image_key" + dtype: "$torch.float32" diff --git a/vista3d/configs/supported_eval/infer_patch_auto.yaml b/vista3d/configs/supported_eval/infer_patch_auto.yaml new file mode 100644 index 0000000..5b36dfc --- /dev/null +++ b/vista3d/configs/supported_eval/infer_patch_auto.yaml @@ -0,0 +1,51 @@ +amp: true +exps: models +output_path: "$'/workspace/vista3d/' + @exps" +ckpt: "$@output_path + '/model.pt'" +dataset_name: "TotalSegmentatorV2" +label_set: null +overlap: 0.625 +json_name: "$@dataset_name + '_5_folds.json'" +data_file_base_dir: "$'/data/' + @dataset_name" +data_list_file_path: "$'./data/jsons/' + @json_name" +log_output_file: "$@output_path + '/validation_auto_' + @dataset_name + '.log'" +list_key: 'testing' +val_auto: true +argmax_first: false +fold: 0 +input_channels: 1 +image_key: image +label_key: label +patch_size: [128, 128, 128] +transforms_infer: + _target_: Compose + transforms: + - _target_: LoadImaged + ensure_channel_first: true + image_only: true + keys: ['@image_key','@label_key'] + - _target_: CopyItemsd + names: 'label_gt' + keys: '@label_key' + - _target_: CropForegroundd + allow_smaller: true + keys: ['@image_key', '@label_key'] + margin: 10 + source_key: '@image_key' + - _target_: Spacingd + keys: ["@image_key",'@label_key'] + pixdim: [1.5, 1.5, 1.5] + mode: [bilinear,nearest] + align_corners: [true, true] + - {_target_: ScaleIntensityRanged, a_max: 1053.678477684517, a_min: -963.8247715525971, + b_max: 1.0, b_min: 0.0, clip: true, keys: '@image_key'} + - _target_: Orientationd + axcodes: RAS + keys: ['@image_key','@label_key'] + - _target_: CastToTyped + dtype: [$torch.float32, $torch.uint8] + keys: ['@image_key','@label_key'] + - _target_: EnsureTyped + keys: ['@image_key','@label_key'] + track_meta: true +model: "vista3d_segresnet_d" diff --git a/vista3d/configs/supported_eval/infer_patch_autopoint.yaml b/vista3d/configs/supported_eval/infer_patch_autopoint.yaml new file mode 100644 index 0000000..35ab27b --- /dev/null +++ b/vista3d/configs/supported_eval/infer_patch_autopoint.yaml @@ -0,0 +1,52 @@ +amp: true +exps: models +output_path: "$'/workspace/vista3d/' + @exps" +ckpt: "$@output_path + '/model.pt'" +dataset_name: "TotalSegmentatorV2" +label_set: null +overlap: 0.625 +json_name: "$@dataset_name + '_5_folds.json'" +data_file_base_dir: "$'/data/' + @dataset_name" +data_list_file_path: "$'./data/jsons/' + @json_name" +log_output_file: "$@output_path + '/validation_autopoint_patch_' + @dataset_name + '.log'" +list_key: 'testing' +save_metric: false +argmax_first: false +val_auto: false +fold: 0 +input_channels: 1 +image_key: image +label_key: label +patch_size: [128, 128, 128] +transforms_infer: + _target_: Compose + transforms: + - _target_: LoadImaged + ensure_channel_first: true + image_only: true + keys: ['@image_key','@label_key'] + - _target_: CopyItemsd + names: 'label_gt' + keys: '@label_key' + - _target_: CropForegroundd + allow_smaller: true + keys: ['@image_key', '@label_key'] + margin: 10 + source_key: '@image_key' + - _target_: Spacingd + keys: ["@image_key",'@label_key'] + pixdim: [1.5, 1.5, 1.5] + mode: [bilinear,nearest] + align_corners: [true, true] + - {_target_: ScaleIntensityRanged, a_max: 1053.678477684517, a_min: -963.8247715525971, + b_max: 1.0, b_min: 0.0, clip: true, keys: '@image_key'} + - _target_: Orientationd + axcodes: RAS + keys: ['@image_key','@label_key'] + - _target_: CastToTyped + dtype: [$torch.float32, $torch.uint8] + keys: ['@image_key','@label_key'] + - _target_: EnsureTyped + keys: ['@image_key','@label_key'] + track_meta: true +model: "vista3d_segresnet_d" diff --git a/vista3d/configs/supported_eval/infer_patch_point.yaml b/vista3d/configs/supported_eval/infer_patch_point.yaml new file mode 100644 index 0000000..22ef399 --- /dev/null +++ b/vista3d/configs/supported_eval/infer_patch_point.yaml @@ -0,0 +1,52 @@ +amp: true +exps: models +output_path: "$'/workspace/vista3d/' + @exps" +ckpt: "$@output_path + '/model.pt'" +dataset_name: "TotalSegmentatorV2" +label_set: null +overlap: 0.625 +json_name: "$@dataset_name + '_5_folds.json'" +data_file_base_dir: "$'/data/' + @dataset_name" +data_list_file_path: "$'./data/jsons/' + @json_name" +log_output_file: "$@output_path + '/validation_1point_' + @dataset_name + '.log'" +list_key: 'testing' +save_metric: false +argmax_first: false +val_auto: false +fold: 0 +input_channels: 1 +image_key: image +label_key: label +patch_size: [128, 128, 128] +transforms_infer: + _target_: Compose + transforms: + - _target_: LoadImaged + ensure_channel_first: true + image_only: true + keys: ['@image_key','@label_key'] + - _target_: CopyItemsd + names: 'label_gt' + keys: '@label_key' + - _target_: CropForegroundd + allow_smaller: true + keys: ['@image_key', '@label_key'] + margin: 10 + source_key: '@image_key' + - _target_: Spacingd + keys: ["@image_key",'@label_key'] + pixdim: [1.5, 1.5, 1.5] + mode: [bilinear,nearest] + align_corners: [true, true] + - {_target_: ScaleIntensityRanged, a_max: 1053.678477684517, a_min: -963.8247715525971, + b_max: 1.0, b_min: 0.0, clip: true, keys: '@image_key'} + - _target_: Orientationd + axcodes: RAS + keys: ['@image_key','@label_key'] + - _target_: CastToTyped + dtype: [$torch.float32, $torch.uint8] + keys: ['@image_key','@label_key'] + - _target_: EnsureTyped + keys: ['@image_key','@label_key'] + track_meta: true +model: "vista3d_segresnet_d" diff --git a/vista3d/configs/train/hyper_parameters_stage1.yaml b/vista3d/configs/train/hyper_parameters_stage1.yaml new file mode 100644 index 0000000..1c4e0a0 --- /dev/null +++ b/vista3d/configs/train/hyper_parameters_stage1.yaml @@ -0,0 +1,119 @@ +amp: true +bundle_root: ./work_dir_stage1 +comments: "After training for several epoch, remove the unlabeled dataset from train_datasets." +json_dir: ./data/jsons +ckpt_path: $@bundle_root + '/model_fold' + str(@fold) +model: "vista3d_segresnet_d" +weighted_sampling: false +drop_label_prob: 1 +drop_point_prob: 0 +finetune: {activate: true, exclude_vars: null, pretrained_ckpt_name: $'/workspace/vista3d/models/model.pt'} +fold: 0 +image_key: image +input_channels: 1 +iter_num: 5 +label_key: label +label_sv_key: label_sv +pseudo_label_key: pseudo_label +learning_rate: 0.00002 +log_output_file: $@bundle_root + '/model_fold' + str(@fold) + '/training.log' +loss: {_target_: DiceCELoss, include_background: false, sigmoid: true, smooth_dr: 1.0e-05, smooth_nr: 0, softmax: false, squared_pred: true, + to_onehot_y: false} +lr_scheduler: {_target_: monai.optimizers.WarmupCosineSchedule, optimizer: $@optimizer, + t_total: $@num_epochs+1, warmup_multiplier: 0.1, warmup_steps: 0} +max_backprompt: 0 +max_foreprompt: 4 +max_point: 3 +max_prompt: null +num_epochs: 300 +freeze_epoch: 0 +freeze_head: 'auto' +save_last: true +save_all: false +num_epochs_per_validation: 1 +num_images_per_batch: 1 +num_patches_per_image: 2 +num_patches_per_iter: 1 +optimizer: {_target_: torch.optim.AdamW, lr: '@learning_rate', weight_decay: 1.0e-05} +output_classes: 133 +overlap_ratio: 0.5 +patch_size: [128, 128, 128] +random_seed: 0 +resample_to_spacing: [1.5, 1.5, 1.5] +skip_iter_prob: 0 +train_datasets: [CTPelvic1K-CLINIC, AbdomenCT-1K, AeroPath, AMOS22, + BTCV-Abdomen, BTCV-Cervix, CT-ORG, FLARE22, Multi-organ-Abdominal-CT-btcv, + Multi-organ-Abdominal-CT-tcia, Pancreas-CT, Task03, Task06, Task07, + Task08, Task09, Task10, VerSe, CRLM-CT, TotalSegmentatorV2, NLST, LIDC, StonyBrook-CT, TCIA_Colon, Covid19] +val_datasets: [TotalSegmentatorV2] +transforms_train: + _target_: Compose + transforms: + - _target_: LoadImaged + ensure_channel_first: true + image_only: true + keys: ['@image_key', '@label_key', '@label_sv_key', '@pseudo_label_key'] + allow_missing_keys: true + - _target_: CropForegroundd + allow_smaller: true + end_coord_key: null + keys: ['@image_key', '@label_key', '@label_sv_key', '@pseudo_label_key'] + margin: 10 + source_key: '@image_key' + start_coord_key: null + allow_missing_keys: true + - _target_: Spacingd + keys: ["@image_key", "@label_key", '@label_sv_key', '@pseudo_label_key'] + pixdim: [1.5, 1.5, 1.5] + mode: [bilinear, nearest, nearest, nearest] + align_corners: [true, true, true, true] + allow_missing_keys: true + - {_target_: ScaleIntensityRanged, a_max: 1053.678477684517, a_min: -963.8247715525971, + b_max: 1.0, b_min: 0.0, clip: true, keys: '@image_key'} + - _target_: Orientationd + axcodes: RAS + keys: ['@image_key', '@label_key', '@label_sv_key', '@pseudo_label_key'] + allow_missing_keys: true + - _target_: EnsureTyped + keys: ['@image_key', '@label_key', '@label_sv_key', '@pseudo_label_key'] + allow_missing_keys: true + track_meta: false + - _target_: SpatialPadd + keys: ['@image_key', '@label_key', '@label_sv_key', '@pseudo_label_key'] + allow_missing_keys: true + mode: [constant, constant, constant, constant] + spatial_size: '@patch_size' + - "Placeholder for dataset-specific transform" + - _target_: CastToTyped + dtype: [$torch.float32, $torch.int32, $torch.int32, $torch.int32] + keys: ['@image_key', '@label_key', '@label_sv_key', '@pseudo_label_key'] + allow_missing_keys: true +transforms_validate: + _target_: Compose + transforms: + - _target_: LoadImaged + ensure_channel_first: true + image_only: true + keys: ['@image_key', '@label_key'] + - _target_: CropForegroundd + allow_smaller: true + keys: ['@image_key', '@label_key'] + margin: 10 + source_key: '@image_key' + - _target_: Spacingd + keys: ["@image_key", "@label_key"] + pixdim: [1.5, 1.5, 1.5] + mode: [bilinear, nearest] + align_corners: [true, true] + - {_target_: ScaleIntensityRanged, a_max: 1053.678477684517, a_min: -963.8247715525971, + b_max: 1.0, b_min: 0.0, clip: true, keys: '@image_key'} + - _target_: Orientationd + axcodes: RAS + keys: ['@image_key', '@label_key'] + - _target_: CastToTyped + dtype: [$torch.float32, $torch.uint8] + keys: ['@image_key', '@label_key'] + - _target_: EnsureTyped + keys: ['@image_key', '@label_key'] + track_meta: true + - "Placeholder for dataset-specific transform" diff --git a/vista3d/configs/train/hyper_parameters_stage2.yaml b/vista3d/configs/train/hyper_parameters_stage2.yaml new file mode 100644 index 0000000..abd566b --- /dev/null +++ b/vista3d/configs/train/hyper_parameters_stage2.yaml @@ -0,0 +1,118 @@ +amp: true +bundle_root: ./work_dir_stage2 +json_dir: ./data/jsons +ckpt_path: $@bundle_root + '/model_fold' + str(@fold) +model: "vista3d_segresnet_d" +weighted_sampling: false +drop_label_prob: 1 +drop_point_prob: 0 +finetune: {activate: true, exclude_vars: null, pretrained_ckpt_name: $'/workspace/vista3d/models/model.pt'} +fold: 0 +image_key: image +input_channels: 1 +iter_num: 5 +label_key: label +label_sv_key: label_sv +pseudo_label_key: pseudo_label +learning_rate: 0.00002 +log_output_file: $@bundle_root + '/model_fold' + str(@fold) + '/training.log' +loss: {_target_: DiceCELoss, include_background: false, sigmoid: true, smooth_dr: 1.0e-05, smooth_nr: 0, softmax: false, squared_pred: true, + to_onehot_y: false} +lr_scheduler: {_target_: monai.optimizers.WarmupCosineSchedule, optimizer: $@optimizer, + t_total: $@num_epochs+1, warmup_multiplier: 0.1, warmup_steps: 0} +max_backprompt: 0 +max_foreprompt: 4 +max_point: 3 +max_prompt: null +num_epochs: 300 +freeze_epoch: 0 +freeze_head: 'auto' +save_last: true +save_all: true +num_epochs_per_validation: 1 +num_images_per_batch: 1 +num_patches_per_image: 2 +num_patches_per_iter: 1 +optimizer: {_target_: torch.optim.AdamW, lr: '@learning_rate', weight_decay: 1.0e-05} +output_classes: 133 +overlap_ratio: 0.5 +patch_size: [128, 128, 128] +random_seed: 0 +resample_to_spacing: [1.5, 1.5, 1.5] +skip_iter_prob: 0 +train_datasets: [CTPelvic1K-CLINIC, AbdomenCT-1K, AeroPath, AMOS22, BTCV-Abdomen, + BTCV-Cervix, CT-ORG, FLARE22, Multi-organ-Abdominal-CT-btcv, Multi-organ-Abdominal-CT-tcia, + Pancreas-CT, Task03, Task06, Task07, Task08, Task09, Task10, VerSe, CRLM-CT, + TotalSegmentatorV2] +val_datasets: ['CRLM-CT', 'AeroPath', 'Task03','Task06','Task07','Task08','Task10'] +transforms_train: + _target_: Compose + transforms: + - _target_: LoadImaged + ensure_channel_first: true + image_only: true + keys: ['@image_key', '@label_key', '@label_sv_key', '@pseudo_label_key'] + allow_missing_keys: true + - _target_: CropForegroundd + allow_smaller: true + end_coord_key: null + keys: ['@image_key', '@label_key', '@label_sv_key', '@pseudo_label_key'] + margin: 10 + source_key: '@image_key' + start_coord_key: null + allow_missing_keys: true + - _target_: Spacingd + keys: ["@image_key", "@label_key", '@label_sv_key', '@pseudo_label_key'] + pixdim: [1.5, 1.5, 1.5] + mode: [bilinear, nearest, nearest, nearest] + align_corners: [true, true, true, true] + allow_missing_keys: true + - {_target_: ScaleIntensityRanged, a_max: 1053.678477684517, a_min: -963.8247715525971, + b_max: 1.0, b_min: 0.0, clip: true, keys: '@image_key'} + - _target_: Orientationd + axcodes: RAS + keys: ['@image_key', '@label_key', '@label_sv_key', '@pseudo_label_key'] + allow_missing_keys: true + - _target_: EnsureTyped + keys: ['@image_key', '@label_key', '@label_sv_key', '@pseudo_label_key'] + allow_missing_keys: true + track_meta: false + - _target_: SpatialPadd + keys: ['@image_key', '@label_key', '@label_sv_key', '@pseudo_label_key'] + allow_missing_keys: true + mode: [constant, constant, constant, constant] + spatial_size: '@patch_size' + - "Placeholder for dataset-specific transform" + - _target_: CastToTyped + dtype: [$torch.float32, $torch.int32, $torch.int32, $torch.int32] + keys: ['@image_key', '@label_key', '@label_sv_key', '@pseudo_label_key'] + allow_missing_keys: true +transforms_validate: + _target_: Compose + transforms: + - _target_: LoadImaged + ensure_channel_first: true + image_only: true + keys: ['@image_key', '@label_key'] + - _target_: CropForegroundd + allow_smaller: true + keys: ['@image_key', '@label_key'] + margin: 10 + source_key: '@image_key' + - _target_: Spacingd + keys: ["@image_key", "@label_key"] + pixdim: [1.5, 1.5, 1.5] + mode: [bilinear, nearest] + align_corners: [true, true] + - {_target_: ScaleIntensityRanged, a_max: 1053.678477684517, a_min: -963.8247715525971, + b_max: 1.0, b_min: 0.0, clip: true, keys: '@image_key'} + - _target_: Orientationd + axcodes: RAS + keys: ['@image_key', '@label_key'] + - _target_: CastToTyped + dtype: [$torch.float32, $torch.uint8] + keys: ['@image_key', '@label_key'] + - _target_: EnsureTyped + keys: ['@image_key', '@label_key'] + track_meta: true + - "Placeholder for dataset-specific transform" diff --git a/vista3d/configs/train/hyper_parameters_stage3.yaml b/vista3d/configs/train/hyper_parameters_stage3.yaml new file mode 100644 index 0000000..b7d7e69 --- /dev/null +++ b/vista3d/configs/train/hyper_parameters_stage3.yaml @@ -0,0 +1,121 @@ +amp: true +bundle_root: ./work_dir_stage3 +comments: "After training for several epoch, remove the unlabeled dataset from train_datasets." +json_dir: ./data/jsons +ckpt_path: $@bundle_root + '/model_fold' + str(@fold) +model: "vista3d_segresnet_d" +weighted_sampling: false +drop_label_prob: 0 +drop_point_prob: 1 +finetune: {activate: true, exclude_vars: null, pretrained_ckpt_name: $'/workspace/vista3d/models/model.pt'} +fold: 0 +image_key: image +input_channels: 1 +iter_num: 5 +label_key: label +label_sv_key: label_sv +pseudo_label_key: pseudo_label +learning_rate: 0.00002 +log_output_file: $@bundle_root + '/model_fold' + str(@fold) + '/training.log' +loss: {_target_: DiceCELoss, include_background: false, sigmoid: true, smooth_dr: 1.0e-05, smooth_nr: 0, softmax: false, squared_pred: true, + to_onehot_y: false} +lr_scheduler: {_target_: monai.optimizers.WarmupCosineSchedule, optimizer: $@optimizer, + t_total: $@num_epochs+1, warmup_multiplier: 0.1, warmup_steps: 0} +max_backprompt: 4 +max_foreprompt: 32 +max_point: 3 +max_prompt: null +num_epochs: 200 +freeze_epoch: 1000 +freeze_head: 'point' +save_last: false +save_all: false +num_epochs_per_validation: 5 +num_images_per_batch: 1 +num_patches_per_image: 2 +num_patches_per_iter: 1 +optimizer: {_target_: torch.optim.AdamW, lr: '@learning_rate', weight_decay: 1.0e-05} +output_classes: 133 +overlap_ratio: 0.5 +patch_size: [128, 128, 128] +random_seed: 0 +resample_to_spacing: [1.5, 1.5, 1.5] +skip_iter_prob: 1 +train_datasets: [CTPelvic1K-CLINIC, AbdomenCT-1K, AeroPath, AMOS22, BTCV-Abdomen, + BTCV-Cervix, CT-ORG, FLARE22, Multi-organ-Abdominal-CT-btcv, Multi-organ-Abdominal-CT-tcia, + Pancreas-CT, Task03, Task06, Task07, Task08, Task09, Task10, VerSe, CRLM-CT, + TotalSegmentatorV2, NLST, LIDC, StonyBrook-CT, TCIA_Colon] +val_datasets: ['TotalSegmentatorV2'] +transforms_train: + _target_: Compose + transforms: + - _target_: LoadImaged + ensure_channel_first: true + image_only: true + keys: ['@image_key', '@label_key', '@pseudo_label_key'] + allow_missing_keys: true + - _target_: DeleteItemsd + keys: ['@label_sv_key'] + - _target_: CropForegroundd + allow_smaller: true + end_coord_key: null + keys: ['@image_key', '@label_key', '@pseudo_label_key'] + margin: 10 + source_key: '@image_key' + start_coord_key: null + allow_missing_keys: true + - _target_: Spacingd + keys: ["@image_key", "@label_key", '@pseudo_label_key'] + pixdim: [1.5, 1.5, 1.5] + mode: [bilinear, nearest, nearest] + align_corners: [true, true, true] + allow_missing_keys: true + - {_target_: ScaleIntensityRanged, a_max: 1053.678477684517, a_min: -963.8247715525971, + b_max: 1.0, b_min: 0.0, clip: true, keys: '@image_key'} + - _target_: Orientationd + axcodes: RAS + keys: ['@image_key', '@label_key', '@pseudo_label_key'] + allow_missing_keys: true + - _target_: EnsureTyped + keys: ['@image_key', '@label_key', '@pseudo_label_key'] + allow_missing_keys: true + track_meta: false + - _target_: SpatialPadd + keys: ['@image_key', '@label_key', '@pseudo_label_key'] + allow_missing_keys: true + mode: [constant, constant, constant] + spatial_size: '@patch_size' + - "Placeholder for dataset-specific transform" + - _target_: CastToTyped + dtype: [$torch.float32, $torch.int32, $torch.int32] + keys: ['@image_key', '@label_key', '@pseudo_label_key'] + allow_missing_keys: true +transforms_validate: + _target_: Compose + transforms: + - _target_: LoadImaged + ensure_channel_first: true + image_only: true + keys: ['@image_key', '@label_key'] + - _target_: CropForegroundd + allow_smaller: true + keys: ['@image_key', '@label_key'] + margin: 10 + source_key: '@image_key' + - _target_: Spacingd + keys: ["@image_key", "@label_key"] + pixdim: [1.5, 1.5, 1.5] + mode: [bilinear, nearest] + align_corners: [true, true] + - {_target_: ScaleIntensityRanged, a_max: 1053.678477684517, a_min: -963.8247715525971, + b_max: 1.0, b_min: 0.0, clip: true, keys: '@image_key'} + - _target_: Orientationd + axcodes: RAS + keys: ['@image_key', '@label_key'] + - _target_: CastToTyped + dtype: [$torch.float32, $torch.uint8] + keys: ['@image_key', '@label_key'] + - _target_: EnsureTyped + keys: ['@image_key', '@label_key'] + track_meta: true + - "Placeholder for dataset-specific transform" diff --git a/vista3d/configs/train/hyper_parameters_stage4.yaml b/vista3d/configs/train/hyper_parameters_stage4.yaml new file mode 100644 index 0000000..1b8a127 --- /dev/null +++ b/vista3d/configs/train/hyper_parameters_stage4.yaml @@ -0,0 +1,121 @@ +amp: true +bundle_root: ./work_dir_stage4 +json_dir: ./data/jsons +balance_gt: true +ckpt_path: $@bundle_root + '/model_fold' + str(@fold) +model: "vista3d_segresnet_d" +weighted_sampling: false +drop_label_prob: 0 +drop_point_prob: 1 +finetune: {activate: true, exclude_vars: null, pretrained_ckpt_name: $'/workspace/vista3d/models/model.pt'} +fold: 0 +image_key: image +input_channels: 1 +iter_num: 5 +label_key: label +label_sv_key: label_sv +pseudo_label_key: pseudo_label +learning_rate: 0.00002 +log_output_file: $@bundle_root + '/model_fold' + str(@fold) + '/training.log' +loss: {_target_: DiceCELoss, include_background: false, sigmoid: true, smooth_dr: 1.0e-05, smooth_nr: 0, softmax: false, squared_pred: true, + to_onehot_y: false} +lr_scheduler: {_target_: monai.optimizers.WarmupCosineSchedule, optimizer: $@optimizer, + t_total: $@num_epochs+1, warmup_multiplier: 0.1, warmup_steps: 0} +max_backprompt: 4 +max_foreprompt: 32 +max_point: 3 +max_prompt: null +num_epochs: 200 +freeze_epoch: 1000 +freeze_head: 'point' +save_last: true +save_all: true +num_epochs_per_validation: 1 +num_images_per_batch: 1 +num_patches_per_image: 2 +num_patches_per_iter: 1 +optimizer: {_target_: torch.optim.AdamW, lr: '@learning_rate', weight_decay: 1.0e-05} +output_classes: 133 +overlap_ratio: 0.5 +patch_size: [128, 128, 128] +random_seed: 0 +resample_to_spacing: [1.5, 1.5, 1.5] +skip_iter_prob: 1 +train_datasets: [CTPelvic1K-CLINIC, AbdomenCT-1K, AeroPath, AMOS22, BTCV-Abdomen, + BTCV-Cervix, CT-ORG, FLARE22, Multi-organ-Abdominal-CT-btcv, Multi-organ-Abdominal-CT-tcia, + Pancreas-CT, Task03, Task06, Task07, Task08, Task09, Task10, VerSe, CRLM-CT, + TotalSegmentatorV2] +val_datasets: ['CRLM-CT', 'AeroPath', 'Task03','Task06','Task07','Task08','Task10','Bone-NIH'] +transforms_train: + _target_: Compose + transforms: + - _target_: LoadImaged + ensure_channel_first: true + image_only: true + keys: ['@image_key', '@label_key', '@pseudo_label_key'] + allow_missing_keys: true + - _target_: DeleteItemsd + keys: ['@label_sv_key'] + - _target_: CropForegroundd + allow_smaller: true + end_coord_key: null + keys: ['@image_key', '@label_key', '@pseudo_label_key'] + margin: 10 + source_key: '@image_key' + start_coord_key: null + allow_missing_keys: true + - _target_: Spacingd + keys: ["@image_key", "@label_key", '@pseudo_label_key'] + pixdim: [1.5, 1.5, 1.5] + mode: [bilinear, nearest, nearest] + align_corners: [true, true, true] + allow_missing_keys: true + - {_target_: ScaleIntensityRanged, a_max: 1053.678477684517, a_min: -963.8247715525971, + b_max: 1.0, b_min: 0.0, clip: true, keys: '@image_key'} + - _target_: Orientationd + axcodes: RAS + keys: ['@image_key', '@label_key', '@pseudo_label_key'] + allow_missing_keys: true + - _target_: EnsureTyped + keys: ['@image_key', '@label_key', '@pseudo_label_key'] + allow_missing_keys: true + track_meta: false + - _target_: SpatialPadd + keys: ['@image_key', '@label_key', '@pseudo_label_key'] + allow_missing_keys: true + mode: [constant, constant, constant] + spatial_size: '@patch_size' + - "Placeholder for dataset-specific transform" + - _target_: CastToTyped + dtype: [$torch.float32, $torch.int32, $torch.int32] + keys: ['@image_key', '@label_key', '@pseudo_label_key'] + allow_missing_keys: true +transforms_validate: + _target_: Compose + transforms: + - _target_: LoadImaged + ensure_channel_first: true + image_only: true + keys: ['@image_key', '@label_key'] + - _target_: CropForegroundd + allow_smaller: true + keys: ['@image_key', '@label_key'] + margin: 10 + source_key: '@image_key' + - _target_: Spacingd + keys: ["@image_key", "@label_key"] + pixdim: [1.5, 1.5, 1.5] + mode: [bilinear, nearest] + align_corners: [true, true] + - {_target_: ScaleIntensityRanged, a_max: 1053.678477684517, a_min: -963.8247715525971, + b_max: 1.0, b_min: 0.0, clip: true, keys: '@image_key'} + - _target_: Orientationd + axcodes: RAS + keys: ['@image_key', '@label_key'] + - _target_: CastToTyped + dtype: [$torch.float32, $torch.uint8] + keys: ['@image_key', '@label_key'] + - _target_: EnsureTyped + keys: ['@image_key', '@label_key'] + track_meta: true + - "Placeholder for dataset-specific transform" diff --git a/vista3d/configs/zeroshot_eval/infer_iter_point_adrenal.yaml b/vista3d/configs/zeroshot_eval/infer_iter_point_adrenal.yaml new file mode 100644 index 0000000..91ac868 --- /dev/null +++ b/vista3d/configs/zeroshot_eval/infer_iter_point_adrenal.yaml @@ -0,0 +1,45 @@ +amp: true +exps: models +output_path: "$'/workspace/vista3d/' + @exps" +ckpt: "$@output_path + '/model.pt'" +dataset_name: "Adrenal_Ki67" +label_set: [0,1] +max_iter: 80 +overlap: 0.625 +json_name: "$@dataset_name + '_5_folds.json'" +data_file_base_dir: "$'/data/' + @dataset_name" +data_list_file_path: "$'./data/external/' + @json_name" +log_output_file: $@output_path + '/inference_adrenal.log' +list_key: 'all' +fold: 0 +input_channels: 1 +image_key: image +label_key: label +patch_size: [128, 128, 128] +transforms_infer: + _target_: Compose + transforms: + - _target_: LoadImaged + ensure_channel_first: true + image_only: true + keys: ['@image_key','@label_key'] + - _target_: CopyItemsd + names: 'label_gt' + keys: '@label_key' + - _target_: Spacingd + keys: ["@image_key",'@label_key'] + pixdim: [1.5, 1.5, 1.5] + mode: [bilinear,nearest] + align_corners: [true, true] + - {_target_: ScaleIntensityRanged, a_max: 1053.678477684517, a_min: -963.8247715525971, + b_max: 1.0, b_min: 0.0, clip: true, keys: '@image_key'} + - _target_: Orientationd + axcodes: RAS + keys: ['@image_key','@label_key'] + - _target_: CastToTyped + dtype: [$torch.float32, $torch.uint8] + keys: ['@image_key','@label_key'] + - _target_: EnsureTyped + keys: ['@image_key','@label_key'] + track_meta: true +model: "vista3d_segresnet_d" diff --git a/vista3d/configs/zeroshot_eval/infer_iter_point_hcc.yaml b/vista3d/configs/zeroshot_eval/infer_iter_point_hcc.yaml new file mode 100644 index 0000000..a168df7 --- /dev/null +++ b/vista3d/configs/zeroshot_eval/infer_iter_point_hcc.yaml @@ -0,0 +1,45 @@ +amp: true +exps: models +output_path: "$'/workspace/vista3d/' + @exps" +ckpt: "$@output_path + '/model.pt'" +dataset_name: "HCC-TACE-Seg" +label_set: [0,2] +max_iter: 80 +overlap: 0.625 +json_name: "$@dataset_name + '_5_folds.json'" +data_file_base_dir: "$'/data/' + @dataset_name" +data_list_file_path: "$'./data/external/' + @json_name" +log_output_file: $@output_path + '/inference_hcc.log' +list_key: 'all' +fold: 0 +input_channels: 1 +image_key: image +label_key: label +patch_size: [128, 128, 128] +transforms_infer: + _target_: Compose + transforms: + - _target_: LoadImaged + ensure_channel_first: true + image_only: true + keys: ['@image_key','@label_key'] + - _target_: CopyItemsd + names: 'label_gt' + keys: '@label_key' + - _target_: Spacingd + keys: ["@image_key",'@label_key'] + pixdim: [1.5, 1.5, 1.5] + mode: [bilinear,nearest] + align_corners: [true, true] + - {_target_: ScaleIntensityRanged, a_max: 1053.678477684517, a_min: -963.8247715525971, + b_max: 1.0, b_min: 0.0, clip: true, keys: '@image_key'} + - _target_: Orientationd + axcodes: RAS + keys: ['@image_key','@label_key'] + - _target_: CastToTyped + dtype: [$torch.float32, $torch.uint8] + keys: ['@image_key','@label_key'] + - _target_: EnsureTyped + keys: ['@image_key','@label_key'] + track_meta: true +model: "vista3d_segresnet_d" diff --git a/vista3d/configs/zeroshot_eval/infer_iter_point_kits.yaml b/vista3d/configs/zeroshot_eval/infer_iter_point_kits.yaml new file mode 100644 index 0000000..f59b076 --- /dev/null +++ b/vista3d/configs/zeroshot_eval/infer_iter_point_kits.yaml @@ -0,0 +1,45 @@ +amp: true +exps: models +output_path: "$'/workspace/vista3d/' + @exps" +ckpt: "$@output_path + '/model.pt'" +dataset_name: "C4KC-KiTS" +label_set: [0,2] +max_iter: 80 +overlap: 0.625 +json_name: "$@dataset_name + '_5_folds.json'" +data_file_base_dir: "$'/data/' + @dataset_name + '/nifti'" +data_list_file_path: "$'./data/external/' + @json_name" +log_output_file: $@output_path + '/inference_kits.log' +list_key: 'all' +fold: 0 +input_channels: 1 +image_key: image +label_key: label +patch_size: [128, 128, 128] +transforms_infer: + _target_: Compose + transforms: + - _target_: LoadImaged + ensure_channel_first: true + image_only: true + keys: ['@image_key','@label_key'] + - _target_: CopyItemsd + names: 'label_gt' + keys: '@label_key' + - _target_: Spacingd + keys: ["@image_key",'@label_key'] + pixdim: [1., 1., 1.] + mode: [bilinear,nearest] + align_corners: [true, true] + - {_target_: ScaleIntensityRanged, a_max: 1053.678477684517, a_min: -963.8247715525971, + b_max: 1.0, b_min: 0.0, clip: true, keys: '@image_key'} + - _target_: Orientationd + axcodes: RAS + keys: ['@image_key','@label_key'] + - _target_: CastToTyped + dtype: [$torch.float32, $torch.uint8] + keys: ['@image_key','@label_key'] + - _target_: EnsureTyped + keys: ['@image_key','@label_key'] + track_meta: true +model: "vista3d_segresnet_d" diff --git a/vista3d/configs/zeroshot_eval/infer_iter_point_murine.yaml b/vista3d/configs/zeroshot_eval/infer_iter_point_murine.yaml new file mode 100644 index 0000000..de3ae1d --- /dev/null +++ b/vista3d/configs/zeroshot_eval/infer_iter_point_murine.yaml @@ -0,0 +1,40 @@ +amp: true +exps: models +output_path: "$'/workspace/vista3d/' + @exps" +ckpt: "$@output_path + '/model.pt'" +dataset_name: "micro-ct-murine-native" +label_set: [0,1,2,3,4] +max_iter: 80 +overlap: 0.625 +json_name: "$@dataset_name + '_5_folds.json'" +data_file_base_dir: '/data/micro-ct-murine/1_nativeCTdata_nifti' +data_list_file_path: "$'./data/external/' + @json_name" +log_output_file: $@output_path + '/inference_murine.log' +list_key: 'all' +fold: 0 +input_channels: 1 +image_key: image +label_key: label +patch_size: [128, 128, 128] +transforms_infer: + _target_: Compose + transforms: + - _target_: LoadImaged + ensure_channel_first: true + image_only: true + keys: ['@image_key','@label_key'] + - _target_: CopyItemsd + names: 'label_gt' + keys: '@label_key' + - {_target_: ScaleIntensityRanged, a_max: 1053.678477684517, a_min: -963.8247715525971, + b_max: 1.0, b_min: 0.0, clip: true, keys: '@image_key'} + - _target_: Orientationd + axcodes: RAS + keys: ['@image_key','@label_key'] + - _target_: CastToTyped + dtype: [$torch.float32, $torch.uint8] + keys: ['@image_key','@label_key'] + - _target_: EnsureTyped + keys: ['@image_key','@label_key'] + track_meta: true +model: "vista3d_segresnet_d" diff --git a/vista3d/data/README.md b/vista3d/data/README.md new file mode 100644 index 0000000..03354c3 --- /dev/null +++ b/vista3d/data/README.md @@ -0,0 +1,123 @@ +#### Aggregating multiple datasets + +The training workflow requires one or multiple dataset JSON files to specifiy the image and segmentation pairs as well as dataset preprocessing transformations. +Example files are located in the `data/jsons` folder. + +The JSON file has the following structure: +```python +{ + "training": [ + { + "image": "img1.nii.gz", # relative path to the primary image file + "label": "label1.nii.gz", # optional relative path to the primary label file + "pseudo_label": "p_label1.nii.gz", # optional relative path to the pseudo label file + "pseudo_label_reliability": 1 # optional reliability score for pseudo label + "label_sv": "label_sv1.nii.gz", # optional relative path to the supervoxel label file + "fold": 0 # optional fold index for cross validation, fold 0 is used for training + }, + + ... + ], + "training_transform": [ + # a set of monai transform configuration for dataset-specific loading + ], + "original_label_dict": {"1": "liver", ...}, + "label_dict": {"1": "liver", ...} +} +``` + +During training, the JSON files will be consumed along with additional configurations, for example: +```py +from data.datasets import get_datalist_with_dataset_name_and_transform + +train_files, _, dataset_specific_transforms, dataset_specific_transforms_val = \ + get_datalist_with_dataset_name_and_transform( + datasets=train_datasets, + fold_idx=fold, + image_key=image_key, + label_key=label_key, + label_sv_key=label_sv_key, + pseudo_label_key=pseudo_label_key, + num_patches_per_image=parser.get_parsed_content("num_patches_per_image"), + patch_size=parser.get_parsed_content("patch_size"), + json_dir=json_dir) +``` + +The following steps are necessary for creating a multi-dataset data loader for model training. +Step 1 and 2 generate persistent JSON files based on the original dataset (the `image` and `label` pairs; without the additional pseudo label or supervoxel-based label), and only need to be run once when the JSON files don't exist. + +##### 1. Generate data list JSON file +``` +python -m data.make_datalists +``` + +This script reads image and label folders, lists all the nii.gz files, +creates a JSON file in a format: + +```json +{ + "training": [ + {"image": "img0001.nii.gz", "label": "label0001.nii.gz", "fold": 0}, + {"image": "img0002.nii.gz", "label": "label0002.nii.gz", "fold": 2}, + ... + ], + "testing": [ + {"image": "img0003.nii.gz", "label": "label0003.nii.gz"}, + {"image": "img0004.nii.gz", "label": "label0004.nii.gz"}, + ... + ] + "original_label_dict": {"1": "liver", ...}, + "label_dict": {"1": "liver", ...} +} +``` + +This step includes a 5-fold cross validation splitting and +some logic for 80-20 training/testing splitting. User need to modify the code in make_datalists.py for their own dataset. Meanwhile, the "training_transform" should manually added for each dataset. + +The `original_label_dict` corresponds to the original dataset label definitions. +The `label_dict` modifies `original_label_dict` by simply rephrasing the terms. +For example in Task06, `cancer` is renamed to `lung tumor`. +The output of this step is multiple JSON files, each file corresponds +to one dataset. + +##### 2. Add label_dict.json and label_mapping.json +Add new class indexes to `label_dict.json` and the local to global mapping to `label_mapping.json`. + +## SupverVoxel Generation +1. Download the segment anything repo and download the ViT-H weights +``` +git clone https://github.com/facebookresearch/segment-anything.git +mv segment-anything/segment_anything/ segment_anything/ +wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth +``` +2. Modify the code for supervoxel generation +- Add this function to `predictor.py/SamPredictor` +```python +@torch.no_grad() +def get_feature_upsampled(self, input_image=None): + if input_image is None: + image_embeddings = self.model.mask_decoder.predict_masks_noprompt(self.features) + else: + image_embeddings = self.model.mask_decoder.predict_masks_noprompt(self.model.image_encoder(input_image)) + return image_embeddings +``` +- Add this function to `modeling/mask_decoder.py/MaskDecoder` +```python +def predict_masks_noprompt( + self, + image_embeddings: torch.Tensor, +) -> Tuple[torch.Tensor, torch.Tensor]: + """Predicts masks. See 'forward' for more details.""" + # Concatenate output tokens + + # Expand per-image data in batch direction to be per-mask + src = image_embeddings + # Upscale mask embeddings and predict masks using the mask tokens + upscaled_embedding = self.output_upscaling(src) + + return upscaled_embedding +``` +3. Run the supervoxel generation script. The processsing time is over 10 minutes, use `batch_infer` and multi-gpu for speed up. +``` +python -m scripts.slic_process_sam infer --image_file xxxx +``` diff --git a/monailabel/monaivista/__init__.py b/vista3d/data/__init__.py similarity index 100% rename from monailabel/monaivista/__init__.py rename to vista3d/data/__init__.py diff --git a/vista3d/data/dataset_weights.yaml b/vista3d/data/dataset_weights.yaml new file mode 100644 index 0000000..7a67ecf --- /dev/null +++ b/vista3d/data/dataset_weights.yaml @@ -0,0 +1,24 @@ +# This is the weights for weighted sampling in stage2 and stage4 +{ + "CTPelvic1K-CLINIC": 1.3333333333333333, + "AbdomenCT-1K": 0.15625, + "AeroPath": 5.882352941176471, + "AMOS22": 0.5208333333333334, + "BTCV-Abdomen": 5.2631578947368425, + "BTCV-Cervix": 5.2631578947368425, + "CT-ORG": 1.1494252873563218, + "FLARE22": 3.125, + "Multi-organ-Abdominal-CT-btcv": 3.3333333333333335, + "Multi-organ-Abdominal-CT-tcia": 3.7037037037037037, + "Pancreas-CT": 1.9607843137254901, + "Task03": 1.1904761904761905, + "Task06": 2.5, + "Task07": 0.5555555555555556, + "Task08": 0.5181347150259067, + "Task09": 3.8461538461538463, + "Task10": 1.25, + "VerSe": 0.41841004184100417, + "Bone-NIH": 0.5291005291005291, + "CRLM-CT": 0.7936507936507936, + "TotalSegmentatorV2": 0.12755102040816327 +} diff --git a/vista3d/data/datasets.py b/vista3d/data/datasets.py new file mode 100644 index 0000000..8d793d1 --- /dev/null +++ b/vista3d/data/datasets.py @@ -0,0 +1,268 @@ +# Copyright (c) MONAI Consortium +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# http://www.apache.org/licenses/LICENSE-2.0 +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import os +from pprint import pformat + +from monai import transforms +from monai.apps import get_logger +from monai.auto3dseg.utils import datafold_read +from monai.bundle import ConfigParser +from monai.utils import ensure_tuple, look_up_option + +# Define the root path to the orignal manual label files, supervoxels, and pseudolabels. +all_base_dirs = { + "AbdomenCT-1K": "/data/AbdomenCT-1K", + "FLARE22": "/data/AbdomenCT-1K/FLARE22Train", + "AMOS22": "/data/AMOS22", + "BTCV-Abdomen": "/data/BTCV/Abdomen", + "BTCV-Cervix": "/data/BTCV/Cervix", + "CT-ORG": "/data/CT-ORG", + "Multi-organ-Abdominal-CT-btcv": "/data/Multi-organ-Abdominal-CT/res_1.0mm_relabeled2", + "Multi-organ-Abdominal-CT-tcia": "/data/Multi-organ-Abdominal-CT/res_1.0mm_relabeled2", + "Pancreas-CT": "/data/Pancreas-CT", + "Task06": "/data/Task06", + "Task07": "/data/Task07", + "Task08": "/data/Task08", + "Task09": "/data/Task09", + "Task10": "/data/Task10", + "TotalSegmentator": "/data/TotalSegmentator", + "TotalSegmentatorV2": "/data/TotalSegmentatorV2", + "Task03": "/data/Task03", + "Bone-NIH": "/data/Bone-NIH", + "CRLM-CT": "/data/CRLM-CT/nifti", + "VerSe": "/data/VerSe/", + "AeroPath": "/data/AeroPath/", + "CTPelvic1K-CLINIC": "/data/CTPelvic1K-CLINIC", + "NLST": "/data/NLST", + "LIDC": "/data/LIDC", + "Covid19": "/data/Covid19", + "TCIA_Colon": "/data/TCIA_Colon", + "StonyBrook-CT": "/data/StonyBrook-CT", +} +# Notice the root path to supervoxel and pseudolabel has the same sub-folder structure as all_base_dirs +# The path is generated by replacing json_base with supervoxel_base/pl_base in get_datalist_with_dataset_name +json_base = "/data/" +supervoxel_base = "/workspace_infer/supervoxel_sam/" +pl_base = "/workspace_infer/V2_pseudo_12Feb2024/" + + +cur_json_dir = os.path.join(os.path.dirname(__file__), "jsons") +logger = get_logger(__name__) + + +def get_json_files_k_folds(json_dir=None, base_dirs=None, k=5): + """the json files are generated by data/make_datalists.py, stored at `json_dir`""" + if json_dir is None: + json_dir = cur_json_dir + if base_dirs is None: + base_dirs = all_base_dirs + output_dict = { + item: os.path.join(json_dir, f"{item}_{k}_folds.json") for item in base_dirs + } + logger.debug(pformat(output_dict)) + return output_dict + + +def get_class_names(json_dir=None): + """ + the list of class names, background is at 0 + """ + parser = ConfigParser.load_config_file(os.path.join(json_dir, "label_dict.json")) + label_dict = dict(parser) + label_dict["unspecified region"] = 0 + inv_label_dict = {v: k for k, v in label_dict.items()} + label_list = [] + for i in range(len(label_dict)): + label_list.append(inv_label_dict[i]) + return label_list + + +def get_datalist_with_dataset_name( + datasets=None, fold_idx=-1, key="training", json_dir=None, base_dirs=None +): + """ + when `datasets` is None, it returns a list of all data from all datasets. + when `datasets` is a list of dataset names, it returns a list of all data from the specified datasets. + + train_list's item format:: + + {"image": image_file_path, "label": label_file_path, "dataset_name": dataset_name, "fold": fold_id} + + """ + if base_dirs is None: + base_dirs = all_base_dirs # all_base_dirs is the broader set + # get the list of training/validation files (absolute path) + json_files = get_json_files_k_folds(json_dir=json_dir, base_dirs=base_dirs) + if datasets is None: + loading_dict = json_files.copy() + else: + loading_dict = { + k: look_up_option(k, json_files) for k in ensure_tuple(datasets) + } + train_list, val_list = [], [] + for k, j in loading_dict.items(): + t, v = datafold_read(j, basedir=all_base_dirs[k], fold=fold_idx, key=key) + for item in t: + item["dataset_name"] = k + if "label_sv" in item.keys(): + item["label_sv"] = item["label_sv"].replace( + json_base, supervoxel_base, 1 + ) + if "pseudo_label" in item.keys(): + item["pseudo_label"] = item["pseudo_label"].replace( + json_base, pl_base, 1 + ) + train_list += t + for item in v: + item["dataset_name"] = k + if "label_sv" in item.keys(): + item["label_sv"] = item["label_sv"].replace( + json_base, supervoxel_base, 1 + ) + if "pseudo_label" in item.keys(): + item["pseudo_label"] = item["pseudo_label"].replace( + json_base, pl_base, 1 + ) + + val_list += v + logger.warning( + f"data list from datasets={datasets} fold={fold_idx}: train={len(train_list)}, val={len(val_list)}" + ) + return ensure_tuple(train_list), ensure_tuple(val_list) + + +def get_datalist_with_dataset_name_and_transform( + image_key, + label_key, + label_sv_key, + pseudo_label_key, + num_patches_per_image, + patch_size, + datasets=None, + fold_idx=-1, + key="training", + json_dir=None, + base_dirs=None, +): + """ + when `datasets` is None, it returns a list of all data from all datasets. + when `datasets` is a list of dataset names, it returns a list of all data from the specified datasets. + Return file lists and specific transforms for each dataset. + + """ + if base_dirs is None: + base_dirs = all_base_dirs # all_base_dirs is the broader set + train_list, val_list = get_datalist_with_dataset_name( + datasets=datasets, + fold_idx=fold_idx, + key=key, + json_dir=json_dir, + base_dirs=base_dirs, + ) + # get the list of training/validation files (absolute path) + json_files = get_json_files_k_folds(json_dir=json_dir, base_dirs=base_dirs) + if datasets is None: + loading_dict = json_files.copy() + else: + loading_dict = { + k: look_up_option(k, json_files) for k in ensure_tuple(datasets) + } + + dataset_transforms = {} + dataset_transforms_val = {} + for k, j in loading_dict.items(): + parser = ConfigParser() + parser.read_config(j) + # those parameters are required to initiate the transforms + parser.update( + pairs={ + "image_key": image_key, + "label_key": label_key, + "label_sv_key": label_sv_key, + "pseudo_label_key": pseudo_label_key, + "num_patches_per_image": num_patches_per_image, + "patch_size": patch_size, + } + ) + transform = parser.get_parsed_content("training_transform") + dataset_transforms[k] = transforms.Compose(transform) + transform_val = parser.get_parsed_content("validation_transform", default=None) + dataset_transforms_val[k] = ( + transforms.Compose(transform_val) if transform_val is not None else None + ) + return ( + ensure_tuple(train_list), + ensure_tuple(val_list), + dataset_transforms, + dataset_transforms_val, + ) + + +def compute_dataset_weights(datalist, weight_path="./data/dataset_weights.yaml"): + """based on class-wise weight, assign a weight to each training sample""" + cfg = ConfigParser.load_config_file(weight_path) + w = [] + for item in datalist: + fg_w = cfg[item["dataset_name"]] + w.append(fg_w) + item["w"] = fg_w + return w + + +def calculate_dataset_weights(datalist): + dataset_name = [] + dataset_counts = {} + for item in datalist: + dn = item["dataset_name"] + if dn in dataset_name: + dataset_counts[dn] += 1 + else: + dataset_name.append(dn) + dataset_counts[dn] = 1 + dataset_weights = {} + non_tumor_count = 0 + tumor_count = 0 + for item in dataset_name: + if item not in ["Task03", "Task06", "Task07", "Task08", "Task10", "Bone-NIH"]: + non_tumor_count += dataset_counts[item] + else: + tumor_count += dataset_counts[item] + + for item in dataset_name: + if item not in ["Task03", "Task06", "Task07", "Task08", "Task10", "Bone-NIH"]: + dataset_weights[item] = 100 / dataset_counts[item] # non_tumor_count + else: + dataset_weights[item] = 100 / dataset_counts[item] # tumor_count + + dataset_prob = {} + total_prob = 0 + for item in dataset_name: + dataset_prob[item] = dataset_weights[item] * dataset_counts[item] + total_prob += dataset_prob[item] + for item in dataset_name: + dataset_prob[item] /= total_prob + + import json + + with open("./dataset_counts.yaml", "w") as f: + json.dump(dataset_counts, f, indent=4) + with open("./dataset_weights.yaml", "w") as f: + json.dump(dataset_weights, f, indent=4) + with open("./dataset_prob.yaml", "w") as f: + json.dump(dataset_prob, f, indent=4) + + +if __name__ == "__main__": + from monai.utils import optional_import + + fire, _ = optional_import("fire") + fire.Fire() diff --git a/vista3d/data/external/Adrenal_Ki67_5_folds.json b/vista3d/data/external/Adrenal_Ki67_5_folds.json new file mode 100644 index 0000000..30f5b86 --- /dev/null +++ b/vista3d/data/external/Adrenal_Ki67_5_folds.json @@ -0,0 +1,266 @@ +{ + "training": [ + { + "image": "Adrenal_Ki67_Seg_026-Adrenal_Ki67_Seg_026/8-_OMNIPAQUE_350_VL100_FC12_ORG_8.nii.gz", + "label": "Adrenal_Ki67_Seg_026-Adrenal_Ki67_Seg_026/seg-1__fix.nii.gz", + "fold": 0 + }, + { + "image": "Adrenal_Ki67_Seg_007-Adrenal_Ki67_Seg_007/2-AX_W_2.nii.gz", + "label": "Adrenal_Ki67_Seg_007-Adrenal_Ki67_Seg_007/seg-1__fix.nii.gz", + "fold": 0 + }, + { + "image": "Adrenal_Ki67_Seg_027-Adrenal_Ki67_Seg_027/14-No_series_description_14.nii.gz", + "label": "Adrenal_Ki67_Seg_027-Adrenal_Ki67_Seg_027/seg-1__fix.nii.gz", + "fold": 0 + }, + { + "image": "Adrenal_Ki67_Seg_017-Adrenal_Ki67_Seg_017/5-ABD_(2.5MM_SOFT)_5.nii.gz", + "label": "Adrenal_Ki67_Seg_017-Adrenal_Ki67_Seg_017/seg-1__fix.nii.gz", + "fold": 0 + }, + { + "image": "Adrenal_Ki67_Seg_042-Adrenal_Ki67_Seg_042/10-No_series_description_10.nii.gz", + "label": "Adrenal_Ki67_Seg_042-Adrenal_Ki67_Seg_042/seg-1__fix.nii.gz", + "fold": 0 + }, + { + "image": "Adrenal_Ki67_Seg_037-Adrenal_Ki67_Seg_037/2-ABD_PEL_W_2.nii.gz", + "label": "Adrenal_Ki67_Seg_037-Adrenal_Ki67_Seg_037/seg-1__fix.nii.gz", + "fold": 0 + }, + { + "image": "Adrenal_Ki67_Seg_039-Adrenal_Ki67_Seg_039/5-3_AX_VENOUS_5.nii.gz", + "label": "Adrenal_Ki67_Seg_039-Adrenal_Ki67_Seg_039/seg-1__fix.nii.gz", + "fold": 0 + }, + { + "image": "Adrenal_Ki67_Seg_004-Adrenal_Ki67_Seg_004/6-Venous_3.0_B31f_6.nii.gz", + "label": "Adrenal_Ki67_Seg_004-Adrenal_Ki67_Seg_004/seg-1__fix.nii.gz", + "fold": 0 + }, + { + "image": "Adrenal_Ki67_Seg_034-Adrenal_Ki67_Seg_034/930-CAP_W_5mm_(SafeCT)_930.nii.gz", + "label": "Adrenal_Ki67_Seg_034-Adrenal_Ki67_Seg_034/seg-1__fix.nii.gz", + "fold": 0 + }, + { + "image": "Adrenal_Ki67_Seg_031-Adrenal_Ki67_Seg_031/5-Abd_Pel_with_5.0_B30f_ST_5.nii.gz", + "label": "Adrenal_Ki67_Seg_031-Adrenal_Ki67_Seg_031/seg-1__fix.nii.gz", + "fold": 1 + }, + { + "image": "Adrenal_Ki67_Seg_020-Adrenal_Ki67_Seg_020/5-Recon_2_ABD_PLVS_W_CONTRAST_5.nii.gz", + "label": "Adrenal_Ki67_Seg_020-Adrenal_Ki67_Seg_020/seg-1__fix.nii.gz", + "fold": 1 + }, + { + "image": "Adrenal_Ki67_Seg_052-Adrenal_Ki67_Seg_052/10-No_series_description_10.nii.gz", + "label": "Adrenal_Ki67_Seg_052-Adrenal_Ki67_Seg_052/seg-1__fix.nii.gz", + "fold": 1 + }, + { + "image": "Adrenal_Ki67_Seg_049-Adrenal_Ki67_Seg_049/3-CAP_W_O_5.0_I30f_3_3.nii.gz", + "label": "Adrenal_Ki67_Seg_049-Adrenal_Ki67_Seg_049/seg-1__fix.nii.gz", + "fold": 1 + }, + { + "image": "Adrenal_Ki67_Seg_019-Adrenal_Ki67_Seg_019/13-No_series_description_13.nii.gz", + "label": "Adrenal_Ki67_Seg_019-Adrenal_Ki67_Seg_019/seg-1__fix.nii.gz", + "fold": 1 + }, + { + "image": "Adrenal_Ki67_Seg_033-Adrenal_Ki67_Seg_033/7-CAP_AX_VENOUS_7.nii.gz", + "label": "Adrenal_Ki67_Seg_033-Adrenal_Ki67_Seg_033/seg-1__fix.nii.gz", + "fold": 1 + }, + { + "image": "Adrenal_Ki67_Seg_015-Adrenal_Ki67_Seg_015/3-ABDOMEN_WITH_CONTRAST_3.nii.gz", + "label": "Adrenal_Ki67_Seg_015-Adrenal_Ki67_Seg_015/seg-1__fix.nii.gz", + "fold": 1 + }, + { + "image": "Adrenal_Ki67_Seg_053-Adrenal_Ki67_Seg_053/7-ABD_AX_3_PV_7.nii.gz", + "label": "Adrenal_Ki67_Seg_053-Adrenal_Ki67_Seg_053/seg-1__fix.nii.gz", + "fold": 1 + }, + { + "image": "Adrenal_Ki67_Seg_051-Adrenal_Ki67_Seg_051/401-ABD_AX_ART_iDose_(4)_401.nii.gz", + "label": "Adrenal_Ki67_Seg_051-Adrenal_Ki67_Seg_051/seg-1__fix.nii.gz", + "fold": 1 + }, + { + "image": "Adrenal_Ki67_Seg_003-Adrenal_Ki67_Seg_003/2_2.nii.gz", + "label": "Adrenal_Ki67_Seg_003-Adrenal_Ki67_Seg_003/seg-1__fix.nii.gz", + "fold": 2 + }, + { + "image": "Adrenal_Ki67_Seg_001-Adrenal_Ki67_Seg_001/5-Abd_Venous_5.0_B40f_5.nii.gz", + "label": "Adrenal_Ki67_Seg_001-Adrenal_Ki67_Seg_001/seg-1__fix.nii.gz", + "fold": 2 + }, + { + "image": "Adrenal_Ki67_Seg_040-Adrenal_Ki67_Seg_040/3-No_series_description_3.nii.gz", + "label": "Adrenal_Ki67_Seg_040-Adrenal_Ki67_Seg_040/seg-1__fix.nii.gz", + "fold": 2 + }, + { + "image": "Adrenal_Ki67_Seg_005-Adrenal_Ki67_Seg_005/5-No_series_description_5.nii.gz", + "label": "Adrenal_Ki67_Seg_005-Adrenal_Ki67_Seg_005/seg-1__fix.nii.gz", + "fold": 2 + }, + { + "image": "Adrenal_Ki67_Seg_035-Adrenal_Ki67_Seg_035/7-Venous_7.nii.gz", + "label": "Adrenal_Ki67_Seg_035-Adrenal_Ki67_Seg_035/seg-1__fix.nii.gz", + "fold": 2 + }, + { + "image": "Adrenal_Ki67_Seg_050-Adrenal_Ki67_Seg_050/201-ABDOMEN_PELVIS_W_iDose_(3)_201.nii.gz", + "label": "Adrenal_Ki67_Seg_050-Adrenal_Ki67_Seg_050/seg-1__fix.nii.gz", + "fold": 2 + }, + { + "image": "Adrenal_Ki67_Seg_036-Adrenal_Ki67_Seg_036/5-No_series_description_5.nii.gz", + "label": "Adrenal_Ki67_Seg_036-Adrenal_Ki67_Seg_036/seg-1__fix.nii.gz", + "fold": 2 + }, + { + "image": "Adrenal_Ki67_Seg_009-Adrenal_Ki67_Seg_009/4-Abd_Pelvis_4.nii.gz", + "label": "Adrenal_Ki67_Seg_009-Adrenal_Ki67_Seg_009/seg-1__fix.nii.gz", + "fold": 2 + }, + { + "image": "Adrenal_Ki67_Seg_014-Adrenal_Ki67_Seg_014/3-Abd_Only_5.0_B31f_ABDOMEN_ONLY_WO_20061104105641_3.nii.gz", + "label": "Adrenal_Ki67_Seg_014-Adrenal_Ki67_Seg_014/seg-1__fix.nii.gz", + "fold": 3 + }, + { + "image": "Adrenal_Ki67_Seg_029-Adrenal_Ki67_Seg_029/2-Abdomen_3mm_2.nii.gz", + "label": "Adrenal_Ki67_Seg_029-Adrenal_Ki67_Seg_029/seg-1__fix.nii.gz", + "fold": 3 + }, + { + "image": "Adrenal_Ki67_Seg_030-Adrenal_Ki67_Seg_030/14-No_series_description_14.nii.gz", + "label": "Adrenal_Ki67_Seg_030-Adrenal_Ki67_Seg_030/seg-1__fix.nii.gz", + "fold": 3 + }, + { + "image": "Adrenal_Ki67_Seg_013-Adrenal_Ki67_Seg_013/3-WITH_CONTRAST_3.nii.gz", + "label": "Adrenal_Ki67_Seg_013-Adrenal_Ki67_Seg_013/seg-1__fix.nii.gz", + "fold": 3 + }, + { + "image": "Adrenal_Ki67_Seg_006-Adrenal_Ki67_Seg_006/4-_CE_FC01_4.nii.gz", + "label": "Adrenal_Ki67_Seg_006-Adrenal_Ki67_Seg_006/seg-1__fix.nii.gz", + "fold": 3 + }, + { + "image": "Adrenal_Ki67_Seg_025-Adrenal_Ki67_Seg_025/103-ABD_PEL-W_103.nii.gz", + "label": "Adrenal_Ki67_Seg_025-Adrenal_Ki67_Seg_025/seg-1__fix.nii.gz", + "fold": 3 + }, + { + "image": "Adrenal_Ki67_Seg_048-Adrenal_Ki67_Seg_048/2_2.nii.gz", + "label": "Adrenal_Ki67_Seg_048-Adrenal_Ki67_Seg_048/seg-1__fix.nii.gz", + "fold": 3 + }, + { + "image": "Adrenal_Ki67_Seg_008-Adrenal_Ki67_Seg_008/103-THINS_103.nii.gz", + "label": "Adrenal_Ki67_Seg_008-Adrenal_Ki67_Seg_008/seg-1__fix.nii.gz", + "fold": 3 + }, + { + "image": "Adrenal_Ki67_Seg_010-Adrenal_Ki67_Seg_010/12-180_SEC_120_OMNI_12.nii.gz", + "label": "Adrenal_Ki67_Seg_010-Adrenal_Ki67_Seg_010/seg-1__fix.nii.gz", + "fold": 4 + }, + { + "image": "Adrenal_Ki67_Seg_002-Adrenal_Ki67_Seg_002/6-POST_FC12_ORG_6.nii.gz", + "label": "Adrenal_Ki67_Seg_002-Adrenal_Ki67_Seg_002/seg-1__fix.nii.gz", + "fold": 4 + }, + { + "image": "Adrenal_Ki67_Seg_021-Adrenal_Ki67_Seg_021/3-VENOUS_3.nii.gz", + "label": "Adrenal_Ki67_Seg_021-Adrenal_Ki67_Seg_021/seg-1__fix.nii.gz", + "fold": 4 + }, + { + "image": "Adrenal_Ki67_Seg_016-Adrenal_Ki67_Seg_016/2770-ABDPL_2770.nii.gz", + "label": "Adrenal_Ki67_Seg_016-Adrenal_Ki67_Seg_016/seg-1__fix.nii.gz", + "fold": 4 + }, + { + "image": "Adrenal_Ki67_Seg_038-Adrenal_Ki67_Seg_038/3_3.nii.gz", + "label": "Adrenal_Ki67_Seg_038-Adrenal_Ki67_Seg_038/seg-1__fix.nii.gz", + "fold": 4 + }, + { + "image": "Adrenal_Ki67_Seg_041-Adrenal_Ki67_Seg_041/2-ABD_PELVIS_2.nii.gz", + "label": "Adrenal_Ki67_Seg_041-Adrenal_Ki67_Seg_041/seg-1__fix.nii.gz", + "fold": 4 + }, + { + "image": "Adrenal_Ki67_Seg_024-Adrenal_Ki67_Seg_024/4-ABD_PEL_W_5.0_B31s_4.nii.gz", + "label": "Adrenal_Ki67_Seg_024-Adrenal_Ki67_Seg_024/seg-1__fix.nii.gz", + "fold": 4 + }, + { + "image": "Adrenal_Ki67_Seg_012-Adrenal_Ki67_Seg_012/5-VENOGRAM_5.nii.gz", + "label": "Adrenal_Ki67_Seg_012-Adrenal_Ki67_Seg_012/seg-1__fix.nii.gz", + "fold": 4 + } + ], + "testing": [ + { + "image": "Adrenal_Ki67_Seg_011-Adrenal_Ki67_Seg_011/2-ABDOMEN_AXIAL_2.nii.gz", + "label": "Adrenal_Ki67_Seg_011-Adrenal_Ki67_Seg_011/seg-1__fix.nii.gz" + }, + { + "image": "Adrenal_Ki67_Seg_045-Adrenal_Ki67_Seg_045/2-CHEST_ABD_WITH_2.nii.gz", + "label": "Adrenal_Ki67_Seg_045-Adrenal_Ki67_Seg_045/seg-1__fix.nii.gz" + }, + { + "image": "Adrenal_Ki67_Seg_018-Adrenal_Ki67_Seg_018/13-No_series_description_13.nii.gz", + "label": "Adrenal_Ki67_Seg_018-Adrenal_Ki67_Seg_018/seg-1__fix.nii.gz" + }, + { + "image": "Adrenal_Ki67_Seg_023-Adrenal_Ki67_Seg_023/2-AXIALS_2.nii.gz", + "label": "Adrenal_Ki67_Seg_023-Adrenal_Ki67_Seg_023/seg-1__fix.nii.gz" + }, + { + "image": "Adrenal_Ki67_Seg_043-Adrenal_Ki67_Seg_043/10-No_series_description_10.nii.gz", + "label": "Adrenal_Ki67_Seg_043-Adrenal_Ki67_Seg_043/seg-1__fix.nii.gz" + }, + { + "image": "Adrenal_Ki67_Seg_028-Adrenal_Ki67_Seg_028/3-UROGRAM_WITH_3.nii.gz", + "label": "Adrenal_Ki67_Seg_028-Adrenal_Ki67_Seg_028/seg-1__fix.nii.gz" + }, + { + "image": "Adrenal_Ki67_Seg_044-Adrenal_Ki67_Seg_044/3-Recon_2_AXIAL_3.nii.gz", + "label": "Adrenal_Ki67_Seg_044-Adrenal_Ki67_Seg_044/seg-1__fix.nii.gz" + }, + { + "image": "Adrenal_Ki67_Seg_047-Adrenal_Ki67_Seg_047/2-ABD_PELV_SFT_TISSUE_3X3_2.nii.gz", + "label": "Adrenal_Ki67_Seg_047-Adrenal_Ki67_Seg_047/seg-1__fix.nii.gz" + }, + { + "image": "Adrenal_Ki67_Seg_046-Adrenal_Ki67_Seg_046/4-No_series_description_4.nii.gz", + "label": "Adrenal_Ki67_Seg_046-Adrenal_Ki67_Seg_046/seg-1__fix.nii.gz" + }, + { + "image": "Adrenal_Ki67_Seg_032-Adrenal_Ki67_Seg_032/3-ST_3.nii.gz", + "label": "Adrenal_Ki67_Seg_032-Adrenal_Ki67_Seg_032/seg-1__fix.nii.gz" + }, + { + "image": "Adrenal_Ki67_Seg_022-Adrenal_Ki67_Seg_022/2_2.nii.gz", + "label": "Adrenal_Ki67_Seg_022-Adrenal_Ki67_Seg_022/seg-1__fix.nii.gz" + } + ], + "label_dict": { + "1": "adrenocortical tumor" + }, + "original_label_dict": { + "1": "adrenocortical tumor" + } +} diff --git a/vista3d/data/external/C4KC-KiTS_5_folds.json b/vista3d/data/external/C4KC-KiTS_5_folds.json new file mode 100644 index 0000000..043db03 --- /dev/null +++ b/vista3d/data/external/C4KC-KiTS_5_folds.json @@ -0,0 +1,1022 @@ +{ + "training": [ + { + "image": "KiTS-00186/2_arterial.nii.gz", + "label": "KiTS-00186/mask.nii.gz", + "fold": 0 + }, + { + "image": "KiTS-00066/3_arterial.nii.gz", + "label": "KiTS-00066/mask.nii.gz", + "fold": 0 + }, + { + "image": "KiTS-00012/2_arterial.nii.gz", + "label": "KiTS-00012/mask.nii.gz", + "fold": 0 + }, + { + "image": "KiTS-00055/2_arterial.nii.gz", + "label": "KiTS-00055/mask.nii.gz", + "fold": 0 + }, + { + "image": "KiTS-00193/100_arterial.nii.gz", + "label": "KiTS-00193/mask.nii.gz", + "fold": 0 + }, + { + "image": "KiTS-00142/7_arterial.nii.gz", + "label": "KiTS-00142/mask.nii.gz", + "fold": 0 + }, + { + "image": "KiTS-00069/3_arterial.nii.gz", + "label": "KiTS-00069/mask.nii.gz", + "fold": 0 + }, + { + "image": "KiTS-00124/2_arterial.nii.gz", + "label": "KiTS-00124/mask.nii.gz", + "fold": 0 + }, + { + "image": "KiTS-00208/2_arterial.nii.gz", + "label": "KiTS-00208/mask.nii.gz", + "fold": 0 + }, + { + "image": "KiTS-00116/9_arterial.nii.gz", + "label": "KiTS-00116/mask.nii.gz", + "fold": 0 + }, + { + "image": "KiTS-00156/9_arterial.nii.gz", + "label": "KiTS-00156/mask.nii.gz", + "fold": 0 + }, + { + "image": "KiTS-00048/2_arterial.nii.gz", + "label": "KiTS-00048/mask.nii.gz", + "fold": 0 + }, + { + "image": "KiTS-00085/5_arterial.nii.gz", + "label": "KiTS-00085/mask.nii.gz", + "fold": 0 + }, + { + "image": "KiTS-00080/3_arterial.nii.gz", + "label": "KiTS-00080/mask.nii.gz", + "fold": 0 + }, + { + "image": "KiTS-00001/5_arterial.nii.gz", + "label": "KiTS-00001/mask.nii.gz", + "fold": 0 + }, + { + "image": "KiTS-00026/9_arterial.nii.gz", + "label": "KiTS-00026/mask.nii.gz", + "fold": 0 + }, + { + "image": "KiTS-00031/3_arterial.nii.gz", + "label": "KiTS-00031/mask.nii.gz", + "fold": 0 + }, + { + "image": "KiTS-00007/5_arterial.nii.gz", + "label": "KiTS-00007/mask.nii.gz", + "fold": 0 + }, + { + "image": "KiTS-00016/2_arterial.nii.gz", + "label": "KiTS-00016/mask.nii.gz", + "fold": 0 + }, + { + "image": "KiTS-00042/7_arterial.nii.gz", + "label": "KiTS-00042/mask.nii.gz", + "fold": 0 + }, + { + "image": "KiTS-00140/6_arterial.nii.gz", + "label": "KiTS-00140/mask.nii.gz", + "fold": 0 + }, + { + "image": "KiTS-00008/3_arterial.nii.gz", + "label": "KiTS-00008/mask.nii.gz", + "fold": 0 + }, + { + "image": "KiTS-00024/2_arterial.nii.gz", + "label": "KiTS-00024/mask.nii.gz", + "fold": 0 + }, + { + "image": "KiTS-00067/2_arterial.nii.gz", + "label": "KiTS-00067/mask.nii.gz", + "fold": 0 + }, + { + "image": "KiTS-00092/6_arterial.nii.gz", + "label": "KiTS-00092/mask.nii.gz", + "fold": 0 + }, + { + "image": "KiTS-00047/4_arterial.nii.gz", + "label": "KiTS-00047/mask.nii.gz", + "fold": 0 + }, + { + "image": "KiTS-00165/3_arterial.nii.gz", + "label": "KiTS-00165/mask.nii.gz", + "fold": 0 + }, + { + "image": "KiTS-00051/4_arterial.nii.gz", + "label": "KiTS-00051/mask.nii.gz", + "fold": 0 + }, + { + "image": "KiTS-00006/4_arterial.nii.gz", + "label": "KiTS-00006/mask.nii.gz", + "fold": 0 + }, + { + "image": "KiTS-00192/2_arterial.nii.gz", + "label": "KiTS-00192/mask.nii.gz", + "fold": 0 + }, + { + "image": "KiTS-00044/2_arterial.nii.gz", + "label": "KiTS-00044/mask.nii.gz", + "fold": 0 + }, + { + "image": "KiTS-00005/6_arterial.nii.gz", + "label": "KiTS-00005/mask.nii.gz", + "fold": 0 + }, + { + "image": "KiTS-00177/2_arterial.nii.gz", + "label": "KiTS-00177/mask.nii.gz", + "fold": 0 + }, + { + "image": "KiTS-00157/9_arterial.nii.gz", + "label": "KiTS-00157/mask.nii.gz", + "fold": 0 + }, + { + "image": "KiTS-00061/4_arterial.nii.gz", + "label": "KiTS-00061/mask.nii.gz", + "fold": 1 + }, + { + "image": "KiTS-00040/3_arterial.nii.gz", + "label": "KiTS-00040/mask.nii.gz", + "fold": 1 + }, + { + "image": "KiTS-00068/7_arterial.nii.gz", + "label": "KiTS-00068/mask.nii.gz", + "fold": 1 + }, + { + "image": "KiTS-00036/2_arterial.nii.gz", + "label": "KiTS-00036/mask.nii.gz", + "fold": 1 + }, + { + "image": "KiTS-00153/8_arterial.nii.gz", + "label": "KiTS-00153/mask.nii.gz", + "fold": 1 + }, + { + "image": "KiTS-00189/2_arterial.nii.gz", + "label": "KiTS-00189/mask.nii.gz", + "fold": 1 + }, + { + "image": "KiTS-00091/7_arterial.nii.gz", + "label": "KiTS-00091/mask.nii.gz", + "fold": 1 + }, + { + "image": "KiTS-00110/3_arterial.nii.gz", + "label": "KiTS-00110/mask.nii.gz", + "fold": 1 + }, + { + "image": "KiTS-00046/2_arterial.nii.gz", + "label": "KiTS-00046/mask.nii.gz", + "fold": 1 + }, + { + "image": "KiTS-00178/3_arterial.nii.gz", + "label": "KiTS-00178/mask.nii.gz", + "fold": 1 + }, + { + "image": "KiTS-00075/2_arterial.nii.gz", + "label": "KiTS-00075/mask.nii.gz", + "fold": 1 + }, + { + "image": "KiTS-00037/6_arterial.nii.gz", + "label": "KiTS-00037/mask.nii.gz", + "fold": 1 + }, + { + "image": "KiTS-00130/9_arterial.nii.gz", + "label": "KiTS-00130/mask.nii.gz", + "fold": 1 + }, + { + "image": "KiTS-00063/6_arterial.nii.gz", + "label": "KiTS-00063/mask.nii.gz", + "fold": 1 + }, + { + "image": "KiTS-00205/4_arterial.nii.gz", + "label": "KiTS-00205/mask.nii.gz", + "fold": 1 + }, + { + "image": "KiTS-00167/2_arterial.nii.gz", + "label": "KiTS-00167/mask.nii.gz", + "fold": 1 + }, + { + "image": "KiTS-00059/8_arterial.nii.gz", + "label": "KiTS-00059/mask.nii.gz", + "fold": 1 + }, + { + "image": "KiTS-00172/3_arterial.nii.gz", + "label": "KiTS-00172/mask.nii.gz", + "fold": 1 + }, + { + "image": "KiTS-00093/7_arterial.nii.gz", + "label": "KiTS-00093/mask.nii.gz", + "fold": 1 + }, + { + "image": "KiTS-00197/2_arterial.nii.gz", + "label": "KiTS-00197/mask.nii.gz", + "fold": 1 + }, + { + "image": "KiTS-00081/5_arterial.nii.gz", + "label": "KiTS-00081/mask.nii.gz", + "fold": 1 + }, + { + "image": "KiTS-00203/3_arterial.nii.gz", + "label": "KiTS-00203/mask.nii.gz", + "fold": 1 + }, + { + "image": "KiTS-00089/9_arterial.nii.gz", + "label": "KiTS-00089/mask.nii.gz", + "fold": 1 + }, + { + "image": "KiTS-00198/4_arterial.nii.gz", + "label": "KiTS-00198/mask.nii.gz", + "fold": 1 + }, + { + "image": "KiTS-00187/2_arterial.nii.gz", + "label": "KiTS-00187/mask.nii.gz", + "fold": 1 + }, + { + "image": "KiTS-00064/5_arterial.nii.gz", + "label": "KiTS-00064/mask.nii.gz", + "fold": 1 + }, + { + "image": "KiTS-00191/3_arterial.nii.gz", + "label": "KiTS-00191/mask.nii.gz", + "fold": 1 + }, + { + "image": "KiTS-00078/5_arterial.nii.gz", + "label": "KiTS-00078/mask.nii.gz", + "fold": 1 + }, + { + "image": "KiTS-00179/2_arterial.nii.gz", + "label": "KiTS-00179/mask.nii.gz", + "fold": 1 + }, + { + "image": "KiTS-00022/7_arterial.nii.gz", + "label": "KiTS-00022/mask.nii.gz", + "fold": 1 + }, + { + "image": "KiTS-00196/6_arterial.nii.gz", + "label": "KiTS-00196/mask.nii.gz", + "fold": 1 + }, + { + "image": "KiTS-00175/2_arterial.nii.gz", + "label": "KiTS-00175/mask.nii.gz", + "fold": 1 + }, + { + "image": "KiTS-00131/5_arterial.nii.gz", + "label": "KiTS-00131/mask.nii.gz", + "fold": 1 + }, + { + "image": "KiTS-00149/4_arterial.nii.gz", + "label": "KiTS-00149/mask.nii.gz", + "fold": 1 + }, + { + "image": "KiTS-00088/2_arterial.nii.gz", + "label": "KiTS-00088/mask.nii.gz", + "fold": 2 + }, + { + "image": "KiTS-00202/3_arterial.nii.gz", + "label": "KiTS-00202/mask.nii.gz", + "fold": 2 + }, + { + "image": "KiTS-00087/4_arterial.nii.gz", + "label": "KiTS-00087/mask.nii.gz", + "fold": 2 + }, + { + "image": "KiTS-00035/2_arterial.nii.gz", + "label": "KiTS-00035/mask.nii.gz", + "fold": 2 + }, + { + "image": "KiTS-00019/2_arterial.nii.gz", + "label": "KiTS-00019/mask.nii.gz", + "fold": 2 + }, + { + "image": "KiTS-00166/6_arterial.nii.gz", + "label": "KiTS-00166/mask.nii.gz", + "fold": 2 + }, + { + "image": "KiTS-00206/5_arterial.nii.gz", + "label": "KiTS-00206/mask.nii.gz", + "fold": 2 + }, + { + "image": "KiTS-00152/3_arterial.nii.gz", + "label": "KiTS-00152/mask.nii.gz", + "fold": 2 + }, + { + "image": "KiTS-00168/3_arterial.nii.gz", + "label": "KiTS-00168/mask.nii.gz", + "fold": 2 + }, + { + "image": "KiTS-00011/3_arterial.nii.gz", + "label": "KiTS-00011/mask.nii.gz", + "fold": 2 + }, + { + "image": "KiTS-00071/9_arterial.nii.gz", + "label": "KiTS-00071/mask.nii.gz", + "fold": 2 + }, + { + "image": "KiTS-00123/3_arterial.nii.gz", + "label": "KiTS-00123/mask.nii.gz", + "fold": 2 + }, + { + "image": "KiTS-00103/8_arterial.nii.gz", + "label": "KiTS-00103/mask.nii.gz", + "fold": 2 + }, + { + "image": "KiTS-00000/7_arterial.nii.gz", + "label": "KiTS-00000/mask.nii.gz", + "fold": 2 + }, + { + "image": "KiTS-00151/7_arterial.nii.gz", + "label": "KiTS-00151/mask.nii.gz", + "fold": 2 + }, + { + "image": "KiTS-00018/5_arterial.nii.gz", + "label": "KiTS-00018/mask.nii.gz", + "fold": 2 + }, + { + "image": "KiTS-00070/2_arterial.nii.gz", + "label": "KiTS-00070/mask.nii.gz", + "fold": 2 + }, + { + "image": "KiTS-00134/3_arterial.nii.gz", + "label": "KiTS-00134/mask.nii.gz", + "fold": 2 + }, + { + "image": "KiTS-00129/3_arterial.nii.gz", + "label": "KiTS-00129/mask.nii.gz", + "fold": 2 + }, + { + "image": "KiTS-00122/5_arterial.nii.gz", + "label": "KiTS-00122/mask.nii.gz", + "fold": 2 + }, + { + "image": "KiTS-00045/6_arterial.nii.gz", + "label": "KiTS-00045/mask.nii.gz", + "fold": 2 + }, + { + "image": "KiTS-00132/7_arterial.nii.gz", + "label": "KiTS-00132/mask.nii.gz", + "fold": 2 + }, + { + "image": "KiTS-00104/4_arterial.nii.gz", + "label": "KiTS-00104/mask.nii.gz", + "fold": 2 + }, + { + "image": "KiTS-00015/5_arterial.nii.gz", + "label": "KiTS-00015/mask.nii.gz", + "fold": 2 + }, + { + "image": "KiTS-00194/2_arterial.nii.gz", + "label": "KiTS-00194/mask.nii.gz", + "fold": 2 + }, + { + "image": "KiTS-00041/3_arterial.nii.gz", + "label": "KiTS-00041/mask.nii.gz", + "fold": 2 + }, + { + "image": "KiTS-00029/2_arterial.nii.gz", + "label": "KiTS-00029/mask.nii.gz", + "fold": 2 + }, + { + "image": "KiTS-00023/4_arterial.nii.gz", + "label": "KiTS-00023/mask.nii.gz", + "fold": 2 + }, + { + "image": "KiTS-00079/3_arterial.nii.gz", + "label": "KiTS-00079/mask.nii.gz", + "fold": 2 + }, + { + "image": "KiTS-00060/2_arterial.nii.gz", + "label": "KiTS-00060/mask.nii.gz", + "fold": 2 + }, + { + "image": "KiTS-00094/4_arterial.nii.gz", + "label": "KiTS-00094/mask.nii.gz", + "fold": 2 + }, + { + "image": "KiTS-00077/2_arterial.nii.gz", + "label": "KiTS-00077/mask.nii.gz", + "fold": 2 + }, + { + "image": "KiTS-00053/7_arterial.nii.gz", + "label": "KiTS-00053/mask.nii.gz", + "fold": 2 + }, + { + "image": "KiTS-00115/14_arterial.nii.gz", + "label": "KiTS-00115/mask.nii.gz", + "fold": 2 + }, + { + "image": "KiTS-00148/4_arterial.nii.gz", + "label": "KiTS-00148/mask.nii.gz", + "fold": 3 + }, + { + "image": "KiTS-00098/7_arterial.nii.gz", + "label": "KiTS-00098/mask.nii.gz", + "fold": 3 + }, + { + "image": "KiTS-00010/4_arterial.nii.gz", + "label": "KiTS-00010/mask.nii.gz", + "fold": 3 + }, + { + "image": "KiTS-00057/5_arterial.nii.gz", + "label": "KiTS-00057/mask.nii.gz", + "fold": 3 + }, + { + "image": "KiTS-00160/12_arterial.nii.gz", + "label": "KiTS-00160/mask.nii.gz", + "fold": 3 + }, + { + "image": "KiTS-00099/2_arterial.nii.gz", + "label": "KiTS-00099/mask.nii.gz", + "fold": 3 + }, + { + "image": "KiTS-00127/5_arterial.nii.gz", + "label": "KiTS-00127/mask.nii.gz", + "fold": 3 + }, + { + "image": "KiTS-00188/2_arterial.nii.gz", + "label": "KiTS-00188/mask.nii.gz", + "fold": 3 + }, + { + "image": "KiTS-00195/2_arterial.nii.gz", + "label": "KiTS-00195/mask.nii.gz", + "fold": 3 + }, + { + "image": "KiTS-00128/3_arterial.nii.gz", + "label": "KiTS-00128/mask.nii.gz", + "fold": 3 + }, + { + "image": "KiTS-00204/5_arterial.nii.gz", + "label": "KiTS-00204/mask.nii.gz", + "fold": 3 + }, + { + "image": "KiTS-00154/9_arterial.nii.gz", + "label": "KiTS-00154/mask.nii.gz", + "fold": 3 + }, + { + "image": "KiTS-00118/6_arterial.nii.gz", + "label": "KiTS-00118/mask.nii.gz", + "fold": 3 + }, + { + "image": "KiTS-00032/2_arterial.nii.gz", + "label": "KiTS-00032/mask.nii.gz", + "fold": 3 + }, + { + "image": "KiTS-00083/2_arterial.nii.gz", + "label": "KiTS-00083/mask.nii.gz", + "fold": 3 + }, + { + "image": "KiTS-00073/2_arterial.nii.gz", + "label": "KiTS-00073/mask.nii.gz", + "fold": 3 + }, + { + "image": "KiTS-00049/6_arterial.nii.gz", + "label": "KiTS-00049/mask.nii.gz", + "fold": 3 + }, + { + "image": "KiTS-00141/7_arterial.nii.gz", + "label": "KiTS-00141/mask.nii.gz", + "fold": 3 + }, + { + "image": "KiTS-00164/2_arterial.nii.gz", + "label": "KiTS-00164/mask.nii.gz", + "fold": 3 + }, + { + "image": "KiTS-00200/4_arterial.nii.gz", + "label": "KiTS-00200/mask.nii.gz", + "fold": 3 + }, + { + "image": "KiTS-00121/2_arterial.nii.gz", + "label": "KiTS-00121/mask.nii.gz", + "fold": 3 + }, + { + "image": "KiTS-00139/2_arterial.nii.gz", + "label": "KiTS-00139/mask.nii.gz", + "fold": 3 + }, + { + "image": "KiTS-00084/6_arterial.nii.gz", + "label": "KiTS-00084/mask.nii.gz", + "fold": 3 + }, + { + "image": "KiTS-00137/5_arterial.nii.gz", + "label": "KiTS-00137/mask.nii.gz", + "fold": 3 + }, + { + "image": "KiTS-00150/3_arterial.nii.gz", + "label": "KiTS-00150/mask.nii.gz", + "fold": 3 + }, + { + "image": "KiTS-00074/3_arterial.nii.gz", + "label": "KiTS-00074/mask.nii.gz", + "fold": 3 + }, + { + "image": "KiTS-00039/2_arterial.nii.gz", + "label": "KiTS-00039/mask.nii.gz", + "fold": 3 + }, + { + "image": "KiTS-00020/2_arterial.nii.gz", + "label": "KiTS-00020/mask.nii.gz", + "fold": 3 + }, + { + "image": "KiTS-00108/8_arterial.nii.gz", + "label": "KiTS-00108/mask.nii.gz", + "fold": 3 + }, + { + "image": "KiTS-00038/2_arterial.nii.gz", + "label": "KiTS-00038/mask.nii.gz", + "fold": 3 + }, + { + "image": "KiTS-00117/4_arterial.nii.gz", + "label": "KiTS-00117/mask.nii.gz", + "fold": 3 + }, + { + "image": "KiTS-00004/7_arterial.nii.gz", + "label": "KiTS-00004/mask.nii.gz", + "fold": 3 + }, + { + "image": "KiTS-00030/4_arterial.nii.gz", + "label": "KiTS-00030/mask.nii.gz", + "fold": 3 + }, + { + "image": "KiTS-00100/6_arterial.nii.gz", + "label": "KiTS-00100/mask.nii.gz", + "fold": 4 + }, + { + "image": "KiTS-00113/2_arterial.nii.gz", + "label": "KiTS-00113/mask.nii.gz", + "fold": 4 + }, + { + "image": "KiTS-00114/11_arterial.nii.gz", + "label": "KiTS-00114/mask.nii.gz", + "fold": 4 + }, + { + "image": "KiTS-00105/9_arterial.nii.gz", + "label": "KiTS-00105/mask.nii.gz", + "fold": 4 + }, + { + "image": "KiTS-00050/3_arterial.nii.gz", + "label": "KiTS-00050/mask.nii.gz", + "fold": 4 + }, + { + "image": "KiTS-00159/7_arterial.nii.gz", + "label": "KiTS-00159/mask.nii.gz", + "fold": 4 + }, + { + "image": "KiTS-00097/2_arterial.nii.gz", + "label": "KiTS-00097/mask.nii.gz", + "fold": 4 + }, + { + "image": "KiTS-00013/2_arterial.nii.gz", + "label": "KiTS-00013/mask.nii.gz", + "fold": 4 + }, + { + "image": "KiTS-00155/7_arterial.nii.gz", + "label": "KiTS-00155/mask.nii.gz", + "fold": 4 + }, + { + "image": "KiTS-00120/7_arterial.nii.gz", + "label": "KiTS-00120/mask.nii.gz", + "fold": 4 + }, + { + "image": "KiTS-00207/2_arterial.nii.gz", + "label": "KiTS-00207/mask.nii.gz", + "fold": 4 + }, + { + "image": "KiTS-00125/2_arterial.nii.gz", + "label": "KiTS-00125/mask.nii.gz", + "fold": 4 + }, + { + "image": "KiTS-00033/3_arterial.nii.gz", + "label": "KiTS-00033/mask.nii.gz", + "fold": 4 + }, + { + "image": "KiTS-00112/3_arterial.nii.gz", + "label": "KiTS-00112/mask.nii.gz", + "fold": 4 + }, + { + "image": "KiTS-00181/2_arterial.nii.gz", + "label": "KiTS-00181/mask.nii.gz", + "fold": 4 + }, + { + "image": "KiTS-00056/2_arterial.nii.gz", + "label": "KiTS-00056/mask.nii.gz", + "fold": 4 + }, + { + "image": "KiTS-00111/2_arterial.nii.gz", + "label": "KiTS-00111/mask.nii.gz", + "fold": 4 + }, + { + "image": "KiTS-00162/3_arterial.nii.gz", + "label": "KiTS-00162/mask.nii.gz", + "fold": 4 + }, + { + "image": "KiTS-00144/2_arterial.nii.gz", + "label": "KiTS-00144/mask.nii.gz", + "fold": 4 + }, + { + "image": "KiTS-00043/3_arterial.nii.gz", + "label": "KiTS-00043/mask.nii.gz", + "fold": 4 + }, + { + "image": "KiTS-00096/7_arterial.nii.gz", + "label": "KiTS-00096/mask.nii.gz", + "fold": 4 + }, + { + "image": "KiTS-00076/6_arterial.nii.gz", + "label": "KiTS-00076/mask.nii.gz", + "fold": 4 + }, + { + "image": "KiTS-00185/6_arterial.nii.gz", + "label": "KiTS-00185/mask.nii.gz", + "fold": 4 + }, + { + "image": "KiTS-00065/5_arterial.nii.gz", + "label": "KiTS-00065/mask.nii.gz", + "fold": 4 + }, + { + "image": "KiTS-00062/2_arterial.nii.gz", + "label": "KiTS-00062/mask.nii.gz", + "fold": 4 + }, + { + "image": "KiTS-00163/3_arterial.nii.gz", + "label": "KiTS-00163/mask.nii.gz", + "fold": 4 + }, + { + "image": "KiTS-00176/3_arterial.nii.gz", + "label": "KiTS-00176/mask.nii.gz", + "fold": 4 + }, + { + "image": "KiTS-00161/5_arterial.nii.gz", + "label": "KiTS-00161/mask.nii.gz", + "fold": 4 + }, + { + "image": "KiTS-00101/6_arterial.nii.gz", + "label": "KiTS-00101/mask.nii.gz", + "fold": 4 + }, + { + "image": "KiTS-00028/2_arterial.nii.gz", + "label": "KiTS-00028/mask.nii.gz", + "fold": 4 + }, + { + "image": "KiTS-00009/5_arterial.nii.gz", + "label": "KiTS-00009/mask.nii.gz", + "fold": 4 + }, + { + "image": "KiTS-00199/2_arterial.nii.gz", + "label": "KiTS-00199/mask.nii.gz", + "fold": 4 + }, + { + "image": "KiTS-00143/2_arterial.nii.gz", + "label": "KiTS-00143/mask.nii.gz", + "fold": 4 + } + ], + "testing": [ + { + "image": "KiTS-00002/10_arterial.nii.gz", + "label": "KiTS-00002/mask.nii.gz" + }, + { + "image": "KiTS-00003/7_arterial.nii.gz", + "label": "KiTS-00003/mask.nii.gz" + }, + { + "image": "KiTS-00133/2_arterial.nii.gz", + "label": "KiTS-00133/mask.nii.gz" + }, + { + "image": "KiTS-00052/7_arterial.nii.gz", + "label": "KiTS-00052/mask.nii.gz" + }, + { + "image": "KiTS-00136/8_arterial.nii.gz", + "label": "KiTS-00136/mask.nii.gz" + }, + { + "image": "KiTS-00180/5_arterial.nii.gz", + "label": "KiTS-00180/mask.nii.gz" + }, + { + "image": "KiTS-00126/2_arterial.nii.gz", + "label": "KiTS-00126/mask.nii.gz" + }, + { + "image": "KiTS-00102/7_arterial.nii.gz", + "label": "KiTS-00102/mask.nii.gz" + }, + { + "image": "KiTS-00072/2_arterial.nii.gz", + "label": "KiTS-00072/mask.nii.gz" + }, + { + "image": "KiTS-00138/301_arterial.nii.gz", + "label": "KiTS-00138/mask.nii.gz" + }, + { + "image": "KiTS-00090/5_arterial.nii.gz", + "label": "KiTS-00090/mask.nii.gz" + }, + { + "image": "KiTS-00147/6_arterial.nii.gz", + "label": "KiTS-00147/mask.nii.gz" + }, + { + "image": "KiTS-00135/8_arterial.nii.gz", + "label": "KiTS-00135/mask.nii.gz" + }, + { + "image": "KiTS-00109/3_arterial.nii.gz", + "label": "KiTS-00109/mask.nii.gz" + }, + { + "image": "KiTS-00190/2_arterial.nii.gz", + "label": "KiTS-00190/mask.nii.gz" + }, + { + "image": "KiTS-00183/8_arterial.nii.gz", + "label": "KiTS-00183/mask.nii.gz" + }, + { + "image": "KiTS-00107/2_arterial.nii.gz", + "label": "KiTS-00107/mask.nii.gz" + }, + { + "image": "KiTS-00082/2_arterial.nii.gz", + "label": "KiTS-00082/mask.nii.gz" + }, + { + "image": "KiTS-00014/3_arterial.nii.gz", + "label": "KiTS-00014/mask.nii.gz" + }, + { + "image": "KiTS-00146/6_arterial.nii.gz", + "label": "KiTS-00146/mask.nii.gz" + }, + { + "image": "KiTS-00034/3_arterial.nii.gz", + "label": "KiTS-00034/mask.nii.gz" + }, + { + "image": "KiTS-00158/6_arterial.nii.gz", + "label": "KiTS-00158/mask.nii.gz" + }, + { + "image": "KiTS-00209/2_arterial.nii.gz", + "label": "KiTS-00209/mask.nii.gz" + }, + { + "image": "KiTS-00058/2_arterial.nii.gz", + "label": "KiTS-00058/mask.nii.gz" + }, + { + "image": "KiTS-00054/2_arterial.nii.gz", + "label": "KiTS-00054/mask.nii.gz" + }, + { + "image": "KiTS-00106/2_arterial.nii.gz", + "label": "KiTS-00106/mask.nii.gz" + }, + { + "image": "KiTS-00169/4_arterial.nii.gz", + "label": "KiTS-00169/mask.nii.gz" + }, + { + "image": "KiTS-00184/2_arterial.nii.gz", + "label": "KiTS-00184/mask.nii.gz" + }, + { + "image": "KiTS-00025/3_arterial.nii.gz", + "label": "KiTS-00025/mask.nii.gz" + }, + { + "image": "KiTS-00201/3_arterial.nii.gz", + "label": "KiTS-00201/mask.nii.gz" + }, + { + "image": "KiTS-00145/4_arterial_soft.nii.gz", + "label": "KiTS-00145/mask.nii.gz" + }, + { + "image": "KiTS-00017/2_arterial.nii.gz", + "label": "KiTS-00017/mask.nii.gz" + }, + { + "image": "KiTS-00086/4_arterial.nii.gz", + "label": "KiTS-00086/mask.nii.gz" + }, + { + "image": "KiTS-00182/2_arterial.nii.gz", + "label": "KiTS-00182/mask.nii.gz" + }, + { + "image": "KiTS-00170/4_arterial.nii.gz", + "label": "KiTS-00170/mask.nii.gz" + }, + { + "image": "KiTS-00027/8_arterial.nii.gz", + "label": "KiTS-00027/mask.nii.gz" + }, + { + "image": "KiTS-00119/2_arterial.nii.gz", + "label": "KiTS-00119/mask.nii.gz" + }, + { + "image": "KiTS-00171/2_arterial.nii.gz", + "label": "KiTS-00171/mask.nii.gz" + }, + { + "image": "KiTS-00174/5_arterial.nii.gz", + "label": "KiTS-00174/mask.nii.gz" + }, + { + "image": "KiTS-00173/2_arterial.nii.gz", + "label": "KiTS-00173/mask.nii.gz" + }, + { + "image": "KiTS-00095/6_arterial.nii.gz", + "label": "KiTS-00095/mask.nii.gz" + }, + { + "image": "KiTS-00021/6_arterial.nii.gz", + "label": "KiTS-00021/mask.nii.gz" + } + ], + "label_dict": { + "1": "kidney", + "2": "kidney mass" + }, + "original_label_dict": { + "1": "Kidney", + "2": "Mass" + } +} diff --git a/vista3d/data/external/HCC-TACE-Seg_5_folds.json b/vista3d/data/external/HCC-TACE-Seg_5_folds.json new file mode 100644 index 0000000..73e65c4 --- /dev/null +++ b/vista3d/data/external/HCC-TACE-Seg_5_folds.json @@ -0,0 +1,516 @@ +{ + "training": [ + { + "image": "HCC_076-HCC_076/6-Recon_3_LIVER_2_PHASE_(C_A_P)_6.nii.gz", + "label": "HCC_076-HCC_076/seg__fix.nii.gz", + "fold": 0 + }, + { + "image": "HCC_020-HCC_020/5-Recon_3_LIVER_3_PHASE_(C_A_P)_5.nii.gz", + "label": "HCC_020-HCC_020/seg__fix.nii.gz", + "fold": 0 + }, + { + "image": "HCC_041-HCC_041/6-Recon_3_LIVER_3_PHASE_(C_A_P)_6.nii.gz", + "label": "HCC_041-HCC_041/seg__fix.nii.gz", + "fold": 0 + }, + { + "image": "HCC_003-HCC_003/0_img.nii.gz", + "label": "HCC_003-HCC_003/seg__fix.nii.gz", + "fold": 0 + }, + { + "image": "HCC_069-HCC_069/7-Recon_3_LIVER_2_PHASE_(C_A_P)_7.nii.gz", + "label": "HCC_069-HCC_069/seg__fix.nii.gz", + "fold": 0 + }, + { + "image": "HCC_039-HCC_039/5-Recon_2_3_PHASE_LIVER_(ABD)_5.nii.gz", + "label": "HCC_039-HCC_039/seg__fix.nii.gz", + "fold": 0 + }, + { + "image": "HCC_092-HCC_092/0_img.nii.gz", + "label": "HCC_092-HCC_092/seg__fix.nii.gz", + "fold": 0 + }, + { + "image": "HCC_083-HCC_083/6-Recon_3_LIVER_2_PHASE_(C_A_P)_6.nii.gz", + "label": "HCC_083-HCC_083/seg__fix.nii.gz", + "fold": 0 + }, + { + "image": "HCC_021-HCC_021/103-LIVER_3_PHASE_(AP)_103.nii.gz", + "label": "HCC_021-HCC_021/seg__fix.nii.gz", + "fold": 0 + }, + { + "image": "HCC_017-HCC_017/5-Recon_3_3_PHASE_LIVER_(ABD)_5.nii.gz", + "label": "HCC_017-HCC_017/seg__fix.nii.gz", + "fold": 0 + }, + { + "image": "HCC_034-HCC_034/5-Recon_3_LIVER_3_PHASE_(AP)_5.nii.gz", + "label": "HCC_034-HCC_034/seg__fix.nii.gz", + "fold": 0 + }, + { + "image": "HCC_014-HCC_014/103-LIVER_3_PHASE_(AP)_103.nii.gz", + "label": "HCC_014-HCC_014/seg__fix.nii.gz", + "fold": 0 + }, + { + "image": "HCC_015-HCC_015/4-Recon_2_LIVER_3_PHASE_(AP)_4.nii.gz", + "label": "HCC_015-HCC_015/seg__fix.nii.gz", + "fold": 0 + }, + { + "image": "HCC_088-HCC_088/6-Recon_3_LIVER_2_PHASE_(C_A_P)_6.nii.gz", + "label": "HCC_088-HCC_088/seg__fix.nii.gz", + "fold": 0 + }, + { + "image": "HCC_072-HCC_072/6-Recon_3_LIVER_2PHASE_CAP_6.nii.gz", + "label": "HCC_072-HCC_072/seg__fix.nii.gz", + "fold": 0 + }, + { + "image": "HCC_097-HCC_097/5-2.5_STANDARD_5_Eq_1.nii.gz", + "label": "HCC_097-HCC_097/seg__fix.nii.gz", + "fold": 0 + }, + { + "image": "HCC_010-HCC_010/0_img.nii.gz", + "label": "HCC_010-HCC_010/seg__fix.nii.gz", + "fold": 0 + }, + { + "image": "HCC_001-HCC_001/3-C-A-P_3_Eq_1.nii.gz", + "label": "HCC_001-HCC_001/seg__fix.nii.gz", + "fold": 1 + }, + { + "image": "HCC_084-HCC_084/6-Recon_3_LIVER_2PHASE_CAP_6.nii.gz", + "label": "HCC_084-HCC_084/seg__fix.nii.gz", + "fold": 1 + }, + { + "image": "HCC_011-HCC_011/4_Recon.nii.gz", + "label": "HCC_011-HCC_011/seg__fix.nii.gz", + "fold": 1 + }, + { + "image": "HCC_051-HCC_051/6-Recon_3_LIVER_2PHASE_WITH_CON_6.nii.gz", + "label": "HCC_051-HCC_051/seg__fix.nii.gz", + "fold": 1 + }, + { + "image": "HCC_019-HCC_019/103-LIVER_3_PHASE_(AP)_103.nii.gz", + "label": "HCC_019-HCC_019/seg__fix.nii.gz", + "fold": 1 + }, + { + "image": "HCC_048-HCC_048/6-Recon_3_LIVER_2_PHASE_(C_A_P)_6.nii.gz", + "label": "HCC_048-HCC_048/seg__fix.nii.gz", + "fold": 1 + }, + { + "image": "HCC_090-HCC_090/6-Recon_3_LIVER_2_PHASE_(C_A_P)_6.nii.gz", + "label": "HCC_090-HCC_090/seg__fix.nii.gz", + "fold": 1 + }, + { + "image": "HCC_013-HCC_013/5-Recon_3_LIVER_3_PHASE_(AP)_5.nii.gz", + "label": "HCC_013-HCC_013/seg__fix.nii.gz", + "fold": 1 + }, + { + "image": "HCC_070-HCC_070/6-Recon_3_LIVER_2_PHASE_(C_A_P)_6.nii.gz", + "label": "HCC_070-HCC_070/seg__fix.nii.gz", + "fold": 1 + }, + { + "image": "HCC_009-HCC_009/4-Recon_2_LIVER_3_PHASE_(C_A_P)_4.nii.gz", + "label": "HCC_009-HCC_009/seg__fix.nii.gz", + "fold": 1 + }, + { + "image": "HCC_025-HCC_025/5-Recon_3_LIVER_3_PHASE_(AP)_5.nii.gz", + "label": "HCC_025-HCC_025/seg__fix.nii.gz", + "fold": 1 + }, + { + "image": "HCC_079-HCC_079/6-Recon_3_LIVER_2_PHASE_(C_A_P)_6.nii.gz", + "label": "HCC_079-HCC_079/seg__fix.nii.gz", + "fold": 1 + }, + { + "image": "HCC_040-HCC_040/5-Recon_3_LIVER_3_PHASE_(C_A_P)_5.nii.gz", + "label": "HCC_040-HCC_040/seg__fix.nii.gz", + "fold": 1 + }, + { + "image": "HCC_071-HCC_071/6-Recon_3_LIVER_2PHASE_CAP_6.nii.gz", + "label": "HCC_071-HCC_071/seg__fix.nii.gz", + "fold": 1 + }, + { + "image": "HCC_068-HCC_068/6-2.5_SOFT_6_Eq_1.nii.gz", + "label": "HCC_068-HCC_068/seg__fix.nii.gz", + "fold": 1 + }, + { + "image": "HCC_101-HCC_101/6-2.5_STANDARD_6_Eq_1.nii.gz", + "label": "HCC_101-HCC_101/seg__fix.nii.gz", + "fold": 1 + }, + { + "image": "HCC_066-HCC_066/6-Recon_3_LIVER_2PHASE_CAP_6.nii.gz", + "label": "HCC_066-HCC_066/seg__fix.nii.gz", + "fold": 1 + }, + { + "image": "HCC_077-HCC_077/6-Recon_3_LIVER_2PHASE_CAP_6.nii.gz", + "label": "HCC_077-HCC_077/seg__fix.nii.gz", + "fold": 2 + }, + { + "image": "HCC_037-HCC_037/6-Recon_3_LIVER_3_PHASE_(C_A_P)_6.nii.gz", + "label": "HCC_037-HCC_037/seg__fix.nii.gz", + "fold": 2 + }, + { + "image": "HCC_063-HCC_063/6-Recon_3_LIVER_2_PHASE_(C_A_P)_6.nii.gz", + "label": "HCC_063-HCC_063/seg__fix.nii.gz", + "fold": 2 + }, + { + "image": "HCC_036-HCC_036/5-Recon_3_LIVER_3_PHASE_(C_A_P)_5.nii.gz", + "label": "HCC_036-HCC_036/seg__fix.nii.gz", + "fold": 2 + }, + { + "image": "HCC_073-HCC_073/6-Recon_3_LIVER_2_PHASE_(C_A_P)_6.nii.gz", + "label": "HCC_073-HCC_073/seg__fix.nii.gz", + "fold": 2 + }, + { + "image": "HCC_033-HCC_033/5-Recon_3_LIVER_3_PHASE_(C_A_P)_5.nii.gz", + "label": "HCC_033-HCC_033/seg__fix.nii.gz", + "fold": 2 + }, + { + "image": "HCC_007-HCC_007/0_img.nii.gz", + "label": "HCC_007-HCC_007/seg__fix.nii.gz", + "fold": 2 + }, + { + "image": "HCC_061-HCC_061/6-Recon_3_LIVER_2PHASE_CAP_6.nii.gz", + "label": "HCC_061-HCC_061/seg__fix.nii.gz", + "fold": 2 + }, + { + "image": "HCC_099-HCC_099/6-2.5_STANDARD_6_Eq_1.nii.gz", + "label": "HCC_099-HCC_099/seg__fix.nii.gz", + "fold": 2 + }, + { + "image": "HCC_089-HCC_089/6-Recon_3_LIVER_2PHASE_CAP_6.nii.gz", + "label": "HCC_089-HCC_089/seg__fix.nii.gz", + "fold": 2 + }, + { + "image": "HCC_074-HCC_074/6-Recon_3_LIVER_2PHASE_CAP_6.nii.gz", + "label": "HCC_074-HCC_074/seg__fix.nii.gz", + "fold": 2 + }, + { + "image": "HCC_006-HCC_006/4-Recon_2_LIVER_3_PHASE_(AP)_4.nii.gz", + "label": "HCC_006-HCC_006/seg__fix.nii.gz", + "fold": 2 + }, + { + "image": "HCC_038-HCC_038/6-Recon_3_LIVER_3_PHASE_(C_A_P)_6.nii.gz", + "label": "HCC_038-HCC_038/seg__fix.nii.gz", + "fold": 2 + }, + { + "image": "HCC_012-HCC_012/5-Recon_2_LIVER_3_PHASE_(C_A_P)_5.nii.gz", + "label": "HCC_012-HCC_012/seg__fix.nii.gz", + "fold": 2 + }, + { + "image": "HCC_016-HCC_016/4-Recon_2_LIVER_3_PHASE_(AP)_4.nii.gz", + "label": "HCC_016-HCC_016/seg__fix.nii.gz", + "fold": 2 + }, + { + "image": "HCC_054-HCC_054/11-C-A-P_11.nii.gz", + "label": "HCC_054-HCC_054/seg__fix.nii.gz", + "fold": 2 + }, + { + "image": "HCC_030-HCC_030/0_img.nii.gz", + "label": "HCC_030-HCC_030/seg__fix.nii.gz", + "fold": 2 + }, + { + "image": "HCC_078-HCC_078/6-Recon_3_LIVER_2PHASE_CAP_6.nii.gz", + "label": "HCC_078-HCC_078/seg__fix.nii.gz", + "fold": 3 + }, + { + "image": "HCC_045-HCC_045/6-Recon_3_LIVER_2_PHASE_(C_A_P)_6.nii.gz", + "label": "HCC_045-HCC_045/seg__fix.nii.gz", + "fold": 3 + }, + { + "image": "HCC_085-HCC_085/6-Recon_3_LIVER_2PHASE_CAP_6_Eq_1.nii.gz", + "label": "HCC_085-HCC_085/seg__fix.nii.gz", + "fold": 3 + }, + { + "image": "HCC_004-HCC_004/4-Recon_2_LIVER_3_PHASE_(AP)_4.nii.gz", + "label": "HCC_004-HCC_004/seg__fix.nii.gz", + "fold": 3 + }, + { + "image": "HCC_093-HCC_093/0_img.nii.gz", + "label": "HCC_093-HCC_093/seg__fix.nii.gz", + "fold": 3 + }, + { + "image": "HCC_049-HCC_049/6-Recon_3_LIVER_2_PHASE_(C_A_P)_6.nii.gz", + "label": "HCC_049-HCC_049/seg__fix.nii.gz", + "fold": 3 + }, + { + "image": "HCC_002-HCC_002/0_img.nii.gz", + "label": "HCC_002-HCC_002/seg__fix.nii.gz", + "fold": 3 + }, + { + "image": "HCC_024-HCC_024/103-LIVER_3_PHASE_(AP)_103.nii.gz", + "label": "HCC_024-HCC_024/seg__fix.nii.gz", + "fold": 3 + }, + { + "image": "HCC_052-HCC_052/6-Recon_3_LIVER_3_PHASE_(AP)_6.nii.gz", + "label": "HCC_052-HCC_052/seg__fix.nii.gz", + "fold": 3 + }, + { + "image": "HCC_027-HCC_027/100_100.nii.gz", + "label": "HCC_027-HCC_027/seg__fix.nii.gz", + "fold": 3 + }, + { + "image": "HCC_086-HCC_086/6-Recon_3_LIVER_2_PHASE_(C_A_P)_6.nii.gz", + "label": "HCC_086-HCC_086/seg__fix.nii.gz", + "fold": 3 + }, + { + "image": "HCC_081-HCC_081/6-Recon_3_LIVER_2_PHASE_(C_A_P)_6.nii.gz", + "label": "HCC_081-HCC_081/seg__fix.nii.gz", + "fold": 3 + }, + { + "image": "HCC_065-HCC_065/7-VENOUS_7.nii.gz", + "label": "HCC_065-HCC_065/seg__fix.nii.gz", + "fold": 3 + }, + { + "image": "HCC_035-HCC_035/6-Recon_3_LIVER_2_PHASE_(C_A_P)_6.nii.gz", + "label": "HCC_035-HCC_035/seg__fix.nii.gz", + "fold": 3 + }, + { + "image": "HCC_060-HCC_060/6-Recon_3_LIVER_2PHASE_CAP_6.nii.gz", + "label": "HCC_060-HCC_060/seg__fix.nii.gz", + "fold": 3 + }, + { + "image": "HCC_062-HCC_062/6-Recon_3_LIVER_2_PHASE_(C_A_P)_6.nii.gz", + "label": "HCC_062-HCC_062/seg__fix.nii.gz", + "fold": 3 + }, + { + "image": "HCC_067-HCC_067/6-Recon_3_LIVER_2_PHASE_(C_A_P)_6.nii.gz", + "label": "HCC_067-HCC_067/seg__fix.nii.gz", + "fold": 3 + }, + { + "image": "HCC_080-HCC_080/6-Recon_3_LIVER_2PHASE_CAP_6.nii.gz", + "label": "HCC_080-HCC_080/seg__fix.nii.gz", + "fold": 4 + }, + { + "image": "HCC_008-HCC_008/103_3_PHASE_LIVER.nii.gz", + "label": "HCC_008-HCC_008/seg__fix.nii.gz", + "fold": 4 + }, + { + "image": "HCC_023-HCC_023/6-Recon_3_LIVER_3_PHASE_(C_A_P)_6.nii.gz", + "label": "HCC_023-HCC_023/seg__fix.nii.gz", + "fold": 4 + }, + { + "image": "HCC_058-HCC_058/6-Recon_3_LIVER_3_PHASE_(AP)_6.nii.gz", + "label": "HCC_058-HCC_058/seg__fix.nii.gz", + "fold": 4 + }, + { + "image": "HCC_005-HCC_005/4-Recon_2_LIVER_3_PHASE_(AP)_4.nii.gz", + "label": "HCC_005-HCC_005/seg__fix.nii.gz", + "fold": 4 + }, + { + "image": "HCC_095-HCC_095/3-2.5_SOFT_3.nii.gz", + "label": "HCC_095-HCC_095/seg__fix.nii.gz", + "fold": 4 + }, + { + "image": "HCC_103-HCC_103/6-2.5_STANDARD_6_Eq_1.nii.gz", + "label": "HCC_103-HCC_103/seg__fix.nii.gz", + "fold": 4 + }, + { + "image": "HCC_064-HCC_064/6-Recon_3_LIVER_2_PHASE_(C_A_P)_6.nii.gz", + "label": "HCC_064-HCC_064/seg__fix.nii.gz", + "fold": 4 + }, + { + "image": "HCC_050-HCC_050/6-Recon_3_LIVER_2PHASE_CAP_6.nii.gz", + "label": "HCC_050-HCC_050/seg__fix.nii.gz", + "fold": 4 + }, + { + "image": "HCC_029-HCC_029/5-Recon_3_LIVER_3_PHASE_(C_A_P)_5.nii.gz", + "label": "HCC_029-HCC_029/seg__fix.nii.gz", + "fold": 4 + }, + { + "image": "HCC_053-HCC_053/6-Recon_3_LIVER_2_PHASE_(C_A_P)_6.nii.gz", + "label": "HCC_053-HCC_053/seg__fix.nii.gz", + "fold": 4 + }, + { + "image": "HCC_032-HCC_032/5-Recon_3_LIVER_3_PHASE_(C_A_P)_5.nii.gz", + "label": "HCC_032-HCC_032/seg__fix.nii.gz", + "fold": 4 + }, + { + "image": "HCC_100-HCC_100/0_img.nii.gz", + "label": "HCC_100-HCC_100/seg__fix.nii.gz", + "fold": 4 + }, + { + "image": "HCC_091-HCC_091/7-2.5_STANDARD_7_Eq_1.nii.gz", + "label": "HCC_091-HCC_091/seg__fix.nii.gz", + "fold": 4 + }, + { + "image": "HCC_056-HCC_056/6-Recon_3_LIVER_3_PHASE_(AP)_6.nii.gz", + "label": "HCC_056-HCC_056/seg__fix.nii.gz", + "fold": 4 + }, + { + "image": "HCC_102-HCC_102/0_img.nii.gz", + "label": "HCC_102-HCC_102/seg__fix.nii.gz", + "fold": 4 + } + ], + "testing": [ + { + "image": "HCC_082-HCC_082/6-Recon_3_LIVER_2_PHASE_(C_A_P)_6_Eq_1.nii.gz", + "label": "HCC_082-HCC_082/seg__fix.nii.gz" + }, + { + "image": "HCC_031-HCC_031/5-Recon_3_LIVER_3_PHASE_(AP)_5.nii.gz", + "label": "HCC_031-HCC_031/seg__fix.nii.gz" + }, + { + "image": "HCC_105-HCC_105/0_img.nii.gz", + "label": "HCC_105-HCC_105/seg__fix.nii.gz" + }, + { + "image": "HCC_059-HCC_059/6-Recon_3_LIVER_2PHASE_CAP_6.nii.gz", + "label": "HCC_059-HCC_059/seg__fix.nii.gz" + }, + { + "image": "HCC_094-HCC_094/5-2.5_STANDARD_5_Eq_1.nii.gz", + "label": "HCC_094-HCC_094/seg__fix.nii.gz" + }, + { + "image": "HCC_042-HCC_042/7-Recon_3_LIVER_3_PHASE_(AP)_7.nii.gz", + "label": "HCC_042-HCC_042/seg__fix.nii.gz" + }, + { + "image": "HCC_057-HCC_057/6-Recon_3_LIVER_2PHASE_WITH_CON_6.nii.gz", + "label": "HCC_057-HCC_057/seg__fix.nii.gz" + }, + { + "image": "HCC_026-HCC_026/6-Recon_3_LIVER_3_PHASE_(C_A_P)_6.nii.gz", + "label": "HCC_026-HCC_026/seg__fix.nii.gz" + }, + { + "image": "HCC_075-HCC_075/6-Recon_3_LIVER_2_PHASE_(C_A_P)_6.nii.gz", + "label": "HCC_075-HCC_075/seg__fix.nii.gz" + }, + { + "image": "HCC_098-HCC_098/7-Recon_3_LIVER_2PHASE_CAP_7.nii.gz", + "label": "HCC_098-HCC_098/seg__fix.nii.gz" + }, + { + "image": "HCC_104-HCC_104/0_img.nii.gz", + "label": "HCC_104-HCC_104/seg__fix.nii.gz" + }, + { + "image": "HCC_018-HCC_018/3-LIVER_3_PHASE_(C_A_P)_3.nii.gz", + "label": "HCC_018-HCC_018/seg__fix.nii.gz" + }, + { + "image": "HCC_087-HCC_087/6-Recon_3_LIVER_2_PHASE_(C_A_P)_6.nii.gz", + "label": "HCC_087-HCC_087/seg__fix.nii.gz" + }, + { + "image": "HCC_055-HCC_055/6-Recon_3_LIVER_2PHASE_CAP_6.nii.gz", + "label": "HCC_055-HCC_055/seg__fix.nii.gz" + }, + { + "image": "HCC_043-HCC_043/6-Recon_3_LIVER_3_PHASE_(AP)_6.nii.gz", + "label": "HCC_043-HCC_043/seg__fix.nii.gz" + }, + { + "image": "HCC_028-HCC_028/6-Recon_3_LIVER_3_PHASE_(AP)_6.nii.gz", + "label": "HCC_028-HCC_028/seg__fix.nii.gz" + }, + { + "image": "HCC_044-HCC_044/6-Recon_3_LIVER_3_PHASE_(C_A_P)_6.nii.gz", + "label": "HCC_044-HCC_044/seg__fix.nii.gz" + }, + { + "image": "HCC_047-HCC_047/6-Recon_3_LIVER_2PHASE_CAP_6.nii.gz", + "label": "HCC_047-HCC_047/seg__fix.nii.gz" + }, + { + "image": "HCC_046-HCC_046/6-Recon_3_LIVER_2_PHASE_(C_A_P)_6.nii.gz", + "label": "HCC_046-HCC_046/seg__fix.nii.gz" + }, + { + "image": "HCC_096-HCC_096/0_img.nii.gz", + "label": "HCC_096-HCC_096/seg__fix.nii.gz" + }, + { + "image": "HCC_022-HCC_022/5-Recon_3_LIVER_3_PHASE_(C_A_P)_5.nii.gz", + "label": "HCC_022-HCC_022/seg__fix.nii.gz" + } + ], + "label_dict": { + "2": "hepatic tumor" + }, + "original_label_dict": { + "2": "hepatic tumor" + } +} diff --git a/vista3d/data/external/WORD.json b/vista3d/data/external/WORD.json new file mode 100644 index 0000000..a475765 --- /dev/null +++ b/vista3d/data/external/WORD.json @@ -0,0 +1,725 @@ +{ + "name": "WORD-V0.1.0", + "description": "Whole abdomen ORgan segmentation Dataset (WORD), just for research use !!!", + "reference": "WORD: Revisiting Organs Segmentation in the Whole Abdominal Region, link:https://arxiv.org/pdf/2111.02403.pdf, https://github.com/HiLab-git/WORD", + "licence": "GNU General Public License v3.0", + "release": "v0.1.0 10/11/2021", + "tensorImageSize": "3D", + "modality": { + "0": "CT" + }, + "labels": { + "0": "background", + "1": "liver", + "2": "spleen", + "3": "left_kidney", + "4": "right_kidney", + "5": "stomach", + "6": "gallbladder", + "7": "esophagus", + "8": "pancreas", + "9": "duodenum", + "10": "colon", + "11": "intestine", + "12": "adrenal", + "13": "rectum", + "14": "bladder", + "15": "Head_of_femur_L", + "16": "Head_of_femur_R" + }, + "numTraining": 100, + "numValidation": 20, + "numTest": 30, + "training": [ + { + "image": "./imagesTr/word_0096.nii.gz", + "label": "./labelsTr/word_0096.nii.gz" + }, + { + "image": "./imagesTr/word_0010.nii.gz", + "label": "./labelsTr/word_0010.nii.gz" + }, + { + "image": "./imagesTr/word_0078.nii.gz", + "label": "./labelsTr/word_0078.nii.gz" + }, + { + "image": "./imagesTr/word_0109.nii.gz", + "label": "./labelsTr/word_0109.nii.gz" + }, + { + "image": "./imagesTr/word_0051.nii.gz", + "label": "./labelsTr/word_0051.nii.gz" + }, + { + "image": "./imagesTr/word_0067.nii.gz", + "label": "./labelsTr/word_0067.nii.gz" + }, + { + "image": "./imagesTr/word_0107.nii.gz", + "label": "./labelsTr/word_0107.nii.gz" + }, + { + "image": "./imagesTr/word_0105.nii.gz", + "label": "./labelsTr/word_0105.nii.gz" + }, + { + "image": "./imagesTr/word_0065.nii.gz", + "label": "./labelsTr/word_0065.nii.gz" + }, + { + "image": "./imagesTr/word_0144.nii.gz", + "label": "./labelsTr/word_0144.nii.gz" + }, + { + "image": "./imagesTr/word_0118.nii.gz", + "label": "./labelsTr/word_0118.nii.gz" + }, + { + "image": "./imagesTr/word_0140.nii.gz", + "label": "./labelsTr/word_0140.nii.gz" + }, + { + "image": "./imagesTr/word_0002.nii.gz", + "label": "./labelsTr/word_0002.nii.gz" + }, + { + "image": "./imagesTr/word_0091.nii.gz", + "label": "./labelsTr/word_0091.nii.gz" + }, + { + "image": "./imagesTr/word_0009.nii.gz", + "label": "./labelsTr/word_0009.nii.gz" + }, + { + "image": "./imagesTr/word_0100.nii.gz", + "label": "./labelsTr/word_0100.nii.gz" + }, + { + "image": "./imagesTr/word_0032.nii.gz", + "label": "./labelsTr/word_0032.nii.gz" + }, + { + "image": "./imagesTr/word_0040.nii.gz", + "label": "./labelsTr/word_0040.nii.gz" + }, + { + "image": "./imagesTr/word_0130.nii.gz", + "label": "./labelsTr/word_0130.nii.gz" + }, + { + "image": "./imagesTr/word_0101.nii.gz", + "label": "./labelsTr/word_0101.nii.gz" + }, + { + "image": "./imagesTr/word_0018.nii.gz", + "label": "./labelsTr/word_0018.nii.gz" + }, + { + "image": "./imagesTr/word_0090.nii.gz", + "label": "./labelsTr/word_0090.nii.gz" + }, + { + "image": "./imagesTr/word_0071.nii.gz", + "label": "./labelsTr/word_0071.nii.gz" + }, + { + "image": "./imagesTr/word_0042.nii.gz", + "label": "./labelsTr/word_0042.nii.gz" + }, + { + "image": "./imagesTr/word_0126.nii.gz", + "label": "./labelsTr/word_0126.nii.gz" + }, + { + "image": "./imagesTr/word_0135.nii.gz", + "label": "./labelsTr/word_0135.nii.gz" + }, + { + "image": "./imagesTr/word_0138.nii.gz", + "label": "./labelsTr/word_0138.nii.gz" + }, + { + "image": "./imagesTr/word_0116.nii.gz", + "label": "./labelsTr/word_0116.nii.gz" + }, + { + "image": "./imagesTr/word_0070.nii.gz", + "label": "./labelsTr/word_0070.nii.gz" + }, + { + "image": "./imagesTr/word_0084.nii.gz", + "label": "./labelsTr/word_0084.nii.gz" + }, + { + "image": "./imagesTr/word_0056.nii.gz", + "label": "./labelsTr/word_0056.nii.gz" + }, + { + "image": "./imagesTr/word_0148.nii.gz", + "label": "./labelsTr/word_0148.nii.gz" + }, + { + "image": "./imagesTr/word_0132.nii.gz", + "label": "./labelsTr/word_0132.nii.gz" + }, + { + "image": "./imagesTr/word_0102.nii.gz", + "label": "./labelsTr/word_0102.nii.gz" + }, + { + "image": "./imagesTr/word_0082.nii.gz", + "label": "./labelsTr/word_0082.nii.gz" + }, + { + "image": "./imagesTr/word_0062.nii.gz", + "label": "./labelsTr/word_0062.nii.gz" + }, + { + "image": "./imagesTr/word_0073.nii.gz", + "label": "./labelsTr/word_0073.nii.gz" + }, + { + "image": "./imagesTr/word_0046.nii.gz", + "label": "./labelsTr/word_0046.nii.gz" + }, + { + "image": "./imagesTr/word_0146.nii.gz", + "label": "./labelsTr/word_0146.nii.gz" + }, + { + "image": "./imagesTr/word_0113.nii.gz", + "label": "./labelsTr/word_0113.nii.gz" + }, + { + "image": "./imagesTr/word_0006.nii.gz", + "label": "./labelsTr/word_0006.nii.gz" + }, + { + "image": "./imagesTr/word_0127.nii.gz", + "label": "./labelsTr/word_0127.nii.gz" + }, + { + "image": "./imagesTr/word_0095.nii.gz", + "label": "./labelsTr/word_0095.nii.gz" + }, + { + "image": "./imagesTr/word_0058.nii.gz", + "label": "./labelsTr/word_0058.nii.gz" + }, + { + "image": "./imagesTr/word_0128.nii.gz", + "label": "./labelsTr/word_0128.nii.gz" + }, + { + "image": "./imagesTr/word_0111.nii.gz", + "label": "./labelsTr/word_0111.nii.gz" + }, + { + "image": "./imagesTr/word_0049.nii.gz", + "label": "./labelsTr/word_0049.nii.gz" + }, + { + "image": "./imagesTr/word_0029.nii.gz", + "label": "./labelsTr/word_0029.nii.gz" + }, + { + "image": "./imagesTr/word_0086.nii.gz", + "label": "./labelsTr/word_0086.nii.gz" + }, + { + "image": "./imagesTr/word_0123.nii.gz", + "label": "./labelsTr/word_0123.nii.gz" + }, + { + "image": "./imagesTr/word_0011.nii.gz", + "label": "./labelsTr/word_0011.nii.gz" + }, + { + "image": "./imagesTr/word_0005.nii.gz", + "label": "./labelsTr/word_0005.nii.gz" + }, + { + "image": "./imagesTr/word_0036.nii.gz", + "label": "./labelsTr/word_0036.nii.gz" + }, + { + "image": "./imagesTr/word_0114.nii.gz", + "label": "./labelsTr/word_0114.nii.gz" + }, + { + "image": "./imagesTr/word_0145.nii.gz", + "label": "./labelsTr/word_0145.nii.gz" + }, + { + "image": "./imagesTr/word_0136.nii.gz", + "label": "./labelsTr/word_0136.nii.gz" + }, + { + "image": "./imagesTr/word_0055.nii.gz", + "label": "./labelsTr/word_0055.nii.gz" + }, + { + "image": "./imagesTr/word_0047.nii.gz", + "label": "./labelsTr/word_0047.nii.gz" + }, + { + "image": "./imagesTr/word_0093.nii.gz", + "label": "./labelsTr/word_0093.nii.gz" + }, + { + "image": "./imagesTr/word_0026.nii.gz", + "label": "./labelsTr/word_0026.nii.gz" + }, + { + "image": "./imagesTr/word_0044.nii.gz", + "label": "./labelsTr/word_0044.nii.gz" + }, + { + "image": "./imagesTr/word_0061.nii.gz", + "label": "./labelsTr/word_0061.nii.gz" + }, + { + "image": "./imagesTr/word_0125.nii.gz", + "label": "./labelsTr/word_0125.nii.gz" + }, + { + "image": "./imagesTr/word_0064.nii.gz", + "label": "./labelsTr/word_0064.nii.gz" + }, + { + "image": "./imagesTr/word_0087.nii.gz", + "label": "./labelsTr/word_0087.nii.gz" + }, + { + "image": "./imagesTr/word_0013.nii.gz", + "label": "./labelsTr/word_0013.nii.gz" + }, + { + "image": "./imagesTr/word_0104.nii.gz", + "label": "./labelsTr/word_0104.nii.gz" + }, + { + "image": "./imagesTr/word_0008.nii.gz", + "label": "./labelsTr/word_0008.nii.gz" + }, + { + "image": "./imagesTr/word_0079.nii.gz", + "label": "./labelsTr/word_0079.nii.gz" + }, + { + "image": "./imagesTr/word_0030.nii.gz", + "label": "./labelsTr/word_0030.nii.gz" + }, + { + "image": "./imagesTr/word_0094.nii.gz", + "label": "./labelsTr/word_0094.nii.gz" + }, + { + "image": "./imagesTr/word_0022.nii.gz", + "label": "./labelsTr/word_0022.nii.gz" + }, + { + "image": "./imagesTr/word_0134.nii.gz", + "label": "./labelsTr/word_0134.nii.gz" + }, + { + "image": "./imagesTr/word_0063.nii.gz", + "label": "./labelsTr/word_0063.nii.gz" + }, + { + "image": "./imagesTr/word_0117.nii.gz", + "label": "./labelsTr/word_0117.nii.gz" + }, + { + "image": "./imagesTr/word_0142.nii.gz", + "label": "./labelsTr/word_0142.nii.gz" + }, + { + "image": "./imagesTr/word_0081.nii.gz", + "label": "./labelsTr/word_0081.nii.gz" + }, + { + "image": "./imagesTr/word_0053.nii.gz", + "label": "./labelsTr/word_0053.nii.gz" + }, + { + "image": "./imagesTr/word_0106.nii.gz", + "label": "./labelsTr/word_0106.nii.gz" + }, + { + "image": "./imagesTr/word_0003.nii.gz", + "label": "./labelsTr/word_0003.nii.gz" + }, + { + "image": "./imagesTr/word_0072.nii.gz", + "label": "./labelsTr/word_0072.nii.gz" + }, + { + "image": "./imagesTr/word_0119.nii.gz", + "label": "./labelsTr/word_0119.nii.gz" + }, + { + "image": "./imagesTr/word_0068.nii.gz", + "label": "./labelsTr/word_0068.nii.gz" + }, + { + "image": "./imagesTr/word_0027.nii.gz", + "label": "./labelsTr/word_0027.nii.gz" + }, + { + "image": "./imagesTr/word_0121.nii.gz", + "label": "./labelsTr/word_0121.nii.gz" + }, + { + "image": "./imagesTr/word_0147.nii.gz", + "label": "./labelsTr/word_0147.nii.gz" + }, + { + "image": "./imagesTr/word_0020.nii.gz", + "label": "./labelsTr/word_0020.nii.gz" + }, + { + "image": "./imagesTr/word_0133.nii.gz", + "label": "./labelsTr/word_0133.nii.gz" + }, + { + "image": "./imagesTr/word_0108.nii.gz", + "label": "./labelsTr/word_0108.nii.gz" + }, + { + "image": "./imagesTr/word_0004.nii.gz", + "label": "./labelsTr/word_0004.nii.gz" + }, + { + "image": "./imagesTr/word_0038.nii.gz", + "label": "./labelsTr/word_0038.nii.gz" + }, + { + "image": "./imagesTr/word_0089.nii.gz", + "label": "./labelsTr/word_0089.nii.gz" + }, + { + "image": "./imagesTr/word_0059.nii.gz", + "label": "./labelsTr/word_0059.nii.gz" + }, + { + "image": "./imagesTr/word_0041.nii.gz", + "label": "./labelsTr/word_0041.nii.gz" + }, + { + "image": "./imagesTr/word_0150.nii.gz", + "label": "./labelsTr/word_0150.nii.gz" + }, + { + "image": "./imagesTr/word_0122.nii.gz", + "label": "./labelsTr/word_0122.nii.gz" + }, + { + "image": "./imagesTr/word_0012.nii.gz", + "label": "./labelsTr/word_0012.nii.gz" + }, + { + "image": "./imagesTr/word_0115.nii.gz", + "label": "./labelsTr/word_0115.nii.gz" + }, + { + "image": "./imagesTr/word_0143.nii.gz", + "label": "./labelsTr/word_0143.nii.gz" + }, + { + "image": "./imagesTr/word_0028.nii.gz", + "label": "./labelsTr/word_0028.nii.gz" + } + ], + "validation": [ + { + "image": "imagesVal/word_0001.nii.gz", + "label": "labelsVal/word_0001.nii.gz" + }, + { + "image": "imagesVal/word_0007.nii.gz", + "label": "labelsVal/word_0007.nii.gz" + }, + { + "image": "imagesVal/word_0015.nii.gz", + "label": "labelsVal/word_0015.nii.gz" + }, + { + "image": "imagesVal/word_0025.nii.gz", + "label": "labelsVal/word_0025.nii.gz" + }, + { + "image": "imagesVal/word_0031.nii.gz", + "label": "labelsVal/word_0031.nii.gz" + }, + { + "image": "imagesVal/word_0035.nii.gz", + "label": "labelsVal/word_0035.nii.gz" + }, + { + "image": "imagesVal/word_0039.nii.gz", + "label": "labelsVal/word_0039.nii.gz" + }, + { + "image": "imagesVal/word_0045.nii.gz", + "label": "labelsVal/word_0045.nii.gz" + }, + { + "image": "imagesVal/word_0048.nii.gz", + "label": "labelsVal/word_0048.nii.gz" + }, + { + "image": "imagesVal/word_0066.nii.gz", + "label": "labelsVal/word_0066.nii.gz" + }, + { + "image": "imagesVal/word_0075.nii.gz", + "label": "labelsVal/word_0075.nii.gz" + }, + { + "image": "imagesVal/word_0080.nii.gz", + "label": "labelsVal/word_0080.nii.gz" + }, + { + "image": "imagesVal/word_0083.nii.gz", + "label": "labelsVal/word_0083.nii.gz" + }, + { + "image": "imagesVal/word_0085.nii.gz", + "label": "labelsVal/word_0085.nii.gz" + }, + { + "image": "imagesVal/word_0098.nii.gz", + "label": "labelsVal/word_0098.nii.gz" + }, + { + "image": "imagesVal/word_0112.nii.gz", + "label": "labelsVal/word_0112.nii.gz" + }, + { + "image": "imagesVal/word_0137.nii.gz", + "label": "labelsVal/word_0137.nii.gz" + }, + { + "image": "imagesVal/word_0139.nii.gz", + "label": "labelsVal/word_0139.nii.gz" + }, + { + "image": "imagesVal/word_0141.nii.gz", + "label": "labelsVal/word_0141.nii.gz" + }, + { + "image": "imagesVal/word_0149.nii.gz", + "label": "labelsVal/word_0149.nii.gz" + } + ], + "testing": [ + { + "image": "imagesTs/word_0014.nii.gz", + "label": "labelsTs/word_0014.nii.gz" + }, + { + "image": "imagesTs/word_0016.nii.gz", + "label": "labelsTs/word_0016.nii.gz" + }, + { + "image": "imagesTs/word_0017.nii.gz", + "label": "labelsTs/word_0017.nii.gz" + }, + { + "image": "imagesTs/word_0019.nii.gz", + "label": "labelsTs/word_0019.nii.gz" + }, + { + "image": "imagesTs/word_0021.nii.gz", + "label": "labelsTs/word_0021.nii.gz" + }, + { + "image": "imagesTs/word_0023.nii.gz", + "label": "labelsTs/word_0023.nii.gz" + }, + { + "image": "imagesTs/word_0024.nii.gz", + "label": "labelsTs/word_0024.nii.gz" + }, + { + "image": "imagesTs/word_0033.nii.gz", + "label": "labelsTs/word_0033.nii.gz" + }, + { + "image": "imagesTs/word_0034.nii.gz", + "label": "labelsTs/word_0034.nii.gz" + }, + { + "image": "imagesTs/word_0037.nii.gz", + "label": "labelsTs/word_0037.nii.gz" + }, + { + "image": "imagesTs/word_0043.nii.gz", + "label": "labelsTs/word_0043.nii.gz" + }, + { + "image": "imagesTs/word_0050.nii.gz", + "label": "labelsTs/word_0050.nii.gz" + }, + { + "image": "imagesTs/word_0052.nii.gz", + "label": "labelsTs/word_0052.nii.gz" + }, + { + "image": "imagesTs/word_0054.nii.gz", + "label": "labelsTs/word_0054.nii.gz" + }, + { + "image": "imagesTs/word_0057.nii.gz", + "label": "labelsTs/word_0057.nii.gz" + }, + { + "image": "imagesTs/word_0060.nii.gz", + "label": "labelsTs/word_0060.nii.gz" + }, + { + "image": "imagesTs/word_0069.nii.gz", + "label": "labelsTs/word_0069.nii.gz" + }, + { + "image": "imagesTs/word_0074.nii.gz", + "label": "labelsTs/word_0074.nii.gz" + }, + { + "image": "imagesTs/word_0076.nii.gz", + "label": "labelsTs/word_0076.nii.gz" + }, + { + "image": "imagesTs/word_0077.nii.gz", + "label": "labelsTs/word_0077.nii.gz" + }, + { + "image": "imagesTs/word_0088.nii.gz", + "label": "labelsTs/word_0088.nii.gz" + }, + { + "image": "imagesTs/word_0092.nii.gz", + "label": "labelsTs/word_0092.nii.gz" + }, + { + "image": "imagesTs/word_0097.nii.gz", + "label": "labelsTs/word_0097.nii.gz" + }, + { + "image": "imagesTs/word_0099.nii.gz", + "label": "labelsTs/word_0099.nii.gz" + }, + { + "image": "imagesTs/word_0103.nii.gz", + "label": "labelsTs/word_0103.nii.gz" + }, + { + "image": "imagesTs/word_0110.nii.gz", + "label": "labelsTs/word_0110.nii.gz" + }, + { + "image": "imagesTs/word_0120.nii.gz", + "label": "labelsTs/word_0120.nii.gz" + }, + { + "image": "imagesTs/word_0124.nii.gz", + "label": "labelsTs/word_0124.nii.gz" + }, + { + "image": "imagesTs/word_0129.nii.gz", + "label": "labelsTs/word_0129.nii.gz" + }, + { + "image": "imagesTs/word_0131.nii.gz", + "label": "labelsTs/word_0131.nii.gz" + } + ], + "addition_validation_from_LiTS": [ + "addition_validation_from_LiTS/imagesTs", + "addition_validation_from_LiTS/labelsTs" + ], + "lits_testing": [ + { + "image": "addition_validation_from_LiTS/imagesTs/liver_10_word_image.nii.gz", + "label": "addition_validation_from_LiTS/labelsTs/liver_10_word_label.nii.gz" + }, + { + "image": "addition_validation_from_LiTS/imagesTs/liver_11_word_image.nii.gz", + "label": "addition_validation_from_LiTS/labelsTs/liver_11_word_label.nii.gz" + }, + { + "image": "addition_validation_from_LiTS/imagesTs/liver_12_word_image.nii.gz", + "label": "addition_validation_from_LiTS/labelsTs/liver_12_word_label.nii.gz" + }, + { + "image": "addition_validation_from_LiTS/imagesTs/liver_17_word_image.nii.gz", + "label": "addition_validation_from_LiTS/labelsTs/liver_17_word_label.nii.gz" + }, + { + "image": "addition_validation_from_LiTS/imagesTs/liver_19_word_image.nii.gz", + "label": "addition_validation_from_LiTS/labelsTs/liver_19_word_label.nii.gz" + }, + { + "image": "addition_validation_from_LiTS/imagesTs/liver_20_word_image.nii.gz", + "label": "addition_validation_from_LiTS/labelsTs/liver_20_word_label.nii.gz" + }, + { + "image": "addition_validation_from_LiTS/imagesTs/liver_21_word_image.nii.gz", + "label": "addition_validation_from_LiTS/labelsTs/liver_21_word_label.nii.gz" + }, + { + "image": "addition_validation_from_LiTS/imagesTs/liver_23_word_image.nii.gz", + "label": "addition_validation_from_LiTS/labelsTs/liver_23_word_label.nii.gz" + }, + { + "image": "addition_validation_from_LiTS/imagesTs/liver_24_word_image.nii.gz", + "label": "addition_validation_from_LiTS/labelsTs/liver_24_word_label.nii.gz" + }, + { + "image": "addition_validation_from_LiTS/imagesTs/liver_25_word_image.nii.gz", + "label": "addition_validation_from_LiTS/labelsTs/liver_25_word_label.nii.gz" + }, + { + "image": "addition_validation_from_LiTS/imagesTs/liver_2_word_image.nii.gz", + "label": "addition_validation_from_LiTS/labelsTs/liver_2_word_label.nii.gz" + }, + { + "image": "addition_validation_from_LiTS/imagesTs/liver_3_word_image.nii.gz", + "label": "addition_validation_from_LiTS/labelsTs/liver_3_word_label.nii.gz" + }, + { + "image": "addition_validation_from_LiTS/imagesTs/liver_4_word_image.nii.gz", + "label": "addition_validation_from_LiTS/labelsTs/liver_4_word_label.nii.gz" + }, + { + "image": "addition_validation_from_LiTS/imagesTs/liver_57_word_image.nii.gz", + "label": "addition_validation_from_LiTS/labelsTs/liver_57_word_label.nii.gz" + }, + { + "image": "addition_validation_from_LiTS/imagesTs/liver_6_word_image.nii.gz", + "label": "addition_validation_from_LiTS/labelsTs/liver_6_word_label.nii.gz" + }, + { + "image": "addition_validation_from_LiTS/imagesTs/liver_70_word_image.nii.gz", + "label": "addition_validation_from_LiTS/labelsTs/liver_70_word_label.nii.gz" + }, + { + "image": "addition_validation_from_LiTS/imagesTs/liver_7_word_image.nii.gz", + "label": "addition_validation_from_LiTS/labelsTs/liver_7_word_label.nii.gz" + }, + { + "image": "addition_validation_from_LiTS/imagesTs/liver_81_word_image.nii.gz", + "label": "addition_validation_from_LiTS/labelsTs/liver_81_word_label.nii.gz" + }, + { + "image": "addition_validation_from_LiTS/imagesTs/liver_8_word_image.nii.gz", + "label": "addition_validation_from_LiTS/labelsTs/liver_8_word_label.nii.gz" + }, + { + "image": "addition_validation_from_LiTS/imagesTs/liver_9_word_image.nii.gz", + "label": "addition_validation_from_LiTS/labelsTs/liver_9_word_label.nii.gz" + } + ] +} diff --git a/vista3d/data/external/micro-ct-murine-native_5_folds.json b/vista3d/data/external/micro-ct-murine-native_5_folds.json new file mode 100644 index 0000000..e6feba2 --- /dev/null +++ b/vista3d/data/external/micro-ct-murine-native_5_folds.json @@ -0,0 +1,690 @@ +{ + "training": [ + { + "image": "M09_008h/CT140.nii.gz", + "label": "M09_008h/seg.nii.gz", + "fold": 0 + }, + { + "image": "M13_048h/CT140.nii.gz", + "label": "M13_048h/seg.nii.gz", + "fold": 0 + }, + { + "image": "M16_072h/CT140.nii.gz", + "label": "M16_072h/seg.nii.gz", + "fold": 0 + }, + { + "image": "M07_004h/CT140.nii.gz", + "label": "M07_004h/seg.nii.gz", + "fold": 0 + }, + { + "image": "M20_048h/CT140.nii.gz", + "label": "M20_048h/seg.nii.gz", + "fold": 0 + }, + { + "image": "M03_072h/CT140.nii.gz", + "label": "M03_072h/seg.nii.gz", + "fold": 0 + }, + { + "image": "M20_004h/CT140.nii.gz", + "label": "M20_004h/seg.nii.gz", + "fold": 0 + }, + { + "image": "M18_072h/CT140.nii.gz", + "label": "M18_072h/seg.nii.gz", + "fold": 0 + }, + { + "image": "M05_048h/CT140.nii.gz", + "label": "M05_048h/seg.nii.gz", + "fold": 0 + }, + { + "image": "M10_024h/CT140.nii.gz", + "label": "M10_024h/seg.nii.gz", + "fold": 0 + }, + { + "image": "M10_072h/CT140.nii.gz", + "label": "M10_072h/seg.nii.gz", + "fold": 0 + }, + { + "image": "M20_0.25h/CT140.nii.gz", + "label": "M20_0.25h/seg.nii.gz", + "fold": 0 + }, + { + "image": "M01_008h/CT140.nii.gz", + "label": "M01_008h/seg.nii.gz", + "fold": 0 + }, + { + "image": "M01_024h/CT140.nii.gz", + "label": "M01_024h/seg.nii.gz", + "fold": 0 + }, + { + "image": "M10_048h/CT140.nii.gz", + "label": "M10_048h/seg.nii.gz", + "fold": 0 + }, + { + "image": "M07_024h/CT140.nii.gz", + "label": "M07_024h/seg.nii.gz", + "fold": 0 + }, + { + "image": "M05_008h/CT140.nii.gz", + "label": "M05_008h/seg.nii.gz", + "fold": 0 + }, + { + "image": "M07_002h/CT140.nii.gz", + "label": "M07_002h/seg.nii.gz", + "fold": 0 + }, + { + "image": "M05_002h/CT140.nii.gz", + "label": "M05_002h/seg.nii.gz", + "fold": 0 + }, + { + "image": "M08_002h/CT140.nii.gz", + "label": "M08_002h/seg.nii.gz", + "fold": 0 + }, + { + "image": "M01_048h/CT140.nii.gz", + "label": "M01_048h/seg.nii.gz", + "fold": 0 + }, + { + "image": "M20_008h/CT140.nii.gz", + "label": "M20_008h/seg.nii.gz", + "fold": 0 + }, + { + "image": "M15_0.25h/CT140.nii.gz", + "label": "M15_0.25h/seg.nii.gz", + "fold": 0 + }, + { + "image": "M12_024h/CT140.nii.gz", + "label": "M12_024h/seg.nii.gz", + "fold": 1 + }, + { + "image": "M06_024h/CT140.nii.gz", + "label": "M06_024h/seg.nii.gz", + "fold": 1 + }, + { + "image": "M02_004h/CT140.nii.gz", + "label": "M02_004h/seg.nii.gz", + "fold": 1 + }, + { + "image": "M08_024h/CT140.nii.gz", + "label": "M08_024h/seg.nii.gz", + "fold": 1 + }, + { + "image": "M02_002h/CT140.nii.gz", + "label": "M02_002h/seg.nii.gz", + "fold": 1 + }, + { + "image": "M13_0.25h/CT140.nii.gz", + "label": "M13_0.25h/seg.nii.gz", + "fold": 1 + }, + { + "image": "M06_0.25h/CT140.nii.gz", + "label": "M06_0.25h/seg.nii.gz", + "fold": 1 + }, + { + "image": "M04_008h/CT140.nii.gz", + "label": "M04_008h/seg.nii.gz", + "fold": 1 + }, + { + "image": "M12_0.25h/CT140.nii.gz", + "label": "M12_0.25h/seg.nii.gz", + "fold": 1 + }, + { + "image": "M17_0.25h/CT140.nii.gz", + "label": "M17_0.25h/seg.nii.gz", + "fold": 1 + }, + { + "image": "M15_072h/CT140.nii.gz", + "label": "M15_072h/seg.nii.gz", + "fold": 1 + }, + { + "image": "M06_002h/CT140.nii.gz", + "label": "M06_002h/seg.nii.gz", + "fold": 1 + }, + { + "image": "M09_072h/CT140.nii.gz", + "label": "M09_072h/seg.nii.gz", + "fold": 1 + }, + { + "image": "M11_024h/CT140.nii.gz", + "label": "M11_024h/seg.nii.gz", + "fold": 1 + }, + { + "image": "M09_0.25h/CT140.nii.gz", + "label": "M09_0.25h/seg.nii.gz", + "fold": 1 + }, + { + "image": "M14_004h/CT140.nii.gz", + "label": "M14_004h/seg.nii.gz", + "fold": 1 + }, + { + "image": "M03_002h/CT140.nii.gz", + "label": "M03_002h/seg.nii.gz", + "fold": 1 + }, + { + "image": "M20_024h/CT140.nii.gz", + "label": "M20_024h/seg.nii.gz", + "fold": 1 + }, + { + "image": "M02_072h/CT140.nii.gz", + "label": "M02_072h/seg.nii.gz", + "fold": 1 + }, + { + "image": "M04_004h/CT140.nii.gz", + "label": "M04_004h/seg.nii.gz", + "fold": 1 + }, + { + "image": "M01_004h/CT140.nii.gz", + "label": "M01_004h/seg.nii.gz", + "fold": 1 + }, + { + "image": "M12_008h/CT140.nii.gz", + "label": "M12_008h/seg.nii.gz", + "fold": 1 + }, + { + "image": "M11_072h/CT140.nii.gz", + "label": "M11_072h/seg.nii.gz", + "fold": 1 + }, + { + "image": "M11_048h/CT140.nii.gz", + "label": "M11_048h/seg.nii.gz", + "fold": 2 + }, + { + "image": "M18_008h/CT140.nii.gz", + "label": "M18_008h/seg.nii.gz", + "fold": 2 + }, + { + "image": "M19_072h/CT140.nii.gz", + "label": "M19_072h/seg.nii.gz", + "fold": 2 + }, + { + "image": "M07_048h/CT140.nii.gz", + "label": "M07_048h/seg.nii.gz", + "fold": 2 + }, + { + "image": "M17_072h/CT140.nii.gz", + "label": "M17_072h/seg.nii.gz", + "fold": 2 + }, + { + "image": "M20_002h/CT140.nii.gz", + "label": "M20_002h/seg.nii.gz", + "fold": 2 + }, + { + "image": "M17_024h/CT140.nii.gz", + "label": "M17_024h/seg.nii.gz", + "fold": 2 + }, + { + "image": "M10_004h/CT140.nii.gz", + "label": "M10_004h/seg.nii.gz", + "fold": 2 + }, + { + "image": "M18_048h/CT140.nii.gz", + "label": "M18_048h/seg.nii.gz", + "fold": 2 + }, + { + "image": "M19_0.25h/CT140.nii.gz", + "label": "M19_0.25h/seg.nii.gz", + "fold": 2 + }, + { + "image": "M05_0.25h/CT140.nii.gz", + "label": "M05_0.25h/seg.nii.gz", + "fold": 2 + }, + { + "image": "M19_004h/CT140.nii.gz", + "label": "M19_004h/seg.nii.gz", + "fold": 2 + }, + { + "image": "M05_024h/CT140.nii.gz", + "label": "M05_024h/seg.nii.gz", + "fold": 2 + }, + { + "image": "M01_002h/CT140.nii.gz", + "label": "M01_002h/seg.nii.gz", + "fold": 2 + }, + { + "image": "M14_008h/CT140.nii.gz", + "label": "M14_008h/seg.nii.gz", + "fold": 2 + }, + { + "image": "M02_048h/CT140.nii.gz", + "label": "M02_048h/seg.nii.gz", + "fold": 2 + }, + { + "image": "M17_002h/CT140.nii.gz", + "label": "M17_002h/seg.nii.gz", + "fold": 2 + }, + { + "image": "M13_024h/CT140.nii.gz", + "label": "M13_024h/seg.nii.gz", + "fold": 2 + }, + { + "image": "M02_008h/CT140.nii.gz", + "label": "M02_008h/seg.nii.gz", + "fold": 2 + }, + { + "image": "M19_024h/CT140.nii.gz", + "label": "M19_024h/seg.nii.gz", + "fold": 2 + }, + { + "image": "M02_024h/CT140.nii.gz", + "label": "M02_024h/seg.nii.gz", + "fold": 2 + }, + { + "image": "M07_072h/CT140.nii.gz", + "label": "M07_072h/seg.nii.gz", + "fold": 2 + }, + { + "image": "M06_048h/CT140.nii.gz", + "label": "M06_048h/seg.nii.gz", + "fold": 3 + }, + { + "image": "M07_0.25h/CT140.nii.gz", + "label": "M07_0.25h/seg.nii.gz", + "fold": 3 + }, + { + "image": "M09_048h/CT140.nii.gz", + "label": "M09_048h/seg.nii.gz", + "fold": 3 + }, + { + "image": "M06_004h/CT140.nii.gz", + "label": "M06_004h/seg.nii.gz", + "fold": 3 + }, + { + "image": "M12_004h/CT140.nii.gz", + "label": "M12_004h/seg.nii.gz", + "fold": 3 + }, + { + "image": "M17_048h/CT140.nii.gz", + "label": "M17_048h/seg.nii.gz", + "fold": 3 + }, + { + "image": "M07_008h/CT140.nii.gz", + "label": "M07_008h/seg.nii.gz", + "fold": 3 + }, + { + "image": "M15_048h/CT140.nii.gz", + "label": "M15_048h/seg.nii.gz", + "fold": 3 + }, + { + "image": "M18_004h/CT140.nii.gz", + "label": "M18_004h/seg.nii.gz", + "fold": 3 + }, + { + "image": "M15_024h/CT140.nii.gz", + "label": "M15_024h/seg.nii.gz", + "fold": 3 + }, + { + "image": "M05_004h/CT140.nii.gz", + "label": "M05_004h/seg.nii.gz", + "fold": 3 + }, + { + "image": "M16_048h/CT140.nii.gz", + "label": "M16_048h/seg.nii.gz", + "fold": 3 + }, + { + "image": "M01_072h/CT140.nii.gz", + "label": "M01_072h/seg.nii.gz", + "fold": 3 + }, + { + "image": "M06_008h/CT140.nii.gz", + "label": "M06_008h/seg.nii.gz", + "fold": 3 + }, + { + "image": "M14_002h/CT140.nii.gz", + "label": "M14_002h/seg.nii.gz", + "fold": 3 + }, + { + "image": "M10_0.25h/CT140.nii.gz", + "label": "M10_0.25h/seg.nii.gz", + "fold": 3 + }, + { + "image": "M03_004h/CT140.nii.gz", + "label": "M03_004h/seg.nii.gz", + "fold": 3 + }, + { + "image": "M09_024h/CT140.nii.gz", + "label": "M09_024h/seg.nii.gz", + "fold": 3 + }, + { + "image": "M04_002h/CT140.nii.gz", + "label": "M04_002h/seg.nii.gz", + "fold": 3 + }, + { + "image": "M10_008h/CT140.nii.gz", + "label": "M10_008h/seg.nii.gz", + "fold": 3 + }, + { + "image": "M19_048h/CT140.nii.gz", + "label": "M19_048h/seg.nii.gz", + "fold": 3 + }, + { + "image": "M01_0.25h/CT140.nii.gz", + "label": "M01_0.25h/seg.nii.gz", + "fold": 3 + }, + { + "image": "M19_002h/CT140.nii.gz", + "label": "M19_002h/seg.nii.gz", + "fold": 4 + }, + { + "image": "M16_0.25h/CT140.nii.gz", + "label": "M16_0.25h/seg.nii.gz", + "fold": 4 + }, + { + "image": "M13_008h/CT140.nii.gz", + "label": "M13_008h/seg.nii.gz", + "fold": 4 + }, + { + "image": "M08_0.25h/CT140.nii.gz", + "label": "M08_0.25h/seg.nii.gz", + "fold": 4 + }, + { + "image": "M11_0.25h/CT140.nii.gz", + "label": "M11_0.25h/seg.nii.gz", + "fold": 4 + }, + { + "image": "M09_002h/CT140.nii.gz", + "label": "M09_002h/seg.nii.gz", + "fold": 4 + }, + { + "image": "M08_008h/CT140.nii.gz", + "label": "M08_008h/seg.nii.gz", + "fold": 4 + }, + { + "image": "M14_072h/CT140.nii.gz", + "label": "M14_072h/seg.nii.gz", + "fold": 4 + }, + { + "image": "M17_004h/CT140.nii.gz", + "label": "M17_004h/seg.nii.gz", + "fold": 4 + }, + { + "image": "M12_072h/CT140.nii.gz", + "label": "M12_072h/seg.nii.gz", + "fold": 4 + }, + { + "image": "M11_004h/CT140.nii.gz", + "label": "M11_004h/seg.nii.gz", + "fold": 4 + }, + { + "image": "M18_002h/CT140.nii.gz", + "label": "M18_002h/seg.nii.gz", + "fold": 4 + }, + { + "image": "M04_048h/CT140.nii.gz", + "label": "M04_048h/seg.nii.gz", + "fold": 4 + }, + { + "image": "M13_002h/CT140.nii.gz", + "label": "M13_002h/seg.nii.gz", + "fold": 4 + }, + { + "image": "M17_008h/CT140.nii.gz", + "label": "M17_008h/seg.nii.gz", + "fold": 4 + }, + { + "image": "M14_048h/CT140.nii.gz", + "label": "M14_048h/seg.nii.gz", + "fold": 4 + }, + { + "image": "M15_008h/CT140.nii.gz", + "label": "M15_008h/seg.nii.gz", + "fold": 4 + }, + { + "image": "M11_008h/CT140.nii.gz", + "label": "M11_008h/seg.nii.gz", + "fold": 4 + }, + { + "image": "M15_004h/CT140.nii.gz", + "label": "M15_004h/seg.nii.gz", + "fold": 4 + }, + { + "image": "M08_004h/CT140.nii.gz", + "label": "M08_004h/seg.nii.gz", + "fold": 4 + }, + { + "image": "M15_002h/CT140.nii.gz", + "label": "M15_002h/seg.nii.gz", + "fold": 4 + }, + { + "image": "M06_072h/CT140.nii.gz", + "label": "M06_072h/seg.nii.gz", + "fold": 4 + } + ], + "testing": [ + { + "image": "M13_072h/CT140.nii.gz", + "label": "M13_072h/seg.nii.gz" + }, + { + "image": "M16_008h/CT140.nii.gz", + "label": "M16_008h/seg.nii.gz" + }, + { + "image": "M03_048h/CT140.nii.gz", + "label": "M03_048h/seg.nii.gz" + }, + { + "image": "M11_002h/CT140.nii.gz", + "label": "M11_002h/seg.nii.gz" + }, + { + "image": "M02_0.25h/CT140.nii.gz", + "label": "M02_0.25h/seg.nii.gz" + }, + { + "image": "M16_024h/CT140.nii.gz", + "label": "M16_024h/seg.nii.gz" + }, + { + "image": "M19_008h/CT140.nii.gz", + "label": "M19_008h/seg.nii.gz" + }, + { + "image": "M08_072h/CT140.nii.gz", + "label": "M08_072h/seg.nii.gz" + }, + { + "image": "M18_024h/CT140.nii.gz", + "label": "M18_024h/seg.nii.gz" + }, + { + "image": "M16_004h/CT140.nii.gz", + "label": "M16_004h/seg.nii.gz" + }, + { + "image": "M12_048h/CT140.nii.gz", + "label": "M12_048h/seg.nii.gz" + }, + { + "image": "M10_002h/CT140.nii.gz", + "label": "M10_002h/seg.nii.gz" + }, + { + "image": "M14_0.25h/CT140.nii.gz", + "label": "M14_0.25h/seg.nii.gz" + }, + { + "image": "M03_0.25h/CT140.nii.gz", + "label": "M03_0.25h/seg.nii.gz" + }, + { + "image": "M03_024h/CT140.nii.gz", + "label": "M03_024h/seg.nii.gz" + }, + { + "image": "M12_002h/CT140.nii.gz", + "label": "M12_002h/seg.nii.gz" + }, + { + "image": "M05_072h/CT140.nii.gz", + "label": "M05_072h/seg.nii.gz" + }, + { + "image": "M20_072h/CT140.nii.gz", + "label": "M20_072h/seg.nii.gz" + }, + { + "image": "M09_004h/CT140.nii.gz", + "label": "M09_004h/seg.nii.gz" + }, + { + "image": "M08_048h/CT140.nii.gz", + "label": "M08_048h/seg.nii.gz" + }, + { + "image": "M16_002h/CT140.nii.gz", + "label": "M16_002h/seg.nii.gz" + }, + { + "image": "M04_024h/CT140.nii.gz", + "label": "M04_024h/seg.nii.gz" + }, + { + "image": "M03_008h/CT140.nii.gz", + "label": "M03_008h/seg.nii.gz" + }, + { + "image": "M13_004h/CT140.nii.gz", + "label": "M13_004h/seg.nii.gz" + }, + { + "image": "M04_072h/CT140.nii.gz", + "label": "M04_072h/seg.nii.gz" + }, + { + "image": "M18_0.25h/CT140.nii.gz", + "label": "M18_0.25h/seg.nii.gz" + }, + { + "image": "M14_024h/CT140.nii.gz", + "label": "M14_024h/seg.nii.gz" + }, + { + "image": "M04_0.25h/CT140.nii.gz", + "label": "M04_0.25h/seg.nii.gz" + } + ], + "label_dict": { + "1": "heart", + "2": "spinal cord", + "3": "right lung", + "4": "left lung" + }, + "original_label_dict": { + "1": "heart", + "2": "spinal cord", + "3": "right lung", + "4": "left lung" + } +} diff --git a/vista3d/data/jsons/AMOS22_5_folds.json b/vista3d/data/jsons/AMOS22_5_folds.json new file mode 100644 index 0000000..626d90d --- /dev/null +++ b/vista3d/data/jsons/AMOS22_5_folds.json @@ -0,0 +1,2245 @@ +{ + "training": [ + { + "image": "imagesTr/amos_0060.nii.gz", + "pseudo_label": "imagesTr/amos_0060.nii.gz", + "label": "labelsTr/amos_0060.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/amos_0348.nii.gz", + "pseudo_label": "imagesTr/amos_0348.nii.gz", + "label": "labelsTr/amos_0348.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "imagesVa/amos_0244.nii.gz", + "pseudo_label": "imagesVa/amos_0244.nii.gz", + "label": "labelsVa/amos_0244.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "imagesVa/amos_0310.nii.gz", + "pseudo_label": "imagesVa/amos_0310.nii.gz", + "label": "labelsVa/amos_0310.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "imagesVa/amos_0120.nii.gz", + "pseudo_label": "imagesVa/amos_0120.nii.gz", + "label": "labelsVa/amos_0120.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/amos_0027.nii.gz", + "pseudo_label": "imagesTr/amos_0027.nii.gz", + "label": "labelsTr/amos_0027.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/amos_0268.nii.gz", + "pseudo_label": "imagesTr/amos_0268.nii.gz", + "label": "labelsTr/amos_0268.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/amos_0079.nii.gz", + "pseudo_label": "imagesTr/amos_0079.nii.gz", + "label": "labelsTr/amos_0079.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesVa/amos_0250.nii.gz", + "pseudo_label": "imagesVa/amos_0250.nii.gz", + "label": "labelsVa/amos_0250.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/amos_0160.nii.gz", + "pseudo_label": "imagesTr/amos_0160.nii.gz", + "label": "labelsTr/amos_0160.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesVa/amos_0278.nii.gz", + "pseudo_label": "imagesVa/amos_0278.nii.gz", + "label": "labelsVa/amos_0278.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/amos_0057.nii.gz", + "pseudo_label": "imagesTr/amos_0057.nii.gz", + "label": "labelsTr/amos_0057.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/amos_0124.nii.gz", + "pseudo_label": "imagesTr/amos_0124.nii.gz", + "label": "labelsTr/amos_0124.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/amos_0237.nii.gz", + "pseudo_label": "imagesTr/amos_0237.nii.gz", + "label": "labelsTr/amos_0237.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/amos_0133.nii.gz", + "pseudo_label": "imagesTr/amos_0133.nii.gz", + "label": "labelsTr/amos_0133.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesVa/amos_0032.nii.gz", + "pseudo_label": "imagesVa/amos_0032.nii.gz", + "label": "labelsVa/amos_0032.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/amos_0170.nii.gz", + "pseudo_label": "imagesTr/amos_0170.nii.gz", + "label": "labelsTr/amos_0170.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/amos_0321.nii.gz", + "pseudo_label": "imagesTr/amos_0321.nii.gz", + "label": "labelsTr/amos_0321.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/amos_0099.nii.gz", + "pseudo_label": "imagesTr/amos_0099.nii.gz", + "label": "labelsTr/amos_0099.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "imagesTr/amos_0405.nii.gz", + "pseudo_label": "imagesTr/amos_0405.nii.gz", + "label": "labelsTr/amos_0405.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesVa/amos_0022.nii.gz", + "pseudo_label": "imagesVa/amos_0022.nii.gz", + "label": "labelsVa/amos_0022.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/amos_0376.nii.gz", + "pseudo_label": "imagesTr/amos_0376.nii.gz", + "label": "labelsTr/amos_0376.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/amos_0231.nii.gz", + "pseudo_label": "imagesTr/amos_0231.nii.gz", + "label": "labelsTr/amos_0231.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/amos_0188.nii.gz", + "pseudo_label": "imagesTr/amos_0188.nii.gz", + "label": "labelsTr/amos_0188.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/amos_0374.nii.gz", + "pseudo_label": "imagesTr/amos_0374.nii.gz", + "label": "labelsTr/amos_0374.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesVa/amos_0150.nii.gz", + "pseudo_label": "imagesVa/amos_0150.nii.gz", + "label": "labelsVa/amos_0150.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/amos_0159.nii.gz", + "pseudo_label": "imagesTr/amos_0159.nii.gz", + "label": "labelsTr/amos_0159.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/amos_0235.nii.gz", + "pseudo_label": "imagesTr/amos_0235.nii.gz", + "label": "labelsTr/amos_0235.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/amos_0396.nii.gz", + "pseudo_label": "imagesTr/amos_0396.nii.gz", + "label": "labelsTr/amos_0396.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/amos_0225.nii.gz", + "pseudo_label": "imagesTr/amos_0225.nii.gz", + "label": "labelsTr/amos_0225.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "imagesTr/amos_0362.nii.gz", + "pseudo_label": "imagesTr/amos_0362.nii.gz", + "label": "labelsTr/amos_0362.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesVa/amos_0286.nii.gz", + "pseudo_label": "imagesVa/amos_0286.nii.gz", + "label": "labelsVa/amos_0286.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesVa/amos_0333.nii.gz", + "pseudo_label": "imagesVa/amos_0333.nii.gz", + "label": "labelsVa/amos_0333.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesVa/amos_0365.nii.gz", + "pseudo_label": "imagesVa/amos_0365.nii.gz", + "label": "labelsVa/amos_0365.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/amos_0121.nii.gz", + "pseudo_label": "imagesTr/amos_0121.nii.gz", + "label": "labelsTr/amos_0121.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/amos_0353.nii.gz", + "pseudo_label": "imagesTr/amos_0353.nii.gz", + "label": "labelsTr/amos_0353.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "imagesVa/amos_0207.nii.gz", + "pseudo_label": "imagesVa/amos_0207.nii.gz", + "label": "labelsVa/amos_0207.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/amos_0273.nii.gz", + "pseudo_label": "imagesTr/amos_0273.nii.gz", + "label": "labelsTr/amos_0273.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/amos_0153.nii.gz", + "pseudo_label": "imagesTr/amos_0153.nii.gz", + "label": "labelsTr/amos_0153.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "imagesTr/amos_0317.nii.gz", + "pseudo_label": "imagesTr/amos_0317.nii.gz", + "label": "labelsTr/amos_0317.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesVa/amos_0352.nii.gz", + "pseudo_label": "imagesVa/amos_0352.nii.gz", + "label": "labelsVa/amos_0352.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/amos_0043.nii.gz", + "pseudo_label": "imagesTr/amos_0043.nii.gz", + "label": "labelsTr/amos_0043.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesVa/amos_0238.nii.gz", + "pseudo_label": "imagesVa/amos_0238.nii.gz", + "label": "labelsVa/amos_0238.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/amos_0341.nii.gz", + "pseudo_label": "imagesTr/amos_0341.nii.gz", + "label": "labelsTr/amos_0341.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "imagesTr/amos_0390.nii.gz", + "pseudo_label": "imagesTr/amos_0390.nii.gz", + "label": "labelsTr/amos_0390.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/amos_0195.nii.gz", + "pseudo_label": "imagesTr/amos_0195.nii.gz", + "label": "labelsTr/amos_0195.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/amos_0395.nii.gz", + "pseudo_label": "imagesTr/amos_0395.nii.gz", + "label": "labelsTr/amos_0395.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesVa/amos_0346.nii.gz", + "pseudo_label": "imagesVa/amos_0346.nii.gz", + "label": "labelsVa/amos_0346.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "imagesVa/amos_0013.nii.gz", + "pseudo_label": "imagesVa/amos_0013.nii.gz", + "label": "labelsVa/amos_0013.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0013/amos_0013_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0158.nii.gz", + "pseudo_label": "imagesTr/amos_0158.nii.gz", + "label": "labelsTr/amos_0158.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0158/amos_0158_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0048.nii.gz", + "pseudo_label": "imagesTr/amos_0048.nii.gz", + "label": "labelsTr/amos_0048.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0048/amos_0048_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0194.nii.gz", + "pseudo_label": "imagesVa/amos_0194.nii.gz", + "label": "labelsVa/amos_0194.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0194/amos_0194_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0113.nii.gz", + "pseudo_label": "imagesTr/amos_0113.nii.gz", + "label": "labelsTr/amos_0113.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0113/amos_0113_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0051.nii.gz", + "pseudo_label": "imagesVa/amos_0051.nii.gz", + "label": "labelsVa/amos_0051.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0051/amos_0051_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0176.nii.gz", + "pseudo_label": "imagesVa/amos_0176.nii.gz", + "label": "labelsVa/amos_0176.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0176/amos_0176_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0007.nii.gz", + "pseudo_label": "imagesTr/amos_0007.nii.gz", + "label": "labelsTr/amos_0007.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0007/amos_0007_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0217.nii.gz", + "pseudo_label": "imagesTr/amos_0217.nii.gz", + "label": "labelsTr/amos_0217.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0217/amos_0217_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0064.nii.gz", + "pseudo_label": "imagesTr/amos_0064.nii.gz", + "label": "labelsTr/amos_0064.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0064/amos_0064_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0016.nii.gz", + "pseudo_label": "imagesTr/amos_0016.nii.gz", + "label": "labelsTr/amos_0016.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0016/amos_0016_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0311.nii.gz", + "pseudo_label": "imagesVa/amos_0311.nii.gz", + "label": "labelsVa/amos_0311.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0311/amos_0311_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0409.nii.gz", + "pseudo_label": "imagesVa/amos_0409.nii.gz", + "label": "labelsVa/amos_0409.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0409/amos_0409_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0116.nii.gz", + "pseudo_label": "imagesTr/amos_0116.nii.gz", + "label": "labelsTr/amos_0116.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0116/amos_0116_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0172.nii.gz", + "pseudo_label": "imagesTr/amos_0172.nii.gz", + "label": "labelsTr/amos_0172.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0172/amos_0172_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0339.nii.gz", + "pseudo_label": "imagesVa/amos_0339.nii.gz", + "label": "labelsVa/amos_0339.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0339/amos_0339_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0198.nii.gz", + "pseudo_label": "imagesTr/amos_0198.nii.gz", + "label": "labelsTr/amos_0198.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0198/amos_0198_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0157.nii.gz", + "pseudo_label": "imagesVa/amos_0157.nii.gz", + "label": "labelsVa/amos_0157.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0157/amos_0157_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0014.nii.gz", + "pseudo_label": "imagesTr/amos_0014.nii.gz", + "label": "labelsTr/amos_0014.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0014/amos_0014_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0334.nii.gz", + "pseudo_label": "imagesVa/amos_0334.nii.gz", + "label": "labelsVa/amos_0334.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0334/amos_0334_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0381.nii.gz", + "pseudo_label": "imagesTr/amos_0381.nii.gz", + "label": "labelsTr/amos_0381.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0381/amos_0381_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0143.nii.gz", + "pseudo_label": "imagesTr/amos_0143.nii.gz", + "label": "labelsTr/amos_0143.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0143/amos_0143_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0125.nii.gz", + "pseudo_label": "imagesTr/amos_0125.nii.gz", + "label": "labelsTr/amos_0125.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0125/amos_0125_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0202.nii.gz", + "pseudo_label": "imagesVa/amos_0202.nii.gz", + "label": "labelsVa/amos_0202.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0202/amos_0202_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0134.nii.gz", + "pseudo_label": "imagesTr/amos_0134.nii.gz", + "label": "labelsTr/amos_0134.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0134/amos_0134_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0402.nii.gz", + "pseudo_label": "imagesTr/amos_0402.nii.gz", + "label": "labelsTr/amos_0402.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0402/amos_0402_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0115.nii.gz", + "pseudo_label": "imagesTr/amos_0115.nii.gz", + "label": "labelsTr/amos_0115.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0115/amos_0115_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0063.nii.gz", + "pseudo_label": "imagesVa/amos_0063.nii.gz", + "label": "labelsVa/amos_0063.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0063/amos_0063_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0004.nii.gz", + "pseudo_label": "imagesTr/amos_0004.nii.gz", + "label": "labelsTr/amos_0004.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0004/amos_0004_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0372.nii.gz", + "pseudo_label": "imagesVa/amos_0372.nii.gz", + "label": "labelsVa/amos_0372.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0372/amos_0372_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0336.nii.gz", + "pseudo_label": "imagesTr/amos_0336.nii.gz", + "label": "labelsTr/amos_0336.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0336/amos_0336_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0368.nii.gz", + "pseudo_label": "imagesVa/amos_0368.nii.gz", + "label": "labelsVa/amos_0368.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0368/amos_0368_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0129.nii.gz", + "pseudo_label": "imagesTr/amos_0129.nii.gz", + "label": "labelsTr/amos_0129.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0129/amos_0129_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0177.nii.gz", + "pseudo_label": "imagesTr/amos_0177.nii.gz", + "label": "labelsTr/amos_0177.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0177/amos_0177_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0350.nii.gz", + "pseudo_label": "imagesTr/amos_0350.nii.gz", + "label": "labelsTr/amos_0350.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0350/amos_0350_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0380.nii.gz", + "pseudo_label": "imagesTr/amos_0380.nii.gz", + "label": "labelsTr/amos_0380.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0380/amos_0380_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0083.nii.gz", + "pseudo_label": "imagesTr/amos_0083.nii.gz", + "label": "labelsTr/amos_0083.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0083/amos_0083_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0071.nii.gz", + "pseudo_label": "imagesTr/amos_0071.nii.gz", + "label": "labelsTr/amos_0071.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0071/amos_0071_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0218.nii.gz", + "pseudo_label": "imagesVa/amos_0218.nii.gz", + "label": "labelsVa/amos_0218.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0218/amos_0218_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0001.nii.gz", + "pseudo_label": "imagesTr/amos_0001.nii.gz", + "label": "labelsTr/amos_0001.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0001/amos_0001_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0280.nii.gz", + "pseudo_label": "imagesVa/amos_0280.nii.gz", + "label": "labelsVa/amos_0280.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0280/amos_0280_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0206.nii.gz", + "pseudo_label": "imagesVa/amos_0206.nii.gz", + "label": "labelsVa/amos_0206.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0206/amos_0206_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0132.nii.gz", + "pseudo_label": "imagesVa/amos_0132.nii.gz", + "label": "labelsVa/amos_0132.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0132/amos_0132_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0196.nii.gz", + "pseudo_label": "imagesTr/amos_0196.nii.gz", + "label": "labelsTr/amos_0196.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0196/amos_0196_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0308.nii.gz", + "pseudo_label": "imagesVa/amos_0308.nii.gz", + "label": "labelsVa/amos_0308.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0308/amos_0308_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0045.nii.gz", + "pseudo_label": "imagesTr/amos_0045.nii.gz", + "label": "labelsTr/amos_0045.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0045/amos_0045_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0008.nii.gz", + "pseudo_label": "imagesVa/amos_0008.nii.gz", + "label": "labelsVa/amos_0008.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0008/amos_0008_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0370.nii.gz", + "pseudo_label": "imagesTr/amos_0370.nii.gz", + "label": "labelsTr/amos_0370.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0370/amos_0370_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0344.nii.gz", + "pseudo_label": "imagesVa/amos_0344.nii.gz", + "label": "labelsVa/amos_0344.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0344/amos_0344_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0072.nii.gz", + "pseudo_label": "imagesTr/amos_0072.nii.gz", + "label": "labelsTr/amos_0072.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0072/amos_0072_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0287.nii.gz", + "pseudo_label": "imagesVa/amos_0287.nii.gz", + "label": "labelsVa/amos_0287.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0287/amos_0287_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0307.nii.gz", + "pseudo_label": "imagesTr/amos_0307.nii.gz", + "label": "labelsTr/amos_0307.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0307/amos_0307_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0392.nii.gz", + "pseudo_label": "imagesTr/amos_0392.nii.gz", + "label": "labelsTr/amos_0392.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0392/amos_0392_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0299.nii.gz", + "pseudo_label": "imagesTr/amos_0299.nii.gz", + "label": "labelsTr/amos_0299.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0299/amos_0299_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0111.nii.gz", + "pseudo_label": "imagesTr/amos_0111.nii.gz", + "label": "labelsTr/amos_0111.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0111/amos_0111_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0061.nii.gz", + "pseudo_label": "imagesVa/amos_0061.nii.gz", + "label": "labelsVa/amos_0061.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0061/amos_0061_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0316.nii.gz", + "pseudo_label": "imagesVa/amos_0316.nii.gz", + "label": "labelsVa/amos_0316.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0316/amos_0316_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0197.nii.gz", + "pseudo_label": "imagesTr/amos_0197.nii.gz", + "label": "labelsTr/amos_0197.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0197/amos_0197_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0304.nii.gz", + "pseudo_label": "imagesVa/amos_0304.nii.gz", + "label": "labelsVa/amos_0304.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0304/amos_0304_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0398.nii.gz", + "pseudo_label": "imagesTr/amos_0398.nii.gz", + "label": "labelsTr/amos_0398.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0398/amos_0398_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0258.nii.gz", + "pseudo_label": "imagesVa/amos_0258.nii.gz", + "label": "labelsVa/amos_0258.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0258/amos_0258_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0233.nii.gz", + "pseudo_label": "imagesVa/amos_0233.nii.gz", + "label": "labelsVa/amos_0233.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0233/amos_0233_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0087.nii.gz", + "pseudo_label": "imagesVa/amos_0087.nii.gz", + "label": "labelsVa/amos_0087.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0087/amos_0087_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0075.nii.gz", + "pseudo_label": "imagesTr/amos_0075.nii.gz", + "label": "labelsTr/amos_0075.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0075/amos_0075_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0131.nii.gz", + "pseudo_label": "imagesTr/amos_0131.nii.gz", + "label": "labelsTr/amos_0131.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0131/amos_0131_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0223.nii.gz", + "pseudo_label": "imagesVa/amos_0223.nii.gz", + "label": "labelsVa/amos_0223.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0223/amos_0223_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0141.nii.gz", + "pseudo_label": "imagesTr/amos_0141.nii.gz", + "label": "labelsTr/amos_0141.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0141/amos_0141_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0245.nii.gz", + "pseudo_label": "imagesTr/amos_0245.nii.gz", + "label": "labelsTr/amos_0245.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0245/amos_0245_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0110.nii.gz", + "pseudo_label": "imagesTr/amos_0110.nii.gz", + "label": "labelsTr/amos_0110.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0110/amos_0110_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0401.nii.gz", + "pseudo_label": "imagesTr/amos_0401.nii.gz", + "label": "labelsTr/amos_0401.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0401/amos_0401_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0085.nii.gz", + "pseudo_label": "imagesVa/amos_0085.nii.gz", + "label": "labelsVa/amos_0085.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0085/amos_0085_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0263.nii.gz", + "pseudo_label": "imagesTr/amos_0263.nii.gz", + "label": "labelsTr/amos_0263.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0263/amos_0263_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0297.nii.gz", + "pseudo_label": "imagesTr/amos_0297.nii.gz", + "label": "labelsTr/amos_0297.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0297/amos_0297_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0162.nii.gz", + "pseudo_label": "imagesTr/amos_0162.nii.gz", + "label": "labelsTr/amos_0162.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0162/amos_0162_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0391.nii.gz", + "pseudo_label": "imagesTr/amos_0391.nii.gz", + "label": "labelsTr/amos_0391.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0391/amos_0391_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0357.nii.gz", + "pseudo_label": "imagesVa/amos_0357.nii.gz", + "label": "labelsVa/amos_0357.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0357/amos_0357_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0190.nii.gz", + "pseudo_label": "imagesTr/amos_0190.nii.gz", + "label": "labelsTr/amos_0190.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0190/amos_0190_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0149.nii.gz", + "pseudo_label": "imagesTr/amos_0149.nii.gz", + "label": "labelsTr/amos_0149.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0149/amos_0149_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0081.nii.gz", + "pseudo_label": "imagesTr/amos_0081.nii.gz", + "label": "labelsTr/amos_0081.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0081/amos_0081_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0056.nii.gz", + "pseudo_label": "imagesVa/amos_0056.nii.gz", + "label": "labelsVa/amos_0056.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0056/amos_0056_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0332.nii.gz", + "pseudo_label": "imagesTr/amos_0332.nii.gz", + "label": "labelsTr/amos_0332.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0332/amos_0332_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0105.nii.gz", + "pseudo_label": "imagesTr/amos_0105.nii.gz", + "label": "labelsTr/amos_0105.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0105/amos_0105_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0364.nii.gz", + "pseudo_label": "imagesVa/amos_0364.nii.gz", + "label": "labelsVa/amos_0364.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0364/amos_0364_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0257.nii.gz", + "pseudo_label": "imagesVa/amos_0257.nii.gz", + "label": "labelsVa/amos_0257.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0257/amos_0257_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0106.nii.gz", + "pseudo_label": "imagesVa/amos_0106.nii.gz", + "label": "labelsVa/amos_0106.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0106/amos_0106_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0077.nii.gz", + "pseudo_label": "imagesTr/amos_0077.nii.gz", + "label": "labelsTr/amos_0077.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0077/amos_0077_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0215.nii.gz", + "pseudo_label": "imagesTr/amos_0215.nii.gz", + "label": "labelsTr/amos_0215.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0215/amos_0215_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0351.nii.gz", + "pseudo_label": "imagesTr/amos_0351.nii.gz", + "label": "labelsTr/amos_0351.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0351/amos_0351_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0255.nii.gz", + "pseudo_label": "imagesVa/amos_0255.nii.gz", + "label": "labelsVa/amos_0255.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0255/amos_0255_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0318.nii.gz", + "pseudo_label": "imagesVa/amos_0318.nii.gz", + "label": "labelsVa/amos_0318.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0318/amos_0318_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0264.nii.gz", + "pseudo_label": "imagesTr/amos_0264.nii.gz", + "label": "labelsTr/amos_0264.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0264/amos_0264_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0128.nii.gz", + "pseudo_label": "imagesVa/amos_0128.nii.gz", + "label": "labelsVa/amos_0128.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0128/amos_0128_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0041.nii.gz", + "pseudo_label": "imagesVa/amos_0041.nii.gz", + "label": "labelsVa/amos_0041.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0041/amos_0041_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0069.nii.gz", + "pseudo_label": "imagesTr/amos_0069.nii.gz", + "label": "labelsTr/amos_0069.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0069/amos_0069_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0283.nii.gz", + "pseudo_label": "imagesVa/amos_0283.nii.gz", + "label": "labelsVa/amos_0283.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0283/amos_0283_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0104.nii.gz", + "pseudo_label": "imagesTr/amos_0104.nii.gz", + "label": "labelsTr/amos_0104.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0104/amos_0104_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0066.nii.gz", + "pseudo_label": "imagesTr/amos_0066.nii.gz", + "label": "labelsTr/amos_0066.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0066/amos_0066_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0326.nii.gz", + "pseudo_label": "imagesVa/amos_0326.nii.gz", + "label": "labelsVa/amos_0326.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0326/amos_0326_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0152.nii.gz", + "pseudo_label": "imagesTr/amos_0152.nii.gz", + "label": "labelsTr/amos_0152.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0152/amos_0152_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0147.nii.gz", + "pseudo_label": "imagesTr/amos_0147.nii.gz", + "label": "labelsTr/amos_0147.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0147/amos_0147_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0009.nii.gz", + "pseudo_label": "imagesTr/amos_0009.nii.gz", + "label": "labelsTr/amos_0009.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0009/amos_0009_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0078.nii.gz", + "pseudo_label": "imagesTr/amos_0078.nii.gz", + "label": "labelsTr/amos_0078.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0078/amos_0078_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0052.nii.gz", + "pseudo_label": "imagesTr/amos_0052.nii.gz", + "label": "labelsTr/amos_0052.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0052/amos_0052_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0070.nii.gz", + "pseudo_label": "imagesVa/amos_0070.nii.gz", + "label": "labelsVa/amos_0070.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0070/amos_0070_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0406.nii.gz", + "pseudo_label": "imagesTr/amos_0406.nii.gz", + "label": "labelsTr/amos_0406.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0406/amos_0406_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0017.nii.gz", + "pseudo_label": "imagesTr/amos_0017.nii.gz", + "label": "labelsTr/amos_0017.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0017/amos_0017_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0403.nii.gz", + "pseudo_label": "imagesTr/amos_0403.nii.gz", + "label": "labelsTr/amos_0403.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0403/amos_0403_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0038.nii.gz", + "pseudo_label": "imagesTr/amos_0038.nii.gz", + "label": "labelsTr/amos_0038.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0038/amos_0038_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0200.nii.gz", + "pseudo_label": "imagesVa/amos_0200.nii.gz", + "label": "labelsVa/amos_0200.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0200/amos_0200_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0302.nii.gz", + "pseudo_label": "imagesTr/amos_0302.nii.gz", + "label": "labelsTr/amos_0302.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0302/amos_0302_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0029.nii.gz", + "pseudo_label": "imagesVa/amos_0029.nii.gz", + "label": "labelsVa/amos_0029.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0029/amos_0029_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0397.nii.gz", + "pseudo_label": "imagesVa/amos_0397.nii.gz", + "label": "labelsVa/amos_0397.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0397/amos_0397_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0179.nii.gz", + "pseudo_label": "imagesTr/amos_0179.nii.gz", + "label": "labelsTr/amos_0179.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0179/amos_0179_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0378.nii.gz", + "pseudo_label": "imagesTr/amos_0378.nii.gz", + "label": "labelsTr/amos_0378.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0378/amos_0378_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0059.nii.gz", + "pseudo_label": "imagesTr/amos_0059.nii.gz", + "label": "labelsTr/amos_0059.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0059/amos_0059_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0228.nii.gz", + "pseudo_label": "imagesVa/amos_0228.nii.gz", + "label": "labelsVa/amos_0228.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0228/amos_0228_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0021.nii.gz", + "pseudo_label": "imagesTr/amos_0021.nii.gz", + "label": "labelsTr/amos_0021.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0021/amos_0021_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0294.nii.gz", + "pseudo_label": "imagesTr/amos_0294.nii.gz", + "label": "labelsTr/amos_0294.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0294/amos_0294_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0088.nii.gz", + "pseudo_label": "imagesTr/amos_0088.nii.gz", + "label": "labelsTr/amos_0088.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0088/amos_0088_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0214.nii.gz", + "pseudo_label": "imagesTr/amos_0214.nii.gz", + "label": "labelsTr/amos_0214.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0214/amos_0214_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0284.nii.gz", + "pseudo_label": "imagesVa/amos_0284.nii.gz", + "label": "labelsVa/amos_0284.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0284/amos_0284_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0239.nii.gz", + "pseudo_label": "imagesTr/amos_0239.nii.gz", + "label": "labelsTr/amos_0239.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0239/amos_0239_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0361.nii.gz", + "pseudo_label": "imagesTr/amos_0361.nii.gz", + "label": "labelsTr/amos_0361.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0361/amos_0361_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0010.nii.gz", + "pseudo_label": "imagesTr/amos_0010.nii.gz", + "label": "labelsTr/amos_0010.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0010/amos_0010_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0290.nii.gz", + "pseudo_label": "imagesVa/amos_0290.nii.gz", + "label": "labelsVa/amos_0290.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0290/amos_0290_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0086.nii.gz", + "pseudo_label": "imagesTr/amos_0086.nii.gz", + "label": "labelsTr/amos_0086.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0086/amos_0086_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0296.nii.gz", + "pseudo_label": "imagesTr/amos_0296.nii.gz", + "label": "labelsTr/amos_0296.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0296/amos_0296_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0408.nii.gz", + "pseudo_label": "imagesTr/amos_0408.nii.gz", + "label": "labelsTr/amos_0408.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0408/amos_0408_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0127.nii.gz", + "pseudo_label": "imagesTr/amos_0127.nii.gz", + "label": "labelsTr/amos_0127.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0127/amos_0127_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0119.nii.gz", + "pseudo_label": "imagesTr/amos_0119.nii.gz", + "label": "labelsTr/amos_0119.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0119/amos_0119_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0400.nii.gz", + "pseudo_label": "imagesTr/amos_0400.nii.gz", + "label": "labelsTr/amos_0400.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0400/amos_0400_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0248.nii.gz", + "pseudo_label": "imagesTr/amos_0248.nii.gz", + "label": "labelsTr/amos_0248.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0248/amos_0248_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0193.nii.gz", + "pseudo_label": "imagesTr/amos_0193.nii.gz", + "label": "labelsTr/amos_0193.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0193/amos_0193_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0293.nii.gz", + "pseudo_label": "imagesVa/amos_0293.nii.gz", + "label": "labelsVa/amos_0293.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0293/amos_0293_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0011.nii.gz", + "pseudo_label": "imagesTr/amos_0011.nii.gz", + "label": "labelsTr/amos_0011.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0011/amos_0011_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0123.nii.gz", + "pseudo_label": "imagesVa/amos_0123.nii.gz", + "label": "labelsVa/amos_0123.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0123/amos_0123_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0204.nii.gz", + "pseudo_label": "imagesVa/amos_0204.nii.gz", + "label": "labelsVa/amos_0204.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0204/amos_0204_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0212.nii.gz", + "pseudo_label": "imagesTr/amos_0212.nii.gz", + "label": "labelsTr/amos_0212.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0212/amos_0212_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0137.nii.gz", + "pseudo_label": "imagesTr/amos_0137.nii.gz", + "label": "labelsTr/amos_0137.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0137/amos_0137_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0189.nii.gz", + "pseudo_label": "imagesVa/amos_0189.nii.gz", + "label": "labelsVa/amos_0189.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0189/amos_0189_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0373.nii.gz", + "pseudo_label": "imagesVa/amos_0373.nii.gz", + "label": "labelsVa/amos_0373.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0373/amos_0373_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0328.nii.gz", + "pseudo_label": "imagesVa/amos_0328.nii.gz", + "label": "labelsVa/amos_0328.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0328/amos_0328_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0404.nii.gz", + "pseudo_label": "imagesTr/amos_0404.nii.gz", + "label": "labelsTr/amos_0404.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0404/amos_0404_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0112.nii.gz", + "pseudo_label": "imagesVa/amos_0112.nii.gz", + "label": "labelsVa/amos_0112.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0112/amos_0112_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0226.nii.gz", + "pseudo_label": "imagesTr/amos_0226.nii.gz", + "label": "labelsTr/amos_0226.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0226/amos_0226_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0098.nii.gz", + "pseudo_label": "imagesTr/amos_0098.nii.gz", + "label": "labelsTr/amos_0098.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0098/amos_0098_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0089.nii.gz", + "pseudo_label": "imagesTr/amos_0089.nii.gz", + "label": "labelsTr/amos_0089.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0089/amos_0089_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0136.nii.gz", + "pseudo_label": "imagesVa/amos_0136.nii.gz", + "label": "labelsVa/amos_0136.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0136/amos_0136_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0301.nii.gz", + "pseudo_label": "imagesTr/amos_0301.nii.gz", + "label": "labelsTr/amos_0301.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0301/amos_0301_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0363.nii.gz", + "pseudo_label": "imagesVa/amos_0363.nii.gz", + "label": "labelsVa/amos_0363.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0363/amos_0363_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0171.nii.gz", + "pseudo_label": "imagesTr/amos_0171.nii.gz", + "label": "labelsTr/amos_0171.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0171/amos_0171_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0156.nii.gz", + "pseudo_label": "imagesTr/amos_0156.nii.gz", + "label": "labelsTr/amos_0156.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0156/amos_0156_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0173.nii.gz", + "pseudo_label": "imagesTr/amos_0173.nii.gz", + "label": "labelsTr/amos_0173.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0173/amos_0173_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0323.nii.gz", + "pseudo_label": "imagesVa/amos_0323.nii.gz", + "label": "labelsVa/amos_0323.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0323/amos_0323_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0272.nii.gz", + "pseudo_label": "imagesTr/amos_0272.nii.gz", + "label": "labelsTr/amos_0272.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0272/amos_0272_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0050.nii.gz", + "pseudo_label": "imagesTr/amos_0050.nii.gz", + "label": "labelsTr/amos_0050.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0050/amos_0050_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0385.nii.gz", + "pseudo_label": "imagesVa/amos_0385.nii.gz", + "label": "labelsVa/amos_0385.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0385/amos_0385_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0135.nii.gz", + "pseudo_label": "imagesTr/amos_0135.nii.gz", + "label": "labelsTr/amos_0135.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0135/amos_0135_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0185.nii.gz", + "pseudo_label": "imagesTr/amos_0185.nii.gz", + "label": "labelsTr/amos_0185.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0185/amos_0185_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0090.nii.gz", + "pseudo_label": "imagesVa/amos_0090.nii.gz", + "label": "labelsVa/amos_0090.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0090/amos_0090_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0117.nii.gz", + "pseudo_label": "imagesVa/amos_0117.nii.gz", + "label": "labelsVa/amos_0117.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0117/amos_0117_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0018.nii.gz", + "pseudo_label": "imagesVa/amos_0018.nii.gz", + "label": "labelsVa/amos_0018.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0018/amos_0018_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0019.nii.gz", + "pseudo_label": "imagesTr/amos_0019.nii.gz", + "label": "labelsTr/amos_0019.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0019/amos_0019_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0379.nii.gz", + "pseudo_label": "imagesTr/amos_0379.nii.gz", + "label": "labelsTr/amos_0379.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0379/amos_0379_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0126.nii.gz", + "pseudo_label": "imagesTr/amos_0126.nii.gz", + "label": "labelsTr/amos_0126.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0126/amos_0126_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0208.nii.gz", + "pseudo_label": "imagesVa/amos_0208.nii.gz", + "label": "labelsVa/amos_0208.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0208/amos_0208_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0219.nii.gz", + "pseudo_label": "imagesVa/amos_0219.nii.gz", + "label": "labelsVa/amos_0219.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0219/amos_0219_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0142.nii.gz", + "pseudo_label": "imagesTr/amos_0142.nii.gz", + "label": "labelsTr/amos_0142.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0142/amos_0142_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0166.nii.gz", + "pseudo_label": "imagesTr/amos_0166.nii.gz", + "label": "labelsTr/amos_0166.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0166/amos_0166_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0274.nii.gz", + "pseudo_label": "imagesTr/amos_0274.nii.gz", + "label": "labelsTr/amos_0274.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0274/amos_0274_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0247.nii.gz", + "pseudo_label": "imagesVa/amos_0247.nii.gz", + "label": "labelsVa/amos_0247.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0247/amos_0247_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0094.nii.gz", + "pseudo_label": "imagesTr/amos_0094.nii.gz", + "label": "labelsTr/amos_0094.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0094/amos_0094_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0167.nii.gz", + "pseudo_label": "imagesVa/amos_0167.nii.gz", + "label": "labelsVa/amos_0167.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0167/amos_0167_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0118.nii.gz", + "pseudo_label": "imagesTr/amos_0118.nii.gz", + "label": "labelsTr/amos_0118.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0118/amos_0118_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0192.nii.gz", + "pseudo_label": "imagesTr/amos_0192.nii.gz", + "label": "labelsTr/amos_0192.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0192/amos_0192_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0035.nii.gz", + "pseudo_label": "imagesTr/amos_0035.nii.gz", + "label": "labelsTr/amos_0035.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0035/amos_0035_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0387.nii.gz", + "pseudo_label": "imagesTr/amos_0387.nii.gz", + "label": "labelsTr/amos_0387.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0387/amos_0387_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0047.nii.gz", + "pseudo_label": "imagesTr/amos_0047.nii.gz", + "label": "labelsTr/amos_0047.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0047/amos_0047_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0203.nii.gz", + "pseudo_label": "imagesVa/amos_0203.nii.gz", + "label": "labelsVa/amos_0203.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0203/amos_0203_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0337.nii.gz", + "pseudo_label": "imagesTr/amos_0337.nii.gz", + "label": "labelsTr/amos_0337.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0337/amos_0337_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0097.nii.gz", + "pseudo_label": "imagesTr/amos_0097.nii.gz", + "label": "labelsTr/amos_0097.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0097/amos_0097_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0242.nii.gz", + "pseudo_label": "imagesTr/amos_0242.nii.gz", + "label": "labelsTr/amos_0242.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0242/amos_0242_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0023.nii.gz", + "pseudo_label": "imagesTr/amos_0023.nii.gz", + "label": "labelsTr/amos_0023.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0023/amos_0023_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0042.nii.gz", + "pseudo_label": "imagesTr/amos_0042.nii.gz", + "label": "labelsTr/amos_0042.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0042/amos_0042_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0320.nii.gz", + "pseudo_label": "imagesTr/amos_0320.nii.gz", + "label": "labelsTr/amos_0320.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0320/amos_0320_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0040.nii.gz", + "pseudo_label": "imagesVa/amos_0040.nii.gz", + "label": "labelsVa/amos_0040.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0040/amos_0040_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0033.nii.gz", + "pseudo_label": "imagesTr/amos_0033.nii.gz", + "label": "labelsTr/amos_0033.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0033/amos_0033_seg.nii.gz" + }, + { + "image": "imagesVa/amos_0155.nii.gz", + "pseudo_label": "imagesVa/amos_0155.nii.gz", + "label": "labelsVa/amos_0155.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0155/amos_0155_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0109.nii.gz", + "pseudo_label": "imagesTr/amos_0109.nii.gz", + "label": "labelsTr/amos_0109.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0109/amos_0109_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0276.nii.gz", + "pseudo_label": "imagesTr/amos_0276.nii.gz", + "label": "labelsTr/amos_0276.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0276/amos_0276_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0199.nii.gz", + "pseudo_label": "imagesTr/amos_0199.nii.gz", + "label": "labelsTr/amos_0199.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0199/amos_0199_seg.nii.gz" + }, + { + "image": "imagesTr/amos_0025.nii.gz", + "pseudo_label": "imagesTr/amos_0025.nii.gz", + "label": "labelsTr/amos_0025.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AMOS22_100/amos_0025/amos_0025_seg.nii.gz" + } + ], + "training_transform": [ + { + "_target_": "RandCropByLabelClassesd", + "keys": [ + "@image_key", + "@label_key", + "@pseudo_label_key", + "@label_sv_key" + ], + "label_key": "@pseudo_label_key", + "num_classes": 133, + "num_samples": "@num_patches_per_image", + "spatial_size": "@patch_size", + "ratios": "$tuple(float(i >= 0) for i in range(133))", + "warn": false, + "allow_missing_keys": true + }, + { + "_target_": "RandZoomd", + "keys": [ + "@image_key", + "@label_key", + "@pseudo_label_key", + "@label_sv_key" + ], + "min_zoom": 0.8, + "max_zoom": 1.2, + "mode": [ + "trilinear", + "nearest", + "nearest", + "nearest" + ], + "prob": 0.2, + "allow_missing_keys": true + }, + { + "_target_": "RandSimulateLowResolutiond", + "keys": [ + "@image_key" + ], + "zoom_range": [ + 0.3, + 1 + ], + "prob": 0.2, + "allow_missing_keys": true + }, + { + "_target_": "RandGaussianSmoothd", + "keys": [ + "@image_key" + ], + "prob": 0.2, + "sigma_x": [ + 0.5, + 1.0 + ], + "sigma_y": [ + 0.5, + 1.0 + ], + "sigma_z": [ + 0.5, + 1.0 + ] + }, + { + "_target_": "RandScaleIntensityd", + "keys": [ + "@image_key" + ], + "factors": 0.1, + "prob": 0.2 + }, + { + "_target_": "RandShiftIntensityd", + "keys": [ + "@image_key" + ], + "offsets": 0.1, + "prob": 0.2 + }, + { + "_target_": "RandGaussianNoised", + "keys": [ + "@image_key" + ], + "prob": 0.2, + "mean": 0.0, + "std": 0.2 + } + ], + "label_dict": { + "1": "spleen", + "2": "right kidney", + "3": "left kidney", + "4": "gallbladder", + "5": "esophagus", + "6": "liver", + "7": "stomach", + "8": "aorta", + "9": "inferior vena cava", + "10": "pancreas", + "11": "right adrenal gland", + "12": "left adrenal gland", + "13": "duodenum", + "14": "bladder", + "15": "prostate or uterus" + }, + "original_label_dict": { + "1": "spleen", + "2": "right kidney", + "3": "left kidney", + "4": "gallbladder", + "5": "esophagus", + "6": "liver", + "7": "stomach", + "8": "aorta", + "9": "postcava", + "10": "pancreas", + "11": "right adrenal gland", + "12": "left adrenal gland", + "13": "duodenum", + "14": "bladder", + "15": "prostate or uterus" + }, + "testing": [ + { + "image": "imagesTr/amos_0015.nii.gz", + "label": "labelsTr/amos_0015.nii.gz" + }, + { + "image": "imagesTr/amos_0103.nii.gz", + "label": "labelsTr/amos_0103.nii.gz" + }, + { + "image": "imagesTr/amos_0288.nii.gz", + "label": "labelsTr/amos_0288.nii.gz" + }, + { + "image": "imagesTr/amos_0371.nii.gz", + "label": "labelsTr/amos_0371.nii.gz" + }, + { + "image": "imagesTr/amos_0049.nii.gz", + "label": "labelsTr/amos_0049.nii.gz" + }, + { + "image": "imagesVa/amos_0292.nii.gz", + "label": "labelsVa/amos_0292.nii.gz" + }, + { + "image": "imagesTr/amos_0367.nii.gz", + "label": "labelsTr/amos_0367.nii.gz" + }, + { + "image": "imagesTr/amos_0102.nii.gz", + "label": "labelsTr/amos_0102.nii.gz" + }, + { + "image": "imagesTr/amos_0175.nii.gz", + "label": "labelsTr/amos_0175.nii.gz" + }, + { + "image": "imagesTr/amos_0279.nii.gz", + "label": "labelsTr/amos_0279.nii.gz" + }, + { + "image": "imagesVa/amos_0377.nii.gz", + "label": "labelsVa/amos_0377.nii.gz" + }, + { + "image": "imagesTr/amos_0349.nii.gz", + "label": "labelsTr/amos_0349.nii.gz" + }, + { + "image": "imagesTr/amos_0224.nii.gz", + "label": "labelsTr/amos_0224.nii.gz" + }, + { + "image": "imagesTr/amos_0030.nii.gz", + "label": "labelsTr/amos_0030.nii.gz" + }, + { + "image": "imagesTr/amos_0076.nii.gz", + "label": "labelsTr/amos_0076.nii.gz" + }, + { + "image": "imagesTr/amos_0180.nii.gz", + "label": "labelsTr/amos_0180.nii.gz" + }, + { + "image": "imagesTr/amos_0383.nii.gz", + "label": "labelsTr/amos_0383.nii.gz" + }, + { + "image": "imagesTr/amos_0024.nii.gz", + "label": "labelsTr/amos_0024.nii.gz" + }, + { + "image": "imagesVa/amos_0174.nii.gz", + "label": "labelsVa/amos_0174.nii.gz" + }, + { + "image": "imagesTr/amos_0358.nii.gz", + "label": "labelsTr/amos_0358.nii.gz" + }, + { + "image": "imagesTr/amos_0084.nii.gz", + "label": "labelsTr/amos_0084.nii.gz" + }, + { + "image": "imagesVa/amos_0289.nii.gz", + "label": "labelsVa/amos_0289.nii.gz" + }, + { + "image": "imagesTr/amos_0054.nii.gz", + "label": "labelsTr/amos_0054.nii.gz" + }, + { + "image": "imagesTr/amos_0249.nii.gz", + "label": "labelsTr/amos_0249.nii.gz" + }, + { + "image": "imagesVa/amos_0399.nii.gz", + "label": "labelsVa/amos_0399.nii.gz" + }, + { + "image": "imagesVa/amos_0144.nii.gz", + "label": "labelsVa/amos_0144.nii.gz" + }, + { + "image": "imagesTr/amos_0067.nii.gz", + "label": "labelsTr/amos_0067.nii.gz" + }, + { + "image": "imagesTr/amos_0005.nii.gz", + "label": "labelsTr/amos_0005.nii.gz" + }, + { + "image": "imagesTr/amos_0006.nii.gz", + "label": "labelsTr/amos_0006.nii.gz" + }, + { + "image": "imagesTr/amos_0259.nii.gz", + "label": "labelsTr/amos_0259.nii.gz" + }, + { + "image": "imagesTr/amos_0230.nii.gz", + "label": "labelsTr/amos_0230.nii.gz" + }, + { + "image": "imagesVa/amos_0073.nii.gz", + "label": "labelsVa/amos_0073.nii.gz" + }, + { + "image": "imagesTr/amos_0154.nii.gz", + "label": "labelsTr/amos_0154.nii.gz" + }, + { + "image": "imagesVa/amos_0216.nii.gz", + "label": "labelsVa/amos_0216.nii.gz" + }, + { + "image": "imagesVa/amos_0191.nii.gz", + "label": "labelsVa/amos_0191.nii.gz" + }, + { + "image": "imagesTr/amos_0410.nii.gz", + "label": "labelsTr/amos_0410.nii.gz" + }, + { + "image": "imagesTr/amos_0254.nii.gz", + "label": "labelsTr/amos_0254.nii.gz" + }, + { + "image": "imagesTr/amos_0186.nii.gz", + "label": "labelsTr/amos_0186.nii.gz" + }, + { + "image": "imagesVa/amos_0356.nii.gz", + "label": "labelsVa/amos_0356.nii.gz" + }, + { + "image": "imagesTr/amos_0184.nii.gz", + "label": "labelsTr/amos_0184.nii.gz" + }, + { + "image": "imagesTr/amos_0138.nii.gz", + "label": "labelsTr/amos_0138.nii.gz" + }, + { + "image": "imagesVa/amos_0108.nii.gz", + "label": "labelsVa/amos_0108.nii.gz" + }, + { + "image": "imagesVa/amos_0309.nii.gz", + "label": "labelsVa/amos_0309.nii.gz" + }, + { + "image": "imagesTr/amos_0282.nii.gz", + "label": "labelsTr/amos_0282.nii.gz" + }, + { + "image": "imagesVa/amos_0034.nii.gz", + "label": "labelsVa/amos_0034.nii.gz" + }, + { + "image": "imagesTr/amos_0058.nii.gz", + "label": "labelsTr/amos_0058.nii.gz" + }, + { + "image": "imagesTr/amos_0330.nii.gz", + "label": "labelsTr/amos_0330.nii.gz" + }, + { + "image": "imagesTr/amos_0036.nii.gz", + "label": "labelsTr/amos_0036.nii.gz" + }, + { + "image": "imagesTr/amos_0092.nii.gz", + "label": "labelsTr/amos_0092.nii.gz" + }, + { + "image": "imagesTr/amos_0181.nii.gz", + "label": "labelsTr/amos_0181.nii.gz" + }, + { + "image": "imagesTr/amos_0388.nii.gz", + "label": "labelsTr/amos_0388.nii.gz" + }, + { + "image": "imagesTr/amos_0044.nii.gz", + "label": "labelsTr/amos_0044.nii.gz" + }, + { + "image": "imagesVa/amos_0140.nii.gz", + "label": "labelsVa/amos_0140.nii.gz" + }, + { + "image": "imagesTr/amos_0281.nii.gz", + "label": "labelsTr/amos_0281.nii.gz" + }, + { + "image": "imagesVa/amos_0313.nii.gz", + "label": "labelsVa/amos_0313.nii.gz" + }, + { + "image": "imagesTr/amos_0384.nii.gz", + "label": "labelsTr/amos_0384.nii.gz" + }, + { + "image": "imagesVa/amos_0342.nii.gz", + "label": "labelsVa/amos_0342.nii.gz" + }, + { + "image": "imagesTr/amos_0366.nii.gz", + "label": "labelsTr/amos_0366.nii.gz" + }, + { + "image": "imagesTr/amos_0161.nii.gz", + "label": "labelsTr/amos_0161.nii.gz" + }, + { + "image": "imagesVa/amos_0325.nii.gz", + "label": "labelsVa/amos_0325.nii.gz" + } + ] +} diff --git a/vista3d/data/jsons/AbdomenCT-1K_5_folds.json b/vista3d/data/jsons/AbdomenCT-1K_5_folds.json new file mode 100644 index 0000000..85e8ff3 --- /dev/null +++ b/vista3d/data/jsons/AbdomenCT-1K_5_folds.json @@ -0,0 +1,7151 @@ +{ + "training": [ + { + "image": "AbdomenCT-1K-ImagePart3/Case_00815_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00815_0000.nii.gz", + "label": "Mask/Case_00815.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00474_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00474_0000.nii.gz", + "label": "Mask/Case_00474.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00931_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00931_0000.nii.gz", + "label": "Mask/Case_00931.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00903_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00903_0000.nii.gz", + "label": "Mask/Case_00903.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00620_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00620_0000.nii.gz", + "label": "Mask/Case_00620.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00136_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00136_0000.nii.gz", + "label": "Mask/Case_00136.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00410_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00410_0000.nii.gz", + "label": "Mask/Case_00410.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00086_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00086_0000.nii.gz", + "label": "Mask/Case_00086.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00194_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00194_0000.nii.gz", + "label": "Mask/Case_00194.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00809_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00809_0000.nii.gz", + "label": "Mask/Case_00809.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00229_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00229_0000.nii.gz", + "label": "Mask/Case_00229.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00839_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00839_0000.nii.gz", + "label": "Mask/Case_00839.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00394_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00394_0000.nii.gz", + "label": "Mask/Case_00394.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00457_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00457_0000.nii.gz", + "label": "Mask/Case_00457.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00418_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00418_0000.nii.gz", + "label": "Mask/Case_00418.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00840_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00840_0000.nii.gz", + "label": "Mask/Case_00840.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00377_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00377_0000.nii.gz", + "label": "Mask/Case_00377.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00823_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00823_0000.nii.gz", + "label": "Mask/Case_00823.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00854_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00854_0000.nii.gz", + "label": "Mask/Case_00854.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01051_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01051_0000.nii.gz", + "label": "Mask/Case_01051.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00040_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00040_0000.nii.gz", + "label": "Mask/Case_00040.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00304_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00304_0000.nii.gz", + "label": "Mask/Case_00304.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00757_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00757_0000.nii.gz", + "label": "Mask/Case_00757.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00639_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00639_0000.nii.gz", + "label": "Mask/Case_00639.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00265_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00265_0000.nii.gz", + "label": "Mask/Case_00265.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01026_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01026_0000.nii.gz", + "label": "Mask/Case_01026.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00954_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00954_0000.nii.gz", + "label": "Mask/Case_00954.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00902_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00902_0000.nii.gz", + "label": "Mask/Case_00902.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00880_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00880_0000.nii.gz", + "label": "Mask/Case_00880.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00230_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00230_0000.nii.gz", + "label": "Mask/Case_00230.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00469_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00469_0000.nii.gz", + "label": "Mask/Case_00469.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00509_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00509_0000.nii.gz", + "label": "Mask/Case_00509.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00776_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00776_0000.nii.gz", + "label": "Mask/Case_00776.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00940_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00940_0000.nii.gz", + "label": "Mask/Case_00940.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00765_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00765_0000.nii.gz", + "label": "Mask/Case_00765.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00551_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00551_0000.nii.gz", + "label": "Mask/Case_00551.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00354_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00354_0000.nii.gz", + "label": "Mask/Case_00354.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00910_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00910_0000.nii.gz", + "label": "Mask/Case_00910.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00795_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00795_0000.nii.gz", + "label": "Mask/Case_00795.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00638_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00638_0000.nii.gz", + "label": "Mask/Case_00638.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00855_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00855_0000.nii.gz", + "label": "Mask/Case_00855.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00759_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00759_0000.nii.gz", + "label": "Mask/Case_00759.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00250_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00250_0000.nii.gz", + "label": "Mask/Case_00250.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00761_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00761_0000.nii.gz", + "label": "Mask/Case_00761.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00549_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00549_0000.nii.gz", + "label": "Mask/Case_00549.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00199_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00199_0000.nii.gz", + "label": "Mask/Case_00199.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00590_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00590_0000.nii.gz", + "label": "Mask/Case_00590.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00374_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00374_0000.nii.gz", + "label": "Mask/Case_00374.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00764_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00764_0000.nii.gz", + "label": "Mask/Case_00764.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00700_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00700_0000.nii.gz", + "label": "Mask/Case_00700.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00142_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00142_0000.nii.gz", + "label": "Mask/Case_00142.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00844_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00844_0000.nii.gz", + "label": "Mask/Case_00844.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00794_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00794_0000.nii.gz", + "label": "Mask/Case_00794.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00634_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00634_0000.nii.gz", + "label": "Mask/Case_00634.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00832_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00832_0000.nii.gz", + "label": "Mask/Case_00832.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01000_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01000_0000.nii.gz", + "label": "Mask/Case_01000.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00268_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00268_0000.nii.gz", + "label": "Mask/Case_00268.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00296_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00296_0000.nii.gz", + "label": "Mask/Case_00296.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00911_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00911_0000.nii.gz", + "label": "Mask/Case_00911.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00407_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00407_0000.nii.gz", + "label": "Mask/Case_00407.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00476_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00476_0000.nii.gz", + "label": "Mask/Case_00476.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00690_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00690_0000.nii.gz", + "label": "Mask/Case_00690.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00053_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00053_0000.nii.gz", + "label": "Mask/Case_00053.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00323_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00323_0000.nii.gz", + "label": "Mask/Case_00323.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00200_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00200_0000.nii.gz", + "label": "Mask/Case_00200.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00452_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00452_0000.nii.gz", + "label": "Mask/Case_00452.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00557_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00557_0000.nii.gz", + "label": "Mask/Case_00557.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00574_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00574_0000.nii.gz", + "label": "Mask/Case_00574.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00294_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00294_0000.nii.gz", + "label": "Mask/Case_00294.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01025_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01025_0000.nii.gz", + "label": "Mask/Case_01025.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00486_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00486_0000.nii.gz", + "label": "Mask/Case_00486.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00270_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00270_0000.nii.gz", + "label": "Mask/Case_00270.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01010_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01010_0000.nii.gz", + "label": "Mask/Case_01010.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00093_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00093_0000.nii.gz", + "label": "Mask/Case_00093.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00395_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00395_0000.nii.gz", + "label": "Mask/Case_00395.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00327_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00327_0000.nii.gz", + "label": "Mask/Case_00327.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00500_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00500_0000.nii.gz", + "label": "Mask/Case_00500.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00790_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00790_0000.nii.gz", + "label": "Mask/Case_00790.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00987_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00987_0000.nii.gz", + "label": "Mask/Case_00987.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00939_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00939_0000.nii.gz", + "label": "Mask/Case_00939.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01034_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01034_0000.nii.gz", + "label": "Mask/Case_01034.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00556_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00556_0000.nii.gz", + "label": "Mask/Case_00556.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00442_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00442_0000.nii.gz", + "label": "Mask/Case_00442.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00201_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00201_0000.nii.gz", + "label": "Mask/Case_00201.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00953_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00953_0000.nii.gz", + "label": "Mask/Case_00953.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00884_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00884_0000.nii.gz", + "label": "Mask/Case_00884.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00143_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00143_0000.nii.gz", + "label": "Mask/Case_00143.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00609_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00609_0000.nii.gz", + "label": "Mask/Case_00609.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00516_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00516_0000.nii.gz", + "label": "Mask/Case_00516.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00181_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00181_0000.nii.gz", + "label": "Mask/Case_00181.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00720_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00720_0000.nii.gz", + "label": "Mask/Case_00720.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00976_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00976_0000.nii.gz", + "label": "Mask/Case_00976.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00499_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00499_0000.nii.gz", + "label": "Mask/Case_00499.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00148_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00148_0000.nii.gz", + "label": "Mask/Case_00148.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00471_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00471_0000.nii.gz", + "label": "Mask/Case_00471.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00371_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00371_0000.nii.gz", + "label": "Mask/Case_00371.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00998_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00998_0000.nii.gz", + "label": "Mask/Case_00998.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00862_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00862_0000.nii.gz", + "label": "Mask/Case_00862.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00337_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00337_0000.nii.gz", + "label": "Mask/Case_00337.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00047_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00047_0000.nii.gz", + "label": "Mask/Case_00047.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00751_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00751_0000.nii.gz", + "label": "Mask/Case_00751.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00878_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00878_0000.nii.gz", + "label": "Mask/Case_00878.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00586_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00586_0000.nii.gz", + "label": "Mask/Case_00586.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00658_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00658_0000.nii.gz", + "label": "Mask/Case_00658.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00427_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00427_0000.nii.gz", + "label": "Mask/Case_00427.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00428_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00428_0000.nii.gz", + "label": "Mask/Case_00428.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00967_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00967_0000.nii.gz", + "label": "Mask/Case_00967.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00666_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00666_0000.nii.gz", + "label": "Mask/Case_00666.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00719_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00719_0000.nii.gz", + "label": "Mask/Case_00719.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00973_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00973_0000.nii.gz", + "label": "Mask/Case_00973.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00172_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00172_0000.nii.gz", + "label": "Mask/Case_00172.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00949_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00949_0000.nii.gz", + "label": "Mask/Case_00949.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00411_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00411_0000.nii.gz", + "label": "Mask/Case_00411.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00366_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00366_0000.nii.gz", + "label": "Mask/Case_00366.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00914_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00914_0000.nii.gz", + "label": "Mask/Case_00914.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00400_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00400_0000.nii.gz", + "label": "Mask/Case_00400.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00223_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00223_0000.nii.gz", + "label": "Mask/Case_00223.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00673_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00673_0000.nii.gz", + "label": "Mask/Case_00673.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00406_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00406_0000.nii.gz", + "label": "Mask/Case_00406.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00401_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00401_0000.nii.gz", + "label": "Mask/Case_00401.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00702_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00702_0000.nii.gz", + "label": "Mask/Case_00702.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00293_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00293_0000.nii.gz", + "label": "Mask/Case_00293.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00591_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00591_0000.nii.gz", + "label": "Mask/Case_00591.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00986_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00986_0000.nii.gz", + "label": "Mask/Case_00986.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00946_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00946_0000.nii.gz", + "label": "Mask/Case_00946.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00069_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00069_0000.nii.gz", + "label": "Mask/Case_00069.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00536_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00536_0000.nii.gz", + "label": "Mask/Case_00536.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00508_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00508_0000.nii.gz", + "label": "Mask/Case_00508.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00174_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00174_0000.nii.gz", + "label": "Mask/Case_00174.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00056_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00056_0000.nii.gz", + "label": "Mask/Case_00056.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00798_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00798_0000.nii.gz", + "label": "Mask/Case_00798.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00695_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00695_0000.nii.gz", + "label": "Mask/Case_00695.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00385_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00385_0000.nii.gz", + "label": "Mask/Case_00385.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00843_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00843_0000.nii.gz", + "label": "Mask/Case_00843.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00359_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00359_0000.nii.gz", + "label": "Mask/Case_00359.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00338_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00338_0000.nii.gz", + "label": "Mask/Case_00338.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00868_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00868_0000.nii.gz", + "label": "Mask/Case_00868.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00571_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00571_0000.nii.gz", + "label": "Mask/Case_00571.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00333_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00333_0000.nii.gz", + "label": "Mask/Case_00333.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00511_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00511_0000.nii.gz", + "label": "Mask/Case_00511.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00126_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00126_0000.nii.gz", + "label": "Mask/Case_00126.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00466_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00466_0000.nii.gz", + "label": "Mask/Case_00466.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00793_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00793_0000.nii.gz", + "label": "Mask/Case_00793.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00772_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00772_0000.nii.gz", + "label": "Mask/Case_00772.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00928_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00928_0000.nii.gz", + "label": "Mask/Case_00928.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00254_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00254_0000.nii.gz", + "label": "Mask/Case_00254.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00612_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00612_0000.nii.gz", + "label": "Mask/Case_00612.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00024_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00024_0000.nii.gz", + "label": "Mask/Case_00024.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00930_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00930_0000.nii.gz", + "label": "Mask/Case_00930.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00882_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00882_0000.nii.gz", + "label": "Mask/Case_00882.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00981_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00981_0000.nii.gz", + "label": "Mask/Case_00981.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00951_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00951_0000.nii.gz", + "label": "Mask/Case_00951.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00829_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00829_0000.nii.gz", + "label": "Mask/Case_00829.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00068_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00068_0000.nii.gz", + "label": "Mask/Case_00068.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00116_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00116_0000.nii.gz", + "label": "Mask/Case_00116.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00905_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00905_0000.nii.gz", + "label": "Mask/Case_00905.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00261_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00261_0000.nii.gz", + "label": "Mask/Case_00261.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00568_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00568_0000.nii.gz", + "label": "Mask/Case_00568.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00728_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00728_0000.nii.gz", + "label": "Mask/Case_00728.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00314_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00314_0000.nii.gz", + "label": "Mask/Case_00314.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00403_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00403_0000.nii.gz", + "label": "Mask/Case_00403.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00403_0000/Case_00403_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00290_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00290_0000.nii.gz", + "label": "Mask/Case_00290.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00290_0000/Case_00290_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00140_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00140_0000.nii.gz", + "label": "Mask/Case_00140.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00140_0000/Case_00140_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00198_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00198_0000.nii.gz", + "label": "Mask/Case_00198.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00198_0000/Case_00198_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00470_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00470_0000.nii.gz", + "label": "Mask/Case_00470.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00470_0000/Case_00470_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00713_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00713_0000.nii.gz", + "label": "Mask/Case_00713.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00713_0000/Case_00713_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01002_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01002_0000.nii.gz", + "label": "Mask/Case_01002.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01002_0000/Case_01002_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00894_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00894_0000.nii.gz", + "label": "Mask/Case_00894.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00894_0000/Case_00894_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00167_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00167_0000.nii.gz", + "label": "Mask/Case_00167.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00167_0000/Case_00167_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00679_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00679_0000.nii.gz", + "label": "Mask/Case_00679.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00679_0000/Case_00679_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00164_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00164_0000.nii.gz", + "label": "Mask/Case_00164.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00164_0000/Case_00164_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00995_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00995_0000.nii.gz", + "label": "Mask/Case_00995.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00995_0000/Case_00995_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00520_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00520_0000.nii.gz", + "label": "Mask/Case_00520.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00520_0000/Case_00520_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00770_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00770_0000.nii.gz", + "label": "Mask/Case_00770.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00770_0000/Case_00770_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00787_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00787_0000.nii.gz", + "label": "Mask/Case_00787.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00787_0000/Case_00787_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00686_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00686_0000.nii.gz", + "label": "Mask/Case_00686.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00686_0000/Case_00686_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00613_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00613_0000.nii.gz", + "label": "Mask/Case_00613.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00613_0000/Case_00613_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00021_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00021_0000.nii.gz", + "label": "Mask/Case_00021.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00021_0000/Case_00021_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00259_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00259_0000.nii.gz", + "label": "Mask/Case_00259.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00259_0000/Case_00259_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00836_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00836_0000.nii.gz", + "label": "Mask/Case_00836.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00836_0000/Case_00836_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00493_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00493_0000.nii.gz", + "label": "Mask/Case_00493.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00493_0000/Case_00493_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00621_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00621_0000.nii.gz", + "label": "Mask/Case_00621.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00621_0000/Case_00621_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00984_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00984_0000.nii.gz", + "label": "Mask/Case_00984.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00984_0000/Case_00984_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00436_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00436_0000.nii.gz", + "label": "Mask/Case_00436.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00436_0000/Case_00436_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00180_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00180_0000.nii.gz", + "label": "Mask/Case_00180.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00180_0000/Case_00180_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00929_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00929_0000.nii.gz", + "label": "Mask/Case_00929.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00929_0000/Case_00929_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00190_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00190_0000.nii.gz", + "label": "Mask/Case_00190.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00190_0000/Case_00190_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00623_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00623_0000.nii.gz", + "label": "Mask/Case_00623.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00623_0000/Case_00623_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00419_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00419_0000.nii.gz", + "label": "Mask/Case_00419.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00419_0000/Case_00419_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00582_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00582_0000.nii.gz", + "label": "Mask/Case_00582.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00582_0000/Case_00582_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00245_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00245_0000.nii.gz", + "label": "Mask/Case_00245.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00245_0000/Case_00245_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00216_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00216_0000.nii.gz", + "label": "Mask/Case_00216.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00216_0000/Case_00216_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00993_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00993_0000.nii.gz", + "label": "Mask/Case_00993.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00993_0000/Case_00993_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00298_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00298_0000.nii.gz", + "label": "Mask/Case_00298.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00298_0000/Case_00298_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00441_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00441_0000.nii.gz", + "label": "Mask/Case_00441.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00441_0000/Case_00441_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00153_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00153_0000.nii.gz", + "label": "Mask/Case_00153.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00153_0000/Case_00153_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00213_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00213_0000.nii.gz", + "label": "Mask/Case_00213.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00213_0000/Case_00213_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00950_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00950_0000.nii.gz", + "label": "Mask/Case_00950.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00950_0000/Case_00950_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00355_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00355_0000.nii.gz", + "label": "Mask/Case_00355.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00355_0000/Case_00355_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00900_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00900_0000.nii.gz", + "label": "Mask/Case_00900.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00900_0000/Case_00900_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00388_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00388_0000.nii.gz", + "label": "Mask/Case_00388.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00388_0000/Case_00388_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00248_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00248_0000.nii.gz", + "label": "Mask/Case_00248.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00248_0000/Case_00248_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00036_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00036_0000.nii.gz", + "label": "Mask/Case_00036.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00036_0000/Case_00036_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00092_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00092_0000.nii.gz", + "label": "Mask/Case_00092.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00092_0000/Case_00092_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00206_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00206_0000.nii.gz", + "label": "Mask/Case_00206.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00206_0000/Case_00206_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00413_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00413_0000.nii.gz", + "label": "Mask/Case_00413.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00413_0000/Case_00413_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00852_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00852_0000.nii.gz", + "label": "Mask/Case_00852.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00852_0000/Case_00852_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00575_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00575_0000.nii.gz", + "label": "Mask/Case_00575.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00575_0000/Case_00575_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00184_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00184_0000.nii.gz", + "label": "Mask/Case_00184.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00184_0000/Case_00184_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00055_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00055_0000.nii.gz", + "label": "Mask/Case_00055.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00055_0000/Case_00055_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00108_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00108_0000.nii.gz", + "label": "Mask/Case_00108.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00108_0000/Case_00108_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00207_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00207_0000.nii.gz", + "label": "Mask/Case_00207.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00207_0000/Case_00207_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00015_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00015_0000.nii.gz", + "label": "Mask/Case_00015.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00015_0000/Case_00015_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00870_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00870_0000.nii.gz", + "label": "Mask/Case_00870.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00870_0000/Case_00870_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01044_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01044_0000.nii.gz", + "label": "Mask/Case_01044.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01044_0000/Case_01044_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00186_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00186_0000.nii.gz", + "label": "Mask/Case_00186.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00186_0000/Case_00186_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00525_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00525_0000.nii.gz", + "label": "Mask/Case_00525.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00525_0000/Case_00525_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00166_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00166_0000.nii.gz", + "label": "Mask/Case_00166.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00166_0000/Case_00166_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00796_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00796_0000.nii.gz", + "label": "Mask/Case_00796.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00796_0000/Case_00796_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00054_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00054_0000.nii.gz", + "label": "Mask/Case_00054.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00054_0000/Case_00054_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00871_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00871_0000.nii.gz", + "label": "Mask/Case_00871.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00871_0000/Case_00871_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00569_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00569_0000.nii.gz", + "label": "Mask/Case_00569.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00569_0000/Case_00569_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00225_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00225_0000.nii.gz", + "label": "Mask/Case_00225.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00225_0000/Case_00225_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00232_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00232_0000.nii.gz", + "label": "Mask/Case_00232.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00232_0000/Case_00232_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00831_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00831_0000.nii.gz", + "label": "Mask/Case_00831.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00831_0000/Case_00831_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00714_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00714_0000.nii.gz", + "label": "Mask/Case_00714.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00714_0000/Case_00714_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00382_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00382_0000.nii.gz", + "label": "Mask/Case_00382.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00382_0000/Case_00382_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00771_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00771_0000.nii.gz", + "label": "Mask/Case_00771.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00771_0000/Case_00771_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01058_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01058_0000.nii.gz", + "label": "Mask/Case_01058.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01058_0000/Case_01058_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00432_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00432_0000.nii.gz", + "label": "Mask/Case_00432.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00432_0000/Case_00432_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00994_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00994_0000.nii.gz", + "label": "Mask/Case_00994.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00994_0000/Case_00994_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00683_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00683_0000.nii.gz", + "label": "Mask/Case_00683.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00683_0000/Case_00683_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00849_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00849_0000.nii.gz", + "label": "Mask/Case_00849.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00849_0000/Case_00849_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00753_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00753_0000.nii.gz", + "label": "Mask/Case_00753.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00753_0000/Case_00753_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00482_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00482_0000.nii.gz", + "label": "Mask/Case_00482.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00482_0000/Case_00482_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00343_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00343_0000.nii.gz", + "label": "Mask/Case_00343.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00343_0000/Case_00343_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00018_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00018_0000.nii.gz", + "label": "Mask/Case_00018.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00018_0000/Case_00018_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00440_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00440_0000.nii.gz", + "label": "Mask/Case_00440.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00440_0000/Case_00440_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00097_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00097_0000.nii.gz", + "label": "Mask/Case_00097.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00097_0000/Case_00097_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00307_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00307_0000.nii.gz", + "label": "Mask/Case_00307.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00307_0000/Case_00307_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00266_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00266_0000.nii.gz", + "label": "Mask/Case_00266.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00266_0000/Case_00266_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00280_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00280_0000.nii.gz", + "label": "Mask/Case_00280.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00280_0000/Case_00280_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00926_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00926_0000.nii.gz", + "label": "Mask/Case_00926.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00926_0000/Case_00926_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00238_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00238_0000.nii.gz", + "label": "Mask/Case_00238.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00238_0000/Case_00238_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00835_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00835_0000.nii.gz", + "label": "Mask/Case_00835.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00835_0000/Case_00835_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00278_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00278_0000.nii.gz", + "label": "Mask/Case_00278.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00278_0000/Case_00278_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00941_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00941_0000.nii.gz", + "label": "Mask/Case_00941.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00941_0000/Case_00941_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00768_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00768_0000.nii.gz", + "label": "Mask/Case_00768.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00768_0000/Case_00768_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00599_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00599_0000.nii.gz", + "label": "Mask/Case_00599.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00599_0000/Case_00599_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00063_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00063_0000.nii.gz", + "label": "Mask/Case_00063.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00063_0000/Case_00063_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00074_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00074_0000.nii.gz", + "label": "Mask/Case_00074.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00074_0000/Case_00074_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00550_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00550_0000.nii.gz", + "label": "Mask/Case_00550.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00550_0000/Case_00550_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00279_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00279_0000.nii.gz", + "label": "Mask/Case_00279.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00279_0000/Case_00279_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00906_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00906_0000.nii.gz", + "label": "Mask/Case_00906.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00906_0000/Case_00906_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00824_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00824_0000.nii.gz", + "label": "Mask/Case_00824.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00824_0000/Case_00824_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00389_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00389_0000.nii.gz", + "label": "Mask/Case_00389.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00389_0000/Case_00389_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00602_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00602_0000.nii.gz", + "label": "Mask/Case_00602.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00602_0000/Case_00602_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00501_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00501_0000.nii.gz", + "label": "Mask/Case_00501.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00501_0000/Case_00501_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00426_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00426_0000.nii.gz", + "label": "Mask/Case_00426.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00426_0000/Case_00426_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00039_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00039_0000.nii.gz", + "label": "Mask/Case_00039.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00039_0000/Case_00039_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00546_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00546_0000.nii.gz", + "label": "Mask/Case_00546.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00546_0000/Case_00546_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01011_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01011_0000.nii.gz", + "label": "Mask/Case_01011.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01011_0000/Case_01011_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01048_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01048_0000.nii.gz", + "label": "Mask/Case_01048.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01048_0000/Case_01048_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01024_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01024_0000.nii.gz", + "label": "Mask/Case_01024.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01024_0000/Case_01024_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00539_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00539_0000.nii.gz", + "label": "Mask/Case_00539.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00539_0000/Case_00539_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00247_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00247_0000.nii.gz", + "label": "Mask/Case_00247.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00247_0000/Case_00247_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00646_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00646_0000.nii.gz", + "label": "Mask/Case_00646.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00646_0000/Case_00646_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00362_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00362_0000.nii.gz", + "label": "Mask/Case_00362.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00362_0000/Case_00362_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01057_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01057_0000.nii.gz", + "label": "Mask/Case_01057.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01057_0000/Case_01057_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00083_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00083_0000.nii.gz", + "label": "Mask/Case_00083.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00083_0000/Case_00083_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00813_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00813_0000.nii.gz", + "label": "Mask/Case_00813.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00813_0000/Case_00813_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00283_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00283_0000.nii.gz", + "label": "Mask/Case_00283.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00283_0000/Case_00283_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00958_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00958_0000.nii.gz", + "label": "Mask/Case_00958.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00958_0000/Case_00958_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00368_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00368_0000.nii.gz", + "label": "Mask/Case_00368.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00368_0000/Case_00368_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00827_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00827_0000.nii.gz", + "label": "Mask/Case_00827.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00827_0000/Case_00827_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00026_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00026_0000.nii.gz", + "label": "Mask/Case_00026.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00026_0000/Case_00026_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00632_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00632_0000.nii.gz", + "label": "Mask/Case_00632.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00632_0000/Case_00632_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00449_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00449_0000.nii.gz", + "label": "Mask/Case_00449.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00449_0000/Case_00449_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01008_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01008_0000.nii.gz", + "label": "Mask/Case_01008.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01008_0000/Case_01008_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00680_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00680_0000.nii.gz", + "label": "Mask/Case_00680.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00680_0000/Case_00680_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00435_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00435_0000.nii.gz", + "label": "Mask/Case_00435.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00435_0000/Case_00435_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00085_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00085_0000.nii.gz", + "label": "Mask/Case_00085.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00085_0000/Case_00085_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00583_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00583_0000.nii.gz", + "label": "Mask/Case_00583.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00583_0000/Case_00583_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00423_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00423_0000.nii.gz", + "label": "Mask/Case_00423.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00423_0000/Case_00423_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00895_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00895_0000.nii.gz", + "label": "Mask/Case_00895.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00895_0000/Case_00895_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00178_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00178_0000.nii.gz", + "label": "Mask/Case_00178.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00178_0000/Case_00178_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00699_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00699_0000.nii.gz", + "label": "Mask/Case_00699.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00699_0000/Case_00699_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00008_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00008_0000.nii.gz", + "label": "Mask/Case_00008.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00008_0000/Case_00008_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00019_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00019_0000.nii.gz", + "label": "Mask/Case_00019.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00019_0000/Case_00019_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01003_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01003_0000.nii.gz", + "label": "Mask/Case_01003.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01003_0000/Case_01003_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00738_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00738_0000.nii.gz", + "label": "Mask/Case_00738.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00738_0000/Case_00738_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00168_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00168_0000.nii.gz", + "label": "Mask/Case_00168.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00168_0000/Case_00168_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00532_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00532_0000.nii.gz", + "label": "Mask/Case_00532.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00532_0000/Case_00532_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00065_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00065_0000.nii.gz", + "label": "Mask/Case_00065.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00065_0000/Case_00065_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00045_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00045_0000.nii.gz", + "label": "Mask/Case_00045.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00045_0000/Case_00045_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00348_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00348_0000.nii.gz", + "label": "Mask/Case_00348.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00348_0000/Case_00348_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00887_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00887_0000.nii.gz", + "label": "Mask/Case_00887.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00887_0000/Case_00887_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00129_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00129_0000.nii.gz", + "label": "Mask/Case_00129.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00129_0000/Case_00129_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00163_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00163_0000.nii.gz", + "label": "Mask/Case_00163.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00163_0000/Case_00163_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00121_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00121_0000.nii.gz", + "label": "Mask/Case_00121.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00121_0000/Case_00121_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00012_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00012_0000.nii.gz", + "label": "Mask/Case_00012.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00012_0000/Case_00012_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00999_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00999_0000.nii.gz", + "label": "Mask/Case_00999.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00999_0000/Case_00999_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00221_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00221_0000.nii.gz", + "label": "Mask/Case_00221.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00221_0000/Case_00221_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00883_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00883_0000.nii.gz", + "label": "Mask/Case_00883.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00883_0000/Case_00883_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01043_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01043_0000.nii.gz", + "label": "Mask/Case_01043.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01043_0000/Case_01043_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00094_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00094_0000.nii.gz", + "label": "Mask/Case_00094.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00094_0000/Case_00094_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00311_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00311_0000.nii.gz", + "label": "Mask/Case_00311.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00311_0000/Case_00311_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00587_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00587_0000.nii.gz", + "label": "Mask/Case_00587.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00587_0000/Case_00587_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01005_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01005_0000.nii.gz", + "label": "Mask/Case_01005.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01005_0000/Case_01005_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00154_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00154_0000.nii.gz", + "label": "Mask/Case_00154.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00154_0000/Case_00154_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00523_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00523_0000.nii.gz", + "label": "Mask/Case_00523.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00523_0000/Case_00523_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00147_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00147_0000.nii.gz", + "label": "Mask/Case_00147.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00147_0000/Case_00147_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00766_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00766_0000.nii.gz", + "label": "Mask/Case_00766.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00766_0000/Case_00766_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00712_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00712_0000.nii.gz", + "label": "Mask/Case_00712.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00712_0000/Case_00712_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00340_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00340_0000.nii.gz", + "label": "Mask/Case_00340.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00340_0000/Case_00340_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00465_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00465_0000.nii.gz", + "label": "Mask/Case_00465.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00465_0000/Case_00465_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00521_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00521_0000.nii.gz", + "label": "Mask/Case_00521.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00521_0000/Case_00521_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00077_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00077_0000.nii.gz", + "label": "Mask/Case_00077.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00077_0000/Case_00077_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00923_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00923_0000.nii.gz", + "label": "Mask/Case_00923.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00923_0000/Case_00923_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00879_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00879_0000.nii.gz", + "label": "Mask/Case_00879.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00879_0000/Case_00879_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00315_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00315_0000.nii.gz", + "label": "Mask/Case_00315.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00315_0000/Case_00315_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00139_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00139_0000.nii.gz", + "label": "Mask/Case_00139.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00139_0000/Case_00139_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00503_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00503_0000.nii.gz", + "label": "Mask/Case_00503.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00503_0000/Case_00503_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01060_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01060_0000.nii.gz", + "label": "Mask/Case_01060.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01060_0000/Case_01060_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00773_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00773_0000.nii.gz", + "label": "Mask/Case_00773.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00773_0000/Case_00773_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00369_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00369_0000.nii.gz", + "label": "Mask/Case_00369.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00369_0000/Case_00369_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00059_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00059_0000.nii.gz", + "label": "Mask/Case_00059.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00059_0000/Case_00059_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00652_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00652_0000.nii.gz", + "label": "Mask/Case_00652.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00652_0000/Case_00652_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00170_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00170_0000.nii.gz", + "label": "Mask/Case_00170.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00170_0000/Case_00170_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00202_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00202_0000.nii.gz", + "label": "Mask/Case_00202.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00202_0000/Case_00202_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00974_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00974_0000.nii.gz", + "label": "Mask/Case_00974.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00974_0000/Case_00974_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00622_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00622_0000.nii.gz", + "label": "Mask/Case_00622.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00622_0000/Case_00622_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00988_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00988_0000.nii.gz", + "label": "Mask/Case_00988.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00988_0000/Case_00988_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00431_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00431_0000.nii.gz", + "label": "Mask/Case_00431.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00431_0000/Case_00431_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00717_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00717_0000.nii.gz", + "label": "Mask/Case_00717.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00717_0000/Case_00717_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00162_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00162_0000.nii.gz", + "label": "Mask/Case_00162.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00162_0000/Case_00162_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00919_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00919_0000.nii.gz", + "label": "Mask/Case_00919.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00919_0000/Case_00919_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00671_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00671_0000.nii.gz", + "label": "Mask/Case_00671.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00671_0000/Case_00671_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00297_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00297_0000.nii.gz", + "label": "Mask/Case_00297.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00297_0000/Case_00297_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00802_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00802_0000.nii.gz", + "label": "Mask/Case_00802.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00802_0000/Case_00802_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00661_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00661_0000.nii.gz", + "label": "Mask/Case_00661.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00661_0000/Case_00661_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00504_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00504_0000.nii.gz", + "label": "Mask/Case_00504.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00504_0000/Case_00504_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00072_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00072_0000.nii.gz", + "label": "Mask/Case_00072.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00072_0000/Case_00072_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00171_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00171_0000.nii.gz", + "label": "Mask/Case_00171.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00171_0000/Case_00171_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01036_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01036_0000.nii.gz", + "label": "Mask/Case_01036.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01036_0000/Case_01036_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00079_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00079_0000.nii.gz", + "label": "Mask/Case_00079.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00079_0000/Case_00079_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00242_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00242_0000.nii.gz", + "label": "Mask/Case_00242.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00242_0000/Case_00242_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00080_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00080_0000.nii.gz", + "label": "Mask/Case_00080.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00080_0000/Case_00080_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00034_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00034_0000.nii.gz", + "label": "Mask/Case_00034.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00034_0000/Case_00034_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00300_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00300_0000.nii.gz", + "label": "Mask/Case_00300.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00300_0000/Case_00300_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00420_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00420_0000.nii.gz", + "label": "Mask/Case_00420.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00420_0000/Case_00420_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01062_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01062_0000.nii.gz", + "label": "Mask/Case_01062.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01062_0000/Case_01062_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00826_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00826_0000.nii.gz", + "label": "Mask/Case_00826.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00826_0000/Case_00826_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00367_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00367_0000.nii.gz", + "label": "Mask/Case_00367.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00367_0000/Case_00367_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01056_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01056_0000.nii.gz", + "label": "Mask/Case_01056.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01056_0000/Case_01056_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00312_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00312_0000.nii.gz", + "label": "Mask/Case_00312.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00312_0000/Case_00312_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00992_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00992_0000.nii.gz", + "label": "Mask/Case_00992.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00992_0000/Case_00992_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00212_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00212_0000.nii.gz", + "label": "Mask/Case_00212.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00212_0000/Case_00212_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01031_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01031_0000.nii.gz", + "label": "Mask/Case_01031.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01031_0000/Case_01031_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00580_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00580_0000.nii.gz", + "label": "Mask/Case_00580.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00580_0000/Case_00580_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00341_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00341_0000.nii.gz", + "label": "Mask/Case_00341.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00341_0000/Case_00341_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00726_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00726_0000.nii.gz", + "label": "Mask/Case_00726.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00726_0000/Case_00726_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00519_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00519_0000.nii.gz", + "label": "Mask/Case_00519.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00519_0000/Case_00519_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00942_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00942_0000.nii.gz", + "label": "Mask/Case_00942.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00942_0000/Case_00942_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00342_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00342_0000.nii.gz", + "label": "Mask/Case_00342.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00342_0000/Case_00342_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00347_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00347_0000.nii.gz", + "label": "Mask/Case_00347.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00347_0000/Case_00347_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00005_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00005_0000.nii.gz", + "label": "Mask/Case_00005.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00005_0000/Case_00005_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00070_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00070_0000.nii.gz", + "label": "Mask/Case_00070.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00070_0000/Case_00070_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00138_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00138_0000.nii.gz", + "label": "Mask/Case_00138.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00138_0000/Case_00138_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00462_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00462_0000.nii.gz", + "label": "Mask/Case_00462.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00462_0000/Case_00462_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00692_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00692_0000.nii.gz", + "label": "Mask/Case_00692.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00692_0000/Case_00692_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01055_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01055_0000.nii.gz", + "label": "Mask/Case_01055.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01055_0000/Case_01055_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00904_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00904_0000.nii.gz", + "label": "Mask/Case_00904.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00904_0000/Case_00904_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00244_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00244_0000.nii.gz", + "label": "Mask/Case_00244.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00244_0000/Case_00244_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00349_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00349_0000.nii.gz", + "label": "Mask/Case_00349.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00349_0000/Case_00349_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00322_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00322_0000.nii.gz", + "label": "Mask/Case_00322.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00322_0000/Case_00322_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00577_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00577_0000.nii.gz", + "label": "Mask/Case_00577.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00577_0000/Case_00577_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00445_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00445_0000.nii.gz", + "label": "Mask/Case_00445.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00445_0000/Case_00445_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00522_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00522_0000.nii.gz", + "label": "Mask/Case_00522.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00522_0000/Case_00522_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00860_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00860_0000.nii.gz", + "label": "Mask/Case_00860.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00860_0000/Case_00860_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00081_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00081_0000.nii.gz", + "label": "Mask/Case_00081.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00081_0000/Case_00081_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00203_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00203_0000.nii.gz", + "label": "Mask/Case_00203.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00203_0000/Case_00203_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01014_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01014_0000.nii.gz", + "label": "Mask/Case_01014.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01014_0000/Case_01014_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00780_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00780_0000.nii.gz", + "label": "Mask/Case_00780.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00780_0000/Case_00780_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00454_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00454_0000.nii.gz", + "label": "Mask/Case_00454.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00454_0000/Case_00454_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00396_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00396_0000.nii.gz", + "label": "Mask/Case_00396.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00396_0000/Case_00396_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00594_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00594_0000.nii.gz", + "label": "Mask/Case_00594.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00594_0000/Case_00594_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00060_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00060_0000.nii.gz", + "label": "Mask/Case_00060.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00060_0000/Case_00060_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00589_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00589_0000.nii.gz", + "label": "Mask/Case_00589.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00589_0000/Case_00589_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00709_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00709_0000.nii.gz", + "label": "Mask/Case_00709.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00709_0000/Case_00709_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00945_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00945_0000.nii.gz", + "label": "Mask/Case_00945.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00945_0000/Case_00945_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00286_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00286_0000.nii.gz", + "label": "Mask/Case_00286.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00286_0000/Case_00286_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00618_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00618_0000.nii.gz", + "label": "Mask/Case_00618.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00618_0000/Case_00618_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00197_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00197_0000.nii.gz", + "label": "Mask/Case_00197.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00197_0000/Case_00197_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00876_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00876_0000.nii.gz", + "label": "Mask/Case_00876.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00876_0000/Case_00876_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01009_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01009_0000.nii.gz", + "label": "Mask/Case_01009.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01009_0000/Case_01009_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00041_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00041_0000.nii.gz", + "label": "Mask/Case_00041.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00041_0000/Case_00041_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00144_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00144_0000.nii.gz", + "label": "Mask/Case_00144.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00144_0000/Case_00144_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00818_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00818_0000.nii.gz", + "label": "Mask/Case_00818.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00818_0000/Case_00818_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00302_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00302_0000.nii.gz", + "label": "Mask/Case_00302.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00302_0000/Case_00302_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00989_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00989_0000.nii.gz", + "label": "Mask/Case_00989.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00989_0000/Case_00989_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00023_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00023_0000.nii.gz", + "label": "Mask/Case_00023.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00023_0000/Case_00023_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00430_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00430_0000.nii.gz", + "label": "Mask/Case_00430.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00430_0000/Case_00430_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00215_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00215_0000.nii.gz", + "label": "Mask/Case_00215.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00215_0000/Case_00215_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00808_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00808_0000.nii.gz", + "label": "Mask/Case_00808.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00808_0000/Case_00808_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00331_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00331_0000.nii.gz", + "label": "Mask/Case_00331.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00331_0000/Case_00331_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00562_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00562_0000.nii.gz", + "label": "Mask/Case_00562.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00562_0000/Case_00562_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00979_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00979_0000.nii.gz", + "label": "Mask/Case_00979.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00979_0000/Case_00979_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00329_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00329_0000.nii.gz", + "label": "Mask/Case_00329.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00329_0000/Case_00329_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00786_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00786_0000.nii.gz", + "label": "Mask/Case_00786.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00786_0000/Case_00786_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00112_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00112_0000.nii.gz", + "label": "Mask/Case_00112.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00112_0000/Case_00112_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00319_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00319_0000.nii.gz", + "label": "Mask/Case_00319.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00319_0000/Case_00319_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00952_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00952_0000.nii.gz", + "label": "Mask/Case_00952.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00952_0000/Case_00952_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00263_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00263_0000.nii.gz", + "label": "Mask/Case_00263.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00263_0000/Case_00263_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00715_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00715_0000.nii.gz", + "label": "Mask/Case_00715.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00715_0000/Case_00715_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00284_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00284_0000.nii.gz", + "label": "Mask/Case_00284.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00284_0000/Case_00284_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00804_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00804_0000.nii.gz", + "label": "Mask/Case_00804.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00804_0000/Case_00804_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00997_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00997_0000.nii.gz", + "label": "Mask/Case_00997.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00997_0000/Case_00997_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00150_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00150_0000.nii.gz", + "label": "Mask/Case_00150.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00150_0000/Case_00150_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00103_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00103_0000.nii.gz", + "label": "Mask/Case_00103.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00103_0000/Case_00103_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00970_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00970_0000.nii.gz", + "label": "Mask/Case_00970.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00970_0000/Case_00970_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01029_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01029_0000.nii.gz", + "label": "Mask/Case_01029.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01029_0000/Case_01029_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00596_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00596_0000.nii.gz", + "label": "Mask/Case_00596.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00596_0000/Case_00596_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01027_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01027_0000.nii.gz", + "label": "Mask/Case_01027.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01027_0000/Case_01027_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00512_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00512_0000.nii.gz", + "label": "Mask/Case_00512.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00512_0000/Case_00512_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00743_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00743_0000.nii.gz", + "label": "Mask/Case_00743.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00743_0000/Case_00743_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00811_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00811_0000.nii.gz", + "label": "Mask/Case_00811.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00811_0000/Case_00811_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00921_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00921_0000.nii.gz", + "label": "Mask/Case_00921.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00921_0000/Case_00921_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00306_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00306_0000.nii.gz", + "label": "Mask/Case_00306.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00306_0000/Case_00306_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00603_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00603_0000.nii.gz", + "label": "Mask/Case_00603.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00603_0000/Case_00603_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00912_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00912_0000.nii.gz", + "label": "Mask/Case_00912.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00912_0000/Case_00912_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00451_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00451_0000.nii.gz", + "label": "Mask/Case_00451.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00451_0000/Case_00451_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00526_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00526_0000.nii.gz", + "label": "Mask/Case_00526.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00526_0000/Case_00526_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00165_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00165_0000.nii.gz", + "label": "Mask/Case_00165.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00165_0000/Case_00165_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00980_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00980_0000.nii.gz", + "label": "Mask/Case_00980.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00980_0000/Case_00980_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00799_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00799_0000.nii.gz", + "label": "Mask/Case_00799.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00799_0000/Case_00799_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00151_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00151_0000.nii.gz", + "label": "Mask/Case_00151.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00151_0000/Case_00151_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00982_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00982_0000.nii.gz", + "label": "Mask/Case_00982.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00982_0000/Case_00982_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00477_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00477_0000.nii.gz", + "label": "Mask/Case_00477.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00477_0000/Case_00477_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00191_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00191_0000.nii.gz", + "label": "Mask/Case_00191.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00191_0000/Case_00191_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00125_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00125_0000.nii.gz", + "label": "Mask/Case_00125.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00125_0000/Case_00125_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00810_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00810_0000.nii.gz", + "label": "Mask/Case_00810.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00810_0000/Case_00810_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00561_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00561_0000.nii.gz", + "label": "Mask/Case_00561.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00561_0000/Case_00561_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00729_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00729_0000.nii.gz", + "label": "Mask/Case_00729.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00729_0000/Case_00729_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00497_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00497_0000.nii.gz", + "label": "Mask/Case_00497.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00497_0000/Case_00497_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00363_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00363_0000.nii.gz", + "label": "Mask/Case_00363.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00363_0000/Case_00363_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00446_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00446_0000.nii.gz", + "label": "Mask/Case_00446.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00446_0000/Case_00446_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00570_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00570_0000.nii.gz", + "label": "Mask/Case_00570.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00570_0000/Case_00570_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00402_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00402_0000.nii.gz", + "label": "Mask/Case_00402.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00402_0000/Case_00402_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00450_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00450_0000.nii.gz", + "label": "Mask/Case_00450.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00450_0000/Case_00450_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00160_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00160_0000.nii.gz", + "label": "Mask/Case_00160.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00160_0000/Case_00160_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00159_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00159_0000.nii.gz", + "label": "Mask/Case_00159.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00159_0000/Case_00159_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00710_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00710_0000.nii.gz", + "label": "Mask/Case_00710.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00710_0000/Case_00710_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00335_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00335_0000.nii.gz", + "label": "Mask/Case_00335.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00335_0000/Case_00335_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00708_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00708_0000.nii.gz", + "label": "Mask/Case_00708.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00708_0000/Case_00708_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00624_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00624_0000.nii.gz", + "label": "Mask/Case_00624.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00624_0000/Case_00624_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00364_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00364_0000.nii.gz", + "label": "Mask/Case_00364.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00364_0000/Case_00364_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01013_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01013_0000.nii.gz", + "label": "Mask/Case_01013.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01013_0000/Case_01013_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00405_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00405_0000.nii.gz", + "label": "Mask/Case_00405.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00405_0000/Case_00405_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00626_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00626_0000.nii.gz", + "label": "Mask/Case_00626.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00626_0000/Case_00626_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00417_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00417_0000.nii.gz", + "label": "Mask/Case_00417.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00417_0000/Case_00417_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00464_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00464_0000.nii.gz", + "label": "Mask/Case_00464.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00464_0000/Case_00464_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01033_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01033_0000.nii.gz", + "label": "Mask/Case_01033.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01033_0000/Case_01033_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00357_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00357_0000.nii.gz", + "label": "Mask/Case_00357.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00357_0000/Case_00357_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00052_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00052_0000.nii.gz", + "label": "Mask/Case_00052.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00052_0000/Case_00052_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00604_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00604_0000.nii.gz", + "label": "Mask/Case_00604.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00604_0000/Case_00604_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00628_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00628_0000.nii.gz", + "label": "Mask/Case_00628.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00628_0000/Case_00628_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00433_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00433_0000.nii.gz", + "label": "Mask/Case_00433.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00433_0000/Case_00433_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00285_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00285_0000.nii.gz", + "label": "Mask/Case_00285.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00285_0000/Case_00285_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00985_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00985_0000.nii.gz", + "label": "Mask/Case_00985.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00985_0000/Case_00985_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00927_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00927_0000.nii.gz", + "label": "Mask/Case_00927.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00927_0000/Case_00927_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00344_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00344_0000.nii.gz", + "label": "Mask/Case_00344.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00344_0000/Case_00344_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00009_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00009_0000.nii.gz", + "label": "Mask/Case_00009.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00009_0000/Case_00009_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00351_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00351_0000.nii.gz", + "label": "Mask/Case_00351.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00351_0000/Case_00351_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00114_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00114_0000.nii.gz", + "label": "Mask/Case_00114.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00114_0000/Case_00114_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00584_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00584_0000.nii.gz", + "label": "Mask/Case_00584.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00584_0000/Case_00584_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00920_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00920_0000.nii.gz", + "label": "Mask/Case_00920.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00920_0000/Case_00920_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00617_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00617_0000.nii.gz", + "label": "Mask/Case_00617.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00617_0000/Case_00617_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00803_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00803_0000.nii.gz", + "label": "Mask/Case_00803.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00803_0000/Case_00803_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00817_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00817_0000.nii.gz", + "label": "Mask/Case_00817.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00817_0000/Case_00817_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00857_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00857_0000.nii.gz", + "label": "Mask/Case_00857.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00857_0000/Case_00857_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00541_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00541_0000.nii.gz", + "label": "Mask/Case_00541.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00541_0000/Case_00541_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00345_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00345_0000.nii.gz", + "label": "Mask/Case_00345.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00345_0000/Case_00345_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00897_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00897_0000.nii.gz", + "label": "Mask/Case_00897.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00897_0000/Case_00897_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00020_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00020_0000.nii.gz", + "label": "Mask/Case_00020.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00020_0000/Case_00020_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00544_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00544_0000.nii.gz", + "label": "Mask/Case_00544.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00544_0000/Case_00544_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00619_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00619_0000.nii.gz", + "label": "Mask/Case_00619.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00619_0000/Case_00619_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00188_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00188_0000.nii.gz", + "label": "Mask/Case_00188.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00188_0000/Case_00188_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00088_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00088_0000.nii.gz", + "label": "Mask/Case_00088.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00088_0000/Case_00088_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00035_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00035_0000.nii.gz", + "label": "Mask/Case_00035.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00035_0000/Case_00035_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00990_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00990_0000.nii.gz", + "label": "Mask/Case_00990.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00990_0000/Case_00990_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01028_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01028_0000.nii.gz", + "label": "Mask/Case_01028.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01028_0000/Case_01028_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00615_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00615_0000.nii.gz", + "label": "Mask/Case_00615.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00615_0000/Case_00615_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00249_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00249_0000.nii.gz", + "label": "Mask/Case_00249.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00249_0000/Case_00249_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00648_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00648_0000.nii.gz", + "label": "Mask/Case_00648.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00648_0000/Case_00648_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00118_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00118_0000.nii.gz", + "label": "Mask/Case_00118.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00118_0000/Case_00118_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00874_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00874_0000.nii.gz", + "label": "Mask/Case_00874.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00874_0000/Case_00874_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00350_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00350_0000.nii.gz", + "label": "Mask/Case_00350.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00350_0000/Case_00350_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00001_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00001_0000.nii.gz", + "label": "Mask/Case_00001.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00001_0000/Case_00001_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00678_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00678_0000.nii.gz", + "label": "Mask/Case_00678.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00678_0000/Case_00678_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01015_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01015_0000.nii.gz", + "label": "Mask/Case_01015.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01015_0000/Case_01015_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00899_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00899_0000.nii.gz", + "label": "Mask/Case_00899.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00899_0000/Case_00899_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01047_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01047_0000.nii.gz", + "label": "Mask/Case_01047.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01047_0000/Case_01047_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00540_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00540_0000.nii.gz", + "label": "Mask/Case_00540.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00540_0000/Case_00540_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00339_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00339_0000.nii.gz", + "label": "Mask/Case_00339.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00339_0000/Case_00339_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00564_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00564_0000.nii.gz", + "label": "Mask/Case_00564.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00564_0000/Case_00564_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00267_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00267_0000.nii.gz", + "label": "Mask/Case_00267.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00267_0000/Case_00267_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00675_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00675_0000.nii.gz", + "label": "Mask/Case_00675.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00675_0000/Case_00675_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01050_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01050_0000.nii.gz", + "label": "Mask/Case_01050.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01050_0000/Case_01050_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00075_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00075_0000.nii.gz", + "label": "Mask/Case_00075.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00075_0000/Case_00075_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00124_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00124_0000.nii.gz", + "label": "Mask/Case_00124.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00124_0000/Case_00124_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00908_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00908_0000.nii.gz", + "label": "Mask/Case_00908.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00908_0000/Case_00908_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00530_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00530_0000.nii.gz", + "label": "Mask/Case_00530.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00530_0000/Case_00530_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00107_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00107_0000.nii.gz", + "label": "Mask/Case_00107.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00107_0000/Case_00107_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00537_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00537_0000.nii.gz", + "label": "Mask/Case_00537.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00537_0000/Case_00537_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00006_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00006_0000.nii.gz", + "label": "Mask/Case_00006.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00006_0000/Case_00006_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00479_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00479_0000.nii.gz", + "label": "Mask/Case_00479.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00479_0000/Case_00479_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00412_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00412_0000.nii.gz", + "label": "Mask/Case_00412.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00412_0000/Case_00412_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00205_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00205_0000.nii.gz", + "label": "Mask/Case_00205.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00205_0000/Case_00205_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00959_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00959_0000.nii.gz", + "label": "Mask/Case_00959.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00959_0000/Case_00959_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00295_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00295_0000.nii.gz", + "label": "Mask/Case_00295.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00295_0000/Case_00295_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00662_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00662_0000.nii.gz", + "label": "Mask/Case_00662.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00662_0000/Case_00662_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00220_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00220_0000.nii.gz", + "label": "Mask/Case_00220.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00220_0000/Case_00220_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00127_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00127_0000.nii.gz", + "label": "Mask/Case_00127.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00127_0000/Case_00127_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00067_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00067_0000.nii.gz", + "label": "Mask/Case_00067.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00067_0000/Case_00067_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00635_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00635_0000.nii.gz", + "label": "Mask/Case_00635.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00635_0000/Case_00635_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00936_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00936_0000.nii.gz", + "label": "Mask/Case_00936.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00936_0000/Case_00936_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00746_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00746_0000.nii.gz", + "label": "Mask/Case_00746.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00746_0000/Case_00746_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00597_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00597_0000.nii.gz", + "label": "Mask/Case_00597.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00597_0000/Case_00597_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00885_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00885_0000.nii.gz", + "label": "Mask/Case_00885.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00885_0000/Case_00885_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00234_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00234_0000.nii.gz", + "label": "Mask/Case_00234.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00234_0000/Case_00234_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01035_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01035_0000.nii.gz", + "label": "Mask/Case_01035.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01035_0000/Case_01035_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01059_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01059_0000.nii.gz", + "label": "Mask/Case_01059.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01059_0000/Case_01059_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00219_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00219_0000.nii.gz", + "label": "Mask/Case_00219.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00219_0000/Case_00219_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00179_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00179_0000.nii.gz", + "label": "Mask/Case_00179.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00179_0000/Case_00179_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00115_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00115_0000.nii.gz", + "label": "Mask/Case_00115.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00115_0000/Case_00115_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00889_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00889_0000.nii.gz", + "label": "Mask/Case_00889.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00889_0000/Case_00889_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00128_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00128_0000.nii.gz", + "label": "Mask/Case_00128.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00128_0000/Case_00128_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00051_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00051_0000.nii.gz", + "label": "Mask/Case_00051.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00051_0000/Case_00051_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00185_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00185_0000.nii.gz", + "label": "Mask/Case_00185.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00185_0000/Case_00185_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00816_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00816_0000.nii.gz", + "label": "Mask/Case_00816.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00816_0000/Case_00816_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00858_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00858_0000.nii.gz", + "label": "Mask/Case_00858.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00858_0000/Case_00858_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01037_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01037_0000.nii.gz", + "label": "Mask/Case_01037.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01037_0000/Case_01037_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00066_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00066_0000.nii.gz", + "label": "Mask/Case_00066.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00066_0000/Case_00066_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00252_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00252_0000.nii.gz", + "label": "Mask/Case_00252.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00252_0000/Case_00252_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00864_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00864_0000.nii.gz", + "label": "Mask/Case_00864.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00864_0000/Case_00864_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00134_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00134_0000.nii.gz", + "label": "Mask/Case_00134.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00134_0000/Case_00134_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00593_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00593_0000.nii.gz", + "label": "Mask/Case_00593.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00593_0000/Case_00593_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00841_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00841_0000.nii.gz", + "label": "Mask/Case_00841.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00841_0000/Case_00841_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00372_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00372_0000.nii.gz", + "label": "Mask/Case_00372.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00372_0000/Case_00372_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00752_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00752_0000.nii.gz", + "label": "Mask/Case_00752.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00752_0000/Case_00752_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00943_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00943_0000.nii.gz", + "label": "Mask/Case_00943.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00943_0000/Case_00943_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00062_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00062_0000.nii.gz", + "label": "Mask/Case_00062.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00062_0000/Case_00062_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00421_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00421_0000.nii.gz", + "label": "Mask/Case_00421.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00421_0000/Case_00421_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00518_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00518_0000.nii.gz", + "label": "Mask/Case_00518.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00518_0000/Case_00518_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00002_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00002_0000.nii.gz", + "label": "Mask/Case_00002.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00002_0000/Case_00002_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00527_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00527_0000.nii.gz", + "label": "Mask/Case_00527.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00527_0000/Case_00527_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00484_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00484_0000.nii.gz", + "label": "Mask/Case_00484.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00484_0000/Case_00484_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00865_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00865_0000.nii.gz", + "label": "Mask/Case_00865.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00865_0000/Case_00865_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00631_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00631_0000.nii.gz", + "label": "Mask/Case_00631.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00631_0000/Case_00631_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00275_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00275_0000.nii.gz", + "label": "Mask/Case_00275.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00275_0000/Case_00275_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00886_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00886_0000.nii.gz", + "label": "Mask/Case_00886.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00886_0000/Case_00886_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00264_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00264_0000.nii.gz", + "label": "Mask/Case_00264.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00264_0000/Case_00264_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00334_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00334_0000.nii.gz", + "label": "Mask/Case_00334.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00334_0000/Case_00334_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00505_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00505_0000.nii.gz", + "label": "Mask/Case_00505.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00505_0000/Case_00505_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00096_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00096_0000.nii.gz", + "label": "Mask/Case_00096.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00096_0000/Case_00096_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01022_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01022_0000.nii.gz", + "label": "Mask/Case_01022.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01022_0000/Case_01022_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00842_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00842_0000.nii.gz", + "label": "Mask/Case_00842.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00842_0000/Case_00842_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00592_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00592_0000.nii.gz", + "label": "Mask/Case_00592.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00592_0000/Case_00592_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00226_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00226_0000.nii.gz", + "label": "Mask/Case_00226.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00226_0000/Case_00226_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00257_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00257_0000.nii.gz", + "label": "Mask/Case_00257.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00257_0000/Case_00257_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00317_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00317_0000.nii.gz", + "label": "Mask/Case_00317.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00317_0000/Case_00317_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00269_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00269_0000.nii.gz", + "label": "Mask/Case_00269.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00269_0000/Case_00269_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00141_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00141_0000.nii.gz", + "label": "Mask/Case_00141.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00141_0000/Case_00141_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00605_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00605_0000.nii.gz", + "label": "Mask/Case_00605.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00605_0000/Case_00605_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00643_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00643_0000.nii.gz", + "label": "Mask/Case_00643.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00643_0000/Case_00643_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00716_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00716_0000.nii.gz", + "label": "Mask/Case_00716.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00716_0000/Case_00716_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00853_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00853_0000.nii.gz", + "label": "Mask/Case_00853.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00853_0000/Case_00853_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00273_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00273_0000.nii.gz", + "label": "Mask/Case_00273.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00273_0000/Case_00273_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00425_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00425_0000.nii.gz", + "label": "Mask/Case_00425.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00425_0000/Case_00425_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00581_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00581_0000.nii.gz", + "label": "Mask/Case_00581.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00581_0000/Case_00581_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00983_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00983_0000.nii.gz", + "label": "Mask/Case_00983.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00983_0000/Case_00983_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00896_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00896_0000.nii.gz", + "label": "Mask/Case_00896.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00896_0000/Case_00896_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00682_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00682_0000.nii.gz", + "label": "Mask/Case_00682.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00682_0000/Case_00682_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00490_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00490_0000.nii.gz", + "label": "Mask/Case_00490.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00490_0000/Case_00490_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00448_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00448_0000.nii.gz", + "label": "Mask/Case_00448.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00448_0000/Case_00448_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00747_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00747_0000.nii.gz", + "label": "Mask/Case_00747.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00747_0000/Case_00747_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00325_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00325_0000.nii.gz", + "label": "Mask/Case_00325.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00325_0000/Case_00325_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00645_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00645_0000.nii.gz", + "label": "Mask/Case_00645.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00645_0000/Case_00645_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00110_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00110_0000.nii.gz", + "label": "Mask/Case_00110.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00110_0000/Case_00110_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00473_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00473_0000.nii.gz", + "label": "Mask/Case_00473.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00473_0000/Case_00473_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00579_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00579_0000.nii.gz", + "label": "Mask/Case_00579.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00579_0000/Case_00579_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01006_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01006_0000.nii.gz", + "label": "Mask/Case_01006.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01006_0000/Case_01006_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00847_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00847_0000.nii.gz", + "label": "Mask/Case_00847.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00847_0000/Case_00847_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00048_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00048_0000.nii.gz", + "label": "Mask/Case_00048.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00048_0000/Case_00048_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00089_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00089_0000.nii.gz", + "label": "Mask/Case_00089.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00089_0000/Case_00089_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00924_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00924_0000.nii.gz", + "label": "Mask/Case_00924.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00924_0000/Case_00924_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00073_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00073_0000.nii.gz", + "label": "Mask/Case_00073.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00073_0000/Case_00073_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00356_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00356_0000.nii.gz", + "label": "Mask/Case_00356.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00356_0000/Case_00356_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00211_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00211_0000.nii.gz", + "label": "Mask/Case_00211.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00211_0000/Case_00211_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00437_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00437_0000.nii.gz", + "label": "Mask/Case_00437.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00437_0000/Case_00437_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00722_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00722_0000.nii.gz", + "label": "Mask/Case_00722.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00722_0000/Case_00722_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00934_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00934_0000.nii.gz", + "label": "Mask/Case_00934.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00934_0000/Case_00934_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00392_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00392_0000.nii.gz", + "label": "Mask/Case_00392.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00392_0000/Case_00392_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00595_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00595_0000.nii.gz", + "label": "Mask/Case_00595.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00595_0000/Case_00595_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00100_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00100_0000.nii.gz", + "label": "Mask/Case_00100.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00100_0000/Case_00100_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00098_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00098_0000.nii.gz", + "label": "Mask/Case_00098.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00098_0000/Case_00098_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00778_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00778_0000.nii.gz", + "label": "Mask/Case_00778.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00778_0000/Case_00778_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00099_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00099_0000.nii.gz", + "label": "Mask/Case_00099.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00099_0000/Case_00099_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00076_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00076_0000.nii.gz", + "label": "Mask/Case_00076.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00076_0000/Case_00076_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00922_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00922_0000.nii.gz", + "label": "Mask/Case_00922.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00922_0000/Case_00922_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01018_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01018_0000.nii.gz", + "label": "Mask/Case_01018.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01018_0000/Case_01018_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00933_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00933_0000.nii.gz", + "label": "Mask/Case_00933.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00933_0000/Case_00933_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00859_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00859_0000.nii.gz", + "label": "Mask/Case_00859.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00859_0000/Case_00859_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00535_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00535_0000.nii.gz", + "label": "Mask/Case_00535.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00535_0000/Case_00535_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00123_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00123_0000.nii.gz", + "label": "Mask/Case_00123.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00123_0000/Case_00123_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00113_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00113_0000.nii.gz", + "label": "Mask/Case_00113.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00113_0000/Case_00113_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00472_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00472_0000.nii.gz", + "label": "Mask/Case_00472.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00472_0000/Case_00472_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00272_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00272_0000.nii.gz", + "label": "Mask/Case_00272.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00272_0000/Case_00272_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00977_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00977_0000.nii.gz", + "label": "Mask/Case_00977.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00977_0000/Case_00977_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00877_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00877_0000.nii.gz", + "label": "Mask/Case_00877.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00877_0000/Case_00877_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00845_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00845_0000.nii.gz", + "label": "Mask/Case_00845.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00845_0000/Case_00845_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00558_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00558_0000.nii.gz", + "label": "Mask/Case_00558.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00558_0000/Case_00558_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00132_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00132_0000.nii.gz", + "label": "Mask/Case_00132.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00132_0000/Case_00132_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00346_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00346_0000.nii.gz", + "label": "Mask/Case_00346.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00346_0000/Case_00346_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00390_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00390_0000.nii.gz", + "label": "Mask/Case_00390.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00390_0000/Case_00390_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00271_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00271_0000.nii.gz", + "label": "Mask/Case_00271.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00271_0000/Case_00271_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00665_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00665_0000.nii.gz", + "label": "Mask/Case_00665.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00665_0000/Case_00665_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00301_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00301_0000.nii.gz", + "label": "Mask/Case_00301.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00301_0000/Case_00301_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00957_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00957_0000.nii.gz", + "label": "Mask/Case_00957.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00957_0000/Case_00957_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00455_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00455_0000.nii.gz", + "label": "Mask/Case_00455.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00455_0000/Case_00455_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01012_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01012_0000.nii.gz", + "label": "Mask/Case_01012.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01012_0000/Case_01012_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01049_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01049_0000.nii.gz", + "label": "Mask/Case_01049.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01049_0000/Case_01049_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00805_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00805_0000.nii.gz", + "label": "Mask/Case_00805.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00805_0000/Case_00805_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00381_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00381_0000.nii.gz", + "label": "Mask/Case_00381.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00381_0000/Case_00381_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00674_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00674_0000.nii.gz", + "label": "Mask/Case_00674.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00674_0000/Case_00674_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00489_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00489_0000.nii.gz", + "label": "Mask/Case_00489.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00489_0000/Case_00489_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00664_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00664_0000.nii.gz", + "label": "Mask/Case_00664.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00664_0000/Case_00664_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00791_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00791_0000.nii.gz", + "label": "Mask/Case_00791.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00791_0000/Case_00791_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01017_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01017_0000.nii.gz", + "label": "Mask/Case_01017.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01017_0000/Case_01017_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00663_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00663_0000.nii.gz", + "label": "Mask/Case_00663.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00663_0000/Case_00663_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00260_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00260_0000.nii.gz", + "label": "Mask/Case_00260.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00260_0000/Case_00260_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00657_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00657_0000.nii.gz", + "label": "Mask/Case_00657.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00657_0000/Case_00657_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00559_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00559_0000.nii.gz", + "label": "Mask/Case_00559.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00559_0000/Case_00559_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00641_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00641_0000.nii.gz", + "label": "Mask/Case_00641.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00641_0000/Case_00641_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00187_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00187_0000.nii.gz", + "label": "Mask/Case_00187.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00187_0000/Case_00187_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00237_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00237_0000.nii.gz", + "label": "Mask/Case_00237.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00237_0000/Case_00237_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00104_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00104_0000.nii.gz", + "label": "Mask/Case_00104.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00104_0000/Case_00104_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00117_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00117_0000.nii.gz", + "label": "Mask/Case_00117.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00117_0000/Case_00117_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00964_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00964_0000.nii.gz", + "label": "Mask/Case_00964.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00964_0000/Case_00964_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00948_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00948_0000.nii.gz", + "label": "Mask/Case_00948.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00948_0000/Case_00948_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00775_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00775_0000.nii.gz", + "label": "Mask/Case_00775.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00775_0000/Case_00775_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00195_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00195_0000.nii.gz", + "label": "Mask/Case_00195.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00195_0000/Case_00195_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00119_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00119_0000.nii.gz", + "label": "Mask/Case_00119.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00119_0000/Case_00119_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00105_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00105_0000.nii.gz", + "label": "Mask/Case_00105.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00105_0000/Case_00105_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00287_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00287_0000.nii.gz", + "label": "Mask/Case_00287.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00287_0000/Case_00287_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00972_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00972_0000.nii.gz", + "label": "Mask/Case_00972.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00972_0000/Case_00972_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00636_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00636_0000.nii.gz", + "label": "Mask/Case_00636.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00636_0000/Case_00636_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00547_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00547_0000.nii.gz", + "label": "Mask/Case_00547.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00547_0000/Case_00547_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00814_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00814_0000.nii.gz", + "label": "Mask/Case_00814.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00814_0000/Case_00814_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00762_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00762_0000.nii.gz", + "label": "Mask/Case_00762.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00762_0000/Case_00762_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00321_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00321_0000.nii.gz", + "label": "Mask/Case_00321.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00321_0000/Case_00321_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00258_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00258_0000.nii.gz", + "label": "Mask/Case_00258.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00258_0000/Case_00258_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00542_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00542_0000.nii.gz", + "label": "Mask/Case_00542.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00542_0000/Case_00542_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00630_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00630_0000.nii.gz", + "label": "Mask/Case_00630.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00630_0000/Case_00630_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00792_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00792_0000.nii.gz", + "label": "Mask/Case_00792.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00792_0000/Case_00792_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01007_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01007_0000.nii.gz", + "label": "Mask/Case_01007.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01007_0000/Case_01007_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00510_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00510_0000.nii.gz", + "label": "Mask/Case_00510.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00510_0000/Case_00510_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00756_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00756_0000.nii.gz", + "label": "Mask/Case_00756.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00756_0000/Case_00756_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00659_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00659_0000.nii.gz", + "label": "Mask/Case_00659.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00659_0000/Case_00659_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00513_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00513_0000.nii.gz", + "label": "Mask/Case_00513.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00513_0000/Case_00513_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00893_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00893_0000.nii.gz", + "label": "Mask/Case_00893.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00893_0000/Case_00893_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00463_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00463_0000.nii.gz", + "label": "Mask/Case_00463.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00463_0000/Case_00463_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00095_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00095_0000.nii.gz", + "label": "Mask/Case_00095.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00095_0000/Case_00095_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00647_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00647_0000.nii.gz", + "label": "Mask/Case_00647.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00647_0000/Case_00647_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01021_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01021_0000.nii.gz", + "label": "Mask/Case_01021.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01021_0000/Case_01021_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00548_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00548_0000.nii.gz", + "label": "Mask/Case_00548.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00548_0000/Case_00548_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00937_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00937_0000.nii.gz", + "label": "Mask/Case_00937.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00937_0000/Case_00937_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00833_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00833_0000.nii.gz", + "label": "Mask/Case_00833.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00833_0000/Case_00833_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00869_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00869_0000.nii.gz", + "label": "Mask/Case_00869.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00869_0000/Case_00869_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00460_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00460_0000.nii.gz", + "label": "Mask/Case_00460.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00460_0000/Case_00460_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00789_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00789_0000.nii.gz", + "label": "Mask/Case_00789.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00789_0000/Case_00789_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00769_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00769_0000.nii.gz", + "label": "Mask/Case_00769.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00769_0000/Case_00769_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00741_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00741_0000.nii.gz", + "label": "Mask/Case_00741.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00741_0000/Case_00741_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00640_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00640_0000.nii.gz", + "label": "Mask/Case_00640.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00640_0000/Case_00640_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00821_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00821_0000.nii.gz", + "label": "Mask/Case_00821.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00821_0000/Case_00821_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00677_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00677_0000.nii.gz", + "label": "Mask/Case_00677.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00677_0000/Case_00677_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00373_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00373_0000.nii.gz", + "label": "Mask/Case_00373.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00373_0000/Case_00373_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00819_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00819_0000.nii.gz", + "label": "Mask/Case_00819.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00819_0000/Case_00819_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00353_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00353_0000.nii.gz", + "label": "Mask/Case_00353.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00353_0000/Case_00353_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00812_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00812_0000.nii.gz", + "label": "Mask/Case_00812.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00812_0000/Case_00812_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00082_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00082_0000.nii.gz", + "label": "Mask/Case_00082.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00082_0000/Case_00082_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00320_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00320_0000.nii.gz", + "label": "Mask/Case_00320.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00320_0000/Case_00320_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00064_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00064_0000.nii.gz", + "label": "Mask/Case_00064.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00064_0000/Case_00064_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00822_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00822_0000.nii.gz", + "label": "Mask/Case_00822.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00822_0000/Case_00822_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00784_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00784_0000.nii.gz", + "label": "Mask/Case_00784.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00784_0000/Case_00784_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00495_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00495_0000.nii.gz", + "label": "Mask/Case_00495.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00495_0000/Case_00495_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00644_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00644_0000.nii.gz", + "label": "Mask/Case_00644.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00644_0000/Case_00644_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00825_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00825_0000.nii.gz", + "label": "Mask/Case_00825.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00825_0000/Case_00825_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00276_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00276_0000.nii.gz", + "label": "Mask/Case_00276.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00276_0000/Case_00276_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00891_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00891_0000.nii.gz", + "label": "Mask/Case_00891.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00891_0000/Case_00891_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01019_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01019_0000.nii.gz", + "label": "Mask/Case_01019.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01019_0000/Case_01019_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00696_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00696_0000.nii.gz", + "label": "Mask/Case_00696.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00696_0000/Case_00696_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00281_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00281_0000.nii.gz", + "label": "Mask/Case_00281.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00281_0000/Case_00281_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00866_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00866_0000.nii.gz", + "label": "Mask/Case_00866.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00866_0000/Case_00866_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00830_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00830_0000.nii.gz", + "label": "Mask/Case_00830.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00830_0000/Case_00830_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00255_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00255_0000.nii.gz", + "label": "Mask/Case_00255.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00255_0000/Case_00255_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00387_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00387_0000.nii.gz", + "label": "Mask/Case_00387.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00387_0000/Case_00387_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00721_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00721_0000.nii.gz", + "label": "Mask/Case_00721.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00721_0000/Case_00721_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00330_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00330_0000.nii.gz", + "label": "Mask/Case_00330.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00330_0000/Case_00330_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00133_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00133_0000.nii.gz", + "label": "Mask/Case_00133.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00133_0000/Case_00133_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00475_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00475_0000.nii.gz", + "label": "Mask/Case_00475.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00475_0000/Case_00475_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00029_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00029_0000.nii.gz", + "label": "Mask/Case_00029.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00029_0000/Case_00029_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00506_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00506_0000.nii.gz", + "label": "Mask/Case_00506.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00506_0000/Case_00506_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01041_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01041_0000.nii.gz", + "label": "Mask/Case_01041.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01041_0000/Case_01041_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00176_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00176_0000.nii.gz", + "label": "Mask/Case_00176.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00176_0000/Case_00176_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00514_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00514_0000.nii.gz", + "label": "Mask/Case_00514.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00514_0000/Case_00514_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00131_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00131_0000.nii.gz", + "label": "Mask/Case_00131.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00131_0000/Case_00131_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00316_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00316_0000.nii.gz", + "label": "Mask/Case_00316.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00316_0000/Case_00316_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00991_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00991_0000.nii.gz", + "label": "Mask/Case_00991.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00991_0000/Case_00991_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00391_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00391_0000.nii.gz", + "label": "Mask/Case_00391.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00391_0000/Case_00391_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00744_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00744_0000.nii.gz", + "label": "Mask/Case_00744.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00744_0000/Case_00744_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00496_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00496_0000.nii.gz", + "label": "Mask/Case_00496.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00496_0000/Case_00496_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00326_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00326_0000.nii.gz", + "label": "Mask/Case_00326.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00326_0000/Case_00326_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00783_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00783_0000.nii.gz", + "label": "Mask/Case_00783.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00783_0000/Case_00783_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00947_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00947_0000.nii.gz", + "label": "Mask/Case_00947.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00947_0000/Case_00947_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00399_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00399_0000.nii.gz", + "label": "Mask/Case_00399.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00399_0000/Case_00399_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01042_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01042_0000.nii.gz", + "label": "Mask/Case_01042.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01042_0000/Case_01042_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00309_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00309_0000.nii.gz", + "label": "Mask/Case_00309.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00309_0000/Case_00309_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00600_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00600_0000.nii.gz", + "label": "Mask/Case_00600.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00600_0000/Case_00600_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00739_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00739_0000.nii.gz", + "label": "Mask/Case_00739.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00739_0000/Case_00739_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00873_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00873_0000.nii.gz", + "label": "Mask/Case_00873.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00873_0000/Case_00873_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00918_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00918_0000.nii.gz", + "label": "Mask/Case_00918.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00918_0000/Case_00918_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00834_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00834_0000.nii.gz", + "label": "Mask/Case_00834.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00834_0000/Case_00834_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00155_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00155_0000.nii.gz", + "label": "Mask/Case_00155.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00155_0000/Case_00155_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00909_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00909_0000.nii.gz", + "label": "Mask/Case_00909.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00909_0000/Case_00909_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00668_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00668_0000.nii.gz", + "label": "Mask/Case_00668.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00668_0000/Case_00668_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00689_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00689_0000.nii.gz", + "label": "Mask/Case_00689.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00689_0000/Case_00689_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00774_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00774_0000.nii.gz", + "label": "Mask/Case_00774.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00774_0000/Case_00774_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00650_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00650_0000.nii.gz", + "label": "Mask/Case_00650.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00650_0000/Case_00650_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00616_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00616_0000.nii.gz", + "label": "Mask/Case_00616.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00616_0000/Case_00616_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00017_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00017_0000.nii.gz", + "label": "Mask/Case_00017.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00017_0000/Case_00017_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00606_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00606_0000.nii.gz", + "label": "Mask/Case_00606.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00606_0000/Case_00606_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01039_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01039_0000.nii.gz", + "label": "Mask/Case_01039.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01039_0000/Case_01039_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00724_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00724_0000.nii.gz", + "label": "Mask/Case_00724.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00724_0000/Case_00724_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00851_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00851_0000.nii.gz", + "label": "Mask/Case_00851.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00851_0000/Case_00851_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00370_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00370_0000.nii.gz", + "label": "Mask/Case_00370.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00370_0000/Case_00370_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01053_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01053_0000.nii.gz", + "label": "Mask/Case_01053.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01053_0000/Case_01053_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00277_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00277_0000.nii.gz", + "label": "Mask/Case_00277.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00277_0000/Case_00277_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00209_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00209_0000.nii.gz", + "label": "Mask/Case_00209.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00209_0000/Case_00209_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00960_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00960_0000.nii.gz", + "label": "Mask/Case_00960.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00960_0000/Case_00960_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00742_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00742_0000.nii.gz", + "label": "Mask/Case_00742.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00742_0000/Case_00742_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01045_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01045_0000.nii.gz", + "label": "Mask/Case_01045.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01045_0000/Case_01045_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00282_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00282_0000.nii.gz", + "label": "Mask/Case_00282.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00282_0000/Case_00282_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00538_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00538_0000.nii.gz", + "label": "Mask/Case_00538.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00538_0000/Case_00538_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00434_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00434_0000.nii.gz", + "label": "Mask/Case_00434.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00434_0000/Case_00434_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00173_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00173_0000.nii.gz", + "label": "Mask/Case_00173.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00173_0000/Case_00173_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00498_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00498_0000.nii.gz", + "label": "Mask/Case_00498.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00498_0000/Case_00498_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00084_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00084_0000.nii.gz", + "label": "Mask/Case_00084.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00084_0000/Case_00084_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00965_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00965_0000.nii.gz", + "label": "Mask/Case_00965.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00965_0000/Case_00965_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00014_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00014_0000.nii.gz", + "label": "Mask/Case_00014.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00014_0000/Case_00014_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00681_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00681_0000.nii.gz", + "label": "Mask/Case_00681.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00681_0000/Case_00681_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00670_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00670_0000.nii.gz", + "label": "Mask/Case_00670.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00670_0000/Case_00670_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00704_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00704_0000.nii.gz", + "label": "Mask/Case_00704.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00704_0000/Case_00704_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01038_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01038_0000.nii.gz", + "label": "Mask/Case_01038.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01038_0000/Case_01038_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00797_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00797_0000.nii.gz", + "label": "Mask/Case_00797.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00797_0000/Case_00797_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01054_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01054_0000.nii.gz", + "label": "Mask/Case_01054.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01054_0000/Case_01054_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00767_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00767_0000.nii.gz", + "label": "Mask/Case_00767.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00767_0000/Case_00767_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00961_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00961_0000.nii.gz", + "label": "Mask/Case_00961.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00961_0000/Case_00961_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00182_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00182_0000.nii.gz", + "label": "Mask/Case_00182.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00182_0000/Case_00182_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00861_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00861_0000.nii.gz", + "label": "Mask/Case_00861.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00861_0000/Case_00861_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00365_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00365_0000.nii.gz", + "label": "Mask/Case_00365.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00365_0000/Case_00365_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00916_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00916_0000.nii.gz", + "label": "Mask/Case_00916.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00916_0000/Case_00916_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00785_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00785_0000.nii.gz", + "label": "Mask/Case_00785.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00785_0000/Case_00785_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00531_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00531_0000.nii.gz", + "label": "Mask/Case_00531.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00531_0000/Case_00531_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00672_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00672_0000.nii.gz", + "label": "Mask/Case_00672.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00672_0000/Case_00672_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00907_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00907_0000.nii.gz", + "label": "Mask/Case_00907.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00907_0000/Case_00907_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00087_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00087_0000.nii.gz", + "label": "Mask/Case_00087.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00087_0000/Case_00087_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00458_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00458_0000.nii.gz", + "label": "Mask/Case_00458.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00458_0000/Case_00458_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00109_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00109_0000.nii.gz", + "label": "Mask/Case_00109.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00109_0000/Case_00109_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00398_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00398_0000.nii.gz", + "label": "Mask/Case_00398.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00398_0000/Case_00398_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00111_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00111_0000.nii.gz", + "label": "Mask/Case_00111.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00111_0000/Case_00111_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00944_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00944_0000.nii.gz", + "label": "Mask/Case_00944.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00944_0000/Case_00944_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00352_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00352_0000.nii.gz", + "label": "Mask/Case_00352.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00352_0000/Case_00352_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00971_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00971_0000.nii.gz", + "label": "Mask/Case_00971.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00971_0000/Case_00971_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00863_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00863_0000.nii.gz", + "label": "Mask/Case_00863.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00863_0000/Case_00863_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00204_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00204_0000.nii.gz", + "label": "Mask/Case_00204.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00204_0000/Case_00204_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00380_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00380_0000.nii.gz", + "label": "Mask/Case_00380.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00380_0000/Case_00380_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00800_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00800_0000.nii.gz", + "label": "Mask/Case_00800.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00800_0000/Case_00800_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00379_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00379_0000.nii.gz", + "label": "Mask/Case_00379.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00379_0000/Case_00379_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00336_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00336_0000.nii.gz", + "label": "Mask/Case_00336.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00336_0000/Case_00336_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00488_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00488_0000.nii.gz", + "label": "Mask/Case_00488.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00488_0000/Case_00488_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00361_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00361_0000.nii.gz", + "label": "Mask/Case_00361.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00361_0000/Case_00361_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00251_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00251_0000.nii.gz", + "label": "Mask/Case_00251.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00251_0000/Case_00251_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00828_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00828_0000.nii.gz", + "label": "Mask/Case_00828.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00828_0000/Case_00828_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01020_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_01020_0000.nii.gz", + "label": "Mask/Case_01020.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_01020_0000/Case_01020_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00660_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00660_0000.nii.gz", + "label": "Mask/Case_00660.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00660_0000/Case_00660_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00554_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart2/Case_00554_0000.nii.gz", + "label": "Mask/Case_00554.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00554_0000/Case_00554_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00890_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart3/Case_00890_0000.nii.gz", + "label": "Mask/Case_00890.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00890_0000/Case_00890_0000_seg.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00375_0000.nii.gz", + "pseudo_label": "AbdomenCT-1K-ImagePart1/Case_00375_0000.nii.gz", + "label": "Mask/Case_00375.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AbdomenCT-1K_100/Case_00375_0000/Case_00375_0000_seg.nii.gz" + } + ], + "training_transform": [ + { + "_target_": "RandCropByLabelClassesd", + "keys": [ + "@image_key", + "@label_key", + "@pseudo_label_key", + "@label_sv_key" + ], + "label_key": "@pseudo_label_key", + "num_classes": 133, + "num_samples": "@num_patches_per_image", + "spatial_size": "@patch_size", + "ratios": "$tuple(float(i >= 0) for i in range(133))", + "warn": false, + "allow_missing_keys": true + }, + { + "_target_": "RandZoomd", + "keys": [ + "@image_key", + "@label_key", + "@pseudo_label_key", + "@label_sv_key" + ], + "min_zoom": 0.8, + "max_zoom": 1.2, + "mode": [ + "trilinear", + "nearest", + "nearest", + "nearest" + ], + "prob": 0.2, + "allow_missing_keys": true + }, + { + "_target_": "RandSimulateLowResolutiond", + "keys": [ + "@image_key" + ], + "zoom_range": [ + 0.3, + 1 + ], + "prob": 0.2, + "allow_missing_keys": true + }, + { + "_target_": "RandGaussianSmoothd", + "keys": [ + "@image_key" + ], + "prob": 0.2, + "sigma_x": [ + 0.5, + 1.0 + ], + "sigma_y": [ + 0.5, + 1.0 + ], + "sigma_z": [ + 0.5, + 1.0 + ] + }, + { + "_target_": "RandScaleIntensityd", + "keys": [ + "@image_key" + ], + "factors": 0.1, + "prob": 0.2 + }, + { + "_target_": "RandShiftIntensityd", + "keys": [ + "@image_key" + ], + "offsets": 0.1, + "prob": 0.2 + }, + { + "_target_": "RandGaussianNoised", + "keys": [ + "@image_key" + ], + "prob": 0.2, + "mean": 0.0, + "std": 0.2 + } + ], + "label_dict": { + "1": "liver", + "2": "kidney", + "3": "spleen", + "4": "pancreas" + }, + "original_label_dict": { + "1": "liver", + "2": "kidney", + "3": "spleen", + "4": "pancreas" + }, + "testing": [ + { + "image": "AbdomenCT-1K-ImagePart2/Case_00697_0000.nii.gz", + "label": "Mask/Case_00697.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00030_0000.nii.gz", + "label": "Mask/Case_00030.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00543_0000.nii.gz", + "label": "Mask/Case_00543.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01030_0000.nii.gz", + "label": "Mask/Case_01030.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00256_0000.nii.gz", + "label": "Mask/Case_00256.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00443_0000.nii.gz", + "label": "Mask/Case_00443.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00303_0000.nii.gz", + "label": "Mask/Case_00303.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00078_0000.nii.gz", + "label": "Mask/Case_00078.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01052_0000.nii.gz", + "label": "Mask/Case_01052.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00231_0000.nii.gz", + "label": "Mask/Case_00231.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00289_0000.nii.gz", + "label": "Mask/Case_00289.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00563_0000.nii.gz", + "label": "Mask/Case_00563.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00517_0000.nii.gz", + "label": "Mask/Case_00517.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00848_0000.nii.gz", + "label": "Mask/Case_00848.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00071_0000.nii.gz", + "label": "Mask/Case_00071.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00414_0000.nii.gz", + "label": "Mask/Case_00414.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00655_0000.nii.gz", + "label": "Mask/Case_00655.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00625_0000.nii.gz", + "label": "Mask/Case_00625.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00667_0000.nii.gz", + "label": "Mask/Case_00667.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00239_0000.nii.gz", + "label": "Mask/Case_00239.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00310_0000.nii.gz", + "label": "Mask/Case_00310.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00152_0000.nii.gz", + "label": "Mask/Case_00152.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00135_0000.nii.gz", + "label": "Mask/Case_00135.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00222_0000.nii.gz", + "label": "Mask/Case_00222.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00305_0000.nii.gz", + "label": "Mask/Case_00305.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00358_0000.nii.gz", + "label": "Mask/Case_00358.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01040_0000.nii.gz", + "label": "Mask/Case_01040.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00777_0000.nii.gz", + "label": "Mask/Case_00777.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00502_0000.nii.gz", + "label": "Mask/Case_00502.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00485_0000.nii.gz", + "label": "Mask/Case_00485.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00042_0000.nii.gz", + "label": "Mask/Case_00042.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00480_0000.nii.gz", + "label": "Mask/Case_00480.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00687_0000.nii.gz", + "label": "Mask/Case_00687.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00161_0000.nii.gz", + "label": "Mask/Case_00161.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00627_0000.nii.gz", + "label": "Mask/Case_00627.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00046_0000.nii.gz", + "label": "Mask/Case_00046.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00196_0000.nii.gz", + "label": "Mask/Case_00196.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00120_0000.nii.gz", + "label": "Mask/Case_00120.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00022_0000.nii.gz", + "label": "Mask/Case_00022.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00360_0000.nii.gz", + "label": "Mask/Case_00360.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00049_0000.nii.gz", + "label": "Mask/Case_00049.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00483_0000.nii.gz", + "label": "Mask/Case_00483.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00324_0000.nii.gz", + "label": "Mask/Case_00324.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00308_0000.nii.gz", + "label": "Mask/Case_00308.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00610_0000.nii.gz", + "label": "Mask/Case_00610.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00608_0000.nii.gz", + "label": "Mask/Case_00608.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00735_0000.nii.gz", + "label": "Mask/Case_00735.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00214_0000.nii.gz", + "label": "Mask/Case_00214.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00102_0000.nii.gz", + "label": "Mask/Case_00102.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00576_0000.nii.gz", + "label": "Mask/Case_00576.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00189_0000.nii.gz", + "label": "Mask/Case_00189.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00637_0000.nii.gz", + "label": "Mask/Case_00637.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00968_0000.nii.gz", + "label": "Mask/Case_00968.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00533_0000.nii.gz", + "label": "Mask/Case_00533.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00091_0000.nii.gz", + "label": "Mask/Case_00091.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00956_0000.nii.gz", + "label": "Mask/Case_00956.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00740_0000.nii.gz", + "label": "Mask/Case_00740.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01046_0000.nii.gz", + "label": "Mask/Case_01046.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00820_0000.nii.gz", + "label": "Mask/Case_00820.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00938_0000.nii.gz", + "label": "Mask/Case_00938.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00130_0000.nii.gz", + "label": "Mask/Case_00130.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00892_0000.nii.gz", + "label": "Mask/Case_00892.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00438_0000.nii.gz", + "label": "Mask/Case_00438.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00524_0000.nii.gz", + "label": "Mask/Case_00524.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00384_0000.nii.gz", + "label": "Mask/Case_00384.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00723_0000.nii.gz", + "label": "Mask/Case_00723.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00011_0000.nii.gz", + "label": "Mask/Case_00011.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00149_0000.nii.gz", + "label": "Mask/Case_00149.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00875_0000.nii.gz", + "label": "Mask/Case_00875.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00693_0000.nii.gz", + "label": "Mask/Case_00693.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00529_0000.nii.gz", + "label": "Mask/Case_00529.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00057_0000.nii.gz", + "label": "Mask/Case_00057.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00291_0000.nii.gz", + "label": "Mask/Case_00291.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00299_0000.nii.gz", + "label": "Mask/Case_00299.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00555_0000.nii.gz", + "label": "Mask/Case_00555.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00779_0000.nii.gz", + "label": "Mask/Case_00779.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00461_0000.nii.gz", + "label": "Mask/Case_00461.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00651_0000.nii.gz", + "label": "Mask/Case_00651.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00572_0000.nii.gz", + "label": "Mask/Case_00572.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00788_0000.nii.gz", + "label": "Mask/Case_00788.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00573_0000.nii.gz", + "label": "Mask/Case_00573.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00734_0000.nii.gz", + "label": "Mask/Case_00734.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00177_0000.nii.gz", + "label": "Mask/Case_00177.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00996_0000.nii.gz", + "label": "Mask/Case_00996.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00611_0000.nii.gz", + "label": "Mask/Case_00611.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00090_0000.nii.gz", + "label": "Mask/Case_00090.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00963_0000.nii.gz", + "label": "Mask/Case_00963.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00240_0000.nii.gz", + "label": "Mask/Case_00240.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00481_0000.nii.gz", + "label": "Mask/Case_00481.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00492_0000.nii.gz", + "label": "Mask/Case_00492.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00872_0000.nii.gz", + "label": "Mask/Case_00872.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00649_0000.nii.gz", + "label": "Mask/Case_00649.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00545_0000.nii.gz", + "label": "Mask/Case_00545.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00706_0000.nii.gz", + "label": "Mask/Case_00706.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00898_0000.nii.gz", + "label": "Mask/Case_00898.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00633_0000.nii.gz", + "label": "Mask/Case_00633.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00917_0000.nii.gz", + "label": "Mask/Case_00917.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00566_0000.nii.gz", + "label": "Mask/Case_00566.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00378_0000.nii.gz", + "label": "Mask/Case_00378.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00807_0000.nii.gz", + "label": "Mask/Case_00807.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00867_0000.nii.gz", + "label": "Mask/Case_00867.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00007_0000.nii.gz", + "label": "Mask/Case_00007.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00837_0000.nii.gz", + "label": "Mask/Case_00837.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00208_0000.nii.gz", + "label": "Mask/Case_00208.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00328_0000.nii.gz", + "label": "Mask/Case_00328.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00718_0000.nii.gz", + "label": "Mask/Case_00718.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00050_0000.nii.gz", + "label": "Mask/Case_00050.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00235_0000.nii.gz", + "label": "Mask/Case_00235.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00122_0000.nii.gz", + "label": "Mask/Case_00122.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00614_0000.nii.gz", + "label": "Mask/Case_00614.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00913_0000.nii.gz", + "label": "Mask/Case_00913.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00598_0000.nii.gz", + "label": "Mask/Case_00598.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00146_0000.nii.gz", + "label": "Mask/Case_00146.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00962_0000.nii.gz", + "label": "Mask/Case_00962.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00515_0000.nii.gz", + "label": "Mask/Case_00515.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00838_0000.nii.gz", + "label": "Mask/Case_00838.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00607_0000.nii.gz", + "label": "Mask/Case_00607.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00158_0000.nii.gz", + "label": "Mask/Case_00158.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00736_0000.nii.gz", + "label": "Mask/Case_00736.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00037_0000.nii.gz", + "label": "Mask/Case_00037.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00313_0000.nii.gz", + "label": "Mask/Case_00313.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00183_0000.nii.gz", + "label": "Mask/Case_00183.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00888_0000.nii.gz", + "label": "Mask/Case_00888.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01016_0000.nii.gz", + "label": "Mask/Case_01016.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00975_0000.nii.gz", + "label": "Mask/Case_00975.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00175_0000.nii.gz", + "label": "Mask/Case_00175.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00397_0000.nii.gz", + "label": "Mask/Case_00397.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00292_0000.nii.gz", + "label": "Mask/Case_00292.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00318_0000.nii.gz", + "label": "Mask/Case_00318.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00935_0000.nii.gz", + "label": "Mask/Case_00935.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00192_0000.nii.gz", + "label": "Mask/Case_00192.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00491_0000.nii.gz", + "label": "Mask/Case_00491.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00560_0000.nii.gz", + "label": "Mask/Case_00560.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00806_0000.nii.gz", + "label": "Mask/Case_00806.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00727_0000.nii.gz", + "label": "Mask/Case_00727.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00061_0000.nii.gz", + "label": "Mask/Case_00061.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00386_0000.nii.gz", + "label": "Mask/Case_00386.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00642_0000.nii.gz", + "label": "Mask/Case_00642.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00578_0000.nii.gz", + "label": "Mask/Case_00578.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00145_0000.nii.gz", + "label": "Mask/Case_00145.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00383_0000.nii.gz", + "label": "Mask/Case_00383.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01061_0000.nii.gz", + "label": "Mask/Case_01061.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00478_0000.nii.gz", + "label": "Mask/Case_00478.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00801_0000.nii.gz", + "label": "Mask/Case_00801.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00585_0000.nii.gz", + "label": "Mask/Case_00585.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00376_0000.nii.gz", + "label": "Mask/Case_00376.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00003_0000.nii.gz", + "label": "Mask/Case_00003.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00004_0000.nii.gz", + "label": "Mask/Case_00004.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00409_0000.nii.gz", + "label": "Mask/Case_00409.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00881_0000.nii.gz", + "label": "Mask/Case_00881.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00685_0000.nii.gz", + "label": "Mask/Case_00685.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00966_0000.nii.gz", + "label": "Mask/Case_00966.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00137_0000.nii.gz", + "label": "Mask/Case_00137.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00932_0000.nii.gz", + "label": "Mask/Case_00932.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00227_0000.nii.gz", + "label": "Mask/Case_00227.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00901_0000.nii.gz", + "label": "Mask/Case_00901.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00969_0000.nii.gz", + "label": "Mask/Case_00969.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00101_0000.nii.gz", + "label": "Mask/Case_00101.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00262_0000.nii.gz", + "label": "Mask/Case_00262.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00253_0000.nii.gz", + "label": "Mask/Case_00253.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00978_0000.nii.gz", + "label": "Mask/Case_00978.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00210_0000.nii.gz", + "label": "Mask/Case_00210.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00684_0000.nii.gz", + "label": "Mask/Case_00684.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00656_0000.nii.gz", + "label": "Mask/Case_00656.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00567_0000.nii.gz", + "label": "Mask/Case_00567.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00468_0000.nii.gz", + "label": "Mask/Case_00468.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01032_0000.nii.gz", + "label": "Mask/Case_01032.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00654_0000.nii.gz", + "label": "Mask/Case_00654.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00629_0000.nii.gz", + "label": "Mask/Case_00629.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01023_0000.nii.gz", + "label": "Mask/Case_01023.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00233_0000.nii.gz", + "label": "Mask/Case_00233.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00288_0000.nii.gz", + "label": "Mask/Case_00288.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00157_0000.nii.gz", + "label": "Mask/Case_00157.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00217_0000.nii.gz", + "label": "Mask/Case_00217.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00044_0000.nii.gz", + "label": "Mask/Case_00044.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00494_0000.nii.gz", + "label": "Mask/Case_00494.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00169_0000.nii.gz", + "label": "Mask/Case_00169.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00025_0000.nii.gz", + "label": "Mask/Case_00025.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00332_0000.nii.gz", + "label": "Mask/Case_00332.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00601_0000.nii.gz", + "label": "Mask/Case_00601.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00507_0000.nii.gz", + "label": "Mask/Case_00507.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00653_0000.nii.gz", + "label": "Mask/Case_00653.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00453_0000.nii.gz", + "label": "Mask/Case_00453.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00749_0000.nii.gz", + "label": "Mask/Case_00749.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00031_0000.nii.gz", + "label": "Mask/Case_00031.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00243_0000.nii.gz", + "label": "Mask/Case_00243.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00487_0000.nii.gz", + "label": "Mask/Case_00487.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00467_0000.nii.gz", + "label": "Mask/Case_00467.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00156_0000.nii.gz", + "label": "Mask/Case_00156.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00846_0000.nii.gz", + "label": "Mask/Case_00846.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00915_0000.nii.gz", + "label": "Mask/Case_00915.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00193_0000.nii.gz", + "label": "Mask/Case_00193.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01001_0000.nii.gz", + "label": "Mask/Case_01001.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00856_0000.nii.gz", + "label": "Mask/Case_00856.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00393_0000.nii.gz", + "label": "Mask/Case_00393.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00732_0000.nii.gz", + "label": "Mask/Case_00732.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart2/Case_00459_0000.nii.gz", + "label": "Mask/Case_00459.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_01004_0000.nii.gz", + "label": "Mask/Case_01004.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart1/Case_00106_0000.nii.gz", + "label": "Mask/Case_00106.nii.gz" + }, + { + "image": "AbdomenCT-1K-ImagePart3/Case_00850_0000.nii.gz", + "label": "Mask/Case_00850.nii.gz" + } + ] +} diff --git a/vista3d/data/jsons/AeroPath_5_folds.json b/vista3d/data/jsons/AeroPath_5_folds.json new file mode 100644 index 0000000..26f9c47 --- /dev/null +++ b/vista3d/data/jsons/AeroPath_5_folds.json @@ -0,0 +1,297 @@ +{ + "training": [ + { + "image": "8/8_CT_HR.nii.gz", + "pseudo_label": "8/8_CT_HR.nii.gz", + "label": "8/8_CT_HR_label.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "6/6_CT_HR.nii.gz", + "pseudo_label": "6/6_CT_HR.nii.gz", + "label": "6/6_CT_HR_label.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "14/14_CT_HR.nii.gz", + "pseudo_label": "14/14_CT_HR.nii.gz", + "label": "14/14_CT_HR_label.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "16/16_CT_HR.nii.gz", + "pseudo_label": "16/16_CT_HR.nii.gz", + "label": "16/16_CT_HR_label.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "15/15_CT_HR.nii.gz", + "pseudo_label": "15/15_CT_HR.nii.gz", + "label": "15/15_CT_HR_label.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "27/27_CT_HR.nii.gz", + "pseudo_label": "27/27_CT_HR.nii.gz", + "label": "27/27_CT_HR_label.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AeroPath_100/27_CT_HR/27_CT_HR_seg.nii.gz" + }, + { + "image": "20/20_CT_HR.nii.gz", + "pseudo_label": "20/20_CT_HR.nii.gz", + "label": "20/20_CT_HR_label.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AeroPath_100/20_CT_HR/20_CT_HR_seg.nii.gz" + }, + { + "image": "1/1_CT_HR.nii.gz", + "pseudo_label": "1/1_CT_HR.nii.gz", + "label": "1/1_CT_HR_label.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AeroPath_100/1_CT_HR/1_CT_HR_seg.nii.gz" + }, + { + "image": "18/18_CT_HR.nii.gz", + "pseudo_label": "18/18_CT_HR.nii.gz", + "label": "18/18_CT_HR_label.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AeroPath_100/18_CT_HR/18_CT_HR_seg.nii.gz" + }, + { + "image": "25/25_CT_HR.nii.gz", + "pseudo_label": "25/25_CT_HR.nii.gz", + "label": "25/25_CT_HR_label.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AeroPath_100/25_CT_HR/25_CT_HR_seg.nii.gz" + }, + { + "image": "13/13_CT_HR.nii.gz", + "pseudo_label": "13/13_CT_HR.nii.gz", + "label": "13/13_CT_HR_label.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AeroPath_100/13_CT_HR/13_CT_HR_seg.nii.gz" + }, + { + "image": "23/23_CT_HR.nii.gz", + "pseudo_label": "23/23_CT_HR.nii.gz", + "label": "23/23_CT_HR_label.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AeroPath_100/23_CT_HR/23_CT_HR_seg.nii.gz" + }, + { + "image": "5/5_CT_HR.nii.gz", + "pseudo_label": "5/5_CT_HR.nii.gz", + "label": "5/5_CT_HR_label.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AeroPath_100/5_CT_HR/5_CT_HR_seg.nii.gz" + }, + { + "image": "10/10_CT_HR.nii.gz", + "pseudo_label": "10/10_CT_HR.nii.gz", + "label": "10/10_CT_HR_label.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AeroPath_100/10_CT_HR/10_CT_HR_seg.nii.gz" + }, + { + "image": "17/17_CT_HR.nii.gz", + "pseudo_label": "17/17_CT_HR.nii.gz", + "label": "17/17_CT_HR_label.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AeroPath_100/17_CT_HR/17_CT_HR_seg.nii.gz" + }, + { + "image": "12/12_CT_HR.nii.gz", + "pseudo_label": "12/12_CT_HR.nii.gz", + "label": "12/12_CT_HR_label.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AeroPath_100/12_CT_HR/12_CT_HR_seg.nii.gz" + }, + { + "image": "3/3_CT_HR.nii.gz", + "pseudo_label": "3/3_CT_HR.nii.gz", + "label": "3/3_CT_HR_label.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AeroPath_100/3_CT_HR/3_CT_HR_seg.nii.gz" + }, + { + "image": "24/24_CT_HR.nii.gz", + "pseudo_label": "24/24_CT_HR.nii.gz", + "label": "24/24_CT_HR_label.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AeroPath_100/24_CT_HR/24_CT_HR_seg.nii.gz" + }, + { + "image": "9/9_CT_HR.nii.gz", + "pseudo_label": "9/9_CT_HR.nii.gz", + "label": "9/9_CT_HR_label.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/AeroPath_100/9_CT_HR/9_CT_HR_seg.nii.gz" + }, + { + "image": "26/26_CT_HR.nii.gz", + "pseudo_label": "26/26_CT_HR.nii.gz", + "label": "26/26_CT_HR_label.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AeroPath_100/26_CT_HR/26_CT_HR_seg.nii.gz" + }, + { + "image": "11/11_CT_HR.nii.gz", + "pseudo_label": "11/11_CT_HR.nii.gz", + "label": "11/11_CT_HR_label.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AeroPath_100/11_CT_HR/11_CT_HR_seg.nii.gz" + }, + { + "image": "7/7_CT_HR.nii.gz", + "pseudo_label": "7/7_CT_HR.nii.gz", + "label": "7/7_CT_HR_label.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/AeroPath_100/7_CT_HR/7_CT_HR_seg.nii.gz" + } + ], + "training_transform": [ + { + "_target_": "RandCropByLabelClassesd", + "keys": [ + "@image_key", + "@label_key", + "@pseudo_label_key", + "@label_sv_key" + ], + "label_key": "@pseudo_label_key", + "num_classes": 133, + "num_samples": "@num_patches_per_image", + "spatial_size": "@patch_size", + "ratios": "$tuple(float(i >= 0) for i in range(133))", + "warn": false, + "allow_missing_keys": true + }, + { + "_target_": "RandZoomd", + "keys": [ + "@image_key", + "@label_key", + "@pseudo_label_key", + "@label_sv_key" + ], + "min_zoom": 0.8, + "max_zoom": 1.2, + "mode": [ + "trilinear", + "nearest", + "nearest", + "nearest" + ], + "prob": 0.2, + "allow_missing_keys": true + }, + { + "_target_": "RandSimulateLowResolutiond", + "keys": [ + "@image_key" + ], + "zoom_range": [ + 0.3, + 1 + ], + "prob": 0.2, + "allow_missing_keys": true + }, + { + "_target_": "RandGaussianSmoothd", + "keys": [ + "@image_key" + ], + "prob": 0.2, + "sigma_x": [ + 0.5, + 1.0 + ], + "sigma_y": [ + 0.5, + 1.0 + ], + "sigma_z": [ + 0.5, + 1.0 + ] + }, + { + "_target_": "RandScaleIntensityd", + "keys": [ + "@image_key" + ], + "factors": 0.1, + "prob": 0.2 + }, + { + "_target_": "RandShiftIntensityd", + "keys": [ + "@image_key" + ], + "offsets": 0.1, + "prob": 0.2 + }, + { + "_target_": "RandGaussianNoised", + "keys": [ + "@image_key" + ], + "prob": 0.2, + "mean": 0.0, + "std": 0.2 + } + ], + "label_dict": { + "2": "airway" + }, + "original_label_dict": { + "1": "lung", + "2": "airway" + }, + "testing": [ + { + "image": "19/19_CT_HR.nii.gz", + "label": "19/19_CT_HR_label.nii.gz" + }, + { + "image": "2/2_CT_HR.nii.gz", + "label": "2/2_CT_HR_label.nii.gz" + }, + { + "image": "22/22_CT_HR.nii.gz", + "label": "22/22_CT_HR_label.nii.gz" + }, + { + "image": "21/21_CT_HR.nii.gz", + "label": "21/21_CT_HR_label.nii.gz" + }, + { + "image": "4/4_CT_HR.nii.gz", + "label": "4/4_CT_HR_label.nii.gz" + } + ] +} diff --git a/vista3d/data/jsons/BTCV-Abdomen_5_folds.json b/vista3d/data/jsons/BTCV-Abdomen_5_folds.json new file mode 100644 index 0000000..55b1067 --- /dev/null +++ b/vista3d/data/jsons/BTCV-Abdomen_5_folds.json @@ -0,0 +1,340 @@ +{ + "training": [ + { + "image": "RawData/Training/img/img0039.nii.gz", + "pseudo_label": "RawData/Training/img/img0039.nii.gz", + "label": "RawData/Training/label/label0039.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "RawData/Training/img/img0037.nii.gz", + "pseudo_label": "RawData/Training/img/img0037.nii.gz", + "label": "RawData/Training/label/label0037.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "RawData/Training/img/img0006.nii.gz", + "pseudo_label": "RawData/Training/img/img0006.nii.gz", + "label": "RawData/Training/label/label0006.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "RawData/Training/img/img0008.nii.gz", + "pseudo_label": "RawData/Training/img/img0008.nii.gz", + "label": "RawData/Training/label/label0008.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "RawData/Training/img/img0027.nii.gz", + "pseudo_label": "RawData/Training/img/img0027.nii.gz", + "label": "RawData/Training/label/label0027.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "RawData/Training/img/img0030.nii.gz", + "pseudo_label": "RawData/Training/img/img0030.nii.gz", + "label": "RawData/Training/label/label0030.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Abdomen_100/img0030/img0030_seg.nii.gz" + }, + { + "image": "RawData/Training/img/img0023.nii.gz", + "pseudo_label": "RawData/Training/img/img0023.nii.gz", + "label": "RawData/Training/label/label0023.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Abdomen_100/img0023/img0023_seg.nii.gz" + }, + { + "image": "RawData/Training/img/img0001.nii.gz", + "pseudo_label": "RawData/Training/img/img0001.nii.gz", + "label": "RawData/Training/label/label0001.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Abdomen_100/img0001/img0001_seg.nii.gz" + }, + { + "image": "RawData/Training/img/img0035.nii.gz", + "pseudo_label": "RawData/Training/img/img0035.nii.gz", + "label": "RawData/Training/label/label0035.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Abdomen_100/img0035/img0035_seg.nii.gz" + }, + { + "image": "RawData/Training/img/img0038.nii.gz", + "pseudo_label": "RawData/Training/img/img0038.nii.gz", + "label": "RawData/Training/label/label0038.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Abdomen_100/img0038/img0038_seg.nii.gz" + }, + { + "image": "RawData/Training/img/img0005.nii.gz", + "pseudo_label": "RawData/Training/img/img0005.nii.gz", + "label": "RawData/Training/label/label0005.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Abdomen_100/img0005/img0005_seg.nii.gz" + }, + { + "image": "RawData/Training/img/img0026.nii.gz", + "pseudo_label": "RawData/Training/img/img0026.nii.gz", + "label": "RawData/Training/label/label0026.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Abdomen_100/img0026/img0026_seg.nii.gz" + }, + { + "image": "RawData/Training/img/img0033.nii.gz", + "pseudo_label": "RawData/Training/img/img0033.nii.gz", + "label": "RawData/Training/label/label0033.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Abdomen_100/img0033/img0033_seg.nii.gz" + }, + { + "image": "RawData/Training/img/img0004.nii.gz", + "pseudo_label": "RawData/Training/img/img0004.nii.gz", + "label": "RawData/Training/label/label0004.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Abdomen_100/img0004/img0004_seg.nii.gz" + }, + { + "image": "RawData/Training/img/img0007.nii.gz", + "pseudo_label": "RawData/Training/img/img0007.nii.gz", + "label": "RawData/Training/label/label0007.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Abdomen_100/img0007/img0007_seg.nii.gz" + }, + { + "image": "RawData/Training/img/img0009.nii.gz", + "pseudo_label": "RawData/Training/img/img0009.nii.gz", + "label": "RawData/Training/label/label0009.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Abdomen_100/img0009/img0009_seg.nii.gz" + }, + { + "image": "RawData/Training/img/img0040.nii.gz", + "pseudo_label": "RawData/Training/img/img0040.nii.gz", + "label": "RawData/Training/label/label0040.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Abdomen_100/img0040/img0040_seg.nii.gz" + }, + { + "image": "RawData/Training/img/img0031.nii.gz", + "pseudo_label": "RawData/Training/img/img0031.nii.gz", + "label": "RawData/Training/label/label0031.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Abdomen_100/img0031/img0031_seg.nii.gz" + }, + { + "image": "RawData/Training/img/img0010.nii.gz", + "pseudo_label": "RawData/Training/img/img0010.nii.gz", + "label": "RawData/Training/label/label0010.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Abdomen_100/img0010/img0010_seg.nii.gz" + }, + { + "image": "RawData/Training/img/img0028.nii.gz", + "pseudo_label": "RawData/Training/img/img0028.nii.gz", + "label": "RawData/Training/label/label0028.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Abdomen_100/img0028/img0028_seg.nii.gz" + }, + { + "image": "RawData/Training/img/img0036.nii.gz", + "pseudo_label": "RawData/Training/img/img0036.nii.gz", + "label": "RawData/Training/label/label0036.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Abdomen_100/img0036/img0036_seg.nii.gz" + }, + { + "image": "RawData/Training/img/img0029.nii.gz", + "pseudo_label": "RawData/Training/img/img0029.nii.gz", + "label": "RawData/Training/label/label0029.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Abdomen_100/img0029/img0029_seg.nii.gz" + }, + { + "image": "RawData/Training/img/img0003.nii.gz", + "pseudo_label": "RawData/Training/img/img0003.nii.gz", + "label": "RawData/Training/label/label0003.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Abdomen_100/img0003/img0003_seg.nii.gz" + }, + { + "image": "RawData/Training/img/img0002.nii.gz", + "pseudo_label": "RawData/Training/img/img0002.nii.gz", + "label": "RawData/Training/label/label0002.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Abdomen_100/img0002/img0002_seg.nii.gz" + } + ], + "training_transform": [ + { + "_target_": "RandCropByLabelClassesd", + "keys": [ + "@image_key", + "@label_key", + "@pseudo_label_key", + "@label_sv_key" + ], + "label_key": "@pseudo_label_key", + "num_classes": 133, + "num_samples": "@num_patches_per_image", + "spatial_size": "@patch_size", + "ratios": "$tuple(float(i >= 0) for i in range(133))", + "warn": false, + "allow_missing_keys": true + }, + { + "_target_": "RandZoomd", + "keys": [ + "@image_key", + "@label_key", + "@pseudo_label_key", + "@label_sv_key" + ], + "min_zoom": 0.8, + "max_zoom": 1.2, + "mode": [ + "trilinear", + "nearest", + "nearest", + "nearest" + ], + "prob": 0.2, + "allow_missing_keys": true + }, + { + "_target_": "RandSimulateLowResolutiond", + "keys": [ + "@image_key" + ], + "zoom_range": [ + 0.3, + 1 + ], + "prob": 0.2, + "allow_missing_keys": true + }, + { + "_target_": "RandGaussianSmoothd", + "keys": [ + "@image_key" + ], + "prob": 0.2, + "sigma_x": [ + 0.5, + 1.0 + ], + "sigma_y": [ + 0.5, + 1.0 + ], + "sigma_z": [ + 0.5, + 1.0 + ] + }, + { + "_target_": "RandScaleIntensityd", + "keys": [ + "@image_key" + ], + "factors": 0.1, + "prob": 0.2 + }, + { + "_target_": "RandShiftIntensityd", + "keys": [ + "@image_key" + ], + "offsets": 0.1, + "prob": 0.2 + }, + { + "_target_": "RandGaussianNoised", + "keys": [ + "@image_key" + ], + "prob": 0.2, + "mean": 0.0, + "std": 0.2 + } + ], + "label_dict": { + "1": "spleen", + "2": "right kidney", + "3": "left kidney", + "4": "gallbladder", + "5": "esophagus", + "6": "liver", + "7": "stomach", + "8": "aorta", + "9": "inferior vena cava", + "10": "portal vein and splenic vein", + "11": "pancreas", + "12": "right adrenal gland", + "13": "left adrenal gland" + }, + "original_label_dict": { + "1": "spleen", + "2": "right kidney", + "3": "left kidney", + "4": "gallbladder", + "5": "esophagus", + "6": "liver", + "7": "stomach", + "8": "aorta", + "9": "inferior vena cava", + "10": "portal vein and splenic vein", + "11": "pancreas", + "12": "right adrenal gland", + "13": "left adrenal gland" + }, + "testing": [ + { + "image": "RawData/Training/img/img0021.nii.gz", + "label": "RawData/Training/label/label0021.nii.gz" + }, + { + "image": "RawData/Training/img/img0034.nii.gz", + "label": "RawData/Training/label/label0034.nii.gz" + }, + { + "image": "RawData/Training/img/img0022.nii.gz", + "label": "RawData/Training/label/label0022.nii.gz" + }, + { + "image": "RawData/Training/img/img0025.nii.gz", + "label": "RawData/Training/label/label0025.nii.gz" + }, + { + "image": "RawData/Training/img/img0024.nii.gz", + "label": "RawData/Training/label/label0024.nii.gz" + }, + { + "image": "RawData/Training/img/img0032.nii.gz", + "label": "RawData/Training/label/label0032.nii.gz" + } + ] +} diff --git a/vista3d/data/jsons/BTCV-Cervix_5_folds.json b/vista3d/data/jsons/BTCV-Cervix_5_folds.json new file mode 100644 index 0000000..5bfd9a7 --- /dev/null +++ b/vista3d/data/jsons/BTCV-Cervix_5_folds.json @@ -0,0 +1,318 @@ +{ + "training": [ + { + "image": "FixedData/Training/img/8745574-Image.nii.gz", + "pseudo_label": "FixedData/Training/img/8745574-Image.nii.gz", + "label": "FixedDataV2/Training/label/8745574-Mask.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "FixedData/Training/img/7657884-Image.nii.gz", + "pseudo_label": "FixedData/Training/img/7657884-Image.nii.gz", + "label": "FixedDataV2/Training/label/7657884-Mask.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "FixedData/Training/img/1565722-Image.nii.gz", + "pseudo_label": "FixedData/Training/img/1565722-Image.nii.gz", + "label": "FixedDataV2/Training/label/1565722-Mask.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "FixedData/Training/img/1578068-Image.nii.gz", + "pseudo_label": "FixedData/Training/img/1578068-Image.nii.gz", + "label": "FixedDataV2/Training/label/1578068-Mask.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "FixedData/Training/img/3744998-Image.nii.gz", + "pseudo_label": "FixedData/Training/img/3744998-Image.nii.gz", + "label": "FixedDataV2/Training/label/3744998-Mask.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "FixedData/Training/img/5458334-Image.nii.gz", + "pseudo_label": "FixedData/Training/img/5458334-Image.nii.gz", + "label": "FixedDataV2/Training/label/5458334-Mask.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Cervix_100/5458334-Image/5458334-Image_seg.nii.gz" + }, + { + "image": "FixedData/Training/img/2780380-Image.nii.gz", + "pseudo_label": "FixedData/Training/img/2780380-Image.nii.gz", + "label": "FixedDataV2/Training/label/2780380-Mask.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0 + }, + { + "image": "FixedData/Training/img/0507688-Image.nii.gz", + "pseudo_label": "FixedData/Training/img/0507688-Image.nii.gz", + "label": "FixedDataV2/Training/label/0507688-Mask.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Cervix_100/0507688-Image/0507688-Image_seg.nii.gz" + }, + { + "image": "FixedData/Training/img/6682806-Image.nii.gz", + "pseudo_label": "FixedData/Training/img/6682806-Image.nii.gz", + "label": "FixedDataV2/Training/label/6682806-Mask.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Cervix_100/6682806-Image/6682806-Image_seg.nii.gz" + }, + { + "image": "FixedData/Training/img/7742556-Image.nii.gz", + "pseudo_label": "FixedData/Training/img/7742556-Image.nii.gz", + "label": "FixedDataV2/Training/label/7742556-Mask.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1 + }, + { + "image": "FixedData/Training/img/1411226-Image.nii.gz", + "pseudo_label": "FixedData/Training/img/1411226-Image.nii.gz", + "label": "FixedDataV2/Training/label/1411226-Mask.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Cervix_100/1411226-Image/1411226-Image_seg.nii.gz" + }, + { + "image": "FixedData/Training/img/3463338-Image.nii.gz", + "pseudo_label": "FixedData/Training/img/3463338-Image.nii.gz", + "label": "FixedDataV2/Training/label/3463338-Mask.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1 + }, + { + "image": "FixedData/Training/img/6171298-Image.nii.gz", + "pseudo_label": "FixedData/Training/img/6171298-Image.nii.gz", + "label": "FixedDataV2/Training/label/6171298-Mask.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Cervix_100/6171298-Image/6171298-Image_seg.nii.gz" + }, + { + "image": "FixedData/Training/img/0773652-Image.nii.gz", + "pseudo_label": "FixedData/Training/img/0773652-Image.nii.gz", + "label": "FixedDataV2/Training/label/0773652-Mask.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Cervix_100/0773652-Image/0773652-Image_seg.nii.gz" + }, + { + "image": "FixedData/Training/img/1577656-Image.nii.gz", + "pseudo_label": "FixedData/Training/img/1577656-Image.nii.gz", + "label": "FixedDataV2/Training/label/1577656-Mask.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Cervix_100/1577656-Image/1577656-Image_seg.nii.gz" + }, + { + "image": "FixedData/Training/img/2088692-Image.nii.gz", + "pseudo_label": "FixedData/Training/img/2088692-Image.nii.gz", + "label": "FixedDataV2/Training/label/2088692-Mask.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Cervix_100/2088692-Image/2088692-Image_seg.nii.gz" + }, + { + "image": "FixedData/Training/img/9570942-Image.nii.gz", + "pseudo_label": "FixedData/Training/img/9570942-Image.nii.gz", + "label": "FixedDataV2/Training/label/9570942-Mask.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Cervix_100/9570942-Image/9570942-Image_seg.nii.gz" + }, + { + "image": "FixedData/Training/img/5502532-Image.nii.gz", + "pseudo_label": "FixedData/Training/img/5502532-Image.nii.gz", + "label": "FixedDataV2/Training/label/5502532-Mask.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Cervix_100/5502532-Image/5502532-Image_seg.nii.gz" + }, + { + "image": "FixedData/Training/img/2469782-Image.nii.gz", + "pseudo_label": "FixedData/Training/img/2469782-Image.nii.gz", + "label": "FixedDataV2/Training/label/2469782-Mask.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1 + }, + { + "image": "FixedData/Training/img/4526856-Image.nii.gz", + "pseudo_label": "FixedData/Training/img/4526856-Image.nii.gz", + "label": "FixedDataV2/Training/label/4526856-Mask.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Cervix_100/4526856-Image/4526856-Image_seg.nii.gz" + }, + { + "image": "FixedData/Training/img/6798630-Image.nii.gz", + "pseudo_label": "FixedData/Training/img/6798630-Image.nii.gz", + "label": "FixedDataV2/Training/label/6798630-Mask.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Cervix_100/6798630-Image/6798630-Image_seg.nii.gz" + }, + { + "image": "FixedData/Training/img/5176452-Image.nii.gz", + "pseudo_label": "FixedData/Training/img/5176452-Image.nii.gz", + "label": "FixedDataV2/Training/label/5176452-Mask.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Cervix_100/5176452-Image/5176452-Image_seg.nii.gz" + }, + { + "image": "FixedData/Training/img/0763890-Image.nii.gz", + "pseudo_label": "FixedData/Training/img/0763890-Image.nii.gz", + "label": "FixedDataV2/Training/label/0763890-Mask.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Cervix_100/0763890-Image/0763890-Image_seg.nii.gz" + }, + { + "image": "FixedData/Training/img/0759564-Image.nii.gz", + "pseudo_label": "FixedData/Training/img/0759564-Image.nii.gz", + "label": "FixedDataV2/Training/label/0759564-Mask.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/BTCV-Cervix_100/0759564-Image/0759564-Image_seg.nii.gz" + } + ], + "training_transform": [ + { + "_target_": "RandCropByLabelClassesd", + "keys": [ + "@image_key", + "@label_key", + "@pseudo_label_key", + "@label_sv_key" + ], + "label_key": "@pseudo_label_key", + "num_classes": 133, + "num_samples": "@num_patches_per_image", + "spatial_size": "@patch_size", + "ratios": "$tuple(float(i >= 0) for i in range(133))", + "warn": false, + "allow_missing_keys": true + }, + { + "_target_": "RandZoomd", + "keys": [ + "@image_key", + "@label_key", + "@pseudo_label_key", + "@label_sv_key" + ], + "min_zoom": 0.8, + "max_zoom": 1.2, + "mode": [ + "trilinear", + "nearest", + "nearest", + "nearest" + ], + "prob": 0.2, + "allow_missing_keys": true + }, + { + "_target_": "RandSimulateLowResolutiond", + "keys": [ + "@image_key" + ], + "zoom_range": [ + 0.3, + 1 + ], + "prob": 0.2, + "allow_missing_keys": true + }, + { + "_target_": "RandGaussianSmoothd", + "keys": [ + "@image_key" + ], + "prob": 0.2, + "sigma_x": [ + 0.5, + 1.0 + ], + "sigma_y": [ + 0.5, + 1.0 + ], + "sigma_z": [ + 0.5, + 1.0 + ] + }, + { + "_target_": "RandScaleIntensityd", + "keys": [ + "@image_key" + ], + "factors": 0.1, + "prob": 0.2 + }, + { + "_target_": "RandShiftIntensityd", + "keys": [ + "@image_key" + ], + "offsets": 0.1, + "prob": 0.2 + }, + { + "_target_": "RandGaussianNoised", + "keys": [ + "@image_key" + ], + "prob": 0.2, + "mean": 0.0, + "std": 0.2 + } + ], + "label_dict": { + "1": "bladder", + "2": "prostate or uterus", + "3": "rectum", + "4": "small bowel" + }, + "original_label_dict": { + "1": "bladder", + "2": "uterus", + "3": "rectum", + "4": "small bowel" + }, + "testing": [ + { + "image": "FixedData/Training/img/2477092-Image.nii.gz", + "label": "FixedDataV2/Training/label/2477092-Mask.nii.gz" + }, + { + "image": "FixedData/Training/img/6339208-Image.nii.gz", + "label": "FixedDataV2/Training/label/6339208-Mask.nii.gz" + }, + { + "image": "FixedData/Training/img/2609008-Image.nii.gz", + "label": "FixedDataV2/Training/label/2609008-Mask.nii.gz" + }, + { + "image": "FixedData/Training/img/3388252-Image.nii.gz", + "label": "FixedDataV2/Training/label/3388252-Mask.nii.gz" + }, + { + "image": "FixedData/Training/img/3089528-Image.nii.gz", + "label": "FixedDataV2/Training/label/3089528-Mask.nii.gz" + }, + { + "image": "FixedData/Training/img/5664630-Image.nii.gz", + "label": "FixedDataV2/Training/label/5664630-Mask.nii.gz" + } + ] +} diff --git a/vista3d/data/jsons/CRLM-CT_5_folds.json b/vista3d/data/jsons/CRLM-CT_5_folds.json new file mode 100644 index 0000000..a28223d --- /dev/null +++ b/vista3d/data/jsons/CRLM-CT_5_folds.json @@ -0,0 +1,1491 @@ +{ + "training": [ + { + "image": "CRLM-CT-1028/2_ct_cap_wcontrast.nii.gz", + "pseudo_label": "CRLM-CT-1028/2_ct_cap_wcontrast.nii.gz", + "label": "CRLM-CT-1028/mask.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "CRLM-CT-1154/101_bind217624271512.nii.gz", + "pseudo_label": "CRLM-CT-1154/101_bind217624271512.nii.gz", + "label": "CRLM-CT-1154/mask.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "CRLM-CT-1185/2_ct_chabpel.nii.gz", + "pseudo_label": "CRLM-CT-1185/2_ct_chabpel.nii.gz", + "label": "CRLM-CT-1185/mask.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "CRLM-CT-1017/101_.nii.gz", + "pseudo_label": "CRLM-CT-1017/101_.nii.gz", + "label": "CRLM-CT-1017/mask.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "CRLM-CT-1093/101_.nii.gz", + "pseudo_label": "CRLM-CT-1093/101_.nii.gz", + "label": "CRLM-CT-1093/mask.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "CRLM-CT-1061/101_bind57214233483.nii.gz", + "pseudo_label": "CRLM-CT-1061/101_bind57214233483.nii.gz", + "label": "CRLM-CT-1061/mask.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "CRLM-CT-1089/2_abdomen.nii.gz", + "pseudo_label": "CRLM-CT-1089/2_abdomen.nii.gz", + "label": "CRLM-CT-1089/mask.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "CRLM-CT-1194/2_.nii.gz", + "pseudo_label": "CRLM-CT-1194/2_.nii.gz", + "label": "CRLM-CT-1194/mask.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "CRLM-CT-1032/101_.nii.gz", + "pseudo_label": "CRLM-CT-1032/101_.nii.gz", + "label": "CRLM-CT-1032/mask.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "CRLM-CT-1045/101_.nii.gz", + "pseudo_label": "CRLM-CT-1045/101_.nii.gz", + "label": "CRLM-CT-1045/mask.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "CRLM-CT-1165/2_.nii.gz", + "pseudo_label": "CRLM-CT-1165/2_.nii.gz", + "label": "CRLM-CT-1165/mask.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "CRLM-CT-1150/2_ct_abpel.nii.gz", + "pseudo_label": "CRLM-CT-1150/2_ct_abpel.nii.gz", + "label": "CRLM-CT-1150/mask.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "CRLM-CT-1030/101_bind183835190403.nii.gz", + "pseudo_label": "CRLM-CT-1030/101_bind183835190403.nii.gz", + "label": "CRLM-CT-1030/mask.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "CRLM-CT-1136/2_.nii.gz", + "pseudo_label": "CRLM-CT-1136/2_.nii.gz", + "label": "CRLM-CT-1136/mask.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "CRLM-CT-1105/101_.nii.gz", + "pseudo_label": "CRLM-CT-1105/101_.nii.gz", + "label": "CRLM-CT-1105/mask.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "CRLM-CT-1079/2_chestabdomenpelvis.nii.gz", + "pseudo_label": "CRLM-CT-1079/2_chestabdomenpelvis.nii.gz", + "label": "CRLM-CT-1079/mask.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "CRLM-CT-1191/2_ct_chabpel.nii.gz", + "pseudo_label": "CRLM-CT-1191/2_ct_chabpel.nii.gz", + "label": "CRLM-CT-1191/mask.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "CRLM-CT-1117/101_.nii.gz", + "pseudo_label": "CRLM-CT-1117/101_.nii.gz", + "label": "CRLM-CT-1117/mask.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "CRLM-CT-1037/101_.nii.gz", + "pseudo_label": "CRLM-CT-1037/101_.nii.gz", + "label": "CRLM-CT-1037/mask.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "CRLM-CT-1188/101_.nii.gz", + "pseudo_label": "CRLM-CT-1188/101_.nii.gz", + "label": "CRLM-CT-1188/mask.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "CRLM-CT-1069/101_.nii.gz", + "pseudo_label": "CRLM-CT-1069/101_.nii.gz", + "label": "CRLM-CT-1069/mask.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "CRLM-CT-1001/101_.nii.gz", + "pseudo_label": "CRLM-CT-1001/101_.nii.gz", + "label": "CRLM-CT-1001/mask.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "CRLM-CT-1057/101_.nii.gz", + "pseudo_label": "CRLM-CT-1057/101_.nii.gz", + "label": "CRLM-CT-1057/mask.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "CRLM-CT-1041/2_chestabdomenpelvis.nii.gz", + "pseudo_label": "CRLM-CT-1041/2_chestabdomenpelvis.nii.gz", + "label": "CRLM-CT-1041/mask.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "CRLM-CT-1090/2_ct_abdomen.nii.gz", + "pseudo_label": "CRLM-CT-1090/2_ct_abdomen.nii.gz", + "label": "CRLM-CT-1090/mask.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "CRLM-CT-1087/2_.nii.gz", + "pseudo_label": "CRLM-CT-1087/2_.nii.gz", + "label": "CRLM-CT-1087/mask.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "CRLM-CT-1133/101_bind206963277526.nii.gz", + "pseudo_label": "CRLM-CT-1133/101_bind206963277526.nii.gz", + "label": "CRLM-CT-1133/mask.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "CRLM-CT-1007/2_ct_chabpel.nii.gz", + "pseudo_label": "CRLM-CT-1007/2_ct_chabpel.nii.gz", + "label": "CRLM-CT-1007/mask.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "CRLM-CT-1099/102_.nii.gz", + "pseudo_label": "CRLM-CT-1099/102_.nii.gz", + "label": "CRLM-CT-1099/mask.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "CRLM-CT-1196/103_.nii.gz", + "pseudo_label": "CRLM-CT-1196/103_.nii.gz", + "label": "CRLM-CT-1196/mask.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "CRLM-CT-1080/101_.nii.gz", + "pseudo_label": "CRLM-CT-1080/101_.nii.gz", + "label": "CRLM-CT-1080/mask.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "CRLM-CT-1073/2_chabdpel_5x5.nii.gz", + "pseudo_label": "CRLM-CT-1073/2_chabdpel_5x5.nii.gz", + "label": "CRLM-CT-1073/mask.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "CRLM-CT-1114/101_.nii.gz", + "pseudo_label": "CRLM-CT-1114/101_.nii.gz", + "label": "CRLM-CT-1114/mask.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1114/101_/101__seg.nii.gz" + }, + { + "image": "CRLM-CT-1131/2_.nii.gz", + "pseudo_label": "CRLM-CT-1131/2_.nii.gz", + "label": "CRLM-CT-1131/mask.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1131/2_/2__seg.nii.gz" + }, + { + "image": "CRLM-CT-1110/101_.nii.gz", + "pseudo_label": "CRLM-CT-1110/101_.nii.gz", + "label": "CRLM-CT-1110/mask.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1110/101_/101__seg.nii.gz" + }, + { + "image": "CRLM-CT-1010/101_.nii.gz", + "pseudo_label": "CRLM-CT-1010/101_.nii.gz", + "label": "CRLM-CT-1010/mask.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1010/101_/101__seg.nii.gz" + }, + { + "image": "CRLM-CT-1183/101_.nii.gz", + "pseudo_label": "CRLM-CT-1183/101_.nii.gz", + "label": "CRLM-CT-1183/mask.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1 + }, + { + "image": "CRLM-CT-1122/101_.nii.gz", + "pseudo_label": "CRLM-CT-1122/101_.nii.gz", + "label": "CRLM-CT-1122/mask.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1122/101_/101__seg.nii.gz" + }, + { + "image": "CRLM-CT-1127/2_ct_chabpel.nii.gz", + "pseudo_label": "CRLM-CT-1127/2_ct_chabpel.nii.gz", + "label": "CRLM-CT-1127/mask.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1127/2_ct_chabpel/2_ct_chabpel_seg.nii.gz" + }, + { + "image": "CRLM-CT-1016/2_ct_chabpel.nii.gz", + "pseudo_label": "CRLM-CT-1016/2_ct_chabpel.nii.gz", + "label": "CRLM-CT-1016/mask.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1016/2_ct_chabpel/2_ct_chabpel_seg.nii.gz" + }, + { + "image": "CRLM-CT-1101/2_.nii.gz", + "pseudo_label": "CRLM-CT-1101/2_.nii.gz", + "label": "CRLM-CT-1101/mask.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1101/2_/2__seg.nii.gz" + }, + { + "image": "CRLM-CT-1070/101_.nii.gz", + "pseudo_label": "CRLM-CT-1070/101_.nii.gz", + "label": "CRLM-CT-1070/mask.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1070/101_/101__seg.nii.gz" + }, + { + "image": "CRLM-CT-1159/2_ct_chabpel.nii.gz", + "pseudo_label": "CRLM-CT-1159/2_ct_chabpel.nii.gz", + "label": "CRLM-CT-1159/mask.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1159/2_ct_chabpel/2_ct_chabpel_seg.nii.gz" + }, + { + "image": "CRLM-CT-1179/2_ct_chabpel.nii.gz", + "pseudo_label": "CRLM-CT-1179/2_ct_chabpel.nii.gz", + "label": "CRLM-CT-1179/mask.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1179/2_ct_chabpel/2_ct_chabpel_seg.nii.gz" + }, + { + "image": "CRLM-CT-1178/102_.nii.gz", + "pseudo_label": "CRLM-CT-1178/102_.nii.gz", + "label": "CRLM-CT-1178/mask.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1178/102_/102__seg.nii.gz" + }, + { + "image": "CRLM-CT-1156/2_.nii.gz", + "pseudo_label": "CRLM-CT-1156/2_.nii.gz", + "label": "CRLM-CT-1156/mask.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1156/2_/2__seg.nii.gz" + }, + { + "image": "CRLM-CT-1197/101_.nii.gz", + "pseudo_label": "CRLM-CT-1197/101_.nii.gz", + "label": "CRLM-CT-1197/mask.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1197/101_/101__seg.nii.gz" + }, + { + "image": "CRLM-CT-1039/2_post_con.nii.gz", + "pseudo_label": "CRLM-CT-1039/2_post_con.nii.gz", + "label": "CRLM-CT-1039/mask.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1039/2_post_con/2_post_con_seg.nii.gz" + }, + { + "image": "CRLM-CT-1113/101_.nii.gz", + "pseudo_label": "CRLM-CT-1113/101_.nii.gz", + "label": "CRLM-CT-1113/mask.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1113/101_/101__seg.nii.gz" + }, + { + "image": "CRLM-CT-1193/2_ct_chabpel.nii.gz", + "pseudo_label": "CRLM-CT-1193/2_ct_chabpel.nii.gz", + "label": "CRLM-CT-1193/mask.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1193/2_ct_chabpel/2_ct_chabpel_seg.nii.gz" + }, + { + "image": "CRLM-CT-1077/101_.nii.gz", + "pseudo_label": "CRLM-CT-1077/101_.nii.gz", + "label": "CRLM-CT-1077/mask.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1077/101_/101__seg.nii.gz" + }, + { + "image": "CRLM-CT-1146/2_ct_abdomenpelvis.nii.gz", + "pseudo_label": "CRLM-CT-1146/2_ct_abdomenpelvis.nii.gz", + "label": "CRLM-CT-1146/mask.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1146/2_ct_abdomenpelvis/2_ct_abdomenpelvis_seg.nii.gz" + }, + { + "image": "CRLM-CT-1098/104_.nii.gz", + "pseudo_label": "CRLM-CT-1098/104_.nii.gz", + "label": "CRLM-CT-1098/mask.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1098/104_/104__seg.nii.gz" + }, + { + "image": "CRLM-CT-1182/102_.nii.gz", + "pseudo_label": "CRLM-CT-1182/102_.nii.gz", + "label": "CRLM-CT-1182/mask.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1182/102_/102__seg.nii.gz" + }, + { + "image": "CRLM-CT-1052/101_.nii.gz", + "pseudo_label": "CRLM-CT-1052/101_.nii.gz", + "label": "CRLM-CT-1052/mask.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1052/101_/101__seg.nii.gz" + }, + { + "image": "CRLM-CT-1033/102_.nii.gz", + "pseudo_label": "CRLM-CT-1033/102_.nii.gz", + "label": "CRLM-CT-1033/mask.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1033/102_/102__seg.nii.gz" + }, + { + "image": "CRLM-CT-1119/2_ct_chabpel.nii.gz", + "pseudo_label": "CRLM-CT-1119/2_ct_chabpel.nii.gz", + "label": "CRLM-CT-1119/mask.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1119/2_ct_chabpel/2_ct_chabpel_seg.nii.gz" + }, + { + "image": "CRLM-CT-1174/2_ct_chabpel.nii.gz", + "pseudo_label": "CRLM-CT-1174/2_ct_chabpel.nii.gz", + "label": "CRLM-CT-1174/mask.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1174/2_ct_chabpel/2_ct_chabpel_seg.nii.gz" + }, + { + "image": "CRLM-CT-1055/101_bind24514171390.nii.gz", + "pseudo_label": "CRLM-CT-1055/101_bind24514171390.nii.gz", + "label": "CRLM-CT-1055/mask.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1055/101_bind24514171390/101_bind24514171390_seg.nii.gz" + }, + { + "image": "CRLM-CT-1187/101_.nii.gz", + "pseudo_label": "CRLM-CT-1187/101_.nii.gz", + "label": "CRLM-CT-1187/mask.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1187/101_/101__seg.nii.gz" + }, + { + "image": "CRLM-CT-1107/101_.nii.gz", + "pseudo_label": "CRLM-CT-1107/101_.nii.gz", + "label": "CRLM-CT-1107/mask.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1107/101_/101__seg.nii.gz" + }, + { + "image": "CRLM-CT-1003/105_.nii.gz", + "pseudo_label": "CRLM-CT-1003/105_.nii.gz", + "label": "CRLM-CT-1003/mask.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1003/105_/105__seg.nii.gz" + }, + { + "image": "CRLM-CT-1046/2_ct_chabpel.nii.gz", + "pseudo_label": "CRLM-CT-1046/2_ct_chabpel.nii.gz", + "label": "CRLM-CT-1046/mask.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1046/2_ct_chabpel/2_ct_chabpel_seg.nii.gz" + }, + { + "image": "CRLM-CT-1011/2_ct_chabpel.nii.gz", + "pseudo_label": "CRLM-CT-1011/2_ct_chabpel.nii.gz", + "label": "CRLM-CT-1011/mask.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1011/2_ct_chabpel/2_ct_chabpel_seg.nii.gz" + }, + { + "image": "CRLM-CT-1038/2_ct_chabpel.nii.gz", + "pseudo_label": "CRLM-CT-1038/2_ct_chabpel.nii.gz", + "label": "CRLM-CT-1038/mask.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1038/2_ct_chabpel/2_ct_chabpel_seg.nii.gz" + }, + { + "image": "CRLM-CT-1020/2_ct_chabpel.nii.gz", + "pseudo_label": "CRLM-CT-1020/2_ct_chabpel.nii.gz", + "label": "CRLM-CT-1020/mask.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1020/2_ct_chabpel/2_ct_chabpel_seg.nii.gz" + }, + { + "image": "CRLM-CT-1189/4_.nii.gz", + "pseudo_label": "CRLM-CT-1189/4_.nii.gz", + "label": "CRLM-CT-1189/mask.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1189/4_/4__seg.nii.gz" + }, + { + "image": "CRLM-CT-1049/101_bind24615277520.nii.gz", + "pseudo_label": "CRLM-CT-1049/101_bind24615277520.nii.gz", + "label": "CRLM-CT-1049/mask.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1049/101_bind24615277520/101_bind24615277520_seg.nii.gz" + }, + { + "image": "CRLM-CT-1065/102_.nii.gz", + "pseudo_label": "CRLM-CT-1065/102_.nii.gz", + "label": "CRLM-CT-1065/mask.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1065/102_/102__seg.nii.gz" + }, + { + "image": "CRLM-CT-1059/2_ct_chabpel.nii.gz", + "pseudo_label": "CRLM-CT-1059/2_ct_chabpel.nii.gz", + "label": "CRLM-CT-1059/mask.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1059/2_ct_chabpel/2_ct_chabpel_seg.nii.gz" + }, + { + "image": "CRLM-CT-1195/101_.nii.gz", + "pseudo_label": "CRLM-CT-1195/101_.nii.gz", + "label": "CRLM-CT-1195/mask.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1195/101_/101__seg.nii.gz" + }, + { + "image": "CRLM-CT-1126/101_.nii.gz", + "pseudo_label": "CRLM-CT-1126/101_.nii.gz", + "label": "CRLM-CT-1126/mask.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1126/101_/101__seg.nii.gz" + }, + { + "image": "CRLM-CT-1082/101_.nii.gz", + "pseudo_label": "CRLM-CT-1082/101_.nii.gz", + "label": "CRLM-CT-1082/mask.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1082/101_/101__seg.nii.gz" + }, + { + "image": "CRLM-CT-1125/101_.nii.gz", + "pseudo_label": "CRLM-CT-1125/101_.nii.gz", + "label": "CRLM-CT-1125/mask.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1125/101_/101__seg.nii.gz" + }, + { + "image": "CRLM-CT-1163/2_.nii.gz", + "pseudo_label": "CRLM-CT-1163/2_.nii.gz", + "label": "CRLM-CT-1163/mask.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1163/2_/2__seg.nii.gz" + }, + { + "image": "CRLM-CT-1044/2_ct_chabpel.nii.gz", + "pseudo_label": "CRLM-CT-1044/2_ct_chabpel.nii.gz", + "label": "CRLM-CT-1044/mask.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1044/2_ct_chabpel/2_ct_chabpel_seg.nii.gz" + }, + { + "image": "CRLM-CT-1152/101_.nii.gz", + "pseudo_label": "CRLM-CT-1152/101_.nii.gz", + "label": "CRLM-CT-1152/mask.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1152/101_/101__seg.nii.gz" + }, + { + "image": "CRLM-CT-1085/2_.nii.gz", + "pseudo_label": "CRLM-CT-1085/2_.nii.gz", + "label": "CRLM-CT-1085/mask.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1085/2_/2__seg.nii.gz" + }, + { + "image": "CRLM-CT-1158/101_.nii.gz", + "pseudo_label": "CRLM-CT-1158/101_.nii.gz", + "label": "CRLM-CT-1158/mask.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1158/101_/101__seg.nii.gz" + }, + { + "image": "CRLM-CT-1142/101_.nii.gz", + "pseudo_label": "CRLM-CT-1142/101_.nii.gz", + "label": "CRLM-CT-1142/mask.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1142/101_/101__seg.nii.gz" + }, + { + "image": "CRLM-CT-1064/3_.nii.gz", + "pseudo_label": "CRLM-CT-1064/3_.nii.gz", + "label": "CRLM-CT-1064/mask.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1064/3_/3__seg.nii.gz" + }, + { + "image": "CRLM-CT-1181/101_.nii.gz", + "pseudo_label": "CRLM-CT-1181/101_.nii.gz", + "label": "CRLM-CT-1181/mask.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1181/101_/101__seg.nii.gz" + }, + { + "image": "CRLM-CT-1139/101_bind21866441131.nii.gz", + "pseudo_label": "CRLM-CT-1139/101_bind21866441131.nii.gz", + "label": "CRLM-CT-1139/mask.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1139/101_bind21866441131/101_bind21866441131_seg.nii.gz" + }, + { + "image": "CRLM-CT-1123/101_.nii.gz", + "pseudo_label": "CRLM-CT-1123/101_.nii.gz", + "label": "CRLM-CT-1123/mask.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1123/101_/101__seg.nii.gz" + }, + { + "image": "CRLM-CT-1035/2_post_con.nii.gz", + "pseudo_label": "CRLM-CT-1035/2_post_con.nii.gz", + "label": "CRLM-CT-1035/mask.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1035/2_post_con/2_post_con_seg.nii.gz" + }, + { + "image": "CRLM-CT-1144/2_ct_abpel.nii.gz", + "pseudo_label": "CRLM-CT-1144/2_ct_abpel.nii.gz", + "label": "CRLM-CT-1144/mask.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1144/2_ct_abpel/2_ct_abpel_seg.nii.gz" + }, + { + "image": "CRLM-CT-1005/101_.nii.gz", + "pseudo_label": "CRLM-CT-1005/101_.nii.gz", + "label": "CRLM-CT-1005/mask.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1005/101_/101__seg.nii.gz" + }, + { + "image": "CRLM-CT-1051/101_.nii.gz", + "pseudo_label": "CRLM-CT-1051/101_.nii.gz", + "label": "CRLM-CT-1051/mask.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1051/101_/101__seg.nii.gz" + }, + { + "image": "CRLM-CT-1134/2_.nii.gz", + "pseudo_label": "CRLM-CT-1134/2_.nii.gz", + "label": "CRLM-CT-1134/mask.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1134/2_/2__seg.nii.gz" + }, + { + "image": "CRLM-CT-1157/2_.nii.gz", + "pseudo_label": "CRLM-CT-1157/2_.nii.gz", + "label": "CRLM-CT-1157/mask.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1157/2_/2__seg.nii.gz" + }, + { + "image": "CRLM-CT-1103/101_.nii.gz", + "pseudo_label": "CRLM-CT-1103/101_.nii.gz", + "label": "CRLM-CT-1103/mask.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1103/101_/101__seg.nii.gz" + }, + { + "image": "CRLM-CT-1063/2_.nii.gz", + "pseudo_label": "CRLM-CT-1063/2_.nii.gz", + "label": "CRLM-CT-1063/mask.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1063/2_/2__seg.nii.gz" + }, + { + "image": "CRLM-CT-1151/101_.nii.gz", + "pseudo_label": "CRLM-CT-1151/101_.nii.gz", + "label": "CRLM-CT-1151/mask.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1151/101_/101__seg.nii.gz" + }, + { + "image": "CRLM-CT-1096/101_.nii.gz", + "pseudo_label": "CRLM-CT-1096/101_.nii.gz", + "label": "CRLM-CT-1096/mask.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1096/101_/101__seg.nii.gz" + }, + { + "image": "CRLM-CT-1143/101_.nii.gz", + "pseudo_label": "CRLM-CT-1143/101_.nii.gz", + "label": "CRLM-CT-1143/mask.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1143/101_/101__seg.nii.gz" + }, + { + "image": "CRLM-CT-1008/101_bind170954277465.nii.gz", + "pseudo_label": "CRLM-CT-1008/101_bind170954277465.nii.gz", + "label": "CRLM-CT-1008/mask.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1008/101_bind170954277465/101_bind170954277465_seg.nii.gz" + }, + { + "image": "CRLM-CT-1112/101_.nii.gz", + "pseudo_label": "CRLM-CT-1112/101_.nii.gz", + "label": "CRLM-CT-1112/mask.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1112/101_/101__seg.nii.gz" + }, + { + "image": "CRLM-CT-1091/102_.nii.gz", + "pseudo_label": "CRLM-CT-1091/102_.nii.gz", + "label": "CRLM-CT-1091/mask.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1091/102_/102__seg.nii.gz" + }, + { + "image": "CRLM-CT-1132/2_.nii.gz", + "pseudo_label": "CRLM-CT-1132/2_.nii.gz", + "label": "CRLM-CT-1132/mask.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1132/2_/2__seg.nii.gz" + }, + { + "image": "CRLM-CT-1075/5_abdomen_50_b40s.nii.gz", + "pseudo_label": "CRLM-CT-1075/5_abdomen_50_b40s.nii.gz", + "label": "CRLM-CT-1075/mask.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1075/5_abdomen_50_b40s/5_abdomen_50_b40s_seg.nii.gz" + }, + { + "image": "CRLM-CT-1169/102_bind195715159254.nii.gz", + "pseudo_label": "CRLM-CT-1169/102_bind195715159254.nii.gz", + "label": "CRLM-CT-1169/mask.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1169/102_bind195715159254/102_bind195715159254_seg.nii.gz" + }, + { + "image": "CRLM-CT-1062/101_.nii.gz", + "pseudo_label": "CRLM-CT-1062/101_.nii.gz", + "label": "CRLM-CT-1062/mask.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1062/101_/101__seg.nii.gz" + }, + { + "image": "CRLM-CT-1047/2_.nii.gz", + "pseudo_label": "CRLM-CT-1047/2_.nii.gz", + "label": "CRLM-CT-1047/mask.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1047/2_/2__seg.nii.gz" + }, + { + "image": "CRLM-CT-1161/2_.nii.gz", + "pseudo_label": "CRLM-CT-1161/2_.nii.gz", + "label": "CRLM-CT-1161/mask.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1161/2_/2__seg.nii.gz" + }, + { + "image": "CRLM-CT-1012/101_.nii.gz", + "pseudo_label": "CRLM-CT-1012/101_.nii.gz", + "label": "CRLM-CT-1012/mask.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1012/101_/101__seg.nii.gz" + }, + { + "image": "CRLM-CT-1155/2_.nii.gz", + "pseudo_label": "CRLM-CT-1155/2_.nii.gz", + "label": "CRLM-CT-1155/mask.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1155/2_/2__seg.nii.gz" + }, + { + "image": "CRLM-CT-1145/101_.nii.gz", + "pseudo_label": "CRLM-CT-1145/101_.nii.gz", + "label": "CRLM-CT-1145/mask.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1145/101_/101__seg.nii.gz" + }, + { + "image": "CRLM-CT-1095/101_.nii.gz", + "pseudo_label": "CRLM-CT-1095/101_.nii.gz", + "label": "CRLM-CT-1095/mask.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1095/101_/101__seg.nii.gz" + }, + { + "image": "CRLM-CT-1050/101_.nii.gz", + "pseudo_label": "CRLM-CT-1050/101_.nii.gz", + "label": "CRLM-CT-1050/mask.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1050/101_/101__seg.nii.gz" + }, + { + "image": "CRLM-CT-1026/101_bind28954246509.nii.gz", + "pseudo_label": "CRLM-CT-1026/101_bind28954246509.nii.gz", + "label": "CRLM-CT-1026/mask.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1 + }, + { + "image": "CRLM-CT-1153/101_.nii.gz", + "pseudo_label": "CRLM-CT-1153/101_.nii.gz", + "label": "CRLM-CT-1153/mask.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1 + }, + { + "image": "CRLM-CT-1192/2_.nii.gz", + "pseudo_label": "CRLM-CT-1192/2_.nii.gz", + "label": "CRLM-CT-1192/mask.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1192/2_/2__seg.nii.gz" + }, + { + "image": "CRLM-CT-1129/2_ct_chabpel.nii.gz", + "pseudo_label": "CRLM-CT-1129/2_ct_chabpel.nii.gz", + "label": "CRLM-CT-1129/mask.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1129/2_ct_chabpel/2_ct_chabpel_seg.nii.gz" + }, + { + "image": "CRLM-CT-1031/2_ct_chabpel.nii.gz", + "pseudo_label": "CRLM-CT-1031/2_ct_chabpel.nii.gz", + "label": "CRLM-CT-1031/mask.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1031/2_ct_chabpel/2_ct_chabpel_seg.nii.gz" + }, + { + "image": "CRLM-CT-1040/2_ct_chabpel.nii.gz", + "pseudo_label": "CRLM-CT-1040/2_ct_chabpel.nii.gz", + "label": "CRLM-CT-1040/mask.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1040/2_ct_chabpel/2_ct_chabpel_seg.nii.gz" + }, + { + "image": "CRLM-CT-1072/100_.nii.gz", + "pseudo_label": "CRLM-CT-1072/100_.nii.gz", + "label": "CRLM-CT-1072/mask.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0 + }, + { + "image": "CRLM-CT-1115/2_abdomenpelvis.nii.gz", + "pseudo_label": "CRLM-CT-1115/2_abdomenpelvis.nii.gz", + "label": "CRLM-CT-1115/mask.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1115/2_abdomenpelvis/2_abdomenpelvis_seg.nii.gz" + }, + { + "image": "CRLM-CT-1130/101_.nii.gz", + "pseudo_label": "CRLM-CT-1130/101_.nii.gz", + "label": "CRLM-CT-1130/mask.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1130/101_/101__seg.nii.gz" + }, + { + "image": "CRLM-CT-1006/100_.nii.gz", + "pseudo_label": "CRLM-CT-1006/100_.nii.gz", + "label": "CRLM-CT-1006/mask.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1006/100_/100__seg.nii.gz" + }, + { + "image": "CRLM-CT-1043/101_.nii.gz", + "pseudo_label": "CRLM-CT-1043/101_.nii.gz", + "label": "CRLM-CT-1043/mask.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1043/101_/101__seg.nii.gz" + }, + { + "image": "CRLM-CT-1081/101_.nii.gz", + "pseudo_label": "CRLM-CT-1081/101_.nii.gz", + "label": "CRLM-CT-1081/mask.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1081/101_/101__seg.nii.gz" + }, + { + "image": "CRLM-CT-1166/101_.nii.gz", + "pseudo_label": "CRLM-CT-1166/101_.nii.gz", + "label": "CRLM-CT-1166/mask.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0 + }, + { + "image": "CRLM-CT-1086/103_.nii.gz", + "pseudo_label": "CRLM-CT-1086/103_.nii.gz", + "label": "CRLM-CT-1086/mask.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1086/103_/103__seg.nii.gz" + }, + { + "image": "CRLM-CT-1048/101_.nii.gz", + "pseudo_label": "CRLM-CT-1048/101_.nii.gz", + "label": "CRLM-CT-1048/mask.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1048/101_/101__seg.nii.gz" + }, + { + "image": "CRLM-CT-1141/2_ct_chabpel.nii.gz", + "pseudo_label": "CRLM-CT-1141/2_ct_chabpel.nii.gz", + "label": "CRLM-CT-1141/mask.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1141/2_ct_chabpel/2_ct_chabpel_seg.nii.gz" + }, + { + "image": "CRLM-CT-1076/2_ct_chabpel.nii.gz", + "pseudo_label": "CRLM-CT-1076/2_ct_chabpel.nii.gz", + "label": "CRLM-CT-1076/mask.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1076/2_ct_chabpel/2_ct_chabpel_seg.nii.gz" + }, + { + "image": "CRLM-CT-1014/101_.nii.gz", + "pseudo_label": "CRLM-CT-1014/101_.nii.gz", + "label": "CRLM-CT-1014/mask.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1014/101_/101__seg.nii.gz" + }, + { + "image": "CRLM-CT-1106/101_.nii.gz", + "pseudo_label": "CRLM-CT-1106/101_.nii.gz", + "label": "CRLM-CT-1106/mask.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1106/101_/101__seg.nii.gz" + }, + { + "image": "CRLM-CT-1168/101_.nii.gz", + "pseudo_label": "CRLM-CT-1168/101_.nii.gz", + "label": "CRLM-CT-1168/mask.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1168/101_/101__seg.nii.gz" + }, + { + "image": "CRLM-CT-1068/101_.nii.gz", + "pseudo_label": "CRLM-CT-1068/101_.nii.gz", + "label": "CRLM-CT-1068/mask.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1 + }, + { + "image": "CRLM-CT-1100/102_.nii.gz", + "pseudo_label": "CRLM-CT-1100/102_.nii.gz", + "label": "CRLM-CT-1100/mask.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0 + }, + { + "image": "CRLM-CT-1023/101_.nii.gz", + "pseudo_label": "CRLM-CT-1023/101_.nii.gz", + "label": "CRLM-CT-1023/mask.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1023/101_/101__seg.nii.gz" + }, + { + "image": "CRLM-CT-1002/101_.nii.gz", + "pseudo_label": "CRLM-CT-1002/101_.nii.gz", + "label": "CRLM-CT-1002/mask.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1 + }, + { + "image": "CRLM-CT-1118/101_.nii.gz", + "pseudo_label": "CRLM-CT-1118/101_.nii.gz", + "label": "CRLM-CT-1118/mask.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1118/101_/101__seg.nii.gz" + }, + { + "image": "CRLM-CT-1053/101_.nii.gz", + "pseudo_label": "CRLM-CT-1053/101_.nii.gz", + "label": "CRLM-CT-1053/mask.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1053/101_/101__seg.nii.gz" + }, + { + "image": "CRLM-CT-1124/103_.nii.gz", + "pseudo_label": "CRLM-CT-1124/103_.nii.gz", + "label": "CRLM-CT-1124/mask.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1124/103_/103__seg.nii.gz" + }, + { + "image": "CRLM-CT-1120/2_ct_chabpel.nii.gz", + "pseudo_label": "CRLM-CT-1120/2_ct_chabpel.nii.gz", + "label": "CRLM-CT-1120/mask.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1120/2_ct_chabpel/2_ct_chabpel_seg.nii.gz" + }, + { + "image": "CRLM-CT-1025/101_.nii.gz", + "pseudo_label": "CRLM-CT-1025/101_.nii.gz", + "label": "CRLM-CT-1025/mask.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1025/101_/101__seg.nii.gz" + }, + { + "image": "CRLM-CT-1071/101_.nii.gz", + "pseudo_label": "CRLM-CT-1071/101_.nii.gz", + "label": "CRLM-CT-1071/mask.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1071/101_/101__seg.nii.gz" + }, + { + "image": "CRLM-CT-1162/101_.nii.gz", + "pseudo_label": "CRLM-CT-1162/101_.nii.gz", + "label": "CRLM-CT-1162/mask.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1162/101_/101__seg.nii.gz" + }, + { + "image": "CRLM-CT-1167/101_bind188214252475.nii.gz", + "pseudo_label": "CRLM-CT-1167/101_bind188214252475.nii.gz", + "label": "CRLM-CT-1167/mask.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1167/101_bind188214252475/101_bind188214252475_seg.nii.gz" + }, + { + "image": "CRLM-CT-1034/3_ct_chabpel.nii.gz", + "pseudo_label": "CRLM-CT-1034/3_ct_chabpel.nii.gz", + "label": "CRLM-CT-1034/mask.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1034/3_ct_chabpel/3_ct_chabpel_seg.nii.gz" + }, + { + "image": "CRLM-CT-1058/2_ct_chabpel.nii.gz", + "pseudo_label": "CRLM-CT-1058/2_ct_chabpel.nii.gz", + "label": "CRLM-CT-1058/mask.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1058/2_ct_chabpel/2_ct_chabpel_seg.nii.gz" + }, + { + "image": "CRLM-CT-1083/101_.nii.gz", + "pseudo_label": "CRLM-CT-1083/101_.nii.gz", + "label": "CRLM-CT-1083/mask.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1083/101_/101__seg.nii.gz" + }, + { + "image": "CRLM-CT-1019/101_.nii.gz", + "pseudo_label": "CRLM-CT-1019/101_.nii.gz", + "label": "CRLM-CT-1019/mask.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1019/101_/101__seg.nii.gz" + }, + { + "image": "CRLM-CT-1021/2_ct_chabpel.nii.gz", + "pseudo_label": "CRLM-CT-1021/2_ct_chabpel.nii.gz", + "label": "CRLM-CT-1021/mask.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1021/2_ct_chabpel/2_ct_chabpel_seg.nii.gz" + }, + { + "image": "CRLM-CT-1094/2_chestabdomenpelvis.nii.gz", + "pseudo_label": "CRLM-CT-1094/2_chestabdomenpelvis.nii.gz", + "label": "CRLM-CT-1094/mask.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1094/2_chestabdomenpelvis/2_chestabdomenpelvis_seg.nii.gz" + }, + { + "image": "CRLM-CT-1078/101_.nii.gz", + "pseudo_label": "CRLM-CT-1078/101_.nii.gz", + "label": "CRLM-CT-1078/mask.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1078/101_/101__seg.nii.gz" + }, + { + "image": "CRLM-CT-1042/101_.nii.gz", + "pseudo_label": "CRLM-CT-1042/101_.nii.gz", + "label": "CRLM-CT-1042/mask.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1042/101_/101__seg.nii.gz" + }, + { + "image": "CRLM-CT-1116/2_ct_chabpel.nii.gz", + "pseudo_label": "CRLM-CT-1116/2_ct_chabpel.nii.gz", + "label": "CRLM-CT-1116/mask.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1116/2_ct_chabpel/2_ct_chabpel_seg.nii.gz" + }, + { + "image": "CRLM-CT-1177/101_.nii.gz", + "pseudo_label": "CRLM-CT-1177/101_.nii.gz", + "label": "CRLM-CT-1177/mask.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1177/101_/101__seg.nii.gz" + }, + { + "image": "CRLM-CT-1009/101_.nii.gz", + "pseudo_label": "CRLM-CT-1009/101_.nii.gz", + "label": "CRLM-CT-1009/mask.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1009/101_/101__seg.nii.gz" + }, + { + "image": "CRLM-CT-1170/101_bind24644277514.nii.gz", + "pseudo_label": "CRLM-CT-1170/101_bind24644277514.nii.gz", + "label": "CRLM-CT-1170/mask.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1170/101_bind24644277514/101_bind24644277514_seg.nii.gz" + }, + { + "image": "CRLM-CT-1067/2_ct_chabpel.nii.gz", + "pseudo_label": "CRLM-CT-1067/2_ct_chabpel.nii.gz", + "label": "CRLM-CT-1067/mask.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1067/2_ct_chabpel/2_ct_chabpel_seg.nii.gz" + }, + { + "image": "CRLM-CT-1164/101_.nii.gz", + "pseudo_label": "CRLM-CT-1164/101_.nii.gz", + "label": "CRLM-CT-1164/mask.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1164/101_/101__seg.nii.gz" + }, + { + "image": "CRLM-CT-1013/101_.nii.gz", + "pseudo_label": "CRLM-CT-1013/101_.nii.gz", + "label": "CRLM-CT-1013/mask.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1013/101_/101__seg.nii.gz" + }, + { + "image": "CRLM-CT-1066/2_abdomen_5755.nii.gz", + "pseudo_label": "CRLM-CT-1066/2_abdomen_5755.nii.gz", + "label": "CRLM-CT-1066/mask.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1066/2_abdomen_5755/2_abdomen_5755_seg.nii.gz" + }, + { + "image": "CRLM-CT-1102/101_bind192104130266.nii.gz", + "pseudo_label": "CRLM-CT-1102/101_bind192104130266.nii.gz", + "label": "CRLM-CT-1102/mask.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CRLM-CT_100/CRLM-CT-1102/101_bind192104130266/101_bind192104130266_seg.nii.gz" + } + ], + "training_transform": [ + { + "_target_": "RandCropByLabelClassesd", + "keys": [ + "@image_key", + "@label_key", + "@pseudo_label_key", + "@label_sv_key" + ], + "label_key": "@pseudo_label_key", + "num_classes": 133, + "num_samples": "@num_patches_per_image", + "spatial_size": "@patch_size", + "ratios": "$tuple(float(i >= 0) for i in range(133))", + "warn": false, + "allow_missing_keys": true + }, + { + "_target_": "RandZoomd", + "keys": [ + "@image_key", + "@label_key", + "@pseudo_label_key", + "@label_sv_key" + ], + "min_zoom": 0.8, + "max_zoom": 1.2, + "mode": [ + "trilinear", + "nearest", + "nearest", + "nearest" + ], + "prob": 0.2, + "allow_missing_keys": true + }, + { + "_target_": "RandSimulateLowResolutiond", + "keys": [ + "@image_key" + ], + "zoom_range": [ + 0.3, + 1 + ], + "prob": 0.2, + "allow_missing_keys": true + }, + { + "_target_": "RandGaussianSmoothd", + "keys": [ + "@image_key" + ], + "prob": 0.2, + "sigma_x": [ + 0.5, + 1.0 + ], + "sigma_y": [ + 0.5, + 1.0 + ], + "sigma_z": [ + 0.5, + 1.0 + ] + }, + { + "_target_": "RandScaleIntensityd", + "keys": [ + "@image_key" + ], + "factors": 0.1, + "prob": 0.2 + }, + { + "_target_": "RandShiftIntensityd", + "keys": [ + "@image_key" + ], + "offsets": 0.1, + "prob": 0.2 + }, + { + "_target_": "RandGaussianNoised", + "keys": [ + "@image_key" + ], + "prob": 0.2, + "mean": 0.0, + "std": 0.2 + } + ], + "label_dict": { + "3": "hepatic vessel", + "4": "portal vein and splenic vein", + "5": "liver tumor" + }, + "original_label_dict": { + "1": "Liver", + "2": "Liver Remnant", + "3": "Hepatic Vein", + "4": "Portal Vein", + "5": "Tumor" + }, + "testing": [ + { + "image": "CRLM-CT-1004/2_ct_chabpel.nii.gz", + "label": "CRLM-CT-1004/mask.nii.gz" + }, + { + "image": "CRLM-CT-1135/101_.nii.gz", + "label": "CRLM-CT-1135/mask.nii.gz" + }, + { + "image": "CRLM-CT-1054/2_ct_chabpel.nii.gz", + "label": "CRLM-CT-1054/mask.nii.gz" + }, + { + "image": "CRLM-CT-1138/101_.nii.gz", + "label": "CRLM-CT-1138/mask.nii.gz" + }, + { + "image": "CRLM-CT-1186/101_.nii.gz", + "label": "CRLM-CT-1186/mask.nii.gz" + }, + { + "image": "CRLM-CT-1128/102_bind22865296561.nii.gz", + "label": "CRLM-CT-1128/mask.nii.gz" + }, + { + "image": "CRLM-CT-1104/2_.nii.gz", + "label": "CRLM-CT-1104/mask.nii.gz" + }, + { + "image": "CRLM-CT-1074/102_.nii.gz", + "label": "CRLM-CT-1074/mask.nii.gz" + }, + { + "image": "CRLM-CT-1140/2_chestabdomenpelvis.nii.gz", + "label": "CRLM-CT-1140/mask.nii.gz" + }, + { + "image": "CRLM-CT-1092/2_ct_chabpel.nii.gz", + "label": "CRLM-CT-1092/mask.nii.gz" + }, + { + "image": "CRLM-CT-1149/101_.nii.gz", + "label": "CRLM-CT-1149/mask.nii.gz" + }, + { + "image": "CRLM-CT-1137/101_.nii.gz", + "label": "CRLM-CT-1137/mask.nii.gz" + }, + { + "image": "CRLM-CT-1111/101_.nii.gz", + "label": "CRLM-CT-1111/mask.nii.gz" + }, + { + "image": "CRLM-CT-1180/2_.nii.gz", + "label": "CRLM-CT-1180/mask.nii.gz" + }, + { + "image": "CRLM-CT-1109/101_.nii.gz", + "label": "CRLM-CT-1109/mask.nii.gz" + }, + { + "image": "CRLM-CT-1084/2_chabdpel_5x5.nii.gz", + "label": "CRLM-CT-1084/mask.nii.gz" + }, + { + "image": "CRLM-CT-1015/7_.nii.gz", + "label": "CRLM-CT-1015/mask.nii.gz" + }, + { + "image": "CRLM-CT-1148/101_.nii.gz", + "label": "CRLM-CT-1148/mask.nii.gz" + }, + { + "image": "CRLM-CT-1036/2_.nii.gz", + "label": "CRLM-CT-1036/mask.nii.gz" + }, + { + "image": "CRLM-CT-1160/2_.nii.gz", + "label": "CRLM-CT-1160/mask.nii.gz" + }, + { + "image": "CRLM-CT-1198/101_.nii.gz", + "label": "CRLM-CT-1198/mask.nii.gz" + }, + { + "image": "CRLM-CT-1060/2_ct_abdomenpelvis.nii.gz", + "label": "CRLM-CT-1060/mask.nii.gz" + }, + { + "image": "CRLM-CT-1056/101_.nii.gz", + "label": "CRLM-CT-1056/mask.nii.gz" + }, + { + "image": "CRLM-CT-1108/102_.nii.gz", + "label": "CRLM-CT-1108/mask.nii.gz" + }, + { + "image": "CRLM-CT-1171/2_ct_chabpel.nii.gz", + "label": "CRLM-CT-1171/mask.nii.gz" + }, + { + "image": "CRLM-CT-1027/2_.nii.gz", + "label": "CRLM-CT-1027/mask.nii.gz" + }, + { + "image": "CRLM-CT-1190/109_.nii.gz", + "label": "CRLM-CT-1190/mask.nii.gz" + }, + { + "image": "CRLM-CT-1147/101_.nii.gz", + "label": "CRLM-CT-1147/mask.nii.gz" + }, + { + "image": "CRLM-CT-1018/101_.nii.gz", + "label": "CRLM-CT-1018/mask.nii.gz" + }, + { + "image": "CRLM-CT-1088/104_.nii.gz", + "label": "CRLM-CT-1088/mask.nii.gz" + }, + { + "image": "CRLM-CT-1184/2_ct_chabpel.nii.gz", + "label": "CRLM-CT-1184/mask.nii.gz" + }, + { + "image": "CRLM-CT-1172/2_ct_chestabd.nii.gz", + "label": "CRLM-CT-1172/mask.nii.gz" + }, + { + "image": "CRLM-CT-1029/101_.nii.gz", + "label": "CRLM-CT-1029/mask.nii.gz" + }, + { + "image": "CRLM-CT-1121/101_bind41264314545.nii.gz", + "label": "CRLM-CT-1121/mask.nii.gz" + }, + { + "image": "CRLM-CT-1173/2_.nii.gz", + "label": "CRLM-CT-1173/mask.nii.gz" + }, + { + "image": "CRLM-CT-1176/2_.nii.gz", + "label": "CRLM-CT-1176/mask.nii.gz" + }, + { + "image": "CRLM-CT-1175/101_bind56834214434.nii.gz", + "label": "CRLM-CT-1175/mask.nii.gz" + }, + { + "image": "CRLM-CT-1097/101_.nii.gz", + "label": "CRLM-CT-1097/mask.nii.gz" + }, + { + "image": "CRLM-CT-1022/2_.nii.gz", + "label": "CRLM-CT-1022/mask.nii.gz" + } + ] +} diff --git a/vista3d/data/jsons/CT-ORG_5_folds.json b/vista3d/data/jsons/CT-ORG_5_folds.json new file mode 100644 index 0000000..b5e6817 --- /dev/null +++ b/vista3d/data/jsons/CT-ORG_5_folds.json @@ -0,0 +1,1059 @@ +{ + "training": [ + { + "image": "OrganSegmentations/volume-128.nii.gz", + "pseudo_label": "OrganSegmentations/volume-128.nii.gz", + "label": "OrganSegmentations/labels-128.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "OrganSegmentations/volume-14.nii.gz", + "pseudo_label": "OrganSegmentations/volume-14.nii.gz", + "label": "OrganSegmentations/labels-14.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "fixed_affine/volume-28.nii.gz", + "pseudo_label": "fixed_affine/volume-28.nii.gz", + "label": "fixed_affine/labels-28.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "OrganSegmentations/volume-126.nii.gz", + "pseudo_label": "OrganSegmentations/volume-126.nii.gz", + "label": "OrganSegmentations/labels-126.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "OrganSegmentations/volume-88.nii.gz", + "pseudo_label": "OrganSegmentations/volume-88.nii.gz", + "label": "OrganSegmentations/labels-88.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "OrganSegmentations/volume-94.nii.gz", + "pseudo_label": "OrganSegmentations/volume-94.nii.gz", + "label": "OrganSegmentations/labels-94.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "OrganSegmentations/volume-127.nii.gz", + "pseudo_label": "OrganSegmentations/volume-127.nii.gz", + "label": "OrganSegmentations/labels-127.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "OrganSegmentations/volume-10.nii.gz", + "pseudo_label": "OrganSegmentations/volume-10.nii.gz", + "label": "OrganSegmentations/labels-10.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "OrganSegmentations/volume-15.nii.gz", + "pseudo_label": "OrganSegmentations/volume-15.nii.gz", + "label": "OrganSegmentations/labels-15.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "OrganSegmentations/volume-8.nii.gz", + "pseudo_label": "OrganSegmentations/volume-8.nii.gz", + "label": "OrganSegmentations/labels-8.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "OrganSegmentations/volume-108.nii.gz", + "pseudo_label": "OrganSegmentations/volume-108.nii.gz", + "label": "OrganSegmentations/labels-108.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "OrganSegmentations/volume-60.nii.gz", + "pseudo_label": "OrganSegmentations/volume-60.nii.gz", + "label": "OrganSegmentations/labels-60.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "OrganSegmentations/volume-96.nii.gz", + "pseudo_label": "OrganSegmentations/volume-96.nii.gz", + "label": "OrganSegmentations/labels-96.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "OrganSegmentations/volume-5.nii.gz", + "pseudo_label": "OrganSegmentations/volume-5.nii.gz", + "label": "OrganSegmentations/labels-5.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "OrganSegmentations/volume-1.nii.gz", + "pseudo_label": "OrganSegmentations/volume-1.nii.gz", + "label": "OrganSegmentations/labels-1.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "OrganSegmentations/volume-25.nii.gz", + "pseudo_label": "OrganSegmentations/volume-25.nii.gz", + "label": "OrganSegmentations/labels-25.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "OrganSegmentations/volume-62.nii.gz", + "pseudo_label": "OrganSegmentations/volume-62.nii.gz", + "label": "OrganSegmentations/labels-62.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "OrganSegmentations/volume-77.nii.gz", + "pseudo_label": "OrganSegmentations/volume-77.nii.gz", + "label": "OrganSegmentations/labels-77.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "fixed_affine/volume-38.nii.gz", + "pseudo_label": "fixed_affine/volume-38.nii.gz", + "label": "fixed_affine/labels-38.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "fixed_affine/volume-139.nii.gz", + "pseudo_label": "fixed_affine/volume-139.nii.gz", + "label": "fixed_affine/labels-139.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "fixed_affine/volume-138.nii.gz", + "pseudo_label": "fixed_affine/volume-138.nii.gz", + "label": "fixed_affine/labels-138.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "OrganSegmentations/volume-63.nii.gz", + "pseudo_label": "OrganSegmentations/volume-63.nii.gz", + "label": "OrganSegmentations/labels-63.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "OrganSegmentations/volume-52.nii.gz", + "pseudo_label": "OrganSegmentations/volume-52.nii.gz", + "label": "OrganSegmentations/labels-52.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-52/volume-52_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-98.nii.gz", + "pseudo_label": "OrganSegmentations/volume-98.nii.gz", + "label": "OrganSegmentations/labels-98.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-98/volume-98_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-111.nii.gz", + "pseudo_label": "OrganSegmentations/volume-111.nii.gz", + "label": "OrganSegmentations/labels-111.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-111/volume-111_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-95.nii.gz", + "pseudo_label": "OrganSegmentations/volume-95.nii.gz", + "label": "OrganSegmentations/labels-95.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-95/volume-95_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-16.nii.gz", + "pseudo_label": "OrganSegmentations/volume-16.nii.gz", + "label": "OrganSegmentations/labels-16.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-16/volume-16_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-57.nii.gz", + "pseudo_label": "OrganSegmentations/volume-57.nii.gz", + "label": "OrganSegmentations/labels-57.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-57/volume-57_seg.nii.gz" + }, + { + "image": "fixed_affine/volume-46.nii.gz", + "pseudo_label": "fixed_affine/volume-46.nii.gz", + "label": "fixed_affine/labels-46.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-46/volume-46_seg.nii.gz" + }, + { + "image": "fixed_affine/volume-34.nii.gz", + "pseudo_label": "fixed_affine/volume-34.nii.gz", + "label": "fixed_affine/labels-34.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-34/volume-34_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-61.nii.gz", + "pseudo_label": "OrganSegmentations/volume-61.nii.gz", + "label": "OrganSegmentations/labels-61.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-61/volume-61_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-17.nii.gz", + "pseudo_label": "OrganSegmentations/volume-17.nii.gz", + "label": "OrganSegmentations/labels-17.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-17/volume-17_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-123.nii.gz", + "pseudo_label": "OrganSegmentations/volume-123.nii.gz", + "label": "OrganSegmentations/labels-123.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-123/volume-123_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-130.nii.gz", + "pseudo_label": "OrganSegmentations/volume-130.nii.gz", + "label": "OrganSegmentations/labels-130.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-130/volume-130_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-54.nii.gz", + "pseudo_label": "OrganSegmentations/volume-54.nii.gz", + "label": "OrganSegmentations/labels-54.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-54/volume-54_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-83.nii.gz", + "pseudo_label": "OrganSegmentations/volume-83.nii.gz", + "label": "OrganSegmentations/labels-83.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-83/volume-83_seg.nii.gz" + }, + { + "image": "fixed_affine/volume-30.nii.gz", + "pseudo_label": "fixed_affine/volume-30.nii.gz", + "label": "fixed_affine/labels-30.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-30/volume-30_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-4.nii.gz", + "pseudo_label": "OrganSegmentations/volume-4.nii.gz", + "label": "OrganSegmentations/labels-4.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-4/volume-4_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-90.nii.gz", + "pseudo_label": "OrganSegmentations/volume-90.nii.gz", + "label": "OrganSegmentations/labels-90.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-90/volume-90_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-124.nii.gz", + "pseudo_label": "OrganSegmentations/volume-124.nii.gz", + "label": "OrganSegmentations/labels-124.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-124/volume-124_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-12.nii.gz", + "pseudo_label": "OrganSegmentations/volume-12.nii.gz", + "label": "OrganSegmentations/labels-12.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-12/volume-12_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-106.nii.gz", + "pseudo_label": "OrganSegmentations/volume-106.nii.gz", + "label": "OrganSegmentations/labels-106.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-106/volume-106_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-24.nii.gz", + "pseudo_label": "OrganSegmentations/volume-24.nii.gz", + "label": "OrganSegmentations/labels-24.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-24/volume-24_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-82.nii.gz", + "pseudo_label": "OrganSegmentations/volume-82.nii.gz", + "label": "OrganSegmentations/labels-82.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-82/volume-82_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-78.nii.gz", + "pseudo_label": "OrganSegmentations/volume-78.nii.gz", + "label": "OrganSegmentations/labels-78.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-78/volume-78_seg.nii.gz" + }, + { + "image": "fixed_affine/volume-136.nii.gz", + "pseudo_label": "fixed_affine/volume-136.nii.gz", + "label": "fixed_affine/labels-136.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-136/volume-136_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-132.nii.gz", + "pseudo_label": "OrganSegmentations/volume-132.nii.gz", + "label": "OrganSegmentations/labels-132.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-132/volume-132_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-53.nii.gz", + "pseudo_label": "OrganSegmentations/volume-53.nii.gz", + "label": "OrganSegmentations/labels-53.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-53/volume-53_seg.nii.gz" + }, + { + "image": "fixed_affine/volume-137.nii.gz", + "pseudo_label": "fixed_affine/volume-137.nii.gz", + "label": "fixed_affine/labels-137.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-137/volume-137_seg.nii.gz" + }, + { + "image": "fixed_affine/volume-39.nii.gz", + "pseudo_label": "fixed_affine/volume-39.nii.gz", + "label": "fixed_affine/labels-39.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-39/volume-39_seg.nii.gz" + }, + { + "image": "fixed_affine/volume-36.nii.gz", + "pseudo_label": "fixed_affine/volume-36.nii.gz", + "label": "fixed_affine/labels-36.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-36/volume-36_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-85.nii.gz", + "pseudo_label": "OrganSegmentations/volume-85.nii.gz", + "label": "OrganSegmentations/labels-85.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-85/volume-85_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-92.nii.gz", + "pseudo_label": "OrganSegmentations/volume-92.nii.gz", + "label": "OrganSegmentations/labels-92.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-92/volume-92_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-49.nii.gz", + "pseudo_label": "OrganSegmentations/volume-49.nii.gz", + "label": "OrganSegmentations/labels-49.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-49/volume-49_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-97.nii.gz", + "pseudo_label": "OrganSegmentations/volume-97.nii.gz", + "label": "OrganSegmentations/labels-97.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-97/volume-97_seg.nii.gz" + }, + { + "image": "fixed_affine/volume-41.nii.gz", + "pseudo_label": "fixed_affine/volume-41.nii.gz", + "label": "fixed_affine/labels-41.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-41/volume-41_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-101.nii.gz", + "pseudo_label": "OrganSegmentations/volume-101.nii.gz", + "label": "OrganSegmentations/labels-101.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-101/volume-101_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-119.nii.gz", + "pseudo_label": "OrganSegmentations/volume-119.nii.gz", + "label": "OrganSegmentations/labels-119.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-119/volume-119_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-109.nii.gz", + "pseudo_label": "OrganSegmentations/volume-109.nii.gz", + "label": "OrganSegmentations/labels-109.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-109/volume-109_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-2.nii.gz", + "pseudo_label": "OrganSegmentations/volume-2.nii.gz", + "label": "OrganSegmentations/labels-2.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-2/volume-2_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-112.nii.gz", + "pseudo_label": "OrganSegmentations/volume-112.nii.gz", + "label": "OrganSegmentations/labels-112.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-112/volume-112_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-93.nii.gz", + "pseudo_label": "OrganSegmentations/volume-93.nii.gz", + "label": "OrganSegmentations/labels-93.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-93/volume-93_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-100.nii.gz", + "pseudo_label": "OrganSegmentations/volume-100.nii.gz", + "label": "OrganSegmentations/labels-100.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-100/volume-100_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-75.nii.gz", + "pseudo_label": "OrganSegmentations/volume-75.nii.gz", + "label": "OrganSegmentations/labels-75.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-75/volume-75_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-86.nii.gz", + "pseudo_label": "OrganSegmentations/volume-86.nii.gz", + "label": "OrganSegmentations/labels-86.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-86/volume-86_seg.nii.gz" + }, + { + "image": "fixed_affine/volume-133.nii.gz", + "pseudo_label": "fixed_affine/volume-133.nii.gz", + "label": "fixed_affine/labels-133.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-133/volume-133_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-21.nii.gz", + "pseudo_label": "OrganSegmentations/volume-21.nii.gz", + "label": "OrganSegmentations/labels-21.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-21/volume-21_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-102.nii.gz", + "pseudo_label": "OrganSegmentations/volume-102.nii.gz", + "label": "OrganSegmentations/labels-102.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-102/volume-102_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-72.nii.gz", + "pseudo_label": "OrganSegmentations/volume-72.nii.gz", + "label": "OrganSegmentations/labels-72.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-72/volume-72_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-87.nii.gz", + "pseudo_label": "OrganSegmentations/volume-87.nii.gz", + "label": "OrganSegmentations/labels-87.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-87/volume-87_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-68.nii.gz", + "pseudo_label": "OrganSegmentations/volume-68.nii.gz", + "label": "OrganSegmentations/labels-68.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-68/volume-68_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-3.nii.gz", + "pseudo_label": "OrganSegmentations/volume-3.nii.gz", + "label": "OrganSegmentations/labels-3.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-3/volume-3_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-64.nii.gz", + "pseudo_label": "OrganSegmentations/volume-64.nii.gz", + "label": "OrganSegmentations/labels-64.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-64/volume-64_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-107.nii.gz", + "pseudo_label": "OrganSegmentations/volume-107.nii.gz", + "label": "OrganSegmentations/labels-107.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-107/volume-107_seg.nii.gz" + }, + { + "image": "fixed_affine/volume-40.nii.gz", + "pseudo_label": "fixed_affine/volume-40.nii.gz", + "label": "fixed_affine/labels-40.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-40/volume-40_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-67.nii.gz", + "pseudo_label": "OrganSegmentations/volume-67.nii.gz", + "label": "OrganSegmentations/labels-67.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-67/volume-67_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-0.nii.gz", + "pseudo_label": "OrganSegmentations/volume-0.nii.gz", + "label": "OrganSegmentations/labels-0.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-0/volume-0_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-103.nii.gz", + "pseudo_label": "OrganSegmentations/volume-103.nii.gz", + "label": "OrganSegmentations/labels-103.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-103/volume-103_seg.nii.gz" + }, + { + "image": "fixed_affine/volume-35.nii.gz", + "pseudo_label": "fixed_affine/volume-35.nii.gz", + "label": "fixed_affine/labels-35.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-35/volume-35_seg.nii.gz" + }, + { + "image": "fixed_affine/volume-42.nii.gz", + "pseudo_label": "fixed_affine/volume-42.nii.gz", + "label": "fixed_affine/labels-42.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-42/volume-42_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-105.nii.gz", + "pseudo_label": "OrganSegmentations/volume-105.nii.gz", + "label": "OrganSegmentations/labels-105.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1 + }, + { + "image": "fixed_affine/volume-33.nii.gz", + "pseudo_label": "fixed_affine/volume-33.nii.gz", + "label": "fixed_affine/labels-33.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-33/volume-33_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-58.nii.gz", + "pseudo_label": "OrganSegmentations/volume-58.nii.gz", + "label": "OrganSegmentations/labels-58.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-58/volume-58_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-27.nii.gz", + "pseudo_label": "OrganSegmentations/volume-27.nii.gz", + "label": "OrganSegmentations/labels-27.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0 + }, + { + "image": "fixed_affine/volume-43.nii.gz", + "pseudo_label": "fixed_affine/volume-43.nii.gz", + "label": "fixed_affine/labels-43.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-43/volume-43_seg.nii.gz" + }, + { + "image": "fixed_affine/volume-20.nii.gz", + "pseudo_label": "fixed_affine/volume-20.nii.gz", + "label": "fixed_affine/labels-20.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-20/volume-20_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-11.nii.gz", + "pseudo_label": "OrganSegmentations/volume-11.nii.gz", + "label": "OrganSegmentations/labels-11.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-11/volume-11_seg.nii.gz" + }, + { + "image": "fixed_affine/volume-131.nii.gz", + "pseudo_label": "fixed_affine/volume-131.nii.gz", + "label": "fixed_affine/labels-131.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-131/volume-131_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-80.nii.gz", + "pseudo_label": "OrganSegmentations/volume-80.nii.gz", + "label": "OrganSegmentations/labels-80.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1 + }, + { + "image": "OrganSegmentations/volume-69.nii.gz", + "pseudo_label": "OrganSegmentations/volume-69.nii.gz", + "label": "OrganSegmentations/labels-69.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-69/volume-69_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-55.nii.gz", + "pseudo_label": "OrganSegmentations/volume-55.nii.gz", + "label": "OrganSegmentations/labels-55.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-55/volume-55_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-115.nii.gz", + "pseudo_label": "OrganSegmentations/volume-115.nii.gz", + "label": "OrganSegmentations/labels-115.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0 + }, + { + "image": "fixed_affine/volume-37.nii.gz", + "pseudo_label": "fixed_affine/volume-37.nii.gz", + "label": "fixed_affine/labels-37.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-37/volume-37_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-79.nii.gz", + "pseudo_label": "OrganSegmentations/volume-79.nii.gz", + "label": "OrganSegmentations/labels-79.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1 + }, + { + "image": "OrganSegmentations/volume-116.nii.gz", + "pseudo_label": "OrganSegmentations/volume-116.nii.gz", + "label": "OrganSegmentations/labels-116.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1 + }, + { + "image": "OrganSegmentations/volume-66.nii.gz", + "pseudo_label": "OrganSegmentations/volume-66.nii.gz", + "label": "OrganSegmentations/labels-66.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-66/volume-66_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-50.nii.gz", + "pseudo_label": "OrganSegmentations/volume-50.nii.gz", + "label": "OrganSegmentations/labels-50.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0 + }, + { + "image": "OrganSegmentations/volume-121.nii.gz", + "pseudo_label": "OrganSegmentations/volume-121.nii.gz", + "label": "OrganSegmentations/labels-121.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1 + }, + { + "image": "OrganSegmentations/volume-18.nii.gz", + "pseudo_label": "OrganSegmentations/volume-18.nii.gz", + "label": "OrganSegmentations/labels-18.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-18/volume-18_seg.nii.gz" + }, + { + "image": "fixed_affine/volume-32.nii.gz", + "pseudo_label": "fixed_affine/volume-32.nii.gz", + "label": "fixed_affine/labels-32.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0 + }, + { + "image": "OrganSegmentations/volume-91.nii.gz", + "pseudo_label": "OrganSegmentations/volume-91.nii.gz", + "label": "OrganSegmentations/labels-91.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-91/volume-91_seg.nii.gz" + }, + { + "image": "fixed_affine/volume-45.nii.gz", + "pseudo_label": "fixed_affine/volume-45.nii.gz", + "label": "fixed_affine/labels-45.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0 + }, + { + "image": "OrganSegmentations/volume-65.nii.gz", + "pseudo_label": "OrganSegmentations/volume-65.nii.gz", + "label": "OrganSegmentations/labels-65.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1 + }, + { + "image": "OrganSegmentations/volume-134.nii.gz", + "pseudo_label": "OrganSegmentations/volume-134.nii.gz", + "label": "OrganSegmentations/labels-134.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-134/volume-134_seg.nii.gz" + }, + { + "image": "fixed_affine/volume-29.nii.gz", + "pseudo_label": "fixed_affine/volume-29.nii.gz", + "label": "fixed_affine/labels-29.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0 + }, + { + "image": "OrganSegmentations/volume-13.nii.gz", + "pseudo_label": "OrganSegmentations/volume-13.nii.gz", + "label": "OrganSegmentations/labels-13.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1 + }, + { + "image": "OrganSegmentations/volume-118.nii.gz", + "pseudo_label": "OrganSegmentations/volume-118.nii.gz", + "label": "OrganSegmentations/labels-118.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-118/volume-118_seg.nii.gz" + }, + { + "image": "OrganSegmentations/volume-9.nii.gz", + "pseudo_label": "OrganSegmentations/volume-9.nii.gz", + "label": "OrganSegmentations/labels-9.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1 + }, + { + "image": "fixed_affine/volume-135.nii.gz", + "pseudo_label": "fixed_affine/volume-135.nii.gz", + "label": "fixed_affine/labels-135.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CT-ORG_100/volume-135/volume-135_seg.nii.gz" + } + ], + "training_transform": [ + { + "_target_": "RandCropByLabelClassesd", + "keys": [ + "@image_key", + "@label_key", + "@pseudo_label_key", + "@label_sv_key" + ], + "label_key": "@pseudo_label_key", + "num_classes": 133, + "num_samples": "@num_patches_per_image", + "spatial_size": "@patch_size", + "ratios": "$tuple(float(i >= 0) for i in range(133))", + "warn": false, + "allow_missing_keys": true + }, + { + "_target_": "RandZoomd", + "keys": [ + "@image_key", + "@label_key", + "@pseudo_label_key", + "@label_sv_key" + ], + "min_zoom": 0.8, + "max_zoom": 1.2, + "mode": [ + "trilinear", + "nearest", + "nearest", + "nearest" + ], + "prob": 0.2, + "allow_missing_keys": true + }, + { + "_target_": "RandSimulateLowResolutiond", + "keys": [ + "@image_key" + ], + "zoom_range": [ + 0.3, + 1 + ], + "prob": 0.2, + "allow_missing_keys": true + }, + { + "_target_": "RandGaussianSmoothd", + "keys": [ + "@image_key" + ], + "prob": 0.2, + "sigma_x": [ + 0.5, + 1.0 + ], + "sigma_y": [ + 0.5, + 1.0 + ], + "sigma_z": [ + 0.5, + 1.0 + ] + }, + { + "_target_": "RandScaleIntensityd", + "keys": [ + "@image_key" + ], + "factors": 0.1, + "prob": 0.2 + }, + { + "_target_": "RandShiftIntensityd", + "keys": [ + "@image_key" + ], + "offsets": 0.1, + "prob": 0.2 + }, + { + "_target_": "RandGaussianNoised", + "keys": [ + "@image_key" + ], + "prob": 0.2, + "mean": 0.0, + "std": 0.2 + } + ], + "label_dict": { + "1": "liver", + "2": "bladder", + "3": "lung", + "4": "kidney", + "5": "bone", + "6": "brain" + }, + "original_label_dict": { + "1": "liver", + "2": "bladder", + "3": "lungs", + "4": "kidneys", + "5": "bone", + "6": "brain" + }, + "testing": [ + { + "image": "OrganSegmentations/volume-104.nii.gz", + "label": "OrganSegmentations/labels-104.nii.gz" + }, + { + "image": "OrganSegmentations/volume-73.nii.gz", + "label": "OrganSegmentations/labels-73.nii.gz" + }, + { + "image": "OrganSegmentations/volume-89.nii.gz", + "label": "OrganSegmentations/labels-89.nii.gz" + }, + { + "image": "OrganSegmentations/volume-23.nii.gz", + "label": "OrganSegmentations/labels-23.nii.gz" + }, + { + "image": "OrganSegmentations/volume-81.nii.gz", + "label": "OrganSegmentations/labels-81.nii.gz" + }, + { + "image": "OrganSegmentations/volume-71.nii.gz", + "label": "OrganSegmentations/labels-71.nii.gz" + }, + { + "image": "OrganSegmentations/volume-48.nii.gz", + "label": "OrganSegmentations/labels-48.nii.gz" + }, + { + "image": "fixed_affine/volume-31.nii.gz", + "label": "fixed_affine/labels-31.nii.gz" + }, + { + "image": "OrganSegmentations/volume-56.nii.gz", + "label": "OrganSegmentations/labels-56.nii.gz" + }, + { + "image": "OrganSegmentations/volume-110.nii.gz", + "label": "OrganSegmentations/labels-110.nii.gz" + }, + { + "image": "OrganSegmentations/volume-114.nii.gz", + "label": "OrganSegmentations/labels-114.nii.gz" + }, + { + "image": "fixed_affine/volume-44.nii.gz", + "label": "fixed_affine/labels-44.nii.gz" + }, + { + "image": "OrganSegmentations/volume-129.nii.gz", + "label": "OrganSegmentations/labels-129.nii.gz" + }, + { + "image": "fixed_affine/volume-47.nii.gz", + "label": "fixed_affine/labels-47.nii.gz" + }, + { + "image": "OrganSegmentations/volume-125.nii.gz", + "label": "OrganSegmentations/labels-125.nii.gz" + }, + { + "image": "OrganSegmentations/volume-99.nii.gz", + "label": "OrganSegmentations/labels-99.nii.gz" + }, + { + "image": "OrganSegmentations/volume-26.nii.gz", + "label": "OrganSegmentations/labels-26.nii.gz" + }, + { + "image": "OrganSegmentations/volume-22.nii.gz", + "label": "OrganSegmentations/labels-22.nii.gz" + }, + { + "image": "OrganSegmentations/volume-59.nii.gz", + "label": "OrganSegmentations/labels-59.nii.gz" + }, + { + "image": "OrganSegmentations/volume-7.nii.gz", + "label": "OrganSegmentations/labels-7.nii.gz" + }, + { + "image": "OrganSegmentations/volume-120.nii.gz", + "label": "OrganSegmentations/labels-120.nii.gz" + }, + { + "image": "OrganSegmentations/volume-113.nii.gz", + "label": "OrganSegmentations/labels-113.nii.gz" + }, + { + "image": "OrganSegmentations/volume-51.nii.gz", + "label": "OrganSegmentations/labels-51.nii.gz" + }, + { + "image": "OrganSegmentations/volume-122.nii.gz", + "label": "OrganSegmentations/labels-122.nii.gz" + }, + { + "image": "OrganSegmentations/volume-84.nii.gz", + "label": "OrganSegmentations/labels-84.nii.gz" + }, + { + "image": "OrganSegmentations/volume-6.nii.gz", + "label": "OrganSegmentations/labels-6.nii.gz" + }, + { + "image": "OrganSegmentations/volume-117.nii.gz", + "label": "OrganSegmentations/labels-117.nii.gz" + } + ] +} diff --git a/vista3d/data/jsons/CTPelvic1K-CLINIC_5_folds.json b/vista3d/data/jsons/CTPelvic1K-CLINIC_5_folds.json new file mode 100644 index 0000000..b759eb2 --- /dev/null +++ b/vista3d/data/jsons/CTPelvic1K-CLINIC_5_folds.json @@ -0,0 +1,928 @@ +{ + "training": [ + { + "image": "CTPelvic1K_dataset7_data/dataset7_CLINIC_metal_0005_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset7_data/dataset7_CLINIC_metal_0005_data.nii.gz", + "label": "CTPelvic1K_dataset7_mask/CLINIC_metal_0005_mask_4label.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0076_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0076_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0076_mask_4label.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0080_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0080_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0080_mask_4label.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0065_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0065_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0065_mask_4label.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0045_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0045_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0045_mask_4label.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0004_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0004_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0004_mask_4label.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0021_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0021_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0021_mask_4label.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0017_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0017_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0017_mask_4label.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0053_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0053_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0053_mask_4label.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0066_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0066_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0066_mask_4label.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0009_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0009_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0009_mask_4label.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0038_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0038_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0038_mask_4label.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0086_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0086_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0086_mask_4label.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0101_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0101_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0101_mask_4label.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0007_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0007_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0007_mask_4label.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0012_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0012_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0012_mask_4label.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0030_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0030_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0030_mask_4label.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0061_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0061_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0061_mask_4label.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0077_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0077_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0077_mask_4label.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0015_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0015_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0015_mask_4label.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0015_data/dataset6_CLINIC_0015_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0027_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0027_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0027_mask_4label.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0027_data/dataset6_CLINIC_0027_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0051_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0051_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0051_mask_4label.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0051_data/dataset6_CLINIC_0051_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0039_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0039_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0039_mask_4label.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1 + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0049_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0049_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0049_mask_4label.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0049_data/dataset6_CLINIC_0049_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0099_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0099_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0099_mask_4label.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0099_data/dataset6_CLINIC_0099_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0019_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0019_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0019_mask_4label.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0019_data/dataset6_CLINIC_0019_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0014_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0014_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0014_mask_4label.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0014_data/dataset6_CLINIC_0014_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset7_data/dataset7_CLINIC_metal_0003_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset7_data/dataset7_CLINIC_metal_0003_data.nii.gz", + "label": "CTPelvic1K_dataset7_mask/CLINIC_metal_0003_mask_4label.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset7_CLINIC_metal_0003_data/dataset7_CLINIC_metal_0003_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0062_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0062_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0062_mask_4label.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1 + }, + { + "image": "CTPelvic1K_dataset7_data/dataset7_CLINIC_metal_0001_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset7_data/dataset7_CLINIC_metal_0001_data.nii.gz", + "label": "CTPelvic1K_dataset7_mask/CLINIC_metal_0001_mask_4label.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset7_CLINIC_metal_0001_data/dataset7_CLINIC_metal_0001_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0070_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0070_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0070_mask_4label.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0070_data/dataset6_CLINIC_0070_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0024_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0024_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0024_mask_4label.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0024_data/dataset6_CLINIC_0024_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0013_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0013_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0013_mask_4label.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0013_data/dataset6_CLINIC_0013_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0092_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0092_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0092_mask_4label.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1 + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0035_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0035_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0035_mask_4label.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0035_data/dataset6_CLINIC_0035_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0032_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0032_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0032_mask_4label.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0032_data/dataset6_CLINIC_0032_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0056_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0056_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0056_mask_4label.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0056_data/dataset6_CLINIC_0056_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0102_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0102_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0102_mask_4label.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0102_data/dataset6_CLINIC_0102_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0008_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0008_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0008_mask_4label.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1 + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0036_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0036_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0036_mask_4label.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1 + }, + { + "image": "CTPelvic1K_dataset7_data/dataset7_CLINIC_metal_0008_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset7_data/dataset7_CLINIC_metal_0008_data.nii.gz", + "label": "CTPelvic1K_dataset7_mask/CLINIC_metal_0008_mask_4label.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset7_CLINIC_metal_0008_data/dataset7_CLINIC_metal_0008_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0002_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0002_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0002_mask_4label.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0002_data/dataset6_CLINIC_0002_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0001_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0001_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0001_mask_4label.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0001_data/dataset6_CLINIC_0001_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0029_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0029_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0029_mask_4label.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0029_data/dataset6_CLINIC_0029_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0023_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0023_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0023_mask_4label.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0023_data/dataset6_CLINIC_0023_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0054_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0054_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0054_mask_4label.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0054_data/dataset6_CLINIC_0054_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0073_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0073_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0073_mask_4label.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0073_data/dataset6_CLINIC_0073_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0085_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0085_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0085_mask_4label.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0085_data/dataset6_CLINIC_0085_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0058_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0058_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0058_mask_4label.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0058_data/dataset6_CLINIC_0058_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0078_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0078_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0078_mask_4label.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0078_data/dataset6_CLINIC_0078_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0064_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0064_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0064_mask_4label.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0064_data/dataset6_CLINIC_0064_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0088_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0088_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0088_mask_4label.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0088_data/dataset6_CLINIC_0088_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset7_data/dataset7_CLINIC_metal_0000_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset7_data/dataset7_CLINIC_metal_0000_data.nii.gz", + "label": "CTPelvic1K_dataset7_mask/CLINIC_metal_0000_mask_4label.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset7_CLINIC_metal_0000_data/dataset7_CLINIC_metal_0000_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0081_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0081_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0081_mask_4label.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0081_data/dataset6_CLINIC_0081_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0003_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0003_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0003_mask_4label.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0003_data/dataset6_CLINIC_0003_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0089_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0089_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0089_mask_4label.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0089_data/dataset6_CLINIC_0089_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0069_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0069_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0069_mask_4label.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0069_data/dataset6_CLINIC_0069_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0034_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0034_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0034_mask_4label.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0034_data/dataset6_CLINIC_0034_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0071_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0071_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0071_mask_4label.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0071_data/dataset6_CLINIC_0071_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0083_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0083_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0083_mask_4label.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0083_data/dataset6_CLINIC_0083_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0020_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0020_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0020_mask_4label.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0020_data/dataset6_CLINIC_0020_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0037_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0037_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0037_mask_4label.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0037_data/dataset6_CLINIC_0037_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0063_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0063_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0063_mask_4label.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0063_data/dataset6_CLINIC_0063_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0103_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0103_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0103_mask_4label.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1 + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0068_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0068_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0068_mask_4label.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1 + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0040_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0040_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0040_mask_4label.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0040_data/dataset6_CLINIC_0040_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0084_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0084_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0084_mask_4label.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0084_data/dataset6_CLINIC_0084_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0079_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0079_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0079_mask_4label.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0079_data/dataset6_CLINIC_0079_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0050_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0050_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0050_mask_4label.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0050_data/dataset6_CLINIC_0050_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0094_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0094_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0094_mask_4label.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1 + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0006_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0006_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0006_mask_4label.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0006_data/dataset6_CLINIC_0006_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset7_data/dataset7_CLINIC_metal_0007_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset7_data/dataset7_CLINIC_metal_0007_data.nii.gz", + "label": "CTPelvic1K_dataset7_mask/CLINIC_metal_0007_mask_4label.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset7_CLINIC_metal_0007_data/dataset7_CLINIC_metal_0007_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0072_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0072_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0072_mask_4label.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0072_data/dataset6_CLINIC_0072_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0090_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0090_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0090_mask_4label.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0090_data/dataset6_CLINIC_0090_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0093_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0093_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0093_mask_4label.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0093_data/dataset6_CLINIC_0093_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0098_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0098_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0098_mask_4label.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0098_data/dataset6_CLINIC_0098_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0025_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0025_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0025_mask_4label.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0025_data/dataset6_CLINIC_0025_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0067_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0067_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0067_mask_4label.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0067_data/dataset6_CLINIC_0067_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0041_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0041_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0041_mask_4label.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0041_data/dataset6_CLINIC_0041_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0011_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0011_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0011_mask_4label.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0011_data/dataset6_CLINIC_0011_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0010_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0010_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0010_mask_4label.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0010_data/dataset6_CLINIC_0010_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0060_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0060_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0060_mask_4label.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0060_data/dataset6_CLINIC_0060_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0033_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0033_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0033_mask_4label.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0033_data/dataset6_CLINIC_0033_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0074_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0074_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0074_mask_4label.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0074_data/dataset6_CLINIC_0074_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0048_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0048_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0048_mask_4label.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0048_data/dataset6_CLINIC_0048_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0052_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0052_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0052_mask_4label.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0052_data/dataset6_CLINIC_0052_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset7_data/dataset7_CLINIC_metal_0011_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset7_data/dataset7_CLINIC_metal_0011_data.nii.gz", + "label": "CTPelvic1K_dataset7_mask/CLINIC_metal_0011_mask_4label.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset7_CLINIC_metal_0011_data/dataset7_CLINIC_metal_0011_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset7_data/dataset7_CLINIC_metal_0012_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset7_data/dataset7_CLINIC_metal_0012_data.nii.gz", + "label": "CTPelvic1K_dataset7_mask/CLINIC_metal_0012_mask_4label.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset7_CLINIC_metal_0012_data/dataset7_CLINIC_metal_0012_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0016_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0016_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0016_mask_4label.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0016_data/dataset6_CLINIC_0016_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset7_data/dataset7_CLINIC_metal_0010_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset7_data/dataset7_CLINIC_metal_0010_data.nii.gz", + "label": "CTPelvic1K_dataset7_mask/CLINIC_metal_0010_mask_4label.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset7_CLINIC_metal_0010_data/dataset7_CLINIC_metal_0010_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset7_data/dataset7_CLINIC_metal_0009_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset7_data/dataset7_CLINIC_metal_0009_data.nii.gz", + "label": "CTPelvic1K_dataset7_mask/CLINIC_metal_0009_mask_4label.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset7_CLINIC_metal_0009_data/dataset7_CLINIC_metal_0009_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0091_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0091_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0091_mask_4label.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0091_data/dataset6_CLINIC_0091_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0097_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0097_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0097_mask_4label.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0097_data/dataset6_CLINIC_0097_data_seg.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0005_data.nii.gz", + "pseudo_label": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0005_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0005_mask_4label.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/CTPelvic1K-CLINIC_100/dataset6_CLINIC_0005_data/dataset6_CLINIC_0005_data_seg.nii.gz" + } + ], + "training_transform": [ + { + "_target_": "RandCropByLabelClassesd", + "keys": [ + "@image_key", + "@label_key", + "@pseudo_label_key", + "@label_sv_key" + ], + "label_key": "@pseudo_label_key", + "num_classes": 133, + "num_samples": "@num_patches_per_image", + "spatial_size": "@patch_size", + "ratios": "$tuple(float(i >= 0) for i in range(133))", + "warn": false, + "allow_missing_keys": true + }, + { + "_target_": "RandZoomd", + "keys": [ + "@image_key", + "@label_key", + "@pseudo_label_key", + "@label_sv_key" + ], + "min_zoom": 0.8, + "max_zoom": 1.2, + "mode": [ + "trilinear", + "nearest", + "nearest", + "nearest" + ], + "prob": 0.2, + "allow_missing_keys": true + }, + { + "_target_": "RandSimulateLowResolutiond", + "keys": [ + "@image_key" + ], + "zoom_range": [ + 0.3, + 1 + ], + "prob": 0.2, + "allow_missing_keys": true + }, + { + "_target_": "RandGaussianSmoothd", + "keys": [ + "@image_key" + ], + "prob": 0.2, + "sigma_x": [ + 0.5, + 1.0 + ], + "sigma_y": [ + 0.5, + 1.0 + ], + "sigma_z": [ + 0.5, + 1.0 + ] + }, + { + "_target_": "RandScaleIntensityd", + "keys": [ + "@image_key" + ], + "factors": 0.1, + "prob": 0.2 + }, + { + "_target_": "RandShiftIntensityd", + "keys": [ + "@image_key" + ], + "offsets": 0.1, + "prob": 0.2 + }, + { + "_target_": "RandGaussianNoised", + "keys": [ + "@image_key" + ], + "prob": 0.2, + "mean": 0.0, + "std": 0.2 + } + ], + "label_dict": { + "1": "sacrum", + "2": "left hip", + "3": "right hip", + "4": "lumbar spine" + }, + "original_label_dict": { + "1": "sacrum", + "2": "left hip", + "3": "right hip", + "4": "lumbar spine" + }, + "testing": [ + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0082_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0082_mask_4label.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0031_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0031_mask_4label.nii.gz" + }, + { + "image": "CTPelvic1K_dataset7_data/dataset7_CLINIC_metal_0013_data.nii.gz", + "label": "CTPelvic1K_dataset7_mask/CLINIC_metal_0013_mask_4label.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0059_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0059_mask_4label.nii.gz" + }, + { + "image": "CTPelvic1K_dataset7_data/dataset7_CLINIC_metal_0002_data.nii.gz", + "label": "CTPelvic1K_dataset7_mask/CLINIC_metal_0002_mask_4label.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0095_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0095_mask_4label.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0042_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0042_mask_4label.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0057_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0057_mask_4label.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0026_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0026_mask_4label.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0100_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0100_mask_4label.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0075_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0075_mask_4label.nii.gz" + }, + { + "image": "CTPelvic1K_dataset7_data/dataset7_CLINIC_metal_0006_data.nii.gz", + "label": "CTPelvic1K_dataset7_mask/CLINIC_metal_0006_mask_4label.nii.gz" + }, + { + "image": "CTPelvic1K_dataset7_data/dataset7_CLINIC_metal_0004_data.nii.gz", + "label": "CTPelvic1K_dataset7_mask/CLINIC_metal_0004_mask_4label.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0018_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0018_mask_4label.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0087_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0087_mask_4label.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0055_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0055_mask_4label.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0043_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0043_mask_4label.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0028_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0028_mask_4label.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0044_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0044_mask_4label.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0047_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0047_mask_4label.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0046_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0046_mask_4label.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0096_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0096_mask_4label.nii.gz" + }, + { + "image": "CTPelvic1K_dataset6_data/dataset6_CLINIC_0022_data.nii.gz", + "label": "ipcai2021_dataset6_Anonymized/dataset6_CLINIC_0022_mask_4label.nii.gz" + } + ] +} diff --git a/vista3d/data/jsons/Covid19_5_folds.json b/vista3d/data/jsons/Covid19_5_folds.json new file mode 100644 index 0000000..a664250 --- /dev/null +++ b/vista3d/data/jsons/Covid19_5_folds.json @@ -0,0 +1,3765 @@ +{ + "training": [ + { + "image": "data/volume-covid19-A-0706_day011.nii.gz", + "pseudo_label": "data/volume-covid19-A-0706_day011.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0706_day011/volume-covid19-A-0706_day011_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0723_day000.nii.gz", + "pseudo_label": "data/volume-covid19-A-0723_day000.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0723_day000/volume-covid19-A-0723_day000_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0462.nii.gz", + "pseudo_label": "data/volume-covid19-A-0462.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0462/volume-covid19-A-0462_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0387.nii.gz", + "pseudo_label": "data/volume-covid19-A-0387.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0387/volume-covid19-A-0387_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0054.nii.gz", + "pseudo_label": "data/volume-covid19-A-0054.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0054/volume-covid19-A-0054_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0560.nii.gz", + "pseudo_label": "data/volume-covid19-A-0560.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0560/volume-covid19-A-0560_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0702_day011.nii.gz", + "pseudo_label": "data/volume-covid19-A-0702_day011.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0702_day011/volume-covid19-A-0702_day011_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0074_1.nii.gz", + "pseudo_label": "data/volume-covid19-A-0074_1.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0074_1/volume-covid19-A-0074_1_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0648.nii.gz", + "pseudo_label": "data/volume-covid19-A-0648.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0648/volume-covid19-A-0648_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0287_0.nii.gz", + "pseudo_label": "data/volume-covid19-A-0287_0.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0287_0/volume-covid19-A-0287_0_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0518.nii.gz", + "pseudo_label": "data/volume-covid19-A-0518.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0518/volume-covid19-A-0518_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0090.nii.gz", + "pseudo_label": "data/volume-covid19-A-0090.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0090/volume-covid19-A-0090_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0153.nii.gz", + "pseudo_label": "data/volume-covid19-A-0153.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0153/volume-covid19-A-0153_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0461.nii.gz", + "pseudo_label": "data/volume-covid19-A-0461.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0461/volume-covid19-A-0461_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0376.nii.gz", + "pseudo_label": "data/volume-covid19-A-0376.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0376/volume-covid19-A-0376_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0303_0.nii.gz", + "pseudo_label": "data/volume-covid19-A-0303_0.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0303_0/volume-covid19-A-0303_0_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0397.nii.gz", + "pseudo_label": "data/volume-covid19-A-0397.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0397/volume-covid19-A-0397_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0705_day004.nii.gz", + "pseudo_label": "data/volume-covid19-A-0705_day004.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0705_day004/volume-covid19-A-0705_day004_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0550.nii.gz", + "pseudo_label": "data/volume-covid19-A-0550.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0550/volume-covid19-A-0550_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0151.nii.gz", + "pseudo_label": "data/volume-covid19-A-0151.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0151/volume-covid19-A-0151_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0734_day012.nii.gz", + "pseudo_label": "data/volume-covid19-A-0734_day012.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0734_day012/volume-covid19-A-0734_day012_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0396.nii.gz", + "pseudo_label": "data/volume-covid19-A-0396.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0396/volume-covid19-A-0396_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0328.nii.gz", + "pseudo_label": "data/volume-covid19-A-0328.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0328/volume-covid19-A-0328_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0365.nii.gz", + "pseudo_label": "data/volume-covid19-A-0365.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0365/volume-covid19-A-0365_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0526.nii.gz", + "pseudo_label": "data/volume-covid19-A-0526.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0526/volume-covid19-A-0526_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0570.nii.gz", + "pseudo_label": "data/volume-covid19-A-0570.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0570/volume-covid19-A-0570_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0665.nii.gz", + "pseudo_label": "data/volume-covid19-A-0665.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0665/volume-covid19-A-0665_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0582.nii.gz", + "pseudo_label": "data/volume-covid19-A-0582.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0582/volume-covid19-A-0582_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0199.nii.gz", + "pseudo_label": "data/volume-covid19-A-0199.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0199/volume-covid19-A-0199_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0522.nii.gz", + "pseudo_label": "data/volume-covid19-A-0522.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0522/volume-covid19-A-0522_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0491.nii.gz", + "pseudo_label": "data/volume-covid19-A-0491.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0491/volume-covid19-A-0491_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0528.nii.gz", + "pseudo_label": "data/volume-covid19-A-0528.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0528/volume-covid19-A-0528_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0256_1.nii.gz", + "pseudo_label": "data/volume-covid19-A-0256_1.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0256_1/volume-covid19-A-0256_1_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0031.nii.gz", + "pseudo_label": "data/volume-covid19-A-0031.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0031/volume-covid19-A-0031_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0734_day005.nii.gz", + "pseudo_label": "data/volume-covid19-A-0734_day005.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0734_day005/volume-covid19-A-0734_day005_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0544.nii.gz", + "pseudo_label": "data/volume-covid19-A-0544.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0544/volume-covid19-A-0544_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0598.nii.gz", + "pseudo_label": "data/volume-covid19-A-0598.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0598/volume-covid19-A-0598_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0048.nii.gz", + "pseudo_label": "data/volume-covid19-A-0048.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0048/volume-covid19-A-0048_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0260.nii.gz", + "pseudo_label": "data/volume-covid19-A-0260.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0260/volume-covid19-A-0260_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0719_day000.nii.gz", + "pseudo_label": "data/volume-covid19-A-0719_day000.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0719_day000/volume-covid19-A-0719_day000_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0629.nii.gz", + "pseudo_label": "data/volume-covid19-A-0629.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0629/volume-covid19-A-0629_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0423.nii.gz", + "pseudo_label": "data/volume-covid19-A-0423.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0423/volume-covid19-A-0423_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0714_day051.nii.gz", + "pseudo_label": "data/volume-covid19-A-0714_day051.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0714_day051/volume-covid19-A-0714_day051_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0147.nii.gz", + "pseudo_label": "data/volume-covid19-A-0147.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0147/volume-covid19-A-0147_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0393.nii.gz", + "pseudo_label": "data/volume-covid19-A-0393.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0393/volume-covid19-A-0393_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0026.nii.gz", + "pseudo_label": "data/volume-covid19-A-0026.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0026/volume-covid19-A-0026_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0189_1.nii.gz", + "pseudo_label": "data/volume-covid19-A-0189_1.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0189_1/volume-covid19-A-0189_1_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0314.nii.gz", + "pseudo_label": "data/volume-covid19-A-0314.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0314/volume-covid19-A-0314_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0287_1.nii.gz", + "pseudo_label": "data/volume-covid19-A-0287_1.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0287_1/volume-covid19-A-0287_1_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0412.nii.gz", + "pseudo_label": "data/volume-covid19-A-0412.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0412/volume-covid19-A-0412_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0382.nii.gz", + "pseudo_label": "data/volume-covid19-A-0382.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0382/volume-covid19-A-0382_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0585.nii.gz", + "pseudo_label": "data/volume-covid19-A-0585.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0585/volume-covid19-A-0585_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0685.nii.gz", + "pseudo_label": "data/volume-covid19-A-0685.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0685/volume-covid19-A-0685_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0218.nii.gz", + "pseudo_label": "data/volume-covid19-A-0218.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0218/volume-covid19-A-0218_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0736_day007.nii.gz", + "pseudo_label": "data/volume-covid19-A-0736_day007.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0736_day007/volume-covid19-A-0736_day007_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0650.nii.gz", + "pseudo_label": "data/volume-covid19-A-0650.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0650/volume-covid19-A-0650_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0673.nii.gz", + "pseudo_label": "data/volume-covid19-A-0673.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0673/volume-covid19-A-0673_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0700_day007.nii.gz", + "pseudo_label": "data/volume-covid19-A-0700_day007.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0700_day007/volume-covid19-A-0700_day007_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0702_day025.nii.gz", + "pseudo_label": "data/volume-covid19-A-0702_day025.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0702_day025/volume-covid19-A-0702_day025_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0169.nii.gz", + "pseudo_label": "data/volume-covid19-A-0169.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0169/volume-covid19-A-0169_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0383_0.nii.gz", + "pseudo_label": "data/volume-covid19-A-0383_0.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0383_0/volume-covid19-A-0383_0_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0667.nii.gz", + "pseudo_label": "data/volume-covid19-A-0667.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0667/volume-covid19-A-0667_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0319.nii.gz", + "pseudo_label": "data/volume-covid19-A-0319.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0319/volume-covid19-A-0319_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0291_0.nii.gz", + "pseudo_label": "data/volume-covid19-A-0291_0.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0291_0/volume-covid19-A-0291_0_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0349.nii.gz", + "pseudo_label": "data/volume-covid19-A-0349.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0349/volume-covid19-A-0349_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0186.nii.gz", + "pseudo_label": "data/volume-covid19-A-0186.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0186/volume-covid19-A-0186_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0715_day007.nii.gz", + "pseudo_label": "data/volume-covid19-A-0715_day007.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0715_day007/volume-covid19-A-0715_day007_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0668.nii.gz", + "pseudo_label": "data/volume-covid19-A-0668.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0668/volume-covid19-A-0668_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0233.nii.gz", + "pseudo_label": "data/volume-covid19-A-0233.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0233/volume-covid19-A-0233_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0347.nii.gz", + "pseudo_label": "data/volume-covid19-A-0347.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0347/volume-covid19-A-0347_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0346.nii.gz", + "pseudo_label": "data/volume-covid19-A-0346.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0346/volume-covid19-A-0346_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0340.nii.gz", + "pseudo_label": "data/volume-covid19-A-0340.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0340/volume-covid19-A-0340_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0023.nii.gz", + "pseudo_label": "data/volume-covid19-A-0023.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0023/volume-covid19-A-0023_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0212_0.nii.gz", + "pseudo_label": "data/volume-covid19-A-0212_0.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0212_0/volume-covid19-A-0212_0_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0140.nii.gz", + "pseudo_label": "data/volume-covid19-A-0140.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0140/volume-covid19-A-0140_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0557.nii.gz", + "pseudo_label": "data/volume-covid19-A-0557.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0557/volume-covid19-A-0557_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0213.nii.gz", + "pseudo_label": "data/volume-covid19-A-0213.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0213/volume-covid19-A-0213_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0262.nii.gz", + "pseudo_label": "data/volume-covid19-A-0262.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0262/volume-covid19-A-0262_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0564.nii.gz", + "pseudo_label": "data/volume-covid19-A-0564.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0564/volume-covid19-A-0564_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0717_day005.nii.gz", + "pseudo_label": "data/volume-covid19-A-0717_day005.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0717_day005/volume-covid19-A-0717_day005_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0464.nii.gz", + "pseudo_label": "data/volume-covid19-A-0464.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0464/volume-covid19-A-0464_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0706_day049.nii.gz", + "pseudo_label": "data/volume-covid19-A-0706_day049.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0706_day049/volume-covid19-A-0706_day049_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0578.nii.gz", + "pseudo_label": "data/volume-covid19-A-0578.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0578/volume-covid19-A-0578_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0264.nii.gz", + "pseudo_label": "data/volume-covid19-A-0264.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0264/volume-covid19-A-0264_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0687.nii.gz", + "pseudo_label": "data/volume-covid19-A-0687.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0687/volume-covid19-A-0687_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0571.nii.gz", + "pseudo_label": "data/volume-covid19-A-0571.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0571/volume-covid19-A-0571_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0378.nii.gz", + "pseudo_label": "data/volume-covid19-A-0378.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0378/volume-covid19-A-0378_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0158.nii.gz", + "pseudo_label": "data/volume-covid19-A-0158.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0158/volume-covid19-A-0158_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0069.nii.gz", + "pseudo_label": "data/volume-covid19-A-0069.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0069/volume-covid19-A-0069_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0267.nii.gz", + "pseudo_label": "data/volume-covid19-A-0267.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0267/volume-covid19-A-0267_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0107.nii.gz", + "pseudo_label": "data/volume-covid19-A-0107.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0107/volume-covid19-A-0107_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0244.nii.gz", + "pseudo_label": "data/volume-covid19-A-0244.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0244/volume-covid19-A-0244_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0152.nii.gz", + "pseudo_label": "data/volume-covid19-A-0152.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0152/volume-covid19-A-0152_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0438.nii.gz", + "pseudo_label": "data/volume-covid19-A-0438.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0438/volume-covid19-A-0438_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0294.nii.gz", + "pseudo_label": "data/volume-covid19-A-0294.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0294/volume-covid19-A-0294_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0606.nii.gz", + "pseudo_label": "data/volume-covid19-A-0606.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0606/volume-covid19-A-0606_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0420.nii.gz", + "pseudo_label": "data/volume-covid19-A-0420.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0420/volume-covid19-A-0420_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0255.nii.gz", + "pseudo_label": "data/volume-covid19-A-0255.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0255/volume-covid19-A-0255_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0523.nii.gz", + "pseudo_label": "data/volume-covid19-A-0523.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0523/volume-covid19-A-0523_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0263.nii.gz", + "pseudo_label": "data/volume-covid19-A-0263.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0263/volume-covid19-A-0263_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0692.nii.gz", + "pseudo_label": "data/volume-covid19-A-0692.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0692/volume-covid19-A-0692_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0386.nii.gz", + "pseudo_label": "data/volume-covid19-A-0386.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0386/volume-covid19-A-0386_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0717_day000.nii.gz", + "pseudo_label": "data/volume-covid19-A-0717_day000.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0717_day000/volume-covid19-A-0717_day000_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0184_0.nii.gz", + "pseudo_label": "data/volume-covid19-A-0184_0.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0184_0/volume-covid19-A-0184_0_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0681.nii.gz", + "pseudo_label": "data/volume-covid19-A-0681.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0681/volume-covid19-A-0681_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0307.nii.gz", + "pseudo_label": "data/volume-covid19-A-0307.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0307/volume-covid19-A-0307_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0302.nii.gz", + "pseudo_label": "data/volume-covid19-A-0302.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0302/volume-covid19-A-0302_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0202_0.nii.gz", + "pseudo_label": "data/volume-covid19-A-0202_0.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0202_0/volume-covid19-A-0202_0_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0385.nii.gz", + "pseudo_label": "data/volume-covid19-A-0385.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0385/volume-covid19-A-0385_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0188.nii.gz", + "pseudo_label": "data/volume-covid19-A-0188.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0188/volume-covid19-A-0188_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0245.nii.gz", + "pseudo_label": "data/volume-covid19-A-0245.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0245/volume-covid19-A-0245_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0736_day010.nii.gz", + "pseudo_label": "data/volume-covid19-A-0736_day010.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0736_day010/volume-covid19-A-0736_day010_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0600.nii.gz", + "pseudo_label": "data/volume-covid19-A-0600.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0600/volume-covid19-A-0600_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0304.nii.gz", + "pseudo_label": "data/volume-covid19-A-0304.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0304/volume-covid19-A-0304_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0684.nii.gz", + "pseudo_label": "data/volume-covid19-A-0684.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0684/volume-covid19-A-0684_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0296.nii.gz", + "pseudo_label": "data/volume-covid19-A-0296.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0296/volume-covid19-A-0296_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0414.nii.gz", + "pseudo_label": "data/volume-covid19-A-0414.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0414/volume-covid19-A-0414_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0736_day000.nii.gz", + "pseudo_label": "data/volume-covid19-A-0736_day000.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0736_day000/volume-covid19-A-0736_day000_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0256_0.nii.gz", + "pseudo_label": "data/volume-covid19-A-0256_0.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0256_0/volume-covid19-A-0256_0_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0626.nii.gz", + "pseudo_label": "data/volume-covid19-A-0626.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0626/volume-covid19-A-0626_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0201.nii.gz", + "pseudo_label": "data/volume-covid19-A-0201.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0201/volume-covid19-A-0201_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0356.nii.gz", + "pseudo_label": "data/volume-covid19-A-0356.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0356/volume-covid19-A-0356_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0495.nii.gz", + "pseudo_label": "data/volume-covid19-A-0495.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0495/volume-covid19-A-0495_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0091.nii.gz", + "pseudo_label": "data/volume-covid19-A-0091.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0091/volume-covid19-A-0091_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0362.nii.gz", + "pseudo_label": "data/volume-covid19-A-0362.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0362/volume-covid19-A-0362_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0696.nii.gz", + "pseudo_label": "data/volume-covid19-A-0696.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0696/volume-covid19-A-0696_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0690.nii.gz", + "pseudo_label": "data/volume-covid19-A-0690.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0690/volume-covid19-A-0690_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0576.nii.gz", + "pseudo_label": "data/volume-covid19-A-0576.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0576/volume-covid19-A-0576_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0404.nii.gz", + "pseudo_label": "data/volume-covid19-A-0404.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0404/volume-covid19-A-0404_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0722_day003.nii.gz", + "pseudo_label": "data/volume-covid19-A-0722_day003.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0722_day003/volume-covid19-A-0722_day003_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0463.nii.gz", + "pseudo_label": "data/volume-covid19-A-0463.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0463/volume-covid19-A-0463_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0454.nii.gz", + "pseudo_label": "data/volume-covid19-A-0454.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0454/volume-covid19-A-0454_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0722_day047.nii.gz", + "pseudo_label": "data/volume-covid19-A-0722_day047.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0722_day047/volume-covid19-A-0722_day047_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0469.nii.gz", + "pseudo_label": "data/volume-covid19-A-0469.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0469/volume-covid19-A-0469_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0039.nii.gz", + "pseudo_label": "data/volume-covid19-A-0039.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0039/volume-covid19-A-0039_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0710_day000.nii.gz", + "pseudo_label": "data/volume-covid19-A-0710_day000.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0710_day000/volume-covid19-A-0710_day000_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0651.nii.gz", + "pseudo_label": "data/volume-covid19-A-0651.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0651/volume-covid19-A-0651_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0225.nii.gz", + "pseudo_label": "data/volume-covid19-A-0225.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0225/volume-covid19-A-0225_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0470.nii.gz", + "pseudo_label": "data/volume-covid19-A-0470.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0470/volume-covid19-A-0470_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0161.nii.gz", + "pseudo_label": "data/volume-covid19-A-0161.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0161/volume-covid19-A-0161_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0324.nii.gz", + "pseudo_label": "data/volume-covid19-A-0324.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0324/volume-covid19-A-0324_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0511.nii.gz", + "pseudo_label": "data/volume-covid19-A-0511.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0511/volume-covid19-A-0511_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0081.nii.gz", + "pseudo_label": "data/volume-covid19-A-0081.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0081/volume-covid19-A-0081_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0282.nii.gz", + "pseudo_label": "data/volume-covid19-A-0282.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0282/volume-covid19-A-0282_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0670.nii.gz", + "pseudo_label": "data/volume-covid19-A-0670.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0670/volume-covid19-A-0670_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0612.nii.gz", + "pseudo_label": "data/volume-covid19-A-0612.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0612/volume-covid19-A-0612_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0290.nii.gz", + "pseudo_label": "data/volume-covid19-A-0290.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0290/volume-covid19-A-0290_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0450.nii.gz", + "pseudo_label": "data/volume-covid19-A-0450.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0450/volume-covid19-A-0450_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0498.nii.gz", + "pseudo_label": "data/volume-covid19-A-0498.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0498/volume-covid19-A-0498_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0700_day056.nii.gz", + "pseudo_label": "data/volume-covid19-A-0700_day056.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0700_day056/volume-covid19-A-0700_day056_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0067.nii.gz", + "pseudo_label": "data/volume-covid19-A-0067.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0067/volume-covid19-A-0067_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0734_day020.nii.gz", + "pseudo_label": "data/volume-covid19-A-0734_day020.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0734_day020/volume-covid19-A-0734_day020_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0573.nii.gz", + "pseudo_label": "data/volume-covid19-A-0573.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0573/volume-covid19-A-0573_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0086.nii.gz", + "pseudo_label": "data/volume-covid19-A-0086.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0086/volume-covid19-A-0086_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0569.nii.gz", + "pseudo_label": "data/volume-covid19-A-0569.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0569/volume-covid19-A-0569_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0547.nii.gz", + "pseudo_label": "data/volume-covid19-A-0547.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0547/volume-covid19-A-0547_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0350.nii.gz", + "pseudo_label": "data/volume-covid19-A-0350.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0350/volume-covid19-A-0350_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0203.nii.gz", + "pseudo_label": "data/volume-covid19-A-0203.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0203/volume-covid19-A-0203_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0540.nii.gz", + "pseudo_label": "data/volume-covid19-A-0540.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0540/volume-covid19-A-0540_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0568.nii.gz", + "pseudo_label": "data/volume-covid19-A-0568.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0568/volume-covid19-A-0568_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0074_0.nii.gz", + "pseudo_label": "data/volume-covid19-A-0074_0.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0074_0/volume-covid19-A-0074_0_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0558.nii.gz", + "pseudo_label": "data/volume-covid19-A-0558.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0558/volume-covid19-A-0558_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0437.nii.gz", + "pseudo_label": "data/volume-covid19-A-0437.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0437/volume-covid19-A-0437_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0381_1.nii.gz", + "pseudo_label": "data/volume-covid19-A-0381_1.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0381_1/volume-covid19-A-0381_1_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0735_day000.nii.gz", + "pseudo_label": "data/volume-covid19-A-0735_day000.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0735_day000/volume-covid19-A-0735_day000_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0429.nii.gz", + "pseudo_label": "data/volume-covid19-A-0429.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0429/volume-covid19-A-0429_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0446.nii.gz", + "pseudo_label": "data/volume-covid19-A-0446.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0446/volume-covid19-A-0446_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0490.nii.gz", + "pseudo_label": "data/volume-covid19-A-0490.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0490/volume-covid19-A-0490_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0272.nii.gz", + "pseudo_label": "data/volume-covid19-A-0272.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0272/volume-covid19-A-0272_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0154.nii.gz", + "pseudo_label": "data/volume-covid19-A-0154.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0154/volume-covid19-A-0154_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0710_day002.nii.gz", + "pseudo_label": "data/volume-covid19-A-0710_day002.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0710_day002/volume-covid19-A-0710_day002_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0187.nii.gz", + "pseudo_label": "data/volume-covid19-A-0187.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0187/volume-covid19-A-0187_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0616.nii.gz", + "pseudo_label": "data/volume-covid19-A-0616.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0616/volume-covid19-A-0616_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0228.nii.gz", + "pseudo_label": "data/volume-covid19-A-0228.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0228/volume-covid19-A-0228_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0064.nii.gz", + "pseudo_label": "data/volume-covid19-A-0064.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0064/volume-covid19-A-0064_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0716_day000.nii.gz", + "pseudo_label": "data/volume-covid19-A-0716_day000.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0716_day000/volume-covid19-A-0716_day000_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0298.nii.gz", + "pseudo_label": "data/volume-covid19-A-0298.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0298/volume-covid19-A-0298_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0713_day012.nii.gz", + "pseudo_label": "data/volume-covid19-A-0713_day012.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0713_day012/volume-covid19-A-0713_day012_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0666.nii.gz", + "pseudo_label": "data/volume-covid19-A-0666.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0666/volume-covid19-A-0666_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0718_day054.nii.gz", + "pseudo_label": "data/volume-covid19-A-0718_day054.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0718_day054/volume-covid19-A-0718_day054_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0737_day003.nii.gz", + "pseudo_label": "data/volume-covid19-A-0737_day003.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0737_day003/volume-covid19-A-0737_day003_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0098.nii.gz", + "pseudo_label": "data/volume-covid19-A-0098.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0098/volume-covid19-A-0098_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0170.nii.gz", + "pseudo_label": "data/volume-covid19-A-0170.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0170/volume-covid19-A-0170_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0329.nii.gz", + "pseudo_label": "data/volume-covid19-A-0329.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0329/volume-covid19-A-0329_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0702_day050.nii.gz", + "pseudo_label": "data/volume-covid19-A-0702_day050.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0702_day050/volume-covid19-A-0702_day050_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0099.nii.gz", + "pseudo_label": "data/volume-covid19-A-0099.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0099/volume-covid19-A-0099_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0125.nii.gz", + "pseudo_label": "data/volume-covid19-A-0125.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0125/volume-covid19-A-0125_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0040.nii.gz", + "pseudo_label": "data/volume-covid19-A-0040.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0040/volume-covid19-A-0040_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0676.nii.gz", + "pseudo_label": "data/volume-covid19-A-0676.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0676/volume-covid19-A-0676_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0237.nii.gz", + "pseudo_label": "data/volume-covid19-A-0237.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0237/volume-covid19-A-0237_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0734_day000.nii.gz", + "pseudo_label": "data/volume-covid19-A-0734_day000.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0734_day000/volume-covid19-A-0734_day000_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0028_1.nii.gz", + "pseudo_label": "data/volume-covid19-A-0028_1.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0028_1/volume-covid19-A-0028_1_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0215.nii.gz", + "pseudo_label": "data/volume-covid19-A-0215.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0215/volume-covid19-A-0215_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0261_1.nii.gz", + "pseudo_label": "data/volume-covid19-A-0261_1.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0261_1/volume-covid19-A-0261_1_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0722_day011.nii.gz", + "pseudo_label": "data/volume-covid19-A-0722_day011.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0722_day011/volume-covid19-A-0722_day011_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0434.nii.gz", + "pseudo_label": "data/volume-covid19-A-0434.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0434/volume-covid19-A-0434_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0037.nii.gz", + "pseudo_label": "data/volume-covid19-A-0037.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0037/volume-covid19-A-0037_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0240.nii.gz", + "pseudo_label": "data/volume-covid19-A-0240.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0240/volume-covid19-A-0240_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0504.nii.gz", + "pseudo_label": "data/volume-covid19-A-0504.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0504/volume-covid19-A-0504_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0369_0.nii.gz", + "pseudo_label": "data/volume-covid19-A-0369_0.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0369_0/volume-covid19-A-0369_0_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0295.nii.gz", + "pseudo_label": "data/volume-covid19-A-0295.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0295/volume-covid19-A-0295_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0360.nii.gz", + "pseudo_label": "data/volume-covid19-A-0360.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0360/volume-covid19-A-0360_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0541.nii.gz", + "pseudo_label": "data/volume-covid19-A-0541.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0541/volume-covid19-A-0541_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0562.nii.gz", + "pseudo_label": "data/volume-covid19-A-0562.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0562/volume-covid19-A-0562_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0706_day000.nii.gz", + "pseudo_label": "data/volume-covid19-A-0706_day000.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0706_day000/volume-covid19-A-0706_day000_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0236.nii.gz", + "pseudo_label": "data/volume-covid19-A-0236.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0236/volume-covid19-A-0236_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0130.nii.gz", + "pseudo_label": "data/volume-covid19-A-0130.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0130/volume-covid19-A-0130_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0481.nii.gz", + "pseudo_label": "data/volume-covid19-A-0481.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0481/volume-covid19-A-0481_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0707_day002.nii.gz", + "pseudo_label": "data/volume-covid19-A-0707_day002.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0707_day002/volume-covid19-A-0707_day002_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0377.nii.gz", + "pseudo_label": "data/volume-covid19-A-0377.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0377/volume-covid19-A-0377_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0674.nii.gz", + "pseudo_label": "data/volume-covid19-A-0674.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0674/volume-covid19-A-0674_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0441.nii.gz", + "pseudo_label": "data/volume-covid19-A-0441.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0441/volume-covid19-A-0441_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0548.nii.gz", + "pseudo_label": "data/volume-covid19-A-0548.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0548/volume-covid19-A-0548_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0275.nii.gz", + "pseudo_label": "data/volume-covid19-A-0275.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0275/volume-covid19-A-0275_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0529.nii.gz", + "pseudo_label": "data/volume-covid19-A-0529.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0529/volume-covid19-A-0529_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0552.nii.gz", + "pseudo_label": "data/volume-covid19-A-0552.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0552/volume-covid19-A-0552_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0066.nii.gz", + "pseudo_label": "data/volume-covid19-A-0066.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0066/volume-covid19-A-0066_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0027_1.nii.gz", + "pseudo_label": "data/volume-covid19-A-0027_1.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0027_1/volume-covid19-A-0027_1_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0623.nii.gz", + "pseudo_label": "data/volume-covid19-A-0623.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0623/volume-covid19-A-0623_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0567.nii.gz", + "pseudo_label": "data/volume-covid19-A-0567.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0567/volume-covid19-A-0567_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0531.nii.gz", + "pseudo_label": "data/volume-covid19-A-0531.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0531/volume-covid19-A-0531_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0428.nii.gz", + "pseudo_label": "data/volume-covid19-A-0428.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0428/volume-covid19-A-0428_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0535.nii.gz", + "pseudo_label": "data/volume-covid19-A-0535.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0535/volume-covid19-A-0535_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0597.nii.gz", + "pseudo_label": "data/volume-covid19-A-0597.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0597/volume-covid19-A-0597_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0452.nii.gz", + "pseudo_label": "data/volume-covid19-A-0452.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0452/volume-covid19-A-0452_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0029.nii.gz", + "pseudo_label": "data/volume-covid19-A-0029.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0029/volume-covid19-A-0029_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0338.nii.gz", + "pseudo_label": "data/volume-covid19-A-0338.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0338/volume-covid19-A-0338_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0546.nii.gz", + "pseudo_label": "data/volume-covid19-A-0546.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0546/volume-covid19-A-0546_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0179.nii.gz", + "pseudo_label": "data/volume-covid19-A-0179.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0179/volume-covid19-A-0179_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0435.nii.gz", + "pseudo_label": "data/volume-covid19-A-0435.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0435/volume-covid19-A-0435_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0614.nii.gz", + "pseudo_label": "data/volume-covid19-A-0614.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0614/volume-covid19-A-0614_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0482.nii.gz", + "pseudo_label": "data/volume-covid19-A-0482.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0482/volume-covid19-A-0482_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0374.nii.gz", + "pseudo_label": "data/volume-covid19-A-0374.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0374/volume-covid19-A-0374_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0734_day008.nii.gz", + "pseudo_label": "data/volume-covid19-A-0734_day008.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0734_day008/volume-covid19-A-0734_day008_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0254.nii.gz", + "pseudo_label": "data/volume-covid19-A-0254.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0254/volume-covid19-A-0254_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0703_day016.nii.gz", + "pseudo_label": "data/volume-covid19-A-0703_day016.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0703_day016/volume-covid19-A-0703_day016_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0458.nii.gz", + "pseudo_label": "data/volume-covid19-A-0458.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0458/volume-covid19-A-0458_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0551.nii.gz", + "pseudo_label": "data/volume-covid19-A-0551.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0551/volume-covid19-A-0551_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0675.nii.gz", + "pseudo_label": "data/volume-covid19-A-0675.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0675/volume-covid19-A-0675_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0293.nii.gz", + "pseudo_label": "data/volume-covid19-A-0293.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0293/volume-covid19-A-0293_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0512.nii.gz", + "pseudo_label": "data/volume-covid19-A-0512.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0512/volume-covid19-A-0512_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0268.nii.gz", + "pseudo_label": "data/volume-covid19-A-0268.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0268/volume-covid19-A-0268_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0561.nii.gz", + "pseudo_label": "data/volume-covid19-A-0561.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0561/volume-covid19-A-0561_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0615.nii.gz", + "pseudo_label": "data/volume-covid19-A-0615.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0615/volume-covid19-A-0615_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0682.nii.gz", + "pseudo_label": "data/volume-covid19-A-0682.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0682/volume-covid19-A-0682_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0640.nii.gz", + "pseudo_label": "data/volume-covid19-A-0640.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0640/volume-covid19-A-0640_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0702_day062.nii.gz", + "pseudo_label": "data/volume-covid19-A-0702_day062.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0702_day062/volume-covid19-A-0702_day062_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0055.nii.gz", + "pseudo_label": "data/volume-covid19-A-0055.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0055/volume-covid19-A-0055_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0164.nii.gz", + "pseudo_label": "data/volume-covid19-A-0164.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0164/volume-covid19-A-0164_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0737_day044.nii.gz", + "pseudo_label": "data/volume-covid19-A-0737_day044.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0737_day044/volume-covid19-A-0737_day044_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0539.nii.gz", + "pseudo_label": "data/volume-covid19-A-0539.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0539/volume-covid19-A-0539_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0320.nii.gz", + "pseudo_label": "data/volume-covid19-A-0320.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0320/volume-covid19-A-0320_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0493.nii.gz", + "pseudo_label": "data/volume-covid19-A-0493.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0493/volume-covid19-A-0493_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0700_day015.nii.gz", + "pseudo_label": "data/volume-covid19-A-0700_day015.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0700_day015/volume-covid19-A-0700_day015_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0415.nii.gz", + "pseudo_label": "data/volume-covid19-A-0415.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0415/volume-covid19-A-0415_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0701_day055.nii.gz", + "pseudo_label": "data/volume-covid19-A-0701_day055.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0701_day055/volume-covid19-A-0701_day055_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0473.nii.gz", + "pseudo_label": "data/volume-covid19-A-0473.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0473/volume-covid19-A-0473_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0679.nii.gz", + "pseudo_label": "data/volume-covid19-A-0679.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0679/volume-covid19-A-0679_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0718_day000.nii.gz", + "pseudo_label": "data/volume-covid19-A-0718_day000.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0718_day000/volume-covid19-A-0718_day000_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0694.nii.gz", + "pseudo_label": "data/volume-covid19-A-0694.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0694/volume-covid19-A-0694_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0477.nii.gz", + "pseudo_label": "data/volume-covid19-A-0477.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0477/volume-covid19-A-0477_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0436.nii.gz", + "pseudo_label": "data/volume-covid19-A-0436.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0436/volume-covid19-A-0436_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0596.nii.gz", + "pseudo_label": "data/volume-covid19-A-0596.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0596/volume-covid19-A-0596_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0662.nii.gz", + "pseudo_label": "data/volume-covid19-A-0662.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0662/volume-covid19-A-0662_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0344.nii.gz", + "pseudo_label": "data/volume-covid19-A-0344.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0344/volume-covid19-A-0344_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0499.nii.gz", + "pseudo_label": "data/volume-covid19-A-0499.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0499/volume-covid19-A-0499_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0373.nii.gz", + "pseudo_label": "data/volume-covid19-A-0373.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0373/volume-covid19-A-0373_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0510.nii.gz", + "pseudo_label": "data/volume-covid19-A-0510.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0510/volume-covid19-A-0510_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0189_0.nii.gz", + "pseudo_label": "data/volume-covid19-A-0189_0.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0189_0/volume-covid19-A-0189_0_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0261_0.nii.gz", + "pseudo_label": "data/volume-covid19-A-0261_0.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0261_0/volume-covid19-A-0261_0_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0380.nii.gz", + "pseudo_label": "data/volume-covid19-A-0380.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0380/volume-covid19-A-0380_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0175.nii.gz", + "pseudo_label": "data/volume-covid19-A-0175.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0175/volume-covid19-A-0175_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0112.nii.gz", + "pseudo_label": "data/volume-covid19-A-0112.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0112/volume-covid19-A-0112_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0289.nii.gz", + "pseudo_label": "data/volume-covid19-A-0289.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0289/volume-covid19-A-0289_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0202_1.nii.gz", + "pseudo_label": "data/volume-covid19-A-0202_1.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0202_1/volume-covid19-A-0202_1_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0173.nii.gz", + "pseudo_label": "data/volume-covid19-A-0173.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0173/volume-covid19-A-0173_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0509.nii.gz", + "pseudo_label": "data/volume-covid19-A-0509.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0509/volume-covid19-A-0509_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0722_day008.nii.gz", + "pseudo_label": "data/volume-covid19-A-0722_day008.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0722_day008/volume-covid19-A-0722_day008_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0214.nii.gz", + "pseudo_label": "data/volume-covid19-A-0214.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0214/volume-covid19-A-0214_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0330.nii.gz", + "pseudo_label": "data/volume-covid19-A-0330.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0330/volume-covid19-A-0330_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0559.nii.gz", + "pseudo_label": "data/volume-covid19-A-0559.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0559/volume-covid19-A-0559_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0704_day000.nii.gz", + "pseudo_label": "data/volume-covid19-A-0704_day000.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0704_day000/volume-covid19-A-0704_day000_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0144.nii.gz", + "pseudo_label": "data/volume-covid19-A-0144.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0144/volume-covid19-A-0144_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0216.nii.gz", + "pseudo_label": "data/volume-covid19-A-0216.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0216/volume-covid19-A-0216_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0146.nii.gz", + "pseudo_label": "data/volume-covid19-A-0146.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0146/volume-covid19-A-0146_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0266.nii.gz", + "pseudo_label": "data/volume-covid19-A-0266.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0266/volume-covid19-A-0266_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0580.nii.gz", + "pseudo_label": "data/volume-covid19-A-0580.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0580/volume-covid19-A-0580_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0538.nii.gz", + "pseudo_label": "data/volume-covid19-A-0538.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0538/volume-covid19-A-0538_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0628.nii.gz", + "pseudo_label": "data/volume-covid19-A-0628.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0628/volume-covid19-A-0628_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0622.nii.gz", + "pseudo_label": "data/volume-covid19-A-0622.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0622/volume-covid19-A-0622_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0715_day000.nii.gz", + "pseudo_label": "data/volume-covid19-A-0715_day000.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0715_day000/volume-covid19-A-0715_day000_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0375.nii.gz", + "pseudo_label": "data/volume-covid19-A-0375.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0375/volume-covid19-A-0375_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0242.nii.gz", + "pseudo_label": "data/volume-covid19-A-0242.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0242/volume-covid19-A-0242_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0695.nii.gz", + "pseudo_label": "data/volume-covid19-A-0695.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0695/volume-covid19-A-0695_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0131.nii.gz", + "pseudo_label": "data/volume-covid19-A-0131.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0131/volume-covid19-A-0131_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0514.nii.gz", + "pseudo_label": "data/volume-covid19-A-0514.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0514/volume-covid19-A-0514_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0713_day008.nii.gz", + "pseudo_label": "data/volume-covid19-A-0713_day008.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0713_day008/volume-covid19-A-0713_day008_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0718_day017.nii.gz", + "pseudo_label": "data/volume-covid19-A-0718_day017.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0718_day017/volume-covid19-A-0718_day017_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0033.nii.gz", + "pseudo_label": "data/volume-covid19-A-0033.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0033/volume-covid19-A-0033_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0476.nii.gz", + "pseudo_label": "data/volume-covid19-A-0476.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0476/volume-covid19-A-0476_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0318_0.nii.gz", + "pseudo_label": "data/volume-covid19-A-0318_0.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0318_0/volume-covid19-A-0318_0_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0028_0.nii.gz", + "pseudo_label": "data/volume-covid19-A-0028_0.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0028_0/volume-covid19-A-0028_0_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0533.nii.gz", + "pseudo_label": "data/volume-covid19-A-0533.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0533/volume-covid19-A-0533_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0198.nii.gz", + "pseudo_label": "data/volume-covid19-A-0198.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0198/volume-covid19-A-0198_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0308.nii.gz", + "pseudo_label": "data/volume-covid19-A-0308.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0308/volume-covid19-A-0308_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0713_day050.nii.gz", + "pseudo_label": "data/volume-covid19-A-0713_day050.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0713_day050/volume-covid19-A-0713_day050_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0424.nii.gz", + "pseudo_label": "data/volume-covid19-A-0424.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0424/volume-covid19-A-0424_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0341.nii.gz", + "pseudo_label": "data/volume-covid19-A-0341.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0341/volume-covid19-A-0341_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0181.nii.gz", + "pseudo_label": "data/volume-covid19-A-0181.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0181/volume-covid19-A-0181_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0013.nii.gz", + "pseudo_label": "data/volume-covid19-A-0013.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0013/volume-covid19-A-0013_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0072.nii.gz", + "pseudo_label": "data/volume-covid19-A-0072.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0072/volume-covid19-A-0072_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0722_day000.nii.gz", + "pseudo_label": "data/volume-covid19-A-0722_day000.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0722_day000/volume-covid19-A-0722_day000_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0174.nii.gz", + "pseudo_label": "data/volume-covid19-A-0174.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0174/volume-covid19-A-0174_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0274.nii.gz", + "pseudo_label": "data/volume-covid19-A-0274.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0274/volume-covid19-A-0274_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0683.nii.gz", + "pseudo_label": "data/volume-covid19-A-0683.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0683/volume-covid19-A-0683_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0553.nii.gz", + "pseudo_label": "data/volume-covid19-A-0553.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0553/volume-covid19-A-0553_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0363.nii.gz", + "pseudo_label": "data/volume-covid19-A-0363.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0363/volume-covid19-A-0363_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0659.nii.gz", + "pseudo_label": "data/volume-covid19-A-0659.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0659/volume-covid19-A-0659_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0577.nii.gz", + "pseudo_label": "data/volume-covid19-A-0577.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0577/volume-covid19-A-0577_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0657.nii.gz", + "pseudo_label": "data/volume-covid19-A-0657.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0657/volume-covid19-A-0657_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0618.nii.gz", + "pseudo_label": "data/volume-covid19-A-0618.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0618/volume-covid19-A-0618_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0738_day000.nii.gz", + "pseudo_label": "data/volume-covid19-A-0738_day000.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0738_day000/volume-covid19-A-0738_day000_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0224.nii.gz", + "pseudo_label": "data/volume-covid19-A-0224.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0224/volume-covid19-A-0224_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0660.nii.gz", + "pseudo_label": "data/volume-covid19-A-0660.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0660/volume-covid19-A-0660_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0371.nii.gz", + "pseudo_label": "data/volume-covid19-A-0371.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0371/volume-covid19-A-0371_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0479.nii.gz", + "pseudo_label": "data/volume-covid19-A-0479.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0479/volume-covid19-A-0479_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0271.nii.gz", + "pseudo_label": "data/volume-covid19-A-0271.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0271/volume-covid19-A-0271_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0142.nii.gz", + "pseudo_label": "data/volume-covid19-A-0142.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0142/volume-covid19-A-0142_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0460.nii.gz", + "pseudo_label": "data/volume-covid19-A-0460.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0460/volume-covid19-A-0460_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0488.nii.gz", + "pseudo_label": "data/volume-covid19-A-0488.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0488/volume-covid19-A-0488_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0643.nii.gz", + "pseudo_label": "data/volume-covid19-A-0643.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0643/volume-covid19-A-0643_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0301.nii.gz", + "pseudo_label": "data/volume-covid19-A-0301.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0301/volume-covid19-A-0301_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0143.nii.gz", + "pseudo_label": "data/volume-covid19-A-0143.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0143/volume-covid19-A-0143_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0590.nii.gz", + "pseudo_label": "data/volume-covid19-A-0590.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0590/volume-covid19-A-0590_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0367.nii.gz", + "pseudo_label": "data/volume-covid19-A-0367.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0367/volume-covid19-A-0367_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0156.nii.gz", + "pseudo_label": "data/volume-covid19-A-0156.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0156/volume-covid19-A-0156_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0351.nii.gz", + "pseudo_label": "data/volume-covid19-A-0351.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0351/volume-covid19-A-0351_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0234.nii.gz", + "pseudo_label": "data/volume-covid19-A-0234.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0234/volume-covid19-A-0234_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0655.nii.gz", + "pseudo_label": "data/volume-covid19-A-0655.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0655/volume-covid19-A-0655_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0325.nii.gz", + "pseudo_label": "data/volume-covid19-A-0325.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0325/volume-covid19-A-0325_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0413.nii.gz", + "pseudo_label": "data/volume-covid19-A-0413.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0413/volume-covid19-A-0413_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0594.nii.gz", + "pseudo_label": "data/volume-covid19-A-0594.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0594/volume-covid19-A-0594_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0300.nii.gz", + "pseudo_label": "data/volume-covid19-A-0300.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0300/volume-covid19-A-0300_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0120.nii.gz", + "pseudo_label": "data/volume-covid19-A-0120.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0120/volume-covid19-A-0120_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0167_1.nii.gz", + "pseudo_label": "data/volume-covid19-A-0167_1.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0167_1/volume-covid19-A-0167_1_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0693.nii.gz", + "pseudo_label": "data/volume-covid19-A-0693.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0693/volume-covid19-A-0693_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0447.nii.gz", + "pseudo_label": "data/volume-covid19-A-0447.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0447/volume-covid19-A-0447_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0603.nii.gz", + "pseudo_label": "data/volume-covid19-A-0603.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0603/volume-covid19-A-0603_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0717_day052.nii.gz", + "pseudo_label": "data/volume-covid19-A-0717_day052.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0717_day052/volume-covid19-A-0717_day052_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0607.nii.gz", + "pseudo_label": "data/volume-covid19-A-0607.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0607/volume-covid19-A-0607_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0524.nii.gz", + "pseudo_label": "data/volume-covid19-A-0524.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0524/volume-covid19-A-0524_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0343.nii.gz", + "pseudo_label": "data/volume-covid19-A-0343.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0343/volume-covid19-A-0343_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0712_day005.nii.gz", + "pseudo_label": "data/volume-covid19-A-0712_day005.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0712_day005/volume-covid19-A-0712_day005_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0575.nii.gz", + "pseudo_label": "data/volume-covid19-A-0575.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0575/volume-covid19-A-0575_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0595.nii.gz", + "pseudo_label": "data/volume-covid19-A-0595.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0595/volume-covid19-A-0595_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0608.nii.gz", + "pseudo_label": "data/volume-covid19-A-0608.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0608/volume-covid19-A-0608_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0246.nii.gz", + "pseudo_label": "data/volume-covid19-A-0246.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0246/volume-covid19-A-0246_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0221.nii.gz", + "pseudo_label": "data/volume-covid19-A-0221.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0221/volume-covid19-A-0221_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0733_day069.nii.gz", + "pseudo_label": "data/volume-covid19-A-0733_day069.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0733_day069/volume-covid19-A-0733_day069_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0689.nii.gz", + "pseudo_label": "data/volume-covid19-A-0689.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0689/volume-covid19-A-0689_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0652.nii.gz", + "pseudo_label": "data/volume-covid19-A-0652.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0652/volume-covid19-A-0652_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0070.nii.gz", + "pseudo_label": "data/volume-covid19-A-0070.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0070/volume-covid19-A-0070_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0707_day060.nii.gz", + "pseudo_label": "data/volume-covid19-A-0707_day060.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0707_day060/volume-covid19-A-0707_day060_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0359.nii.gz", + "pseudo_label": "data/volume-covid19-A-0359.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0359/volume-covid19-A-0359_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0336.nii.gz", + "pseudo_label": "data/volume-covid19-A-0336.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0336/volume-covid19-A-0336_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0443.nii.gz", + "pseudo_label": "data/volume-covid19-A-0443.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0443/volume-covid19-A-0443_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0355.nii.gz", + "pseudo_label": "data/volume-covid19-A-0355.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0355/volume-covid19-A-0355_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0149.nii.gz", + "pseudo_label": "data/volume-covid19-A-0149.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0149/volume-covid19-A-0149_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0408.nii.gz", + "pseudo_label": "data/volume-covid19-A-0408.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0408/volume-covid19-A-0408_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0111.nii.gz", + "pseudo_label": "data/volume-covid19-A-0111.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0111/volume-covid19-A-0111_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0722_day018.nii.gz", + "pseudo_label": "data/volume-covid19-A-0722_day018.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0722_day018/volume-covid19-A-0722_day018_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0252.nii.gz", + "pseudo_label": "data/volume-covid19-A-0252.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0252/volume-covid19-A-0252_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0705_day043.nii.gz", + "pseudo_label": "data/volume-covid19-A-0705_day043.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0705_day043/volume-covid19-A-0705_day043_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0701_day006.nii.gz", + "pseudo_label": "data/volume-covid19-A-0701_day006.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0701_day006/volume-covid19-A-0701_day006_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0737_day006.nii.gz", + "pseudo_label": "data/volume-covid19-A-0737_day006.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0737_day006/volume-covid19-A-0737_day006_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0372.nii.gz", + "pseudo_label": "data/volume-covid19-A-0372.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0372/volume-covid19-A-0372_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0088.nii.gz", + "pseudo_label": "data/volume-covid19-A-0088.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0088/volume-covid19-A-0088_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0686.nii.gz", + "pseudo_label": "data/volume-covid19-A-0686.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0686/volume-covid19-A-0686_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0180_1.nii.gz", + "pseudo_label": "data/volume-covid19-A-0180_1.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0180_1/volume-covid19-A-0180_1_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0710_day007.nii.gz", + "pseudo_label": "data/volume-covid19-A-0710_day007.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0710_day007/volume-covid19-A-0710_day007_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0430.nii.gz", + "pseudo_label": "data/volume-covid19-A-0430.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0430/volume-covid19-A-0430_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0353.nii.gz", + "pseudo_label": "data/volume-covid19-A-0353.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0353/volume-covid19-A-0353_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0114.nii.gz", + "pseudo_label": "data/volume-covid19-A-0114.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0114/volume-covid19-A-0114_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0193.nii.gz", + "pseudo_label": "data/volume-covid19-A-0193.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0193/volume-covid19-A-0193_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0719_day002.nii.gz", + "pseudo_label": "data/volume-covid19-A-0719_day002.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0719_day002/volume-covid19-A-0719_day002_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0157.nii.gz", + "pseudo_label": "data/volume-covid19-A-0157.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0157/volume-covid19-A-0157_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0309.nii.gz", + "pseudo_label": "data/volume-covid19-A-0309.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0309/volume-covid19-A-0309_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0063.nii.gz", + "pseudo_label": "data/volume-covid19-A-0063.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0063/volume-covid19-A-0063_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0698.nii.gz", + "pseudo_label": "data/volume-covid19-A-0698.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0698/volume-covid19-A-0698_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0407.nii.gz", + "pseudo_label": "data/volume-covid19-A-0407.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0407/volume-covid19-A-0407_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0035.nii.gz", + "pseudo_label": "data/volume-covid19-A-0035.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0035/volume-covid19-A-0035_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0219.nii.gz", + "pseudo_label": "data/volume-covid19-A-0219.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0219/volume-covid19-A-0219_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0096.nii.gz", + "pseudo_label": "data/volume-covid19-A-0096.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0096/volume-covid19-A-0096_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0180_0.nii.gz", + "pseudo_label": "data/volume-covid19-A-0180_0.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0180_0/volume-covid19-A-0180_0_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0735_day052.nii.gz", + "pseudo_label": "data/volume-covid19-A-0735_day052.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0735_day052/volume-covid19-A-0735_day052_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0273.nii.gz", + "pseudo_label": "data/volume-covid19-A-0273.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0273/volume-covid19-A-0273_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0381_0.nii.gz", + "pseudo_label": "data/volume-covid19-A-0381_0.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0381_0/volume-covid19-A-0381_0_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0071.nii.gz", + "pseudo_label": "data/volume-covid19-A-0071.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0071/volume-covid19-A-0071_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0738_day052.nii.gz", + "pseudo_label": "data/volume-covid19-A-0738_day052.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0738_day052/volume-covid19-A-0738_day052_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0195.nii.gz", + "pseudo_label": "data/volume-covid19-A-0195.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0195/volume-covid19-A-0195_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0229.nii.gz", + "pseudo_label": "data/volume-covid19-A-0229.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0229/volume-covid19-A-0229_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0500.nii.gz", + "pseudo_label": "data/volume-covid19-A-0500.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0500/volume-covid19-A-0500_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0521.nii.gz", + "pseudo_label": "data/volume-covid19-A-0521.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0521/volume-covid19-A-0521_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0735_day004.nii.gz", + "pseudo_label": "data/volume-covid19-A-0735_day004.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0735_day004/volume-covid19-A-0735_day004_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0123.nii.gz", + "pseudo_label": "data/volume-covid19-A-0123.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0123/volume-covid19-A-0123_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0718_day002.nii.gz", + "pseudo_label": "data/volume-covid19-A-0718_day002.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0718_day002/volume-covid19-A-0718_day002_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0705_day000.nii.gz", + "pseudo_label": "data/volume-covid19-A-0705_day000.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0705_day000/volume-covid19-A-0705_day000_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0605.nii.gz", + "pseudo_label": "data/volume-covid19-A-0605.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0605/volume-covid19-A-0605_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0082.nii.gz", + "pseudo_label": "data/volume-covid19-A-0082.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0082/volume-covid19-A-0082_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0184_1.nii.gz", + "pseudo_label": "data/volume-covid19-A-0184_1.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0184_1/volume-covid19-A-0184_1_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0276.nii.gz", + "pseudo_label": "data/volume-covid19-A-0276.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0276/volume-covid19-A-0276_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0121.nii.gz", + "pseudo_label": "data/volume-covid19-A-0121.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0121/volume-covid19-A-0121_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0392.nii.gz", + "pseudo_label": "data/volume-covid19-A-0392.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0392/volume-covid19-A-0392_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0633.nii.gz", + "pseudo_label": "data/volume-covid19-A-0633.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0633/volume-covid19-A-0633_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0277.nii.gz", + "pseudo_label": "data/volume-covid19-A-0277.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0277/volume-covid19-A-0277_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0068.nii.gz", + "pseudo_label": "data/volume-covid19-A-0068.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0068/volume-covid19-A-0068_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0630.nii.gz", + "pseudo_label": "data/volume-covid19-A-0630.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0630/volume-covid19-A-0630_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0723_day004.nii.gz", + "pseudo_label": "data/volume-covid19-A-0723_day004.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0723_day004/volume-covid19-A-0723_day004_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0357.nii.gz", + "pseudo_label": "data/volume-covid19-A-0357.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0357/volume-covid19-A-0357_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0046.nii.gz", + "pseudo_label": "data/volume-covid19-A-0046.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0046/volume-covid19-A-0046_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0715_day019.nii.gz", + "pseudo_label": "data/volume-covid19-A-0715_day019.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0715_day019/volume-covid19-A-0715_day019_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0422.nii.gz", + "pseudo_label": "data/volume-covid19-A-0422.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0422/volume-covid19-A-0422_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0194.nii.gz", + "pseudo_label": "data/volume-covid19-A-0194.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0194/volume-covid19-A-0194_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0554.nii.gz", + "pseudo_label": "data/volume-covid19-A-0554.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0554/volume-covid19-A-0554_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0527.nii.gz", + "pseudo_label": "data/volume-covid19-A-0527.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0527/volume-covid19-A-0527_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0348.nii.gz", + "pseudo_label": "data/volume-covid19-A-0348.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0348/volume-covid19-A-0348_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0432.nii.gz", + "pseudo_label": "data/volume-covid19-A-0432.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0432/volume-covid19-A-0432_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0708_day008.nii.gz", + "pseudo_label": "data/volume-covid19-A-0708_day008.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0708_day008/volume-covid19-A-0708_day008_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0448.nii.gz", + "pseudo_label": "data/volume-covid19-A-0448.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0448/volume-covid19-A-0448_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0305.nii.gz", + "pseudo_label": "data/volume-covid19-A-0305.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0305/volume-covid19-A-0305_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0269.nii.gz", + "pseudo_label": "data/volume-covid19-A-0269.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0269/volume-covid19-A-0269_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0421.nii.gz", + "pseudo_label": "data/volume-covid19-A-0421.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0421/volume-covid19-A-0421_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0710_day013.nii.gz", + "pseudo_label": "data/volume-covid19-A-0710_day013.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0710_day013/volume-covid19-A-0710_day013_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0206.nii.gz", + "pseudo_label": "data/volume-covid19-A-0206.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0206/volume-covid19-A-0206_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0713_day000.nii.gz", + "pseudo_label": "data/volume-covid19-A-0713_day000.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0713_day000/volume-covid19-A-0713_day000_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0124.nii.gz", + "pseudo_label": "data/volume-covid19-A-0124.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0124/volume-covid19-A-0124_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0405.nii.gz", + "pseudo_label": "data/volume-covid19-A-0405.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0405/volume-covid19-A-0405_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0259.nii.gz", + "pseudo_label": "data/volume-covid19-A-0259.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0259/volume-covid19-A-0259_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0089.nii.gz", + "pseudo_label": "data/volume-covid19-A-0089.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0089/volume-covid19-A-0089_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0484.nii.gz", + "pseudo_label": "data/volume-covid19-A-0484.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0484/volume-covid19-A-0484_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0654.nii.gz", + "pseudo_label": "data/volume-covid19-A-0654.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0654/volume-covid19-A-0654_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0110.nii.gz", + "pseudo_label": "data/volume-covid19-A-0110.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0110/volume-covid19-A-0110_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0661.nii.gz", + "pseudo_label": "data/volume-covid19-A-0661.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0661/volume-covid19-A-0661_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0137.nii.gz", + "pseudo_label": "data/volume-covid19-A-0137.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0137/volume-covid19-A-0137_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0106.nii.gz", + "pseudo_label": "data/volume-covid19-A-0106.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0106/volume-covid19-A-0106_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0525.nii.gz", + "pseudo_label": "data/volume-covid19-A-0525.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0525/volume-covid19-A-0525_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0134.nii.gz", + "pseudo_label": "data/volume-covid19-A-0134.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0134/volume-covid19-A-0134_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0733_day004.nii.gz", + "pseudo_label": "data/volume-covid19-A-0733_day004.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0733_day004/volume-covid19-A-0733_day004_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0136.nii.gz", + "pseudo_label": "data/volume-covid19-A-0136.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0136/volume-covid19-A-0136_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0734_day002.nii.gz", + "pseudo_label": "data/volume-covid19-A-0734_day002.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0734_day002/volume-covid19-A-0734_day002_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0671.nii.gz", + "pseudo_label": "data/volume-covid19-A-0671.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0671/volume-covid19-A-0671_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0632.nii.gz", + "pseudo_label": "data/volume-covid19-A-0632.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0632/volume-covid19-A-0632_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0474.nii.gz", + "pseudo_label": "data/volume-covid19-A-0474.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0474/volume-covid19-A-0474_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0678.nii.gz", + "pseudo_label": "data/volume-covid19-A-0678.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0678/volume-covid19-A-0678_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0076.nii.gz", + "pseudo_label": "data/volume-covid19-A-0076.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0076/volume-covid19-A-0076_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0449.nii.gz", + "pseudo_label": "data/volume-covid19-A-0449.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0449/volume-covid19-A-0449_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0736_day050.nii.gz", + "pseudo_label": "data/volume-covid19-A-0736_day050.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0736_day050/volume-covid19-A-0736_day050_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0708_day000.nii.gz", + "pseudo_label": "data/volume-covid19-A-0708_day000.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0708_day000/volume-covid19-A-0708_day000_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0516.nii.gz", + "pseudo_label": "data/volume-covid19-A-0516.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0516/volume-covid19-A-0516_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0663.nii.gz", + "pseudo_label": "data/volume-covid19-A-0663.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0663/volume-covid19-A-0663_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0318_1.nii.gz", + "pseudo_label": "data/volume-covid19-A-0318_1.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0318_1/volume-covid19-A-0318_1_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0638.nii.gz", + "pseudo_label": "data/volume-covid19-A-0638.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0638/volume-covid19-A-0638_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0401.nii.gz", + "pseudo_label": "data/volume-covid19-A-0401.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0401/volume-covid19-A-0401_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0669.nii.gz", + "pseudo_label": "data/volume-covid19-A-0669.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0669/volume-covid19-A-0669_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0736_day014.nii.gz", + "pseudo_label": "data/volume-covid19-A-0736_day014.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0736_day014/volume-covid19-A-0736_day014_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0517.nii.gz", + "pseudo_label": "data/volume-covid19-A-0517.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0517/volume-covid19-A-0517_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0702_day000.nii.gz", + "pseudo_label": "data/volume-covid19-A-0702_day000.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0702_day000/volume-covid19-A-0702_day000_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0593.nii.gz", + "pseudo_label": "data/volume-covid19-A-0593.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0593/volume-covid19-A-0593_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0166.nii.gz", + "pseudo_label": "data/volume-covid19-A-0166.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0166/volume-covid19-A-0166_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0543.nii.gz", + "pseudo_label": "data/volume-covid19-A-0543.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0543/volume-covid19-A-0543_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0253.nii.gz", + "pseudo_label": "data/volume-covid19-A-0253.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0253/volume-covid19-A-0253_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0611.nii.gz", + "pseudo_label": "data/volume-covid19-A-0611.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0611/volume-covid19-A-0611_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0672.nii.gz", + "pseudo_label": "data/volume-covid19-A-0672.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0672/volume-covid19-A-0672_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0388.nii.gz", + "pseudo_label": "data/volume-covid19-A-0388.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0388/volume-covid19-A-0388_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0178.nii.gz", + "pseudo_label": "data/volume-covid19-A-0178.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0178/volume-covid19-A-0178_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0227.nii.gz", + "pseudo_label": "data/volume-covid19-A-0227.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0227/volume-covid19-A-0227_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0101.nii.gz", + "pseudo_label": "data/volume-covid19-A-0101.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0101/volume-covid19-A-0101_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0502.nii.gz", + "pseudo_label": "data/volume-covid19-A-0502.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0502/volume-covid19-A-0502_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0286.nii.gz", + "pseudo_label": "data/volume-covid19-A-0286.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0286/volume-covid19-A-0286_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0095.nii.gz", + "pseudo_label": "data/volume-covid19-A-0095.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0095/volume-covid19-A-0095_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0715_day012.nii.gz", + "pseudo_label": "data/volume-covid19-A-0715_day012.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0715_day012/volume-covid19-A-0715_day012_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0487.nii.gz", + "pseudo_label": "data/volume-covid19-A-0487.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0487/volume-covid19-A-0487_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0708_day003.nii.gz", + "pseudo_label": "data/volume-covid19-A-0708_day003.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0708_day003/volume-covid19-A-0708_day003_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0041.nii.gz", + "pseudo_label": "data/volume-covid19-A-0041.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0041/volume-covid19-A-0041_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0556.nii.gz", + "pseudo_label": "data/volume-covid19-A-0556.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0556/volume-covid19-A-0556_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0636.nii.gz", + "pseudo_label": "data/volume-covid19-A-0636.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0636/volume-covid19-A-0636_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0702_day021.nii.gz", + "pseudo_label": "data/volume-covid19-A-0702_day021.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0702_day021/volume-covid19-A-0702_day021_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0494.nii.gz", + "pseudo_label": "data/volume-covid19-A-0494.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0494/volume-covid19-A-0494_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0047_0.nii.gz", + "pseudo_label": "data/volume-covid19-A-0047_0.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0047_0/volume-covid19-A-0047_0_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0431.nii.gz", + "pseudo_label": "data/volume-covid19-A-0431.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0431/volume-covid19-A-0431_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0735_day021.nii.gz", + "pseudo_label": "data/volume-covid19-A-0735_day021.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0735_day021/volume-covid19-A-0735_day021_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0613.nii.gz", + "pseudo_label": "data/volume-covid19-A-0613.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0613/volume-covid19-A-0613_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0639.nii.gz", + "pseudo_label": "data/volume-covid19-A-0639.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0639/volume-covid19-A-0639_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0715_day052.nii.gz", + "pseudo_label": "data/volume-covid19-A-0715_day052.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0715_day052/volume-covid19-A-0715_day052_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0720_day002.nii.gz", + "pseudo_label": "data/volume-covid19-A-0720_day002.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0720_day002/volume-covid19-A-0720_day002_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0102.nii.gz", + "pseudo_label": "data/volume-covid19-A-0102.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0102/volume-covid19-A-0102_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0126.nii.gz", + "pseudo_label": "data/volume-covid19-A-0126.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0126/volume-covid19-A-0126_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0513.nii.gz", + "pseudo_label": "data/volume-covid19-A-0513.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0513/volume-covid19-A-0513_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0249.nii.gz", + "pseudo_label": "data/volume-covid19-A-0249.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0249/volume-covid19-A-0249_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0403.nii.gz", + "pseudo_label": "data/volume-covid19-A-0403.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0403/volume-covid19-A-0403_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0150.nii.gz", + "pseudo_label": "data/volume-covid19-A-0150.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0150/volume-covid19-A-0150_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0196_0.nii.gz", + "pseudo_label": "data/volume-covid19-A-0196_0.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0196_0/volume-covid19-A-0196_0_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0047_1.nii.gz", + "pseudo_label": "data/volume-covid19-A-0047_1.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0047_1/volume-covid19-A-0047_1_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0709_day000.nii.gz", + "pseudo_label": "data/volume-covid19-A-0709_day000.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0709_day000/volume-covid19-A-0709_day000_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0737_day000.nii.gz", + "pseudo_label": "data/volume-covid19-A-0737_day000.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0737_day000/volume-covid19-A-0737_day000_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0697.nii.gz", + "pseudo_label": "data/volume-covid19-A-0697.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0697/volume-covid19-A-0697_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0467.nii.gz", + "pseudo_label": "data/volume-covid19-A-0467.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0467/volume-covid19-A-0467_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0483.nii.gz", + "pseudo_label": "data/volume-covid19-A-0483.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0483/volume-covid19-A-0483_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0505.nii.gz", + "pseudo_label": "data/volume-covid19-A-0505.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0505/volume-covid19-A-0505_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0468.nii.gz", + "pseudo_label": "data/volume-covid19-A-0468.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0468/volume-covid19-A-0468_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0204.nii.gz", + "pseudo_label": "data/volume-covid19-A-0204.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0204/volume-covid19-A-0204_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0587.nii.gz", + "pseudo_label": "data/volume-covid19-A-0587.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0587/volume-covid19-A-0587_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0710_day024.nii.gz", + "pseudo_label": "data/volume-covid19-A-0710_day024.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0710_day024/volume-covid19-A-0710_day024_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0416.nii.gz", + "pseudo_label": "data/volume-covid19-A-0416.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0416/volume-covid19-A-0416_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0503.nii.gz", + "pseudo_label": "data/volume-covid19-A-0503.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0503/volume-covid19-A-0503_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0078.nii.gz", + "pseudo_label": "data/volume-covid19-A-0078.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0078/volume-covid19-A-0078_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0310.nii.gz", + "pseudo_label": "data/volume-covid19-A-0310.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0310/volume-covid19-A-0310_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0451.nii.gz", + "pseudo_label": "data/volume-covid19-A-0451.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0451/volume-covid19-A-0451_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0579.nii.gz", + "pseudo_label": "data/volume-covid19-A-0579.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0579/volume-covid19-A-0579_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0358.nii.gz", + "pseudo_label": "data/volume-covid19-A-0358.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0358/volume-covid19-A-0358_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0653.nii.gz", + "pseudo_label": "data/volume-covid19-A-0653.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0653/volume-covid19-A-0653_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0455.nii.gz", + "pseudo_label": "data/volume-covid19-A-0455.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0455/volume-covid19-A-0455_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0222.nii.gz", + "pseudo_label": "data/volume-covid19-A-0222.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0222/volume-covid19-A-0222_seg.nii.gz" + }, + { + "image": "data/volume-covid19-A-0212_1.nii.gz", + "pseudo_label": "data/volume-covid19-A-0212_1.nii.gz", + "dataset": "/data/Covid19/tcia_covid19", + "region": "/data/Covid19/chest", + "label_sv": "/workspace_infer/supervoxel_sam/covid19_100/volume-covid19-A-0212_1/volume-covid19-A-0212_1_seg.nii.gz" + } + ], + "training_transform": [ + { + "_target_": "RandCropByLabelClassesd", + "keys": [ + "@image_key", + "@label_key", + "@pseudo_label_key", + "@label_sv_key" + ], + "label_key": "@pseudo_label_key", + "num_classes": 133, + "num_samples": "@num_patches_per_image", + "spatial_size": "@patch_size", + "ratios": "$tuple(float(i >= 0) for i in range(133))", + "warn": false, + "allow_missing_keys": true + }, + { + "_target_": "RandZoomd", + "keys": [ + "@image_key", + "@label_key", + "@pseudo_label_key", + "@label_sv_key" + ], + "min_zoom": 0.8, + "max_zoom": 1.2, + "mode": [ + "trilinear", + "nearest", + "nearest", + "nearest" + ], + "prob": 0.2, + "allow_missing_keys": true + }, + { + "_target_": "RandSimulateLowResolutiond", + "keys": [ + "@image_key" + ], + "zoom_range": [ + 0.3, + 1 + ], + "prob": 0.2, + "allow_missing_keys": true + }, + { + "_target_": "RandGaussianSmoothd", + "keys": [ + "@image_key" + ], + "prob": 0.2, + "sigma_x": [ + 0.5, + 1.0 + ], + "sigma_y": [ + 0.5, + 1.0 + ], + "sigma_z": [ + 0.5, + 1.0 + ] + }, + { + "_target_": "RandScaleIntensityd", + "keys": [ + "@image_key" + ], + "factors": 0.1, + "prob": 0.2 + }, + { + "_target_": "RandShiftIntensityd", + "keys": [ + "@image_key" + ], + "offsets": 0.1, + "prob": 0.2 + }, + { + "_target_": "RandGaussianNoised", + "keys": [ + "@image_key" + ], + "prob": 0.2, + "mean": 0.0, + "std": 0.2 + } + ] +} diff --git a/vista3d/data/jsons/FLARE22_5_folds.json b/vista3d/data/jsons/FLARE22_5_folds.json new file mode 100644 index 0000000..8c2a45a --- /dev/null +++ b/vista3d/data/jsons/FLARE22_5_folds.json @@ -0,0 +1,480 @@ +{ + "training": [ + { + "image": "images/FLARE22_Tr_0001_0000.nii.gz", + "pseudo_label": "images/FLARE22_Tr_0001_0000.nii.gz", + "label": "labels/FLARE22_Tr_0001.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "images/FLARE22_Tr_0009_0000.nii.gz", + "pseudo_label": "images/FLARE22_Tr_0009_0000.nii.gz", + "label": "labels/FLARE22_Tr_0009.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "images/FLARE22_Tr_0010_0000.nii.gz", + "pseudo_label": "images/FLARE22_Tr_0010_0000.nii.gz", + "label": "labels/FLARE22_Tr_0010.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "images/FLARE22_Tr_0035_0000.nii.gz", + "pseudo_label": "images/FLARE22_Tr_0035_0000.nii.gz", + "label": "labels/FLARE22_Tr_0035.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "images/FLARE22_Tr_0026_0000.nii.gz", + "pseudo_label": "images/FLARE22_Tr_0026_0000.nii.gz", + "label": "labels/FLARE22_Tr_0026.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "images/FLARE22_Tr_0011_0000.nii.gz", + "pseudo_label": "images/FLARE22_Tr_0011_0000.nii.gz", + "label": "labels/FLARE22_Tr_0011.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "images/FLARE22_Tr_0004_0000.nii.gz", + "pseudo_label": "images/FLARE22_Tr_0004_0000.nii.gz", + "label": "labels/FLARE22_Tr_0004.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "images/FLARE22_Tr_0040_0000.nii.gz", + "pseudo_label": "images/FLARE22_Tr_0040_0000.nii.gz", + "label": "labels/FLARE22_Tr_0040.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "images/FLARE22_Tr_0033_0000.nii.gz", + "pseudo_label": "images/FLARE22_Tr_0033_0000.nii.gz", + "label": "labels/FLARE22_Tr_0033.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0033_0000/FLARE22_Tr_0033_0000_seg.nii.gz" + }, + { + "image": "images/FLARE22_Tr_0036_0000.nii.gz", + "pseudo_label": "images/FLARE22_Tr_0036_0000.nii.gz", + "label": "labels/FLARE22_Tr_0036.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0036_0000/FLARE22_Tr_0036_0000_seg.nii.gz" + }, + { + "image": "images/FLARE22_Tr_0017_0000.nii.gz", + "pseudo_label": "images/FLARE22_Tr_0017_0000.nii.gz", + "label": "labels/FLARE22_Tr_0017.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0017_0000/FLARE22_Tr_0017_0000_seg.nii.gz" + }, + { + "image": "images/FLARE22_Tr_0020_0000.nii.gz", + "pseudo_label": "images/FLARE22_Tr_0020_0000.nii.gz", + "label": "labels/FLARE22_Tr_0020.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0020_0000/FLARE22_Tr_0020_0000_seg.nii.gz" + }, + { + "image": "images/FLARE22_Tr_0013_0000.nii.gz", + "pseudo_label": "images/FLARE22_Tr_0013_0000.nii.gz", + "label": "labels/FLARE22_Tr_0013.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0013_0000/FLARE22_Tr_0013_0000_seg.nii.gz" + }, + { + "image": "images/FLARE22_Tr_0012_0000.nii.gz", + "pseudo_label": "images/FLARE22_Tr_0012_0000.nii.gz", + "label": "labels/FLARE22_Tr_0012.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0012_0000/FLARE22_Tr_0012_0000_seg.nii.gz" + }, + { + "image": "images/FLARE22_Tr_0024_0000.nii.gz", + "pseudo_label": "images/FLARE22_Tr_0024_0000.nii.gz", + "label": "labels/FLARE22_Tr_0024.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0024_0000/FLARE22_Tr_0024_0000_seg.nii.gz" + }, + { + "image": "images/FLARE22_Tr_0014_0000.nii.gz", + "pseudo_label": "images/FLARE22_Tr_0014_0000.nii.gz", + "label": "labels/FLARE22_Tr_0014.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0014_0000/FLARE22_Tr_0014_0000_seg.nii.gz" + }, + { + "image": "images/FLARE22_Tr_0039_0000.nii.gz", + "pseudo_label": "images/FLARE22_Tr_0039_0000.nii.gz", + "label": "labels/FLARE22_Tr_0039.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0039_0000/FLARE22_Tr_0039_0000_seg.nii.gz" + }, + { + "image": "images/FLARE22_Tr_0027_0000.nii.gz", + "pseudo_label": "images/FLARE22_Tr_0027_0000.nii.gz", + "label": "labels/FLARE22_Tr_0027.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0027_0000/FLARE22_Tr_0027_0000_seg.nii.gz" + }, + { + "image": "images/FLARE22_Tr_0007_0000.nii.gz", + "pseudo_label": "images/FLARE22_Tr_0007_0000.nii.gz", + "label": "labels/FLARE22_Tr_0007.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0007_0000/FLARE22_Tr_0007_0000_seg.nii.gz" + }, + { + "image": "images/FLARE22_Tr_0005_0000.nii.gz", + "pseudo_label": "images/FLARE22_Tr_0005_0000.nii.gz", + "label": "labels/FLARE22_Tr_0005.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0005_0000/FLARE22_Tr_0005_0000_seg.nii.gz" + }, + { + "image": "images/FLARE22_Tr_0016_0000.nii.gz", + "pseudo_label": "images/FLARE22_Tr_0016_0000.nii.gz", + "label": "labels/FLARE22_Tr_0016.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0016_0000/FLARE22_Tr_0016_0000_seg.nii.gz" + }, + { + "image": "images/FLARE22_Tr_0031_0000.nii.gz", + "pseudo_label": "images/FLARE22_Tr_0031_0000.nii.gz", + "label": "labels/FLARE22_Tr_0031.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0031_0000/FLARE22_Tr_0031_0000_seg.nii.gz" + }, + { + "image": "images/FLARE22_Tr_0029_0000.nii.gz", + "pseudo_label": "images/FLARE22_Tr_0029_0000.nii.gz", + "label": "labels/FLARE22_Tr_0029.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0029_0000/FLARE22_Tr_0029_0000_seg.nii.gz" + }, + { + "image": "images/FLARE22_Tr_0049_0000.nii.gz", + "pseudo_label": "images/FLARE22_Tr_0049_0000.nii.gz", + "label": "labels/FLARE22_Tr_0049.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0049_0000/FLARE22_Tr_0049_0000_seg.nii.gz" + }, + { + "image": "images/FLARE22_Tr_0030_0000.nii.gz", + "pseudo_label": "images/FLARE22_Tr_0030_0000.nii.gz", + "label": "labels/FLARE22_Tr_0030.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0030_0000/FLARE22_Tr_0030_0000_seg.nii.gz" + }, + { + "image": "images/FLARE22_Tr_0003_0000.nii.gz", + "pseudo_label": "images/FLARE22_Tr_0003_0000.nii.gz", + "label": "labels/FLARE22_Tr_0003.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0003_0000/FLARE22_Tr_0003_0000_seg.nii.gz" + }, + { + "image": "images/FLARE22_Tr_0021_0000.nii.gz", + "pseudo_label": "images/FLARE22_Tr_0021_0000.nii.gz", + "label": "labels/FLARE22_Tr_0021.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0021_0000/FLARE22_Tr_0021_0000_seg.nii.gz" + }, + { + "image": "images/FLARE22_Tr_0015_0000.nii.gz", + "pseudo_label": "images/FLARE22_Tr_0015_0000.nii.gz", + "label": "labels/FLARE22_Tr_0015.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0015_0000/FLARE22_Tr_0015_0000_seg.nii.gz" + }, + { + "image": "images/FLARE22_Tr_0048_0000.nii.gz", + "pseudo_label": "images/FLARE22_Tr_0048_0000.nii.gz", + "label": "labels/FLARE22_Tr_0048.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0048_0000/FLARE22_Tr_0048_0000_seg.nii.gz" + }, + { + "image": "images/FLARE22_Tr_0041_0000.nii.gz", + "pseudo_label": "images/FLARE22_Tr_0041_0000.nii.gz", + "label": "labels/FLARE22_Tr_0041.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0041_0000/FLARE22_Tr_0041_0000_seg.nii.gz" + }, + { + "image": "images/FLARE22_Tr_0006_0000.nii.gz", + "pseudo_label": "images/FLARE22_Tr_0006_0000.nii.gz", + "label": "labels/FLARE22_Tr_0006.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1 + }, + { + "image": "images/FLARE22_Tr_0019_0000.nii.gz", + "pseudo_label": "images/FLARE22_Tr_0019_0000.nii.gz", + "label": "labels/FLARE22_Tr_0019.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0019_0000/FLARE22_Tr_0019_0000_seg.nii.gz" + }, + { + "image": "images/FLARE22_Tr_0038_0000.nii.gz", + "pseudo_label": "images/FLARE22_Tr_0038_0000.nii.gz", + "label": "labels/FLARE22_Tr_0038.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0038_0000/FLARE22_Tr_0038_0000_seg.nii.gz" + }, + { + "image": "images/FLARE22_Tr_0025_0000.nii.gz", + "pseudo_label": "images/FLARE22_Tr_0025_0000.nii.gz", + "label": "labels/FLARE22_Tr_0025.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0025_0000/FLARE22_Tr_0025_0000_seg.nii.gz" + }, + { + "image": "images/FLARE22_Tr_0045_0000.nii.gz", + "pseudo_label": "images/FLARE22_Tr_0045_0000.nii.gz", + "label": "labels/FLARE22_Tr_0045.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0045_0000/FLARE22_Tr_0045_0000_seg.nii.gz" + }, + { + "image": "images/FLARE22_Tr_0034_0000.nii.gz", + "pseudo_label": "images/FLARE22_Tr_0034_0000.nii.gz", + "label": "labels/FLARE22_Tr_0034.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0034_0000/FLARE22_Tr_0034_0000_seg.nii.gz" + }, + { + "image": "images/FLARE22_Tr_0037_0000.nii.gz", + "pseudo_label": "images/FLARE22_Tr_0037_0000.nii.gz", + "label": "labels/FLARE22_Tr_0037.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0037_0000/FLARE22_Tr_0037_0000_seg.nii.gz" + }, + { + "image": "images/FLARE22_Tr_0002_0000.nii.gz", + "pseudo_label": "images/FLARE22_Tr_0002_0000.nii.gz", + "label": "labels/FLARE22_Tr_0002.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0002_0000/FLARE22_Tr_0002_0000_seg.nii.gz" + }, + { + "image": "images/FLARE22_Tr_0050_0000.nii.gz", + "pseudo_label": "images/FLARE22_Tr_0050_0000.nii.gz", + "label": "labels/FLARE22_Tr_0050.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0050_0000/FLARE22_Tr_0050_0000_seg.nii.gz" + }, + { + "image": "images/FLARE22_Tr_0008_0000.nii.gz", + "pseudo_label": "images/FLARE22_Tr_0008_0000.nii.gz", + "label": "labels/FLARE22_Tr_0008.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/FLARE22_100/FLARE22_Tr_0008_0000/FLARE22_Tr_0008_0000_seg.nii.gz" + } + ], + "training_transform": [ + { + "_target_": "RandCropByLabelClassesd", + "keys": [ + "@image_key", + "@label_key", + "@pseudo_label_key", + "@label_sv_key" + ], + "label_key": "@pseudo_label_key", + "num_classes": 133, + "num_samples": "@num_patches_per_image", + "spatial_size": "@patch_size", + "ratios": "$tuple(float(i >= 0) for i in range(133))", + "warn": false, + "allow_missing_keys": true + }, + { + "_target_": "RandZoomd", + "keys": [ + "@image_key", + "@label_key", + "@pseudo_label_key", + "@label_sv_key" + ], + "min_zoom": 0.8, + "max_zoom": 1.2, + "mode": [ + "trilinear", + "nearest", + "nearest", + "nearest" + ], + "prob": 0.2, + "allow_missing_keys": true + }, + { + "_target_": "RandSimulateLowResolutiond", + "keys": [ + "@image_key" + ], + "zoom_range": [ + 0.3, + 1 + ], + "prob": 0.2, + "allow_missing_keys": true + }, + { + "_target_": "RandGaussianSmoothd", + "keys": [ + "@image_key" + ], + "prob": 0.2, + "sigma_x": [ + 0.5, + 1.0 + ], + "sigma_y": [ + 0.5, + 1.0 + ], + "sigma_z": [ + 0.5, + 1.0 + ] + }, + { + "_target_": "RandScaleIntensityd", + "keys": [ + "@image_key" + ], + "factors": 0.1, + "prob": 0.2 + }, + { + "_target_": "RandShiftIntensityd", + "keys": [ + "@image_key" + ], + "offsets": 0.1, + "prob": 0.2 + }, + { + "_target_": "RandGaussianNoised", + "keys": [ + "@image_key" + ], + "prob": 0.2, + "mean": 0.0, + "std": 0.2 + } + ], + "label_dict": { + "1": "liver", + "2": "right kidney", + "3": "spleen", + "4": "pancreas", + "5": "aorta", + "6": "inferior vena cava", + "7": "right adrenal gland", + "8": "left adrenal gland", + "9": "gallbladder", + "10": "esophagus", + "11": "stomach", + "12": "duodenum", + "13": "left kidney" + }, + "original_label_dict": { + "1": "liver", + "2": "right kidney", + "3": "spleen", + "4": "pancreas", + "5": "aorta", + "6": "inferior vena cava", + "7": "right adrenal gland", + "8": "left adrenal gland", + "9": "gallbladder", + "10": "esophagus", + "11": "stomach", + "12": "duodenum", + "13": "left kidney" + }, + "testing": [ + { + "image": "images/FLARE22_Tr_0042_0000.nii.gz", + "label": "labels/FLARE22_Tr_0042.nii.gz" + }, + { + "image": "images/FLARE22_Tr_0018_0000.nii.gz", + "label": "labels/FLARE22_Tr_0018.nii.gz" + }, + { + "image": "images/FLARE22_Tr_0023_0000.nii.gz", + "label": "labels/FLARE22_Tr_0023.nii.gz" + }, + { + "image": "images/FLARE22_Tr_0043_0000.nii.gz", + "label": "labels/FLARE22_Tr_0043.nii.gz" + }, + { + "image": "images/FLARE22_Tr_0028_0000.nii.gz", + "label": "labels/FLARE22_Tr_0028.nii.gz" + }, + { + "image": "images/FLARE22_Tr_0044_0000.nii.gz", + "label": "labels/FLARE22_Tr_0044.nii.gz" + }, + { + "image": "images/FLARE22_Tr_0047_0000.nii.gz", + "label": "labels/FLARE22_Tr_0047.nii.gz" + }, + { + "image": "images/FLARE22_Tr_0046_0000.nii.gz", + "label": "labels/FLARE22_Tr_0046.nii.gz" + }, + { + "image": "images/FLARE22_Tr_0032_0000.nii.gz", + "label": "labels/FLARE22_Tr_0032.nii.gz" + }, + { + "image": "images/FLARE22_Tr_0022_0000.nii.gz", + "label": "labels/FLARE22_Tr_0022.nii.gz" + } + ] +} diff --git a/vista3d/data/jsons/LIDC_5_folds.json b/vista3d/data/jsons/LIDC_5_folds.json new file mode 100644 index 0000000..b8385be --- /dev/null +++ b/vista3d/data/jsons/LIDC_5_folds.json @@ -0,0 +1,2943 @@ +{ + "training": [ + { + "image": "Image_LIDC/LIDC-IDRI-0587_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0587_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0587_0/LIDC-IDRI-0587_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0560_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0560_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0560_0/LIDC-IDRI-0560_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0390_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0390_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0390_0/LIDC-IDRI-0390_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0202_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0202_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0202_1/LIDC-IDRI-0202_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0385_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0385_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0385_0/LIDC-IDRI-0385_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0082_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0082_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0082_0/LIDC-IDRI-0082_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0476_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0476_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0476_0/LIDC-IDRI-0476_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0360_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0360_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0360_0/LIDC-IDRI-0360_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0468_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0468_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0468_0/LIDC-IDRI-0468_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0374_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0374_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0374_0/LIDC-IDRI-0374_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0713_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0713_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0713_0/LIDC-IDRI-0713_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0273_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0273_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0273_1/LIDC-IDRI-0273_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0185_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0185_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0185_1/LIDC-IDRI-0185_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0735_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0735_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0735_0/LIDC-IDRI-0735_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0329_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0329_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0329_0/LIDC-IDRI-0329_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0393_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0393_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0393_0/LIDC-IDRI-0393_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0061_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0061_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0061_1/LIDC-IDRI-0061_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0032_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0032_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0032_1/LIDC-IDRI-0032_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0073_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0073_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0073_0/LIDC-IDRI-0073_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0394_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0394_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0394_0/LIDC-IDRI-0394_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0442_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0442_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0442_0/LIDC-IDRI-0442_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0659_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0659_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0659_0/LIDC-IDRI-0659_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0549_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0549_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0549_0/LIDC-IDRI-0549_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0226_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0226_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0226_0/LIDC-IDRI-0226_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0182_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0182_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0182_0/LIDC-IDRI-0182_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0322_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0322_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0436_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0436_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0436_0/LIDC-IDRI-0436_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0068_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0068_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0624_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0624_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0199_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0199_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0600_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0600_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0449_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0449_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0060_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0060_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0060_1/LIDC-IDRI-0060_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0601_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0601_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0059_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0059_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0059_0/LIDC-IDRI-0059_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0259_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0259_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0302_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0302_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0557_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0557_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0134_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0134_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0263_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0263_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0547_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0547_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0547_0/LIDC-IDRI-0547_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0492_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0492_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0590_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0590_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0658_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0658_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0691_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0691_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0383_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0383_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0103_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0103_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0221_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0221_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0370_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0370_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0370_0/LIDC-IDRI-0370_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0440_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0440_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0645_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0645_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0776_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0776_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0116_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0116_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0116_0/LIDC-IDRI-0116_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0124_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0124_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0124_0/LIDC-IDRI-0124_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0403_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0403_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0133_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0133_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0063_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0063_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0063_0/LIDC-IDRI-0063_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0038_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0038_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0548_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0548_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0243_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0243_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0243_0/LIDC-IDRI-0243_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0340_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0340_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0426_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0426_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0491_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0491_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0517_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0517_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0727_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0727_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0727_0/LIDC-IDRI-0727_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0036_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0036_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0493_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0493_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0754_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0754_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0095_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0095_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0095_1/LIDC-IDRI-0095_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0257_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0257_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0522_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0522_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0371_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0371_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0458_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0458_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0458_0/LIDC-IDRI-0458_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0062_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0062_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0062_1/LIDC-IDRI-0062_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0299_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0299_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0190_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0190_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0512_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0512_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0512_0/LIDC-IDRI-0512_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0209_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0209_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0230_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0230_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0230_0/LIDC-IDRI-0230_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0332_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0332_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0176_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0176_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0176_1/LIDC-IDRI-0176_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0368_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0368_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0368_0/LIDC-IDRI-0368_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0556_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0556_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0556_0/LIDC-IDRI-0556_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0267_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0267_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0452_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0452_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0452_0/LIDC-IDRI-0452_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0652_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0652_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0057_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0057_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0057_0/LIDC-IDRI-0057_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0223_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0223_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0223_1/LIDC-IDRI-0223_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0486_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0486_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0486_0/LIDC-IDRI-0486_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0499_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0499_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0499_0/LIDC-IDRI-0499_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0296_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0296_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0296_0/LIDC-IDRI-0296_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0674_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0674_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0674_0/LIDC-IDRI-0674_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0626_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0626_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0626_0/LIDC-IDRI-0626_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0536_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0536_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0536_0/LIDC-IDRI-0536_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0337_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0337_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0337_0/LIDC-IDRI-0337_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0387_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0387_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0387_0/LIDC-IDRI-0387_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0673_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0673_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0673_0/LIDC-IDRI-0673_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0235_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0235_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0235_0/LIDC-IDRI-0235_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0605_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0605_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0605_0/LIDC-IDRI-0605_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0219_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0219_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0219_1/LIDC-IDRI-0219_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0460_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0460_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0460_0/LIDC-IDRI-0460_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0639_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0639_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0639_0/LIDC-IDRI-0639_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0483_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0483_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0483_0/LIDC-IDRI-0483_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0201_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0201_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0201_1/LIDC-IDRI-0201_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0197_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0197_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0197_1/LIDC-IDRI-0197_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0298_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0298_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0298_0/LIDC-IDRI-0298_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0208_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0208_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0208_1/LIDC-IDRI-0208_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0166_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0166_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0166_1/LIDC-IDRI-0166_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0328_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0328_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0188_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0188_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0188_1/LIDC-IDRI-0188_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0118_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0118_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0118_1/LIDC-IDRI-0118_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0399_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0399_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0399_0/LIDC-IDRI-0399_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0409_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0409_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0409_0/LIDC-IDRI-0409_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0395_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0395_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0395_0/LIDC-IDRI-0395_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0762_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0762_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0762_0/LIDC-IDRI-0762_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0362_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0362_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0362_0/LIDC-IDRI-0362_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0229_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0229_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0229_1/LIDC-IDRI-0229_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0703_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0703_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0703_0/LIDC-IDRI-0703_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0212_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0212_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0212_1/LIDC-IDRI-0212_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0083_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0083_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0083_1/LIDC-IDRI-0083_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0558_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0558_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0558_0/LIDC-IDRI-0558_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0731_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0731_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0731_0/LIDC-IDRI-0731_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0451_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0451_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0451_0/LIDC-IDRI-0451_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0143_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0143_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0143_1/LIDC-IDRI-0143_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0108_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0108_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0108_0/LIDC-IDRI-0108_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0165_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0165_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0165_1/LIDC-IDRI-0165_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0149_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0149_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0149_0/LIDC-IDRI-0149_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0506_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0506_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0506_0/LIDC-IDRI-0506_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0612_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0612_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0612_0/LIDC-IDRI-0612_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0588_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0588_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0588_0/LIDC-IDRI-0588_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0287_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0287_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0287_0/LIDC-IDRI-0287_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0081_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0081_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0081_0/LIDC-IDRI-0081_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0150_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0150_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0150_1/LIDC-IDRI-0150_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0076_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0076_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0076_1/LIDC-IDRI-0076_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0317_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0317_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0317_0/LIDC-IDRI-0317_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0384_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0384_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0525_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0525_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0525_0/LIDC-IDRI-0525_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0683_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0683_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0683_0/LIDC-IDRI-0683_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0274_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0274_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0274_0/LIDC-IDRI-0274_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0107_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0107_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0107_0/LIDC-IDRI-0107_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0122_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0122_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0122_0/LIDC-IDRI-0122_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0481_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0481_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0481_0/LIDC-IDRI-0481_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0497_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0497_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0497_0/LIDC-IDRI-0497_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0679_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0679_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0679_0/LIDC-IDRI-0679_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0608_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0608_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0608_0/LIDC-IDRI-0608_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0698_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0698_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0698_0/LIDC-IDRI-0698_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0090_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0090_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0090_1/LIDC-IDRI-0090_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0155_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0155_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0155_0/LIDC-IDRI-0155_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0245_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0245_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0245_1/LIDC-IDRI-0245_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0619_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0619_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0619_0/LIDC-IDRI-0619_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0629_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0629_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0629_0/LIDC-IDRI-0629_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0554_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0554_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0554_0/LIDC-IDRI-0554_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0372_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0372_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0372_0/LIDC-IDRI-0372_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0589_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0589_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0589_0/LIDC-IDRI-0589_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0140_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0140_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0303_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0303_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0303_0/LIDC-IDRI-0303_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0207_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0207_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0207_0/LIDC-IDRI-0207_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0112_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0112_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0112_0/LIDC-IDRI-0112_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0537_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0537_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0341_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0341_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0341_0/LIDC-IDRI-0341_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0379_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0379_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0379_0/LIDC-IDRI-0379_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0505_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0505_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0505_0/LIDC-IDRI-0505_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0477_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0477_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0477_0/LIDC-IDRI-0477_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0369_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0369_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0369_0/LIDC-IDRI-0369_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0382_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0382_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0382_0/LIDC-IDRI-0382_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0332_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0332_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0332_1/LIDC-IDRI-0332_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0594_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0594_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0594_0/LIDC-IDRI-0594_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0198_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0198_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0198_1/LIDC-IDRI-0198_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0276_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0276_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0276_1/LIDC-IDRI-0276_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0064_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0064_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0064_0/LIDC-IDRI-0064_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0220_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0220_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0220_1/LIDC-IDRI-0220_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0096_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0096_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0096_1/LIDC-IDRI-0096_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0676_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0676_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0465_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0465_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0465_0/LIDC-IDRI-0465_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0027_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0027_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0027_0/LIDC-IDRI-0027_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0570_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0570_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0570_0/LIDC-IDRI-0570_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0604_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0604_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0604_0/LIDC-IDRI-0604_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0564_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0564_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0564_0/LIDC-IDRI-0564_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0171_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0171_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0171_1/LIDC-IDRI-0171_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0710_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0710_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0657_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0657_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0496_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0496_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0496_0/LIDC-IDRI-0496_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0295_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0295_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0295_0/LIDC-IDRI-0295_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0046_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0046_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0046_0/LIDC-IDRI-0046_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0598_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0598_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0598_0/LIDC-IDRI-0598_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0541_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0541_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0541_0/LIDC-IDRI-0541_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0121_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0121_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0121_0/LIDC-IDRI-0121_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0175_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0175_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0175_1/LIDC-IDRI-0175_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0174_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0174_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0174_1/LIDC-IDRI-0174_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0562_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0562_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0562_0/LIDC-IDRI-0562_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0326_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0326_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0270_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0270_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0270_1/LIDC-IDRI-0270_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0128_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0128_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0128_1/LIDC-IDRI-0128_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0316_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0316_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0316_0/LIDC-IDRI-0316_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0708_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0708_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0708_0/LIDC-IDRI-0708_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0378_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0378_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0378_0/LIDC-IDRI-0378_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0543_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0543_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0404_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0404_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0404_0/LIDC-IDRI-0404_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0376_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0376_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0638_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0638_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0638_0/LIDC-IDRI-0638_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0415_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0415_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0415_0/LIDC-IDRI-0415_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0336_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0336_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0336_0/LIDC-IDRI-0336_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0193_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0193_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0193_1/LIDC-IDRI-0193_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0191_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0191_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0191_0/LIDC-IDRI-0191_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0671_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0671_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0671_0/LIDC-IDRI-0671_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0047_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0047_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0047_1/LIDC-IDRI-0047_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0689_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0689_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0689_0/LIDC-IDRI-0689_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0578_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0578_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0578_0/LIDC-IDRI-0578_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0227_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0227_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0227_1/LIDC-IDRI-0227_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0042_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0042_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0042_0/LIDC-IDRI-0042_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0284_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0284_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0284_1/LIDC-IDRI-0284_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0097_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0097_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0097_1/LIDC-IDRI-0097_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0101_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0101_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0101_1/LIDC-IDRI-0101_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0662_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0662_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0662_0/LIDC-IDRI-0662_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0026_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0026_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0026_0/LIDC-IDRI-0026_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0217_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0217_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0217_1/LIDC-IDRI-0217_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0636_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0636_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0636_0/LIDC-IDRI-0636_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0531_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0531_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0531_0/LIDC-IDRI-0531_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0507_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0507_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0507_0/LIDC-IDRI-0507_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0687_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0687_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0687_0/LIDC-IDRI-0687_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0320_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0320_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0320_0/LIDC-IDRI-0320_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0264_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0264_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0264_0/LIDC-IDRI-0264_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0584_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0584_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0584_0/LIDC-IDRI-0584_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0367_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0367_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0367_0/LIDC-IDRI-0367_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0145_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0145_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0145_0/LIDC-IDRI-0145_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0670_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0670_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0670_0/LIDC-IDRI-0670_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0553_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0553_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0339_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0339_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0617_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0617_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0617_0/LIDC-IDRI-0617_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0656_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0656_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0343_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0343_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0343_0/LIDC-IDRI-0343_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0427_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0427_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0427_0/LIDC-IDRI-0427_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0099_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0099_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0099_0/LIDC-IDRI-0099_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0324_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0324_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0324_0/LIDC-IDRI-0324_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0423_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0423_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0423_0/LIDC-IDRI-0423_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0237_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0237_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0338_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0338_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0338_0/LIDC-IDRI-0338_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0474_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0474_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0106_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0106_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0106_1/LIDC-IDRI-0106_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0278_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0278_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0278_1/LIDC-IDRI-0278_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0148_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0148_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0148_1/LIDC-IDRI-0148_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0094_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0094_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0094_1/LIDC-IDRI-0094_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0290_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0290_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0290_1/LIDC-IDRI-0290_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0318_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0318_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0318_0/LIDC-IDRI-0318_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0412_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0412_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0412_0/LIDC-IDRI-0412_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0072_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0072_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0072_1/LIDC-IDRI-0072_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0597_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0597_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0067_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0067_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0067_0/LIDC-IDRI-0067_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0684_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0684_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0195_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0195_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0195_1/LIDC-IDRI-0195_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0025_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0025_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0025_1/LIDC-IDRI-0025_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0309_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0309_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0309_0/LIDC-IDRI-0309_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0402_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0402_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0490_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0490_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0048_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0048_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0048_0/LIDC-IDRI-0048_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0424_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0424_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0424_0/LIDC-IDRI-0424_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0678_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0678_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0093_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0093_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0093_0/LIDC-IDRI-0093_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0518_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0518_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0518_0/LIDC-IDRI-0518_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0712_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0712_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0712_0/LIDC-IDRI-0712_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0186_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0186_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0043_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0043_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0043_0/LIDC-IDRI-0043_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0661_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0661_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0661_0/LIDC-IDRI-0661_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0463_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0463_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0463_0/LIDC-IDRI-0463_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0306_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0306_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0487_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0487_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0643_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0643_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0643_0/LIDC-IDRI-0643_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0192_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0192_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0192_0/LIDC-IDRI-0192_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0105_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0105_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0675_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0675_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0675_0/LIDC-IDRI-0675_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0141_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0141_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0633_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0633_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0633_0/LIDC-IDRI-0633_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0151_2.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0151_2.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0292_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0292_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0292_0/LIDC-IDRI-0292_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0550_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0550_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0550_0/LIDC-IDRI-0550_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0126_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0126_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0126_1/LIDC-IDRI-0126_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0397_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0397_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0125_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0125_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0125_1/LIDC-IDRI-0125_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0252_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0252_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0110_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0110_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0110_0/LIDC-IDRI-0110_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0742_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0742_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0742_0/LIDC-IDRI-0742_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0205_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0205_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0205_1/LIDC-IDRI-0205_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0716_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0716_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0728_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0728_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0398_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0398_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0398_0/LIDC-IDRI-0398_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0308_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0308_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0070_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0070_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0400_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0400_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0400_0/LIDC-IDRI-0400_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0457_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0457_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0457_0/LIDC-IDRI-0457_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0459_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0459_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0459_0/LIDC-IDRI-0459_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0056_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0056_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0333_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0333_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0333_0/LIDC-IDRI-0333_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0521_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0521_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0521_0/LIDC-IDRI-0521_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0087_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0087_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0087_0/LIDC-IDRI-0087_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0421_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0421_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0391_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0391_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0391_0/LIDC-IDRI-0391_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0342_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0342_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0342_0/LIDC-IDRI-0342_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0613_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0613_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0613_0/LIDC-IDRI-0613_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0443_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0443_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0058_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0058_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0058_1/LIDC-IDRI-0058_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0734_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0734_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0152_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0152_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0152_1/LIDC-IDRI-0152_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0667_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0667_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0136_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0136_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0136_1/LIDC-IDRI-0136_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0138_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0138_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0138_1/LIDC-IDRI-0138_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0349_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0349_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0349_0/LIDC-IDRI-0349_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0577_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0577_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0577_0/LIDC-IDRI-0577_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0178_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0178_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0178_1/LIDC-IDRI-0178_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0685_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0685_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0685_0/LIDC-IDRI-0685_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0304_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0304_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0508_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0508_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0508_0/LIDC-IDRI-0508_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0542_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0542_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0542_0/LIDC-IDRI-0542_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0482_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0482_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0482_0/LIDC-IDRI-0482_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0603_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0603_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0603_0/LIDC-IDRI-0603_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0519_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0519_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0206_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0206_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0709_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0709_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0709_0/LIDC-IDRI-0709_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0448_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0448_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0697_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0697_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0546_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0546_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0546_0/LIDC-IDRI-0546_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0218_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0218_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0218_1/LIDC-IDRI-0218_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0147_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0147_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0147_1/LIDC-IDRI-0147_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0151_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0151_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0151_1/LIDC-IDRI-0151_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0279_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0279_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0109_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0109_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0109_1/LIDC-IDRI-0109_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0050_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0050_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0686_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0686_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0686_0/LIDC-IDRI-0686_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0567_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0567_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0567_0/LIDC-IDRI-0567_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0555_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0555_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0555_0/LIDC-IDRI-0555_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0500_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0500_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0500_0/LIDC-IDRI-0500_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0511_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0511_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0511_0/LIDC-IDRI-0511_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0216_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0216_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0216_1/LIDC-IDRI-0216_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0591_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0591_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0591_0/LIDC-IDRI-0591_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0327_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0327_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0327_0/LIDC-IDRI-0327_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0377_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0377_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0377_0/LIDC-IDRI-0377_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0599_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0599_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0599_0/LIDC-IDRI-0599_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0401_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0401_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0401_0/LIDC-IDRI-0401_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0672_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0672_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0077_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0077_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0077_0/LIDC-IDRI-0077_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0575_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0575_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0029_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0029_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0248_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0248_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0248_1/LIDC-IDRI-0248_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0647_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0647_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0602_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0602_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0602_0/LIDC-IDRI-0602_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0323_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0323_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0323_0/LIDC-IDRI-0323_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0039_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0039_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0039_0/LIDC-IDRI-0039_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0535_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0535_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0535_0/LIDC-IDRI-0535_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0079_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0079_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0079_0/LIDC-IDRI-0079_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0425_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0425_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0425_0/LIDC-IDRI-0425_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0561_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0561_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0561_0/LIDC-IDRI-0561_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0356_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0356_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0356_0/LIDC-IDRI-0356_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0319_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0319_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0319_0/LIDC-IDRI-0319_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0669_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0669_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0669_0/LIDC-IDRI-0669_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0258_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0258_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0258_1/LIDC-IDRI-0258_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0455_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0455_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0455_0/LIDC-IDRI-0455_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0721_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0721_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0721_0/LIDC-IDRI-0721_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0239_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0239_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0222_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0222_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0222_0/LIDC-IDRI-0222_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0420_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0420_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0420_0/LIDC-IDRI-0420_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0520_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0520_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0520_0/LIDC-IDRI-0520_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0037_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0037_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0037_0/LIDC-IDRI-0037_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0607_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0607_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0131_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0131_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0131_0/LIDC-IDRI-0131_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0330_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0330_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0330_0/LIDC-IDRI-0330_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0641_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0641_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0312_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0312_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0312_0/LIDC-IDRI-0312_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0494_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0494_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0183_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0183_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0183_1/LIDC-IDRI-0183_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0719_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0719_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0364_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0364_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0262_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0262_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0262_1/LIDC-IDRI-0262_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0615_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0615_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0615_0/LIDC-IDRI-0615_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0254_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0254_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0254_0/LIDC-IDRI-0254_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0479_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0479_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0160_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0160_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0611_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0611_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0611_0/LIDC-IDRI-0611_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0389_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0389_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0293_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0293_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0559_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0559_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0559_0/LIDC-IDRI-0559_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0334_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0334_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0334_0/LIDC-IDRI-0334_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0644_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0644_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0622_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0622_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0622_0/LIDC-IDRI-0622_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0417_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0417_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0417_0/LIDC-IDRI-0417_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0495_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0495_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0495_0/LIDC-IDRI-0495_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0454_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0454_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0696_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0696_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0696_0/LIDC-IDRI-0696_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0706_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0706_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0100_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0100_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0100_1/LIDC-IDRI-0100_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0695_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0695_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0695_0/LIDC-IDRI-0695_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0215_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0215_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0215_1/LIDC-IDRI-0215_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0527_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0527_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0527_0/LIDC-IDRI-0527_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0157_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0157_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0157_0/LIDC-IDRI-0157_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0024_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0024_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0024_0/LIDC-IDRI-0024_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0642_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0642_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0642_0/LIDC-IDRI-0642_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0350_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0350_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0041_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0041_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0041_1/LIDC-IDRI-0041_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0388_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0388_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0388_0/LIDC-IDRI-0388_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0453_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0453_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0453_0/LIDC-IDRI-0453_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0053_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0053_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0053_0/LIDC-IDRI-0053_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0117_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0117_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0117_0/LIDC-IDRI-0117_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0726_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0726_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0726_0/LIDC-IDRI-0726_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0583_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0583_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0583_0/LIDC-IDRI-0583_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0214_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0214_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0534_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0534_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0534_0/LIDC-IDRI-0534_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0680_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0680_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0680_0/LIDC-IDRI-0680_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0291_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0291_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0291_1/LIDC-IDRI-0291_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0593_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0593_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0593_0/LIDC-IDRI-0593_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0153_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0153_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0153_0/LIDC-IDRI-0153_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0470_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0470_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0470_0/LIDC-IDRI-0470_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0628_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0628_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0628_0/LIDC-IDRI-0628_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0569_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0569_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0069_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0069_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0069_1/LIDC-IDRI-0069_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0724_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0724_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0724_0/LIDC-IDRI-0724_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0653_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0653_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0653_0/LIDC-IDRI-0653_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0625_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0625_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0241_1.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0241_1.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0241_1/LIDC-IDRI-0241_1_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0717_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0717_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0717_0/LIDC-IDRI-0717_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0447_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0447_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0447_0/LIDC-IDRI-0447_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0419_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0419_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0213_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0213_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0213_0/LIDC-IDRI-0213_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0616_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0616_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0616_0/LIDC-IDRI-0616_0_seg.nii.gz" + }, + { + "image": "Image_LIDC/LIDC-IDRI-0582_0.nii.gz", + "pseudo_label": "Image_LIDC/LIDC-IDRI-0582_0.nii.gz", + "dataset": "/data/LIDC/LIDC", + "region": "/data/LIDC/chest", + "label_sv": "/workspace_infer/supervoxel_sam/lidc_100/LIDC-IDRI-0582_0/LIDC-IDRI-0582_0_seg.nii.gz" + } + ], + "training_transform": [ + { + "_target_": "RandCropByLabelClassesd", + "keys": [ + "@image_key", + "@label_key", + "@pseudo_label_key", + "@label_sv_key" + ], + "label_key": "@pseudo_label_key", + "num_classes": 133, + "num_samples": "@num_patches_per_image", + "spatial_size": "@patch_size", + "ratios": "$tuple(float(i >= 0) for i in range(133))", + "warn": false, + "allow_missing_keys": true + }, + { + "_target_": "RandZoomd", + "keys": [ + "@image_key", + "@label_key", + "@pseudo_label_key", + "@label_sv_key" + ], + "min_zoom": 0.8, + "max_zoom": 1.2, + "mode": [ + "trilinear", + "nearest", + "nearest", + "nearest" + ], + "prob": 0.2, + "allow_missing_keys": true + }, + { + "_target_": "RandSimulateLowResolutiond", + "keys": [ + "@image_key" + ], + "zoom_range": [ + 0.3, + 1 + ], + "prob": 0.2, + "allow_missing_keys": true + }, + { + "_target_": "RandGaussianSmoothd", + "keys": [ + "@image_key" + ], + "prob": 0.2, + "sigma_x": [ + 0.5, + 1.0 + ], + "sigma_y": [ + 0.5, + 1.0 + ], + "sigma_z": [ + 0.5, + 1.0 + ] + }, + { + "_target_": "RandScaleIntensityd", + "keys": [ + "@image_key" + ], + "factors": 0.1, + "prob": 0.2 + }, + { + "_target_": "RandShiftIntensityd", + "keys": [ + "@image_key" + ], + "offsets": 0.1, + "prob": 0.2 + }, + { + "_target_": "RandGaussianNoised", + "keys": [ + "@image_key" + ], + "prob": 0.2, + "mean": 0.0, + "std": 0.2 + } + ] +} diff --git a/vista3d/data/jsons/Multi-organ-Abdominal-CT-btcv_5_folds.json b/vista3d/data/jsons/Multi-organ-Abdominal-CT-btcv_5_folds.json new file mode 100644 index 0000000..fbe3747 --- /dev/null +++ b/vista3d/data/jsons/Multi-organ-Abdominal-CT-btcv_5_folds.json @@ -0,0 +1,461 @@ +{ + "training": [ + { + "image": "images_btcv/img0067.nii", + "pseudo_label": "images_btcv/img0067.nii.gz", + "label": "label_btcv_multiorgan/label0067.nii", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "images_btcv/img0007.nii", + "pseudo_label": "images_btcv/img0007.nii.gz", + "label": "label_btcv_multiorgan/label0007.nii", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "images_btcv/img0027.nii", + "pseudo_label": "images_btcv/img0027.nii.gz", + "label": "label_btcv_multiorgan/label0027.nii", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "images_btcv/img0008.nii", + "pseudo_label": "images_btcv/img0008.nii.gz", + "label": "label_btcv_multiorgan/label0008.nii", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "images_btcv/img0075.nii", + "pseudo_label": "images_btcv/img0075.nii.gz", + "label": "label_btcv_multiorgan/label0075.nii", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "images_btcv/img0002.nii", + "pseudo_label": "images_btcv/img0002.nii.gz", + "label": "label_btcv_multiorgan/label0002.nii", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "images_btcv/img0006.nii", + "pseudo_label": "images_btcv/img0006.nii.gz", + "label": "label_btcv_multiorgan/label0006.nii", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "images_btcv/img0078.nii", + "pseudo_label": "images_btcv/img0078.nii.gz", + "label": "label_btcv_multiorgan/label0078.nii", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "images_btcv/img0079.nii", + "pseudo_label": "images_btcv/img0079.nii.gz", + "label": "label_btcv_multiorgan/label0079.nii", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0079/img0079_seg.nii.gz" + }, + { + "image": "images_btcv/img0037.nii", + "pseudo_label": "images_btcv/img0037.nii.gz", + "label": "label_btcv_multiorgan/label0037.nii", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0037/img0037_seg.nii.gz" + }, + { + "image": "images_btcv/img0064.nii", + "pseudo_label": "images_btcv/img0064.nii.gz", + "label": "label_btcv_multiorgan/label0064.nii", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0064/img0064_seg.nii.gz" + }, + { + "image": "images_btcv/img0063.nii", + "pseudo_label": "images_btcv/img0063.nii.gz", + "label": "label_btcv_multiorgan/label0063.nii", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0063/img0063_seg.nii.gz" + }, + { + "image": "images_btcv/img0070.nii", + "pseudo_label": "images_btcv/img0070.nii.gz", + "label": "label_btcv_multiorgan/label0070.nii", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0070/img0070_seg.nii.gz" + }, + { + "image": "images_btcv/img0004.nii", + "pseudo_label": "images_btcv/img0004.nii.gz", + "label": "label_btcv_multiorgan/label0004.nii", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0004/img0004_seg.nii.gz" + }, + { + "image": "images_btcv/img0080.nii", + "pseudo_label": "images_btcv/img0080.nii.gz", + "label": "label_btcv_multiorgan/label0080.nii", + "fold": 1, + "pseudo_label_reliability": 1 + }, + { + "image": "images_btcv/img0003.nii", + "pseudo_label": "images_btcv/img0003.nii.gz", + "label": "label_btcv_multiorgan/label0003.nii", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0003/img0003_seg.nii.gz" + }, + { + "image": "images_btcv/img0001.nii", + "pseudo_label": "images_btcv/img0001.nii.gz", + "label": "label_btcv_multiorgan/label0001.nii", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0001/img0001_seg.nii.gz" + }, + { + "image": "images_btcv/img0034.nii", + "pseudo_label": "images_btcv/img0034.nii.gz", + "label": "label_btcv_multiorgan/label0034.nii", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0034/img0034_seg.nii.gz" + }, + { + "image": "images_btcv/img0039.nii", + "pseudo_label": "images_btcv/img0039.nii.gz", + "label": "label_btcv_multiorgan/label0039.nii", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0039/img0039_seg.nii.gz" + }, + { + "image": "images_btcv/img0031.nii", + "pseudo_label": "images_btcv/img0031.nii.gz", + "label": "label_btcv_multiorgan/label0031.nii", + "fold": 2, + "pseudo_label_reliability": 0 + }, + { + "image": "images_btcv/img0066.nii", + "pseudo_label": "images_btcv/img0066.nii.gz", + "label": "label_btcv_multiorgan/label0066.nii", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0066/img0066_seg.nii.gz" + }, + { + "image": "images_btcv/img0022.nii", + "pseudo_label": "images_btcv/img0022.nii.gz", + "label": "label_btcv_multiorgan/label0022.nii", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0022/img0022_seg.nii.gz" + }, + { + "image": "images_btcv/img0068.nii", + "pseudo_label": "images_btcv/img0068.nii.gz", + "label": "label_btcv_multiorgan/label0068.nii", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0068/img0068_seg.nii.gz" + }, + { + "image": "images_btcv/img0024.nii", + "pseudo_label": "images_btcv/img0024.nii.gz", + "label": "label_btcv_multiorgan/label0024.nii", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0024/img0024_seg.nii.gz" + }, + { + "image": "images_btcv/img0030.nii", + "pseudo_label": "images_btcv/img0030.nii.gz", + "label": "label_btcv_multiorgan/label0030.nii", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0030/img0030_seg.nii.gz" + }, + { + "image": "images_btcv/img0029.nii", + "pseudo_label": "images_btcv/img0029.nii.gz", + "label": "label_btcv_multiorgan/label0029.nii", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0029/img0029_seg.nii.gz" + }, + { + "image": "images_btcv/img0009.nii", + "pseudo_label": "images_btcv/img0009.nii.gz", + "label": "label_btcv_multiorgan/label0009.nii", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0009/img0009_seg.nii.gz" + }, + { + "image": "images_btcv/img0023.nii", + "pseudo_label": "images_btcv/img0023.nii.gz", + "label": "label_btcv_multiorgan/label0023.nii", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0023/img0023_seg.nii.gz" + }, + { + "image": "images_btcv/img0036.nii", + "pseudo_label": "images_btcv/img0036.nii.gz", + "label": "label_btcv_multiorgan/label0036.nii", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0036/img0036_seg.nii.gz" + }, + { + "image": "images_btcv/img0040.nii", + "pseudo_label": "images_btcv/img0040.nii.gz", + "label": "label_btcv_multiorgan/label0040.nii", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0040/img0040_seg.nii.gz" + }, + { + "image": "images_btcv/img0069.nii", + "pseudo_label": "images_btcv/img0069.nii.gz", + "label": "label_btcv_multiorgan/label0069.nii", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0069/img0069_seg.nii.gz" + }, + { + "image": "images_btcv/img0035.nii", + "pseudo_label": "images_btcv/img0035.nii.gz", + "label": "label_btcv_multiorgan/label0035.nii", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0035/img0035_seg.nii.gz" + }, + { + "image": "images_btcv/img0061.nii", + "pseudo_label": "images_btcv/img0061.nii.gz", + "label": "label_btcv_multiorgan/label0061.nii", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0061/img0061_seg.nii.gz" + }, + { + "image": "images_btcv/img0005.nii", + "pseudo_label": "images_btcv/img0005.nii.gz", + "label": "label_btcv_multiorgan/label0005.nii", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0005/img0005_seg.nii.gz" + }, + { + "image": "images_btcv/img0026.nii", + "pseudo_label": "images_btcv/img0026.nii.gz", + "label": "label_btcv_multiorgan/label0026.nii", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0026/img0026_seg.nii.gz" + }, + { + "image": "images_btcv/img0025.nii", + "pseudo_label": "images_btcv/img0025.nii.gz", + "label": "label_btcv_multiorgan/label0025.nii", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0025/img0025_seg.nii.gz" + }, + { + "image": "images_btcv/img0010.nii", + "pseudo_label": "images_btcv/img0010.nii.gz", + "label": "label_btcv_multiorgan/label0010.nii", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0010/img0010_seg.nii.gz" + }, + { + "image": "images_btcv/img0065.nii", + "pseudo_label": "images_btcv/img0065.nii.gz", + "label": "label_btcv_multiorgan/label0065.nii", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-btcv_100/img0065/img0065_seg.nii.gz" + } + ], + "testing": [ + { + "image": "images_btcv/img0021.nii", + "label": "label_btcv_multiorgan/label0021.nii" + }, + { + "image": "images_btcv/img0074.nii", + "label": "label_btcv_multiorgan/label0074.nii" + }, + { + "image": "images_btcv/img0028.nii", + "label": "label_btcv_multiorgan/label0028.nii" + }, + { + "image": "images_btcv/img0033.nii", + "label": "label_btcv_multiorgan/label0033.nii" + }, + { + "image": "images_btcv/img0076.nii", + "label": "label_btcv_multiorgan/label0076.nii" + }, + { + "image": "images_btcv/img0038.nii", + "label": "label_btcv_multiorgan/label0038.nii" + }, + { + "image": "images_btcv/img0077.nii", + "label": "label_btcv_multiorgan/label0077.nii" + }, + { + "image": "images_btcv/img0062.nii", + "label": "label_btcv_multiorgan/label0062.nii" + }, + { + "image": "images_btcv/img0032.nii", + "label": "label_btcv_multiorgan/label0032.nii" + } + ], + "training_transform": [ + { + "_target_": "RandCropByLabelClassesd", + "keys": [ + "@image_key", + "@label_key", + "@pseudo_label_key", + "@label_sv_key" + ], + "label_key": "@pseudo_label_key", + "num_classes": 133, + "num_samples": "@num_patches_per_image", + "spatial_size": "@patch_size", + "ratios": "$tuple(float(i >= 0) for i in range(133))", + "warn": false, + "allow_missing_keys": true + }, + { + "_target_": "RandZoomd", + "keys": [ + "@image_key", + "@label_key", + "@pseudo_label_key", + "@label_sv_key" + ], + "min_zoom": 0.8, + "max_zoom": 1.2, + "mode": [ + "trilinear", + "nearest", + "nearest", + "nearest" + ], + "prob": 0.2, + "allow_missing_keys": true + }, + { + "_target_": "RandSimulateLowResolutiond", + "keys": [ + "@image_key" + ], + "zoom_range": [ + 0.3, + 1 + ], + "prob": 0.2, + "allow_missing_keys": true + }, + { + "_target_": "RandGaussianSmoothd", + "keys": [ + "@image_key" + ], + "prob": 0.2, + "sigma_x": [ + 0.5, + 1.0 + ], + "sigma_y": [ + 0.5, + 1.0 + ], + "sigma_z": [ + 0.5, + 1.0 + ] + }, + { + "_target_": "RandScaleIntensityd", + "keys": [ + "@image_key" + ], + "factors": 0.1, + "prob": 0.2 + }, + { + "_target_": "RandShiftIntensityd", + "keys": [ + "@image_key" + ], + "offsets": 0.1, + "prob": 0.2 + }, + { + "_target_": "RandGaussianNoised", + "keys": [ + "@image_key" + ], + "prob": 0.2, + "mean": 0.0, + "std": 0.2 + } + ], + "label_dict": { + "1": "spleen", + "2": "right kidney", + "3": "left kidney", + "4": "gallbladder", + "5": "esophagus", + "6": "liver", + "7": "stomach", + "8": "aorta", + "9": "inferior vena cava", + "10": "portal vein and splenic vein", + "11": "pancreas", + "12": "right adrenal gland", + "13": "left adrenal gland", + "14": "duodenum" + }, + "original_label_dict": { + "1": "spleen", + "2": "right kidney", + "3": "left kidney", + "4": "gallbladder", + "5": "esophagus", + "6": "liver", + "7": "stomach", + "8": "aorta", + "9": "inferior vena cava", + "10": "portal vein and splenic vein", + "11": "pancreas", + "12": "right adrenal gland", + "13": "left adrenal gland", + "14": "duodenum" + } +} diff --git a/vista3d/data/jsons/Multi-organ-Abdominal-CT-tcia_5_folds.json b/vista3d/data/jsons/Multi-organ-Abdominal-CT-tcia_5_folds.json new file mode 100644 index 0000000..0060f1e --- /dev/null +++ b/vista3d/data/jsons/Multi-organ-Abdominal-CT-tcia_5_folds.json @@ -0,0 +1,415 @@ +{ + "training": [ + { + "image": "images_tcia/PANCREAS_0045.nii", + "pseudo_label": "images_tcia/PANCREAS_0045.nii.gz", + "label": "label_tcia_multiorgan+rkidney/label0045.nii", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "images_tcia/PANCREAS_0003.nii", + "pseudo_label": "images_tcia/PANCREAS_0003.nii.gz", + "label": "label_tcia_multiorgan+rkidney/label0003.nii", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "images_tcia/PANCREAS_0028.nii", + "pseudo_label": "images_tcia/PANCREAS_0028.nii.gz", + "label": "label_tcia_multiorgan+rkidney/label0028.nii", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "images_tcia/PANCREAS_0043.nii", + "pseudo_label": "images_tcia/PANCREAS_0043.nii.gz", + "label": "label_tcia_multiorgan+rkidney/label0043.nii", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "images_tcia/PANCREAS_0027.nii", + "pseudo_label": "images_tcia/PANCREAS_0027.nii.gz", + "label": "label_tcia_multiorgan+rkidney/label0027.nii", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "images_tcia/PANCREAS_0040.nii", + "pseudo_label": "images_tcia/PANCREAS_0040.nii.gz", + "label": "label_tcia_multiorgan+rkidney/label0040.nii", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "images_tcia/PANCREAS_0008.nii", + "pseudo_label": "images_tcia/PANCREAS_0008.nii.gz", + "label": "label_tcia_multiorgan+rkidney/label0008.nii", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "images_tcia/PANCREAS_0024.nii", + "pseudo_label": "images_tcia/PANCREAS_0024.nii.gz", + "label": "label_tcia_multiorgan+rkidney/label0024.nii", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-tcia_100/PANCREAS_0024/PANCREAS_0024_seg.nii.gz" + }, + { + "image": "images_tcia/PANCREAS_0016.nii", + "pseudo_label": "images_tcia/PANCREAS_0016.nii.gz", + "label": "label_tcia_multiorgan+rkidney/label0016.nii", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-tcia_100/PANCREAS_0016/PANCREAS_0016_seg.nii.gz" + }, + { + "image": "images_tcia/PANCREAS_0010.nii", + "pseudo_label": "images_tcia/PANCREAS_0010.nii.gz", + "label": "label_tcia_multiorgan+rkidney/label0010.nii", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-tcia_100/PANCREAS_0010/PANCREAS_0010_seg.nii.gz" + }, + { + "image": "images_tcia/PANCREAS_0011.nii", + "pseudo_label": "images_tcia/PANCREAS_0011.nii.gz", + "label": "label_tcia_multiorgan+rkidney/label0011.nii", + "fold": 1, + "pseudo_label_reliability": 1 + }, + { + "image": "images_tcia/PANCREAS_0032.nii", + "pseudo_label": "images_tcia/PANCREAS_0032.nii.gz", + "label": "label_tcia_multiorgan+rkidney/label0032.nii", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-tcia_100/PANCREAS_0032/PANCREAS_0032_seg.nii.gz" + }, + { + "image": "images_tcia/PANCREAS_0006.nii", + "pseudo_label": "images_tcia/PANCREAS_0006.nii.gz", + "label": "label_tcia_multiorgan+rkidney/label0006.nii", + "fold": 1, + "pseudo_label_reliability": 1 + }, + { + "image": "images_tcia/PANCREAS_0030.nii", + "pseudo_label": "images_tcia/PANCREAS_0030.nii.gz", + "label": "label_tcia_multiorgan+rkidney/label0030.nii", + "fold": 1, + "pseudo_label_reliability": 1 + }, + { + "image": "images_tcia/PANCREAS_0046.nii", + "pseudo_label": "images_tcia/PANCREAS_0046.nii.gz", + "label": "label_tcia_multiorgan+rkidney/label0046.nii", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-tcia_100/PANCREAS_0046/PANCREAS_0046_seg.nii.gz" + }, + { + "image": "images_tcia/PANCREAS_0005.nii", + "pseudo_label": "images_tcia/PANCREAS_0005.nii.gz", + "label": "label_tcia_multiorgan+rkidney/label0005.nii", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-tcia_100/PANCREAS_0005/PANCREAS_0005_seg.nii.gz" + }, + { + "image": "images_tcia/PANCREAS_0047.nii", + "pseudo_label": "images_tcia/PANCREAS_0047.nii.gz", + "label": "label_tcia_multiorgan+rkidney/label0047.nii", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-tcia_100/PANCREAS_0047/PANCREAS_0047_seg.nii.gz" + }, + { + "image": "images_tcia/PANCREAS_0034.nii", + "pseudo_label": "images_tcia/PANCREAS_0034.nii.gz", + "label": "label_tcia_multiorgan+rkidney/label0034.nii", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-tcia_100/PANCREAS_0034/PANCREAS_0034_seg.nii.gz" + }, + { + "image": "images_tcia/PANCREAS_0017.nii", + "pseudo_label": "images_tcia/PANCREAS_0017.nii.gz", + "label": "label_tcia_multiorgan+rkidney/label0017.nii", + "fold": 2, + "pseudo_label_reliability": 0 + }, + { + "image": "images_tcia/PANCREAS_0021.nii", + "pseudo_label": "images_tcia/PANCREAS_0021.nii.gz", + "label": "label_tcia_multiorgan+rkidney/label0021.nii", + "fold": 2, + "pseudo_label_reliability": 1 + }, + { + "image": "images_tcia/PANCREAS_0039.nii", + "pseudo_label": "images_tcia/PANCREAS_0039.nii.gz", + "label": "label_tcia_multiorgan+rkidney/label0039.nii", + "fold": 2, + "pseudo_label_reliability": 1 + }, + { + "image": "images_tcia/PANCREAS_0009.nii", + "pseudo_label": "images_tcia/PANCREAS_0009.nii.gz", + "label": "label_tcia_multiorgan+rkidney/label0009.nii", + "fold": 3, + "pseudo_label_reliability": 0 + }, + { + "image": "images_tcia/PANCREAS_0022.nii", + "pseudo_label": "images_tcia/PANCREAS_0022.nii.gz", + "label": "label_tcia_multiorgan+rkidney/label0022.nii", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-tcia_100/PANCREAS_0022/PANCREAS_0022_seg.nii.gz" + }, + { + "image": "images_tcia/PANCREAS_0004.nii", + "pseudo_label": "images_tcia/PANCREAS_0004.nii.gz", + "label": "label_tcia_multiorgan+rkidney/label0004.nii", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-tcia_100/PANCREAS_0004/PANCREAS_0004_seg.nii.gz" + }, + { + "image": "images_tcia/PANCREAS_0019.nii", + "pseudo_label": "images_tcia/PANCREAS_0019.nii.gz", + "label": "label_tcia_multiorgan+rkidney/label0019.nii", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-tcia_100/PANCREAS_0019/PANCREAS_0019_seg.nii.gz" + }, + { + "image": "images_tcia/PANCREAS_0014.nii", + "pseudo_label": "images_tcia/PANCREAS_0014.nii.gz", + "label": "label_tcia_multiorgan+rkidney/label0014.nii", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-tcia_100/PANCREAS_0014/PANCREAS_0014_seg.nii.gz" + }, + { + "image": "images_tcia/PANCREAS_0013.nii", + "pseudo_label": "images_tcia/PANCREAS_0013.nii.gz", + "label": "label_tcia_multiorgan+rkidney/label0013.nii", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-tcia_100/PANCREAS_0013/PANCREAS_0013_seg.nii.gz" + }, + { + "image": "images_tcia/PANCREAS_0038.nii", + "pseudo_label": "images_tcia/PANCREAS_0038.nii.gz", + "label": "label_tcia_multiorgan+rkidney/label0038.nii", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-tcia_100/PANCREAS_0038/PANCREAS_0038_seg.nii.gz" + }, + { + "image": "images_tcia/PANCREAS_0048.nii", + "pseudo_label": "images_tcia/PANCREAS_0048.nii.gz", + "label": "label_tcia_multiorgan+rkidney/label0048.nii", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-tcia_100/PANCREAS_0048/PANCREAS_0048_seg.nii.gz" + }, + { + "image": "images_tcia/PANCREAS_0033.nii", + "pseudo_label": "images_tcia/PANCREAS_0033.nii.gz", + "label": "label_tcia_multiorgan+rkidney/label0033.nii", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-tcia_100/PANCREAS_0033/PANCREAS_0033_seg.nii.gz" + }, + { + "image": "images_tcia/PANCREAS_0042.nii", + "pseudo_label": "images_tcia/PANCREAS_0042.nii.gz", + "label": "label_tcia_multiorgan+rkidney/label0042.nii", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-tcia_100/PANCREAS_0042/PANCREAS_0042_seg.nii.gz" + }, + { + "image": "images_tcia/PANCREAS_0007.nii", + "pseudo_label": "images_tcia/PANCREAS_0007.nii.gz", + "label": "label_tcia_multiorgan+rkidney/label0007.nii", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-tcia_100/PANCREAS_0007/PANCREAS_0007_seg.nii.gz" + }, + { + "image": "images_tcia/PANCREAS_0002.nii", + "pseudo_label": "images_tcia/PANCREAS_0002.nii.gz", + "label": "label_tcia_multiorgan+rkidney/label0002.nii", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-tcia_100/PANCREAS_0002/PANCREAS_0002_seg.nii.gz" + }, + { + "image": "images_tcia/PANCREAS_0018.nii", + "pseudo_label": "images_tcia/PANCREAS_0018.nii.gz", + "label": "label_tcia_multiorgan+rkidney/label0018.nii", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Multi-organ-Abdominal-CT-tcia_100/PANCREAS_0018/PANCREAS_0018_seg.nii.gz" + } + ], + "training_transform": [ + { + "_target_": "RandCropByLabelClassesd", + "keys": [ + "@image_key", + "@label_key", + "@pseudo_label_key", + "@label_sv_key" + ], + "label_key": "@pseudo_label_key", + "num_classes": 133, + "num_samples": "@num_patches_per_image", + "spatial_size": "@patch_size", + "ratios": "$tuple(float(i >= 0) for i in range(133))", + "warn": false, + "allow_missing_keys": true + }, + { + "_target_": "RandZoomd", + "keys": [ + "@image_key", + "@label_key", + "@pseudo_label_key", + "@label_sv_key" + ], + "min_zoom": 0.8, + "max_zoom": 1.2, + "mode": [ + "trilinear", + "nearest", + "nearest", + "nearest" + ], + "prob": 0.2, + "allow_missing_keys": true + }, + { + "_target_": "RandSimulateLowResolutiond", + "keys": [ + "@image_key" + ], + "zoom_range": [ + 0.3, + 1 + ], + "prob": 0.2, + "allow_missing_keys": true + }, + { + "_target_": "RandGaussianSmoothd", + "keys": [ + "@image_key" + ], + "prob": 0.2, + "sigma_x": [ + 0.5, + 1.0 + ], + "sigma_y": [ + 0.5, + 1.0 + ], + "sigma_z": [ + 0.5, + 1.0 + ] + }, + { + "_target_": "RandScaleIntensityd", + "keys": [ + "@image_key" + ], + "factors": 0.1, + "prob": 0.2 + }, + { + "_target_": "RandShiftIntensityd", + "keys": [ + "@image_key" + ], + "offsets": 0.1, + "prob": 0.2 + }, + { + "_target_": "RandGaussianNoised", + "keys": [ + "@image_key" + ], + "prob": 0.2, + "mean": 0.0, + "std": 0.2 + } + ], + "label_dict": { + "1": "spleen", + "2": "right kidney", + "3": "left kidney", + "4": "gallbladder", + "5": "esophagus", + "6": "liver", + "7": "stomach", + "8": "pancreas", + "9": "duodenum" + }, + "original_label_dict": { + "1": "spleen", + "2": "right kidney", + "3": "left kidney", + "4": "gallbladder", + "5": "esophagus", + "6": "liver", + "7": "stomach", + "8": "pancreas", + "9": "duodenum" + }, + "testing": [ + { + "image": "images_tcia/PANCREAS_0029.nii", + "label": "label_tcia_multiorgan+rkidney/label0029.nii" + }, + { + "image": "images_tcia/PANCREAS_0041.nii", + "label": "label_tcia_multiorgan+rkidney/label0041.nii" + }, + { + "image": "images_tcia/PANCREAS_0012.nii", + "label": "label_tcia_multiorgan+rkidney/label0012.nii" + }, + { + "image": "images_tcia/PANCREAS_0044.nii", + "label": "label_tcia_multiorgan+rkidney/label0044.nii" + }, + { + "image": "images_tcia/PANCREAS_0020.nii", + "label": "label_tcia_multiorgan+rkidney/label0020.nii" + }, + { + "image": "images_tcia/PANCREAS_0026.nii", + "label": "label_tcia_multiorgan+rkidney/label0026.nii" + }, + { + "image": "images_tcia/PANCREAS_0031.nii", + "label": "label_tcia_multiorgan+rkidney/label0031.nii" + }, + { + "image": "images_tcia/PANCREAS_0035.nii", + "label": "label_tcia_multiorgan+rkidney/label0035.nii" + }, + { + "image": "images_tcia/PANCREAS_0025.nii", + "label": "label_tcia_multiorgan+rkidney/label0025.nii" + } + ] +} diff --git a/vista3d/data/jsons/NLST_5_folds.json b/vista3d/data/jsons/NLST_5_folds.json new file mode 100644 index 0000000..619d414 --- /dev/null +++ b/vista3d/data/jsons/NLST_5_folds.json @@ -0,0 +1,21888 @@ +{ + "training": [ + { + "image": "102913/4_1opasevzoomb30f37021206030na.nii.gz", + "pseudo_label": "102913/4_1opasevzoomb30f37021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102913/4_1opasevzoomb30f37021206030na/4_1opasevzoomb30f37021206030na_seg.nii.gz" + }, + { + "image": "102913/2_0opasevzoomb50f36021206030na.nii.gz", + "pseudo_label": "102913/2_0opasevzoomb50f36021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102913/2_0opasevzoomb50f36021206030na/2_0opasevzoomb50f36021206030na_seg.nii.gz" + }, + { + "image": "102913/2_2opasevzoomb50f37021206030na.nii.gz", + "pseudo_label": "102913/2_2opasevzoomb50f37021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102913/2_2opasevzoomb50f37021206030na/2_2opasevzoomb50f37021206030na_seg.nii.gz" + }, + { + "image": "102913/3_1opasevzoomb50f37021206030na.nii.gz", + "pseudo_label": "102913/3_1opasevzoomb50f37021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102913/3_1opasevzoomb50f37021206030na/3_1opasevzoomb50f37021206030na_seg.nii.gz" + }, + { + "image": "102913/3_0opasevzoomb30f36021206030na.nii.gz", + "pseudo_label": "102913/3_0opasevzoomb30f36021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102913/3_0opasevzoomb30f36021206030na/3_0opasevzoomb30f36021206030na_seg.nii.gz" + }, + { + "image": "106739/2_1opagels16standard3202514040014.nii.gz", + "pseudo_label": "106739/2_1opagels16standard3202514040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106739/2_1opagels16standard3202514040014/2_1opagels16standard3202514040014_seg.nii.gz" + }, + { + "image": "106739/2_2opagels16standard3202514040014.nii.gz", + "pseudo_label": "106739/2_2opagels16standard3202514040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106739/2_2opagels16standard3202514040014/2_2opagels16standard3202514040014_seg.nii.gz" + }, + { + "image": "107864/3_1opagels16standard3062512000na.nii.gz", + "pseudo_label": "107864/3_1opagels16standard3062512000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107864/3_1opagels16standard3062512000na/3_1opagels16standard3062512000na_seg.nii.gz" + }, + { + "image": "107864/3_0opagelsqxbone3242512048015.nii.gz", + "pseudo_label": "107864/3_0opagelsqxbone3242512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107864/3_0opagelsqxbone3242512048015/3_0opagelsqxbone3242512048015_seg.nii.gz" + }, + { + "image": "107864/2_0opagelsqxstandard3242512048015.nii.gz", + "pseudo_label": "107864/2_0opagelsqxstandard3242512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107864/2_0opagelsqxstandard3242512048015/2_0opagelsqxstandard3242512048015_seg.nii.gz" + }, + { + "image": "100628/3_0opatoaqul4fc512852212040nana.nii.gz", + "pseudo_label": "100628/3_0opatoaqul4fc512852212040nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100628/3_0opatoaqul4fc512852212040nana/3_0opatoaqul4fc512852212040nana_seg.nii.gz" + }, + { + "image": "100628/3_2opatoaqul4fc512922212040nana.nii.gz", + "pseudo_label": "100628/3_2opatoaqul4fc512922212040nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100628/3_2opatoaqul4fc512922212040nana/3_2opatoaqul4fc512922212040nana_seg.nii.gz" + }, + { + "image": "100628/3_1opatoaqul4fc512844212040nana.nii.gz", + "pseudo_label": "100628/3_1opatoaqul4fc512844212040nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100628/3_1opatoaqul4fc512844212040nana/3_1opatoaqul4fc512844212040nana_seg.nii.gz" + }, + { + "image": "103785/0_0opaphmx8000d33132120790112.nii.gz", + "pseudo_label": "103785/0_0opaphmx8000d33132120790112.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103785/0_0opaphmx8000d33132120790112/0_0opaphmx8000d33132120790112_seg.nii.gz" + }, + { + "image": "103785/0_1opaphmx8000c31532120600118.nii.gz", + "pseudo_label": "103785/0_1opaphmx8000c31532120600118.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103785/0_1opaphmx8000c31532120600118/0_1opaphmx8000c31532120600118_seg.nii.gz" + }, + { + "image": "103785/0_0opaphmx8000c32832120790112.nii.gz", + "pseudo_label": "103785/0_0opaphmx8000c32832120790112.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103785/0_0opaphmx8000c32832120790112/0_0opaphmx8000c32832120790112_seg.nii.gz" + }, + { + "image": "103785/0_1opaphmx8000d31532120600118.nii.gz", + "pseudo_label": "103785/0_1opaphmx8000d31532120600118.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103785/0_1opaphmx8000d31532120600118/0_1opaphmx8000d31532120600118_seg.nii.gz" + }, + { + "image": "103785/8241_2opaphmx8000b3563212039018.nii.gz", + "pseudo_label": "103785/8241_2opaphmx8000b3563212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103785/8241_2opaphmx8000b3563212039018/8241_2opaphmx8000b3563212039018_seg.nii.gz" + }, + { + "image": "103726/2_2opasevzoomb30f33021208040na.nii.gz", + "pseudo_label": "103726/2_2opasevzoomb30f33021208040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103726/2_2opasevzoomb30f33021208040na/2_2opasevzoomb30f33021208040na_seg.nii.gz" + }, + { + "image": "103726/3_0opasevzoomb50f330214012060na.nii.gz", + "pseudo_label": "103726/3_0opasevzoomb50f330214012060na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103726/3_0opasevzoomb50f330214012060na/3_0opasevzoomb50f330214012060na_seg.nii.gz" + }, + { + "image": "103726/3_2opasevzoomb50f33021208040na.nii.gz", + "pseudo_label": "103726/3_2opasevzoomb50f33021208040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103726/3_2opasevzoomb50f33021208040na/3_2opasevzoomb50f33021208040na_seg.nii.gz" + }, + { + "image": "103726/2_0opasevzoomb30f330214012060na.nii.gz", + "pseudo_label": "103726/2_0opasevzoomb30f330214012060na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103726/2_0opasevzoomb30f330214012060na/2_0opasevzoomb30f330214012060na_seg.nii.gz" + }, + { + "image": "103726/2_1opasevzoomb30f33021208040na.nii.gz", + "pseudo_label": "103726/2_1opasevzoomb30f33021208040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103726/2_1opasevzoomb30f33021208040na/2_1opasevzoomb30f33021208040na_seg.nii.gz" + }, + { + "image": "103726/3_1opasevzoomb50f33021208040na.nii.gz", + "pseudo_label": "103726/3_1opasevzoomb50f33021208040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103726/3_1opasevzoomb50f33021208040na/3_1opasevzoomb50f33021208040na_seg.nii.gz" + }, + { + "image": "110659/2_1opasevzoomb30f34621207540na.nii.gz", + "pseudo_label": "110659/2_1opasevzoomb30f34621207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110659/2_1opasevzoomb30f34621207540na/2_1opasevzoomb30f34621207540na_seg.nii.gz" + }, + { + "image": "110659/3_0opasevzoomb50f35021207540na.nii.gz", + "pseudo_label": "110659/3_0opasevzoomb50f35021207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110659/3_0opasevzoomb50f35021207540na/3_0opasevzoomb50f35021207540na_seg.nii.gz" + }, + { + "image": "111144/2_1opasesen16b30f28821204032na.nii.gz", + "pseudo_label": "111144/2_1opasesen16b30f28821204032na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111144/2_1opasesen16b30f28821204032na/2_1opasesen16b30f28821204032na_seg.nii.gz" + }, + { + "image": "111144/2_2opasesen16b30f29021204032na.nii.gz", + "pseudo_label": "111144/2_2opasesen16b30f29021204032na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111144/2_2opasesen16b30f29021204032na/2_2opasesen16b30f29021204032na_seg.nii.gz" + }, + { + "image": "111848/6_0opasevzoomb30f36021206030na.nii.gz", + "pseudo_label": "111848/6_0opasevzoomb30f36021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111848/6_0opasevzoomb30f36021206030na/6_0opasevzoomb30f36021206030na_seg.nii.gz" + }, + { + "image": "111848/3_0opasevzoomb30f36051206030na.nii.gz", + "pseudo_label": "111848/3_0opasevzoomb30f36051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111848/3_0opasevzoomb30f36051206030na/3_0opasevzoomb30f36051206030na_seg.nii.gz" + }, + { + "image": "111848/4_0opasevzoomb50f36051206030na.nii.gz", + "pseudo_label": "111848/4_0opasevzoomb50f36051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111848/4_0opasevzoomb50f36051206030na/4_0opasevzoomb50f36051206030na_seg.nii.gz" + }, + { + "image": "108028/2_2opagelsqxstandard3172514040015.nii.gz", + "pseudo_label": "108028/2_2opagelsqxstandard3172514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108028/2_2opagelsqxstandard3172514040015/2_2opagelsqxstandard3172514040015_seg.nii.gz" + }, + { + "image": "108028/2_1opagelsqxstandard3202514040015.nii.gz", + "pseudo_label": "108028/2_1opagelsqxstandard3202514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108028/2_1opagelsqxstandard3202514040015/2_1opagelsqxstandard3202514040015_seg.nii.gz" + }, + { + "image": "108028/2_0opagelsplusstandard3402514040015.nii.gz", + "pseudo_label": "108028/2_0opagelsplusstandard3402514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108028/2_0opagelsplusstandard3402514040015/2_0opagelsplusstandard3402514040015_seg.nii.gz" + }, + { + "image": "108162/2_2opagelsqxstandard36025120640115.nii.gz", + "pseudo_label": "108162/2_2opagelsqxstandard36025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108162/2_2opagelsqxstandard36025120640115/2_2opagelsqxstandard36025120640115_seg.nii.gz" + }, + { + "image": "105899/4_2opasevzoomb50f30051206030na.nii.gz", + "pseudo_label": "105899/4_2opasevzoomb50f30051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105899/4_2opasevzoomb50f30051206030na/4_2opasevzoomb50f30051206030na_seg.nii.gz" + }, + { + "image": "105899/4_1opasevzoomb50f29051206030na.nii.gz", + "pseudo_label": "105899/4_1opasevzoomb50f29051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105899/4_1opasevzoomb50f29051206030na/4_1opasevzoomb50f29051206030na_seg.nii.gz" + }, + { + "image": "105899/5_1opasevzoomb30f29051206030na.nii.gz", + "pseudo_label": "105899/5_1opasevzoomb30f29051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105899/5_1opasevzoomb30f29051206030na/5_1opasevzoomb30f29051206030na_seg.nii.gz" + }, + { + "image": "105899/5_2opasevzoomb30f30051206030na.nii.gz", + "pseudo_label": "105899/5_2opasevzoomb30f30051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105899/5_2opasevzoomb30f30051206030na/5_2opasevzoomb30f30051206030na_seg.nii.gz" + }, + { + "image": "105899/6_2opasevzoomb30f30021206030na.nii.gz", + "pseudo_label": "105899/6_2opasevzoomb30f30021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105899/6_2opasevzoomb30f30021206030na/6_2opasevzoomb30f30021206030na_seg.nii.gz" + }, + { + "image": "105899/4_0opasevzoomb50f31251206030na.nii.gz", + "pseudo_label": "105899/4_0opasevzoomb50f31251206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105899/4_0opasevzoomb50f31251206030na/4_0opasevzoomb50f31251206030na_seg.nii.gz" + }, + { + "image": "105899/3_1opasevzoomb50f29021206030na.nii.gz", + "pseudo_label": "105899/3_1opasevzoomb50f29021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105899/3_1opasevzoomb50f29021206030na/3_1opasevzoomb50f29021206030na_seg.nii.gz" + }, + { + "image": "105899/6_1opasevzoomb30f29021206030na.nii.gz", + "pseudo_label": "105899/6_1opasevzoomb30f29021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105899/6_1opasevzoomb30f29021206030na/6_1opasevzoomb30f29021206030na_seg.nii.gz" + }, + { + "image": "105899/3_0opasevzoomb50f31221206030na.nii.gz", + "pseudo_label": "105899/3_0opasevzoomb50f31221206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105899/3_0opasevzoomb50f31221206030na/3_0opasevzoomb50f31221206030na_seg.nii.gz" + }, + { + "image": "105899/3_2opasevzoomb50f30021206030na.nii.gz", + "pseudo_label": "105899/3_2opasevzoomb50f30021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105899/3_2opasevzoomb50f30021206030na/3_2opasevzoomb50f30021206030na_seg.nii.gz" + }, + { + "image": "105899/6_0opasevzoomb30f31221206030na.nii.gz", + "pseudo_label": "105899/6_0opasevzoomb30f31221206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105899/6_0opasevzoomb30f31221206030na/6_0opasevzoomb30f31221206030na_seg.nii.gz" + }, + { + "image": "105899/5_0opasevzoomb30f31251206030na.nii.gz", + "pseudo_label": "105899/5_0opasevzoomb30f31251206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105899/5_0opasevzoomb30f31251206030na/5_0opasevzoomb30f31251206030na_seg.nii.gz" + }, + { + "image": "107019/3_1opasesen16b30f35821204032na.nii.gz", + "pseudo_label": "107019/3_1opasesen16b30f35821204032na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107019/3_1opasesen16b30f35821204032na/3_1opasesen16b30f35821204032na_seg.nii.gz" + }, + { + "image": "107019/2_0opasesen16b30f30621206048na.nii.gz", + "pseudo_label": "107019/2_0opasesen16b30f30621206048na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107019/2_0opasesen16b30f30621206048na/2_0opasesen16b30f30621206048na_seg.nii.gz" + }, + { + "image": "112391/3_0opagels16standard35025120600114.nii.gz", + "pseudo_label": "112391/3_0opagels16standard35025120600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112391/3_0opagels16standard35025120600114/3_0opagels16standard35025120600114_seg.nii.gz" + }, + { + "image": "104022/2_1opagelsqxstandard3202512048015.nii.gz", + "pseudo_label": "104022/2_1opagelsqxstandard3202512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104022/2_1opagelsqxstandard3202512048015/2_1opagelsqxstandard3202512048015_seg.nii.gz" + }, + { + "image": "112831/2_0opagehsqxstandard31025120560115.nii.gz", + "pseudo_label": "112831/2_0opagehsqxstandard31025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112831/2_0opagehsqxstandard31025120560115/2_0opagehsqxstandard31025120560115_seg.nii.gz" + }, + { + "image": "112831/2_1opagehsqxstandard31025120560115.nii.gz", + "pseudo_label": "112831/2_1opagehsqxstandard31025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112831/2_1opagehsqxstandard31025120560115/2_1opagehsqxstandard31025120560115_seg.nii.gz" + }, + { + "image": "112831/3_1opagehsqxbone31025120560115.nii.gz", + "pseudo_label": "112831/3_1opagehsqxbone31025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112831/3_1opagehsqxbone31025120560115/3_1opagehsqxbone31025120560115_seg.nii.gz" + }, + { + "image": "111191/0_0opaphmx8000c3423212039018.nii.gz", + "pseudo_label": "111191/0_0opaphmx8000c3423212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111191/0_0opaphmx8000c3423212039018/0_0opaphmx8000c3423212039018_seg.nii.gz" + }, + { + "image": "102187/2_1opasesen16b30f38021407056na.nii.gz", + "pseudo_label": "102187/2_1opasesen16b30f38021407056na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102187/2_1opasesen16b30f38021407056na/2_1opasesen16b30f38021407056na_seg.nii.gz" + }, + { + "image": "102187/2_2opasesen16b30f31821204032na.nii.gz", + "pseudo_label": "102187/2_2opasesen16b30f31821204032na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102187/2_2opasesen16b30f31821204032na/2_2opasesen16b30f31821204032na_seg.nii.gz" + }, + { + "image": "102187/2_0opasevzoomb30f32021206030na.nii.gz", + "pseudo_label": "102187/2_0opasevzoomb30f32021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102187/2_0opasevzoomb30f32021206030na/2_0opasevzoomb30f32021206030na_seg.nii.gz" + }, + { + "image": "102187/3_0opasevzoomb30f32021206030na.nii.gz", + "pseudo_label": "102187/3_0opasevzoomb30f32021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102187/3_0opasevzoomb30f32021206030na/3_0opasevzoomb30f32021206030na_seg.nii.gz" + }, + { + "image": "106312/2_0opagelsqxstandard28025120640115.nii.gz", + "pseudo_label": "106312/2_0opagelsqxstandard28025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106312/2_0opagelsqxstandard28025120640115/2_0opagelsqxstandard28025120640115_seg.nii.gz" + }, + { + "image": "106312/2_2opagelsqxstandard3502512048015.nii.gz", + "pseudo_label": "106312/2_2opagelsqxstandard3502512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106312/2_2opagelsqxstandard3502512048015/2_2opagelsqxstandard3502512048015_seg.nii.gz" + }, + { + "image": "106312/2_1opagelsqxstandard3302512048015.nii.gz", + "pseudo_label": "106312/2_1opagelsqxstandard3302512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106312/2_1opagelsqxstandard3302512048015/2_1opagelsqxstandard3302512048015_seg.nii.gz" + }, + { + "image": "106484/2_1opasesen16b30f31021204032na.nii.gz", + "pseudo_label": "106484/2_1opasesen16b30f31021204032na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106484/2_1opasesen16b30f31021204032na/2_1opasesen16b30f31021204032na_seg.nii.gz" + }, + { + "image": "106484/2_2opasesen16b30f31321204032na.nii.gz", + "pseudo_label": "106484/2_2opasesen16b30f31321204032na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106484/2_2opasesen16b30f31321204032na/2_2opasesen16b30f31321204032na_seg.nii.gz" + }, + { + "image": "100846/2_2opagelsplusstandard3202514040015.nii.gz", + "pseudo_label": "100846/2_2opagelsplusstandard3202514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100846/2_2opagelsplusstandard3202514040015/2_2opagelsplusstandard3202514040015_seg.nii.gz" + }, + { + "image": "100846/2_1opagelsplusstandard3112514040015.nii.gz", + "pseudo_label": "100846/2_1opagelsplusstandard3112514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100846/2_1opagelsplusstandard3112514040015/2_1opagelsplusstandard3112514040015_seg.nii.gz" + }, + { + "image": "100846/2_0opagelsplusstandard3202514040015.nii.gz", + "pseudo_label": "100846/2_0opagelsplusstandard3202514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100846/2_0opagelsplusstandard3202514040015/2_0opagelsplusstandard3202514040015_seg.nii.gz" + }, + { + "image": "106729/3_2opagels16standard37025140720114.nii.gz", + "pseudo_label": "106729/3_2opagels16standard37025140720114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106729/3_2opagels16standard37025140720114/3_2opagels16standard37025140720114_seg.nii.gz" + }, + { + "image": "106729/2_0opagels16bone36025120800114.nii.gz", + "pseudo_label": "106729/2_0opagels16bone36025120800114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106729/2_0opagels16bone36025120800114/2_0opagels16bone36025120800114_seg.nii.gz" + }, + { + "image": "106729/2_2opagels16bone37025140720114.nii.gz", + "pseudo_label": "106729/2_2opagels16bone37025140720114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106729/2_2opagels16bone37025140720114/2_2opagels16bone37025140720114_seg.nii.gz" + }, + { + "image": "106729/2_1opagels16bone36025120600114.nii.gz", + "pseudo_label": "106729/2_1opagels16bone36025120600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106729/2_1opagels16bone36025120600114/2_1opagels16bone36025120600114_seg.nii.gz" + }, + { + "image": "101217/2_2opagehsqxstandard35025120560115.nii.gz", + "pseudo_label": "101217/2_2opagehsqxstandard35025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101217/2_2opagehsqxstandard35025120560115/2_2opagehsqxstandard35025120560115_seg.nii.gz" + }, + { + "image": "101217/2_0opagehsqxstandard32025120560115.nii.gz", + "pseudo_label": "101217/2_0opagehsqxstandard32025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101217/2_0opagehsqxstandard32025120560115/2_0opagehsqxstandard32025120560115_seg.nii.gz" + }, + { + "image": "101217/2_1opagehsqxstandard35025120560115.nii.gz", + "pseudo_label": "101217/2_1opagehsqxstandard35025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101217/2_1opagehsqxstandard35025120560115/2_1opagehsqxstandard35025120560115_seg.nii.gz" + }, + { + "image": "101217/3_0opagehsqxbone32025120560115.nii.gz", + "pseudo_label": "101217/3_0opagehsqxbone32025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101217/3_0opagehsqxbone32025120560115/3_0opagehsqxbone32025120560115_seg.nii.gz" + }, + { + "image": "113321/1_1opagelspluslung39025120800115.nii.gz", + "pseudo_label": "113321/1_1opagelspluslung39025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113321/1_1opagelspluslung39025120800115/1_1opagelspluslung39025120800115_seg.nii.gz" + }, + { + "image": "113321/1_0opagelsplusstandard38925120800108.nii.gz", + "pseudo_label": "113321/1_0opagelsplusstandard38925120800108.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113321/1_0opagelsplusstandard38925120800108/1_0opagelsplusstandard38925120800108_seg.nii.gz" + }, + { + "image": "113321/1_0opagelspluslung38925120800108.nii.gz", + "pseudo_label": "113321/1_0opagelspluslung38925120800108.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113321/1_0opagelspluslung38925120800108/1_0opagelspluslung38925120800108_seg.nii.gz" + }, + { + "image": "113321/1_1opagelsplusstandard39025120800115.nii.gz", + "pseudo_label": "113321/1_1opagelsplusstandard39025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113321/1_1opagelsplusstandard39025120800115/1_1opagelsplusstandard39025120800115_seg.nii.gz" + }, + { + "image": "100983/2_1opagelsqxstandard3602514040015.nii.gz", + "pseudo_label": "100983/2_1opagelsqxstandard3602514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100983/2_1opagelsqxstandard3602514040015/2_1opagelsqxstandard3602514040015_seg.nii.gz" + }, + { + "image": "100983/2_2opagelsqxstandard3402514040015.nii.gz", + "pseudo_label": "100983/2_2opagelsqxstandard3402514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100983/2_2opagelsqxstandard3402514040015/2_2opagelsqxstandard3402514040015_seg.nii.gz" + }, + { + "image": "104065/3_0opasevzoomb50f380212016080na.nii.gz", + "pseudo_label": "104065/3_0opasevzoomb50f380212016080na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104065/3_0opasevzoomb50f380212016080na/3_0opasevzoomb50f380212016080na_seg.nii.gz" + }, + { + "image": "110340/2_1opasesen16b50f33021204530na.nii.gz", + "pseudo_label": "110340/2_1opasesen16b50f33021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110340/2_1opasesen16b50f33021204530na/2_1opasesen16b50f33021204530na_seg.nii.gz" + }, + { + "image": "110340/3_1opasesen16b30f33021204530na.nii.gz", + "pseudo_label": "110340/3_1opasesen16b30f33021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110340/3_1opasesen16b30f33021204530na/3_1opasesen16b30f33021204530na_seg.nii.gz" + }, + { + "image": "110340/2_0opasevzoomb50f32021206030na.nii.gz", + "pseudo_label": "110340/2_0opasevzoomb50f32021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110340/2_0opasevzoomb50f32021206030na/2_0opasevzoomb50f32021206030na_seg.nii.gz" + }, + { + "image": "110340/2_2opasesen16b50f32021204530na.nii.gz", + "pseudo_label": "110340/2_2opasesen16b50f32021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110340/2_2opasesen16b50f32021204530na/2_2opasesen16b50f32021204530na_seg.nii.gz" + }, + { + "image": "109306/2_0opasevzoomb30f340212016080na.nii.gz", + "pseudo_label": "109306/2_0opasevzoomb30f340212016080na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109306/2_0opasevzoomb30f340212016080na/2_0opasevzoomb30f340212016080na_seg.nii.gz" + }, + { + "image": "109306/3_1opagels16standard34025120720114.nii.gz", + "pseudo_label": "109306/3_1opagels16standard34025120720114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109306/3_1opagels16standard34025120720114/3_1opagels16standard34025120720114_seg.nii.gz" + }, + { + "image": "109306/2_1opagels16bone34025120720114.nii.gz", + "pseudo_label": "109306/2_1opagels16bone34025120720114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109306/2_1opagels16bone34025120720114/2_1opagels16bone34025120720114_seg.nii.gz" + }, + { + "image": "109306/2_2opagels16bone34025120600114.nii.gz", + "pseudo_label": "109306/2_2opagels16bone34025120600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109306/2_2opagels16bone34025120600114/2_2opagels16bone34025120600114_seg.nii.gz" + }, + { + "image": "106058/3_1opasevzoomb50f36021408040na.nii.gz", + "pseudo_label": "106058/3_1opasevzoomb50f36021408040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106058/3_1opasevzoomb50f36021408040na/3_1opasevzoomb50f36021408040na_seg.nii.gz" + }, + { + "image": "106058/102_0osagels16bone36025120600114.nii.gz", + "pseudo_label": "106058/102_0osagels16bone36025120600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106058/102_0osagels16bone36025120600114/102_0osagels16bone36025120600114_seg.nii.gz" + }, + { + "image": "109740/1_0opagelsplusstandard36025120800108.nii.gz", + "pseudo_label": "109740/1_0opagelsplusstandard36025120800108.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109740/1_0opagelsplusstandard36025120800108/1_0opagelsplusstandard36025120800108_seg.nii.gz" + }, + { + "image": "111704/2_0opagelsqxstandard32625120600115.nii.gz", + "pseudo_label": "111704/2_0opagelsqxstandard32625120600115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111704/2_0opagelsqxstandard32625120600115/2_0opagelsqxstandard32625120600115_seg.nii.gz" + }, + { + "image": "111704/2_1opagelsqxstandard3202512048015.nii.gz", + "pseudo_label": "111704/2_1opagelsqxstandard3202512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111704/2_1opagelsqxstandard3202512048015/2_1opagelsqxstandard3202512048015_seg.nii.gz" + }, + { + "image": "111704/2_2opagels16standard32025120571nana.nii.gz", + "pseudo_label": "111704/2_2opagels16standard32025120571nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111704/2_2opagels16standard32025120571nana/2_2opagels16standard32025120571nana_seg.nii.gz" + }, + { + "image": "107072/3_1opagelsqxstandard35025120640115.nii.gz", + "pseudo_label": "107072/3_1opagelsqxstandard35025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107072/3_1opagelsqxstandard35025120640115/3_1opagelsqxstandard35025120640115_seg.nii.gz" + }, + { + "image": "107072/2_0opagelsqxstandard35325120800115.nii.gz", + "pseudo_label": "107072/2_0opagelsqxstandard35325120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107072/2_0opagelsqxstandard35325120800115/2_0opagelsqxstandard35325120800115_seg.nii.gz" + }, + { + "image": "105585/3_1opagehsqxbone35025120560115.nii.gz", + "pseudo_label": "105585/3_1opagehsqxbone35025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105585/3_1opagehsqxbone35025120560115/3_1opagehsqxbone35025120560115_seg.nii.gz" + }, + { + "image": "105585/2_0opagehsqxstandard35025120560115.nii.gz", + "pseudo_label": "105585/2_0opagehsqxstandard35025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105585/2_0opagehsqxstandard35025120560115/2_0opagehsqxstandard35025120560115_seg.nii.gz" + }, + { + "image": "105585/2_1opagehsqxstandard35025120560115.nii.gz", + "pseudo_label": "105585/2_1opagehsqxstandard35025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105585/2_1opagehsqxstandard35025120560115/2_1opagehsqxstandard35025120560115_seg.nii.gz" + }, + { + "image": "102577/2_0opagelsplusstandard39425140800115.nii.gz", + "pseudo_label": "102577/2_0opagelsplusstandard39425140800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102577/2_0opagelsplusstandard39425140800115/2_0opagelsplusstandard39425140800115_seg.nii.gz" + }, + { + "image": "100717/2_0opagelsqxstandard3602512000na.nii.gz", + "pseudo_label": "100717/2_0opagelsqxstandard3602512000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100717/2_0opagelsqxstandard3602512000na/2_0opagelsqxstandard3602512000na_seg.nii.gz" + }, + { + "image": "101115/2_0opasevzoomb50f34021206030na.nii.gz", + "pseudo_label": "101115/2_0opasevzoomb50f34021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101115/2_0opasevzoomb50f34021206030na/2_0opasevzoomb50f34021206030na_seg.nii.gz" + }, + { + "image": "102305/5_2opasevzoomb30f33051206030na.nii.gz", + "pseudo_label": "102305/5_2opasevzoomb30f33051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102305/5_2opasevzoomb30f33051206030na/5_2opasevzoomb30f33051206030na_seg.nii.gz" + }, + { + "image": "102305/4_2opasevzoomb50f33051206030na.nii.gz", + "pseudo_label": "102305/4_2opasevzoomb50f33051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102305/4_2opasevzoomb50f33051206030na/4_2opasevzoomb50f33051206030na_seg.nii.gz" + }, + { + "image": "102305/6_0opasevzoomb30f36021206030na.nii.gz", + "pseudo_label": "102305/6_0opasevzoomb30f36021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102305/6_0opasevzoomb30f36021206030na/6_0opasevzoomb30f36021206030na_seg.nii.gz" + }, + { + "image": "102305/3_0opasevzoomb50f36021206030na.nii.gz", + "pseudo_label": "102305/3_0opasevzoomb50f36021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102305/3_0opasevzoomb50f36021206030na/3_0opasevzoomb50f36021206030na_seg.nii.gz" + }, + { + "image": "102305/5_1opasevzoomb30f32051206030na.nii.gz", + "pseudo_label": "102305/5_1opasevzoomb30f32051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102305/5_1opasevzoomb30f32051206030na/5_1opasevzoomb30f32051206030na_seg.nii.gz" + }, + { + "image": "102305/4_0opasevzoomb50f36051206030na.nii.gz", + "pseudo_label": "102305/4_0opasevzoomb50f36051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102305/4_0opasevzoomb50f36051206030na/4_0opasevzoomb50f36051206030na_seg.nii.gz" + }, + { + "image": "102305/3_1opasevzoomb50f32021206030na.nii.gz", + "pseudo_label": "102305/3_1opasevzoomb50f32021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102305/3_1opasevzoomb50f32021206030na/3_1opasevzoomb50f32021206030na_seg.nii.gz" + }, + { + "image": "109791/2_1opagelsqxstandard3502514040015.nii.gz", + "pseudo_label": "109791/2_1opagelsqxstandard3502514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109791/2_1opagelsqxstandard3502514040015/2_1opagelsqxstandard3502514040015_seg.nii.gz" + }, + { + "image": "109791/2_2opagelsqxstandard3402514040015.nii.gz", + "pseudo_label": "109791/2_2opagelsqxstandard3402514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109791/2_2opagelsqxstandard3402514040015/2_2opagelsqxstandard3402514040015_seg.nii.gz" + }, + { + "image": "109791/2_0opagelsqxstandard3512514040015.nii.gz", + "pseudo_label": "109791/2_0opagelsqxstandard3512514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109791/2_0opagelsqxstandard3512514040015/2_0opagelsqxstandard3512514040015_seg.nii.gz" + }, + { + "image": "108950/2_1opasesen16b30f34221204032na.nii.gz", + "pseudo_label": "108950/2_1opasesen16b30f34221204032na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108950/2_1opasesen16b30f34221204032na/2_1opasesen16b30f34221204032na_seg.nii.gz" + }, + { + "image": "108950/2_0opasesen16b30f33421206048na.nii.gz", + "pseudo_label": "108950/2_0opasesen16b30f33421206048na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108950/2_0opasesen16b30f33421206048na/2_0opasesen16b30f33421206048na_seg.nii.gz" + }, + { + "image": "108950/2_2opasesen16b30f34421204032na.nii.gz", + "pseudo_label": "108950/2_2opasesen16b30f34421204032na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108950/2_2opasesen16b30f34421204032na/2_2opasesen16b30f34421204032na_seg.nii.gz" + }, + { + "image": "112248/2_2opagehsqxstandard35025120560115.nii.gz", + "pseudo_label": "112248/2_2opagehsqxstandard35025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112248/2_2opagehsqxstandard35025120560115/2_2opagehsqxstandard35025120560115_seg.nii.gz" + }, + { + "image": "112248/2_1opagehsqxstandard35025120560115.nii.gz", + "pseudo_label": "112248/2_1opagehsqxstandard35025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112248/2_1opagehsqxstandard35025120560115/2_1opagehsqxstandard35025120560115_seg.nii.gz" + }, + { + "image": "112248/3_0opagehsqxbone35025120560115.nii.gz", + "pseudo_label": "112248/3_0opagehsqxbone35025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112248/3_0opagehsqxbone35025120560115/3_0opagehsqxbone35025120560115_seg.nii.gz" + }, + { + "image": "104792/6_1opasevzoomb30f26451206030na.nii.gz", + "pseudo_label": "104792/6_1opasevzoomb30f26451206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104792/6_1opasevzoomb30f26451206030na/6_1opasevzoomb30f26451206030na_seg.nii.gz" + }, + { + "image": "104792/3_0opasevzoomb30f29651206030na.nii.gz", + "pseudo_label": "104792/3_0opasevzoomb30f29651206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104792/3_0opasevzoomb30f29651206030na/3_0opasevzoomb30f29651206030na_seg.nii.gz" + }, + { + "image": "104792/4_2opasevzoomb50f27251206030na.nii.gz", + "pseudo_label": "104792/4_2opasevzoomb50f27251206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104792/4_2opasevzoomb50f27251206030na/4_2opasevzoomb50f27251206030na_seg.nii.gz" + }, + { + "image": "104792/5_0opasevzoomb50f29621206030na.nii.gz", + "pseudo_label": "104792/5_0opasevzoomb50f29621206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104792/5_0opasevzoomb50f29621206030na/5_0opasevzoomb50f29621206030na_seg.nii.gz" + }, + { + "image": "104792/5_2opasevzoomb50f27221206030na.nii.gz", + "pseudo_label": "104792/5_2opasevzoomb50f27221206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104792/5_2opasevzoomb50f27221206030na/5_2opasevzoomb50f27221206030na_seg.nii.gz" + }, + { + "image": "104792/3_2opasevzoomb30f27251206030na.nii.gz", + "pseudo_label": "104792/3_2opasevzoomb30f27251206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104792/3_2opasevzoomb30f27251206030na/3_2opasevzoomb30f27251206030na_seg.nii.gz" + }, + { + "image": "104792/7_1opasevzoomb50f26751206030na.nii.gz", + "pseudo_label": "104792/7_1opasevzoomb50f26751206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104792/7_1opasevzoomb50f26751206030na/7_1opasevzoomb50f26751206030na_seg.nii.gz" + }, + { + "image": "106863/2_0opagels16bone3602512040014.nii.gz", + "pseudo_label": "106863/2_0opagels16bone3602512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106863/2_0opagels16bone3602512040014/2_0opagels16bone3602512040014_seg.nii.gz" + }, + { + "image": "106863/2_1opagelspr16bone3502512040014.nii.gz", + "pseudo_label": "106863/2_1opagelspr16bone3502512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106863/2_1opagelspr16bone3502512040014/2_1opagelspr16bone3502512040014_seg.nii.gz" + }, + { + "image": "106863/2_2opagelspr16bone3302512048014.nii.gz", + "pseudo_label": "106863/2_2opagelspr16bone3302512048014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106863/2_2opagelspr16bone3302512048014/2_2opagelspr16bone3302512048014_seg.nii.gz" + }, + { + "image": "106863/3_0opagels16standard3602512040014.nii.gz", + "pseudo_label": "106863/3_0opagels16standard3602512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106863/3_0opagels16standard3602512040014/3_0opagels16standard3602512040014_seg.nii.gz" + }, + { + "image": "106863/3_1opagelspr16standard3502512040014.nii.gz", + "pseudo_label": "106863/3_1opagelspr16standard3502512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106863/3_1opagelspr16standard3502512040014/3_1opagelspr16standard3502512040014_seg.nii.gz" + }, + { + "image": "101379/5_1opasesen16b30f34021204530na.nii.gz", + "pseudo_label": "101379/5_1opasesen16b30f34021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101379/5_1opasesen16b30f34021204530na/5_1opasesen16b30f34021204530na_seg.nii.gz" + }, + { + "image": "101379/4_2opasesen16b30f33051204530na.nii.gz", + "pseudo_label": "101379/4_2opasesen16b30f33051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101379/4_2opasesen16b30f33051204530na/4_2opasesen16b30f33051204530na_seg.nii.gz" + }, + { + "image": "101379/6_1opasesen16b50f34051204530na.nii.gz", + "pseudo_label": "101379/6_1opasesen16b50f34051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101379/6_1opasesen16b50f34051204530na/6_1opasesen16b50f34051204530na_seg.nii.gz" + }, + { + "image": "101379/7_2opasesen16b30f33021204530na.nii.gz", + "pseudo_label": "101379/7_2opasesen16b30f33021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101379/7_2opasesen16b30f33021204530na/7_2opasesen16b30f33021204530na_seg.nii.gz" + }, + { + "image": "101379/8_2opasesen16b50f33051204530na.nii.gz", + "pseudo_label": "101379/8_2opasesen16b50f33051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101379/8_2opasesen16b50f33051204530na/8_2opasesen16b50f33051204530na_seg.nii.gz" + }, + { + "image": "101379/4_0opasesen16b50f31651206040na.nii.gz", + "pseudo_label": "101379/4_0opasesen16b50f31651206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101379/4_0opasesen16b50f31651206040na/4_0opasesen16b50f31651206040na_seg.nii.gz" + }, + { + "image": "101379/4_1opasesen16b30f34051204530na.nii.gz", + "pseudo_label": "101379/4_1opasesen16b30f34051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101379/4_1opasesen16b30f34051204530na/4_1opasesen16b30f34051204530na_seg.nii.gz" + }, + { + "image": "101379/3_0opasesen16b30f33551206040na.nii.gz", + "pseudo_label": "101379/3_0opasesen16b30f33551206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101379/3_0opasesen16b30f33551206040na/3_0opasesen16b30f33551206040na_seg.nii.gz" + }, + { + "image": "100182/2_2opagelsplusstandard32025140908nana.nii.gz", + "pseudo_label": "100182/2_2opagelsplusstandard32025140908nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100182/2_2opagelsplusstandard32025140908nana/2_2opagelsplusstandard32025140908nana_seg.nii.gz" + }, + { + "image": "102273/2_1opagelsqxstandard3902512048015.nii.gz", + "pseudo_label": "102273/2_1opagelsqxstandard3902512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102273/2_1opagelsqxstandard3902512048015/2_1opagelsqxstandard3902512048015_seg.nii.gz" + }, + { + "image": "102273/2_2opagelsqxstandard37025120640115.nii.gz", + "pseudo_label": "102273/2_2opagelsqxstandard37025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102273/2_2opagelsqxstandard37025120640115/2_2opagelsqxstandard37025120640115_seg.nii.gz" + }, + { + "image": "107128/2_2opagelsqxstandard36025120640115.nii.gz", + "pseudo_label": "107128/2_2opagelsqxstandard36025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107128/2_2opagelsqxstandard36025120640115/2_2opagelsqxstandard36025120640115_seg.nii.gz" + }, + { + "image": "107128/3_0opagelsqxbone36025120560115.nii.gz", + "pseudo_label": "107128/3_0opagelsqxbone36025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107128/3_0opagelsqxbone36025120560115/3_0opagelsqxbone36025120560115_seg.nii.gz" + }, + { + "image": "107128/3_2opagelsqxbone36025120640115.nii.gz", + "pseudo_label": "107128/3_2opagelsqxbone36025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107128/3_2opagelsqxbone36025120640115/3_2opagelsqxbone36025120640115_seg.nii.gz" + }, + { + "image": "107128/2_1opagelsqxstandard33425120640115.nii.gz", + "pseudo_label": "107128/2_1opagelsqxstandard33425120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107128/2_1opagelsqxstandard33425120640115/2_1opagelsqxstandard33425120640115_seg.nii.gz" + }, + { + "image": "107128/3_1opagelsqxbone33425120640115.nii.gz", + "pseudo_label": "107128/3_1opagelsqxbone33425120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107128/3_1opagelsqxbone33425120640115/3_1opagelsqxbone33425120640115_seg.nii.gz" + }, + { + "image": "107128/2_0opagelsqxstandard36025120560115.nii.gz", + "pseudo_label": "107128/2_0opagelsqxstandard36025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107128/2_0opagelsqxstandard36025120560115/2_0opagelsqxstandard36025120560115_seg.nii.gz" + }, + { + "image": "110169/2_1opagelsplusstandard3202514040015.nii.gz", + "pseudo_label": "110169/2_1opagelsplusstandard3202514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110169/2_1opagelsplusstandard3202514040015/2_1opagelsplusstandard3202514040015_seg.nii.gz" + }, + { + "image": "110169/2_0opagelsplusstandard3002514040015.nii.gz", + "pseudo_label": "110169/2_0opagelsplusstandard3002514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110169/2_0opagelsplusstandard3002514040015/2_0opagelsplusstandard3002514040015_seg.nii.gz" + }, + { + "image": "110169/2_2opagelsplusstandard3202514040015.nii.gz", + "pseudo_label": "110169/2_2opagelsplusstandard3202514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110169/2_2opagelsplusstandard3202514040015/2_2opagelsplusstandard3202514040015_seg.nii.gz" + }, + { + "image": "101644/2_1opasesen16b50f33021204530na.nii.gz", + "pseudo_label": "101644/2_1opasesen16b50f33021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101644/2_1opasesen16b50f33021204530na/2_1opasesen16b50f33021204530na_seg.nii.gz" + }, + { + "image": "101644/3_0opasevzoomb30f36221208040na.nii.gz", + "pseudo_label": "101644/3_0opasevzoomb30f36221208040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101644/3_0opasevzoomb30f36221208040na/3_0opasevzoomb30f36221208040na_seg.nii.gz" + }, + { + "image": "101644/3_1opasesen16b30f33021204530na.nii.gz", + "pseudo_label": "101644/3_1opasesen16b30f33021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101644/3_1opasesen16b30f33021204530na/3_1opasesen16b30f33021204530na_seg.nii.gz" + }, + { + "image": "101644/2_0opasevzoomb50f36221208040na.nii.gz", + "pseudo_label": "101644/2_0opasevzoomb50f36221208040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101644/2_0opasevzoomb50f36221208040na/2_0opasevzoomb50f36221208040na_seg.nii.gz" + }, + { + "image": "101318/3_1opatoaqul4fc513613212060nana.nii.gz", + "pseudo_label": "101318/3_1opatoaqul4fc513613212060nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101318/3_1opatoaqul4fc513613212060nana/3_1opatoaqul4fc513613212060nana_seg.nii.gz" + }, + { + "image": "106457/2_2opagehsqxstandard32025120560115.nii.gz", + "pseudo_label": "106457/2_2opagehsqxstandard32025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106457/2_2opagehsqxstandard32025120560115/2_2opagehsqxstandard32025120560115_seg.nii.gz" + }, + { + "image": "106457/3_0opagehsqxbone32025120640115.nii.gz", + "pseudo_label": "106457/3_0opagehsqxbone32025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106457/3_0opagehsqxbone32025120640115/3_0opagehsqxbone32025120640115_seg.nii.gz" + }, + { + "image": "106457/2_0opagehsqxstandard32025120640115.nii.gz", + "pseudo_label": "106457/2_0opagehsqxstandard32025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106457/2_0opagehsqxstandard32025120640115/2_0opagehsqxstandard32025120640115_seg.nii.gz" + }, + { + "image": "100394/5_1opasesen16b50f29251204530na.nii.gz", + "pseudo_label": "100394/5_1opasesen16b50f29251204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100394/5_1opasesen16b50f29251204530na/5_1opasesen16b50f29251204530na_seg.nii.gz" + }, + { + "image": "100394/3_2opasesen16b30f27451204530na.nii.gz", + "pseudo_label": "100394/3_2opasesen16b30f27451204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100394/3_2opasesen16b30f27451204530na/3_2opasesen16b30f27451204530na_seg.nii.gz" + }, + { + "image": "100394/5_0opasesen16b50f29621206040na.nii.gz", + "pseudo_label": "100394/5_0opasesen16b50f29621206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100394/5_0opasesen16b50f29621206040na/5_0opasesen16b50f29621206040na_seg.nii.gz" + }, + { + "image": "100394/5_2opasesen16b50f27451204530na.nii.gz", + "pseudo_label": "100394/5_2opasesen16b50f27451204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100394/5_2opasesen16b50f27451204530na/5_2opasesen16b50f27451204530na_seg.nii.gz" + }, + { + "image": "100394/3_0opasesen16b30f29651206040na.nii.gz", + "pseudo_label": "100394/3_0opasesen16b30f29651206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100394/3_0opasesen16b30f29651206040na/3_0opasesen16b30f29651206040na_seg.nii.gz" + }, + { + "image": "100394/6_0opasesen16b30f29621206040na.nii.gz", + "pseudo_label": "100394/6_0opasesen16b30f29621206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100394/6_0opasesen16b30f29621206040na/6_0opasesen16b30f29621206040na_seg.nii.gz" + }, + { + "image": "100394/4_0opasesen16b50f29651206040na.nii.gz", + "pseudo_label": "100394/4_0opasesen16b50f29651206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100394/4_0opasesen16b50f29651206040na/4_0opasesen16b50f29651206040na_seg.nii.gz" + }, + { + "image": "100394/6_2opasesen16b50f27421204530na.nii.gz", + "pseudo_label": "100394/6_2opasesen16b50f27421204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100394/6_2opasesen16b50f27421204530na/6_2opasesen16b50f27421204530na_seg.nii.gz" + }, + { + "image": "100394/3_1opasesen16b30f29251204530na.nii.gz", + "pseudo_label": "100394/3_1opasesen16b30f29251204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100394/3_1opasesen16b30f29251204530na/3_1opasesen16b30f29251204530na_seg.nii.gz" + }, + { + "image": "107346/2_2opasevzoomb30f33021208040na.nii.gz", + "pseudo_label": "107346/2_2opasevzoomb30f33021208040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107346/2_2opasevzoomb30f33021208040na/2_2opasevzoomb30f33021208040na_seg.nii.gz" + }, + { + "image": "107346/3_2opasevzoomb50f33021208040na.nii.gz", + "pseudo_label": "107346/3_2opasevzoomb50f33021208040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107346/3_2opasevzoomb50f33021208040na/3_2opasevzoomb50f33021208040na_seg.nii.gz" + }, + { + "image": "107346/2_1opasevzoomb30f32021408040na.nii.gz", + "pseudo_label": "107346/2_1opasevzoomb30f32021408040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107346/2_1opasevzoomb30f32021408040na/2_1opasevzoomb30f32021408040na_seg.nii.gz" + }, + { + "image": "107346/3_0opasevzoomb50f310212012060na.nii.gz", + "pseudo_label": "107346/3_0opasevzoomb50f310212012060na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107346/3_0opasevzoomb50f310212012060na/3_0opasevzoomb50f310212012060na_seg.nii.gz" + }, + { + "image": "107346/2_0opasevzoomb30f310212012060na.nii.gz", + "pseudo_label": "107346/2_0opasevzoomb30f310212012060na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107346/2_0opasevzoomb30f310212012060na/2_0opasevzoomb30f310212012060na_seg.nii.gz" + }, + { + "image": "107346/3_1opasevzoomb50f32221408040na.nii.gz", + "pseudo_label": "107346/3_1opasevzoomb50f32221408040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107346/3_1opasevzoomb50f32221408040na/3_1opasevzoomb50f32221408040na_seg.nii.gz" + }, + { + "image": "108366/5_1opasevzoomb30f40051206030na.nii.gz", + "pseudo_label": "108366/5_1opasevzoomb30f40051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108366/5_1opasevzoomb30f40051206030na/5_1opasevzoomb30f40051206030na_seg.nii.gz" + }, + { + "image": "108366/6_2opasevzoomb30f38021206030na.nii.gz", + "pseudo_label": "108366/6_2opasevzoomb30f38021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108366/6_2opasevzoomb30f38021206030na/6_2opasevzoomb30f38021206030na_seg.nii.gz" + }, + { + "image": "108366/5_2opasevzoomb30f38051206030na.nii.gz", + "pseudo_label": "108366/5_2opasevzoomb30f38051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108366/5_2opasevzoomb30f38051206030na/5_2opasevzoomb30f38051206030na_seg.nii.gz" + }, + { + "image": "108366/5_0opasevzoomb30f36851206030na.nii.gz", + "pseudo_label": "108366/5_0opasevzoomb30f36851206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108366/5_0opasevzoomb30f36851206030na/5_0opasevzoomb30f36851206030na_seg.nii.gz" + }, + { + "image": "108366/4_1opasevzoomb50f40051206030na.nii.gz", + "pseudo_label": "108366/4_1opasevzoomb50f40051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108366/4_1opasevzoomb50f40051206030na/4_1opasevzoomb50f40051206030na_seg.nii.gz" + }, + { + "image": "108366/3_2opasevzoomb50f38021206030na.nii.gz", + "pseudo_label": "108366/3_2opasevzoomb50f38021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108366/3_2opasevzoomb50f38021206030na/3_2opasevzoomb50f38021206030na_seg.nii.gz" + }, + { + "image": "108366/4_0opasevzoomb50f36851206030na.nii.gz", + "pseudo_label": "108366/4_0opasevzoomb50f36851206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108366/4_0opasevzoomb50f36851206030na/4_0opasevzoomb50f36851206030na_seg.nii.gz" + }, + { + "image": "108366/4_2opasevzoomb50f38051206030na.nii.gz", + "pseudo_label": "108366/4_2opasevzoomb50f38051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108366/4_2opasevzoomb50f38051206030na/4_2opasevzoomb50f38051206030na_seg.nii.gz" + }, + { + "image": "113079/1_1opagelsplusstandard37025120800115.nii.gz", + "pseudo_label": "113079/1_1opagelsplusstandard37025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113079/1_1opagelsplusstandard37025120800115/1_1opagelsplusstandard37025120800115_seg.nii.gz" + }, + { + "image": "113079/1_2opatoaqul4fc303691212080nana.nii.gz", + "pseudo_label": "113079/1_2opatoaqul4fc303691212080nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113079/1_2opatoaqul4fc303691212080nana/1_2opatoaqul4fc303691212080nana_seg.nii.gz" + }, + { + "image": "113079/1_0opagelsplusstandard37025120800108.nii.gz", + "pseudo_label": "113079/1_0opagelsplusstandard37025120800108.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113079/1_0opagelsplusstandard37025120800108/1_0opagelsplusstandard37025120800108_seg.nii.gz" + }, + { + "image": "102193/3_2opagels16standard35025140600114.nii.gz", + "pseudo_label": "102193/3_2opagels16standard35025140600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102193/3_2opagels16standard35025140600114/3_2opagels16standard35025140600114_seg.nii.gz" + }, + { + "image": "102193/2_2opagels16bone35025140600114.nii.gz", + "pseudo_label": "102193/2_2opagels16bone35025140600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102193/2_2opagels16bone35025140600114/2_2opagels16bone35025140600114_seg.nii.gz" + }, + { + "image": "102193/2_1opagels16bone35025120600114.nii.gz", + "pseudo_label": "102193/2_1opagels16bone35025120600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102193/2_1opagels16bone35025120600114/2_1opagels16bone35025120600114_seg.nii.gz" + }, + { + "image": "110616/3_1opagelsqxstandard320514040015.nii.gz", + "pseudo_label": "110616/3_1opagelsqxstandard320514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110616/3_1opagelsqxstandard320514040015/3_1opagelsqxstandard320514040015_seg.nii.gz" + }, + { + "image": "110616/2_1opagelsqxstandard3202514040015.nii.gz", + "pseudo_label": "110616/2_1opagelsqxstandard3202514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110616/2_1opagelsqxstandard3202514040015/2_1opagelsqxstandard3202514040015_seg.nii.gz" + }, + { + "image": "105868/8208_1opaphmx8000d34732120800118.nii.gz", + "pseudo_label": "105868/8208_1opaphmx8000d34732120800118.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105868/8208_1opaphmx8000d34732120800118/8208_1opaphmx8000d34732120800118_seg.nii.gz" + }, + { + "image": "105868/0_0opaphmx8000d33632120600112.nii.gz", + "pseudo_label": "105868/0_0opaphmx8000d33632120600112.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105868/0_0opaphmx8000d33632120600112/0_0opaphmx8000d33632120600112_seg.nii.gz" + }, + { + "image": "100266/6_2opasesen16b50f29921204530na.nii.gz", + "pseudo_label": "100266/6_2opasesen16b50f29921204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100266/6_2opasesen16b50f29921204530na/6_2opasesen16b50f29921204530na_seg.nii.gz" + }, + { + "image": "100266/3_0opasesen16b30f36851206040na.nii.gz", + "pseudo_label": "100266/3_0opasesen16b30f36851206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100266/3_0opasesen16b30f36851206040na/3_0opasesen16b30f36851206040na_seg.nii.gz" + }, + { + "image": "100266/6_1opasevzoomb30f36621206030na.nii.gz", + "pseudo_label": "100266/6_1opasevzoomb30f36621206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100266/6_1opasevzoomb30f36621206030na/6_1opasevzoomb30f36621206030na_seg.nii.gz" + }, + { + "image": "100266/4_1opasevzoomb50f36651206030na.nii.gz", + "pseudo_label": "100266/4_1opasevzoomb50f36651206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100266/4_1opasevzoomb50f36651206030na/4_1opasevzoomb50f36651206030na_seg.nii.gz" + }, + { + "image": "100266/6_0opasesen16b30f36821206040na.nii.gz", + "pseudo_label": "100266/6_0opasesen16b30f36821206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100266/6_0opasesen16b30f36821206040na/6_0opasesen16b30f36821206040na_seg.nii.gz" + }, + { + "image": "100266/5_2opasesen16b50f29951204530na.nii.gz", + "pseudo_label": "100266/5_2opasesen16b50f29951204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100266/5_2opasesen16b50f29951204530na/5_2opasesen16b50f29951204530na_seg.nii.gz" + }, + { + "image": "100266/3_2opasesen16b30f29951204530na.nii.gz", + "pseudo_label": "100266/3_2opasesen16b30f29951204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100266/3_2opasesen16b30f29951204530na/3_2opasesen16b30f29951204530na_seg.nii.gz" + }, + { + "image": "100266/3_1opasevzoomb30f36651206030na.nii.gz", + "pseudo_label": "100266/3_1opasevzoomb30f36651206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100266/3_1opasevzoomb30f36651206030na/3_1opasevzoomb30f36651206030na_seg.nii.gz" + }, + { + "image": "100266/4_0opasesen16b50f36851206040na.nii.gz", + "pseudo_label": "100266/4_0opasesen16b50f36851206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100266/4_0opasesen16b50f36851206040na/4_0opasesen16b50f36851206040na_seg.nii.gz" + }, + { + "image": "107307/4_0opasesen16b50f35451204530na.nii.gz", + "pseudo_label": "107307/4_0opasesen16b50f35451204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107307/4_0opasesen16b50f35451204530na/4_0opasesen16b50f35451204530na_seg.nii.gz" + }, + { + "image": "107307/5_2opasesen16b50f32551204530na.nii.gz", + "pseudo_label": "107307/5_2opasesen16b50f32551204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107307/5_2opasesen16b50f32551204530na/5_2opasesen16b50f32551204530na_seg.nii.gz" + }, + { + "image": "107307/5_1opasesen16b30f32851204530na.nii.gz", + "pseudo_label": "107307/5_1opasesen16b30f32851204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107307/5_1opasesen16b30f32851204530na/5_1opasesen16b30f32851204530na_seg.nii.gz" + }, + { + "image": "107307/3_2opasesen16b30f31051204530na.nii.gz", + "pseudo_label": "107307/3_2opasesen16b30f31051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107307/3_2opasesen16b30f31051204530na/3_2opasesen16b30f31051204530na_seg.nii.gz" + }, + { + "image": "107307/7_1opasesen16b50f32851204530na.nii.gz", + "pseudo_label": "107307/7_1opasesen16b50f32851204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107307/7_1opasesen16b50f32851204530na/7_1opasesen16b50f32851204530na_seg.nii.gz" + }, + { + "image": "107307/3_0opasesen16b30f35451204530na.nii.gz", + "pseudo_label": "107307/3_0opasesen16b30f35451204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107307/3_0opasesen16b30f35451204530na/3_0opasesen16b30f35451204530na_seg.nii.gz" + }, + { + "image": "107307/7_2opasesen16b30f32551204530na.nii.gz", + "pseudo_label": "107307/7_2opasesen16b30f32551204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107307/7_2opasesen16b30f32551204530na/7_2opasesen16b30f32551204530na_seg.nii.gz" + }, + { + "image": "109156/7867_1opaphmx8000c3223212039018.nii.gz", + "pseudo_label": "109156/7867_1opaphmx8000c3223212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109156/7867_1opaphmx8000c3223212039018/7867_1opaphmx8000c3223212039018_seg.nii.gz" + }, + { + "image": "109156/7730_0opaphmx8000c3303212039018.nii.gz", + "pseudo_label": "109156/7730_0opaphmx8000c3303212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109156/7730_0opaphmx8000c3303212039018/7730_0opaphmx8000c3303212039018_seg.nii.gz" + }, + { + "image": "109156/7731_0opaphmx8000d3303212039018.nii.gz", + "pseudo_label": "109156/7731_0opaphmx8000d3303212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109156/7731_0opaphmx8000d3303212039018/7731_0opaphmx8000d3303212039018_seg.nii.gz" + }, + { + "image": "109156/7866_1opaphmx8000d3223212039018.nii.gz", + "pseudo_label": "109156/7866_1opaphmx8000d3223212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109156/7866_1opaphmx8000d3223212039018/7866_1opaphmx8000d3223212039018_seg.nii.gz" + }, + { + "image": "109156/2211_2opaphmx8000d32832120390na.nii.gz", + "pseudo_label": "109156/2211_2opaphmx8000d32832120390na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109156/2211_2opaphmx8000d32832120390na/2211_2opaphmx8000d32832120390na_seg.nii.gz" + }, + { + "image": "104179/6_2opasesen16b50f30551204530na.nii.gz", + "pseudo_label": "104179/6_2opasesen16b50f30551204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104179/6_2opasesen16b50f30551204530na/6_2opasesen16b50f30551204530na_seg.nii.gz" + }, + { + "image": "104179/6_1opasesen16b50f30021204530na.nii.gz", + "pseudo_label": "104179/6_1opasesen16b50f30021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104179/6_1opasesen16b50f30021204530na/6_1opasesen16b50f30021204530na_seg.nii.gz" + }, + { + "image": "104179/4_1opasesen16b30f30021204530na.nii.gz", + "pseudo_label": "104179/4_1opasesen16b30f30021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104179/4_1opasesen16b30f30021204530na/4_1opasesen16b30f30021204530na_seg.nii.gz" + }, + { + "image": "104179/5_1opasesen16b50f30051204530na.nii.gz", + "pseudo_label": "104179/5_1opasesen16b50f30051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104179/5_1opasesen16b50f30051204530na/5_1opasesen16b50f30051204530na_seg.nii.gz" + }, + { + "image": "104179/6_0opasevzoomb30f29621206030na.nii.gz", + "pseudo_label": "104179/6_0opasevzoomb30f29621206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104179/6_0opasevzoomb30f29621206030na/6_0opasevzoomb30f29621206030na_seg.nii.gz" + }, + { + "image": "104179/4_2opasesen16b30f27621204530na.nii.gz", + "pseudo_label": "104179/4_2opasesen16b30f27621204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104179/4_2opasesen16b30f27621204530na/4_2opasesen16b30f27621204530na_seg.nii.gz" + }, + { + "image": "104179/3_1opasesen16b30f30051204530na.nii.gz", + "pseudo_label": "104179/3_1opasesen16b30f30051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104179/3_1opasesen16b30f30051204530na/3_1opasesen16b30f30051204530na_seg.nii.gz" + }, + { + "image": "104179/3_2opasesen16b30f28451204530na.nii.gz", + "pseudo_label": "104179/3_2opasesen16b30f28451204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104179/3_2opasesen16b30f28451204530na/3_2opasesen16b30f28451204530na_seg.nii.gz" + }, + { + "image": "104179/4_0opasevzoomb50f29651206030na.nii.gz", + "pseudo_label": "104179/4_0opasevzoomb50f29651206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104179/4_0opasevzoomb50f29651206030na/4_0opasevzoomb50f29651206030na_seg.nii.gz" + }, + { + "image": "112241/1_0opagelsplusstandard36025120800115.nii.gz", + "pseudo_label": "112241/1_0opagelsplusstandard36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112241/1_0opagelsplusstandard36025120800115/1_0opagelsplusstandard36025120800115_seg.nii.gz" + }, + { + "image": "112241/3_2opagelsplusstandard36025120800115.nii.gz", + "pseudo_label": "112241/3_2opagelsplusstandard36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112241/3_2opagelsplusstandard36025120800115/3_2opagelsplusstandard36025120800115_seg.nii.gz" + }, + { + "image": "112241/1_0opagelspluslung36025120800115.nii.gz", + "pseudo_label": "112241/1_0opagelspluslung36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112241/1_0opagelspluslung36025120800115/1_0opagelspluslung36025120800115_seg.nii.gz" + }, + { + "image": "102561/2_1opasevzoomb50f28021206030na.nii.gz", + "pseudo_label": "102561/2_1opasevzoomb50f28021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102561/2_1opasevzoomb50f28021206030na/2_1opasevzoomb50f28021206030na_seg.nii.gz" + }, + { + "image": "102561/3_0opasevzoomb30f28021206030na.nii.gz", + "pseudo_label": "102561/3_0opasevzoomb30f28021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102561/3_0opasevzoomb30f28021206030na/3_0opasevzoomb30f28021206030na_seg.nii.gz" + }, + { + "image": "102561/4_0opasevzoomb60f29021206030na.nii.gz", + "pseudo_label": "102561/4_0opasevzoomb60f29021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102561/4_0opasevzoomb60f29021206030na/4_0opasevzoomb60f29021206030na_seg.nii.gz" + }, + { + "image": "106511/2_0opagels16bone3302512040014.nii.gz", + "pseudo_label": "106511/2_0opagels16bone3302512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106511/2_0opagels16bone3302512040014/2_0opagels16bone3302512040014_seg.nii.gz" + }, + { + "image": "106511/3_0opagels16standard3302512040014.nii.gz", + "pseudo_label": "106511/3_0opagels16standard3302512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106511/3_0opagels16standard3302512040014/3_0opagels16standard3302512040014_seg.nii.gz" + }, + { + "image": "106511/2_1opagels16bone3042512040014.nii.gz", + "pseudo_label": "106511/2_1opagels16bone3042512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106511/2_1opagels16bone3042512040014/2_1opagels16bone3042512040014_seg.nii.gz" + }, + { + "image": "106511/3_1opagels16standard3042512040014.nii.gz", + "pseudo_label": "106511/3_1opagels16standard3042512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106511/3_1opagels16standard3042512040014/3_1opagels16standard3042512040014_seg.nii.gz" + }, + { + "image": "106407/3_1opatoaqul4fc513223212055nana.nii.gz", + "pseudo_label": "106407/3_1opatoaqul4fc513223212055nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106407/3_1opatoaqul4fc513223212055nana/3_1opatoaqul4fc513223212055nana_seg.nii.gz" + }, + { + "image": "106407/4_0opatoaqul4fc513094212050nana.nii.gz", + "pseudo_label": "106407/4_0opatoaqul4fc513094212050nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106407/4_0opatoaqul4fc513094212050nana/4_0opatoaqul4fc513094212050nana_seg.nii.gz" + }, + { + "image": "106407/3_0opatoaqul4fc51350212050nana.nii.gz", + "pseudo_label": "106407/3_0opatoaqul4fc51350212050nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106407/3_0opatoaqul4fc51350212050nana/3_0opatoaqul4fc51350212050nana_seg.nii.gz" + }, + { + "image": "105697/2_0opagels16bone36025120640114.nii.gz", + "pseudo_label": "105697/2_0opagels16bone36025120640114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105697/2_0opagels16bone36025120640114/2_0opagels16bone36025120640114_seg.nii.gz" + }, + { + "image": "105697/2_2opagels16bone36025120600114.nii.gz", + "pseudo_label": "105697/2_2opagels16bone36025120600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105697/2_2opagels16bone36025120600114/2_2opagels16bone36025120600114_seg.nii.gz" + }, + { + "image": "113082/2_0opagelsqxstandard35625120800115.nii.gz", + "pseudo_label": "113082/2_0opagelsqxstandard35625120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113082/2_0opagelsqxstandard35625120800115/2_0opagelsqxstandard35625120800115_seg.nii.gz" + }, + { + "image": "113082/2_1opagelsqxstandard35625120700115.nii.gz", + "pseudo_label": "113082/2_1opagelsqxstandard35625120700115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113082/2_1opagelsqxstandard35625120700115/2_1opagelsqxstandard35625120700115_seg.nii.gz" + }, + { + "image": "101802/2_1opasevzoomb30f39021207540na.nii.gz", + "pseudo_label": "101802/2_1opasevzoomb30f39021207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101802/2_1opasevzoomb30f39021207540na/2_1opasevzoomb30f39021207540na_seg.nii.gz" + }, + { + "image": "101802/3_1opasevzoomb50f39021207540na.nii.gz", + "pseudo_label": "101802/3_1opasevzoomb50f39021207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101802/3_1opasevzoomb50f39021207540na/3_1opasevzoomb50f39021207540na_seg.nii.gz" + }, + { + "image": "101802/2_0opasevzoomb30f39021207540na.nii.gz", + "pseudo_label": "101802/2_0opasevzoomb30f39021207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101802/2_0opasevzoomb30f39021207540na/2_0opasevzoomb30f39021207540na_seg.nii.gz" + }, + { + "image": "101802/3_2opasevzoomb50f41421207540na.nii.gz", + "pseudo_label": "101802/3_2opasevzoomb50f41421207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101802/3_2opasevzoomb50f41421207540na/3_2opasevzoomb50f41421207540na_seg.nii.gz" + }, + { + "image": "105086/5_2opasevzoomb30f38051206030na.nii.gz", + "pseudo_label": "105086/5_2opasevzoomb30f38051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105086/5_2opasevzoomb30f38051206030na/5_2opasevzoomb30f38051206030na_seg.nii.gz" + }, + { + "image": "105086/3_1opasevzoomb50f38221206030na.nii.gz", + "pseudo_label": "105086/3_1opasevzoomb50f38221206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105086/3_1opasevzoomb50f38221206030na/3_1opasevzoomb50f38221206030na_seg.nii.gz" + }, + { + "image": "105086/3_0opasevzoomb30f36751206030na.nii.gz", + "pseudo_label": "105086/3_0opasevzoomb30f36751206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105086/3_0opasevzoomb30f36751206030na/3_0opasevzoomb30f36751206030na_seg.nii.gz" + }, + { + "image": "105086/5_1opasevzoomb30f38251206030na.nii.gz", + "pseudo_label": "105086/5_1opasevzoomb30f38251206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105086/5_1opasevzoomb30f38251206030na/5_1opasevzoomb30f38251206030na_seg.nii.gz" + }, + { + "image": "105086/4_2opasevzoomb50f38051206030na.nii.gz", + "pseudo_label": "105086/4_2opasevzoomb50f38051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105086/4_2opasevzoomb50f38051206030na/4_2opasevzoomb50f38051206030na_seg.nii.gz" + }, + { + "image": "105086/5_0opasevzoomb50f36751206030na.nii.gz", + "pseudo_label": "105086/5_0opasevzoomb50f36751206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105086/5_0opasevzoomb50f36751206030na/5_0opasevzoomb50f36751206030na_seg.nii.gz" + }, + { + "image": "105086/7_0opasevzoomb30f36721206030na.nii.gz", + "pseudo_label": "105086/7_0opasevzoomb30f36721206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105086/7_0opasevzoomb30f36721206030na/7_0opasevzoomb30f36721206030na_seg.nii.gz" + }, + { + "image": "105086/4_1opasevzoomb50f38251206030na.nii.gz", + "pseudo_label": "105086/4_1opasevzoomb50f38251206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105086/4_1opasevzoomb50f38251206030na/4_1opasevzoomb50f38251206030na_seg.nii.gz" + }, + { + "image": "101309/3_2opasesen16b30f30721204032na.nii.gz", + "pseudo_label": "101309/3_2opasesen16b30f30721204032na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101309/3_2opasesen16b30f30721204032na/3_2opasesen16b30f30721204032na_seg.nii.gz" + }, + { + "image": "101309/2_0opasesen16b30f34021204032na.nii.gz", + "pseudo_label": "101309/2_0opasesen16b30f34021204032na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101309/2_0opasesen16b30f34021204032na/2_0opasesen16b30f34021204032na_seg.nii.gz" + }, + { + "image": "111312/2_2opagelspr16bone3402512048014.nii.gz", + "pseudo_label": "111312/2_2opagelspr16bone3402512048014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111312/2_2opagelspr16bone3402512048014/2_2opagelspr16bone3402512048014_seg.nii.gz" + }, + { + "image": "111312/3_1opagels16standard3872512000na.nii.gz", + "pseudo_label": "111312/3_1opagels16standard3872512000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111312/3_1opagels16standard3872512000na/3_1opagels16standard3872512000na_seg.nii.gz" + }, + { + "image": "111312/3_0opagelsqxstandard34325120640115.nii.gz", + "pseudo_label": "111312/3_0opagelsqxstandard34325120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111312/3_0opagelsqxstandard34325120640115/3_0opagelsqxstandard34325120640115_seg.nii.gz" + }, + { + "image": "111312/3_2opagelspr16standard3402512048014.nii.gz", + "pseudo_label": "111312/3_2opagelspr16standard3402512048014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111312/3_2opagelspr16standard3402512048014/3_2opagelspr16standard3402512048014_seg.nii.gz" + }, + { + "image": "101996/3_1opasevzoomb50f33021408040na.nii.gz", + "pseudo_label": "101996/3_1opasevzoomb50f33021408040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101996/3_1opasevzoomb50f33021408040na/3_1opasevzoomb50f33021408040na_seg.nii.gz" + }, + { + "image": "111039/3_2opatoaqul4fc513016212040nana.nii.gz", + "pseudo_label": "111039/3_2opatoaqul4fc513016212040nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111039/3_2opatoaqul4fc513016212040nana/3_2opatoaqul4fc513016212040nana_seg.nii.gz" + }, + { + "image": "103418/2_1opasesen16b30f29221204032na.nii.gz", + "pseudo_label": "103418/2_1opasesen16b30f29221204032na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103418/2_1opasesen16b30f29221204032na/2_1opasesen16b30f29221204032na_seg.nii.gz" + }, + { + "image": "103418/3_0opasevzoomb30f28221204020na.nii.gz", + "pseudo_label": "103418/3_0opasevzoomb30f28221204020na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103418/3_0opasevzoomb30f28221204020na/3_0opasevzoomb30f28221204020na_seg.nii.gz" + }, + { + "image": "113048/2_2opagelsqxstandard2932514040015.nii.gz", + "pseudo_label": "113048/2_2opagelsqxstandard2932514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113048/2_2opagelsqxstandard2932514040015/2_2opagelsqxstandard2932514040015_seg.nii.gz" + }, + { + "image": "113048/2_0opagelsqxstandard3402514040015.nii.gz", + "pseudo_label": "113048/2_0opagelsqxstandard3402514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113048/2_0opagelsqxstandard3402514040015/2_0opagelsqxstandard3402514040015_seg.nii.gz" + }, + { + "image": "113048/2_1opagelsqxstandard3402514040015.nii.gz", + "pseudo_label": "113048/2_1opagelsqxstandard3402514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113048/2_1opagelsqxstandard3402514040015/2_1opagelsqxstandard3402514040015_seg.nii.gz" + }, + { + "image": "103146/2_0opagelsqxstandard3702512048015.nii.gz", + "pseudo_label": "103146/2_0opagelsqxstandard3702512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103146/2_0opagelsqxstandard3702512048015/2_0opagelsqxstandard3702512048015_seg.nii.gz" + }, + { + "image": "106135/2_1opagelsqxstandard3402512048015.nii.gz", + "pseudo_label": "106135/2_1opagelsqxstandard3402512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106135/2_1opagelsqxstandard3402512048015/2_1opagelsqxstandard3402512048015_seg.nii.gz" + }, + { + "image": "101153/3_2opasevzoomb30f34021206030na.nii.gz", + "pseudo_label": "101153/3_2opasevzoomb30f34021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101153/3_2opasevzoomb30f34021206030na/3_2opasevzoomb30f34021206030na_seg.nii.gz" + }, + { + "image": "111859/4_0opatoaqul4fc513094212040nana.nii.gz", + "pseudo_label": "111859/4_0opatoaqul4fc513094212040nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111859/4_0opatoaqul4fc513094212040nana/4_0opatoaqul4fc513094212040nana_seg.nii.gz" + }, + { + "image": "110781/5_0opasevzoomb30f400512012060na.nii.gz", + "pseudo_label": "110781/5_0opasevzoomb30f400512012060na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110781/5_0opasevzoomb30f400512012060na/5_0opasevzoomb30f400512012060na_seg.nii.gz" + }, + { + "image": "110781/4_2opasevzoomb50f36051206030na.nii.gz", + "pseudo_label": "110781/4_2opasevzoomb50f36051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110781/4_2opasevzoomb50f36051206030na/4_2opasevzoomb50f36051206030na_seg.nii.gz" + }, + { + "image": "110781/4_0opasevzoomb50f400512012060na.nii.gz", + "pseudo_label": "110781/4_0opasevzoomb50f400512012060na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110781/4_0opasevzoomb50f400512012060na/4_0opasevzoomb50f400512012060na_seg.nii.gz" + }, + { + "image": "110781/5_2opasevzoomb30f36051206030na.nii.gz", + "pseudo_label": "110781/5_2opasevzoomb30f36051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110781/5_2opasevzoomb30f36051206030na/5_2opasevzoomb30f36051206030na_seg.nii.gz" + }, + { + "image": "110781/3_2opasevzoomb50f36021206030na.nii.gz", + "pseudo_label": "110781/3_2opasevzoomb50f36021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110781/3_2opasevzoomb50f36021206030na/3_2opasevzoomb50f36021206030na_seg.nii.gz" + }, + { + "image": "107338/6_2opasevzoomb30f27221206030na.nii.gz", + "pseudo_label": "107338/6_2opasevzoomb30f27221206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107338/6_2opasevzoomb30f27221206030na/6_2opasevzoomb30f27221206030na_seg.nii.gz" + }, + { + "image": "107338/4_0opasevzoomb50f38051206030na.nii.gz", + "pseudo_label": "107338/4_0opasevzoomb50f38051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107338/4_0opasevzoomb50f38051206030na/4_0opasevzoomb50f38051206030na_seg.nii.gz" + }, + { + "image": "107338/3_0opasevzoomb30f38051206030na.nii.gz", + "pseudo_label": "107338/3_0opasevzoomb30f38051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107338/3_0opasevzoomb30f38051206030na/3_0opasevzoomb30f38051206030na_seg.nii.gz" + }, + { + "image": "107338/4_1opasesen16b30f30021204530na.nii.gz", + "pseudo_label": "107338/4_1opasesen16b30f30021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107338/4_1opasesen16b30f30021204530na/4_1opasesen16b30f30021204530na_seg.nii.gz" + }, + { + "image": "107338/4_2opasevzoomb50f27251206030na.nii.gz", + "pseudo_label": "107338/4_2opasevzoomb50f27251206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107338/4_2opasevzoomb50f27251206030na/4_2opasevzoomb50f27251206030na_seg.nii.gz" + }, + { + "image": "107338/3_1opasesen16b30f30051204530na.nii.gz", + "pseudo_label": "107338/3_1opasesen16b30f30051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107338/3_1opasesen16b30f30051204530na/3_1opasesen16b30f30051204530na_seg.nii.gz" + }, + { + "image": "107338/5_0opasevzoomb50f38021206030na.nii.gz", + "pseudo_label": "107338/5_0opasevzoomb50f38021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107338/5_0opasevzoomb50f38021206030na/5_0opasevzoomb50f38021206030na_seg.nii.gz" + }, + { + "image": "107338/3_2opasevzoomb30f27251206030na.nii.gz", + "pseudo_label": "107338/3_2opasevzoomb30f27251206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107338/3_2opasevzoomb30f27251206030na/3_2opasevzoomb30f27251206030na_seg.nii.gz" + }, + { + "image": "103704/3_2opasesen16b30f30221204032na.nii.gz", + "pseudo_label": "103704/3_2opasesen16b30f30221204032na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103704/3_2opasesen16b30f30221204032na/3_2opasesen16b30f30221204032na_seg.nii.gz" + }, + { + "image": "103704/2_0opasesen16b30f32621204032na.nii.gz", + "pseudo_label": "103704/2_0opasesen16b30f32621204032na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103704/2_0opasesen16b30f32621204032na/2_0opasesen16b30f32621204032na_seg.nii.gz" + }, + { + "image": "110866/2_0opasevzoomb50f33021208040na.nii.gz", + "pseudo_label": "110866/2_0opasevzoomb50f33021208040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110866/2_0opasevzoomb50f33021208040na/2_0opasevzoomb50f33021208040na_seg.nii.gz" + }, + { + "image": "106575/6_2opasesen16b50f34021204530na.nii.gz", + "pseudo_label": "106575/6_2opasesen16b50f34021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106575/6_2opasesen16b50f34021204530na/6_2opasesen16b50f34021204530na_seg.nii.gz" + }, + { + "image": "106575/3_2opasesen16b30f34051204530na.nii.gz", + "pseudo_label": "106575/3_2opasesen16b30f34051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106575/3_2opasesen16b30f34051204530na/3_2opasesen16b30f34051204530na_seg.nii.gz" + }, + { + "image": "106575/4_2opasesen16b30f34021204530na.nii.gz", + "pseudo_label": "106575/4_2opasesen16b30f34021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106575/4_2opasesen16b30f34021204530na/4_2opasesen16b30f34021204530na_seg.nii.gz" + }, + { + "image": "106575/3_1opasevzoomb30f40451206030na.nii.gz", + "pseudo_label": "106575/3_1opasevzoomb30f40451206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106575/3_1opasevzoomb30f40451206030na/3_1opasevzoomb30f40451206030na_seg.nii.gz" + }, + { + "image": "106575/5_2opasesen16b50f34051204530na.nii.gz", + "pseudo_label": "106575/5_2opasesen16b50f34051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106575/5_2opasesen16b50f34051204530na/5_2opasesen16b50f34051204530na_seg.nii.gz" + }, + { + "image": "106575/4_0opasesen16b50f38051206040na.nii.gz", + "pseudo_label": "106575/4_0opasesen16b50f38051206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106575/4_0opasesen16b50f38051206040na/4_0opasesen16b50f38051206040na_seg.nii.gz" + }, + { + "image": "106575/4_1opasevzoomb50f40451206030na.nii.gz", + "pseudo_label": "106575/4_1opasevzoomb50f40451206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106575/4_1opasevzoomb50f40451206030na/4_1opasevzoomb50f40451206030na_seg.nii.gz" + }, + { + "image": "106575/6_1opasevzoomb20f40421206030na.nii.gz", + "pseudo_label": "106575/6_1opasevzoomb20f40421206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106575/6_1opasevzoomb20f40421206030na/6_1opasevzoomb20f40421206030na_seg.nii.gz" + }, + { + "image": "106575/6_0opasesen16b30f38021206040na.nii.gz", + "pseudo_label": "106575/6_0opasesen16b30f38021206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106575/6_0opasesen16b30f38021206040na/6_0opasesen16b30f38021206040na_seg.nii.gz" + }, + { + "image": "106575/3_0opasesen16b30f38051206040na.nii.gz", + "pseudo_label": "106575/3_0opasesen16b30f38051206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106575/3_0opasesen16b30f38051206040na/3_0opasesen16b30f38051206040na_seg.nii.gz" + }, + { + "image": "110088/3_2opasesen16b30f33021204530na.nii.gz", + "pseudo_label": "110088/3_2opasesen16b30f33021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110088/3_2opasesen16b30f33021204530na/3_2opasesen16b30f33021204530na_seg.nii.gz" + }, + { + "image": "110088/2_2opasesen16b50f33021204530na.nii.gz", + "pseudo_label": "110088/2_2opasesen16b50f33021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110088/2_2opasesen16b50f33021204530na/2_2opasesen16b50f33021204530na_seg.nii.gz" + }, + { + "image": "110088/2_0opasevzoomb50f32021206030na.nii.gz", + "pseudo_label": "110088/2_0opasevzoomb50f32021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110088/2_0opasevzoomb50f32021206030na/2_0opasevzoomb50f32021206030na_seg.nii.gz" + }, + { + "image": "109663/2_0opagels16bone32025120600114.nii.gz", + "pseudo_label": "109663/2_0opagels16bone32025120600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109663/2_0opagels16bone32025120600114/2_0opagels16bone32025120600114_seg.nii.gz" + }, + { + "image": "109663/3_0opagels16standard32025120600114.nii.gz", + "pseudo_label": "109663/3_0opagels16standard32025120600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109663/3_0opagels16standard32025120600114/3_0opagels16standard32025120600114_seg.nii.gz" + }, + { + "image": "105137/5_2opasevzoomb30f28021206030na.nii.gz", + "pseudo_label": "105137/5_2opasevzoomb30f28021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105137/5_2opasevzoomb30f28021206030na/5_2opasevzoomb30f28021206030na_seg.nii.gz" + }, + { + "image": "105137/3_0opasevzoomb50f29021206030na.nii.gz", + "pseudo_label": "105137/3_0opasevzoomb50f29021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105137/3_0opasevzoomb50f29021206030na/3_0opasevzoomb50f29021206030na_seg.nii.gz" + }, + { + "image": "105137/3_1opasevzoomb30f29021206030na.nii.gz", + "pseudo_label": "105137/3_1opasevzoomb30f29021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105137/3_1opasevzoomb30f29021206030na/3_1opasevzoomb30f29021206030na_seg.nii.gz" + }, + { + "image": "112631/2_2opagelsplusstandard3202514000na.nii.gz", + "pseudo_label": "112631/2_2opagelsplusstandard3202514000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112631/2_2opagelsplusstandard3202514000na/2_2opagelsplusstandard3202514000na_seg.nii.gz" + }, + { + "image": "112631/2_0opagelsqxstandard2722514000na.nii.gz", + "pseudo_label": "112631/2_0opagelsqxstandard2722514000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112631/2_0opagelsqxstandard2722514000na/2_0opagelsqxstandard2722514000na_seg.nii.gz" + }, + { + "image": "112631/2_1opagelsplusstandard2902514000na.nii.gz", + "pseudo_label": "112631/2_1opagelsplusstandard2902514000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112631/2_1opagelsplusstandard2902514000na/2_1opagelsplusstandard2902514000na_seg.nii.gz" + }, + { + "image": "111888/5_1opasesen16b50f44051204530na.nii.gz", + "pseudo_label": "111888/5_1opasesen16b50f44051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111888/5_1opasesen16b50f44051204530na/5_1opasesen16b50f44051204530na_seg.nii.gz" + }, + { + "image": "111888/5_2opasevzoomb50f36421206030na.nii.gz", + "pseudo_label": "111888/5_2opasevzoomb50f36421206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111888/5_2opasevzoomb50f36421206030na/5_2opasevzoomb50f36421206030na_seg.nii.gz" + }, + { + "image": "111888/6_2opasevzoomb30f36421206030na.nii.gz", + "pseudo_label": "111888/6_2opasevzoomb30f36421206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111888/6_2opasevzoomb30f36421206030na/6_2opasevzoomb30f36421206030na_seg.nii.gz" + }, + { + "image": "111888/4_0opasesen16b50f38051204530na.nii.gz", + "pseudo_label": "111888/4_0opasesen16b50f38051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111888/4_0opasesen16b50f38051204530na/4_0opasesen16b50f38051204530na_seg.nii.gz" + }, + { + "image": "111888/4_2opasevzoomb50f36451206030na.nii.gz", + "pseudo_label": "111888/4_2opasevzoomb50f36451206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111888/4_2opasevzoomb50f36451206030na/4_2opasevzoomb50f36451206030na_seg.nii.gz" + }, + { + "image": "111888/3_0opasesen16b30f38051204530na.nii.gz", + "pseudo_label": "111888/3_0opasesen16b30f38051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111888/3_0opasesen16b30f38051204530na/3_0opasesen16b30f38051204530na_seg.nii.gz" + }, + { + "image": "111888/3_2opasevzoomb30f36451206030na.nii.gz", + "pseudo_label": "111888/3_2opasevzoomb30f36451206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111888/3_2opasevzoomb30f36451206030na/3_2opasevzoomb30f36451206030na_seg.nii.gz" + }, + { + "image": "107052/3_0opagelsqxbone34025120720115.nii.gz", + "pseudo_label": "107052/3_0opagelsqxbone34025120720115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107052/3_0opagelsqxbone34025120720115/3_0opagelsqxbone34025120720115_seg.nii.gz" + }, + { + "image": "107052/2_0opagelsqxstandard34025120720115.nii.gz", + "pseudo_label": "107052/2_0opagelsqxstandard34025120720115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107052/2_0opagelsqxstandard34025120720115/2_0opagelsqxstandard34025120720115_seg.nii.gz" + }, + { + "image": "102362/2_1opasesen16b50f36021204530na.nii.gz", + "pseudo_label": "102362/2_1opasesen16b50f36021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102362/2_1opasesen16b50f36021204530na/2_1opasesen16b50f36021204530na_seg.nii.gz" + }, + { + "image": "102362/3_2opasevzoomb30f34021206030na.nii.gz", + "pseudo_label": "102362/3_2opasevzoomb30f34021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102362/3_2opasevzoomb30f34021206030na/3_2opasevzoomb30f34021206030na_seg.nii.gz" + }, + { + "image": "100046/5_1opasevzoomb30f34451206030na.nii.gz", + "pseudo_label": "100046/5_1opasevzoomb30f34451206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100046/5_1opasevzoomb30f34451206030na/5_1opasevzoomb30f34451206030na_seg.nii.gz" + }, + { + "image": "100046/4_2opasevzoomb50f35051206030na.nii.gz", + "pseudo_label": "100046/4_2opasevzoomb50f35051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100046/4_2opasevzoomb50f35051206030na/4_2opasevzoomb50f35051206030na_seg.nii.gz" + }, + { + "image": "100046/5_0opasevzoomb30f35051206030na.nii.gz", + "pseudo_label": "100046/5_0opasevzoomb30f35051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100046/5_0opasevzoomb30f35051206030na/5_0opasevzoomb30f35051206030na_seg.nii.gz" + }, + { + "image": "100046/6_2opasevzoomb30f35021206030na.nii.gz", + "pseudo_label": "100046/6_2opasevzoomb30f35021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100046/6_2opasevzoomb30f35021206030na/6_2opasevzoomb30f35021206030na_seg.nii.gz" + }, + { + "image": "100046/4_0opasevzoomb50f35051206030na.nii.gz", + "pseudo_label": "100046/4_0opasevzoomb50f35051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100046/4_0opasevzoomb50f35051206030na/4_0opasevzoomb50f35051206030na_seg.nii.gz" + }, + { + "image": "100046/6_0opasevzoomb30f35021206030na.nii.gz", + "pseudo_label": "100046/6_0opasevzoomb30f35021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100046/6_0opasevzoomb30f35021206030na/6_0opasevzoomb30f35021206030na_seg.nii.gz" + }, + { + "image": "100046/5_2opasevzoomb30f35051206030na.nii.gz", + "pseudo_label": "100046/5_2opasevzoomb30f35051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100046/5_2opasevzoomb30f35051206030na/5_2opasevzoomb30f35051206030na_seg.nii.gz" + }, + { + "image": "100046/4_1opasevzoomb50f34451206030na.nii.gz", + "pseudo_label": "100046/4_1opasevzoomb50f34451206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100046/4_1opasevzoomb50f34451206030na/4_1opasevzoomb50f34451206030na_seg.nii.gz" + }, + { + "image": "102115/2_1opagehsqxstandard36025120560115.nii.gz", + "pseudo_label": "102115/2_1opagehsqxstandard36025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102115/2_1opagehsqxstandard36025120560115/2_1opagehsqxstandard36025120560115_seg.nii.gz" + }, + { + "image": "102115/2_0opagehsqxstandard36025120560115.nii.gz", + "pseudo_label": "102115/2_0opagehsqxstandard36025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102115/2_0opagehsqxstandard36025120560115/2_0opagehsqxstandard36025120560115_seg.nii.gz" + }, + { + "image": "102115/3_2opagehsqxstandard36025120560115.nii.gz", + "pseudo_label": "102115/3_2opagehsqxstandard36025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102115/3_2opagehsqxstandard36025120560115/3_2opagehsqxstandard36025120560115_seg.nii.gz" + }, + { + "image": "102115/3_1opagehsqxbone36025120560115.nii.gz", + "pseudo_label": "102115/3_1opagehsqxbone36025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102115/3_1opagehsqxbone36025120560115/3_1opagehsqxbone36025120560115_seg.nii.gz" + }, + { + "image": "103101/3_2opagehsqxbone38025120560115.nii.gz", + "pseudo_label": "103101/3_2opagehsqxbone38025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103101/3_2opagehsqxbone38025120560115/3_2opagehsqxbone38025120560115_seg.nii.gz" + }, + { + "image": "103101/3_1opagehsqxbone38025120560115.nii.gz", + "pseudo_label": "103101/3_1opagehsqxbone38025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103101/3_1opagehsqxbone38025120560115/3_1opagehsqxbone38025120560115_seg.nii.gz" + }, + { + "image": "103101/2_1opagehsqxstandard38025120560115.nii.gz", + "pseudo_label": "103101/2_1opagehsqxstandard38025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103101/2_1opagehsqxstandard38025120560115/2_1opagehsqxstandard38025120560115_seg.nii.gz" + }, + { + "image": "103101/2_2opagehsqxstandard38025120560115.nii.gz", + "pseudo_label": "103101/2_2opagehsqxstandard38025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103101/2_2opagehsqxstandard38025120560115/2_2opagehsqxstandard38025120560115_seg.nii.gz" + }, + { + "image": "102341/2_0opagelsqxstandard3062514048015.nii.gz", + "pseudo_label": "102341/2_0opagelsqxstandard3062514048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102341/2_0opagelsqxstandard3062514048015/2_0opagelsqxstandard3062514048015_seg.nii.gz" + }, + { + "image": "102341/2_2opagelsqxstandard3102514048015.nii.gz", + "pseudo_label": "102341/2_2opagelsqxstandard3102514048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102341/2_2opagelsqxstandard3102514048015/2_2opagelsqxstandard3102514048015_seg.nii.gz" + }, + { + "image": "104880/857_0opaphmx8000b2613212040nana.nii.gz", + "pseudo_label": "104880/857_0opaphmx8000b2613212040nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104880/857_0opaphmx8000b2613212040nana/857_0opaphmx8000b2613212040nana_seg.nii.gz" + }, + { + "image": "104880/858_0opaphmx8000d2613212040nana.nii.gz", + "pseudo_label": "104880/858_0opaphmx8000d2613212040nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104880/858_0opaphmx8000d2613212040nana/858_0opaphmx8000d2613212040nana_seg.nii.gz" + }, + { + "image": "104880/7727_1opaphmx8000a2703212040nana.nii.gz", + "pseudo_label": "104880/7727_1opaphmx8000a2703212040nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104880/7727_1opaphmx8000a2703212040nana/7727_1opaphmx8000a2703212040nana_seg.nii.gz" + }, + { + "image": "104880/5620_2opaphmx8000d2703212040nana.nii.gz", + "pseudo_label": "104880/5620_2opaphmx8000d2703212040nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104880/5620_2opaphmx8000d2703212040nana/5620_2opaphmx8000d2703212040nana_seg.nii.gz" + }, + { + "image": "104880/7728_1opaphmx8000c2703212040nana.nii.gz", + "pseudo_label": "104880/7728_1opaphmx8000c2703212040nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104880/7728_1opaphmx8000c2703212040nana/7728_1opaphmx8000c2703212040nana_seg.nii.gz" + }, + { + "image": "104880/5619_2opaphmx8000a2703212040nana.nii.gz", + "pseudo_label": "104880/5619_2opaphmx8000a2703212040nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104880/5619_2opaphmx8000a2703212040nana/5619_2opaphmx8000a2703212040nana_seg.nii.gz" + }, + { + "image": "109491/3_1opasevzoomb50f36021408040na.nii.gz", + "pseudo_label": "109491/3_1opasevzoomb50f36021408040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109491/3_1opasevzoomb50f36021408040na/3_1opasevzoomb50f36021408040na_seg.nii.gz" + }, + { + "image": "109491/3_0opasevzoomb50f360212016080na.nii.gz", + "pseudo_label": "109491/3_0opasevzoomb50f360212016080na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109491/3_0opasevzoomb50f360212016080na/3_0opasevzoomb50f360212016080na_seg.nii.gz" + }, + { + "image": "106808/2_2opagelsplusstandard36025140841nana.nii.gz", + "pseudo_label": "106808/2_2opagelsplusstandard36025140841nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106808/2_2opagelsplusstandard36025140841nana/2_2opagelsplusstandard36025140841nana_seg.nii.gz" + }, + { + "image": "102663/2_1opagelsplusstandard3202514040015.nii.gz", + "pseudo_label": "102663/2_1opagelsplusstandard3202514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102663/2_1opagelsplusstandard3202514040015/2_1opagelsplusstandard3202514040015_seg.nii.gz" + }, + { + "image": "102663/2_2opagelsplusstandard3202514040015.nii.gz", + "pseudo_label": "102663/2_2opagelsplusstandard3202514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102663/2_2opagelsplusstandard3202514040015/2_2opagelsplusstandard3202514040015_seg.nii.gz" + }, + { + "image": "102663/2_0opagelsplusstandard3202514040015.nii.gz", + "pseudo_label": "102663/2_0opagelsplusstandard3202514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102663/2_0opagelsplusstandard3202514040015/2_0opagelsplusstandard3202514040015_seg.nii.gz" + }, + { + "image": "100037/2_1opagels16standard32025120nanana.nii.gz", + "pseudo_label": "100037/2_1opagels16standard32025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100037/2_1opagels16standard32025120nanana/2_1opagels16standard32025120nanana_seg.nii.gz" + }, + { + "image": "100037/3_1opagels16bone32025120nanana.nii.gz", + "pseudo_label": "100037/3_1opagels16bone32025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100037/3_1opagels16bone32025120nanana/3_1opagels16bone32025120nanana_seg.nii.gz" + }, + { + "image": "100037/3_0opagelsqxbone32025120nanana.nii.gz", + "pseudo_label": "100037/3_0opagelsqxbone32025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100037/3_0opagelsqxbone32025120nanana/3_0opagelsqxbone32025120nanana_seg.nii.gz" + }, + { + "image": "100037/4_2opagels16standard32025120nanana.nii.gz", + "pseudo_label": "100037/4_2opagels16standard32025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100037/4_2opagels16standard32025120nanana/4_2opagels16standard32025120nanana_seg.nii.gz" + }, + { + "image": "107390/4_0opatoaqul4fc512812212040nana.nii.gz", + "pseudo_label": "107390/4_0opatoaqul4fc512812212040nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107390/4_0opatoaqul4fc512812212040nana/4_0opatoaqul4fc512812212040nana_seg.nii.gz" + }, + { + "image": "105689/2_0opasevzoomb50f29221204020na.nii.gz", + "pseudo_label": "105689/2_0opasevzoomb50f29221204020na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105689/2_0opasevzoomb50f29221204020na/2_0opasevzoomb50f29221204020na_seg.nii.gz" + }, + { + "image": "102222/0_0opaphmx8000c36132120600112.nii.gz", + "pseudo_label": "102222/0_0opaphmx8000c36132120600112.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102222/0_0opaphmx8000c36132120600112/0_0opaphmx8000c36132120600112_seg.nii.gz" + }, + { + "image": "102222/4495_2opaphmx8000c3263212041018.nii.gz", + "pseudo_label": "102222/4495_2opaphmx8000c3263212041018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102222/4495_2opaphmx8000c3263212041018/4495_2opaphmx8000c3263212041018_seg.nii.gz" + }, + { + "image": "111964/2_2opagelspr16bone36025120560114.nii.gz", + "pseudo_label": "111964/2_2opagelspr16bone36025120560114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111964/2_2opagelspr16bone36025120560114/2_2opagelspr16bone36025120560114_seg.nii.gz" + }, + { + "image": "111964/2_1opagels16bone3602512040014.nii.gz", + "pseudo_label": "111964/2_1opagels16bone3602512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111964/2_1opagels16bone3602512040014/2_1opagels16bone3602512040014_seg.nii.gz" + }, + { + "image": "106098/2_2opagelsplusstandard34025140908nana.nii.gz", + "pseudo_label": "106098/2_2opagelsplusstandard34025140908nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106098/2_2opagelsplusstandard34025140908nana/2_2opagelsplusstandard34025140908nana_seg.nii.gz" + }, + { + "image": "106098/2_1opagelsqxstandard3702514040015.nii.gz", + "pseudo_label": "106098/2_1opagelsqxstandard3702514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106098/2_1opagelsqxstandard3702514040015/2_1opagelsqxstandard3702514040015_seg.nii.gz" + }, + { + "image": "106098/2_0opagelsplusstandard3402514040015.nii.gz", + "pseudo_label": "106098/2_0opagelsplusstandard3402514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106098/2_0opagelsplusstandard3402514040015/2_0opagelsplusstandard3402514040015_seg.nii.gz" + }, + { + "image": "104916/3_2opatoaqul4fc513078212060nana.nii.gz", + "pseudo_label": "104916/3_2opatoaqul4fc513078212060nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104916/3_2opatoaqul4fc513078212060nana/3_2opatoaqul4fc513078212060nana_seg.nii.gz" + }, + { + "image": "104916/3_0opatoaqul4fc513031212060nana.nii.gz", + "pseudo_label": "104916/3_0opatoaqul4fc513031212060nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104916/3_0opatoaqul4fc513031212060nana/3_0opatoaqul4fc513031212060nana_seg.nii.gz" + }, + { + "image": "107185/2_0opagelsqxstandard2702512048015.nii.gz", + "pseudo_label": "107185/2_0opagelsqxstandard2702512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107185/2_0opagelsqxstandard2702512048015/2_0opagelsqxstandard2702512048015_seg.nii.gz" + }, + { + "image": "107185/2_1opagelsqxstandard3002512048015.nii.gz", + "pseudo_label": "107185/2_1opagelsqxstandard3002512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107185/2_1opagelsqxstandard3002512048015/2_1opagelsqxstandard3002512048015_seg.nii.gz" + }, + { + "image": "111466/3_1opagels16standard2952512040014.nii.gz", + "pseudo_label": "111466/3_1opagels16standard2952512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111466/3_1opagels16standard2952512040014/3_1opagels16standard2952512040014_seg.nii.gz" + }, + { + "image": "111466/2_1opagels16bone2952512040014.nii.gz", + "pseudo_label": "111466/2_1opagels16bone2952512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111466/2_1opagels16bone2952512040014/2_1opagels16bone2952512040014_seg.nii.gz" + }, + { + "image": "111466/2_2opagelspr16bone2802512048014.nii.gz", + "pseudo_label": "111466/2_2opagelspr16bone2802512048014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111466/2_2opagelspr16bone2802512048014/2_2opagelspr16bone2802512048014_seg.nii.gz" + }, + { + "image": "111466/2_0opagelsqxbone2902512048015.nii.gz", + "pseudo_label": "111466/2_0opagelsqxbone2902512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111466/2_0opagelsqxbone2902512048015/2_0opagelsqxbone2902512048015_seg.nii.gz" + }, + { + "image": "111466/3_0opagelsqxstandard2902512048015.nii.gz", + "pseudo_label": "111466/3_0opagelsqxstandard2902512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111466/3_0opagelsqxstandard2902512048015/3_0opagelsqxstandard2902512048015_seg.nii.gz" + }, + { + "image": "104279/2_0opasevzoomb50f27821208040na.nii.gz", + "pseudo_label": "104279/2_0opasevzoomb50f27821208040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104279/2_0opasevzoomb50f27821208040na/2_0opasevzoomb50f27821208040na_seg.nii.gz" + }, + { + "image": "104279/3_1opasevzoomb30f27621206030na.nii.gz", + "pseudo_label": "104279/3_1opasevzoomb30f27621206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104279/3_1opasevzoomb30f27621206030na/3_1opasevzoomb30f27621206030na_seg.nii.gz" + }, + { + "image": "104271/3_2opagels16standard35025140600114.nii.gz", + "pseudo_label": "104271/3_2opagels16standard35025140600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104271/3_2opagels16standard35025140600114/3_2opagels16standard35025140600114_seg.nii.gz" + }, + { + "image": "102297/5_2opasesen16b50f34051204530na.nii.gz", + "pseudo_label": "102297/5_2opasesen16b50f34051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102297/5_2opasesen16b50f34051204530na/5_2opasesen16b50f34051204530na_seg.nii.gz" + }, + { + "image": "102297/4_0opasevzoomb50f38051206030na.nii.gz", + "pseudo_label": "102297/4_0opasevzoomb50f38051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102297/4_0opasevzoomb50f38051206030na/4_0opasevzoomb50f38051206030na_seg.nii.gz" + }, + { + "image": "102297/3_0opasevzoomb30f38051206030na.nii.gz", + "pseudo_label": "102297/3_0opasevzoomb30f38051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102297/3_0opasevzoomb30f38051206030na/3_0opasevzoomb30f38051206030na_seg.nii.gz" + }, + { + "image": "102297/3_1opasesen16b30f34051204530na.nii.gz", + "pseudo_label": "102297/3_1opasesen16b30f34051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102297/3_1opasesen16b30f34051204530na/3_1opasesen16b30f34051204530na_seg.nii.gz" + }, + { + "image": "102297/5_1opasesen16b50f34051204530na.nii.gz", + "pseudo_label": "102297/5_1opasesen16b50f34051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102297/5_1opasesen16b50f34051204530na/5_1opasesen16b50f34051204530na_seg.nii.gz" + }, + { + "image": "102297/6_1opasesen16b50f34021204530na.nii.gz", + "pseudo_label": "102297/6_1opasesen16b50f34021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102297/6_1opasesen16b50f34021204530na/6_1opasesen16b50f34021204530na_seg.nii.gz" + }, + { + "image": "100938/4_1opasevzoomb50f36351206030na.nii.gz", + "pseudo_label": "100938/4_1opasevzoomb50f36351206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100938/4_1opasevzoomb50f36351206030na/4_1opasevzoomb50f36351206030na_seg.nii.gz" + }, + { + "image": "100938/6_0opasesen16b50f32851206040na.nii.gz", + "pseudo_label": "100938/6_0opasesen16b50f32851206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100938/6_0opasesen16b50f32851206040na/6_0opasesen16b50f32851206040na_seg.nii.gz" + }, + { + "image": "100938/5_0opasesen16b50f32821206040na.nii.gz", + "pseudo_label": "100938/5_0opasesen16b50f32821206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100938/5_0opasesen16b50f32821206040na/5_0opasesen16b50f32821206040na_seg.nii.gz" + }, + { + "image": "100938/6_1opasevzoomb30f36321206030na.nii.gz", + "pseudo_label": "100938/6_1opasevzoomb30f36321206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100938/6_1opasevzoomb30f36321206030na/6_1opasevzoomb30f36321206030na_seg.nii.gz" + }, + { + "image": "100938/3_2opasevzoomb30f31051206030na.nii.gz", + "pseudo_label": "100938/3_2opasevzoomb30f31051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100938/3_2opasevzoomb30f31051206030na/3_2opasevzoomb30f31051206030na_seg.nii.gz" + }, + { + "image": "100938/3_0opasesen16b30f32851206040na.nii.gz", + "pseudo_label": "100938/3_0opasesen16b30f32851206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100938/3_0opasesen16b30f32851206040na/3_0opasesen16b30f32851206040na_seg.nii.gz" + }, + { + "image": "100938/7_0opasesen16b30f32821206040na.nii.gz", + "pseudo_label": "100938/7_0opasesen16b30f32821206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100938/7_0opasesen16b30f32821206040na/7_0opasesen16b30f32821206040na_seg.nii.gz" + }, + { + "image": "100938/6_2opasevzoomb30f31021206030na.nii.gz", + "pseudo_label": "100938/6_2opasevzoomb30f31021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100938/6_2opasevzoomb30f31021206030na/6_2opasevzoomb30f31021206030na_seg.nii.gz" + }, + { + "image": "100938/4_2opasevzoomb50f31051206030na.nii.gz", + "pseudo_label": "100938/4_2opasevzoomb50f31051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100938/4_2opasevzoomb50f31051206030na/4_2opasevzoomb50f31051206030na_seg.nii.gz" + }, + { + "image": "100938/5_2opasevzoomb50f31021206030na.nii.gz", + "pseudo_label": "100938/5_2opasevzoomb50f31021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100938/5_2opasevzoomb50f31021206030na/5_2opasevzoomb50f31021206030na_seg.nii.gz" + }, + { + "image": "100938/3_1opasevzoomb30f36351206030na.nii.gz", + "pseudo_label": "100938/3_1opasevzoomb30f36351206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100938/3_1opasevzoomb30f36351206030na/3_1opasevzoomb30f36351206030na_seg.nii.gz" + }, + { + "image": "110994/1_1opagelspluslung31025120800115.nii.gz", + "pseudo_label": "110994/1_1opagelspluslung31025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110994/1_1opagelspluslung31025120800115/1_1opagelspluslung31025120800115_seg.nii.gz" + }, + { + "image": "110994/1_0opagelspluslung3102512010250115.nii.gz", + "pseudo_label": "110994/1_0opagelspluslung3102512010250115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110994/1_0opagelspluslung3102512010250115/1_0opagelspluslung3102512010250115_seg.nii.gz" + }, + { + "image": "110994/1_0opagelsplusstandard3102512010250115.nii.gz", + "pseudo_label": "110994/1_0opagelsplusstandard3102512010250115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110994/1_0opagelsplusstandard3102512010250115/1_0opagelsplusstandard3102512010250115_seg.nii.gz" + }, + { + "image": "108903/2_1opagelsqxstandard28025140400na.nii.gz", + "pseudo_label": "108903/2_1opagelsqxstandard28025140400na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108903/2_1opagelsqxstandard28025140400na/2_1opagelsqxstandard28025140400na_seg.nii.gz" + }, + { + "image": "108903/2_0opagelsplusstandard28025140400na.nii.gz", + "pseudo_label": "108903/2_0opagelsplusstandard28025140400na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108903/2_0opagelsplusstandard28025140400na/2_0opagelsplusstandard28025140400na_seg.nii.gz" + }, + { + "image": "108293/2_1opagehsqxstandard36025120560115.nii.gz", + "pseudo_label": "108293/2_1opagehsqxstandard36025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108293/2_1opagehsqxstandard36025120560115/2_1opagehsqxstandard36025120560115_seg.nii.gz" + }, + { + "image": "108293/2_2opagehsqxstandard36025120560115.nii.gz", + "pseudo_label": "108293/2_2opagehsqxstandard36025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108293/2_2opagehsqxstandard36025120560115/2_2opagehsqxstandard36025120560115_seg.nii.gz" + }, + { + "image": "108293/2_0opagehsqxstandard36025120560115.nii.gz", + "pseudo_label": "108293/2_0opagehsqxstandard36025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108293/2_0opagehsqxstandard36025120560115/2_0opagehsqxstandard36025120560115_seg.nii.gz" + }, + { + "image": "108293/3_1opagehsqxbone36025120560115.nii.gz", + "pseudo_label": "108293/3_1opagehsqxbone36025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108293/3_1opagehsqxbone36025120560115/3_1opagehsqxbone36025120560115_seg.nii.gz" + }, + { + "image": "112651/2_0opagelsplusstandard3002514040015.nii.gz", + "pseudo_label": "112651/2_0opagelsplusstandard3002514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112651/2_0opagelsplusstandard3002514040015/2_0opagelsplusstandard3002514040015_seg.nii.gz" + }, + { + "image": "112651/2_2opagelsplusstandard32025140808nana.nii.gz", + "pseudo_label": "112651/2_2opagelsplusstandard32025140808nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112651/2_2opagelsplusstandard32025140808nana/2_2opagelsplusstandard32025140808nana_seg.nii.gz" + }, + { + "image": "108515/3_0opagelsqxbone29025120560115.nii.gz", + "pseudo_label": "108515/3_0opagelsqxbone29025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108515/3_0opagelsqxbone29025120560115/3_0opagelsqxbone29025120560115_seg.nii.gz" + }, + { + "image": "108515/2_1opagelsqxstandard27925120560115.nii.gz", + "pseudo_label": "108515/2_1opagelsqxstandard27925120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108515/2_1opagelsqxstandard27925120560115/2_1opagelsqxstandard27925120560115_seg.nii.gz" + }, + { + "image": "108515/2_2opagelsqxstandard27925120640115.nii.gz", + "pseudo_label": "108515/2_2opagelsqxstandard27925120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108515/2_2opagelsqxstandard27925120640115/2_2opagelsqxstandard27925120640115_seg.nii.gz" + }, + { + "image": "108515/2_0opagelsqxstandard29025120560115.nii.gz", + "pseudo_label": "108515/2_0opagelsqxstandard29025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108515/2_0opagelsqxstandard29025120560115/2_0opagelsqxstandard29025120560115_seg.nii.gz" + }, + { + "image": "108515/3_2opagelsqxbone27925120640115.nii.gz", + "pseudo_label": "108515/3_2opagelsqxbone27925120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108515/3_2opagelsqxbone27925120640115/3_2opagelsqxbone27925120640115_seg.nii.gz" + }, + { + "image": "108163/3_1opatoaqul4fc513262212040nana.nii.gz", + "pseudo_label": "108163/3_1opatoaqul4fc513262212040nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108163/3_1opatoaqul4fc513262212040nana/3_1opatoaqul4fc513262212040nana_seg.nii.gz" + }, + { + "image": "108163/5_2opatoaqul4fc513094212050nana.nii.gz", + "pseudo_label": "108163/5_2opatoaqul4fc513094212050nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108163/5_2opatoaqul4fc513094212050nana/5_2opatoaqul4fc513094212050nana_seg.nii.gz" + }, + { + "image": "108948/3_2opatoaqul4fc513094212060nana.nii.gz", + "pseudo_label": "108948/3_2opatoaqul4fc513094212060nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108948/3_2opatoaqul4fc513094212060nana/3_2opatoaqul4fc513094212060nana_seg.nii.gz" + }, + { + "image": "102544/2_0opasevzoomb50f27021206030na.nii.gz", + "pseudo_label": "102544/2_0opasevzoomb50f27021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102544/2_0opasevzoomb50f27021206030na/2_0opasevzoomb50f27021206030na_seg.nii.gz" + }, + { + "image": "102544/2_2opasevzoomb50f28021206030na.nii.gz", + "pseudo_label": "102544/2_2opasevzoomb50f28021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102544/2_2opasevzoomb50f28021206030na/2_2opasevzoomb50f28021206030na_seg.nii.gz" + }, + { + "image": "107321/4_0opasesen16b30f30051206040na.nii.gz", + "pseudo_label": "107321/4_0opasesen16b30f30051206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107321/4_0opasesen16b30f30051206040na/4_0opasesen16b30f30051206040na_seg.nii.gz" + }, + { + "image": "107321/3_2opasesen16b30f27051204530na.nii.gz", + "pseudo_label": "107321/3_2opasesen16b30f27051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107321/3_2opasesen16b30f27051204530na/3_2opasesen16b30f27051204530na_seg.nii.gz" + }, + { + "image": "107321/7_0opasesen16b30f30021206040na.nii.gz", + "pseudo_label": "107321/7_0opasesen16b30f30021206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107321/7_0opasesen16b30f30021206040na/7_0opasesen16b30f30021206040na_seg.nii.gz" + }, + { + "image": "107321/6_2opasesen16b50f30051204530na.nii.gz", + "pseudo_label": "107321/6_2opasesen16b50f30051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107321/6_2opasesen16b50f30051204530na/6_2opasesen16b50f30051204530na_seg.nii.gz" + }, + { + "image": "107321/4_2opasesen16b30f30051204530na.nii.gz", + "pseudo_label": "107321/4_2opasesen16b30f30051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107321/4_2opasesen16b30f30051204530na/4_2opasesen16b30f30051204530na_seg.nii.gz" + }, + { + "image": "107321/7_1opasesen16b50f32721204530na.nii.gz", + "pseudo_label": "107321/7_1opasesen16b50f32721204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107321/7_1opasesen16b50f32721204530na/7_1opasesen16b50f32721204530na_seg.nii.gz" + }, + { + "image": "107321/11_0opasesen16b50f30051206040na.nii.gz", + "pseudo_label": "107321/11_0opasesen16b50f30051206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107321/11_0opasesen16b50f30051206040na/11_0opasesen16b50f30051206040na_seg.nii.gz" + }, + { + "image": "107321/5_1opasesen16b50f32751204530na.nii.gz", + "pseudo_label": "107321/5_1opasesen16b50f32751204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107321/5_1opasesen16b50f32751204530na/5_1opasesen16b50f32751204530na_seg.nii.gz" + }, + { + "image": "107321/3_0opasesen16b30f30051206040na.nii.gz", + "pseudo_label": "107321/3_0opasesen16b30f30051206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107321/3_0opasesen16b30f30051206040na/3_0opasesen16b30f30051206040na_seg.nii.gz" + }, + { + "image": "107321/6_1opasesen16b30f32751204530na.nii.gz", + "pseudo_label": "107321/6_1opasesen16b30f32751204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107321/6_1opasesen16b30f32751204530na/6_1opasesen16b30f32751204530na_seg.nii.gz" + }, + { + "image": "107321/3_1opasesen16b30f30051204530na.nii.gz", + "pseudo_label": "107321/3_1opasesen16b30f30051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107321/3_1opasesen16b30f30051204530na/3_1opasesen16b30f30051204530na_seg.nii.gz" + }, + { + "image": "107321/10_0opasesen16b50f30051206040na.nii.gz", + "pseudo_label": "107321/10_0opasesen16b50f30051206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107321/10_0opasesen16b50f30051206040na/10_0opasesen16b50f30051206040na_seg.nii.gz" + }, + { + "image": "107321/9_0opasesen16b50f30021206040na.nii.gz", + "pseudo_label": "107321/9_0opasesen16b50f30021206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107321/9_0opasesen16b50f30021206040na/9_0opasesen16b50f30021206040na_seg.nii.gz" + }, + { + "image": "105578/3_2opagelsqxstandard3272514040015.nii.gz", + "pseudo_label": "105578/3_2opagelsqxstandard3272514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105578/3_2opagelsqxstandard3272514040015/3_2opagelsqxstandard3272514040015_seg.nii.gz" + }, + { + "image": "105578/2_2opagelsqxstandard3272514040015.nii.gz", + "pseudo_label": "105578/2_2opagelsqxstandard3272514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105578/2_2opagelsqxstandard3272514040015/2_2opagelsqxstandard3272514040015_seg.nii.gz" + }, + { + "image": "105578/2_0opagelsqxstandard3402514040015.nii.gz", + "pseudo_label": "105578/2_0opagelsqxstandard3402514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105578/2_0opagelsqxstandard3402514040015/2_0opagelsqxstandard3402514040015_seg.nii.gz" + }, + { + "image": "108598/2_2opagelsqxstandard36025120640115.nii.gz", + "pseudo_label": "108598/2_2opagelsqxstandard36025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108598/2_2opagelsqxstandard36025120640115/2_2opagelsqxstandard36025120640115_seg.nii.gz" + }, + { + "image": "108598/3_0opagelsqxbone36025120560115.nii.gz", + "pseudo_label": "108598/3_0opagelsqxbone36025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108598/3_0opagelsqxbone36025120560115/3_0opagelsqxbone36025120560115_seg.nii.gz" + }, + { + "image": "108598/3_1opagelsqxbone36025120640115.nii.gz", + "pseudo_label": "108598/3_1opagelsqxbone36025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108598/3_1opagelsqxbone36025120640115/3_1opagelsqxbone36025120640115_seg.nii.gz" + }, + { + "image": "108598/3_2opagelsqxbone36025120640115.nii.gz", + "pseudo_label": "108598/3_2opagelsqxbone36025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108598/3_2opagelsqxbone36025120640115/3_2opagelsqxbone36025120640115_seg.nii.gz" + }, + { + "image": "108598/2_1opagelsqxstandard37525120640115.nii.gz", + "pseudo_label": "108598/2_1opagelsqxstandard37525120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108598/2_1opagelsqxstandard37525120640115/2_1opagelsqxstandard37525120640115_seg.nii.gz" + }, + { + "image": "108598/2_0opagelsqxstandard36025120560115.nii.gz", + "pseudo_label": "108598/2_0opagelsqxstandard36025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108598/2_0opagelsqxstandard36025120560115/2_0opagelsqxstandard36025120560115_seg.nii.gz" + }, + { + "image": "105814/2_1opasevzoomb30f42021407540na.nii.gz", + "pseudo_label": "105814/2_1opasevzoomb30f42021407540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105814/2_1opasevzoomb30f42021407540na/2_1opasevzoomb30f42021407540na_seg.nii.gz" + }, + { + "image": "105814/3_1opasevzoomb50f42021407540na.nii.gz", + "pseudo_label": "105814/3_1opasevzoomb50f42021407540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105814/3_1opasevzoomb50f42021407540na/3_1opasevzoomb50f42021407540na_seg.nii.gz" + }, + { + "image": "105814/3_0opasevzoomb50f37021207540na.nii.gz", + "pseudo_label": "105814/3_0opasevzoomb50f37021207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105814/3_0opasevzoomb50f37021207540na/3_0opasevzoomb50f37021207540na_seg.nii.gz" + }, + { + "image": "105814/2_0opasevzoomb30f37021207540na.nii.gz", + "pseudo_label": "105814/2_0opasevzoomb30f37021207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105814/2_0opasevzoomb30f37021207540na/2_0opasevzoomb30f37021207540na_seg.nii.gz" + }, + { + "image": "104516/2_2opagelsplusstandard36025140400na.nii.gz", + "pseudo_label": "104516/2_2opagelsplusstandard36025140400na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104516/2_2opagelsplusstandard36025140400na/2_2opagelsplusstandard36025140400na_seg.nii.gz" + }, + { + "image": "104516/2_0opagelsplusstandard32025140400na.nii.gz", + "pseudo_label": "104516/2_0opagelsplusstandard32025140400na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104516/2_0opagelsplusstandard32025140400na/2_0opagelsplusstandard32025140400na_seg.nii.gz" + }, + { + "image": "104516/2_1opagelsplusstandard35025140400na.nii.gz", + "pseudo_label": "104516/2_1opagelsplusstandard35025140400na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104516/2_1opagelsplusstandard35025140400na/2_1opagelsplusstandard35025140400na_seg.nii.gz" + }, + { + "image": "101400/5_0opasevzoomb30f34021206030na.nii.gz", + "pseudo_label": "101400/5_0opasevzoomb30f34021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101400/5_0opasevzoomb30f34021206030na/5_0opasevzoomb30f34021206030na_seg.nii.gz" + }, + { + "image": "101400/2_2opasesen16b50f36021204530na.nii.gz", + "pseudo_label": "101400/2_2opasesen16b50f36021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101400/2_2opasesen16b50f36021204530na/2_2opasesen16b50f36021204530na_seg.nii.gz" + }, + { + "image": "101400/3_0opasevzoomb50f34021206030na.nii.gz", + "pseudo_label": "101400/3_0opasevzoomb50f34021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101400/3_0opasevzoomb50f34021206030na/3_0opasevzoomb50f34021206030na_seg.nii.gz" + }, + { + "image": "104954/2_1opagels16bone34025120600114.nii.gz", + "pseudo_label": "104954/2_1opagels16bone34025120600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104954/2_1opagels16bone34025120600114/2_1opagels16bone34025120600114_seg.nii.gz" + }, + { + "image": "104954/2_2opagels16bone36025120720114.nii.gz", + "pseudo_label": "104954/2_2opagels16bone36025120720114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104954/2_2opagels16bone36025120720114/2_2opagels16bone36025120720114_seg.nii.gz" + }, + { + "image": "107667/3_0opagelsqxbone30225120720115.nii.gz", + "pseudo_label": "107667/3_0opagelsqxbone30225120720115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107667/3_0opagelsqxbone30225120720115/3_0opagelsqxbone30225120720115_seg.nii.gz" + }, + { + "image": "107667/3_2opagelsqxbone33525120720115.nii.gz", + "pseudo_label": "107667/3_2opagelsqxbone33525120720115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107667/3_2opagelsqxbone33525120720115/3_2opagelsqxbone33525120720115_seg.nii.gz" + }, + { + "image": "107667/2_2opagelsqxstandard33525120720115.nii.gz", + "pseudo_label": "107667/2_2opagelsqxstandard33525120720115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107667/2_2opagelsqxstandard33525120720115/2_2opagelsqxstandard33525120720115_seg.nii.gz" + }, + { + "image": "107667/2_1opagelsqxstandard31025120720115.nii.gz", + "pseudo_label": "107667/2_1opagelsqxstandard31025120720115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107667/2_1opagelsqxstandard31025120720115/2_1opagelsqxstandard31025120720115_seg.nii.gz" + }, + { + "image": "107667/2_0opagelsqxstandard30225120720115.nii.gz", + "pseudo_label": "107667/2_0opagelsqxstandard30225120720115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107667/2_0opagelsqxstandard30225120720115/2_0opagelsqxstandard30225120720115_seg.nii.gz" + }, + { + "image": "111605/1_1opagelsplusstandard36025120800115.nii.gz", + "pseudo_label": "111605/1_1opagelsplusstandard36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111605/1_1opagelsplusstandard36025120800115/1_1opagelsplusstandard36025120800115_seg.nii.gz" + }, + { + "image": "111605/1_1opagelspluslung36025120800115.nii.gz", + "pseudo_label": "111605/1_1opagelspluslung36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111605/1_1opagelspluslung36025120800115/1_1opagelspluslung36025120800115_seg.nii.gz" + }, + { + "image": "107117/5_2opasevzoomb30f34051206030na.nii.gz", + "pseudo_label": "107117/5_2opasevzoomb30f34051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107117/5_2opasevzoomb30f34051206030na/5_2opasevzoomb30f34051206030na_seg.nii.gz" + }, + { + "image": "107117/4_2opasevzoomb50f34051206030na.nii.gz", + "pseudo_label": "107117/4_2opasevzoomb50f34051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107117/4_2opasevzoomb50f34051206030na/4_2opasevzoomb50f34051206030na_seg.nii.gz" + }, + { + "image": "107117/3_1opasevzoomb30f30851206030na.nii.gz", + "pseudo_label": "107117/3_1opasevzoomb30f30851206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107117/3_1opasevzoomb30f30851206030na/3_1opasevzoomb30f30851206030na_seg.nii.gz" + }, + { + "image": "107117/3_0opasevzoomb30f38051206030na.nii.gz", + "pseudo_label": "107117/3_0opasevzoomb30f38051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107117/3_0opasevzoomb30f38051206030na/3_0opasevzoomb30f38051206030na_seg.nii.gz" + }, + { + "image": "107117/4_1opasevzoomb50f30851206030na.nii.gz", + "pseudo_label": "107117/4_1opasevzoomb50f30851206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107117/4_1opasevzoomb50f30851206030na/4_1opasevzoomb50f30851206030na_seg.nii.gz" + }, + { + "image": "107117/5_0opasevzoomb50f38021206030na.nii.gz", + "pseudo_label": "107117/5_0opasevzoomb50f38021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107117/5_0opasevzoomb50f38021206030na/5_0opasevzoomb50f38021206030na_seg.nii.gz" + }, + { + "image": "104744/3_1opagehsqxbone35025120560115.nii.gz", + "pseudo_label": "104744/3_1opagehsqxbone35025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104744/3_1opagehsqxbone35025120560115/3_1opagehsqxbone35025120560115_seg.nii.gz" + }, + { + "image": "104744/2_1opagehsqxstandard35025120560115.nii.gz", + "pseudo_label": "104744/2_1opagehsqxstandard35025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104744/2_1opagehsqxstandard35025120560115/2_1opagehsqxstandard35025120560115_seg.nii.gz" + }, + { + "image": "104744/3_2opagehsqxbone35025120560115.nii.gz", + "pseudo_label": "104744/3_2opagehsqxbone35025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104744/3_2opagehsqxbone35025120560115/3_2opagehsqxbone35025120560115_seg.nii.gz" + }, + { + "image": "108674/2_0opagehsqxstandard30025120560115.nii.gz", + "pseudo_label": "108674/2_0opagehsqxstandard30025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108674/2_0opagehsqxstandard30025120560115/2_0opagehsqxstandard30025120560115_seg.nii.gz" + }, + { + "image": "108674/2_1opagehsqxstandard30025120560115.nii.gz", + "pseudo_label": "108674/2_1opagehsqxstandard30025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108674/2_1opagehsqxstandard30025120560115/2_1opagehsqxstandard30025120560115_seg.nii.gz" + }, + { + "image": "108674/2_2opagehsqxstandard30025120560115.nii.gz", + "pseudo_label": "108674/2_2opagehsqxstandard30025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108674/2_2opagehsqxstandard30025120560115/2_2opagehsqxstandard30025120560115_seg.nii.gz" + }, + { + "image": "108674/3_0opagehsqxbone30025120560115.nii.gz", + "pseudo_label": "108674/3_0opagehsqxbone30025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108674/3_0opagehsqxbone30025120560115/3_0opagehsqxbone30025120560115_seg.nii.gz" + }, + { + "image": "107525/2_1opagels16bone3302512000na.nii.gz", + "pseudo_label": "107525/2_1opagels16bone3302512000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107525/2_1opagels16bone3302512000na/2_1opagels16bone3302512000na_seg.nii.gz" + }, + { + "image": "107525/3_2opagelspr16standard33025120560114.nii.gz", + "pseudo_label": "107525/3_2opagelspr16standard33025120560114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107525/3_2opagelspr16standard33025120560114/3_2opagelspr16standard33025120560114_seg.nii.gz" + }, + { + "image": "107525/2_2opagelspr16bone33025120560114.nii.gz", + "pseudo_label": "107525/2_2opagelspr16bone33025120560114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107525/2_2opagelspr16bone33025120560114/2_2opagelspr16bone33025120560114_seg.nii.gz" + }, + { + "image": "107525/3_0opagelsqxstandard3602512048015.nii.gz", + "pseudo_label": "107525/3_0opagelsqxstandard3602512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107525/3_0opagelsqxstandard3602512048015/3_0opagelsqxstandard3602512048015_seg.nii.gz" + }, + { + "image": "107525/3_1opagels16standard3302512000na.nii.gz", + "pseudo_label": "107525/3_1opagels16standard3302512000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107525/3_1opagels16standard3302512000na/3_1opagels16standard3302512000na_seg.nii.gz" + }, + { + "image": "102878/3_0opasevzoomb50f340212010560na.nii.gz", + "pseudo_label": "102878/3_0opasevzoomb50f340212010560na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102878/3_0opasevzoomb50f340212010560na/3_0opasevzoomb50f340212010560na_seg.nii.gz" + }, + { + "image": "102878/2_2opasevzoomb30f36021207540na.nii.gz", + "pseudo_label": "102878/2_2opasevzoomb30f36021207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102878/2_2opasevzoomb30f36021207540na/2_2opasevzoomb30f36021207540na_seg.nii.gz" + }, + { + "image": "104191/5_2opasevzoomb30f34051206030na.nii.gz", + "pseudo_label": "104191/5_2opasevzoomb30f34051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104191/5_2opasevzoomb30f34051206030na/5_2opasevzoomb30f34051206030na_seg.nii.gz" + }, + { + "image": "104191/4_2opasevzoomb50f34051206030na.nii.gz", + "pseudo_label": "104191/4_2opasevzoomb50f34051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104191/4_2opasevzoomb50f34051206030na/4_2opasevzoomb50f34051206030na_seg.nii.gz" + }, + { + "image": "104191/6_2opasevzoomb30f34021206030na.nii.gz", + "pseudo_label": "104191/6_2opasevzoomb30f34021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104191/6_2opasevzoomb30f34021206030na/6_2opasevzoomb30f34021206030na_seg.nii.gz" + }, + { + "image": "104191/5_1opasevzoomb30f34051206030na.nii.gz", + "pseudo_label": "104191/5_1opasevzoomb30f34051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104191/5_1opasevzoomb30f34051206030na/5_1opasevzoomb30f34051206030na_seg.nii.gz" + }, + { + "image": "104191/4_0opasevzoomb50f36251206030na.nii.gz", + "pseudo_label": "104191/4_0opasevzoomb50f36251206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104191/4_0opasevzoomb50f36251206030na/4_0opasevzoomb50f36251206030na_seg.nii.gz" + }, + { + "image": "104191/3_2opasevzoomb50f34021206030na.nii.gz", + "pseudo_label": "104191/3_2opasevzoomb50f34021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104191/3_2opasevzoomb50f34021206030na/3_2opasevzoomb50f34021206030na_seg.nii.gz" + }, + { + "image": "104191/5_0opasevzoomb30f36251206030na.nii.gz", + "pseudo_label": "104191/5_0opasevzoomb30f36251206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104191/5_0opasevzoomb30f36251206030na/5_0opasevzoomb30f36251206030na_seg.nii.gz" + }, + { + "image": "104191/4_1opasevzoomb50f34051206030na.nii.gz", + "pseudo_label": "104191/4_1opasevzoomb50f34051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104191/4_1opasevzoomb50f34051206030na/4_1opasevzoomb50f34051206030na_seg.nii.gz" + }, + { + "image": "109112/3_1opasesen16b30f30351204530na.nii.gz", + "pseudo_label": "109112/3_1opasesen16b30f30351204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109112/3_1opasesen16b30f30351204530na/3_1opasesen16b30f30351204530na_seg.nii.gz" + }, + { + "image": "109112/3_2opasesen16b30f27051204530na.nii.gz", + "pseudo_label": "109112/3_2opasesen16b30f27051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109112/3_2opasesen16b30f27051204530na/3_2opasesen16b30f27051204530na_seg.nii.gz" + }, + { + "image": "109112/5_0opasesen16b20f31021206040na.nii.gz", + "pseudo_label": "109112/5_0opasesen16b20f31021206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109112/5_0opasesen16b20f31021206040na/5_0opasesen16b20f31021206040na_seg.nii.gz" + }, + { + "image": "109112/6_2opasesen16b30f28621204530na.nii.gz", + "pseudo_label": "109112/6_2opasesen16b30f28621204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109112/6_2opasesen16b30f28621204530na/6_2opasesen16b30f28621204530na_seg.nii.gz" + }, + { + "image": "109112/7_2opasesen16b50f28621204530na.nii.gz", + "pseudo_label": "109112/7_2opasesen16b50f28621204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109112/7_2opasesen16b50f28621204530na/7_2opasesen16b50f28621204530na_seg.nii.gz" + }, + { + "image": "109112/5_1opasesen16b50f30051204530na.nii.gz", + "pseudo_label": "109112/5_1opasesen16b50f30051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109112/5_1opasesen16b50f30051204530na/5_1opasesen16b50f30051204530na_seg.nii.gz" + }, + { + "image": "109112/7_0opasesen16b50f31021206040na.nii.gz", + "pseudo_label": "109112/7_0opasesen16b50f31021206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109112/7_0opasesen16b50f31021206040na/7_0opasesen16b50f31021206040na_seg.nii.gz" + }, + { + "image": "109112/4_0opasesen16b20f31051206040na.nii.gz", + "pseudo_label": "109112/4_0opasesen16b20f31051206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109112/4_0opasesen16b20f31051206040na/4_0opasesen16b20f31051206040na_seg.nii.gz" + }, + { + "image": "109112/6_0opasesen16b50f31051206040na.nii.gz", + "pseudo_label": "109112/6_0opasesen16b50f31051206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109112/6_0opasesen16b50f31051206040na/6_0opasesen16b50f31051206040na_seg.nii.gz" + }, + { + "image": "100577/2_0opagelsqxstandard3402512048015.nii.gz", + "pseudo_label": "100577/2_0opagelsqxstandard3402512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100577/2_0opagelsqxstandard3402512048015/2_0opagelsqxstandard3402512048015_seg.nii.gz" + }, + { + "image": "100577/2_1opagelsqxstandard3602512048015.nii.gz", + "pseudo_label": "100577/2_1opagelsqxstandard3602512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100577/2_1opagelsqxstandard3602512048015/2_1opagelsqxstandard3602512048015_seg.nii.gz" + }, + { + "image": "110287/2_0opagehsqxstandard38025120560115.nii.gz", + "pseudo_label": "110287/2_0opagehsqxstandard38025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110287/2_0opagehsqxstandard38025120560115/2_0opagehsqxstandard38025120560115_seg.nii.gz" + }, + { + "image": "110287/2_1opagehsqxstandard38025120560115.nii.gz", + "pseudo_label": "110287/2_1opagehsqxstandard38025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110287/2_1opagehsqxstandard38025120560115/2_1opagehsqxstandard38025120560115_seg.nii.gz" + }, + { + "image": "110287/2_2opagehsqxstandard38025120560115.nii.gz", + "pseudo_label": "110287/2_2opagehsqxstandard38025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110287/2_2opagehsqxstandard38025120560115/2_2opagehsqxstandard38025120560115_seg.nii.gz" + }, + { + "image": "106959/2_1opasesen16b30f29621204032na.nii.gz", + "pseudo_label": "106959/2_1opasesen16b30f29621204032na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106959/2_1opasesen16b30f29621204032na/2_1opasesen16b30f29621204032na_seg.nii.gz" + }, + { + "image": "106428/3_2opagelspr16standard3002512040014.nii.gz", + "pseudo_label": "106428/3_2opagelspr16standard3002512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106428/3_2opagelspr16standard3002512040014/3_2opagelspr16standard3002512040014_seg.nii.gz" + }, + { + "image": "106428/2_0opagelsqxbone3102512048015.nii.gz", + "pseudo_label": "106428/2_0opagelsqxbone3102512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106428/2_0opagelsqxbone3102512048015/2_0opagelsqxbone3102512048015_seg.nii.gz" + }, + { + "image": "106428/2_1opagels16bone31425120560114.nii.gz", + "pseudo_label": "106428/2_1opagels16bone31425120560114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106428/2_1opagels16bone31425120560114/2_1opagels16bone31425120560114_seg.nii.gz" + }, + { + "image": "106428/3_1opagels16standard31425120560114.nii.gz", + "pseudo_label": "106428/3_1opagels16standard31425120560114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106428/3_1opagels16standard31425120560114/3_1opagels16standard31425120560114_seg.nii.gz" + }, + { + "image": "111303/3_0opagelsqxbone38025120640115.nii.gz", + "pseudo_label": "111303/3_0opagelsqxbone38025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111303/3_0opagelsqxbone38025120640115/3_0opagelsqxbone38025120640115_seg.nii.gz" + }, + { + "image": "111303/3_1opagelsqxbone34025120640115.nii.gz", + "pseudo_label": "111303/3_1opagelsqxbone34025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111303/3_1opagelsqxbone34025120640115/3_1opagelsqxbone34025120640115_seg.nii.gz" + }, + { + "image": "111303/2_2opagelsqxstandard36625120640115.nii.gz", + "pseudo_label": "111303/2_2opagelsqxstandard36625120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111303/2_2opagelsqxstandard36625120640115/2_2opagelsqxstandard36625120640115_seg.nii.gz" + }, + { + "image": "111303/3_2opagelsqxbone36625120640115.nii.gz", + "pseudo_label": "111303/3_2opagelsqxbone36625120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111303/3_2opagelsqxbone36625120640115/3_2opagelsqxbone36625120640115_seg.nii.gz" + }, + { + "image": "111303/2_0opagelsqxstandard38025120640115.nii.gz", + "pseudo_label": "111303/2_0opagelsqxstandard38025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111303/2_0opagelsqxstandard38025120640115/2_0opagelsqxstandard38025120640115_seg.nii.gz" + }, + { + "image": "112803/3_2opagelsqxbone36125120720115.nii.gz", + "pseudo_label": "112803/3_2opagelsqxbone36125120720115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112803/3_2opagelsqxbone36125120720115/3_2opagelsqxbone36125120720115_seg.nii.gz" + }, + { + "image": "112803/2_1opagelsqxstandard36525120720115.nii.gz", + "pseudo_label": "112803/2_1opagelsqxstandard36525120720115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112803/2_1opagelsqxstandard36525120720115/2_1opagelsqxstandard36525120720115_seg.nii.gz" + }, + { + "image": "112803/2_0opagelsqxstandard39025120720115.nii.gz", + "pseudo_label": "112803/2_0opagelsqxstandard39025120720115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112803/2_0opagelsqxstandard39025120720115/2_0opagelsqxstandard39025120720115_seg.nii.gz" + }, + { + "image": "112803/3_0opagelsqxbone39025120720115.nii.gz", + "pseudo_label": "112803/3_0opagelsqxbone39025120720115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112803/3_0opagelsqxbone39025120720115/3_0opagelsqxbone39025120720115_seg.nii.gz" + }, + { + "image": "112803/3_1opagelsqxbone36525120720115.nii.gz", + "pseudo_label": "112803/3_1opagelsqxbone36525120720115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112803/3_1opagelsqxbone36525120720115/3_1opagelsqxbone36525120720115_seg.nii.gz" + }, + { + "image": "112803/2_2opagelsqxstandard36125120720115.nii.gz", + "pseudo_label": "112803/2_2opagelsqxstandard36125120720115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112803/2_2opagelsqxstandard36125120720115/2_2opagelsqxstandard36125120720115_seg.nii.gz" + }, + { + "image": "105050/5_2opasesen16b50f36251204530na.nii.gz", + "pseudo_label": "105050/5_2opasesen16b50f36251204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105050/5_2opasesen16b50f36251204530na/5_2opasesen16b50f36251204530na_seg.nii.gz" + }, + { + "image": "105050/4_0opasevzoomb30f370512012060na.nii.gz", + "pseudo_label": "105050/4_0opasevzoomb30f370512012060na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105050/4_0opasevzoomb30f370512012060na/4_0opasevzoomb30f370512012060na_seg.nii.gz" + }, + { + "image": "105050/4_1opasesen16b30f38851204530na.nii.gz", + "pseudo_label": "105050/4_1opasesen16b30f38851204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105050/4_1opasesen16b30f38851204530na/4_1opasesen16b30f38851204530na_seg.nii.gz" + }, + { + "image": "105050/7_1opasesen16b50f38821204530na.nii.gz", + "pseudo_label": "105050/7_1opasesen16b50f38821204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105050/7_1opasesen16b50f38821204530na/7_1opasesen16b50f38821204530na_seg.nii.gz" + }, + { + "image": "105050/6_0opasevzoomb50f370512012060na.nii.gz", + "pseudo_label": "105050/6_0opasevzoomb50f370512012060na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105050/6_0opasevzoomb50f370512012060na/6_0opasevzoomb50f370512012060na_seg.nii.gz" + }, + { + "image": "105050/6_1opasesen16b50f38851204530na.nii.gz", + "pseudo_label": "105050/6_1opasesen16b50f38851204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105050/6_1opasesen16b50f38851204530na/6_1opasesen16b50f38851204530na_seg.nii.gz" + }, + { + "image": "113116/2_1opagels16bone35025120600114.nii.gz", + "pseudo_label": "113116/2_1opagels16bone35025120600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113116/2_1opagels16bone35025120600114/2_1opagels16bone35025120600114_seg.nii.gz" + }, + { + "image": "102706/2_2opagelsqxstandard35425120640115.nii.gz", + "pseudo_label": "102706/2_2opagelsqxstandard35425120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102706/2_2opagelsqxstandard35425120640115/2_2opagelsqxstandard35425120640115_seg.nii.gz" + }, + { + "image": "102706/2_0opagelsqxstandard33025120640115.nii.gz", + "pseudo_label": "102706/2_0opagelsqxstandard33025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102706/2_0opagelsqxstandard33025120640115/2_0opagelsqxstandard33025120640115_seg.nii.gz" + }, + { + "image": "102706/3_1opagelsqxbone34225120560115.nii.gz", + "pseudo_label": "102706/3_1opagelsqxbone34225120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102706/3_1opagelsqxbone34225120560115/3_1opagelsqxbone34225120560115_seg.nii.gz" + }, + { + "image": "102706/3_0opagelsqxbone33025120640115.nii.gz", + "pseudo_label": "102706/3_0opagelsqxbone33025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102706/3_0opagelsqxbone33025120640115/3_0opagelsqxbone33025120640115_seg.nii.gz" + }, + { + "image": "102706/3_2opagelsqxbone35425120640115.nii.gz", + "pseudo_label": "102706/3_2opagelsqxbone35425120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102706/3_2opagelsqxbone35425120640115/3_2opagelsqxbone35425120640115_seg.nii.gz" + }, + { + "image": "102706/2_1opagelsqxstandard34225120560115.nii.gz", + "pseudo_label": "102706/2_1opagelsqxstandard34225120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102706/2_1opagelsqxstandard34225120560115/2_1opagelsqxstandard34225120560115_seg.nii.gz" + }, + { + "image": "106188/2_0opasevzoomb50f33021206030na.nii.gz", + "pseudo_label": "106188/2_0opasevzoomb50f33021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106188/2_0opasevzoomb50f33021206030na/2_0opasevzoomb50f33021206030na_seg.nii.gz" + }, + { + "image": "101047/2_0opasevzoomb50f28821206030na.nii.gz", + "pseudo_label": "101047/2_0opasevzoomb50f28821206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101047/2_0opasevzoomb50f28821206030na/2_0opasevzoomb50f28821206030na_seg.nii.gz" + }, + { + "image": "103778/2_2opagelsqxstandard3102514000na.nii.gz", + "pseudo_label": "103778/2_2opagelsqxstandard3102514000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103778/2_2opagelsqxstandard3102514000na/2_2opagelsqxstandard3102514000na_seg.nii.gz" + }, + { + "image": "103778/2_0opagelsqxstandard3202512000na.nii.gz", + "pseudo_label": "103778/2_0opagelsqxstandard3202512000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103778/2_0opagelsqxstandard3202512000na/2_0opagelsqxstandard3202512000na_seg.nii.gz" + }, + { + "image": "106648/2_2opagelsplusstandard4002514040015.nii.gz", + "pseudo_label": "106648/2_2opagelsplusstandard4002514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106648/2_2opagelsplusstandard4002514040015/2_2opagelsplusstandard4002514040015_seg.nii.gz" + }, + { + "image": "106648/2_0opagelsplusstandard40025140720115.nii.gz", + "pseudo_label": "106648/2_0opagelsplusstandard40025140720115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106648/2_0opagelsplusstandard40025140720115/2_0opagelsplusstandard40025140720115_seg.nii.gz" + }, + { + "image": "103982/2_2opagehsqxstandard31025120560115.nii.gz", + "pseudo_label": "103982/2_2opagehsqxstandard31025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103982/2_2opagehsqxstandard31025120560115/2_2opagehsqxstandard31025120560115_seg.nii.gz" + }, + { + "image": "103982/2_1opagehsqxstandard31025120560115.nii.gz", + "pseudo_label": "103982/2_1opagehsqxstandard31025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103982/2_1opagehsqxstandard31025120560115/2_1opagehsqxstandard31025120560115_seg.nii.gz" + }, + { + "image": "103982/3_1opagehsqxbone31025120560115.nii.gz", + "pseudo_label": "103982/3_1opagehsqxbone31025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103982/3_1opagehsqxbone31025120560115/3_1opagehsqxbone31025120560115_seg.nii.gz" + }, + { + "image": "103982/3_0opagehsqxbone31025120560115.nii.gz", + "pseudo_label": "103982/3_0opagehsqxbone31025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103982/3_0opagehsqxbone31025120560115/3_0opagehsqxbone31025120560115_seg.nii.gz" + }, + { + "image": "108403/2_1opagels16bone3802512040014.nii.gz", + "pseudo_label": "108403/2_1opagels16bone3802512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108403/2_1opagels16bone3802512040014/2_1opagels16bone3802512040014_seg.nii.gz" + }, + { + "image": "108403/3_1opagels16standard3772512040014.nii.gz", + "pseudo_label": "108403/3_1opagels16standard3772512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108403/3_1opagels16standard3772512040014/3_1opagels16standard3772512040014_seg.nii.gz" + }, + { + "image": "108403/2_2opagelspr16bone36025120560114.nii.gz", + "pseudo_label": "108403/2_2opagelspr16bone36025120560114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108403/2_2opagelspr16bone36025120560114/2_2opagelspr16bone36025120560114_seg.nii.gz" + }, + { + "image": "108403/3_2opagelspr16standard36025120560114.nii.gz", + "pseudo_label": "108403/3_2opagelspr16standard36025120560114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108403/3_2opagelspr16standard36025120560114/3_2opagelspr16standard36025120560114_seg.nii.gz" + }, + { + "image": "110049/2_0opagelsqxstandard3422514048015.nii.gz", + "pseudo_label": "110049/2_0opagelsqxstandard3422514048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110049/2_0opagelsqxstandard3422514048015/2_0opagelsqxstandard3422514048015_seg.nii.gz" + }, + { + "image": "110049/2_1opagelsqxstandard3402514048015.nii.gz", + "pseudo_label": "110049/2_1opagelsqxstandard3402514048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110049/2_1opagelsqxstandard3402514048015/2_1opagelsqxstandard3402514048015_seg.nii.gz" + }, + { + "image": "110049/2_2opagelsqxstandard3402514048015.nii.gz", + "pseudo_label": "110049/2_2opagelsqxstandard3402514048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110049/2_2opagelsqxstandard3402514048015/2_2opagelsqxstandard3402514048015_seg.nii.gz" + }, + { + "image": "108802/2_0opasevzoomb50f38021206030na.nii.gz", + "pseudo_label": "108802/2_0opasevzoomb50f38021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108802/2_0opasevzoomb50f38021206030na/2_0opasevzoomb50f38021206030na_seg.nii.gz" + }, + { + "image": "102320/2_0opagehsqxstandard35025120560115.nii.gz", + "pseudo_label": "102320/2_0opagehsqxstandard35025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102320/2_0opagehsqxstandard35025120560115/2_0opagehsqxstandard35025120560115_seg.nii.gz" + }, + { + "image": "102320/2_1opagehsqxstandard35025120560115.nii.gz", + "pseudo_label": "102320/2_1opagehsqxstandard35025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102320/2_1opagehsqxstandard35025120560115/2_1opagehsqxstandard35025120560115_seg.nii.gz" + }, + { + "image": "102320/3_0opagehsqxbone35025120560115.nii.gz", + "pseudo_label": "102320/3_0opagehsqxbone35025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102320/3_0opagehsqxbone35025120560115/3_0opagehsqxbone35025120560115_seg.nii.gz" + }, + { + "image": "104678/3_2opagehsqxbone39025120560115.nii.gz", + "pseudo_label": "104678/3_2opagehsqxbone39025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104678/3_2opagehsqxbone39025120560115/3_2opagehsqxbone39025120560115_seg.nii.gz" + }, + { + "image": "104678/2_1opagehsqxstandard39025120560115.nii.gz", + "pseudo_label": "104678/2_1opagehsqxstandard39025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104678/2_1opagehsqxstandard39025120560115/2_1opagehsqxstandard39025120560115_seg.nii.gz" + }, + { + "image": "104678/3_0opagehsqxbone39025120560115.nii.gz", + "pseudo_label": "104678/3_0opagehsqxbone39025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104678/3_0opagehsqxbone39025120560115/3_0opagehsqxbone39025120560115_seg.nii.gz" + }, + { + "image": "104678/2_0opagehsqxstandard39025120560115.nii.gz", + "pseudo_label": "104678/2_0opagehsqxstandard39025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104678/2_0opagehsqxstandard39025120560115/2_0opagehsqxstandard39025120560115_seg.nii.gz" + }, + { + "image": "100740/2_2opagehsqxstandard35025120560115.nii.gz", + "pseudo_label": "100740/2_2opagehsqxstandard35025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100740/2_2opagehsqxstandard35025120560115/2_2opagehsqxstandard35025120560115_seg.nii.gz" + }, + { + "image": "100740/2_0opagehsqxstandard35025120560115.nii.gz", + "pseudo_label": "100740/2_0opagehsqxstandard35025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100740/2_0opagehsqxstandard35025120560115/2_0opagehsqxstandard35025120560115_seg.nii.gz" + }, + { + "image": "100740/2_1opagehsqxstandard35025120560115.nii.gz", + "pseudo_label": "100740/2_1opagehsqxstandard35025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100740/2_1opagehsqxstandard35025120560115/2_1opagehsqxstandard35025120560115_seg.nii.gz" + }, + { + "image": "100740/3_0opagehsqxbone35025120560115.nii.gz", + "pseudo_label": "100740/3_0opagehsqxbone35025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100740/3_0opagehsqxbone35025120560115/3_0opagehsqxbone35025120560115_seg.nii.gz" + }, + { + "image": "107754/3_2opasevzoomb30f35221208040na.nii.gz", + "pseudo_label": "107754/3_2opasevzoomb30f35221208040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107754/3_2opasevzoomb30f35221208040na/3_2opasevzoomb30f35221208040na_seg.nii.gz" + }, + { + "image": "107754/2_1opasevzoomb50f35221206030na.nii.gz", + "pseudo_label": "107754/2_1opasevzoomb50f35221206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107754/2_1opasevzoomb50f35221206030na/2_1opasevzoomb50f35221206030na_seg.nii.gz" + }, + { + "image": "107754/2_0opasevzoomb50f34021208040na.nii.gz", + "pseudo_label": "107754/2_0opasevzoomb50f34021208040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107754/2_0opasevzoomb50f34021208040na/2_0opasevzoomb50f34021208040na_seg.nii.gz" + }, + { + "image": "107754/3_1opasevzoomb30f35221206030na.nii.gz", + "pseudo_label": "107754/3_1opasevzoomb30f35221206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107754/3_1opasevzoomb30f35221206030na/3_1opasevzoomb30f35221206030na_seg.nii.gz" + }, + { + "image": "107501/3545_2opaphmx8000c38032120453612.nii.gz", + "pseudo_label": "107501/3545_2opaphmx8000c38032120453612.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107501/3545_2opaphmx8000c38032120453612/3545_2opaphmx8000c38032120453612_seg.nii.gz" + }, + { + "image": "107501/1624_1opaphmx8000c40032120453612.nii.gz", + "pseudo_label": "107501/1624_1opaphmx8000c40032120453612.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107501/1624_1opaphmx8000c40032120453612/1624_1opaphmx8000c40032120453612_seg.nii.gz" + }, + { + "image": "110758/2_1opagels16standard3902514040014.nii.gz", + "pseudo_label": "110758/2_1opagels16standard3902514040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110758/2_1opagels16standard3902514040014/2_1opagels16standard3902514040014_seg.nii.gz" + }, + { + "image": "110758/2_0opagelsqxstandard39525140640115.nii.gz", + "pseudo_label": "110758/2_0opagelsqxstandard39525140640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110758/2_0opagelsqxstandard39525140640115/2_0opagelsqxstandard39525140640115_seg.nii.gz" + }, + { + "image": "100791/2_0opagels16standard3202514040014.nii.gz", + "pseudo_label": "100791/2_0opagels16standard3202514040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100791/2_0opagels16standard3202514040014/2_0opagels16standard3202514040014_seg.nii.gz" + }, + { + "image": "100791/2_2opagels16standard3302514040014.nii.gz", + "pseudo_label": "100791/2_2opagels16standard3302514040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100791/2_2opagels16standard3302514040014/2_2opagels16standard3302514040014_seg.nii.gz" + }, + { + "image": "107697/3_2opatoaqul4fc512906212040nana.nii.gz", + "pseudo_label": "107697/3_2opatoaqul4fc512906212040nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107697/3_2opatoaqul4fc512906212040nana/3_2opatoaqul4fc512906212040nana_seg.nii.gz" + }, + { + "image": "100201/2_0opagelsqxstandard3402512048015.nii.gz", + "pseudo_label": "100201/2_0opagelsqxstandard3402512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100201/2_0opagelsqxstandard3402512048015/2_0opagelsqxstandard3402512048015_seg.nii.gz" + }, + { + "image": "109576/2_2opagels16bone2902512048014.nii.gz", + "pseudo_label": "109576/2_2opagels16bone2902512048014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109576/2_2opagels16bone2902512048014/2_2opagels16bone2902512048014_seg.nii.gz" + }, + { + "image": "109576/3_2opagels16standard2902512048014.nii.gz", + "pseudo_label": "109576/3_2opagels16standard2902512048014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109576/3_2opagels16standard2902512048014/3_2opagels16standard2902512048014_seg.nii.gz" + }, + { + "image": "109576/2_0opagelsqxbone3192512048015.nii.gz", + "pseudo_label": "109576/2_0opagelsqxbone3192512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109576/2_0opagelsqxbone3192512048015/2_0opagelsqxbone3192512048015_seg.nii.gz" + }, + { + "image": "109576/3_0opagelsqxstandard3192512048015.nii.gz", + "pseudo_label": "109576/3_0opagelsqxstandard3192512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109576/3_0opagelsqxstandard3192512048015/3_0opagelsqxstandard3192512048015_seg.nii.gz" + }, + { + "image": "100726/2_0opagelsqxstandard3252514040015.nii.gz", + "pseudo_label": "100726/2_0opagelsqxstandard3252514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100726/2_0opagelsqxstandard3252514040015/2_0opagelsqxstandard3252514040015_seg.nii.gz" + }, + { + "image": "100726/2_1opagelsqxstandard3502514040015.nii.gz", + "pseudo_label": "100726/2_1opagelsqxstandard3502514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100726/2_1opagelsqxstandard3502514040015/2_1opagelsqxstandard3502514040015_seg.nii.gz" + }, + { + "image": "100726/2_2opagelsqxstandard3602514040015.nii.gz", + "pseudo_label": "100726/2_2opagelsqxstandard3602514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100726/2_2opagelsqxstandard3602514040015/2_2opagelsqxstandard3602514040015_seg.nii.gz" + }, + { + "image": "101392/5_1opasesen16b50f32851204530na.nii.gz", + "pseudo_label": "101392/5_1opasesen16b50f32851204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101392/5_1opasesen16b50f32851204530na/5_1opasesen16b50f32851204530na_seg.nii.gz" + }, + { + "image": "101392/5_2opasesen16b50f34351204530na.nii.gz", + "pseudo_label": "101392/5_2opasesen16b50f34351204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101392/5_2opasesen16b50f34351204530na/5_2opasesen16b50f34351204530na_seg.nii.gz" + }, + { + "image": "101392/3_1opasesen16b30f32851204530na.nii.gz", + "pseudo_label": "101392/3_1opasesen16b30f32851204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101392/3_1opasesen16b30f32851204530na/3_1opasesen16b30f32851204530na_seg.nii.gz" + }, + { + "image": "101392/4_0opasevzoomb50f34251206030na.nii.gz", + "pseudo_label": "101392/4_0opasevzoomb50f34251206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101392/4_0opasevzoomb50f34251206030na/4_0opasevzoomb50f34251206030na_seg.nii.gz" + }, + { + "image": "101392/8_0opasevzoomb50f34221206030na.nii.gz", + "pseudo_label": "101392/8_0opasevzoomb50f34221206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101392/8_0opasevzoomb50f34221206030na/8_0opasevzoomb50f34221206030na_seg.nii.gz" + }, + { + "image": "101392/3_2opasesen16b30f34351204530na.nii.gz", + "pseudo_label": "101392/3_2opasesen16b30f34351204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101392/3_2opasesen16b30f34351204530na/3_2opasesen16b30f34351204530na_seg.nii.gz" + }, + { + "image": "101392/7_0opasevzoomb50f34251206030na.nii.gz", + "pseudo_label": "101392/7_0opasevzoomb50f34251206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101392/7_0opasevzoomb50f34251206030na/7_0opasevzoomb50f34251206030na_seg.nii.gz" + }, + { + "image": "101392/4_1opasesen16b30f32821204530na.nii.gz", + "pseudo_label": "101392/4_1opasesen16b30f32821204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101392/4_1opasesen16b30f32821204530na/4_1opasesen16b30f32821204530na_seg.nii.gz" + }, + { + "image": "101392/6_0opasevzoomb30f34251206030na.nii.gz", + "pseudo_label": "101392/6_0opasevzoomb30f34251206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101392/6_0opasevzoomb30f34251206030na/6_0opasevzoomb30f34251206030na_seg.nii.gz" + }, + { + "image": "101392/3_0opasevzoomb30f34251206030na.nii.gz", + "pseudo_label": "101392/3_0opasevzoomb30f34251206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101392/3_0opasevzoomb30f34251206030na/3_0opasevzoomb30f34251206030na_seg.nii.gz" + }, + { + "image": "101392/6_1opasesen16b50f32821204530na.nii.gz", + "pseudo_label": "101392/6_1opasesen16b50f32821204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101392/6_1opasesen16b50f32821204530na/6_1opasesen16b50f32821204530na_seg.nii.gz" + }, + { + "image": "100035/3_1opagehsqxbone30025120560115.nii.gz", + "pseudo_label": "100035/3_1opagehsqxbone30025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100035/3_1opagehsqxbone30025120560115/3_1opagehsqxbone30025120560115_seg.nii.gz" + }, + { + "image": "100035/3_0opagehsqxbone30025120640115.nii.gz", + "pseudo_label": "100035/3_0opagehsqxbone30025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100035/3_0opagehsqxbone30025120640115/3_0opagehsqxbone30025120640115_seg.nii.gz" + }, + { + "image": "100035/2_1opagehsqxstandard30025120560115.nii.gz", + "pseudo_label": "100035/2_1opagehsqxstandard30025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100035/2_1opagehsqxstandard30025120560115/2_1opagehsqxstandard30025120560115_seg.nii.gz" + }, + { + "image": "100035/3_2opagehsqxbone30025120560115.nii.gz", + "pseudo_label": "100035/3_2opagehsqxbone30025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100035/3_2opagehsqxbone30025120560115/3_2opagehsqxbone30025120560115_seg.nii.gz" + }, + { + "image": "100035/2_2opagehsqxstandard30025120560115.nii.gz", + "pseudo_label": "100035/2_2opagehsqxstandard30025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100035/2_2opagehsqxstandard30025120560115/2_2opagehsqxstandard30025120560115_seg.nii.gz" + }, + { + "image": "100035/2_0opagehsqxstandard30025120640115.nii.gz", + "pseudo_label": "100035/2_0opagehsqxstandard30025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100035/2_0opagehsqxstandard30025120640115/2_0opagehsqxstandard30025120640115_seg.nii.gz" + }, + { + "image": "102847/7295_2opaphmx8000c35332120453612.nii.gz", + "pseudo_label": "102847/7295_2opaphmx8000c35332120453612.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102847/7295_2opaphmx8000c35332120453612/7295_2opaphmx8000c35332120453612_seg.nii.gz" + }, + { + "image": "102847/3691_0opaphmx8000c278321208787012.nii.gz", + "pseudo_label": "102847/3691_0opaphmx8000c278321208787012.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102847/3691_0opaphmx8000c278321208787012/3691_0opaphmx8000c278321208787012_seg.nii.gz" + }, + { + "image": "107996/3_0opasesen16b30f34851204530na.nii.gz", + "pseudo_label": "107996/3_0opasesen16b30f34851204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107996/3_0opasesen16b30f34851204530na/3_0opasesen16b30f34851204530na_seg.nii.gz" + }, + { + "image": "107996/6_1opasesen16b50f30021204530na.nii.gz", + "pseudo_label": "107996/6_1opasesen16b50f30021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107996/6_1opasesen16b50f30021204530na/6_1opasesen16b50f30021204530na_seg.nii.gz" + }, + { + "image": "107996/5_0opasesen16b50f34821204530na.nii.gz", + "pseudo_label": "107996/5_0opasesen16b50f34821204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107996/5_0opasesen16b50f34821204530na/5_0opasesen16b50f34821204530na_seg.nii.gz" + }, + { + "image": "107996/3_2opasesen16b30f30451204530na.nii.gz", + "pseudo_label": "107996/3_2opasesen16b30f30451204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107996/3_2opasesen16b30f30451204530na/3_2opasesen16b30f30451204530na_seg.nii.gz" + }, + { + "image": "107996/4_1opasesen16b30f30021204530na.nii.gz", + "pseudo_label": "107996/4_1opasesen16b30f30021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107996/4_1opasesen16b30f30021204530na/4_1opasesen16b30f30021204530na_seg.nii.gz" + }, + { + "image": "107996/5_1opasesen16b50f30051204530na.nii.gz", + "pseudo_label": "107996/5_1opasesen16b50f30051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107996/5_1opasesen16b50f30051204530na/5_1opasesen16b50f30051204530na_seg.nii.gz" + }, + { + "image": "107996/6_0opasesen16b30f34821204530na.nii.gz", + "pseudo_label": "107996/6_0opasesen16b30f34821204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107996/6_0opasesen16b30f34821204530na/6_0opasesen16b30f34821204530na_seg.nii.gz" + }, + { + "image": "107996/3_1opasesen16b30f30051204530na.nii.gz", + "pseudo_label": "107996/3_1opasesen16b30f30051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107996/3_1opasesen16b30f30051204530na/3_1opasesen16b30f30051204530na_seg.nii.gz" + }, + { + "image": "107996/5_2opasesen16b50f30751204530na.nii.gz", + "pseudo_label": "107996/5_2opasesen16b50f30751204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107996/5_2opasesen16b50f30751204530na/5_2opasesen16b50f30751204530na_seg.nii.gz" + }, + { + "image": "107996/6_2opasesen16b50f30721204530na.nii.gz", + "pseudo_label": "107996/6_2opasesen16b50f30721204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107996/6_2opasesen16b50f30721204530na/6_2opasesen16b50f30721204530na_seg.nii.gz" + }, + { + "image": "107996/4_0opasesen16b50f34851204530na.nii.gz", + "pseudo_label": "107996/4_0opasesen16b50f34851204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107996/4_0opasesen16b50f34851204530na/4_0opasesen16b50f34851204530na_seg.nii.gz" + }, + { + "image": "101369/3_1opagelsqxbone37025120640115.nii.gz", + "pseudo_label": "101369/3_1opagelsqxbone37025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101369/3_1opagelsqxbone37025120640115/3_1opagelsqxbone37025120640115_seg.nii.gz" + }, + { + "image": "101369/2_2opagelsqxstandard37625120640115.nii.gz", + "pseudo_label": "101369/2_2opagelsqxstandard37625120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101369/2_2opagelsqxstandard37625120640115/2_2opagelsqxstandard37625120640115_seg.nii.gz" + }, + { + "image": "101369/3_2opagelsqxbone37625120640115.nii.gz", + "pseudo_label": "101369/3_2opagelsqxbone37625120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101369/3_2opagelsqxbone37625120640115/3_2opagelsqxbone37625120640115_seg.nii.gz" + }, + { + "image": "101369/2_1opagelsqxstandard37025120640115.nii.gz", + "pseudo_label": "101369/2_1opagelsqxstandard37025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101369/2_1opagelsqxstandard37025120640115/2_1opagelsqxstandard37025120640115_seg.nii.gz" + }, + { + "image": "110899/1_0opagelsplusstandard32025120800115.nii.gz", + "pseudo_label": "110899/1_0opagelsplusstandard32025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110899/1_0opagelsplusstandard32025120800115/1_0opagelsplusstandard32025120800115_seg.nii.gz" + }, + { + "image": "110899/1_0opagelspluslung32025120800115.nii.gz", + "pseudo_label": "110899/1_0opagelspluslung32025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110899/1_0opagelspluslung32025120800115/1_0opagelspluslung32025120800115_seg.nii.gz" + }, + { + "image": "110899/1_2opagelspluslung32025120800115.nii.gz", + "pseudo_label": "110899/1_2opagelspluslung32025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110899/1_2opagelspluslung32025120800115/1_2opagelspluslung32025120800115_seg.nii.gz" + }, + { + "image": "110899/1_2opagelsplusstandard32025120800115.nii.gz", + "pseudo_label": "110899/1_2opagelsplusstandard32025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110899/1_2opagelsplusstandard32025120800115/1_2opagelsplusstandard32025120800115_seg.nii.gz" + }, + { + "image": "111697/3_0opasevzoomb50f35221207540na.nii.gz", + "pseudo_label": "111697/3_0opasevzoomb50f35221207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111697/3_0opasevzoomb50f35221207540na/3_0opasevzoomb50f35221207540na_seg.nii.gz" + }, + { + "image": "111697/2_2opasevzoomb30f40821207540na.nii.gz", + "pseudo_label": "111697/2_2opasevzoomb30f40821207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111697/2_2opasevzoomb30f40821207540na/2_2opasevzoomb30f40821207540na_seg.nii.gz" + }, + { + "image": "111697/3_1opasevzoomb50f40021207540na.nii.gz", + "pseudo_label": "111697/3_1opasevzoomb50f40021207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111697/3_1opasevzoomb50f40021207540na/3_1opasevzoomb50f40021207540na_seg.nii.gz" + }, + { + "image": "111697/2_0opasevzoomb30f35221207540na.nii.gz", + "pseudo_label": "111697/2_0opasevzoomb30f35221207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111697/2_0opasevzoomb30f35221207540na/2_0opasevzoomb30f35221207540na_seg.nii.gz" + }, + { + "image": "102253/2_2opagels16standard3602514040014.nii.gz", + "pseudo_label": "102253/2_2opagels16standard3602514040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102253/2_2opagels16standard3602514040014/2_2opagels16standard3602514040014_seg.nii.gz" + }, + { + "image": "102253/2_0opagels16standard3602514040014.nii.gz", + "pseudo_label": "102253/2_0opagels16standard3602514040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102253/2_0opagels16standard3602514040014/2_0opagels16standard3602514040014_seg.nii.gz" + }, + { + "image": "102253/2_1opagels16standard3382514040014.nii.gz", + "pseudo_label": "102253/2_1opagels16standard3382514040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102253/2_1opagels16standard3382514040014/2_1opagels16standard3382514040014_seg.nii.gz" + }, + { + "image": "104362/2_0opagelsqxstandard36025120640115.nii.gz", + "pseudo_label": "104362/2_0opagelsqxstandard36025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104362/2_0opagelsqxstandard36025120640115/2_0opagelsqxstandard36025120640115_seg.nii.gz" + }, + { + "image": "104362/3_0opagelsqxbone36025120640115.nii.gz", + "pseudo_label": "104362/3_0opagelsqxbone36025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104362/3_0opagelsqxbone36025120640115/3_0opagelsqxbone36025120640115_seg.nii.gz" + }, + { + "image": "104362/2_1opagelsqxstandard34625120640115.nii.gz", + "pseudo_label": "104362/2_1opagelsqxstandard34625120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104362/2_1opagelsqxstandard34625120640115/2_1opagelsqxstandard34625120640115_seg.nii.gz" + }, + { + "image": "104362/3_2opagelsqxbone35225120640115.nii.gz", + "pseudo_label": "104362/3_2opagelsqxbone35225120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104362/3_2opagelsqxbone35225120640115/3_2opagelsqxbone35225120640115_seg.nii.gz" + }, + { + "image": "104362/3_1opagelsqxbone34625120640115.nii.gz", + "pseudo_label": "104362/3_1opagelsqxbone34625120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104362/3_1opagelsqxbone34625120640115/3_1opagelsqxbone34625120640115_seg.nii.gz" + }, + { + "image": "104362/2_2opagelsqxstandard35225120640115.nii.gz", + "pseudo_label": "104362/2_2opagelsqxstandard35225120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104362/2_2opagelsqxstandard35225120640115/2_2opagelsqxstandard35225120640115_seg.nii.gz" + }, + { + "image": "104748/3_1opagels16standard36025120720114.nii.gz", + "pseudo_label": "104748/3_1opagels16standard36025120720114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104748/3_1opagels16standard36025120720114/3_1opagels16standard36025120720114_seg.nii.gz" + }, + { + "image": "104748/2_2opagels16bone36025140600114.nii.gz", + "pseudo_label": "104748/2_2opagels16bone36025140600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104748/2_2opagels16bone36025140600114/2_2opagels16bone36025140600114_seg.nii.gz" + }, + { + "image": "105819/2_2opagelspr16bone3002512048014.nii.gz", + "pseudo_label": "105819/2_2opagelspr16bone3002512048014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105819/2_2opagelspr16bone3002512048014/2_2opagelspr16bone3002512048014_seg.nii.gz" + }, + { + "image": "105819/3_2opagelspr16standard3002512048014.nii.gz", + "pseudo_label": "105819/3_2opagelspr16standard3002512048014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105819/3_2opagelspr16standard3002512048014/3_2opagelspr16standard3002512048014_seg.nii.gz" + }, + { + "image": "105819/2_0opagelsqxbone3072512048015.nii.gz", + "pseudo_label": "105819/2_0opagelsqxbone3072512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105819/2_0opagelsqxbone3072512048015/2_0opagelsqxbone3072512048015_seg.nii.gz" + }, + { + "image": "105819/2_1opagels16bone3202512000na.nii.gz", + "pseudo_label": "105819/2_1opagels16bone3202512000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105819/2_1opagels16bone3202512000na/2_1opagels16bone3202512000na_seg.nii.gz" + }, + { + "image": "105819/3_0opagelsqxstandard3072512048015.nii.gz", + "pseudo_label": "105819/3_0opagelsqxstandard3072512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105819/3_0opagelsqxstandard3072512048015/3_0opagelsqxstandard3072512048015_seg.nii.gz" + }, + { + "image": "106359/2_2opagelsplusstandard3802514040015.nii.gz", + "pseudo_label": "106359/2_2opagelsplusstandard3802514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106359/2_2opagelsplusstandard3802514040015/2_2opagelsplusstandard3802514040015_seg.nii.gz" + }, + { + "image": "106359/2_0opagelsplusstandard3502514040015.nii.gz", + "pseudo_label": "106359/2_0opagelsplusstandard3502514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106359/2_0opagelsplusstandard3502514040015/2_0opagelsplusstandard3502514040015_seg.nii.gz" + }, + { + "image": "106359/2_1opagelsplusstandard3502514040015.nii.gz", + "pseudo_label": "106359/2_1opagelsplusstandard3502514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106359/2_1opagelsplusstandard3502514040015/2_1opagelsplusstandard3502514040015_seg.nii.gz" + }, + { + "image": "110390/3_2opagehsqxbone33025120560115.nii.gz", + "pseudo_label": "110390/3_2opagehsqxbone33025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110390/3_2opagehsqxbone33025120560115/3_2opagehsqxbone33025120560115_seg.nii.gz" + }, + { + "image": "110390/2_0opagehsqxstandard33025120560115.nii.gz", + "pseudo_label": "110390/2_0opagehsqxstandard33025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110390/2_0opagehsqxstandard33025120560115/2_0opagehsqxstandard33025120560115_seg.nii.gz" + }, + { + "image": "110390/2_1opagehsqxstandard33025120560115.nii.gz", + "pseudo_label": "110390/2_1opagehsqxstandard33025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110390/2_1opagehsqxstandard33025120560115/2_1opagehsqxstandard33025120560115_seg.nii.gz" + }, + { + "image": "110390/3_0opagehsqxbone33025120560115.nii.gz", + "pseudo_label": "110390/3_0opagehsqxbone33025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110390/3_0opagehsqxbone33025120560115/3_0opagehsqxbone33025120560115_seg.nii.gz" + }, + { + "image": "105946/2_0opagelsqxstandard3602512040015.nii.gz", + "pseudo_label": "105946/2_0opagelsqxstandard3602512040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105946/2_0opagelsqxstandard3602512040015/2_0opagelsqxstandard3602512040015_seg.nii.gz" + }, + { + "image": "113230/2_1opagelsqxstandard40025120640115.nii.gz", + "pseudo_label": "113230/2_1opagelsqxstandard40025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113230/2_1opagelsqxstandard40025120640115/2_1opagelsqxstandard40025120640115_seg.nii.gz" + }, + { + "image": "107904/3_1opagelsqxbone29025120560115.nii.gz", + "pseudo_label": "107904/3_1opagelsqxbone29025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107904/3_1opagelsqxbone29025120560115/3_1opagelsqxbone29025120560115_seg.nii.gz" + }, + { + "image": "107904/2_2opagelsqxstandard28125120560115.nii.gz", + "pseudo_label": "107904/2_2opagelsqxstandard28125120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107904/2_2opagelsqxstandard28125120560115/2_2opagelsqxstandard28125120560115_seg.nii.gz" + }, + { + "image": "107904/4_0opagelsqxstandard25325120560115.nii.gz", + "pseudo_label": "107904/4_0opagelsqxstandard25325120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107904/4_0opagelsqxstandard25325120560115/4_0opagelsqxstandard25325120560115_seg.nii.gz" + }, + { + "image": "107904/5_0opagelsqxbone25325120560115.nii.gz", + "pseudo_label": "107904/5_0opagelsqxbone25325120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107904/5_0opagelsqxbone25325120560115/5_0opagelsqxbone25325120560115_seg.nii.gz" + }, + { + "image": "107904/2_1opagelsqxstandard29025120560115.nii.gz", + "pseudo_label": "107904/2_1opagelsqxstandard29025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107904/2_1opagelsqxstandard29025120560115/2_1opagelsqxstandard29025120560115_seg.nii.gz" + }, + { + "image": "107904/3_2opagelsqxbone28125120560115.nii.gz", + "pseudo_label": "107904/3_2opagelsqxbone28125120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107904/3_2opagelsqxbone28125120560115/3_2opagelsqxbone28125120560115_seg.nii.gz" + }, + { + "image": "107904/3_0opagelsqxbone25325120560115.nii.gz", + "pseudo_label": "107904/3_0opagelsqxbone25325120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107904/3_0opagelsqxbone25325120560115/3_0opagelsqxbone25325120560115_seg.nii.gz" + }, + { + "image": "112875/2_2opagelsqxstandard3202512048015.nii.gz", + "pseudo_label": "112875/2_2opagelsqxstandard3202512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112875/2_2opagelsqxstandard3202512048015/2_2opagelsqxstandard3202512048015_seg.nii.gz" + }, + { + "image": "112875/2_0opagelsqxstandard3102512048015.nii.gz", + "pseudo_label": "112875/2_0opagelsqxstandard3102512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112875/2_0opagelsqxstandard3102512048015/2_0opagelsqxstandard3102512048015_seg.nii.gz" + }, + { + "image": "112875/2_1opagelsqxstandard33025120480na.nii.gz", + "pseudo_label": "112875/2_1opagelsqxstandard33025120480na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112875/2_1opagelsqxstandard33025120480na/2_1opagelsqxstandard33025120480na_seg.nii.gz" + }, + { + "image": "100771/2_0opasesen16b30f36221204032na.nii.gz", + "pseudo_label": "100771/2_0opasesen16b30f36221204032na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100771/2_0opasesen16b30f36221204032na/2_0opasesen16b30f36221204032na_seg.nii.gz" + }, + { + "image": "103564/4_0opatoaqul4fc513438212050nana.nii.gz", + "pseudo_label": "103564/4_0opatoaqul4fc513438212050nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103564/4_0opatoaqul4fc513438212050nana/4_0opatoaqul4fc513438212050nana_seg.nii.gz" + }, + { + "image": "102933/3_2opatoaqul4fc51300212055nana.nii.gz", + "pseudo_label": "102933/3_2opatoaqul4fc51300212055nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102933/3_2opatoaqul4fc51300212055nana/3_2opatoaqul4fc51300212055nana_seg.nii.gz" + }, + { + "image": "100871/2_1opagelsqxstandard30025120640115.nii.gz", + "pseudo_label": "100871/2_1opagelsqxstandard30025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100871/2_1opagelsqxstandard30025120640115/2_1opagelsqxstandard30025120640115_seg.nii.gz" + }, + { + "image": "100871/2_0opagelsqxstandard30625120640115.nii.gz", + "pseudo_label": "100871/2_0opagelsqxstandard30625120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100871/2_0opagelsqxstandard30625120640115/2_0opagelsqxstandard30625120640115_seg.nii.gz" + }, + { + "image": "100871/2_2opagelsqxstandard34025120480na.nii.gz", + "pseudo_label": "100871/2_2opagelsqxstandard34025120480na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100871/2_2opagelsqxstandard34025120480na/2_2opagelsqxstandard34025120480na_seg.nii.gz" + }, + { + "image": "112031/3_2opasesen16b50f34021204530na.nii.gz", + "pseudo_label": "112031/3_2opasesen16b50f34021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112031/3_2opasesen16b50f34021204530na/3_2opasesen16b50f34021204530na_seg.nii.gz" + }, + { + "image": "112481/3_0opagelsqxbone34425120640115.nii.gz", + "pseudo_label": "112481/3_0opagelsqxbone34425120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112481/3_0opagelsqxbone34425120640115/3_0opagelsqxbone34425120640115_seg.nii.gz" + }, + { + "image": "112481/3_1opagelsqxbone34825120640115.nii.gz", + "pseudo_label": "112481/3_1opagelsqxbone34825120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112481/3_1opagelsqxbone34825120640115/3_1opagelsqxbone34825120640115_seg.nii.gz" + }, + { + "image": "112481/2_1opagelsqxstandard34825120640115.nii.gz", + "pseudo_label": "112481/2_1opagelsqxstandard34825120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112481/2_1opagelsqxstandard34825120640115/2_1opagelsqxstandard34825120640115_seg.nii.gz" + }, + { + "image": "112481/2_2opagelsqxstandard35025120640115.nii.gz", + "pseudo_label": "112481/2_2opagelsqxstandard35025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112481/2_2opagelsqxstandard35025120640115/2_2opagelsqxstandard35025120640115_seg.nii.gz" + }, + { + "image": "112481/2_0opagelsqxstandard34425120640115.nii.gz", + "pseudo_label": "112481/2_0opagelsqxstandard34425120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112481/2_0opagelsqxstandard34425120640115/2_0opagelsqxstandard34425120640115_seg.nii.gz" + }, + { + "image": "112481/3_2opagelsqxbone35025120640115.nii.gz", + "pseudo_label": "112481/3_2opagelsqxbone35025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112481/3_2opagelsqxbone35025120640115/3_2opagelsqxbone35025120640115_seg.nii.gz" + }, + { + "image": "104923/1_0opagelsplusstandard38025120800108.nii.gz", + "pseudo_label": "104923/1_0opagelsplusstandard38025120800108.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104923/1_0opagelsplusstandard38025120800108/1_0opagelsplusstandard38025120800108_seg.nii.gz" + }, + { + "image": "104923/1_1opagelspluslung38025120800115.nii.gz", + "pseudo_label": "104923/1_1opagelspluslung38025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104923/1_1opagelspluslung38025120800115/1_1opagelspluslung38025120800115_seg.nii.gz" + }, + { + "image": "104923/1_0opagelspluslung38025120800108.nii.gz", + "pseudo_label": "104923/1_0opagelspluslung38025120800108.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104923/1_0opagelspluslung38025120800108/1_0opagelspluslung38025120800108_seg.nii.gz" + }, + { + "image": "104923/1_2opagelsplusstandard38025120800115.nii.gz", + "pseudo_label": "104923/1_2opagelsplusstandard38025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104923/1_2opagelsplusstandard38025120800115/1_2opagelsplusstandard38025120800115_seg.nii.gz" + }, + { + "image": "104923/1_2opagelspluslung38025120800115.nii.gz", + "pseudo_label": "104923/1_2opagelspluslung38025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104923/1_2opagelspluslung38025120800115/1_2opagelspluslung38025120800115_seg.nii.gz" + }, + { + "image": "110204/2_2opagelspr16bone2902512048014.nii.gz", + "pseudo_label": "110204/2_2opagelspr16bone2902512048014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110204/2_2opagelspr16bone2902512048014/2_2opagelspr16bone2902512048014_seg.nii.gz" + }, + { + "image": "110204/3_2opagelspr16standard2902512048014.nii.gz", + "pseudo_label": "110204/3_2opagelspr16standard2902512048014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110204/3_2opagelspr16standard2902512048014/3_2opagelspr16standard2902512048014_seg.nii.gz" + }, + { + "image": "110204/3_1opagels16standard3212512040014.nii.gz", + "pseudo_label": "110204/3_1opagels16standard3212512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110204/3_1opagels16standard3212512040014/3_1opagels16standard3212512040014_seg.nii.gz" + }, + { + "image": "110204/3_0opagelsqxstandard3602512048015.nii.gz", + "pseudo_label": "110204/3_0opagelsqxstandard3602512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110204/3_0opagelsqxstandard3602512048015/3_0opagelsqxstandard3602512048015_seg.nii.gz" + }, + { + "image": "110204/2_1opagels16bone3302512040014.nii.gz", + "pseudo_label": "110204/2_1opagels16bone3302512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110204/2_1opagels16bone3302512040014/2_1opagels16bone3302512040014_seg.nii.gz" + }, + { + "image": "112440/3_2opagelsqxbone33225120720115.nii.gz", + "pseudo_label": "112440/3_2opagelsqxbone33225120720115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112440/3_2opagelsqxbone33225120720115/3_2opagelsqxbone33225120720115_seg.nii.gz" + }, + { + "image": "112440/2_1opagelsqxstandard33625120720115.nii.gz", + "pseudo_label": "112440/2_1opagelsqxstandard33625120720115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112440/2_1opagelsqxstandard33625120720115/2_1opagelsqxstandard33625120720115_seg.nii.gz" + }, + { + "image": "112440/2_2opagelsqxstandard33225120720115.nii.gz", + "pseudo_label": "112440/2_2opagelsqxstandard33225120720115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112440/2_2opagelsqxstandard33225120720115/2_2opagelsqxstandard33225120720115_seg.nii.gz" + }, + { + "image": "112440/3_1opagelsqxbone33625120720115.nii.gz", + "pseudo_label": "112440/3_1opagelsqxbone33625120720115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112440/3_1opagelsqxbone33625120720115/3_1opagelsqxbone33625120720115_seg.nii.gz" + }, + { + "image": "101715/2_2opagehsqxstandard35025120560115.nii.gz", + "pseudo_label": "101715/2_2opagehsqxstandard35025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101715/2_2opagehsqxstandard35025120560115/2_2opagehsqxstandard35025120560115_seg.nii.gz" + }, + { + "image": "101715/2_0opagehsqxstandard35025120560115.nii.gz", + "pseudo_label": "101715/2_0opagehsqxstandard35025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101715/2_0opagehsqxstandard35025120560115/2_0opagehsqxstandard35025120560115_seg.nii.gz" + }, + { + "image": "101715/2_1opagehsqxstandard35025120560115.nii.gz", + "pseudo_label": "101715/2_1opagehsqxstandard35025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101715/2_1opagehsqxstandard35025120560115/2_1opagehsqxstandard35025120560115_seg.nii.gz" + }, + { + "image": "101715/3_0opagehsqxbone35025120560115.nii.gz", + "pseudo_label": "101715/3_0opagehsqxbone35025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101715/3_0opagehsqxbone35025120560115/3_0opagehsqxbone35025120560115_seg.nii.gz" + }, + { + "image": "101715/3_2opagehsqxbone35025120560115.nii.gz", + "pseudo_label": "101715/3_2opagehsqxbone35025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101715/3_2opagehsqxbone35025120560115/3_2opagehsqxbone35025120560115_seg.nii.gz" + }, + { + "image": "100173/2_1opasevzoomb50f28021206030na.nii.gz", + "pseudo_label": "100173/2_1opasevzoomb50f28021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100173/2_1opasevzoomb50f28021206030na/2_1opasevzoomb50f28021206030na_seg.nii.gz" + }, + { + "image": "100173/3_0opasevzoomb30f29421206030na.nii.gz", + "pseudo_label": "100173/3_0opasevzoomb30f29421206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100173/3_0opasevzoomb30f29421206030na/3_0opasevzoomb30f29421206030na_seg.nii.gz" + }, + { + "image": "100173/3_2opasesen16b30f27021204530na.nii.gz", + "pseudo_label": "100173/3_2opasesen16b30f27021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100173/3_2opasesen16b30f27021204530na/3_2opasesen16b30f27021204530na_seg.nii.gz" + }, + { + "image": "100173/4_2opasesen16b50f27021204530na.nii.gz", + "pseudo_label": "100173/4_2opasesen16b50f27021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100173/4_2opasesen16b50f27021204530na/4_2opasesen16b50f27021204530na_seg.nii.gz" + }, + { + "image": "100173/5_2opasesen16b30f27021204530na.nii.gz", + "pseudo_label": "100173/5_2opasesen16b30f27021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100173/5_2opasesen16b30f27021204530na/5_2opasesen16b30f27021204530na_seg.nii.gz" + }, + { + "image": "109162/3_2opatoaqul4fc513203212040nana.nii.gz", + "pseudo_label": "109162/3_2opatoaqul4fc513203212040nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109162/3_2opatoaqul4fc513203212040nana/3_2opatoaqul4fc513203212040nana_seg.nii.gz" + }, + { + "image": "110917/3_1opasevzoomb50f35021206030na.nii.gz", + "pseudo_label": "110917/3_1opasevzoomb50f35021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110917/3_1opasevzoomb50f35021206030na/3_1opasevzoomb50f35021206030na_seg.nii.gz" + }, + { + "image": "110917/4_2opasevzoomb50f35051206030na.nii.gz", + "pseudo_label": "110917/4_2opasevzoomb50f35051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110917/4_2opasevzoomb50f35051206030na/4_2opasevzoomb50f35051206030na_seg.nii.gz" + }, + { + "image": "110917/5_0opasevzoomb30f40851206030na.nii.gz", + "pseudo_label": "110917/5_0opasevzoomb30f40851206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110917/5_0opasevzoomb30f40851206030na/5_0opasevzoomb30f40851206030na_seg.nii.gz" + }, + { + "image": "110917/6_0opasevzoomb30f40821206030na.nii.gz", + "pseudo_label": "110917/6_0opasevzoomb30f40821206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110917/6_0opasevzoomb30f40821206030na/6_0opasevzoomb30f40821206030na_seg.nii.gz" + }, + { + "image": "110917/6_2opasevzoomb30f35021206030na.nii.gz", + "pseudo_label": "110917/6_2opasevzoomb30f35021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110917/6_2opasevzoomb30f35021206030na/6_2opasevzoomb30f35021206030na_seg.nii.gz" + }, + { + "image": "110917/4_0opasevzoomb50f40851206030na.nii.gz", + "pseudo_label": "110917/4_0opasevzoomb50f40851206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110917/4_0opasevzoomb50f40851206030na/4_0opasevzoomb50f40851206030na_seg.nii.gz" + }, + { + "image": "110917/4_1opasevzoomb50f35051206030na.nii.gz", + "pseudo_label": "110917/4_1opasevzoomb50f35051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110917/4_1opasevzoomb50f35051206030na/4_1opasevzoomb50f35051206030na_seg.nii.gz" + }, + { + "image": "110917/5_2opasevzoomb30f35051206030na.nii.gz", + "pseudo_label": "110917/5_2opasevzoomb30f35051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110917/5_2opasevzoomb30f35051206030na/5_2opasevzoomb30f35051206030na_seg.nii.gz" + }, + { + "image": "110917/5_1opasevzoomb30f35051206030na.nii.gz", + "pseudo_label": "110917/5_1opasevzoomb30f35051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110917/5_1opasevzoomb30f35051206030na/5_1opasevzoomb30f35051206030na_seg.nii.gz" + }, + { + "image": "110917/3_2opasevzoomb50f35021206030na.nii.gz", + "pseudo_label": "110917/3_2opasevzoomb50f35021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110917/3_2opasevzoomb50f35021206030na/3_2opasevzoomb50f35021206030na_seg.nii.gz" + }, + { + "image": "112698/3_2opatoaqul4fc513141212060nana.nii.gz", + "pseudo_label": "112698/3_2opatoaqul4fc513141212060nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112698/3_2opatoaqul4fc513141212060nana/3_2opatoaqul4fc513141212060nana_seg.nii.gz" + }, + { + "image": "112698/3_0opatoaqul4fc512844212040nana.nii.gz", + "pseudo_label": "112698/3_0opatoaqul4fc512844212040nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112698/3_0opatoaqul4fc512844212040nana/3_0opatoaqul4fc512844212040nana_seg.nii.gz" + }, + { + "image": "112698/5_1opatoaqul4fc51400212040nana.nii.gz", + "pseudo_label": "112698/5_1opatoaqul4fc51400212040nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112698/5_1opatoaqul4fc51400212040nana/5_1opatoaqul4fc51400212040nana_seg.nii.gz" + }, + { + "image": "110883/2_0opagelsqxstandard3702514048015.nii.gz", + "pseudo_label": "110883/2_0opagelsqxstandard3702514048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110883/2_0opagelsqxstandard3702514048015/2_0opagelsqxstandard3702514048015_seg.nii.gz" + }, + { + "image": "110883/2_1opagelsqxstandard3702514048015.nii.gz", + "pseudo_label": "110883/2_1opagelsqxstandard3702514048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110883/2_1opagelsqxstandard3702514048015/2_1opagelsqxstandard3702514048015_seg.nii.gz" + }, + { + "image": "110428/2_2opagelsplusstandard30025120600115.nii.gz", + "pseudo_label": "110428/2_2opagelsplusstandard30025120600115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110428/2_2opagelsplusstandard30025120600115/2_2opagelsplusstandard30025120600115_seg.nii.gz" + }, + { + "image": "103306/2_1opagels16bone33025120560114.nii.gz", + "pseudo_label": "103306/2_1opagels16bone33025120560114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103306/2_1opagels16bone33025120560114/2_1opagels16bone33025120560114_seg.nii.gz" + }, + { + "image": "103306/3_2opagelspr16standard35025120560114.nii.gz", + "pseudo_label": "103306/3_2opagelspr16standard35025120560114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103306/3_2opagelspr16standard35025120560114/3_2opagelspr16standard35025120560114_seg.nii.gz" + }, + { + "image": "103306/2_0opagelsqxbone3522512048015.nii.gz", + "pseudo_label": "103306/2_0opagelsqxbone3522512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103306/2_0opagelsqxbone3522512048015/2_0opagelsqxbone3522512048015_seg.nii.gz" + }, + { + "image": "103306/2_2opagelspr16bone35025120560114.nii.gz", + "pseudo_label": "103306/2_2opagelspr16bone35025120560114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103306/2_2opagelspr16bone35025120560114/2_2opagelspr16bone35025120560114_seg.nii.gz" + }, + { + "image": "105479/3212_2opaphmx8000d3653212039018.nii.gz", + "pseudo_label": "105479/3212_2opaphmx8000d3653212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105479/3212_2opaphmx8000d3653212039018/3212_2opaphmx8000d3653212039018_seg.nii.gz" + }, + { + "image": "110689/2_0opagelsqxstandard3002514040015.nii.gz", + "pseudo_label": "110689/2_0opagelsqxstandard3002514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110689/2_0opagelsqxstandard3002514040015/2_0opagelsqxstandard3002514040015_seg.nii.gz" + }, + { + "image": "110689/2_2opagels16standard3002514040014.nii.gz", + "pseudo_label": "110689/2_2opagels16standard3002514040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110689/2_2opagels16standard3002514040014/2_2opagels16standard3002514040014_seg.nii.gz" + }, + { + "image": "107990/3_0opasevzoomb50f410512012060na.nii.gz", + "pseudo_label": "107990/3_0opasevzoomb50f410512012060na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107990/3_0opasevzoomb50f410512012060na/3_0opasevzoomb50f410512012060na_seg.nii.gz" + }, + { + "image": "107990/6_2opasevzoomb30f38021206030na.nii.gz", + "pseudo_label": "107990/6_2opasevzoomb30f38021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107990/6_2opasevzoomb30f38021206030na/6_2opasevzoomb30f38021206030na_seg.nii.gz" + }, + { + "image": "107990/5_2opasevzoomb30f38051206030na.nii.gz", + "pseudo_label": "107990/5_2opasevzoomb30f38051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107990/5_2opasevzoomb30f38051206030na/5_2opasevzoomb30f38051206030na_seg.nii.gz" + }, + { + "image": "107990/2_0opasevzoomb50f410212012060na.nii.gz", + "pseudo_label": "107990/2_0opasevzoomb50f410212012060na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107990/2_0opasevzoomb50f410212012060na/2_0opasevzoomb50f410212012060na_seg.nii.gz" + }, + { + "image": "107990/3_2opasevzoomb50f38021206030na.nii.gz", + "pseudo_label": "107990/3_2opasevzoomb50f38021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107990/3_2opasevzoomb50f38021206030na/3_2opasevzoomb50f38021206030na_seg.nii.gz" + }, + { + "image": "107990/4_2opasevzoomb50f38051206030na.nii.gz", + "pseudo_label": "107990/4_2opasevzoomb50f38051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107990/4_2opasevzoomb50f38051206030na/4_2opasevzoomb50f38051206030na_seg.nii.gz" + }, + { + "image": "107990/4_1opasevzoomb50f37351206030na.nii.gz", + "pseudo_label": "107990/4_1opasevzoomb50f37351206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107990/4_1opasevzoomb50f37351206030na/4_1opasevzoomb50f37351206030na_seg.nii.gz" + }, + { + "image": "107990/3_1opasevzoomb30f37351206030na.nii.gz", + "pseudo_label": "107990/3_1opasevzoomb30f37351206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107990/3_1opasevzoomb30f37351206030na/3_1opasevzoomb30f37351206030na_seg.nii.gz" + }, + { + "image": "107990/4_0opasevzoomb30f410512012060na.nii.gz", + "pseudo_label": "107990/4_0opasevzoomb30f410512012060na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107990/4_0opasevzoomb30f410512012060na/4_0opasevzoomb30f410512012060na_seg.nii.gz" + }, + { + "image": "107990/6_1opasevzoomb30f37321206030na.nii.gz", + "pseudo_label": "107990/6_1opasevzoomb30f37321206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107990/6_1opasevzoomb30f37321206030na/6_1opasevzoomb30f37321206030na_seg.nii.gz" + }, + { + "image": "112901/2_1opagehsqxstandard28025120560115.nii.gz", + "pseudo_label": "112901/2_1opagehsqxstandard28025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112901/2_1opagehsqxstandard28025120560115/2_1opagehsqxstandard28025120560115_seg.nii.gz" + }, + { + "image": "112901/3_0opagehsqxbone28025120560115.nii.gz", + "pseudo_label": "112901/3_0opagehsqxbone28025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112901/3_0opagehsqxbone28025120560115/3_0opagehsqxbone28025120560115_seg.nii.gz" + }, + { + "image": "107570/2_0opagelsqxstandard30025120500115.nii.gz", + "pseudo_label": "107570/2_0opagelsqxstandard30025120500115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107570/2_0opagelsqxstandard30025120500115/2_0opagelsqxstandard30025120500115_seg.nii.gz" + }, + { + "image": "107570/2_1opagelsqxstandard30025120640115.nii.gz", + "pseudo_label": "107570/2_1opagelsqxstandard30025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107570/2_1opagelsqxstandard30025120640115/2_1opagelsqxstandard30025120640115_seg.nii.gz" + }, + { + "image": "107570/2_2opagels16standard30025120697nana.nii.gz", + "pseudo_label": "107570/2_2opagels16standard30025120697nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107570/2_2opagels16standard30025120697nana/2_2opagels16standard30025120697nana_seg.nii.gz" + }, + { + "image": "104438/3_0opasevzoomb50f34021206030na.nii.gz", + "pseudo_label": "104438/3_0opasevzoomb50f34021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104438/3_0opasevzoomb50f34021206030na/3_0opasevzoomb50f34021206030na_seg.nii.gz" + }, + { + "image": "104438/5_0opasevzoomb30f34051206030na.nii.gz", + "pseudo_label": "104438/5_0opasevzoomb30f34051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104438/5_0opasevzoomb30f34051206030na/5_0opasevzoomb30f34051206030na_seg.nii.gz" + }, + { + "image": "111078/2_1opasesen16b30f29221204032na.nii.gz", + "pseudo_label": "111078/2_1opasesen16b30f29221204032na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111078/2_1opasesen16b30f29221204032na/2_1opasesen16b30f29221204032na_seg.nii.gz" + }, + { + "image": "111078/2_2opasesen16b30f29421204032na.nii.gz", + "pseudo_label": "111078/2_2opasesen16b30f29421204032na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111078/2_2opasesen16b30f29421204032na/2_2opasesen16b30f29421204032na_seg.nii.gz" + }, + { + "image": "101521/4_0opatoaqul4fc513453212060nana.nii.gz", + "pseudo_label": "101521/4_0opatoaqul4fc513453212060nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101521/4_0opatoaqul4fc513453212060nana/4_0opatoaqul4fc513453212060nana_seg.nii.gz" + }, + { + "image": "101521/3_1opatoaqul4fc513406212060nana.nii.gz", + "pseudo_label": "101521/3_1opatoaqul4fc513406212060nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101521/3_1opatoaqul4fc513406212060nana/3_1opatoaqul4fc513406212060nana_seg.nii.gz" + }, + { + "image": "110307/3_0opasevzoomb30f31621206030na.nii.gz", + "pseudo_label": "110307/3_0opasevzoomb30f31621206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110307/3_0opasevzoomb30f31621206030na/3_0opasevzoomb30f31621206030na_seg.nii.gz" + }, + { + "image": "110307/2_1opasevzoomb50f33421206030na.nii.gz", + "pseudo_label": "110307/2_1opasevzoomb50f33421206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110307/2_1opasevzoomb50f33421206030na/2_1opasevzoomb50f33421206030na_seg.nii.gz" + }, + { + "image": "108009/3_0opasevzoomb30f34021208040na.nii.gz", + "pseudo_label": "108009/3_0opasevzoomb30f34021208040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108009/3_0opasevzoomb30f34021208040na/3_0opasevzoomb30f34021208040na_seg.nii.gz" + }, + { + "image": "103415/1_1opagelspluslung33025120800115.nii.gz", + "pseudo_label": "103415/1_1opagelspluslung33025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103415/1_1opagelspluslung33025120800115/1_1opagelspluslung33025120800115_seg.nii.gz" + }, + { + "image": "103415/1_0opagelspluslung33025120800115.nii.gz", + "pseudo_label": "103415/1_0opagelspluslung33025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103415/1_0opagelspluslung33025120800115/1_0opagelspluslung33025120800115_seg.nii.gz" + }, + { + "image": "103415/1_0opagelsplusstandard33025120800115.nii.gz", + "pseudo_label": "103415/1_0opagelsplusstandard33025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103415/1_0opagelsplusstandard33025120800115/1_0opagelsplusstandard33025120800115_seg.nii.gz" + }, + { + "image": "103415/1_2opagelsplusstandard33025120800115.nii.gz", + "pseudo_label": "103415/1_2opagelsplusstandard33025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103415/1_2opagelsplusstandard33025120800115/1_2opagelsplusstandard33025120800115_seg.nii.gz" + }, + { + "image": "103415/1_2opagelspluslung33025120800115.nii.gz", + "pseudo_label": "103415/1_2opagelspluslung33025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103415/1_2opagelspluslung33025120800115/1_2opagelspluslung33025120800115_seg.nii.gz" + }, + { + "image": "111920/3_1opasevzoomb50f34021207540na.nii.gz", + "pseudo_label": "111920/3_1opasevzoomb50f34021207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111920/3_1opasevzoomb50f34021207540na/3_1opasevzoomb50f34021207540na_seg.nii.gz" + }, + { + "image": "111920/2_0opasevzoomb30f31021403520na.nii.gz", + "pseudo_label": "111920/2_0opasevzoomb30f31021403520na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111920/2_0opasevzoomb30f31021403520na/2_0opasevzoomb30f31021403520na_seg.nii.gz" + }, + { + "image": "111920/3_0opasevzoomb50f31021403520na.nii.gz", + "pseudo_label": "111920/3_0opasevzoomb50f31021403520na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111920/3_0opasevzoomb50f31021403520na/3_0opasevzoomb50f31021403520na_seg.nii.gz" + }, + { + "image": "102260/2_2opagehsqxstandard35025120560115.nii.gz", + "pseudo_label": "102260/2_2opagehsqxstandard35025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102260/2_2opagehsqxstandard35025120560115/2_2opagehsqxstandard35025120560115_seg.nii.gz" + }, + { + "image": "102260/2_0opagehsqxstandard35025120560115.nii.gz", + "pseudo_label": "102260/2_0opagehsqxstandard35025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102260/2_0opagehsqxstandard35025120560115/2_0opagehsqxstandard35025120560115_seg.nii.gz" + }, + { + "image": "102260/2_1opagehsqxstandard35025120560115.nii.gz", + "pseudo_label": "102260/2_1opagehsqxstandard35025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102260/2_1opagehsqxstandard35025120560115/2_1opagehsqxstandard35025120560115_seg.nii.gz" + }, + { + "image": "104282/2_1opagelsqxstandard3102512048015.nii.gz", + "pseudo_label": "104282/2_1opagelsqxstandard3102512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104282/2_1opagelsqxstandard3102512048015/2_1opagelsqxstandard3102512048015_seg.nii.gz" + }, + { + "image": "104282/2_0opagelsqxstandard280251206401na.nii.gz", + "pseudo_label": "104282/2_0opagelsqxstandard280251206401na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104282/2_0opagelsqxstandard280251206401na/2_0opagelsqxstandard280251206401na_seg.nii.gz" + }, + { + "image": "113281/3_1opatoaqul4fc513203212060nana.nii.gz", + "pseudo_label": "113281/3_1opatoaqul4fc513203212060nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113281/3_1opatoaqul4fc513203212060nana/3_1opatoaqul4fc513203212060nana_seg.nii.gz" + }, + { + "image": "113281/3_0opatoaqul4fc513156212060nana.nii.gz", + "pseudo_label": "113281/3_0opatoaqul4fc513156212060nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113281/3_0opatoaqul4fc513156212060nana/3_0opatoaqul4fc513156212060nana_seg.nii.gz" + }, + { + "image": "103580/4_0opasevzoomb50f36451206030na.nii.gz", + "pseudo_label": "103580/4_0opasevzoomb50f36451206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103580/4_0opasevzoomb50f36451206030na/4_0opasevzoomb50f36451206030na_seg.nii.gz" + }, + { + "image": "103580/5_1opasevzoomb30f32051206030na.nii.gz", + "pseudo_label": "103580/5_1opasevzoomb30f32051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103580/5_1opasevzoomb30f32051206030na/5_1opasevzoomb30f32051206030na_seg.nii.gz" + }, + { + "image": "103580/5_2opasevzoomb30f29051206030na.nii.gz", + "pseudo_label": "103580/5_2opasevzoomb30f29051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103580/5_2opasevzoomb30f29051206030na/5_2opasevzoomb30f29051206030na_seg.nii.gz" + }, + { + "image": "103580/4_1opasevzoomb50f32051206030na.nii.gz", + "pseudo_label": "103580/4_1opasevzoomb50f32051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103580/4_1opasevzoomb50f32051206030na/4_1opasevzoomb50f32051206030na_seg.nii.gz" + }, + { + "image": "103580/4_2opasevzoomb50f29051206030na.nii.gz", + "pseudo_label": "103580/4_2opasevzoomb50f29051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103580/4_2opasevzoomb50f29051206030na/4_2opasevzoomb50f29051206030na_seg.nii.gz" + }, + { + "image": "103580/6_2opasevzoomb30f29021206030na.nii.gz", + "pseudo_label": "103580/6_2opasevzoomb30f29021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103580/6_2opasevzoomb30f29021206030na/6_2opasevzoomb30f29021206030na_seg.nii.gz" + }, + { + "image": "103580/6_1opasevzoomb30f32021206030na.nii.gz", + "pseudo_label": "103580/6_1opasevzoomb30f32021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103580/6_1opasevzoomb30f32021206030na/6_1opasevzoomb30f32021206030na_seg.nii.gz" + }, + { + "image": "108488/4_0opatoaqul4fc513094212065nana.nii.gz", + "pseudo_label": "108488/4_0opatoaqul4fc513094212065nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108488/4_0opatoaqul4fc513094212065nana/4_0opatoaqul4fc513094212065nana_seg.nii.gz" + }, + { + "image": "109405/3_2opagelspr16standard2902512040014.nii.gz", + "pseudo_label": "109405/3_2opagelspr16standard2902512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109405/3_2opagelspr16standard2902512040014/3_2opagelspr16standard2902512040014_seg.nii.gz" + }, + { + "image": "109405/3_0opagelsqxstandard3302512048015.nii.gz", + "pseudo_label": "109405/3_0opagelsqxstandard3302512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109405/3_0opagelsqxstandard3302512048015/3_0opagelsqxstandard3302512048015_seg.nii.gz" + }, + { + "image": "109405/3_1opagels16standard3202512040014.nii.gz", + "pseudo_label": "109405/3_1opagels16standard3202512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109405/3_1opagels16standard3202512040014/3_1opagels16standard3202512040014_seg.nii.gz" + }, + { + "image": "109405/2_2opagelspr16bone2902512040014.nii.gz", + "pseudo_label": "109405/2_2opagelspr16bone2902512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109405/2_2opagelspr16bone2902512040014/2_2opagelspr16bone2902512040014_seg.nii.gz" + }, + { + "image": "109405/2_1opagels16bone3202512040014.nii.gz", + "pseudo_label": "109405/2_1opagels16bone3202512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109405/2_1opagels16bone3202512040014/2_1opagels16bone3202512040014_seg.nii.gz" + }, + { + "image": "104994/1_1opagelspluslung38025120800115.nii.gz", + "pseudo_label": "104994/1_1opagelspluslung38025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104994/1_1opagelspluslung38025120800115/1_1opagelspluslung38025120800115_seg.nii.gz" + }, + { + "image": "104994/1_0opagelspluslung38025120800108.nii.gz", + "pseudo_label": "104994/1_0opagelspluslung38025120800108.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104994/1_0opagelspluslung38025120800108/1_0opagelspluslung38025120800108_seg.nii.gz" + }, + { + "image": "107972/2_0opagelsqxstandard2862514048015.nii.gz", + "pseudo_label": "107972/2_0opagelsqxstandard2862514048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107972/2_0opagelsqxstandard2862514048015/2_0opagelsqxstandard2862514048015_seg.nii.gz" + }, + { + "image": "107532/2_1opagelsplusstandard3202514040015.nii.gz", + "pseudo_label": "107532/2_1opagelsplusstandard3202514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107532/2_1opagelsplusstandard3202514040015/2_1opagelsplusstandard3202514040015_seg.nii.gz" + }, + { + "image": "107532/2_2opagelsplusstandard3102514040015.nii.gz", + "pseudo_label": "107532/2_2opagelsplusstandard3102514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107532/2_2opagelsplusstandard3102514040015/2_2opagelsplusstandard3102514040015_seg.nii.gz" + }, + { + "image": "109234/2_2opagelspr16bone2702512040014.nii.gz", + "pseudo_label": "109234/2_2opagelspr16bone2702512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109234/2_2opagelspr16bone2702512040014/2_2opagelspr16bone2702512040014_seg.nii.gz" + }, + { + "image": "109234/2_1opagels16bone3002512000na.nii.gz", + "pseudo_label": "109234/2_1opagels16bone3002512000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109234/2_1opagels16bone3002512000na/2_1opagels16bone3002512000na_seg.nii.gz" + }, + { + "image": "109234/3_2opagelspr16standard2702512040014.nii.gz", + "pseudo_label": "109234/3_2opagelspr16standard2702512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109234/3_2opagelspr16standard2702512040014/3_2opagelspr16standard2702512040014_seg.nii.gz" + }, + { + "image": "109234/3_1opagels16standard3002512000na.nii.gz", + "pseudo_label": "109234/3_1opagels16standard3002512000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109234/3_1opagels16standard3002512000na/3_1opagels16standard3002512000na_seg.nii.gz" + }, + { + "image": "104320/2_1opasevzoomb30f32821207540na.nii.gz", + "pseudo_label": "104320/2_1opasevzoomb30f32821207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104320/2_1opasevzoomb30f32821207540na/2_1opasevzoomb30f32821207540na_seg.nii.gz" + }, + { + "image": "104320/2_2opasevzoomb30f33221207540na.nii.gz", + "pseudo_label": "104320/2_2opasevzoomb30f33221207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104320/2_2opasevzoomb30f33221207540na/2_2opasevzoomb30f33221207540na_seg.nii.gz" + }, + { + "image": "104320/3_1opasevzoomb50f32821207540na.nii.gz", + "pseudo_label": "104320/3_1opasevzoomb50f32821207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104320/3_1opasevzoomb50f32821207540na/3_1opasevzoomb50f32821207540na_seg.nii.gz" + }, + { + "image": "104320/3_2opasevzoomb50f33221207540na.nii.gz", + "pseudo_label": "104320/3_2opasevzoomb50f33221207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104320/3_2opasevzoomb50f33221207540na/3_2opasevzoomb50f33221207540na_seg.nii.gz" + }, + { + "image": "112493/2_0opagelsqxstandard3402514040015.nii.gz", + "pseudo_label": "112493/2_0opagelsqxstandard3402514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112493/2_0opagelsqxstandard3402514040015/2_0opagelsqxstandard3402514040015_seg.nii.gz" + }, + { + "image": "112493/3_2opagelsplusstandard37025140560115.nii.gz", + "pseudo_label": "112493/3_2opagelsplusstandard37025140560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112493/3_2opagelsplusstandard37025140560115/3_2opagelsplusstandard37025140560115_seg.nii.gz" + }, + { + "image": "112493/2_1opagelsplusstandard3502514040015.nii.gz", + "pseudo_label": "112493/2_1opagelsplusstandard3502514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112493/2_1opagelsplusstandard3502514040015/2_1opagelsplusstandard3502514040015_seg.nii.gz" + }, + { + "image": "112493/2_2opagelsplusstandard3702514040015.nii.gz", + "pseudo_label": "112493/2_2opagelsplusstandard3702514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112493/2_2opagelsplusstandard3702514040015/2_2opagelsplusstandard3702514040015_seg.nii.gz" + }, + { + "image": "108642/950_2opaphmx8000c35032120756012.nii.gz", + "pseudo_label": "108642/950_2opaphmx8000c35032120756012.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108642/950_2opaphmx8000c35032120756012/950_2opaphmx8000c35032120756012_seg.nii.gz" + }, + { + "image": "100543/2_0opagelsqxstandard3002514040015.nii.gz", + "pseudo_label": "100543/2_0opagelsqxstandard3002514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100543/2_0opagelsqxstandard3002514040015/2_0opagelsqxstandard3002514040015_seg.nii.gz" + }, + { + "image": "100543/2_1opagelsplusstandard2802514040015.nii.gz", + "pseudo_label": "100543/2_1opagelsplusstandard2802514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100543/2_1opagelsplusstandard2802514040015/2_1opagelsplusstandard2802514040015_seg.nii.gz" + }, + { + "image": "105184/2_0opagelsqxstandard37425120720115.nii.gz", + "pseudo_label": "105184/2_0opagelsqxstandard37425120720115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105184/2_0opagelsqxstandard37425120720115/2_0opagelsqxstandard37425120720115_seg.nii.gz" + }, + { + "image": "105184/2_1opagelsqxstandard37225120640115.nii.gz", + "pseudo_label": "105184/2_1opagelsqxstandard37225120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105184/2_1opagelsqxstandard37225120640115/2_1opagelsqxstandard37225120640115_seg.nii.gz" + }, + { + "image": "105184/3_2opagelsqxbone38825120640115.nii.gz", + "pseudo_label": "105184/3_2opagelsqxbone38825120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105184/3_2opagelsqxbone38825120640115/3_2opagelsqxbone38825120640115_seg.nii.gz" + }, + { + "image": "105184/3_1opagelsqxbone37225120640115.nii.gz", + "pseudo_label": "105184/3_1opagelsqxbone37225120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105184/3_1opagelsqxbone37225120640115/3_1opagelsqxbone37225120640115_seg.nii.gz" + }, + { + "image": "105184/3_0opagelsqxbone37425120720115.nii.gz", + "pseudo_label": "105184/3_0opagelsqxbone37425120720115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105184/3_0opagelsqxbone37425120720115/3_0opagelsqxbone37425120720115_seg.nii.gz" + }, + { + "image": "104049/2_0opagelsqxstandard29325120560115.nii.gz", + "pseudo_label": "104049/2_0opagelsqxstandard29325120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104049/2_0opagelsqxstandard29325120560115/2_0opagelsqxstandard29325120560115_seg.nii.gz" + }, + { + "image": "104049/3_0opagelsqxbone29325120560115.nii.gz", + "pseudo_label": "104049/3_0opagelsqxbone29325120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104049/3_0opagelsqxbone29325120560115/3_0opagelsqxbone29325120560115_seg.nii.gz" + }, + { + "image": "104049/2_2opagelsqxstandard29925120560115.nii.gz", + "pseudo_label": "104049/2_2opagelsqxstandard29925120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104049/2_2opagelsqxstandard29925120560115/2_2opagelsqxstandard29925120560115_seg.nii.gz" + }, + { + "image": "104049/2_1opagelsqxstandard30725120560115.nii.gz", + "pseudo_label": "104049/2_1opagelsqxstandard30725120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104049/2_1opagelsqxstandard30725120560115/2_1opagelsqxstandard30725120560115_seg.nii.gz" + }, + { + "image": "104049/3_1opagelsqxbone30725120560115.nii.gz", + "pseudo_label": "104049/3_1opagelsqxbone30725120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104049/3_1opagelsqxbone30725120560115/3_1opagelsqxbone30725120560115_seg.nii.gz" + }, + { + "image": "108615/3_2opasevzoomb50f35021207540na.nii.gz", + "pseudo_label": "108615/3_2opasevzoomb50f35021207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108615/3_2opasevzoomb50f35021207540na/3_2opasevzoomb50f35021207540na_seg.nii.gz" + }, + { + "image": "108615/2_0opasevzoomb30f340212010560na.nii.gz", + "pseudo_label": "108615/2_0opasevzoomb30f340212010560na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108615/2_0opasevzoomb30f340212010560na/2_0opasevzoomb30f340212010560na_seg.nii.gz" + }, + { + "image": "108615/2_2opasevzoomb30f35021207540na.nii.gz", + "pseudo_label": "108615/2_2opasevzoomb30f35021207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108615/2_2opasevzoomb30f35021207540na/2_2opasevzoomb30f35021207540na_seg.nii.gz" + }, + { + "image": "108615/3_1opasevzoomb50f29221207040na.nii.gz", + "pseudo_label": "108615/3_1opasevzoomb50f29221207040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108615/3_1opasevzoomb50f29221207040na/3_1opasevzoomb50f29221207040na_seg.nii.gz" + }, + { + "image": "101818/2_1opasevzoomb30f35021207540na.nii.gz", + "pseudo_label": "101818/2_1opasevzoomb30f35021207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101818/2_1opasevzoomb30f35021207540na/2_1opasevzoomb30f35021207540na_seg.nii.gz" + }, + { + "image": "101818/3_1opasevzoomb50f35021207540na.nii.gz", + "pseudo_label": "101818/3_1opasevzoomb50f35021207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101818/3_1opasevzoomb50f35021207540na/3_1opasevzoomb50f35021207540na_seg.nii.gz" + }, + { + "image": "101818/2_2opasevzoomb30f36021207540na.nii.gz", + "pseudo_label": "101818/2_2opasevzoomb30f36021207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101818/2_2opasevzoomb30f36021207540na/2_2opasevzoomb30f36021207540na_seg.nii.gz" + }, + { + "image": "110252/3_1opagehsqxbone33025120560115.nii.gz", + "pseudo_label": "110252/3_1opagehsqxbone33025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110252/3_1opagehsqxbone33025120560115/3_1opagehsqxbone33025120560115_seg.nii.gz" + }, + { + "image": "110252/2_0opagehsqxstandard33025120560115.nii.gz", + "pseudo_label": "110252/2_0opagehsqxstandard33025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110252/2_0opagehsqxstandard33025120560115/2_0opagehsqxstandard33025120560115_seg.nii.gz" + }, + { + "image": "110252/2_1opagehsqxstandard33025120560115.nii.gz", + "pseudo_label": "110252/2_1opagehsqxstandard33025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110252/2_1opagehsqxstandard33025120560115/2_1opagehsqxstandard33025120560115_seg.nii.gz" + }, + { + "image": "110252/3_0opagehsqxbone33025120560115.nii.gz", + "pseudo_label": "110252/3_0opagehsqxbone33025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110252/3_0opagehsqxbone33025120560115/3_0opagehsqxbone33025120560115_seg.nii.gz" + }, + { + "image": "110252/2_2opagehsqxstandard34025120560115.nii.gz", + "pseudo_label": "110252/2_2opagehsqxstandard34025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110252/2_2opagehsqxstandard34025120560115/2_2opagehsqxstandard34025120560115_seg.nii.gz" + }, + { + "image": "105326/3_2opagelsqxbone37925120640115.nii.gz", + "pseudo_label": "105326/3_2opagelsqxbone37925120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105326/3_2opagelsqxbone37925120640115/3_2opagelsqxbone37925120640115_seg.nii.gz" + }, + { + "image": "105326/2_2opagelsqxstandard37925120640115.nii.gz", + "pseudo_label": "105326/2_2opagelsqxstandard37925120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105326/2_2opagelsqxstandard37925120640115/2_2opagelsqxstandard37925120640115_seg.nii.gz" + }, + { + "image": "112766/2_0opagelsqxstandard30025120nanana.nii.gz", + "pseudo_label": "112766/2_0opagelsqxstandard30025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112766/2_0opagelsqxstandard30025120nanana/2_0opagelsqxstandard30025120nanana_seg.nii.gz" + }, + { + "image": "112766/3_0opagelsqxbone30025120nanana.nii.gz", + "pseudo_label": "112766/3_0opagelsqxbone30025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112766/3_0opagelsqxbone30025120nanana/3_0opagelsqxbone30025120nanana_seg.nii.gz" + }, + { + "image": "110245/3_1opatoaqul4fc512969212040nana.nii.gz", + "pseudo_label": "110245/3_1opatoaqul4fc512969212040nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110245/3_1opatoaqul4fc512969212040nana/3_1opatoaqul4fc512969212040nana_seg.nii.gz" + }, + { + "image": "110245/3_0opatoaqul4fc513094212050nana.nii.gz", + "pseudo_label": "110245/3_0opatoaqul4fc513094212050nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110245/3_0opatoaqul4fc513094212050nana/3_0opatoaqul4fc513094212050nana_seg.nii.gz" + }, + { + "image": "110245/3_2opatoaqul4fc513105212080nana.nii.gz", + "pseudo_label": "110245/3_2opatoaqul4fc513105212080nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110245/3_2opatoaqul4fc513105212080nana/3_2opatoaqul4fc513105212080nana_seg.nii.gz" + }, + { + "image": "103121/2_1opasevzoomb30f36021408040na.nii.gz", + "pseudo_label": "103121/2_1opasevzoomb30f36021408040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103121/2_1opasevzoomb30f36021408040na/2_1opasevzoomb30f36021408040na_seg.nii.gz" + }, + { + "image": "101572/2_1opasevzoomb30f36221207540na.nii.gz", + "pseudo_label": "101572/2_1opasevzoomb30f36221207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101572/2_1opasevzoomb30f36221207540na/2_1opasevzoomb30f36221207540na_seg.nii.gz" + }, + { + "image": "101572/3_2opasevzoomb50f40421207540na.nii.gz", + "pseudo_label": "101572/3_2opasevzoomb50f40421207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101572/3_2opasevzoomb50f40421207540na/3_2opasevzoomb50f40421207540na_seg.nii.gz" + }, + { + "image": "100855/2_0opagelsqxstandard3302512048015.nii.gz", + "pseudo_label": "100855/2_0opagelsqxstandard3302512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100855/2_0opagelsqxstandard3302512048015/2_0opagelsqxstandard3302512048015_seg.nii.gz" + }, + { + "image": "110583/3_1opasevzoomb30f34621206030na.nii.gz", + "pseudo_label": "110583/3_1opasevzoomb30f34621206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110583/3_1opasevzoomb30f34621206030na/3_1opasevzoomb30f34621206030na_seg.nii.gz" + }, + { + "image": "105509/2_2opagehsqxstandard35025120560115.nii.gz", + "pseudo_label": "105509/2_2opagehsqxstandard35025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105509/2_2opagehsqxstandard35025120560115/2_2opagehsqxstandard35025120560115_seg.nii.gz" + }, + { + "image": "105509/3_1opagehsqxbone35025120560115.nii.gz", + "pseudo_label": "105509/3_1opagehsqxbone35025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105509/3_1opagehsqxbone35025120560115/3_1opagehsqxbone35025120560115_seg.nii.gz" + }, + { + "image": "105509/2_0opagehsqxstandard35025120560115.nii.gz", + "pseudo_label": "105509/2_0opagehsqxstandard35025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105509/2_0opagehsqxstandard35025120560115/2_0opagehsqxstandard35025120560115_seg.nii.gz" + }, + { + "image": "105509/2_1opagehsqxstandard35025120560115.nii.gz", + "pseudo_label": "105509/2_1opagehsqxstandard35025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105509/2_1opagehsqxstandard35025120560115/2_1opagehsqxstandard35025120560115_seg.nii.gz" + }, + { + "image": "108916/2_2opagelsqxstandard3002514040015.nii.gz", + "pseudo_label": "108916/2_2opagelsqxstandard3002514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108916/2_2opagelsqxstandard3002514040015/2_2opagelsqxstandard3002514040015_seg.nii.gz" + }, + { + "image": "108916/2_1opagelsqxstandard2832514040015.nii.gz", + "pseudo_label": "108916/2_1opagelsqxstandard2832514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108916/2_1opagelsqxstandard2832514040015/2_1opagelsqxstandard2832514040015_seg.nii.gz" + }, + { + "image": "108916/3_2opagelsqxstandard3002514040015.nii.gz", + "pseudo_label": "108916/3_2opagelsqxstandard3002514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108916/3_2opagelsqxstandard3002514040015/3_2opagelsqxstandard3002514040015_seg.nii.gz" + }, + { + "image": "108916/2_0opagelsqxstandard2912514040015.nii.gz", + "pseudo_label": "108916/2_0opagelsqxstandard2912514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108916/2_0opagelsqxstandard2912514040015/2_0opagelsqxstandard2912514040015_seg.nii.gz" + }, + { + "image": "100153/2_2opagels16standard3802514040014.nii.gz", + "pseudo_label": "100153/2_2opagels16standard3802514040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100153/2_2opagels16standard3802514040014/2_2opagels16standard3802514040014_seg.nii.gz" + }, + { + "image": "100153/2_0opagels16standard3602514040014.nii.gz", + "pseudo_label": "100153/2_0opagels16standard3602514040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100153/2_0opagels16standard3602514040014/2_0opagels16standard3602514040014_seg.nii.gz" + }, + { + "image": "100153/2_1opagels16standard3702514040014.nii.gz", + "pseudo_label": "100153/2_1opagels16standard3702514040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100153/2_1opagels16standard3702514040014/2_1opagels16standard3702514040014_seg.nii.gz" + }, + { + "image": "108971/2_2opagels16standard33025120nanana.nii.gz", + "pseudo_label": "108971/2_2opagels16standard33025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108971/2_2opagels16standard33025120nanana/2_2opagels16standard33025120nanana_seg.nii.gz" + }, + { + "image": "108971/2_1opagels16standard33025120nanana.nii.gz", + "pseudo_label": "108971/2_1opagels16standard33025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108971/2_1opagels16standard33025120nanana/2_1opagels16standard33025120nanana_seg.nii.gz" + }, + { + "image": "108971/3_1opagels16bone33025120nanana.nii.gz", + "pseudo_label": "108971/3_1opagels16bone33025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108971/3_1opagels16bone33025120nanana/3_1opagels16bone33025120nanana_seg.nii.gz" + }, + { + "image": "108971/2_0opagelsqxstandard32825120nanana.nii.gz", + "pseudo_label": "108971/2_0opagelsqxstandard32825120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108971/2_0opagelsqxstandard32825120nanana/2_0opagelsqxstandard32825120nanana_seg.nii.gz" + }, + { + "image": "103566/2_1opagelsqxstandard3502514048015.nii.gz", + "pseudo_label": "103566/2_1opagelsqxstandard3502514048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103566/2_1opagelsqxstandard3502514048015/2_1opagelsqxstandard3502514048015_seg.nii.gz" + }, + { + "image": "108147/2_2opagehsqxstandard34025120560115.nii.gz", + "pseudo_label": "108147/2_2opagehsqxstandard34025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108147/2_2opagehsqxstandard34025120560115/2_2opagehsqxstandard34025120560115_seg.nii.gz" + }, + { + "image": "108147/2_1opagehsqxstandard34025120560115.nii.gz", + "pseudo_label": "108147/2_1opagehsqxstandard34025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108147/2_1opagehsqxstandard34025120560115/2_1opagehsqxstandard34025120560115_seg.nii.gz" + }, + { + "image": "104263/5308_1opaphmx8000c38032120756012.nii.gz", + "pseudo_label": "104263/5308_1opaphmx8000c38032120756012.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104263/5308_1opaphmx8000c38032120756012/5308_1opaphmx8000c38032120756012_seg.nii.gz" + }, + { + "image": "104263/3355_2opaphmx8000c40032120756012.nii.gz", + "pseudo_label": "104263/3355_2opaphmx8000c40032120756012.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104263/3355_2opaphmx8000c40032120756012/3355_2opaphmx8000c40032120756012_seg.nii.gz" + }, + { + "image": "104263/4387_0opaphmx8000c376321409987912.nii.gz", + "pseudo_label": "104263/4387_0opaphmx8000c376321409987912.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104263/4387_0opaphmx8000c376321409987912/4387_0opaphmx8000c376321409987912_seg.nii.gz" + }, + { + "image": "106339/1_0opagelsplusstandard36025120800115.nii.gz", + "pseudo_label": "106339/1_0opagelsplusstandard36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106339/1_0opagelsplusstandard36025120800115/1_0opagelsplusstandard36025120800115_seg.nii.gz" + }, + { + "image": "106339/1_2opagelsplusstandard36025120800115.nii.gz", + "pseudo_label": "106339/1_2opagelsplusstandard36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106339/1_2opagelsplusstandard36025120800115/1_2opagelsplusstandard36025120800115_seg.nii.gz" + }, + { + "image": "106339/1_2opagelspluslung36025120800115.nii.gz", + "pseudo_label": "106339/1_2opagelspluslung36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106339/1_2opagelspluslung36025120800115/1_2opagelspluslung36025120800115_seg.nii.gz" + }, + { + "image": "106339/1_0opagelspluslung36025120800115.nii.gz", + "pseudo_label": "106339/1_0opagelspluslung36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106339/1_0opagelspluslung36025120800115/1_0opagelspluslung36025120800115_seg.nii.gz" + }, + { + "image": "106339/1_1opatoaqul4fc023594312080nana.nii.gz", + "pseudo_label": "106339/1_1opatoaqul4fc023594312080nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106339/1_1opatoaqul4fc023594312080nana/1_1opatoaqul4fc023594312080nana_seg.nii.gz" + }, + { + "image": "104937/2_0opagelsplusstandard3612514040015.nii.gz", + "pseudo_label": "104937/2_0opagelsplusstandard3612514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104937/2_0opagelsplusstandard3612514040015/2_0opagelsplusstandard3612514040015_seg.nii.gz" + }, + { + "image": "104937/2_2opagelsqxstandard3402514040015.nii.gz", + "pseudo_label": "104937/2_2opagelsqxstandard3402514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104937/2_2opagelsqxstandard3402514040015/2_2opagelsqxstandard3402514040015_seg.nii.gz" + }, + { + "image": "100056/2_1opagehsqxstandard27025120560115.nii.gz", + "pseudo_label": "100056/2_1opagehsqxstandard27025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100056/2_1opagehsqxstandard27025120560115/2_1opagehsqxstandard27025120560115_seg.nii.gz" + }, + { + "image": "100056/2_0opagehsqxstandard27025120560115.nii.gz", + "pseudo_label": "100056/2_0opagehsqxstandard27025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100056/2_0opagehsqxstandard27025120560115/2_0opagehsqxstandard27025120560115_seg.nii.gz" + }, + { + "image": "100056/2_2opagehsqxstandard27025120560115.nii.gz", + "pseudo_label": "100056/2_2opagehsqxstandard27025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100056/2_2opagehsqxstandard27025120560115/2_2opagehsqxstandard27025120560115_seg.nii.gz" + }, + { + "image": "105754/2_2opagehsqxstandard32025120560115.nii.gz", + "pseudo_label": "105754/2_2opagehsqxstandard32025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105754/2_2opagehsqxstandard32025120560115/2_2opagehsqxstandard32025120560115_seg.nii.gz" + }, + { + "image": "105754/3_0opagehsqxstandard32025120560115.nii.gz", + "pseudo_label": "105754/3_0opagehsqxstandard32025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105754/3_0opagehsqxstandard32025120560115/3_0opagehsqxstandard32025120560115_seg.nii.gz" + }, + { + "image": "105754/4_0opagehsqxbone32025120560115.nii.gz", + "pseudo_label": "105754/4_0opagehsqxbone32025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105754/4_0opagehsqxbone32025120560115/4_0opagehsqxbone32025120560115_seg.nii.gz" + }, + { + "image": "105754/2_1opagehsqxstandard32025120560115.nii.gz", + "pseudo_label": "105754/2_1opagehsqxstandard32025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105754/2_1opagehsqxstandard32025120560115/2_1opagehsqxstandard32025120560115_seg.nii.gz" + }, + { + "image": "100686/2_1opagelspr16bone3702512048014.nii.gz", + "pseudo_label": "100686/2_1opagelspr16bone3702512048014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100686/2_1opagelspr16bone3702512048014/2_1opagelspr16bone3702512048014_seg.nii.gz" + }, + { + "image": "100686/3_0opagelsqxstandard38025120560115.nii.gz", + "pseudo_label": "100686/3_0opagelsqxstandard38025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100686/3_0opagelsqxstandard38025120560115/3_0opagelsqxstandard38025120560115_seg.nii.gz" + }, + { + "image": "100686/2_2opagelspr16bone36025120560114.nii.gz", + "pseudo_label": "100686/2_2opagelspr16bone36025120560114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100686/2_2opagelspr16bone36025120560114/2_2opagelspr16bone36025120560114_seg.nii.gz" + }, + { + "image": "100686/3_2opagelspr16standard36025120560114.nii.gz", + "pseudo_label": "100686/3_2opagelspr16standard36025120560114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100686/3_2opagelspr16standard36025120560114/3_2opagelspr16standard36025120560114_seg.nii.gz" + }, + { + "image": "100686/3_1opagelspr16standard3702512048014.nii.gz", + "pseudo_label": "100686/3_1opagelspr16standard3702512048014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100686/3_1opagelspr16standard3702512048014/3_1opagelspr16standard3702512048014_seg.nii.gz" + }, + { + "image": "109961/3_1opasevzoomb50f32021206030na.nii.gz", + "pseudo_label": "109961/3_1opasevzoomb50f32021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109961/3_1opasevzoomb50f32021206030na/3_1opasevzoomb50f32021206030na_seg.nii.gz" + }, + { + "image": "103237/3_0opagels16standard38025120780114.nii.gz", + "pseudo_label": "103237/3_0opagels16standard38025120780114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103237/3_0opagels16standard38025120780114/3_0opagels16standard38025120780114_seg.nii.gz" + }, + { + "image": "103237/2_0opagels16bone38025120780114.nii.gz", + "pseudo_label": "103237/2_0opagels16bone38025120780114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103237/2_0opagels16bone38025120780114/2_0opagels16bone38025120780114_seg.nii.gz" + }, + { + "image": "103237/3_2opagels16standard38025120800114.nii.gz", + "pseudo_label": "103237/3_2opagels16standard38025120800114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103237/3_2opagels16standard38025120800114/3_2opagels16standard38025120800114_seg.nii.gz" + }, + { + "image": "108485/4_1opasesen16b30f31421206048na.nii.gz", + "pseudo_label": "108485/4_1opasesen16b30f31421206048na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108485/4_1opasesen16b30f31421206048na/4_1opasesen16b30f31421206048na_seg.nii.gz" + }, + { + "image": "100440/3_0opagelsqxbone32025120640115.nii.gz", + "pseudo_label": "100440/3_0opagelsqxbone32025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100440/3_0opagelsqxbone32025120640115/3_0opagelsqxbone32025120640115_seg.nii.gz" + }, + { + "image": "100440/2_1opagelsqxstandard33925120640115.nii.gz", + "pseudo_label": "100440/2_1opagelsqxstandard33925120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100440/2_1opagelsqxstandard33925120640115/2_1opagelsqxstandard33925120640115_seg.nii.gz" + }, + { + "image": "100440/2_2opagelsqxstandard35025120560115.nii.gz", + "pseudo_label": "100440/2_2opagelsqxstandard35025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100440/2_2opagelsqxstandard35025120560115/2_2opagelsqxstandard35025120560115_seg.nii.gz" + }, + { + "image": "100440/3_2opagelsqxbone35025120560115.nii.gz", + "pseudo_label": "100440/3_2opagelsqxbone35025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100440/3_2opagelsqxbone35025120560115/3_2opagelsqxbone35025120560115_seg.nii.gz" + }, + { + "image": "100440/3_1opagelsqxbone33925120640115.nii.gz", + "pseudo_label": "100440/3_1opagelsqxbone33925120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100440/3_1opagelsqxbone33925120640115/3_1opagelsqxbone33925120640115_seg.nii.gz" + }, + { + "image": "100440/2_0opagelsqxstandard32025120640115.nii.gz", + "pseudo_label": "100440/2_0opagelsqxstandard32025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100440/2_0opagelsqxstandard32025120640115/2_0opagelsqxstandard32025120640115_seg.nii.gz" + }, + { + "image": "106558/4_0opasesen16b50f30751206040na.nii.gz", + "pseudo_label": "106558/4_0opasesen16b50f30751206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106558/4_0opasesen16b50f30751206040na/4_0opasesen16b50f30751206040na_seg.nii.gz" + }, + { + "image": "106558/4_2opasevzoomb50f31651206030na.nii.gz", + "pseudo_label": "106558/4_2opasevzoomb50f31651206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106558/4_2opasevzoomb50f31651206030na/4_2opasevzoomb50f31651206030na_seg.nii.gz" + }, + { + "image": "106558/3_2opasevzoomb30f31651206030na.nii.gz", + "pseudo_label": "106558/3_2opasevzoomb30f31651206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106558/3_2opasevzoomb30f31651206030na/3_2opasevzoomb30f31651206030na_seg.nii.gz" + }, + { + "image": "106558/5_1opasesen16b50f31251204530na.nii.gz", + "pseudo_label": "106558/5_1opasesen16b50f31251204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106558/5_1opasesen16b50f31251204530na/5_1opasesen16b50f31251204530na_seg.nii.gz" + }, + { + "image": "106558/6_2opasevzoomb30f31621206030na.nii.gz", + "pseudo_label": "106558/6_2opasevzoomb30f31621206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106558/6_2opasevzoomb30f31621206030na/6_2opasevzoomb30f31621206030na_seg.nii.gz" + }, + { + "image": "106558/3_1opasesen16b30f31251204530na.nii.gz", + "pseudo_label": "106558/3_1opasesen16b30f31251204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106558/3_1opasesen16b30f31251204530na/3_1opasesen16b30f31251204530na_seg.nii.gz" + }, + { + "image": "106558/6_0opasesen16b30f30721206040na.nii.gz", + "pseudo_label": "106558/6_0opasesen16b30f30721206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106558/6_0opasesen16b30f30721206040na/6_0opasesen16b30f30721206040na_seg.nii.gz" + }, + { + "image": "106558/5_0opasesen16b50f30721206040na.nii.gz", + "pseudo_label": "106558/5_0opasesen16b50f30721206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106558/5_0opasesen16b50f30721206040na/5_0opasesen16b50f30721206040na_seg.nii.gz" + }, + { + "image": "106558/5_2opasevzoomb50f31621206030na.nii.gz", + "pseudo_label": "106558/5_2opasevzoomb50f31621206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106558/5_2opasevzoomb50f31621206030na/5_2opasevzoomb50f31621206030na_seg.nii.gz" + }, + { + "image": "107680/2_2opagehsqxstandard32025120560115.nii.gz", + "pseudo_label": "107680/2_2opagehsqxstandard32025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107680/2_2opagehsqxstandard32025120560115/2_2opagehsqxstandard32025120560115_seg.nii.gz" + }, + { + "image": "107680/2_0opagehsqxstandard32025120560115.nii.gz", + "pseudo_label": "107680/2_0opagehsqxstandard32025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107680/2_0opagehsqxstandard32025120560115/2_0opagehsqxstandard32025120560115_seg.nii.gz" + }, + { + "image": "107680/3_0opagehsqxbone32025120560115.nii.gz", + "pseudo_label": "107680/3_0opagehsqxbone32025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107680/3_0opagehsqxbone32025120560115/3_0opagehsqxbone32025120560115_seg.nii.gz" + }, + { + "image": "107680/2_1opagehsqxstandard32025120560115.nii.gz", + "pseudo_label": "107680/2_1opagehsqxstandard32025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107680/2_1opagehsqxstandard32025120560115/2_1opagehsqxstandard32025120560115_seg.nii.gz" + }, + { + "image": "107172/2_0opasevzoomb50f29021206030na.nii.gz", + "pseudo_label": "107172/2_0opasevzoomb50f29021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107172/2_0opasevzoomb50f29021206030na/2_0opasevzoomb50f29021206030na_seg.nii.gz" + }, + { + "image": "107172/3_0opasevzoomb30f29021206030na.nii.gz", + "pseudo_label": "107172/3_0opasevzoomb30f29021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107172/3_0opasevzoomb30f29021206030na/3_0opasevzoomb30f29021206030na_seg.nii.gz" + }, + { + "image": "107172/3_2opasesen16b30f30021204530na.nii.gz", + "pseudo_label": "107172/3_2opasesen16b30f30021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107172/3_2opasesen16b30f30021204530na/3_2opasesen16b30f30021204530na_seg.nii.gz" + }, + { + "image": "107172/3_1opasevzoomb30f30021206030na.nii.gz", + "pseudo_label": "107172/3_1opasevzoomb30f30021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107172/3_1opasevzoomb30f30021206030na/3_1opasevzoomb30f30021206030na_seg.nii.gz" + }, + { + "image": "110250/2_0opagelsqxstandard30025120nanana.nii.gz", + "pseudo_label": "110250/2_0opagelsqxstandard30025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110250/2_0opagelsqxstandard30025120nanana/2_0opagelsqxstandard30025120nanana_seg.nii.gz" + }, + { + "image": "110250/3_1opagels16bone30025120nanana.nii.gz", + "pseudo_label": "110250/3_1opagels16bone30025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110250/3_1opagels16bone30025120nanana/3_1opagels16bone30025120nanana_seg.nii.gz" + }, + { + "image": "110250/2_2opagels16standard30025120nanana.nii.gz", + "pseudo_label": "110250/2_2opagels16standard30025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110250/2_2opagels16standard30025120nanana/2_2opagels16standard30025120nanana_seg.nii.gz" + }, + { + "image": "110250/2_1opagels16standard30025120nanana.nii.gz", + "pseudo_label": "110250/2_1opagels16standard30025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110250/2_1opagels16standard30025120nanana/2_1opagels16standard30025120nanana_seg.nii.gz" + }, + { + "image": "110250/3_2opagels16bone30025120nanana.nii.gz", + "pseudo_label": "110250/3_2opagels16bone30025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110250/3_2opagels16bone30025120nanana/3_2opagels16bone30025120nanana_seg.nii.gz" + }, + { + "image": "110250/3_0opagelsqxbone30025120nanana.nii.gz", + "pseudo_label": "110250/3_0opagelsqxbone30025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110250/3_0opagelsqxbone30025120nanana/3_0opagelsqxbone30025120nanana_seg.nii.gz" + }, + { + "image": "102348/2_0opasevzoomb50f33021206030na.nii.gz", + "pseudo_label": "102348/2_0opasevzoomb50f33021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102348/2_0opasevzoomb50f33021206030na/2_0opasevzoomb50f33021206030na_seg.nii.gz" + }, + { + "image": "102348/3_2opasesen16b30f31021204530na.nii.gz", + "pseudo_label": "102348/3_2opasesen16b30f31021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102348/3_2opasesen16b30f31021204530na/3_2opasesen16b30f31021204530na_seg.nii.gz" + }, + { + "image": "107097/4113_1opaphmx8000c40032120453612.nii.gz", + "pseudo_label": "107097/4113_1opaphmx8000c40032120453612.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107097/4113_1opaphmx8000c40032120453612/4113_1opaphmx8000c40032120453612_seg.nii.gz" + }, + { + "image": "107097/4112_1opaphmx8000c40032120453612.nii.gz", + "pseudo_label": "107097/4112_1opaphmx8000c40032120453612.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107097/4112_1opaphmx8000c40032120453612/4112_1opaphmx8000c40032120453612_seg.nii.gz" + }, + { + "image": "100772/0_0opaphmx8000d29432120600112.nii.gz", + "pseudo_label": "100772/0_0opaphmx8000d29432120600112.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100772/0_0opaphmx8000d29432120600112/0_0opaphmx8000d29432120600112_seg.nii.gz" + }, + { + "image": "100772/0_1opaphmx8000d27132120600118.nii.gz", + "pseudo_label": "100772/0_1opaphmx8000d27132120600118.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100772/0_1opaphmx8000d27132120600118/0_1opaphmx8000d27132120600118_seg.nii.gz" + }, + { + "image": "100772/0_0opaphmx8000c29432120600112.nii.gz", + "pseudo_label": "100772/0_0opaphmx8000c29432120600112.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100772/0_0opaphmx8000c29432120600112/0_0opaphmx8000c29432120600112_seg.nii.gz" + }, + { + "image": "100772/5997_2opaphmx8000d2693212039018.nii.gz", + "pseudo_label": "100772/5997_2opaphmx8000d2693212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100772/5997_2opaphmx8000d2693212039018/5997_2opaphmx8000d2693212039018_seg.nii.gz" + }, + { + "image": "105094/2_2opagehsqxstandard35025120560115.nii.gz", + "pseudo_label": "105094/2_2opagehsqxstandard35025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105094/2_2opagehsqxstandard35025120560115/2_2opagehsqxstandard35025120560115_seg.nii.gz" + }, + { + "image": "105094/3_1opagehsqxbone35025120560115.nii.gz", + "pseudo_label": "105094/3_1opagehsqxbone35025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105094/3_1opagehsqxbone35025120560115/3_1opagehsqxbone35025120560115_seg.nii.gz" + }, + { + "image": "105094/2_1opagehsqxstandard35025120560115.nii.gz", + "pseudo_label": "105094/2_1opagehsqxstandard35025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105094/2_1opagehsqxstandard35025120560115/2_1opagehsqxstandard35025120560115_seg.nii.gz" + }, + { + "image": "105094/3_0opagehsqxbone35025120560115.nii.gz", + "pseudo_label": "105094/3_0opagehsqxbone35025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105094/3_0opagehsqxbone35025120560115/3_0opagehsqxbone35025120560115_seg.nii.gz" + }, + { + "image": "105094/3_2opagehsqxbone35025120560115.nii.gz", + "pseudo_label": "105094/3_2opagehsqxbone35025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105094/3_2opagehsqxbone35025120560115/3_2opagehsqxbone35025120560115_seg.nii.gz" + }, + { + "image": "105188/1_0opagelsplusstandard33025120800108.nii.gz", + "pseudo_label": "105188/1_0opagelsplusstandard33025120800108.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105188/1_0opagelsplusstandard33025120800108/1_0opagelsplusstandard33025120800108_seg.nii.gz" + }, + { + "image": "105188/1_0opagelspluslung33025120800108.nii.gz", + "pseudo_label": "105188/1_0opagelspluslung33025120800108.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105188/1_0opagelspluslung33025120800108/1_0opagelspluslung33025120800108_seg.nii.gz" + }, + { + "image": "105188/1_2opagelsplusstandard33025120800115.nii.gz", + "pseudo_label": "105188/1_2opagelsplusstandard33025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105188/1_2opagelsplusstandard33025120800115/1_2opagelsplusstandard33025120800115_seg.nii.gz" + }, + { + "image": "105188/1_1opagelsplusstandard33025120800115.nii.gz", + "pseudo_label": "105188/1_1opagelsplusstandard33025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105188/1_1opagelsplusstandard33025120800115/1_1opagelsplusstandard33025120800115_seg.nii.gz" + }, + { + "image": "110647/4_0opasesen16b50f32951204530na.nii.gz", + "pseudo_label": "110647/4_0opasesen16b50f32951204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110647/4_0opasesen16b50f32951204530na/4_0opasesen16b50f32951204530na_seg.nii.gz" + }, + { + "image": "110647/4_2opasevzoomb50f31751206030na.nii.gz", + "pseudo_label": "110647/4_2opasevzoomb50f31751206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110647/4_2opasevzoomb50f31751206030na/4_2opasevzoomb50f31751206030na_seg.nii.gz" + }, + { + "image": "110647/3_2opasevzoomb30f31751206030na.nii.gz", + "pseudo_label": "110647/3_2opasevzoomb30f31751206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110647/3_2opasevzoomb30f31751206030na/3_2opasevzoomb30f31751206030na_seg.nii.gz" + }, + { + "image": "110647/6_1opasesen16b50f30721204530na.nii.gz", + "pseudo_label": "110647/6_1opasesen16b50f30721204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110647/6_1opasesen16b50f30721204530na/6_1opasesen16b50f30721204530na_seg.nii.gz" + }, + { + "image": "110647/6_2opasevzoomb30f31721206030na.nii.gz", + "pseudo_label": "110647/6_2opasevzoomb30f31721206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110647/6_2opasevzoomb30f31721206030na/6_2opasevzoomb30f31721206030na_seg.nii.gz" + }, + { + "image": "110647/3_0opasesen16b30f32951204530na.nii.gz", + "pseudo_label": "110647/3_0opasesen16b30f32951204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110647/3_0opasesen16b30f32951204530na/3_0opasesen16b30f32951204530na_seg.nii.gz" + }, + { + "image": "110647/4_1opasesen16b30f30721204530na.nii.gz", + "pseudo_label": "110647/4_1opasesen16b30f30721204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110647/4_1opasesen16b30f30721204530na/4_1opasesen16b30f30721204530na_seg.nii.gz" + }, + { + "image": "110647/5_1opasesen16b50f30751204530na.nii.gz", + "pseudo_label": "110647/5_1opasesen16b50f30751204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110647/5_1opasesen16b50f30751204530na/5_1opasesen16b50f30751204530na_seg.nii.gz" + }, + { + "image": "110647/5_0opasesen16b50f32921204530na.nii.gz", + "pseudo_label": "110647/5_0opasesen16b50f32921204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110647/5_0opasesen16b50f32921204530na/5_0opasesen16b50f32921204530na_seg.nii.gz" + }, + { + "image": "110647/3_1opasesen16b30f30751204530na.nii.gz", + "pseudo_label": "110647/3_1opasesen16b30f30751204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110647/3_1opasesen16b30f30751204530na/3_1opasesen16b30f30751204530na_seg.nii.gz" + }, + { + "image": "110472/7_0opatoaqul4fc51400212080nana.nii.gz", + "pseudo_label": "110472/7_0opatoaqul4fc51400212080nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110472/7_0opatoaqul4fc51400212080nana/7_0opatoaqul4fc51400212080nana_seg.nii.gz" + }, + { + "image": "110472/8_0opatoaqul4fc82400212080nana.nii.gz", + "pseudo_label": "110472/8_0opatoaqul4fc82400212080nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110472/8_0opatoaqul4fc82400212080nana/8_0opatoaqul4fc82400212080nana_seg.nii.gz" + }, + { + "image": "100810/2_2opagels16standard36025120nanana.nii.gz", + "pseudo_label": "100810/2_2opagels16standard36025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100810/2_2opagels16standard36025120nanana/2_2opagels16standard36025120nanana_seg.nii.gz" + }, + { + "image": "100810/2_1opagels16standard36025120nanana.nii.gz", + "pseudo_label": "100810/2_1opagels16standard36025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100810/2_1opagels16standard36025120nanana/2_1opagels16standard36025120nanana_seg.nii.gz" + }, + { + "image": "100810/3_1opagels16bone36025120nanana.nii.gz", + "pseudo_label": "100810/3_1opagels16bone36025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100810/3_1opagels16bone36025120nanana/3_1opagels16bone36025120nanana_seg.nii.gz" + }, + { + "image": "100810/3_2opagels16bone36025120nanana.nii.gz", + "pseudo_label": "100810/3_2opagels16bone36025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100810/3_2opagels16bone36025120nanana/3_2opagels16bone36025120nanana_seg.nii.gz" + }, + { + "image": "100810/3_0opagelsqxbone36025120nanana.nii.gz", + "pseudo_label": "100810/3_0opagelsqxbone36025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100810/3_0opagelsqxbone36025120nanana/3_0opagelsqxbone36025120nanana_seg.nii.gz" + }, + { + "image": "100810/2_0opagelsqxstandard36025120nanana.nii.gz", + "pseudo_label": "100810/2_0opagelsqxstandard36025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100810/2_0opagelsqxstandard36025120nanana/2_0opagelsqxstandard36025120nanana_seg.nii.gz" + }, + { + "image": "100314/3_1opagelsqxbone36425120720115.nii.gz", + "pseudo_label": "100314/3_1opagelsqxbone36425120720115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100314/3_1opagelsqxbone36425120720115/3_1opagelsqxbone36425120720115_seg.nii.gz" + }, + { + "image": "100314/2_1opagelsqxstandard36425120720115.nii.gz", + "pseudo_label": "100314/2_1opagelsqxstandard36425120720115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100314/2_1opagelsqxstandard36425120720115/2_1opagelsqxstandard36425120720115_seg.nii.gz" + }, + { + "image": "100314/2_0opagelsqxstandard37125120720115.nii.gz", + "pseudo_label": "100314/2_0opagelsqxstandard37125120720115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100314/2_0opagelsqxstandard37125120720115/2_0opagelsqxstandard37125120720115_seg.nii.gz" + }, + { + "image": "100314/3_0opagelsqxbone37125120720115.nii.gz", + "pseudo_label": "100314/3_0opagelsqxbone37125120720115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100314/3_0opagelsqxbone37125120720115/3_0opagelsqxbone37125120720115_seg.nii.gz" + }, + { + "image": "110481/6_1opasevzoomb30f38021206030na.nii.gz", + "pseudo_label": "110481/6_1opasevzoomb30f38021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110481/6_1opasevzoomb30f38021206030na/6_1opasevzoomb30f38021206030na_seg.nii.gz" + }, + { + "image": "110481/4_2opasevzoomb50f35051206030na.nii.gz", + "pseudo_label": "110481/4_2opasevzoomb50f35051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110481/4_2opasevzoomb50f35051206030na/4_2opasevzoomb50f35051206030na_seg.nii.gz" + }, + { + "image": "110481/5_2opasevzoomb50f35021206030na.nii.gz", + "pseudo_label": "110481/5_2opasevzoomb50f35021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110481/5_2opasevzoomb50f35021206030na/5_2opasevzoomb50f35021206030na_seg.nii.gz" + }, + { + "image": "110481/4_0opasevzoomb50f38051206030na.nii.gz", + "pseudo_label": "110481/4_0opasevzoomb50f38051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110481/4_0opasevzoomb50f38051206030na/4_0opasevzoomb50f38051206030na_seg.nii.gz" + }, + { + "image": "110481/3_1opasevzoomb50f38021206030na.nii.gz", + "pseudo_label": "110481/3_1opasevzoomb50f38021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110481/3_1opasevzoomb50f38021206030na/3_1opasevzoomb50f38021206030na_seg.nii.gz" + }, + { + "image": "110481/4_1opasevzoomb50f38051206030na.nii.gz", + "pseudo_label": "110481/4_1opasevzoomb50f38051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110481/4_1opasevzoomb50f38051206030na/4_1opasevzoomb50f38051206030na_seg.nii.gz" + }, + { + "image": "110481/5_1opasevzoomb30f38051206030na.nii.gz", + "pseudo_label": "110481/5_1opasevzoomb30f38051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110481/5_1opasevzoomb30f38051206030na/5_1opasevzoomb30f38051206030na_seg.nii.gz" + }, + { + "image": "110481/3_2opasevzoomb30f35051206030na.nii.gz", + "pseudo_label": "110481/3_2opasevzoomb30f35051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110481/3_2opasevzoomb30f35051206030na/3_2opasevzoomb30f35051206030na_seg.nii.gz" + }, + { + "image": "101273/3_1opasevzoomb50f36021408040na.nii.gz", + "pseudo_label": "101273/3_1opasevzoomb50f36021408040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101273/3_1opasevzoomb50f36021408040na/3_1opasevzoomb50f36021408040na_seg.nii.gz" + }, + { + "image": "108859/2_1opagehsqxstandard36025120560115.nii.gz", + "pseudo_label": "108859/2_1opagehsqxstandard36025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108859/2_1opagehsqxstandard36025120560115/2_1opagehsqxstandard36025120560115_seg.nii.gz" + }, + { + "image": "108859/102_2osagehsqxstandard36025120560115.nii.gz", + "pseudo_label": "108859/102_2osagehsqxstandard36025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108859/102_2osagehsqxstandard36025120560115/102_2osagehsqxstandard36025120560115_seg.nii.gz" + }, + { + "image": "108859/2_0opagehsqxstandard36025120560115.nii.gz", + "pseudo_label": "108859/2_0opagehsqxstandard36025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108859/2_0opagehsqxstandard36025120560115/2_0opagehsqxstandard36025120560115_seg.nii.gz" + }, + { + "image": "108859/3_0opagehsqxbone36025120560115.nii.gz", + "pseudo_label": "108859/3_0opagehsqxbone36025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108859/3_0opagehsqxbone36025120560115/3_0opagehsqxbone36025120560115_seg.nii.gz" + }, + { + "image": "108859/3_1opagehsqxbone36025120560115.nii.gz", + "pseudo_label": "108859/3_1opagehsqxbone36025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108859/3_1opagehsqxbone36025120560115/3_1opagehsqxbone36025120560115_seg.nii.gz" + }, + { + "image": "113093/2_0opasevzoomb50f31021206030na.nii.gz", + "pseudo_label": "113093/2_0opasevzoomb50f31021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113093/2_0opasevzoomb50f31021206030na/2_0opasevzoomb50f31021206030na_seg.nii.gz" + }, + { + "image": "113093/2_1opasesen16b30f29021204530na.nii.gz", + "pseudo_label": "113093/2_1opasesen16b30f29021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113093/2_1opasesen16b30f29021204530na/2_1opasesen16b30f29021204530na_seg.nii.gz" + }, + { + "image": "113093/3_2opasevzoomb30f29021206030na.nii.gz", + "pseudo_label": "113093/3_2opasevzoomb30f29021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113093/3_2opasevzoomb30f29021206030na/3_2opasevzoomb30f29021206030na_seg.nii.gz" + }, + { + "image": "111629/550_1opaphmx8000c37632120604812.nii.gz", + "pseudo_label": "111629/550_1opaphmx8000c37632120604812.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111629/550_1opaphmx8000c37632120604812/550_1opaphmx8000c37632120604812_seg.nii.gz" + }, + { + "image": "109710/4_2opasevzoomb50f36051206030na.nii.gz", + "pseudo_label": "109710/4_2opasevzoomb50f36051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109710/4_2opasevzoomb50f36051206030na/4_2opasevzoomb50f36051206030na_seg.nii.gz" + }, + { + "image": "109710/5_0opasesen16b50f34651204530na.nii.gz", + "pseudo_label": "109710/5_0opasesen16b50f34651204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109710/5_0opasesen16b50f34651204530na/5_0opasesen16b50f34651204530na_seg.nii.gz" + }, + { + "image": "109710/5_1opasesen16b50f34151204530na.nii.gz", + "pseudo_label": "109710/5_1opasesen16b50f34151204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109710/5_1opasesen16b50f34151204530na/5_1opasesen16b50f34151204530na_seg.nii.gz" + }, + { + "image": "109710/3_1opasesen16b30f34151204530na.nii.gz", + "pseudo_label": "109710/3_1opasesen16b30f34151204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109710/3_1opasesen16b30f34151204530na/3_1opasesen16b30f34151204530na_seg.nii.gz" + }, + { + "image": "109710/3_0opasesen16b30f35451204530na.nii.gz", + "pseudo_label": "109710/3_0opasesen16b30f35451204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109710/3_0opasesen16b30f35451204530na/3_0opasesen16b30f35451204530na_seg.nii.gz" + }, + { + "image": "109710/6_1opasesen16b50f34121204530na.nii.gz", + "pseudo_label": "109710/6_1opasesen16b50f34121204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109710/6_1opasesen16b50f34121204530na/6_1opasesen16b50f34121204530na_seg.nii.gz" + }, + { + "image": "109710/5_2opasevzoomb30f36051206030na.nii.gz", + "pseudo_label": "109710/5_2opasevzoomb30f36051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109710/5_2opasevzoomb30f36051206030na/5_2opasevzoomb30f36051206030na_seg.nii.gz" + }, + { + "image": "109710/3_2opasevzoomb50f36021206030na.nii.gz", + "pseudo_label": "109710/3_2opasevzoomb50f36021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109710/3_2opasevzoomb50f36021206030na/3_2opasevzoomb50f36021206030na_seg.nii.gz" + }, + { + "image": "105663/2_2opagelsqxstandard3702514048015.nii.gz", + "pseudo_label": "105663/2_2opagelsqxstandard3702514048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105663/2_2opagelsqxstandard3702514048015/2_2opagelsqxstandard3702514048015_seg.nii.gz" + }, + { + "image": "105663/2_1opagelsqxstandard3702514048015.nii.gz", + "pseudo_label": "105663/2_1opagelsqxstandard3702514048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105663/2_1opagelsqxstandard3702514048015/2_1opagelsqxstandard3702514048015_seg.nii.gz" + }, + { + "image": "105663/2_0opagelsqxstandard3682514048015.nii.gz", + "pseudo_label": "105663/2_0opagelsqxstandard3682514048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105663/2_0opagelsqxstandard3682514048015/2_0opagelsqxstandard3682514048015_seg.nii.gz" + }, + { + "image": "109349/1_2opagelspluslung31025120800115.nii.gz", + "pseudo_label": "109349/1_2opagelspluslung31025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109349/1_2opagelspluslung31025120800115/1_2opagelspluslung31025120800115_seg.nii.gz" + }, + { + "image": "109349/1_0opagelsplusstandard31525120800115.nii.gz", + "pseudo_label": "109349/1_0opagelsplusstandard31525120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109349/1_0opagelsplusstandard31525120800115/1_0opagelsplusstandard31525120800115_seg.nii.gz" + }, + { + "image": "103629/3_2opasesen16b30f34621204032na.nii.gz", + "pseudo_label": "103629/3_2opasesen16b30f34621204032na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103629/3_2opasesen16b30f34621204032na/3_2opasesen16b30f34621204032na_seg.nii.gz" + }, + { + "image": "103629/3_1opasesen16b30f33821204032na.nii.gz", + "pseudo_label": "103629/3_1opasesen16b30f33821204032na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103629/3_1opasesen16b30f33821204032na/3_1opasesen16b30f33821204032na_seg.nii.gz" + }, + { + "image": "103629/2_1opasesen16b30f33821204032na.nii.gz", + "pseudo_label": "103629/2_1opasesen16b30f33821204032na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103629/2_1opasesen16b30f33821204032na/2_1opasesen16b30f33821204032na_seg.nii.gz" + }, + { + "image": "103629/2_0opasevzoomb30f322212016080na.nii.gz", + "pseudo_label": "103629/2_0opasevzoomb30f322212016080na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103629/2_0opasevzoomb30f322212016080na/2_0opasevzoomb30f322212016080na_seg.nii.gz" + }, + { + "image": "107394/4_2opasesen16b30f31821204530na.nii.gz", + "pseudo_label": "107394/4_2opasesen16b30f31821204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107394/4_2opasesen16b30f31821204530na/4_2opasesen16b30f31821204530na_seg.nii.gz" + }, + { + "image": "107394/4_0opasevzoomb50f36451206030na.nii.gz", + "pseudo_label": "107394/4_0opasevzoomb50f36451206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107394/4_0opasevzoomb50f36451206030na/4_0opasevzoomb50f36451206030na_seg.nii.gz" + }, + { + "image": "107394/5_1opasesen16b50f33551204530na.nii.gz", + "pseudo_label": "107394/5_1opasesen16b50f33551204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107394/5_1opasesen16b50f33551204530na/5_1opasesen16b50f33551204530na_seg.nii.gz" + }, + { + "image": "107394/3_2opasesen16b30f31851204530na.nii.gz", + "pseudo_label": "107394/3_2opasesen16b30f31851204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107394/3_2opasesen16b30f31851204530na/3_2opasesen16b30f31851204530na_seg.nii.gz" + }, + { + "image": "107394/3_1opasesen16b30f33551204530na.nii.gz", + "pseudo_label": "107394/3_1opasesen16b30f33551204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107394/3_1opasesen16b30f33551204530na/3_1opasesen16b30f33551204530na_seg.nii.gz" + }, + { + "image": "107394/4_1opasesen16b30f33521204530na.nii.gz", + "pseudo_label": "107394/4_1opasesen16b30f33521204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107394/4_1opasesen16b30f33521204530na/4_1opasesen16b30f33521204530na_seg.nii.gz" + }, + { + "image": "107394/3_0opasevzoomb30f36451206030na.nii.gz", + "pseudo_label": "107394/3_0opasevzoomb30f36451206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107394/3_0opasevzoomb30f36451206030na/3_0opasevzoomb30f36451206030na_seg.nii.gz" + }, + { + "image": "107394/6_0opasevzoomb30f36421206030na.nii.gz", + "pseudo_label": "107394/6_0opasevzoomb30f36421206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107394/6_0opasevzoomb30f36421206030na/6_0opasevzoomb30f36421206030na_seg.nii.gz" + }, + { + "image": "107394/5_2opasesen16b50f31851204530na.nii.gz", + "pseudo_label": "107394/5_2opasesen16b50f31851204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107394/5_2opasesen16b50f31851204530na/5_2opasesen16b50f31851204530na_seg.nii.gz" + }, + { + "image": "107776/2_1opasevzoomb30f31021207540na.nii.gz", + "pseudo_label": "107776/2_1opasevzoomb30f31021207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107776/2_1opasevzoomb30f31021207540na/2_1opasevzoomb30f31021207540na_seg.nii.gz" + }, + { + "image": "101863/3_2opagelspr16standard3602512040014.nii.gz", + "pseudo_label": "101863/3_2opagelspr16standard3602512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101863/3_2opagelspr16standard3602512040014/3_2opagelspr16standard3602512040014_seg.nii.gz" + }, + { + "image": "101863/3_0opagelsqxstandard3602512048015.nii.gz", + "pseudo_label": "101863/3_0opagelsqxstandard3602512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101863/3_0opagelsqxstandard3602512048015/3_0opagelsqxstandard3602512048015_seg.nii.gz" + }, + { + "image": "101863/2_2opagelspr16bone3602512040014.nii.gz", + "pseudo_label": "101863/2_2opagelspr16bone3602512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101863/2_2opagelspr16bone3602512040014/2_2opagelspr16bone3602512040014_seg.nii.gz" + }, + { + "image": "101863/3_1opagels16standard3402512040014.nii.gz", + "pseudo_label": "101863/3_1opagels16standard3402512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101863/3_1opagels16standard3402512040014/3_1opagels16standard3402512040014_seg.nii.gz" + }, + { + "image": "108914/3_0opagelsqxbone31725120640115.nii.gz", + "pseudo_label": "108914/3_0opagelsqxbone31725120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108914/3_0opagelsqxbone31725120640115/3_0opagelsqxbone31725120640115_seg.nii.gz" + }, + { + "image": "108914/2_0opagelsqxstandard31725120640115.nii.gz", + "pseudo_label": "108914/2_0opagelsqxstandard31725120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108914/2_0opagelsqxstandard31725120640115/2_0opagelsqxstandard31725120640115_seg.nii.gz" + }, + { + "image": "112900/3_1opatoaqul4fc513125212040nana.nii.gz", + "pseudo_label": "112900/3_1opatoaqul4fc513125212040nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112900/3_1opatoaqul4fc513125212040nana/3_1opatoaqul4fc513125212040nana_seg.nii.gz" + }, + { + "image": "112900/3_0opatoaqul4fc513086212040nana.nii.gz", + "pseudo_label": "112900/3_0opatoaqul4fc513086212040nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112900/3_0opatoaqul4fc513086212040nana/3_0opatoaqul4fc513086212040nana_seg.nii.gz" + }, + { + "image": "102807/2_2opagelsplusstandard35525120600115.nii.gz", + "pseudo_label": "102807/2_2opagelsplusstandard35525120600115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102807/2_2opagelsplusstandard35525120600115/2_2opagelsplusstandard35525120600115_seg.nii.gz" + }, + { + "image": "108133/2_0opagelsqxstandard34025120640115.nii.gz", + "pseudo_label": "108133/2_0opagelsqxstandard34025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108133/2_0opagelsqxstandard34025120640115/2_0opagelsqxstandard34025120640115_seg.nii.gz" + }, + { + "image": "108133/2_1opagelsqxstandard3602512048015.nii.gz", + "pseudo_label": "108133/2_1opagelsqxstandard3602512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108133/2_1opagelsqxstandard3602512048015/2_1opagelsqxstandard3602512048015_seg.nii.gz" + }, + { + "image": "100456/1_1opagelsplusstandard38525120800115.nii.gz", + "pseudo_label": "100456/1_1opagelsplusstandard38525120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100456/1_1opagelsplusstandard38525120800115/1_1opagelsplusstandard38525120800115_seg.nii.gz" + }, + { + "image": "100456/1_1opagelspluslung38525120800115.nii.gz", + "pseudo_label": "100456/1_1opagelspluslung38525120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100456/1_1opagelspluslung38525120800115/1_1opagelspluslung38525120800115_seg.nii.gz" + }, + { + "image": "100456/1_2opagelsplusstandard38025120800115.nii.gz", + "pseudo_label": "100456/1_2opagelsplusstandard38025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100456/1_2opagelsplusstandard38025120800115/1_2opagelsplusstandard38025120800115_seg.nii.gz" + }, + { + "image": "100456/1_2opagelspluslung38025120800115.nii.gz", + "pseudo_label": "100456/1_2opagelspluslung38025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100456/1_2opagelspluslung38025120800115/1_2opagelspluslung38025120800115_seg.nii.gz" + }, + { + "image": "100456/1_0opagelspluslung38525120800115.nii.gz", + "pseudo_label": "100456/1_0opagelspluslung38525120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100456/1_0opagelspluslung38525120800115/1_0opagelspluslung38525120800115_seg.nii.gz" + }, + { + "image": "105557/2_0opagels16standard3602512048014.nii.gz", + "pseudo_label": "105557/2_0opagels16standard3602512048014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105557/2_0opagels16standard3602512048014/2_0opagels16standard3602512048014_seg.nii.gz" + }, + { + "image": "105310/2_1opagels16bone3802512000na.nii.gz", + "pseudo_label": "105310/2_1opagels16bone3802512000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105310/2_1opagels16bone3802512000na/2_1opagels16bone3802512000na_seg.nii.gz" + }, + { + "image": "105310/3_0opagelsqxstandard35225120640115.nii.gz", + "pseudo_label": "105310/3_0opagelsqxstandard35225120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105310/3_0opagelsqxstandard35225120640115/3_0opagelsqxstandard35225120640115_seg.nii.gz" + }, + { + "image": "105310/2_2opagelspr16bone35025120560114.nii.gz", + "pseudo_label": "105310/2_2opagelspr16bone35025120560114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105310/2_2opagelspr16bone35025120560114/2_2opagelspr16bone35025120560114_seg.nii.gz" + }, + { + "image": "105310/3_1opagels16standard3782512000na.nii.gz", + "pseudo_label": "105310/3_1opagels16standard3782512000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105310/3_1opagels16standard3782512000na/3_1opagels16standard3782512000na_seg.nii.gz" + }, + { + "image": "105310/2_0opagelsqxbone35225120640115.nii.gz", + "pseudo_label": "105310/2_0opagelsqxbone35225120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105310/2_0opagelsqxbone35225120640115/2_0opagelsqxbone35225120640115_seg.nii.gz" + }, + { + "image": "109133/2_0opasevzoomb50f34021206030na.nii.gz", + "pseudo_label": "109133/2_0opasevzoomb50f34021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109133/2_0opasevzoomb50f34021206030na/2_0opasevzoomb50f34021206030na_seg.nii.gz" + }, + { + "image": "109133/2_1opasevzoomb50f33021206030na.nii.gz", + "pseudo_label": "109133/2_1opasevzoomb50f33021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109133/2_1opasevzoomb50f33021206030na/2_1opasevzoomb50f33021206030na_seg.nii.gz" + }, + { + "image": "109133/3_0opasevzoomb50f34021206030na.nii.gz", + "pseudo_label": "109133/3_0opasevzoomb50f34021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109133/3_0opasevzoomb50f34021206030na/3_0opasevzoomb50f34021206030na_seg.nii.gz" + }, + { + "image": "100899/3_2opasesen16b30f32551204530na.nii.gz", + "pseudo_label": "100899/3_2opasesen16b30f32551204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100899/3_2opasesen16b30f32551204530na/3_2opasesen16b30f32551204530na_seg.nii.gz" + }, + { + "image": "100899/6_2opasesen16b50f33421204530na.nii.gz", + "pseudo_label": "100899/6_2opasesen16b50f33421204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100899/6_2opasesen16b50f33421204530na/6_2opasesen16b50f33421204530na_seg.nii.gz" + }, + { + "image": "100899/5_1opasesen16b50f32451204530na.nii.gz", + "pseudo_label": "100899/5_1opasesen16b50f32451204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100899/5_1opasesen16b50f32451204530na/5_1opasesen16b50f32451204530na_seg.nii.gz" + }, + { + "image": "100899/4_0opasesen16b50f33851204530na.nii.gz", + "pseudo_label": "100899/4_0opasesen16b50f33851204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100899/4_0opasesen16b50f33851204530na/4_0opasesen16b50f33851204530na_seg.nii.gz" + }, + { + "image": "100899/3_0opasesen16b30f33851204530na.nii.gz", + "pseudo_label": "100899/3_0opasesen16b30f33851204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100899/3_0opasesen16b30f33851204530na/3_0opasesen16b30f33851204530na_seg.nii.gz" + }, + { + "image": "100899/6_1opasesen16b50f32421204530na.nii.gz", + "pseudo_label": "100899/6_1opasesen16b50f32421204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100899/6_1opasesen16b50f32421204530na/6_1opasesen16b50f32421204530na_seg.nii.gz" + }, + { + "image": "100899/3_1opasesen16b30f32451204530na.nii.gz", + "pseudo_label": "100899/3_1opasesen16b30f32451204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100899/3_1opasesen16b30f32451204530na/3_1opasesen16b30f32451204530na_seg.nii.gz" + }, + { + "image": "100899/5_2opasesen16b50f33651204530na.nii.gz", + "pseudo_label": "100899/5_2opasesen16b50f33651204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100899/5_2opasesen16b50f33651204530na/5_2opasesen16b50f33651204530na_seg.nii.gz" + }, + { + "image": "100899/4_1opasesen16b30f32421204530na.nii.gz", + "pseudo_label": "100899/4_1opasesen16b30f32421204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100899/4_1opasesen16b30f32421204530na/4_1opasesen16b30f32421204530na_seg.nii.gz" + }, + { + "image": "106085/2725_2opaphmx8000c31032120453612.nii.gz", + "pseudo_label": "106085/2725_2opaphmx8000c31032120453612.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106085/2725_2opaphmx8000c31032120453612/2725_2opaphmx8000c31032120453612_seg.nii.gz" + }, + { + "image": "101337/4_1opasevzoomb30f29021206030na.nii.gz", + "pseudo_label": "101337/4_1opasevzoomb30f29021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101337/4_1opasevzoomb30f29021206030na/4_1opasevzoomb30f29021206030na_seg.nii.gz" + }, + { + "image": "101337/3_2opasevzoomb30f30021206030na.nii.gz", + "pseudo_label": "101337/3_2opasevzoomb30f30021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101337/3_2opasevzoomb30f30021206030na/3_2opasevzoomb30f30021206030na_seg.nii.gz" + }, + { + "image": "101337/2_0opasevzoomb50f30221204020na.nii.gz", + "pseudo_label": "101337/2_0opasevzoomb50f30221204020na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101337/2_0opasevzoomb50f30221204020na/2_0opasevzoomb50f30221204020na_seg.nii.gz" + }, + { + "image": "105231/3_0opagelsqxbone30225120560115.nii.gz", + "pseudo_label": "105231/3_0opagelsqxbone30225120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105231/3_0opagelsqxbone30225120560115/3_0opagelsqxbone30225120560115_seg.nii.gz" + }, + { + "image": "105231/3_1opagelsqxbone30025120640115.nii.gz", + "pseudo_label": "105231/3_1opagelsqxbone30025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105231/3_1opagelsqxbone30025120640115/3_1opagelsqxbone30025120640115_seg.nii.gz" + }, + { + "image": "105231/3_2opagelsqxbone31525120640115.nii.gz", + "pseudo_label": "105231/3_2opagelsqxbone31525120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105231/3_2opagelsqxbone31525120640115/3_2opagelsqxbone31525120640115_seg.nii.gz" + }, + { + "image": "105231/2_0opagelsqxstandard30225120560115.nii.gz", + "pseudo_label": "105231/2_0opagelsqxstandard30225120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105231/2_0opagelsqxstandard30225120560115/2_0opagelsqxstandard30225120560115_seg.nii.gz" + }, + { + "image": "105231/2_1opagelsqxstandard30025120640115.nii.gz", + "pseudo_label": "105231/2_1opagelsqxstandard30025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105231/2_1opagelsqxstandard30025120640115/2_1opagelsqxstandard30025120640115_seg.nii.gz" + }, + { + "image": "106725/8956_2opaphmx8000d3423212039018.nii.gz", + "pseudo_label": "106725/8956_2opaphmx8000d3423212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106725/8956_2opaphmx8000d3423212039018/8956_2opaphmx8000d3423212039018_seg.nii.gz" + }, + { + "image": "106725/0_0opaphmx8000d38232120600112.nii.gz", + "pseudo_label": "106725/0_0opaphmx8000d38232120600112.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106725/0_0opaphmx8000d38232120600112/0_0opaphmx8000d38232120600112_seg.nii.gz" + }, + { + "image": "106725/0_0opaphmx8000c38232120600112.nii.gz", + "pseudo_label": "106725/0_0opaphmx8000c38232120600112.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106725/0_0opaphmx8000c38232120600112/0_0opaphmx8000c38232120600112_seg.nii.gz" + }, + { + "image": "110005/7645_1opaphmx8000d38432120500118.nii.gz", + "pseudo_label": "110005/7645_1opaphmx8000d38432120500118.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110005/7645_1opaphmx8000d38432120500118/7645_1opaphmx8000d38432120500118_seg.nii.gz" + }, + { + "image": "110005/0_0opaphmx8000d3843212039018.nii.gz", + "pseudo_label": "110005/0_0opaphmx8000d3843212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110005/0_0opaphmx8000d3843212039018/0_0opaphmx8000d3843212039018_seg.nii.gz" + }, + { + "image": "108561/2_0opagelsqxstandard3352512048015.nii.gz", + "pseudo_label": "108561/2_0opagelsqxstandard3352512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108561/2_0opagelsqxstandard3352512048015/2_0opagelsqxstandard3352512048015_seg.nii.gz" + }, + { + "image": "108561/2_1opagelsqxstandard3602512048015.nii.gz", + "pseudo_label": "108561/2_1opagelsqxstandard3602512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108561/2_1opagelsqxstandard3602512048015/2_1opagelsqxstandard3602512048015_seg.nii.gz" + }, + { + "image": "111410/2_0opasevzoomb50f36621208040na.nii.gz", + "pseudo_label": "111410/2_0opasevzoomb50f36621208040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111410/2_0opasevzoomb50f36621208040na/2_0opasevzoomb50f36621208040na_seg.nii.gz" + }, + { + "image": "111410/4_1opasevzoomb60f38521208040na.nii.gz", + "pseudo_label": "111410/4_1opasevzoomb60f38521208040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111410/4_1opasevzoomb60f38521208040na/4_1opasevzoomb60f38521208040na_seg.nii.gz" + }, + { + "image": "111410/3_1opasevzoomb30f36421208040na.nii.gz", + "pseudo_label": "111410/3_1opasevzoomb30f36421208040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111410/3_1opasevzoomb30f36421208040na/3_1opasevzoomb30f36421208040na_seg.nii.gz" + }, + { + "image": "110677/7566_2opaphmx8000d35932120600118.nii.gz", + "pseudo_label": "110677/7566_2opaphmx8000d35932120600118.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110677/7566_2opaphmx8000d35932120600118/7566_2opaphmx8000d35932120600118_seg.nii.gz" + }, + { + "image": "103031/2_0opagelsqxstandard36025120600115.nii.gz", + "pseudo_label": "103031/2_0opagelsqxstandard36025120600115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103031/2_0opagelsqxstandard36025120600115/2_0opagelsqxstandard36025120600115_seg.nii.gz" + }, + { + "image": "103031/2_2opagels16soft36025120554nana.nii.gz", + "pseudo_label": "103031/2_2opagels16soft36025120554nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103031/2_2opagels16soft36025120554nana/2_2opagels16soft36025120554nana_seg.nii.gz" + }, + { + "image": "103031/2_1opagels16standard36025120505nana.nii.gz", + "pseudo_label": "103031/2_1opagels16standard36025120505nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103031/2_1opagels16standard36025120505nana/2_1opagels16standard36025120505nana_seg.nii.gz" + }, + { + "image": "112240/3_2opagels16bone31025120nanana.nii.gz", + "pseudo_label": "112240/3_2opagels16bone31025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112240/3_2opagels16bone31025120nanana/3_2opagels16bone31025120nanana_seg.nii.gz" + }, + { + "image": "112240/3_0opagelsqxbone31025120nanana.nii.gz", + "pseudo_label": "112240/3_0opagelsqxbone31025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112240/3_0opagelsqxbone31025120nanana/3_0opagelsqxbone31025120nanana_seg.nii.gz" + }, + { + "image": "112240/3_1opagels16bone31025120nanana.nii.gz", + "pseudo_label": "112240/3_1opagels16bone31025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112240/3_1opagels16bone31025120nanana/3_1opagels16bone31025120nanana_seg.nii.gz" + }, + { + "image": "112240/2_2opagels16standard31025120nanana.nii.gz", + "pseudo_label": "112240/2_2opagels16standard31025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112240/2_2opagels16standard31025120nanana/2_2opagels16standard31025120nanana_seg.nii.gz" + }, + { + "image": "112240/2_0opagelsqxstandard31025120nanana.nii.gz", + "pseudo_label": "112240/2_0opagelsqxstandard31025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112240/2_0opagelsqxstandard31025120nanana/2_0opagelsqxstandard31025120nanana_seg.nii.gz" + }, + { + "image": "102091/4_0opasesen16b30f29021204530na.nii.gz", + "pseudo_label": "102091/4_0opasesen16b30f29021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102091/4_0opasesen16b30f29021204530na/4_0opasesen16b30f29021204530na_seg.nii.gz" + }, + { + "image": "102091/3_2opasesen16b50f29021204530na.nii.gz", + "pseudo_label": "102091/3_2opasesen16b50f29021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102091/3_2opasesen16b50f29021204530na/3_2opasesen16b50f29021204530na_seg.nii.gz" + }, + { + "image": "102091/4_2opasesen16b31f29021204530na.nii.gz", + "pseudo_label": "102091/4_2opasesen16b31f29021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102091/4_2opasesen16b31f29021204530na/4_2opasesen16b31f29021204530na_seg.nii.gz" + }, + { + "image": "102091/2_0opasesen16b50f29021204530na.nii.gz", + "pseudo_label": "102091/2_0opasesen16b50f29021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102091/2_0opasesen16b50f29021204530na/2_0opasesen16b50f29021204530na_seg.nii.gz" + }, + { + "image": "104250/3_0opagehsqxbone28025120560115.nii.gz", + "pseudo_label": "104250/3_0opagehsqxbone28025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104250/3_0opagehsqxbone28025120560115/3_0opagehsqxbone28025120560115_seg.nii.gz" + }, + { + "image": "104250/2_2opagehsqxstandard28025120560115.nii.gz", + "pseudo_label": "104250/2_2opagehsqxstandard28025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104250/2_2opagehsqxstandard28025120560115/2_2opagehsqxstandard28025120560115_seg.nii.gz" + }, + { + "image": "104250/2_0opagehsqxstandard28025120560115.nii.gz", + "pseudo_label": "104250/2_0opagehsqxstandard28025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104250/2_0opagehsqxstandard28025120560115/2_0opagehsqxstandard28025120560115_seg.nii.gz" + }, + { + "image": "109857/2_1opagelsqxstandard34325120700115.nii.gz", + "pseudo_label": "109857/2_1opagelsqxstandard34325120700115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109857/2_1opagelsqxstandard34325120700115/2_1opagelsqxstandard34325120700115_seg.nii.gz" + }, + { + "image": "109857/2_0opagelsqxstandard34325120600115.nii.gz", + "pseudo_label": "109857/2_0opagelsqxstandard34325120600115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109857/2_0opagelsqxstandard34325120600115/2_0opagelsqxstandard34325120600115_seg.nii.gz" + }, + { + "image": "100591/8803_2opaphmx8000c31432120453612.nii.gz", + "pseudo_label": "100591/8803_2opaphmx8000c31432120453612.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100591/8803_2opaphmx8000c31432120453612/8803_2opaphmx8000c31432120453612_seg.nii.gz" + }, + { + "image": "100591/5722_0opaphmx8000c290321205024012.nii.gz", + "pseudo_label": "100591/5722_0opaphmx8000c290321205024012.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100591/5722_0opaphmx8000c290321205024012/5722_0opaphmx8000c290321205024012_seg.nii.gz" + }, + { + "image": "109413/3_1opagels16standard3922512040014.nii.gz", + "pseudo_label": "109413/3_1opagels16standard3922512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109413/3_1opagels16standard3922512040014/3_1opagels16standard3922512040014_seg.nii.gz" + }, + { + "image": "109413/2_2opagelspr16bone36025120560114.nii.gz", + "pseudo_label": "109413/2_2opagelspr16bone36025120560114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109413/2_2opagelspr16bone36025120560114/2_2opagelspr16bone36025120560114_seg.nii.gz" + }, + { + "image": "109413/3_2opagelspr16standard36025120560114.nii.gz", + "pseudo_label": "109413/3_2opagelspr16standard36025120560114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109413/3_2opagelspr16standard36025120560114/3_2opagelspr16standard36025120560114_seg.nii.gz" + }, + { + "image": "109413/3_0opagelsqxstandard3962512048015.nii.gz", + "pseudo_label": "109413/3_0opagelsqxstandard3962512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109413/3_0opagelsqxstandard3962512048015/3_0opagelsqxstandard3962512048015_seg.nii.gz" + }, + { + "image": "109413/2_1opagels16bone3922512040014.nii.gz", + "pseudo_label": "109413/2_1opagels16bone3922512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109413/2_1opagels16bone3922512040014/2_1opagels16bone3922512040014_seg.nii.gz" + }, + { + "image": "109413/2_0opagelsqxbone3962512048015.nii.gz", + "pseudo_label": "109413/2_0opagelsqxbone3962512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109413/2_0opagelsqxbone3962512048015/2_0opagelsqxbone3962512048015_seg.nii.gz" + }, + { + "image": "104324/3_2opagehsqxbone31025120560115.nii.gz", + "pseudo_label": "104324/3_2opagehsqxbone31025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104324/3_2opagehsqxbone31025120560115/3_2opagehsqxbone31025120560115_seg.nii.gz" + }, + { + "image": "104324/2_1opagehsqxstandard31025120560115.nii.gz", + "pseudo_label": "104324/2_1opagehsqxstandard31025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104324/2_1opagehsqxstandard31025120560115/2_1opagehsqxstandard31025120560115_seg.nii.gz" + }, + { + "image": "104324/3_0opagehsqxbone31025120560115.nii.gz", + "pseudo_label": "104324/3_0opagehsqxbone31025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104324/3_0opagehsqxbone31025120560115/3_0opagehsqxbone31025120560115_seg.nii.gz" + }, + { + "image": "110531/2_0opagelsqxstandard36025120640115.nii.gz", + "pseudo_label": "110531/2_0opagelsqxstandard36025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110531/2_0opagelsqxstandard36025120640115/2_0opagelsqxstandard36025120640115_seg.nii.gz" + }, + { + "image": "110531/2_2opagelsqxstandard44125120560115.nii.gz", + "pseudo_label": "110531/2_2opagelsqxstandard44125120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110531/2_2opagelsqxstandard44125120560115/2_2opagelsqxstandard44125120560115_seg.nii.gz" + }, + { + "image": "110531/3_0opagelsqxbone36025120640115.nii.gz", + "pseudo_label": "110531/3_0opagelsqxbone36025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110531/3_0opagelsqxbone36025120640115/3_0opagelsqxbone36025120640115_seg.nii.gz" + }, + { + "image": "110531/3_1opagelsqxbone36525120640115.nii.gz", + "pseudo_label": "110531/3_1opagelsqxbone36525120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110531/3_1opagelsqxbone36525120640115/3_1opagelsqxbone36525120640115_seg.nii.gz" + }, + { + "image": "112802/2_1opagelsqxstandard36725120640115.nii.gz", + "pseudo_label": "112802/2_1opagelsqxstandard36725120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112802/2_1opagelsqxstandard36725120640115/2_1opagelsqxstandard36725120640115_seg.nii.gz" + }, + { + "image": "112802/2_2opagelsqxstandard36025120640115.nii.gz", + "pseudo_label": "112802/2_2opagelsqxstandard36025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112802/2_2opagelsqxstandard36025120640115/2_2opagelsqxstandard36025120640115_seg.nii.gz" + }, + { + "image": "112802/3_0opagelsqxbone36925120640115.nii.gz", + "pseudo_label": "112802/3_0opagelsqxbone36925120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112802/3_0opagelsqxbone36925120640115/3_0opagelsqxbone36925120640115_seg.nii.gz" + }, + { + "image": "112802/3_1opagelsqxbone36725120640115.nii.gz", + "pseudo_label": "112802/3_1opagelsqxbone36725120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112802/3_1opagelsqxbone36725120640115/3_1opagelsqxbone36725120640115_seg.nii.gz" + }, + { + "image": "112802/3_2opagelsqxbone36025120640115.nii.gz", + "pseudo_label": "112802/3_2opagelsqxbone36025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112802/3_2opagelsqxbone36025120640115/3_2opagelsqxbone36025120640115_seg.nii.gz" + }, + { + "image": "112802/2_0opagelsqxstandard36925120640115.nii.gz", + "pseudo_label": "112802/2_0opagelsqxstandard36925120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112802/2_0opagelsqxstandard36925120640115/2_0opagelsqxstandard36925120640115_seg.nii.gz" + }, + { + "image": "107959/3_1opasevzoomb30f32021206030na.nii.gz", + "pseudo_label": "107959/3_1opasevzoomb30f32021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107959/3_1opasevzoomb30f32021206030na/3_1opasevzoomb30f32021206030na_seg.nii.gz" + }, + { + "image": "107959/2_0opasevzoomb50f34021206030na.nii.gz", + "pseudo_label": "107959/2_0opasevzoomb50f34021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107959/2_0opasevzoomb50f34021206030na/2_0opasevzoomb50f34021206030na_seg.nii.gz" + }, + { + "image": "107959/3_0opasevzoomb30f34021206030na.nii.gz", + "pseudo_label": "107959/3_0opasevzoomb30f34021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107959/3_0opasevzoomb30f34021206030na/3_0opasevzoomb30f34021206030na_seg.nii.gz" + }, + { + "image": "104101/3_0opagehsqxbone34025120560115.nii.gz", + "pseudo_label": "104101/3_0opagehsqxbone34025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104101/3_0opagehsqxbone34025120560115/3_0opagehsqxbone34025120560115_seg.nii.gz" + }, + { + "image": "104101/2_0opagehsqxstandard34025120560115.nii.gz", + "pseudo_label": "104101/2_0opagehsqxstandard34025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104101/2_0opagehsqxstandard34025120560115/2_0opagehsqxstandard34025120560115_seg.nii.gz" + }, + { + "image": "104101/2_2opagehsqxstandard34025120560115.nii.gz", + "pseudo_label": "104101/2_2opagehsqxstandard34025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104101/2_2opagehsqxstandard34025120560115/2_2opagehsqxstandard34025120560115_seg.nii.gz" + }, + { + "image": "104101/2_1opagehsqxstandard34025120560115.nii.gz", + "pseudo_label": "104101/2_1opagehsqxstandard34025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104101/2_1opagehsqxstandard34025120560115/2_1opagehsqxstandard34025120560115_seg.nii.gz" + }, + { + "image": "102218/2_0opagelsqxstandard30025120nanana.nii.gz", + "pseudo_label": "102218/2_0opagelsqxstandard30025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102218/2_0opagelsqxstandard30025120nanana/2_0opagelsqxstandard30025120nanana_seg.nii.gz" + }, + { + "image": "102218/3_1opagels16bone30025120nanana.nii.gz", + "pseudo_label": "102218/3_1opagels16bone30025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102218/3_1opagels16bone30025120nanana/3_1opagels16bone30025120nanana_seg.nii.gz" + }, + { + "image": "102218/2_2opagels16standard30025120nanana.nii.gz", + "pseudo_label": "102218/2_2opagels16standard30025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102218/2_2opagels16standard30025120nanana/2_2opagels16standard30025120nanana_seg.nii.gz" + }, + { + "image": "102218/2_1opagels16standard30025120nanana.nii.gz", + "pseudo_label": "102218/2_1opagels16standard30025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102218/2_1opagels16standard30025120nanana/2_1opagels16standard30025120nanana_seg.nii.gz" + }, + { + "image": "102218/3_2opagels16bone30025120nanana.nii.gz", + "pseudo_label": "102218/3_2opagels16bone30025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102218/3_2opagels16bone30025120nanana/3_2opagels16bone30025120nanana_seg.nii.gz" + }, + { + "image": "102218/3_0opagelsqxbone30025120nanana.nii.gz", + "pseudo_label": "102218/3_0opagelsqxbone30025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102218/3_0opagelsqxbone30025120nanana/3_0opagelsqxbone30025120nanana_seg.nii.gz" + }, + { + "image": "110262/1_0opagelspluslung33025120800115.nii.gz", + "pseudo_label": "110262/1_0opagelspluslung33025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110262/1_0opagelspluslung33025120800115/1_0opagelspluslung33025120800115_seg.nii.gz" + }, + { + "image": "110262/1_0opagelsplusstandard33025120800115.nii.gz", + "pseudo_label": "110262/1_0opagelsplusstandard33025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110262/1_0opagelsplusstandard33025120800115/1_0opagelsplusstandard33025120800115_seg.nii.gz" + }, + { + "image": "110262/1_1opagelsplusstandard33025120800115.nii.gz", + "pseudo_label": "110262/1_1opagelsplusstandard33025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110262/1_1opagelsplusstandard33025120800115/1_1opagelsplusstandard33025120800115_seg.nii.gz" + }, + { + "image": "110262/1_2opagelspluslung33025120800115.nii.gz", + "pseudo_label": "110262/1_2opagelspluslung33025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110262/1_2opagelspluslung33025120800115/1_2opagelspluslung33025120800115_seg.nii.gz" + }, + { + "image": "111673/3_2opasevzoomb50f40821207540na.nii.gz", + "pseudo_label": "111673/3_2opasevzoomb50f40821207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111673/3_2opasevzoomb50f40821207540na/3_2opasevzoomb50f40821207540na_seg.nii.gz" + }, + { + "image": "111673/2_0opasevzoomb30f38121207540na.nii.gz", + "pseudo_label": "111673/2_0opasevzoomb30f38121207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111673/2_0opasevzoomb30f38121207540na/2_0opasevzoomb30f38121207540na_seg.nii.gz" + }, + { + "image": "113188/2_2opasevzoomb30f33021208040na.nii.gz", + "pseudo_label": "113188/2_2opasevzoomb30f33021208040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113188/2_2opasevzoomb30f33021208040na/2_2opasevzoomb30f33021208040na_seg.nii.gz" + }, + { + "image": "112880/3_1opagehsqxbone28025120560115.nii.gz", + "pseudo_label": "112880/3_1opagehsqxbone28025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112880/3_1opagehsqxbone28025120560115/3_1opagehsqxbone28025120560115_seg.nii.gz" + }, + { + "image": "112880/2_1opagehsqxstandard28025120560115.nii.gz", + "pseudo_label": "112880/2_1opagehsqxstandard28025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112880/2_1opagehsqxstandard28025120560115/2_1opagehsqxstandard28025120560115_seg.nii.gz" + }, + { + "image": "112880/3_2opagehsqxbone28025120560115.nii.gz", + "pseudo_label": "112880/3_2opagehsqxbone28025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112880/3_2opagehsqxbone28025120560115/3_2opagehsqxbone28025120560115_seg.nii.gz" + }, + { + "image": "112880/2_2opagehsqxstandard28025120560115.nii.gz", + "pseudo_label": "112880/2_2opagehsqxstandard28025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112880/2_2opagehsqxstandard28025120560115/2_2opagehsqxstandard28025120560115_seg.nii.gz" + }, + { + "image": "112880/2_0opagehsqxstandard28025120560115.nii.gz", + "pseudo_label": "112880/2_0opagehsqxstandard28025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112880/2_0opagehsqxstandard28025120560115/2_0opagehsqxstandard28025120560115_seg.nii.gz" + }, + { + "image": "110989/3_1opatoaqul4fc512797212040nana.nii.gz", + "pseudo_label": "110989/3_1opatoaqul4fc512797212040nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110989/3_1opatoaqul4fc512797212040nana/3_1opatoaqul4fc512797212040nana_seg.nii.gz" + }, + { + "image": "102613/3_1opagehsqxbone28025120560115.nii.gz", + "pseudo_label": "102613/3_1opagehsqxbone28025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102613/3_1opagehsqxbone28025120560115/3_1opagehsqxbone28025120560115_seg.nii.gz" + }, + { + "image": "102613/3_0opagehsqxbone28025120560115.nii.gz", + "pseudo_label": "102613/3_0opagehsqxbone28025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102613/3_0opagehsqxbone28025120560115/3_0opagehsqxbone28025120560115_seg.nii.gz" + }, + { + "image": "102613/2_2opagehsqxstandard28025120560115.nii.gz", + "pseudo_label": "102613/2_2opagehsqxstandard28025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102613/2_2opagehsqxstandard28025120560115/2_2opagehsqxstandard28025120560115_seg.nii.gz" + }, + { + "image": "102613/2_0opagehsqxstandard28025120560115.nii.gz", + "pseudo_label": "102613/2_0opagehsqxstandard28025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102613/2_0opagehsqxstandard28025120560115/2_0opagehsqxstandard28025120560115_seg.nii.gz" + }, + { + "image": "110454/2_1opagelsqxstandard3202514048015.nii.gz", + "pseudo_label": "110454/2_1opagelsqxstandard3202514048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110454/2_1opagelsqxstandard3202514048015/2_1opagelsqxstandard3202514048015_seg.nii.gz" + }, + { + "image": "110454/2_0opagelsqxstandard3202514048015.nii.gz", + "pseudo_label": "110454/2_0opagelsqxstandard3202514048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110454/2_0opagelsqxstandard3202514048015/2_0opagelsqxstandard3202514048015_seg.nii.gz" + }, + { + "image": "110454/2_2opagelsqxstandard3202514048015.nii.gz", + "pseudo_label": "110454/2_2opagelsqxstandard3202514048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110454/2_2opagelsqxstandard3202514048015/2_2opagelsqxstandard3202514048015_seg.nii.gz" + }, + { + "image": "108154/3_0opasevzoomb50f34721207540na.nii.gz", + "pseudo_label": "108154/3_0opasevzoomb50f34721207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108154/3_0opasevzoomb50f34721207540na/3_0opasevzoomb50f34721207540na_seg.nii.gz" + }, + { + "image": "104357/2_2opasevzoomb30f31021207540na.nii.gz", + "pseudo_label": "104357/2_2opasevzoomb30f31021207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104357/2_2opasevzoomb30f31021207540na/2_2opasevzoomb30f31021207540na_seg.nii.gz" + }, + { + "image": "104357/4_0opasevzoomb50f34021207540na.nii.gz", + "pseudo_label": "104357/4_0opasevzoomb50f34021207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104357/4_0opasevzoomb50f34021207540na/4_0opasevzoomb50f34021207540na_seg.nii.gz" + }, + { + "image": "104357/2_0opasevzoomb30f38051207540na.nii.gz", + "pseudo_label": "104357/2_0opasevzoomb30f38051207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104357/2_0opasevzoomb30f38051207540na/2_0opasevzoomb30f38051207540na_seg.nii.gz" + }, + { + "image": "104357/2_1opasevzoomb30f33421207540na.nii.gz", + "pseudo_label": "104357/2_1opasevzoomb30f33421207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104357/2_1opasevzoomb30f33421207540na/2_1opasevzoomb30f33421207540na_seg.nii.gz" + }, + { + "image": "104357/3_1opasevzoomb50f33421207540na.nii.gz", + "pseudo_label": "104357/3_1opasevzoomb50f33421207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104357/3_1opasevzoomb50f33421207540na/3_1opasevzoomb50f33421207540na_seg.nii.gz" + }, + { + "image": "104357/3_0opasevzoomb30f34021207540na.nii.gz", + "pseudo_label": "104357/3_0opasevzoomb30f34021207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104357/3_0opasevzoomb30f34021207540na/3_0opasevzoomb30f34021207540na_seg.nii.gz" + }, + { + "image": "113335/2_0opagelsqxstandard40025120600115.nii.gz", + "pseudo_label": "113335/2_0opagelsqxstandard40025120600115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113335/2_0opagelsqxstandard40025120600115/2_0opagelsqxstandard40025120600115_seg.nii.gz" + }, + { + "image": "105586/4_0opasevzoomb50f290212010050na.nii.gz", + "pseudo_label": "105586/4_0opasevzoomb50f290212010050na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105586/4_0opasevzoomb50f290212010050na/4_0opasevzoomb50f290212010050na_seg.nii.gz" + }, + { + "image": "105586/3_2opasesen16b30f28021204530na.nii.gz", + "pseudo_label": "105586/3_2opasesen16b30f28021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105586/3_2opasesen16b30f28021204530na/3_2opasesen16b30f28021204530na_seg.nii.gz" + }, + { + "image": "105586/2_1opasesen16b50f30621206040na.nii.gz", + "pseudo_label": "105586/2_1opasesen16b50f30621206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105586/2_1opasesen16b50f30621206040na/2_1opasesen16b50f30621206040na_seg.nii.gz" + }, + { + "image": "102118/2_0opasevzoomb50f31021208040na.nii.gz", + "pseudo_label": "102118/2_0opasevzoomb50f31021208040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102118/2_0opasevzoomb50f31021208040na/2_0opasevzoomb50f31021208040na_seg.nii.gz" + }, + { + "image": "102118/3_1opasevzoomb30f34021206030na.nii.gz", + "pseudo_label": "102118/3_1opasevzoomb30f34021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102118/3_1opasevzoomb30f34021206030na/3_1opasevzoomb30f34021206030na_seg.nii.gz" + }, + { + "image": "102118/2_1opasevzoomb50f34021206030na.nii.gz", + "pseudo_label": "102118/2_1opasevzoomb50f34021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102118/2_1opasevzoomb50f34021206030na/2_1opasevzoomb50f34021206030na_seg.nii.gz" + }, + { + "image": "111080/2_2opagehsqxstandard31025120560115.nii.gz", + "pseudo_label": "111080/2_2opagehsqxstandard31025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111080/2_2opagehsqxstandard31025120560115/2_2opagehsqxstandard31025120560115_seg.nii.gz" + }, + { + "image": "111080/2_1opagehsqxstandard31025120560115.nii.gz", + "pseudo_label": "111080/2_1opagehsqxstandard31025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111080/2_1opagehsqxstandard31025120560115/2_1opagehsqxstandard31025120560115_seg.nii.gz" + }, + { + "image": "111080/3_1opagehsqxbone31025120560115.nii.gz", + "pseudo_label": "111080/3_1opagehsqxbone31025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111080/3_1opagehsqxbone31025120560115/3_1opagehsqxbone31025120560115_seg.nii.gz" + }, + { + "image": "105601/4_1opasevzoomb50f369512012060na.nii.gz", + "pseudo_label": "105601/4_1opasevzoomb50f369512012060na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105601/4_1opasevzoomb50f369512012060na/4_1opasevzoomb50f369512012060na_seg.nii.gz" + }, + { + "image": "105601/4_0opasesen16b30f40821204530na.nii.gz", + "pseudo_label": "105601/4_0opasesen16b30f40821204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105601/4_0opasesen16b30f40821204530na/4_0opasesen16b30f40821204530na_seg.nii.gz" + }, + { + "image": "105601/5_0opasesen16b50f40851204530na.nii.gz", + "pseudo_label": "105601/5_0opasesen16b50f40851204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105601/5_0opasesen16b50f40851204530na/5_0opasesen16b50f40851204530na_seg.nii.gz" + }, + { + "image": "105601/3_1opasevzoomb30f369512012060na.nii.gz", + "pseudo_label": "105601/3_1opasevzoomb30f369512012060na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105601/3_1opasevzoomb30f369512012060na/3_1opasevzoomb30f369512012060na_seg.nii.gz" + }, + { + "image": "105601/5_2opasesen16b50f38351204530na.nii.gz", + "pseudo_label": "105601/5_2opasesen16b50f38351204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105601/5_2opasesen16b50f38351204530na/5_2opasesen16b50f38351204530na_seg.nii.gz" + }, + { + "image": "105601/4_2opasesen16b30f38321204530na.nii.gz", + "pseudo_label": "105601/4_2opasesen16b30f38321204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105601/4_2opasesen16b30f38321204530na/4_2opasesen16b30f38321204530na_seg.nii.gz" + }, + { + "image": "105601/3_0opasesen16b30f40851204530na.nii.gz", + "pseudo_label": "105601/3_0opasesen16b30f40851204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105601/3_0opasesen16b30f40851204530na/3_0opasesen16b30f40851204530na_seg.nii.gz" + }, + { + "image": "105601/3_2opasesen16b30f38351204530na.nii.gz", + "pseudo_label": "105601/3_2opasesen16b30f38351204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105601/3_2opasesen16b30f38351204530na/3_2opasesen16b30f38351204530na_seg.nii.gz" + }, + { + "image": "104188/2_0opasevzoomb50f37821208040na.nii.gz", + "pseudo_label": "104188/2_0opasevzoomb50f37821208040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104188/2_0opasevzoomb50f37821208040na/2_0opasevzoomb50f37821208040na_seg.nii.gz" + }, + { + "image": "104188/3_0opasevzoomb50f37821208040na.nii.gz", + "pseudo_label": "104188/3_0opasevzoomb50f37821208040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104188/3_0opasevzoomb50f37821208040na/3_0opasevzoomb50f37821208040na_seg.nii.gz" + }, + { + "image": "104188/3_2opasevzoomb30f35021206030na.nii.gz", + "pseudo_label": "104188/3_2opasevzoomb30f35021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104188/3_2opasevzoomb30f35021206030na/3_2opasevzoomb30f35021206030na_seg.nii.gz" + }, + { + "image": "104188/2_1opasevzoomb50f37821206030na.nii.gz", + "pseudo_label": "104188/2_1opasevzoomb50f37821206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104188/2_1opasevzoomb50f37821206030na/2_1opasevzoomb50f37821206030na_seg.nii.gz" + }, + { + "image": "104188/2_2opasevzoomb50f35021206030na.nii.gz", + "pseudo_label": "104188/2_2opasevzoomb50f35021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104188/2_2opasevzoomb50f35021206030na/2_2opasevzoomb50f35021206030na_seg.nii.gz" + }, + { + "image": "100242/2_0opagehsqxstandard29025120560115.nii.gz", + "pseudo_label": "100242/2_0opagehsqxstandard29025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100242/2_0opagehsqxstandard29025120560115/2_0opagehsqxstandard29025120560115_seg.nii.gz" + }, + { + "image": "100242/3_0opagehsqxbone29025120560115.nii.gz", + "pseudo_label": "100242/3_0opagehsqxbone29025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100242/3_0opagehsqxbone29025120560115/3_0opagehsqxbone29025120560115_seg.nii.gz" + }, + { + "image": "107787/1_1opagelspluslung33025120800115.nii.gz", + "pseudo_label": "107787/1_1opagelspluslung33025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107787/1_1opagelspluslung33025120800115/1_1opagelspluslung33025120800115_seg.nii.gz" + }, + { + "image": "107787/1_0opagelspluslung33025120800115.nii.gz", + "pseudo_label": "107787/1_0opagelspluslung33025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107787/1_0opagelspluslung33025120800115/1_0opagelspluslung33025120800115_seg.nii.gz" + }, + { + "image": "107787/1_0opagelsplusstandard33025120800115.nii.gz", + "pseudo_label": "107787/1_0opagelsplusstandard33025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107787/1_0opagelsplusstandard33025120800115/1_0opagelsplusstandard33025120800115_seg.nii.gz" + }, + { + "image": "107787/1_2opagelsplusstandard33025120800115.nii.gz", + "pseudo_label": "107787/1_2opagelsplusstandard33025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107787/1_2opagelsplusstandard33025120800115/1_2opagelsplusstandard33025120800115_seg.nii.gz" + }, + { + "image": "107787/1_1opagelsplusstandard33025120800115.nii.gz", + "pseudo_label": "107787/1_1opagelsplusstandard33025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107787/1_1opagelsplusstandard33025120800115/1_1opagelsplusstandard33025120800115_seg.nii.gz" + }, + { + "image": "107787/1_2opagelspluslung33025120800115.nii.gz", + "pseudo_label": "107787/1_2opagelspluslung33025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107787/1_2opagelspluslung33025120800115/1_2opagelspluslung33025120800115_seg.nii.gz" + }, + { + "image": "101606/3_0opasevzoomb30f35021206030na.nii.gz", + "pseudo_label": "101606/3_0opasevzoomb30f35021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101606/3_0opasevzoomb30f35021206030na/3_0opasevzoomb30f35021206030na_seg.nii.gz" + }, + { + "image": "106411/6990_2opaphmx8000c2693212039018.nii.gz", + "pseudo_label": "106411/6990_2opaphmx8000c2693212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106411/6990_2opaphmx8000c2693212039018/6990_2opaphmx8000c2693212039018_seg.nii.gz" + }, + { + "image": "106411/5615_1opaphmx8000c2873212039018.nii.gz", + "pseudo_label": "106411/5615_1opaphmx8000c2873212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106411/5615_1opaphmx8000c2873212039018/5615_1opaphmx8000c2873212039018_seg.nii.gz" + }, + { + "image": "106411/0_0opaphmx8000d28232120600112.nii.gz", + "pseudo_label": "106411/0_0opaphmx8000d28232120600112.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106411/0_0opaphmx8000d28232120600112/0_0opaphmx8000d28232120600112_seg.nii.gz" + }, + { + "image": "110452/2_0opagelsqxstandard30025120nanana.nii.gz", + "pseudo_label": "110452/2_0opagelsqxstandard30025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110452/2_0opagelsqxstandard30025120nanana/2_0opagelsqxstandard30025120nanana_seg.nii.gz" + }, + { + "image": "110452/3_1opagels16bone30025120nanana.nii.gz", + "pseudo_label": "110452/3_1opagels16bone30025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110452/3_1opagels16bone30025120nanana/3_1opagels16bone30025120nanana_seg.nii.gz" + }, + { + "image": "110452/2_2opagels16standard30025120nanana.nii.gz", + "pseudo_label": "110452/2_2opagels16standard30025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110452/2_2opagels16standard30025120nanana/2_2opagels16standard30025120nanana_seg.nii.gz" + }, + { + "image": "110452/2_1opagels16standard30025120nanana.nii.gz", + "pseudo_label": "110452/2_1opagels16standard30025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110452/2_1opagels16standard30025120nanana/2_1opagels16standard30025120nanana_seg.nii.gz" + }, + { + "image": "110452/3_2opagels16bone30025120nanana.nii.gz", + "pseudo_label": "110452/3_2opagels16bone30025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110452/3_2opagels16bone30025120nanana/3_2opagels16bone30025120nanana_seg.nii.gz" + }, + { + "image": "110452/3_0opagelsqxbone30025120nanana.nii.gz", + "pseudo_label": "110452/3_0opagelsqxbone30025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110452/3_0opagelsqxbone30025120nanana/3_0opagelsqxbone30025120nanana_seg.nii.gz" + }, + { + "image": "112710/2_1opagehsqxstandard29025120560115.nii.gz", + "pseudo_label": "112710/2_1opagehsqxstandard29025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112710/2_1opagehsqxstandard29025120560115/2_1opagehsqxstandard29025120560115_seg.nii.gz" + }, + { + "image": "112710/3_1opagehsqxbone29025120560115.nii.gz", + "pseudo_label": "112710/3_1opagehsqxbone29025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112710/3_1opagehsqxbone29025120560115/3_1opagehsqxbone29025120560115_seg.nii.gz" + }, + { + "image": "112710/2_2opagehsqxstandard29025120560115.nii.gz", + "pseudo_label": "112710/2_2opagehsqxstandard29025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112710/2_2opagehsqxstandard29025120560115/2_2opagehsqxstandard29025120560115_seg.nii.gz" + }, + { + "image": "103150/1_2opagelspluslung34025120800115.nii.gz", + "pseudo_label": "103150/1_2opagelspluslung34025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103150/1_2opagelspluslung34025120800115/1_2opagelspluslung34025120800115_seg.nii.gz" + }, + { + "image": "103150/1_2opagelsplusstandard34025120800115.nii.gz", + "pseudo_label": "103150/1_2opagelsplusstandard34025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103150/1_2opagelsplusstandard34025120800115/1_2opagelsplusstandard34025120800115_seg.nii.gz" + }, + { + "image": "103150/1_1opagelspluslung34025120800115.nii.gz", + "pseudo_label": "103150/1_1opagelspluslung34025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103150/1_1opagelspluslung34025120800115/1_1opagelspluslung34025120800115_seg.nii.gz" + }, + { + "image": "103150/1_1opagelsplusstandard34025120800115.nii.gz", + "pseudo_label": "103150/1_1opagelsplusstandard34025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103150/1_1opagelsplusstandard34025120800115/1_1opagelsplusstandard34025120800115_seg.nii.gz" + }, + { + "image": "103150/1_0opagelspluslung34025120800108.nii.gz", + "pseudo_label": "103150/1_0opagelspluslung34025120800108.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103150/1_0opagelspluslung34025120800108/1_0opagelspluslung34025120800108_seg.nii.gz" + }, + { + "image": "103150/1_0opagelsplusstandard34025120800108.nii.gz", + "pseudo_label": "103150/1_0opagelsplusstandard34025120800108.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103150/1_0opagelsplusstandard34025120800108/1_0opagelsplusstandard34025120800108_seg.nii.gz" + }, + { + "image": "103086/4_0opatoaqul4fc513297212040nana.nii.gz", + "pseudo_label": "103086/4_0opatoaqul4fc513297212040nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103086/4_0opatoaqul4fc513297212040nana/4_0opatoaqul4fc513297212040nana_seg.nii.gz" + }, + { + "image": "103086/4_2opatoaqul4fc513422212040nana.nii.gz", + "pseudo_label": "103086/4_2opatoaqul4fc513422212040nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103086/4_2opatoaqul4fc513422212040nana/4_2opatoaqul4fc513422212040nana_seg.nii.gz" + }, + { + "image": "103086/7_2opatoaqul4fc513422212040nana.nii.gz", + "pseudo_label": "103086/7_2opatoaqul4fc513422212040nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103086/7_2opatoaqul4fc513422212040nana/7_2opatoaqul4fc513422212040nana_seg.nii.gz" + }, + { + "image": "105045/2_1opasesen16b30f35221206048na.nii.gz", + "pseudo_label": "105045/2_1opasesen16b30f35221206048na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105045/2_1opasesen16b30f35221206048na/2_1opasesen16b30f35221206048na_seg.nii.gz" + }, + { + "image": "101669/2_2opagehsqxstandard32025120560115.nii.gz", + "pseudo_label": "101669/2_2opagehsqxstandard32025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101669/2_2opagehsqxstandard32025120560115/2_2opagehsqxstandard32025120560115_seg.nii.gz" + }, + { + "image": "101669/2_0opagehsqxstandard32025120560115.nii.gz", + "pseudo_label": "101669/2_0opagehsqxstandard32025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101669/2_0opagehsqxstandard32025120560115/2_0opagehsqxstandard32025120560115_seg.nii.gz" + }, + { + "image": "101669/3_0opagehsqxbone32025120560115.nii.gz", + "pseudo_label": "101669/3_0opagehsqxbone32025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101669/3_0opagehsqxbone32025120560115/3_0opagehsqxbone32025120560115_seg.nii.gz" + }, + { + "image": "101669/3_1opagehsqxbone32025120560115.nii.gz", + "pseudo_label": "101669/3_1opagehsqxbone32025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101669/3_1opagehsqxbone32025120560115/3_1opagehsqxbone32025120560115_seg.nii.gz" + }, + { + "image": "101669/2_1opagehsqxstandard32025120560115.nii.gz", + "pseudo_label": "101669/2_1opagehsqxstandard32025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101669/2_1opagehsqxstandard32025120560115/2_1opagehsqxstandard32025120560115_seg.nii.gz" + }, + { + "image": "102871/3_2opatoaqul4fc513172212040nana.nii.gz", + "pseudo_label": "102871/3_2opatoaqul4fc513172212040nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102871/3_2opatoaqul4fc513172212040nana/3_2opatoaqul4fc513172212040nana_seg.nii.gz" + }, + { + "image": "102963/3_1opasevzoomb50f32021207540na.nii.gz", + "pseudo_label": "102963/3_1opasevzoomb50f32021207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102963/3_1opasevzoomb50f32021207540na/3_1opasevzoomb50f32021207540na_seg.nii.gz" + }, + { + "image": "102963/2_2opasevzoomb30f33821207540na.nii.gz", + "pseudo_label": "102963/2_2opasevzoomb30f33821207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102963/2_2opasevzoomb30f33821207540na/2_2opasevzoomb30f33821207540na_seg.nii.gz" + }, + { + "image": "110912/3_1opagels16bone37025120nanana.nii.gz", + "pseudo_label": "110912/3_1opagels16bone37025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110912/3_1opagels16bone37025120nanana/3_1opagels16bone37025120nanana_seg.nii.gz" + }, + { + "image": "110912/3_2opagels16bone37025120nanana.nii.gz", + "pseudo_label": "110912/3_2opagels16bone37025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110912/3_2opagels16bone37025120nanana/3_2opagels16bone37025120nanana_seg.nii.gz" + }, + { + "image": "110912/2_0opagelsqxstandard37025120nanana.nii.gz", + "pseudo_label": "110912/2_0opagelsqxstandard37025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110912/2_0opagelsqxstandard37025120nanana/2_0opagelsqxstandard37025120nanana_seg.nii.gz" + }, + { + "image": "110912/2_1opagels16standard37025120nanana.nii.gz", + "pseudo_label": "110912/2_1opagels16standard37025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110912/2_1opagels16standard37025120nanana/2_1opagels16standard37025120nanana_seg.nii.gz" + }, + { + "image": "109269/5_1opasevzoomb30f33651206030na.nii.gz", + "pseudo_label": "109269/5_1opasevzoomb30f33651206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109269/5_1opasevzoomb30f33651206030na/5_1opasevzoomb30f33651206030na_seg.nii.gz" + }, + { + "image": "109269/4_1opasevzoomb50f33651206030na.nii.gz", + "pseudo_label": "109269/4_1opasevzoomb50f33651206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109269/4_1opasevzoomb50f33651206030na/4_1opasevzoomb50f33651206030na_seg.nii.gz" + }, + { + "image": "109269/3_0opasevzoomb50f330512012060na.nii.gz", + "pseudo_label": "109269/3_0opasevzoomb50f330512012060na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109269/3_0opasevzoomb50f330512012060na/3_0opasevzoomb50f330512012060na_seg.nii.gz" + }, + { + "image": "109269/5_0opasevzoomb30f330212012060na.nii.gz", + "pseudo_label": "109269/5_0opasevzoomb30f330212012060na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109269/5_0opasevzoomb30f330212012060na/5_0opasevzoomb30f330212012060na_seg.nii.gz" + }, + { + "image": "104539/3_1opagels16standard4102512048014.nii.gz", + "pseudo_label": "104539/3_1opagels16standard4102512048014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104539/3_1opagels16standard4102512048014/3_1opagels16standard4102512048014_seg.nii.gz" + }, + { + "image": "104539/2_1opagels16bone4102512048014.nii.gz", + "pseudo_label": "104539/2_1opagels16bone4102512048014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104539/2_1opagels16bone4102512048014/2_1opagels16bone4102512048014_seg.nii.gz" + }, + { + "image": "104539/2_2opagelspr16bone3502512048014.nii.gz", + "pseudo_label": "104539/2_2opagelspr16bone3502512048014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104539/2_2opagelspr16bone3502512048014/2_2opagelspr16bone3502512048014_seg.nii.gz" + }, + { + "image": "104539/3_2opagelspr16standard3502512048014.nii.gz", + "pseudo_label": "104539/3_2opagelspr16standard3502512048014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104539/3_2opagelspr16standard3502512048014/3_2opagelspr16standard3502512048014_seg.nii.gz" + }, + { + "image": "104539/2_0opagelsqxbone3602512048015.nii.gz", + "pseudo_label": "104539/2_0opagelsqxbone3602512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104539/2_0opagelsqxbone3602512048015/2_0opagelsqxbone3602512048015_seg.nii.gz" + }, + { + "image": "106286/9_0opasevzoomb30f38021206030na.nii.gz", + "pseudo_label": "106286/9_0opasevzoomb30f38021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106286/9_0opasevzoomb30f38021206030na/9_0opasevzoomb30f38021206030na_seg.nii.gz" + }, + { + "image": "106286/6_0opasevzoomb50f38021206030na.nii.gz", + "pseudo_label": "106286/6_0opasevzoomb50f38021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106286/6_0opasevzoomb50f38021206030na/6_0opasevzoomb50f38021206030na_seg.nii.gz" + }, + { + "image": "106286/8_0opasevzoomb30f38051206030na.nii.gz", + "pseudo_label": "106286/8_0opasevzoomb30f38051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106286/8_0opasevzoomb30f38051206030na/8_0opasevzoomb30f38051206030na_seg.nii.gz" + }, + { + "image": "106286/7_0opasevzoomb50f38051206030na.nii.gz", + "pseudo_label": "106286/7_0opasevzoomb50f38051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106286/7_0opasevzoomb50f38051206030na/7_0opasevzoomb50f38051206030na_seg.nii.gz" + }, + { + "image": "109092/2_1opagelsplusstandard3202514040015.nii.gz", + "pseudo_label": "109092/2_1opagelsplusstandard3202514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109092/2_1opagelsplusstandard3202514040015/2_1opagelsplusstandard3202514040015_seg.nii.gz" + }, + { + "image": "109092/2_2opagelsplusstandard3302514040015.nii.gz", + "pseudo_label": "109092/2_2opagelsplusstandard3302514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109092/2_2opagelsplusstandard3302514040015/2_2opagelsplusstandard3302514040015_seg.nii.gz" + }, + { + "image": "101373/3_1opagels16bone37025120nanana.nii.gz", + "pseudo_label": "101373/3_1opagels16bone37025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101373/3_1opagels16bone37025120nanana/3_1opagels16bone37025120nanana_seg.nii.gz" + }, + { + "image": "101373/3_2opagels16bone37025120nanana.nii.gz", + "pseudo_label": "101373/3_2opagels16bone37025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101373/3_2opagels16bone37025120nanana/3_2opagels16bone37025120nanana_seg.nii.gz" + }, + { + "image": "101373/2_2opagels16standard37025120nanana.nii.gz", + "pseudo_label": "101373/2_2opagels16standard37025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101373/2_2opagels16standard37025120nanana/2_2opagels16standard37025120nanana_seg.nii.gz" + }, + { + "image": "101373/2_0opagelsqxstandard34025120nanana.nii.gz", + "pseudo_label": "101373/2_0opagelsqxstandard34025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101373/2_0opagelsqxstandard34025120nanana/2_0opagelsqxstandard34025120nanana_seg.nii.gz" + }, + { + "image": "101373/2_1opagels16standard37025120nanana.nii.gz", + "pseudo_label": "101373/2_1opagels16standard37025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101373/2_1opagels16standard37025120nanana/2_1opagels16standard37025120nanana_seg.nii.gz" + }, + { + "image": "104437/2_1opagelsqxstandard36725120640115.nii.gz", + "pseudo_label": "104437/2_1opagelsqxstandard36725120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104437/2_1opagelsqxstandard36725120640115/2_1opagelsqxstandard36725120640115_seg.nii.gz" + }, + { + "image": "104437/2_2opagelsqxstandard36725120640115.nii.gz", + "pseudo_label": "104437/2_2opagelsqxstandard36725120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104437/2_2opagelsqxstandard36725120640115/2_2opagelsqxstandard36725120640115_seg.nii.gz" + }, + { + "image": "104437/2_0opagelsqxstandard36025120640115.nii.gz", + "pseudo_label": "104437/2_0opagelsqxstandard36025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104437/2_0opagelsqxstandard36025120640115/2_0opagelsqxstandard36025120640115_seg.nii.gz" + }, + { + "image": "104437/3_0opagelsqxbone36025120640115.nii.gz", + "pseudo_label": "104437/3_0opagelsqxbone36025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104437/3_0opagelsqxbone36025120640115/3_0opagelsqxbone36025120640115_seg.nii.gz" + }, + { + "image": "104437/3_1opagelsqxbone36725120640115.nii.gz", + "pseudo_label": "104437/3_1opagelsqxbone36725120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104437/3_1opagelsqxbone36725120640115/3_1opagelsqxbone36725120640115_seg.nii.gz" + }, + { + "image": "104437/3_2opagelsqxbone36725120640115.nii.gz", + "pseudo_label": "104437/3_2opagelsqxbone36725120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104437/3_2opagelsqxbone36725120640115/3_2opagelsqxbone36725120640115_seg.nii.gz" + }, + { + "image": "112745/2_0opagelsplusstandard3302514040015.nii.gz", + "pseudo_label": "112745/2_0opagelsplusstandard3302514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112745/2_0opagelsplusstandard3302514040015/2_0opagelsplusstandard3302514040015_seg.nii.gz" + }, + { + "image": "112745/2_1opagelsplusstandard3302514040015.nii.gz", + "pseudo_label": "112745/2_1opagelsplusstandard3302514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112745/2_1opagelsplusstandard3302514040015/2_1opagelsplusstandard3302514040015_seg.nii.gz" + }, + { + "image": "112745/2_2opagelsplusstandard3502514040015.nii.gz", + "pseudo_label": "112745/2_2opagelsplusstandard3502514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112745/2_2opagelsplusstandard3502514040015/2_2opagelsplusstandard3502514040015_seg.nii.gz" + }, + { + "image": "102402/2_2opagehsqxstandard31025120560115.nii.gz", + "pseudo_label": "102402/2_2opagehsqxstandard31025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102402/2_2opagehsqxstandard31025120560115/2_2opagehsqxstandard31025120560115_seg.nii.gz" + }, + { + "image": "102402/3_2opagehsqxbone31025120560115.nii.gz", + "pseudo_label": "102402/3_2opagehsqxbone31025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102402/3_2opagehsqxbone31025120560115/3_2opagehsqxbone31025120560115_seg.nii.gz" + }, + { + "image": "102402/2_0opagehsqxstandard31025120560115.nii.gz", + "pseudo_label": "102402/2_0opagehsqxstandard31025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102402/2_0opagehsqxstandard31025120560115/2_0opagehsqxstandard31025120560115_seg.nii.gz" + }, + { + "image": "102402/2_1opagehsqxstandard31025120560115.nii.gz", + "pseudo_label": "102402/2_1opagehsqxstandard31025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102402/2_1opagehsqxstandard31025120560115/2_1opagehsqxstandard31025120560115_seg.nii.gz" + }, + { + "image": "102402/3_1opagehsqxbone31025120560115.nii.gz", + "pseudo_label": "102402/3_1opagehsqxbone31025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102402/3_1opagehsqxbone31025120560115/3_1opagehsqxbone31025120560115_seg.nii.gz" + }, + { + "image": "102402/3_0opagehsqxbone31025120560115.nii.gz", + "pseudo_label": "102402/3_0opagehsqxbone31025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102402/3_0opagehsqxbone31025120560115/3_0opagehsqxbone31025120560115_seg.nii.gz" + }, + { + "image": "110595/2_2opagelsqxstandard3562514040015.nii.gz", + "pseudo_label": "110595/2_2opagelsqxstandard3562514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110595/2_2opagelsqxstandard3562514040015/2_2opagelsqxstandard3562514040015_seg.nii.gz" + }, + { + "image": "110595/2_1opagels16standard3502514040014.nii.gz", + "pseudo_label": "110595/2_1opagels16standard3502514040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110595/2_1opagels16standard3502514040014/2_1opagels16standard3502514040014_seg.nii.gz" + }, + { + "image": "110595/2_0opagelsplusstandard3472514040015.nii.gz", + "pseudo_label": "110595/2_0opagelsplusstandard3472514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110595/2_0opagelsplusstandard3472514040015/2_0opagelsplusstandard3472514040015_seg.nii.gz" + }, + { + "image": "109389/3_2opagelspr16standard2732512040014.nii.gz", + "pseudo_label": "109389/3_2opagelspr16standard2732512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109389/3_2opagelspr16standard2732512040014/3_2opagelspr16standard2732512040014_seg.nii.gz" + }, + { + "image": "109389/3_0opagelsqxstandard3122512048015.nii.gz", + "pseudo_label": "109389/3_0opagelsqxstandard3122512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109389/3_0opagelsqxstandard3122512048015/3_0opagelsqxstandard3122512048015_seg.nii.gz" + }, + { + "image": "109389/2_1opagelspr16bone2902512040014.nii.gz", + "pseudo_label": "109389/2_1opagelspr16bone2902512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109389/2_1opagelspr16bone2902512040014/2_1opagelspr16bone2902512040014_seg.nii.gz" + }, + { + "image": "109389/2_0opagelsqxbone3122512048015.nii.gz", + "pseudo_label": "109389/2_0opagelsqxbone3122512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109389/2_0opagelsqxbone3122512048015/2_0opagelsqxbone3122512048015_seg.nii.gz" + }, + { + "image": "109389/2_2opagelspr16bone2732512040014.nii.gz", + "pseudo_label": "109389/2_2opagelspr16bone2732512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109389/2_2opagelspr16bone2732512040014/2_2opagelspr16bone2732512040014_seg.nii.gz" + }, + { + "image": "109389/3_1opagelspr16standard2902512040014.nii.gz", + "pseudo_label": "109389/3_1opagelspr16standard2902512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109389/3_1opagelspr16standard2902512040014/3_1opagelspr16standard2902512040014_seg.nii.gz" + }, + { + "image": "108455/2_0opagelsplusstandard3702514040015.nii.gz", + "pseudo_label": "108455/2_0opagelsplusstandard3702514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108455/2_0opagelsplusstandard3702514040015/2_0opagelsplusstandard3702514040015_seg.nii.gz" + }, + { + "image": "108455/2_1opagelsqxstandard3692514040015.nii.gz", + "pseudo_label": "108455/2_1opagelsqxstandard3692514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108455/2_1opagelsqxstandard3692514040015/2_1opagelsqxstandard3692514040015_seg.nii.gz" + }, + { + "image": "108455/2_2opagelsplusstandard37025140928nana.nii.gz", + "pseudo_label": "108455/2_2opagelsplusstandard37025140928nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108455/2_2opagelsplusstandard37025140928nana/2_2opagelsplusstandard37025140928nana_seg.nii.gz" + }, + { + "image": "102342/2_0opagelsqxstandard3032514040015.nii.gz", + "pseudo_label": "102342/2_0opagelsqxstandard3032514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102342/2_0opagelsqxstandard3032514040015/2_0opagelsqxstandard3032514040015_seg.nii.gz" + }, + { + "image": "102342/2_2opagelsqxstandard3402514040015.nii.gz", + "pseudo_label": "102342/2_2opagelsqxstandard3402514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102342/2_2opagelsqxstandard3402514040015/2_2opagelsqxstandard3402514040015_seg.nii.gz" + }, + { + "image": "110107/2_0opagehsqxstandard32025120560115.nii.gz", + "pseudo_label": "110107/2_0opagehsqxstandard32025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110107/2_0opagehsqxstandard32025120560115/2_0opagehsqxstandard32025120560115_seg.nii.gz" + }, + { + "image": "110107/3_0opagehsqxbone32025120560115.nii.gz", + "pseudo_label": "110107/3_0opagehsqxbone32025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110107/3_0opagehsqxbone32025120560115/3_0opagehsqxbone32025120560115_seg.nii.gz" + }, + { + "image": "110107/3_1opagehsqxbone32025120560115.nii.gz", + "pseudo_label": "110107/3_1opagehsqxbone32025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110107/3_1opagehsqxbone32025120560115/3_1opagehsqxbone32025120560115_seg.nii.gz" + }, + { + "image": "110107/2_1opagehsqxstandard32025120560115.nii.gz", + "pseudo_label": "110107/2_1opagehsqxstandard32025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110107/2_1opagehsqxstandard32025120560115/2_1opagehsqxstandard32025120560115_seg.nii.gz" + }, + { + "image": "103832/2_1opagelsqxstandard37125140400na.nii.gz", + "pseudo_label": "103832/2_1opagelsqxstandard37125140400na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103832/2_1opagelsqxstandard37125140400na/2_1opagelsqxstandard37125140400na_seg.nii.gz" + }, + { + "image": "103832/2_2opagelsqxstandard36025140400na.nii.gz", + "pseudo_label": "103832/2_2opagelsqxstandard36025140400na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103832/2_2opagelsqxstandard36025140400na/2_2opagelsqxstandard36025140400na_seg.nii.gz" + }, + { + "image": "103832/2_0opagelsqxstandard34025140400na.nii.gz", + "pseudo_label": "103832/2_0opagelsqxstandard34025140400na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103832/2_0opagelsqxstandard34025140400na/2_0opagelsqxstandard34025140400na_seg.nii.gz" + }, + { + "image": "112676/2_1opasevzoomb50f30821206030na.nii.gz", + "pseudo_label": "112676/2_1opasevzoomb50f30821206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112676/2_1opasevzoomb50f30821206030na/2_1opasevzoomb50f30821206030na_seg.nii.gz" + }, + { + "image": "112676/3_0opasevzoomb30f29821208040na.nii.gz", + "pseudo_label": "112676/3_0opasevzoomb30f29821208040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112676/3_0opasevzoomb30f29821208040na/3_0opasevzoomb30f29821208040na_seg.nii.gz" + }, + { + "image": "112676/2_0opasevzoomb50f29821208040na.nii.gz", + "pseudo_label": "112676/2_0opasevzoomb50f29821208040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112676/2_0opasevzoomb50f29821208040na/2_0opasevzoomb50f29821208040na_seg.nii.gz" + }, + { + "image": "112676/3_1opasevzoomb30f30821206030na.nii.gz", + "pseudo_label": "112676/3_1opasevzoomb30f30821206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112676/3_1opasevzoomb30f30821206030na/3_1opasevzoomb30f30821206030na_seg.nii.gz" + }, + { + "image": "107312/2_0opagelsqxstandard3602514040015.nii.gz", + "pseudo_label": "107312/2_0opagelsqxstandard3602514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107312/2_0opagelsqxstandard3602514040015/2_0opagelsqxstandard3602514040015_seg.nii.gz" + }, + { + "image": "107312/2_2opagelsqxstandard3602514040015.nii.gz", + "pseudo_label": "107312/2_2opagelsqxstandard3602514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107312/2_2opagelsqxstandard3602514040015/2_2opagelsqxstandard3602514040015_seg.nii.gz" + }, + { + "image": "100995/2_1opagels16bone38025120560114.nii.gz", + "pseudo_label": "100995/2_1opagels16bone38025120560114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100995/2_1opagels16bone38025120560114/2_1opagels16bone38025120560114_seg.nii.gz" + }, + { + "image": "100995/3_2opagelspr16standard3802512048014.nii.gz", + "pseudo_label": "100995/3_2opagelspr16standard3802512048014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100995/3_2opagelspr16standard3802512048014/3_2opagelspr16standard3802512048014_seg.nii.gz" + }, + { + "image": "100995/2_2opagelspr16bone3802512048014.nii.gz", + "pseudo_label": "100995/2_2opagelspr16bone3802512048014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100995/2_2opagelspr16bone3802512048014/2_2opagelspr16bone3802512048014_seg.nii.gz" + }, + { + "image": "100995/3_1opagels16standard38025120560114.nii.gz", + "pseudo_label": "100995/3_1opagels16standard38025120560114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100995/3_1opagels16standard38025120560114/3_1opagels16standard38025120560114_seg.nii.gz" + }, + { + "image": "104064/3_2opasevzoomb30f30351206030na.nii.gz", + "pseudo_label": "104064/3_2opasevzoomb30f30351206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104064/3_2opasevzoomb30f30351206030na/3_2opasevzoomb30f30351206030na_seg.nii.gz" + }, + { + "image": "104064/4_2opasevzoomb50f30351206030na.nii.gz", + "pseudo_label": "104064/4_2opasevzoomb50f30351206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104064/4_2opasevzoomb50f30351206030na/4_2opasevzoomb50f30351206030na_seg.nii.gz" + }, + { + "image": "104064/5_2opasevzoomb50f30321206030na.nii.gz", + "pseudo_label": "104064/5_2opasevzoomb50f30321206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104064/5_2opasevzoomb50f30321206030na/5_2opasevzoomb50f30321206030na_seg.nii.gz" + }, + { + "image": "104064/4_1opasesen16b30f30021204530na.nii.gz", + "pseudo_label": "104064/4_1opasesen16b30f30021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104064/4_1opasesen16b30f30021204530na/4_1opasesen16b30f30021204530na_seg.nii.gz" + }, + { + "image": "104064/5_1opasesen16b50f30051204530na.nii.gz", + "pseudo_label": "104064/5_1opasesen16b50f30051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104064/5_1opasesen16b50f30051204530na/5_1opasesen16b50f30051204530na_seg.nii.gz" + }, + { + "image": "104064/5_0opasesen16b30f31621204530na.nii.gz", + "pseudo_label": "104064/5_0opasesen16b30f31621204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104064/5_0opasesen16b30f31621204530na/5_0opasesen16b30f31621204530na_seg.nii.gz" + }, + { + "image": "104064/3_1opasesen16b30f30051204530na.nii.gz", + "pseudo_label": "104064/3_1opasesen16b30f30051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104064/3_1opasesen16b30f30051204530na/3_1opasesen16b30f30051204530na_seg.nii.gz" + }, + { + "image": "104064/4_0opasesen16b30f31651204530na.nii.gz", + "pseudo_label": "104064/4_0opasesen16b30f31651204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104064/4_0opasesen16b30f31651204530na/4_0opasesen16b30f31651204530na_seg.nii.gz" + }, + { + "image": "104064/7_0opasesen16b50f31621204530na.nii.gz", + "pseudo_label": "104064/7_0opasesen16b50f31621204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104064/7_0opasesen16b50f31621204530na/7_0opasesen16b50f31621204530na_seg.nii.gz" + }, + { + "image": "104064/3_0opasesen16b30f31651204530na.nii.gz", + "pseudo_label": "104064/3_0opasesen16b30f31651204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104064/3_0opasesen16b30f31651204530na/3_0opasesen16b30f31651204530na_seg.nii.gz" + }, + { + "image": "104064/6_0opasesen16b50f31651204530na.nii.gz", + "pseudo_label": "104064/6_0opasesen16b50f31651204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104064/6_0opasesen16b50f31651204530na/6_0opasesen16b50f31651204530na_seg.nii.gz" + }, + { + "image": "103668/2_0opasevzoomb30f330214014070na.nii.gz", + "pseudo_label": "103668/2_0opasevzoomb30f330214014070na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103668/2_0opasevzoomb30f330214014070na/2_0opasevzoomb30f330214014070na_seg.nii.gz" + }, + { + "image": "103668/3_2opasevzoomb50f35021208040na.nii.gz", + "pseudo_label": "103668/3_2opasevzoomb50f35021208040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103668/3_2opasevzoomb50f35021208040na/3_2opasevzoomb50f35021208040na_seg.nii.gz" + }, + { + "image": "111544/2_0opagelsplusstandard37025140640115.nii.gz", + "pseudo_label": "111544/2_0opagelsplusstandard37025140640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111544/2_0opagelsplusstandard37025140640115/2_0opagelsplusstandard37025140640115_seg.nii.gz" + }, + { + "image": "111544/2_1opagelsplusstandard3802514040015.nii.gz", + "pseudo_label": "111544/2_1opagelsplusstandard3802514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111544/2_1opagelsplusstandard3802514040015/2_1opagelsplusstandard3802514040015_seg.nii.gz" + }, + { + "image": "100002/1_1opagelspluslung36025120800115.nii.gz", + "pseudo_label": "100002/1_1opagelspluslung36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100002/1_1opagelspluslung36025120800115/1_1opagelspluslung36025120800115_seg.nii.gz" + }, + { + "image": "100002/1_2opagelsplusstandard36025120800115.nii.gz", + "pseudo_label": "100002/1_2opagelsplusstandard36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100002/1_2opagelsplusstandard36025120800115/1_2opagelsplusstandard36025120800115_seg.nii.gz" + }, + { + "image": "100002/1_2opagelspluslung36025120800115.nii.gz", + "pseudo_label": "100002/1_2opagelspluslung36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100002/1_2opagelspluslung36025120800115/1_2opagelspluslung36025120800115_seg.nii.gz" + }, + { + "image": "100002/1_0opagelspluslung36025120800115.nii.gz", + "pseudo_label": "100002/1_0opagelspluslung36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100002/1_0opagelspluslung36025120800115/1_0opagelspluslung36025120800115_seg.nii.gz" + }, + { + "image": "104446/2_2opagelsplusstandard32025140854nana.nii.gz", + "pseudo_label": "104446/2_2opagelsplusstandard32025140854nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104446/2_2opagelsplusstandard32025140854nana/2_2opagelsplusstandard32025140854nana_seg.nii.gz" + }, + { + "image": "104446/2_0opagelsplusstandard2962514040015.nii.gz", + "pseudo_label": "104446/2_0opagelsplusstandard2962514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104446/2_0opagelsplusstandard2962514040015/2_0opagelsplusstandard2962514040015_seg.nii.gz" + }, + { + "image": "104446/2_1opagelsplusstandard27425140861nana.nii.gz", + "pseudo_label": "104446/2_1opagelsplusstandard27425140861nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104446/2_1opagelsplusstandard27425140861nana/2_1opagelsplusstandard27425140861nana_seg.nii.gz" + }, + { + "image": "104278/2_2opagelsqxstandard35525120640115.nii.gz", + "pseudo_label": "104278/2_2opagelsqxstandard35525120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104278/2_2opagelsqxstandard35525120640115/2_2opagelsqxstandard35525120640115_seg.nii.gz" + }, + { + "image": "104278/3_0opagelsqxbone33625120640115.nii.gz", + "pseudo_label": "104278/3_0opagelsqxbone33625120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104278/3_0opagelsqxbone33625120640115/3_0opagelsqxbone33625120640115_seg.nii.gz" + }, + { + "image": "104278/3_1opagelsqxbone34525120640115.nii.gz", + "pseudo_label": "104278/3_1opagelsqxbone34525120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104278/3_1opagelsqxbone34525120640115/3_1opagelsqxbone34525120640115_seg.nii.gz" + }, + { + "image": "104278/3_2opagelsqxbone35525120640115.nii.gz", + "pseudo_label": "104278/3_2opagelsqxbone35525120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104278/3_2opagelsqxbone35525120640115/3_2opagelsqxbone35525120640115_seg.nii.gz" + }, + { + "image": "104278/2_1opagelsqxstandard34525120640115.nii.gz", + "pseudo_label": "104278/2_1opagelsqxstandard34525120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104278/2_1opagelsqxstandard34525120640115/2_1opagelsqxstandard34525120640115_seg.nii.gz" + }, + { + "image": "104278/2_0opagelsqxstandard33625120640115.nii.gz", + "pseudo_label": "104278/2_0opagelsqxstandard33625120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104278/2_0opagelsqxstandard33625120640115/2_0opagelsqxstandard33625120640115_seg.nii.gz" + }, + { + "image": "100159/2_0opagelsqxstandard3302512048015.nii.gz", + "pseudo_label": "100159/2_0opagelsqxstandard3302512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100159/2_0opagelsqxstandard3302512048015/2_0opagelsqxstandard3302512048015_seg.nii.gz" + }, + { + "image": "100159/2_1opagels16standard32025120600114.nii.gz", + "pseudo_label": "100159/2_1opagels16standard32025120600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100159/2_1opagels16standard32025120600114/2_1opagels16standard32025120600114_seg.nii.gz" + }, + { + "image": "106829/3_2opasevzoomb50f36021208040na.nii.gz", + "pseudo_label": "106829/3_2opasevzoomb50f36021208040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106829/3_2opasevzoomb50f36021208040na/3_2opasevzoomb50f36021208040na_seg.nii.gz" + }, + { + "image": "111603/2_1opagels16bone28025120600114.nii.gz", + "pseudo_label": "111603/2_1opagels16bone28025120600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111603/2_1opagels16bone28025120600114/2_1opagels16bone28025120600114_seg.nii.gz" + }, + { + "image": "111603/3_1opagels16standard28025120600114.nii.gz", + "pseudo_label": "111603/3_1opagels16standard28025120600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111603/3_1opagels16standard28025120600114/3_1opagels16standard28025120600114_seg.nii.gz" + }, + { + "image": "111603/3_0opagels16standard28025120600114.nii.gz", + "pseudo_label": "111603/3_0opagels16standard28025120600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111603/3_0opagels16standard28025120600114/3_0opagels16standard28025120600114_seg.nii.gz" + }, + { + "image": "102405/3_2opasesen16b30f34021204530na.nii.gz", + "pseudo_label": "102405/3_2opasesen16b30f34021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102405/3_2opasesen16b30f34021204530na/3_2opasesen16b30f34021204530na_seg.nii.gz" + }, + { + "image": "102405/2_0opasevzoomb50f34021206030na.nii.gz", + "pseudo_label": "102405/2_0opasevzoomb50f34021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102405/2_0opasevzoomb50f34021206030na/2_0opasevzoomb50f34021206030na_seg.nii.gz" + }, + { + "image": "102405/2_1opasevzoomb50f32021206030na.nii.gz", + "pseudo_label": "102405/2_1opasevzoomb50f32021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102405/2_1opasevzoomb50f32021206030na/2_1opasevzoomb50f32021206030na_seg.nii.gz" + }, + { + "image": "106026/2_2opagels16bone30025120600114.nii.gz", + "pseudo_label": "106026/2_2opagels16bone30025120600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106026/2_2opagels16bone30025120600114/2_2opagels16bone30025120600114_seg.nii.gz" + }, + { + "image": "106026/102_0osagels16standard30025120600114.nii.gz", + "pseudo_label": "106026/102_0osagels16standard30025120600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106026/102_0osagels16standard30025120600114/102_0osagels16standard30025120600114_seg.nii.gz" + }, + { + "image": "104072/2_1opagehsqxstandard28025120560115.nii.gz", + "pseudo_label": "104072/2_1opagehsqxstandard28025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104072/2_1opagehsqxstandard28025120560115/2_1opagehsqxstandard28025120560115_seg.nii.gz" + }, + { + "image": "104072/2_2opagehsqxstandard28025120560115.nii.gz", + "pseudo_label": "104072/2_2opagehsqxstandard28025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104072/2_2opagehsqxstandard28025120560115/2_2opagehsqxstandard28025120560115_seg.nii.gz" + }, + { + "image": "104072/2_0opagehsqxstandard28025120640115.nii.gz", + "pseudo_label": "104072/2_0opagehsqxstandard28025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104072/2_0opagehsqxstandard28025120640115/2_0opagehsqxstandard28025120640115_seg.nii.gz" + }, + { + "image": "107152/3_1opagehsqxbone33025120560115.nii.gz", + "pseudo_label": "107152/3_1opagehsqxbone33025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107152/3_1opagehsqxbone33025120560115/3_1opagehsqxbone33025120560115_seg.nii.gz" + }, + { + "image": "107152/2_0opagehsqxstandard33025120560115.nii.gz", + "pseudo_label": "107152/2_0opagehsqxstandard33025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107152/2_0opagehsqxstandard33025120560115/2_0opagehsqxstandard33025120560115_seg.nii.gz" + }, + { + "image": "107152/2_1opagehsqxstandard33025120560115.nii.gz", + "pseudo_label": "107152/2_1opagehsqxstandard33025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107152/2_1opagehsqxstandard33025120560115/2_1opagehsqxstandard33025120560115_seg.nii.gz" + }, + { + "image": "107152/3_0opagehsqxbone33025120560115.nii.gz", + "pseudo_label": "107152/3_0opagehsqxbone33025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107152/3_0opagehsqxbone33025120560115/3_0opagehsqxbone33025120560115_seg.nii.gz" + }, + { + "image": "107152/2_2opagehsqxstandard33025120560115.nii.gz", + "pseudo_label": "107152/2_2opagehsqxstandard33025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107152/2_2opagehsqxstandard33025120560115/2_2opagehsqxstandard33025120560115_seg.nii.gz" + }, + { + "image": "110719/3_2opasevzoomb50f37021208040na.nii.gz", + "pseudo_label": "110719/3_2opasevzoomb50f37021208040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110719/3_2opasevzoomb50f37021208040na/3_2opasevzoomb50f37021208040na_seg.nii.gz" + }, + { + "image": "104725/1_2opatoaqul4fc303809212080nana.nii.gz", + "pseudo_label": "104725/1_2opatoaqul4fc303809212080nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104725/1_2opatoaqul4fc303809212080nana/1_2opatoaqul4fc303809212080nana_seg.nii.gz" + }, + { + "image": "104725/1_1opagelsplusstandard36025120800115.nii.gz", + "pseudo_label": "104725/1_1opagelsplusstandard36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104725/1_1opagelsplusstandard36025120800115/1_1opagelsplusstandard36025120800115_seg.nii.gz" + }, + { + "image": "104725/1_0opagelspluslung38025120800115.nii.gz", + "pseudo_label": "104725/1_0opagelspluslung38025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104725/1_0opagelspluslung38025120800115/1_0opagelspluslung38025120800115_seg.nii.gz" + }, + { + "image": "104725/1_1opagelspluslung36025120800115.nii.gz", + "pseudo_label": "104725/1_1opagelspluslung36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104725/1_1opagelspluslung36025120800115/1_1opagelspluslung36025120800115_seg.nii.gz" + }, + { + "image": "104725/1_0opagelsplusstandard38025120800115.nii.gz", + "pseudo_label": "104725/1_0opagelsplusstandard38025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104725/1_0opagelsplusstandard38025120800115/1_0opagelsplusstandard38025120800115_seg.nii.gz" + }, + { + "image": "103554/3_0opatoaqul4fc513398212060nana.nii.gz", + "pseudo_label": "103554/3_0opatoaqul4fc513398212060nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103554/3_0opatoaqul4fc513398212060nana/3_0opatoaqul4fc513398212060nana_seg.nii.gz" + }, + { + "image": "101947/3_0opagelsqxstandard3302512048015.nii.gz", + "pseudo_label": "101947/3_0opagelsqxstandard3302512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101947/3_0opagelsqxstandard3302512048015/3_0opagelsqxstandard3302512048015_seg.nii.gz" + }, + { + "image": "101947/2_0opagelsqxbone3302512048015.nii.gz", + "pseudo_label": "101947/2_0opagelsqxbone3302512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101947/2_0opagelsqxbone3302512048015/2_0opagelsqxbone3302512048015_seg.nii.gz" + }, + { + "image": "101947/3_2opagelspr16standard3202512048014.nii.gz", + "pseudo_label": "101947/3_2opagelspr16standard3202512048014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101947/3_2opagelspr16standard3202512048014/3_2opagelspr16standard3202512048014_seg.nii.gz" + }, + { + "image": "101947/2_2opagelspr16bone3202512048014.nii.gz", + "pseudo_label": "101947/2_2opagelspr16bone3202512048014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101947/2_2opagelspr16bone3202512048014/2_2opagelspr16bone3202512048014_seg.nii.gz" + }, + { + "image": "101947/2_1opagels16bone3402512000na.nii.gz", + "pseudo_label": "101947/2_1opagels16bone3402512000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101947/2_1opagels16bone3402512000na/2_1opagels16bone3402512000na_seg.nii.gz" + }, + { + "image": "101947/3_1opagels16standard3402512000na.nii.gz", + "pseudo_label": "101947/3_1opagels16standard3402512000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101947/3_1opagels16standard3402512000na/3_1opagels16standard3402512000na_seg.nii.gz" + }, + { + "image": "108367/3_0opagelsqxbone37625120640115.nii.gz", + "pseudo_label": "108367/3_0opagelsqxbone37625120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108367/3_0opagelsqxbone37625120640115/3_0opagelsqxbone37625120640115_seg.nii.gz" + }, + { + "image": "108367/2_0opagelsqxstandard37625120640115.nii.gz", + "pseudo_label": "108367/2_0opagelsqxstandard37625120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108367/2_0opagelsqxstandard37625120640115/2_0opagelsqxstandard37625120640115_seg.nii.gz" + }, + { + "image": "108367/4_1opagelsqxstandard36025120640115.nii.gz", + "pseudo_label": "108367/4_1opagelsqxstandard36025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108367/4_1opagelsqxstandard36025120640115/4_1opagelsqxstandard36025120640115_seg.nii.gz" + }, + { + "image": "108367/2_1opagelsqxstandard36025120640115.nii.gz", + "pseudo_label": "108367/2_1opagelsqxstandard36025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108367/2_1opagelsqxstandard36025120640115/2_1opagelsqxstandard36025120640115_seg.nii.gz" + }, + { + "image": "108367/5_1opagelsqxbone36025120640115.nii.gz", + "pseudo_label": "108367/5_1opagelsqxbone36025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108367/5_1opagelsqxbone36025120640115/5_1opagelsqxbone36025120640115_seg.nii.gz" + }, + { + "image": "108367/3_1opagelsqxbone36025120640115.nii.gz", + "pseudo_label": "108367/3_1opagelsqxbone36025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108367/3_1opagelsqxbone36025120640115/3_1opagelsqxbone36025120640115_seg.nii.gz" + }, + { + "image": "108367/2_2opagelsqxstandard39325120640115.nii.gz", + "pseudo_label": "108367/2_2opagelsqxstandard39325120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108367/2_2opagelsqxstandard39325120640115/2_2opagelsqxstandard39325120640115_seg.nii.gz" + }, + { + "image": "109947/2_0opagelsqxstandard41325120640115.nii.gz", + "pseudo_label": "109947/2_0opagelsqxstandard41325120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109947/2_0opagelsqxstandard41325120640115/2_0opagelsqxstandard41325120640115_seg.nii.gz" + }, + { + "image": "109947/2_2opagelsqxstandard39125120640115.nii.gz", + "pseudo_label": "109947/2_2opagelsqxstandard39125120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109947/2_2opagelsqxstandard39125120640115/2_2opagelsqxstandard39125120640115_seg.nii.gz" + }, + { + "image": "105378/2_0opagelsqxbone3532512048015.nii.gz", + "pseudo_label": "105378/2_0opagelsqxbone3532512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105378/2_0opagelsqxbone3532512048015/2_0opagelsqxbone3532512048015_seg.nii.gz" + }, + { + "image": "105378/2_1opagels16bone3352512048014.nii.gz", + "pseudo_label": "105378/2_1opagels16bone3352512048014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105378/2_1opagels16bone3352512048014/2_1opagels16bone3352512048014_seg.nii.gz" + }, + { + "image": "105378/3_1opagels16standard3352512048014.nii.gz", + "pseudo_label": "105378/3_1opagels16standard3352512048014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105378/3_1opagels16standard3352512048014/3_1opagels16standard3352512048014_seg.nii.gz" + }, + { + "image": "105378/3_2opagelspr16standard3202512048014.nii.gz", + "pseudo_label": "105378/3_2opagelspr16standard3202512048014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105378/3_2opagelspr16standard3202512048014/3_2opagelspr16standard3202512048014_seg.nii.gz" + }, + { + "image": "105378/2_2opagelspr16bone3202512048014.nii.gz", + "pseudo_label": "105378/2_2opagelspr16bone3202512048014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105378/2_2opagelspr16bone3202512048014/2_2opagelspr16bone3202512048014_seg.nii.gz" + }, + { + "image": "105378/3_0opagelsqxstandard3532512048015.nii.gz", + "pseudo_label": "105378/3_0opagelsqxstandard3532512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105378/3_0opagelsqxstandard3532512048015/3_0opagelsqxstandard3532512048015_seg.nii.gz" + }, + { + "image": "112075/2_2opagehsqxstandard32025120560115.nii.gz", + "pseudo_label": "112075/2_2opagehsqxstandard32025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112075/2_2opagehsqxstandard32025120560115/2_2opagehsqxstandard32025120560115_seg.nii.gz" + }, + { + "image": "112075/2_0opagehsqxstandard32025120560115.nii.gz", + "pseudo_label": "112075/2_0opagehsqxstandard32025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112075/2_0opagehsqxstandard32025120560115/2_0opagehsqxstandard32025120560115_seg.nii.gz" + }, + { + "image": "112075/3_0opagehsqxbone32025120560115.nii.gz", + "pseudo_label": "112075/3_0opagehsqxbone32025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112075/3_0opagehsqxbone32025120560115/3_0opagehsqxbone32025120560115_seg.nii.gz" + }, + { + "image": "111137/2_2opagelsqxstandard36025120640115.nii.gz", + "pseudo_label": "111137/2_2opagelsqxstandard36025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111137/2_2opagelsqxstandard36025120640115/2_2opagelsqxstandard36025120640115_seg.nii.gz" + }, + { + "image": "111137/3_1opagelsqxbone35225120640115.nii.gz", + "pseudo_label": "111137/3_1opagelsqxbone35225120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111137/3_1opagelsqxbone35225120640115/3_1opagelsqxbone35225120640115_seg.nii.gz" + }, + { + "image": "111137/2_1opagelsqxstandard35225120640115.nii.gz", + "pseudo_label": "111137/2_1opagelsqxstandard35225120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111137/2_1opagelsqxstandard35225120640115/2_1opagelsqxstandard35225120640115_seg.nii.gz" + }, + { + "image": "111137/3_2opagelsqxbone36025120640115.nii.gz", + "pseudo_label": "111137/3_2opagelsqxbone36025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111137/3_2opagelsqxbone36025120640115/3_2opagelsqxbone36025120640115_seg.nii.gz" + }, + { + "image": "111137/2_0opagelsqxstandard35025120640115.nii.gz", + "pseudo_label": "111137/2_0opagelsqxstandard35025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111137/2_0opagelsqxstandard35025120640115/2_0opagelsqxstandard35025120640115_seg.nii.gz" + }, + { + "image": "111137/3_0opagelsqxbone35025120640115.nii.gz", + "pseudo_label": "111137/3_0opagelsqxbone35025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111137/3_0opagelsqxbone35025120640115/3_0opagelsqxbone35025120640115_seg.nii.gz" + }, + { + "image": "107084/3_0opagelsqxbone30625120720115.nii.gz", + "pseudo_label": "107084/3_0opagelsqxbone30625120720115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107084/3_0opagelsqxbone30625120720115/3_0opagelsqxbone30625120720115_seg.nii.gz" + }, + { + "image": "107084/2_2opagelsqxstandard32025120720115.nii.gz", + "pseudo_label": "107084/2_2opagelsqxstandard32025120720115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107084/2_2opagelsqxstandard32025120720115/2_2opagelsqxstandard32025120720115_seg.nii.gz" + }, + { + "image": "107084/3_1opagelsqxbone31825120720115.nii.gz", + "pseudo_label": "107084/3_1opagelsqxbone31825120720115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107084/3_1opagelsqxbone31825120720115/3_1opagelsqxbone31825120720115_seg.nii.gz" + }, + { + "image": "107084/3_2opagelsqxbone32225120720115.nii.gz", + "pseudo_label": "107084/3_2opagelsqxbone32225120720115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107084/3_2opagelsqxbone32225120720115/3_2opagelsqxbone32225120720115_seg.nii.gz" + }, + { + "image": "107084/2_0opagelsqxstandard30625120720115.nii.gz", + "pseudo_label": "107084/2_0opagelsqxstandard30625120720115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107084/2_0opagelsqxstandard30625120720115/2_0opagelsqxstandard30625120720115_seg.nii.gz" + }, + { + "image": "107084/2_1opagelsqxstandard31825120720115.nii.gz", + "pseudo_label": "107084/2_1opagelsqxstandard31825120720115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107084/2_1opagelsqxstandard31825120720115/2_1opagelsqxstandard31825120720115_seg.nii.gz" + }, + { + "image": "105811/3_0opatoaqul4fc512812212040nana.nii.gz", + "pseudo_label": "105811/3_0opatoaqul4fc512812212040nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105811/3_0opatoaqul4fc512812212040nana/3_0opatoaqul4fc512812212040nana_seg.nii.gz" + }, + { + "image": "105811/3_1opatoaqul4fc512844212050nana.nii.gz", + "pseudo_label": "105811/3_1opatoaqul4fc512844212050nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105811/3_1opatoaqul4fc512844212050nana/3_1opatoaqul4fc512844212050nana_seg.nii.gz" + }, + { + "image": "102578/2_2opagelsqxstandard36025120640115.nii.gz", + "pseudo_label": "102578/2_2opagelsqxstandard36025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102578/2_2opagelsqxstandard36025120640115/2_2opagelsqxstandard36025120640115_seg.nii.gz" + }, + { + "image": "102578/3_2opagelsqxbone36025120640115.nii.gz", + "pseudo_label": "102578/3_2opagelsqxbone36025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102578/3_2opagelsqxbone36025120640115/3_2opagelsqxbone36025120640115_seg.nii.gz" + }, + { + "image": "102578/2_1opagelsqxstandard35125120640115.nii.gz", + "pseudo_label": "102578/2_1opagelsqxstandard35125120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102578/2_1opagelsqxstandard35125120640115/2_1opagelsqxstandard35125120640115_seg.nii.gz" + }, + { + "image": "102578/3_0opagelsqxbone35425120560115.nii.gz", + "pseudo_label": "102578/3_0opagelsqxbone35425120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102578/3_0opagelsqxbone35425120560115/3_0opagelsqxbone35425120560115_seg.nii.gz" + }, + { + "image": "102578/2_0opagelsqxstandard35425120560115.nii.gz", + "pseudo_label": "102578/2_0opagelsqxstandard35425120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102578/2_0opagelsqxstandard35425120560115/2_0opagelsqxstandard35425120560115_seg.nii.gz" + }, + { + "image": "107686/3_0opasevzoomb30f32021206030na.nii.gz", + "pseudo_label": "107686/3_0opasevzoomb30f32021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107686/3_0opasevzoomb30f32021206030na/3_0opasevzoomb30f32021206030na_seg.nii.gz" + }, + { + "image": "107686/3_2opasesen16b30f31021204530na.nii.gz", + "pseudo_label": "107686/3_2opasesen16b30f31021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107686/3_2opasesen16b30f31021204530na/3_2opasesen16b30f31021204530na_seg.nii.gz" + }, + { + "image": "107686/2_2opasesen16b50f31021204530na.nii.gz", + "pseudo_label": "107686/2_2opasesen16b50f31021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107686/2_2opasesen16b50f31021204530na/2_2opasesen16b50f31021204530na_seg.nii.gz" + }, + { + "image": "100225/2075_2opaphmx8000c34832120453612.nii.gz", + "pseudo_label": "100225/2075_2opaphmx8000c34832120453612.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100225/2075_2opaphmx8000c34832120453612/2075_2opaphmx8000c34832120453612_seg.nii.gz" + }, + { + "image": "108263/2_2opagelsplusstandard3202514040015.nii.gz", + "pseudo_label": "108263/2_2opagelsplusstandard3202514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108263/2_2opagelsplusstandard3202514040015/2_2opagelsplusstandard3202514040015_seg.nii.gz" + }, + { + "image": "108263/2_0opagelsplusstandard3202514040015.nii.gz", + "pseudo_label": "108263/2_0opagelsplusstandard3202514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108263/2_0opagelsplusstandard3202514040015/2_0opagelsplusstandard3202514040015_seg.nii.gz" + }, + { + "image": "110439/5_0opasevzoomb50f29021206030na.nii.gz", + "pseudo_label": "110439/5_0opasevzoomb50f29021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110439/5_0opasevzoomb50f29021206030na/5_0opasevzoomb50f29021206030na_seg.nii.gz" + }, + { + "image": "110439/2_1opasesen16b50f30021204530na.nii.gz", + "pseudo_label": "110439/2_1opasesen16b50f30021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110439/2_1opasesen16b50f30021204530na/2_1opasesen16b50f30021204530na_seg.nii.gz" + }, + { + "image": "104752/2_1opagelsqxstandard3212512048015.nii.gz", + "pseudo_label": "104752/2_1opagelsqxstandard3212512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104752/2_1opagelsqxstandard3212512048015/2_1opagelsqxstandard3212512048015_seg.nii.gz" + }, + { + "image": "110396/5_2opasevzoomb50f29421206030na.nii.gz", + "pseudo_label": "110396/5_2opasevzoomb50f29421206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110396/5_2opasevzoomb50f29421206030na/5_2opasevzoomb50f29421206030na_seg.nii.gz" + }, + { + "image": "110396/6_0opasesen16b30f34421204530na.nii.gz", + "pseudo_label": "110396/6_0opasesen16b30f34421204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110396/6_0opasesen16b30f34421204530na/6_0opasesen16b30f34421204530na_seg.nii.gz" + }, + { + "image": "110396/3_0opasesen16b30f34451204530na.nii.gz", + "pseudo_label": "110396/3_0opasesen16b30f34451204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110396/3_0opasesen16b30f34451204530na/3_0opasesen16b30f34451204530na_seg.nii.gz" + }, + { + "image": "110396/6_1opasevzoomb30f34021206030na.nii.gz", + "pseudo_label": "110396/6_1opasevzoomb30f34021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110396/6_1opasevzoomb30f34021206030na/6_1opasevzoomb30f34021206030na_seg.nii.gz" + }, + { + "image": "110396/4_2opasevzoomb50f29451206030na.nii.gz", + "pseudo_label": "110396/4_2opasevzoomb50f29451206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110396/4_2opasevzoomb50f29451206030na/4_2opasevzoomb50f29451206030na_seg.nii.gz" + }, + { + "image": "110396/3_2opasevzoomb30f29451206030na.nii.gz", + "pseudo_label": "110396/3_2opasevzoomb30f29451206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110396/3_2opasevzoomb30f29451206030na/3_2opasevzoomb30f29451206030na_seg.nii.gz" + }, + { + "image": "110396/3_1opasevzoomb30f34051206030na.nii.gz", + "pseudo_label": "110396/3_1opasevzoomb30f34051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110396/3_1opasevzoomb30f34051206030na/3_1opasevzoomb30f34051206030na_seg.nii.gz" + }, + { + "image": "110396/4_0opasesen16b50f34451204530na.nii.gz", + "pseudo_label": "110396/4_0opasesen16b50f34451204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110396/4_0opasesen16b50f34451204530na/4_0opasesen16b50f34451204530na_seg.nii.gz" + }, + { + "image": "110396/4_1opasevzoomb50f34051206030na.nii.gz", + "pseudo_label": "110396/4_1opasevzoomb50f34051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110396/4_1opasevzoomb50f34051206030na/4_1opasevzoomb50f34051206030na_seg.nii.gz" + }, + { + "image": "110844/2_0opasevzoomb30f370214016080na.nii.gz", + "pseudo_label": "110844/2_0opasevzoomb30f370214016080na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110844/2_0opasevzoomb30f370214016080na/2_0opasevzoomb30f370214016080na_seg.nii.gz" + }, + { + "image": "107467/2_2opasesen16b30f30221204032na.nii.gz", + "pseudo_label": "107467/2_2opasesen16b30f30221204032na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107467/2_2opasesen16b30f30221204032na/2_2opasesen16b30f30221204032na_seg.nii.gz" + }, + { + "image": "110789/2_0opagelsqxstandard32425120640115.nii.gz", + "pseudo_label": "110789/2_0opagelsqxstandard32425120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110789/2_0opagelsqxstandard32425120640115/2_0opagelsqxstandard32425120640115_seg.nii.gz" + }, + { + "image": "110789/2_2opagelsqxstandard32325120640115.nii.gz", + "pseudo_label": "110789/2_2opagelsqxstandard32325120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110789/2_2opagelsqxstandard32325120640115/2_2opagelsqxstandard32325120640115_seg.nii.gz" + }, + { + "image": "110789/3_2opagelsqxbone32325120640115.nii.gz", + "pseudo_label": "110789/3_2opagelsqxbone32325120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110789/3_2opagelsqxbone32325120640115/3_2opagelsqxbone32325120640115_seg.nii.gz" + }, + { + "image": "110789/2_1opagelsqxstandard32325120720115.nii.gz", + "pseudo_label": "110789/2_1opagelsqxstandard32325120720115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110789/2_1opagelsqxstandard32325120720115/2_1opagelsqxstandard32325120720115_seg.nii.gz" + }, + { + "image": "110789/3_1opagelsqxbone32325120720115.nii.gz", + "pseudo_label": "110789/3_1opagelsqxbone32325120720115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110789/3_1opagelsqxbone32325120720115/3_1opagelsqxbone32325120720115_seg.nii.gz" + }, + { + "image": "107967/3_1opasevzoomb50f34021207540na.nii.gz", + "pseudo_label": "107967/3_1opasevzoomb50f34021207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107967/3_1opasevzoomb50f34021207540na/3_1opasevzoomb50f34021207540na_seg.nii.gz" + }, + { + "image": "107967/2_0opasevzoomb30f340212010560na.nii.gz", + "pseudo_label": "107967/2_0opasevzoomb30f340212010560na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107967/2_0opasevzoomb30f340212010560na/2_0opasevzoomb30f340212010560na_seg.nii.gz" + }, + { + "image": "107967/3_0opasevzoomb50f340212010560na.nii.gz", + "pseudo_label": "107967/3_0opasevzoomb50f340212010560na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107967/3_0opasevzoomb50f340212010560na/3_0opasevzoomb50f340212010560na_seg.nii.gz" + }, + { + "image": "107967/2_2opasevzoomb30f37221207540na.nii.gz", + "pseudo_label": "107967/2_2opasevzoomb30f37221207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107967/2_2opasevzoomb30f37221207540na/2_2opasevzoomb30f37221207540na_seg.nii.gz" + }, + { + "image": "108611/2_0opagelsqxstandard34025120500115.nii.gz", + "pseudo_label": "108611/2_0opagelsqxstandard34025120500115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108611/2_0opagelsqxstandard34025120500115/2_0opagelsqxstandard34025120500115_seg.nii.gz" + }, + { + "image": "107830/2_0opagelsqxstandard3302512048015.nii.gz", + "pseudo_label": "107830/2_0opagelsqxstandard3302512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107830/2_0opagelsqxstandard3302512048015/2_0opagelsqxstandard3302512048015_seg.nii.gz" + }, + { + "image": "107830/2_1opagelsqxstandard3202512048015.nii.gz", + "pseudo_label": "107830/2_1opagelsqxstandard3202512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107830/2_1opagelsqxstandard3202512048015/2_1opagelsqxstandard3202512048015_seg.nii.gz" + }, + { + "image": "107889/3_1opasevzoomb50f35021206030na.nii.gz", + "pseudo_label": "107889/3_1opasevzoomb50f35021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107889/3_1opasevzoomb50f35021206030na/3_1opasevzoomb50f35021206030na_seg.nii.gz" + }, + { + "image": "107889/4_2opasevzoomb50f36051206030na.nii.gz", + "pseudo_label": "107889/4_2opasevzoomb50f36051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107889/4_2opasevzoomb50f36051206030na/4_2opasevzoomb50f36051206030na_seg.nii.gz" + }, + { + "image": "107889/6_2opasevzoomb30f36021206030na.nii.gz", + "pseudo_label": "107889/6_2opasevzoomb30f36021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107889/6_2opasevzoomb30f36021206030na/6_2opasevzoomb30f36021206030na_seg.nii.gz" + }, + { + "image": "107889/5_0opasevzoomb30f38051206030na.nii.gz", + "pseudo_label": "107889/5_0opasevzoomb30f38051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107889/5_0opasevzoomb30f38051206030na/5_0opasevzoomb30f38051206030na_seg.nii.gz" + }, + { + "image": "107889/4_1opasevzoomb50f35051206030na.nii.gz", + "pseudo_label": "107889/4_1opasevzoomb50f35051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107889/4_1opasevzoomb50f35051206030na/4_1opasevzoomb50f35051206030na_seg.nii.gz" + }, + { + "image": "107889/6_1opasevzoomb30f35021206030na.nii.gz", + "pseudo_label": "107889/6_1opasevzoomb30f35021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107889/6_1opasevzoomb30f35021206030na/6_1opasevzoomb30f35021206030na_seg.nii.gz" + }, + { + "image": "107889/5_2opasevzoomb30f36051206030na.nii.gz", + "pseudo_label": "107889/5_2opasevzoomb30f36051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107889/5_2opasevzoomb30f36051206030na/5_2opasevzoomb30f36051206030na_seg.nii.gz" + }, + { + "image": "107889/5_1opasevzoomb30f35051206030na.nii.gz", + "pseudo_label": "107889/5_1opasevzoomb30f35051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107889/5_1opasevzoomb30f35051206030na/5_1opasevzoomb30f35051206030na_seg.nii.gz" + }, + { + "image": "107889/3_2opasevzoomb50f36021206030na.nii.gz", + "pseudo_label": "107889/3_2opasevzoomb50f36021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107889/3_2opasevzoomb50f36021206030na/3_2opasevzoomb50f36021206030na_seg.nii.gz" + }, + { + "image": "101561/7_1opasevzoomb30f29021206030na.nii.gz", + "pseudo_label": "101561/7_1opasevzoomb30f29021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101561/7_1opasevzoomb30f29021206030na/7_1opasevzoomb30f29021206030na_seg.nii.gz" + }, + { + "image": "101561/2_2opasesen16b50f30021204530na.nii.gz", + "pseudo_label": "101561/2_2opasesen16b50f30021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101561/2_2opasesen16b50f30021204530na/2_2opasesen16b50f30021204530na_seg.nii.gz" + }, + { + "image": "112558/5_2opasevzoomb50f31721206030na.nii.gz", + "pseudo_label": "112558/5_2opasevzoomb50f31721206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112558/5_2opasevzoomb50f31721206030na/5_2opasevzoomb50f31721206030na_seg.nii.gz" + }, + { + "image": "112558/4_2opasevzoomb50f31751206030na.nii.gz", + "pseudo_label": "112558/4_2opasevzoomb50f31751206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112558/4_2opasevzoomb50f31751206030na/4_2opasevzoomb50f31751206030na_seg.nii.gz" + }, + { + "image": "112558/6_1opasesen16b50f30021204530na.nii.gz", + "pseudo_label": "112558/6_1opasesen16b50f30021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112558/6_1opasesen16b50f30021204530na/6_1opasesen16b50f30021204530na_seg.nii.gz" + }, + { + "image": "112558/3_2opasevzoomb30f31751206030na.nii.gz", + "pseudo_label": "112558/3_2opasevzoomb30f31751206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112558/3_2opasevzoomb30f31751206030na/3_2opasevzoomb30f31751206030na_seg.nii.gz" + }, + { + "image": "112558/3_0opasesen16b30f33451206040na.nii.gz", + "pseudo_label": "112558/3_0opasesen16b30f33451206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112558/3_0opasesen16b30f33451206040na/3_0opasesen16b30f33451206040na_seg.nii.gz" + }, + { + "image": "112558/4_0opasesen16b50f33451206040na.nii.gz", + "pseudo_label": "112558/4_0opasesen16b50f33451206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112558/4_0opasesen16b50f33451206040na/4_0opasesen16b50f33451206040na_seg.nii.gz" + }, + { + "image": "112558/4_1opasesen16b30f30021204530na.nii.gz", + "pseudo_label": "112558/4_1opasesen16b30f30021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112558/4_1opasesen16b30f30021204530na/4_1opasesen16b30f30021204530na_seg.nii.gz" + }, + { + "image": "112558/5_1opasesen16b50f30051204530na.nii.gz", + "pseudo_label": "112558/5_1opasesen16b50f30051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112558/5_1opasesen16b50f30051204530na/5_1opasesen16b50f30051204530na_seg.nii.gz" + }, + { + "image": "112558/3_1opasesen16b30f30051204530na.nii.gz", + "pseudo_label": "112558/3_1opasesen16b30f30051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112558/3_1opasesen16b30f30051204530na/3_1opasesen16b30f30051204530na_seg.nii.gz" + }, + { + "image": "104487/2_1opasesen16b30f27221204032na.nii.gz", + "pseudo_label": "104487/2_1opasesen16b30f27221204032na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104487/2_1opasesen16b30f27221204032na/2_1opasesen16b30f27221204032na_seg.nii.gz" + }, + { + "image": "104487/2_0opasesen16b30f27221204032na.nii.gz", + "pseudo_label": "104487/2_0opasesen16b30f27221204032na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104487/2_0opasesen16b30f27221204032na/2_0opasesen16b30f27221204032na_seg.nii.gz" + }, + { + "image": "109548/4_0opatoaqul4fc513203212040nana.nii.gz", + "pseudo_label": "109548/4_0opatoaqul4fc513203212040nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109548/4_0opatoaqul4fc513203212040nana/4_0opatoaqul4fc513203212040nana_seg.nii.gz" + }, + { + "image": "109548/3_2opatoaqul4fc513125212040nana.nii.gz", + "pseudo_label": "109548/3_2opatoaqul4fc513125212040nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109548/3_2opatoaqul4fc513125212040nana/3_2opatoaqul4fc513125212040nana_seg.nii.gz" + }, + { + "image": "109548/3_1opatoaqul4fc513223212060nana.nii.gz", + "pseudo_label": "109548/3_1opatoaqul4fc513223212060nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109548/3_1opatoaqul4fc513223212060nana/3_1opatoaqul4fc513223212060nana_seg.nii.gz" + }, + { + "image": "108676/1_1opagelsplusstandard36025120800115.nii.gz", + "pseudo_label": "108676/1_1opagelsplusstandard36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108676/1_1opagelsplusstandard36025120800115/1_1opagelsplusstandard36025120800115_seg.nii.gz" + }, + { + "image": "108676/1_1opagelspluslung36025120800115.nii.gz", + "pseudo_label": "108676/1_1opagelspluslung36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108676/1_1opagelspluslung36025120800115/1_1opagelspluslung36025120800115_seg.nii.gz" + }, + { + "image": "108676/1_0opagelsplusstandard36025120800115.nii.gz", + "pseudo_label": "108676/1_0opagelsplusstandard36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108676/1_0opagelsplusstandard36025120800115/1_0opagelsplusstandard36025120800115_seg.nii.gz" + }, + { + "image": "108676/1_2opagelsplusstandard36025120800115.nii.gz", + "pseudo_label": "108676/1_2opagelsplusstandard36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108676/1_2opagelsplusstandard36025120800115/1_2opagelsplusstandard36025120800115_seg.nii.gz" + }, + { + "image": "108676/1_2opagelspluslung36025120800115.nii.gz", + "pseudo_label": "108676/1_2opagelspluslung36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108676/1_2opagelspluslung36025120800115/1_2opagelspluslung36025120800115_seg.nii.gz" + }, + { + "image": "108676/1_0opagelspluslung36025120800115.nii.gz", + "pseudo_label": "108676/1_0opagelspluslung36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108676/1_0opagelspluslung36025120800115/1_0opagelspluslung36025120800115_seg.nii.gz" + }, + { + "image": "104528/3_2opasevzoomb50f31021207540na.nii.gz", + "pseudo_label": "104528/3_2opasevzoomb50f31021207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104528/3_2opasevzoomb50f31021207540na/3_2opasevzoomb50f31021207540na_seg.nii.gz" + }, + { + "image": "104528/2_1opasevzoomb30f29421207540na.nii.gz", + "pseudo_label": "104528/2_1opasevzoomb30f29421207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104528/2_1opasevzoomb30f29421207540na/2_1opasevzoomb30f29421207540na_seg.nii.gz" + }, + { + "image": "104528/3_1opasevzoomb50f29421207540na.nii.gz", + "pseudo_label": "104528/3_1opasevzoomb50f29421207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104528/3_1opasevzoomb50f29421207540na/3_1opasevzoomb50f29421207540na_seg.nii.gz" + }, + { + "image": "106023/2_0opagelsqxstandard31025120560115.nii.gz", + "pseudo_label": "106023/2_0opagelsqxstandard31025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106023/2_0opagelsqxstandard31025120560115/2_0opagelsqxstandard31025120560115_seg.nii.gz" + }, + { + "image": "106023/3_0opagelsqxbone31025120560115.nii.gz", + "pseudo_label": "106023/3_0opagelsqxbone31025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106023/3_0opagelsqxbone31025120560115/3_0opagelsqxbone31025120560115_seg.nii.gz" + }, + { + "image": "108368/3_0opagehsqxbone32025120640115.nii.gz", + "pseudo_label": "108368/3_0opagehsqxbone32025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108368/3_0opagehsqxbone32025120640115/3_0opagehsqxbone32025120640115_seg.nii.gz" + }, + { + "image": "108368/2_2opagehsqxstandard34025120560115.nii.gz", + "pseudo_label": "108368/2_2opagehsqxstandard34025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108368/2_2opagehsqxstandard34025120560115/2_2opagehsqxstandard34025120560115_seg.nii.gz" + }, + { + "image": "108368/3_1opagehsqxbone32025120560115.nii.gz", + "pseudo_label": "108368/3_1opagehsqxbone32025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108368/3_1opagehsqxbone32025120560115/3_1opagehsqxbone32025120560115_seg.nii.gz" + }, + { + "image": "108368/2_1opagehsqxstandard32025120560115.nii.gz", + "pseudo_label": "108368/2_1opagehsqxstandard32025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108368/2_1opagehsqxstandard32025120560115/2_1opagehsqxstandard32025120560115_seg.nii.gz" + }, + { + "image": "102093/2_0opagelsqxstandard37525120600115.nii.gz", + "pseudo_label": "102093/2_0opagelsqxstandard37525120600115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102093/2_0opagelsqxstandard37525120600115/2_0opagelsqxstandard37525120600115_seg.nii.gz" + }, + { + "image": "102093/2_2opagels16standard38025120505nana.nii.gz", + "pseudo_label": "102093/2_2opagels16standard38025120505nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102093/2_2opagels16standard38025120505nana/2_2opagels16standard38025120505nana_seg.nii.gz" + }, + { + "image": "111246/5_2opasevzoomb30f28951206030na.nii.gz", + "pseudo_label": "111246/5_2opasevzoomb30f28951206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111246/5_2opasevzoomb30f28951206030na/5_2opasevzoomb30f28951206030na_seg.nii.gz" + }, + { + "image": "111246/3_2opasevzoomb50f28921206030na.nii.gz", + "pseudo_label": "111246/3_2opasevzoomb50f28921206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111246/3_2opasevzoomb50f28921206030na/3_2opasevzoomb50f28921206030na_seg.nii.gz" + }, + { + "image": "111246/6_1opasevzoomb30f30021206030na.nii.gz", + "pseudo_label": "111246/6_1opasevzoomb30f30021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111246/6_1opasevzoomb30f30021206030na/6_1opasevzoomb30f30021206030na_seg.nii.gz" + }, + { + "image": "111246/6_0opasevzoomb30f28421206030na.nii.gz", + "pseudo_label": "111246/6_0opasevzoomb30f28421206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111246/6_0opasevzoomb30f28421206030na/6_0opasevzoomb30f28421206030na_seg.nii.gz" + }, + { + "image": "111246/4_0opasevzoomb50f28451206030na.nii.gz", + "pseudo_label": "111246/4_0opasevzoomb50f28451206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111246/4_0opasevzoomb50f28451206030na/4_0opasevzoomb50f28451206030na_seg.nii.gz" + }, + { + "image": "111246/5_1opasevzoomb30f30051206030na.nii.gz", + "pseudo_label": "111246/5_1opasevzoomb30f30051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111246/5_1opasevzoomb30f30051206030na/5_1opasevzoomb30f30051206030na_seg.nii.gz" + }, + { + "image": "111246/4_2opasevzoomb50f28951206030na.nii.gz", + "pseudo_label": "111246/4_2opasevzoomb50f28951206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111246/4_2opasevzoomb50f28951206030na/4_2opasevzoomb50f28951206030na_seg.nii.gz" + }, + { + "image": "111246/4_1opasevzoomb50f30051206030na.nii.gz", + "pseudo_label": "111246/4_1opasevzoomb50f30051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111246/4_1opasevzoomb50f30051206030na/4_1opasevzoomb50f30051206030na_seg.nii.gz" + }, + { + "image": "111246/3_0opasevzoomb50f28421206030na.nii.gz", + "pseudo_label": "111246/3_0opasevzoomb50f28421206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111246/3_0opasevzoomb50f28421206030na/3_0opasevzoomb50f28421206030na_seg.nii.gz" + }, + { + "image": "111246/3_1opasevzoomb50f30021206030na.nii.gz", + "pseudo_label": "111246/3_1opasevzoomb50f30021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111246/3_1opasevzoomb50f30021206030na/3_1opasevzoomb50f30021206030na_seg.nii.gz" + }, + { + "image": "106849/3_2opagelsqxbone36225120640115.nii.gz", + "pseudo_label": "106849/3_2opagelsqxbone36225120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106849/3_2opagelsqxbone36225120640115/3_2opagelsqxbone36225120640115_seg.nii.gz" + }, + { + "image": "106849/2_2opagelsqxstandard36225120640115.nii.gz", + "pseudo_label": "106849/2_2opagelsqxstandard36225120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106849/2_2opagelsqxstandard36225120640115/2_2opagelsqxstandard36225120640115_seg.nii.gz" + }, + { + "image": "106849/3_1opagelsqxbone40025120640115.nii.gz", + "pseudo_label": "106849/3_1opagelsqxbone40025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106849/3_1opagelsqxbone40025120640115/3_1opagelsqxbone40025120640115_seg.nii.gz" + }, + { + "image": "113214/2_0opagelsqxstandard4142512000na.nii.gz", + "pseudo_label": "113214/2_0opagelsqxstandard4142512000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113214/2_0opagelsqxstandard4142512000na/2_0opagelsqxstandard4142512000na_seg.nii.gz" + }, + { + "image": "103849/3_0opagehsqxbone37025120560115.nii.gz", + "pseudo_label": "103849/3_0opagehsqxbone37025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103849/3_0opagehsqxbone37025120560115/3_0opagehsqxbone37025120560115_seg.nii.gz" + }, + { + "image": "103849/2_2opagehsqxstandard37025120560115.nii.gz", + "pseudo_label": "103849/2_2opagehsqxstandard37025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103849/2_2opagehsqxstandard37025120560115/2_2opagehsqxstandard37025120560115_seg.nii.gz" + }, + { + "image": "103849/2_1opagehsqxstandard37025120560115.nii.gz", + "pseudo_label": "103849/2_1opagehsqxstandard37025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103849/2_1opagehsqxstandard37025120560115/2_1opagehsqxstandard37025120560115_seg.nii.gz" + }, + { + "image": "103849/2_0opagehsqxstandard37025120560115.nii.gz", + "pseudo_label": "103849/2_0opagehsqxstandard37025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103849/2_0opagehsqxstandard37025120560115/2_0opagehsqxstandard37025120560115_seg.nii.gz" + }, + { + "image": "113224/891_2opaphmx8000d3353212039018.nii.gz", + "pseudo_label": "113224/891_2opaphmx8000d3353212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113224/891_2opaphmx8000d3353212039018/891_2opaphmx8000d3353212039018_seg.nii.gz" + }, + { + "image": "110657/2_2opagelsqxstandard38525120720115.nii.gz", + "pseudo_label": "110657/2_2opagelsqxstandard38525120720115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110657/2_2opagelsqxstandard38525120720115/2_2opagelsqxstandard38525120720115_seg.nii.gz" + }, + { + "image": "110657/2_0opagelsqxstandard40025120720115.nii.gz", + "pseudo_label": "110657/2_0opagelsqxstandard40025120720115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110657/2_0opagelsqxstandard40025120720115/2_0opagelsqxstandard40025120720115_seg.nii.gz" + }, + { + "image": "110657/3_0opagelsqxbone40025120720115.nii.gz", + "pseudo_label": "110657/3_0opagelsqxbone40025120720115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110657/3_0opagelsqxbone40025120720115/3_0opagelsqxbone40025120720115_seg.nii.gz" + }, + { + "image": "110657/3_2opagelsqxbone38525120720115.nii.gz", + "pseudo_label": "110657/3_2opagelsqxbone38525120720115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110657/3_2opagelsqxbone38525120720115/3_2opagelsqxbone38525120720115_seg.nii.gz" + }, + { + "image": "111388/3_1opatoaqul4fc513633212060nana.nii.gz", + "pseudo_label": "111388/3_1opatoaqul4fc513633212060nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111388/3_1opatoaqul4fc513633212060nana/3_1opatoaqul4fc513633212060nana_seg.nii.gz" + }, + { + "image": "112981/3_0opagelsqxstandard3402512048015.nii.gz", + "pseudo_label": "112981/3_0opagelsqxstandard3402512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112981/3_0opagelsqxstandard3402512048015/3_0opagelsqxstandard3402512048015_seg.nii.gz" + }, + { + "image": "112652/2_2opasesen16b30f35021204032na.nii.gz", + "pseudo_label": "112652/2_2opasesen16b30f35021204032na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112652/2_2opasesen16b30f35021204032na/2_2opasesen16b30f35021204032na_seg.nii.gz" + }, + { + "image": "108874/2_0opagels16standard29825140800114.nii.gz", + "pseudo_label": "108874/2_0opagels16standard29825140800114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108874/2_0opagels16standard29825140800114/2_0opagels16standard29825140800114_seg.nii.gz" + }, + { + "image": "108874/2_2opagels16standard3402514040014.nii.gz", + "pseudo_label": "108874/2_2opagels16standard3402514040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108874/2_2opagels16standard3402514040014/2_2opagels16standard3402514040014_seg.nii.gz" + }, + { + "image": "108874/3_1opagels16standard35625140640114.nii.gz", + "pseudo_label": "108874/3_1opagels16standard35625140640114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108874/3_1opagels16standard35625140640114/3_1opagels16standard35625140640114_seg.nii.gz" + }, + { + "image": "108713/3_2opasesen16b30f39421204530na.nii.gz", + "pseudo_label": "108713/3_2opasesen16b30f39421204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108713/3_2opasesen16b30f39421204530na/3_2opasesen16b30f39421204530na_seg.nii.gz" + }, + { + "image": "104541/2_2opagelsqxstandard35625120560115.nii.gz", + "pseudo_label": "104541/2_2opagelsqxstandard35625120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104541/2_2opagelsqxstandard35625120560115/2_2opagelsqxstandard35625120560115_seg.nii.gz" + }, + { + "image": "104541/3_0opagelsqxbone40025120640115.nii.gz", + "pseudo_label": "104541/3_0opagelsqxbone40025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104541/3_0opagelsqxbone40025120640115/3_0opagelsqxbone40025120640115_seg.nii.gz" + }, + { + "image": "104541/3_2opagelsqxbone35625120560115.nii.gz", + "pseudo_label": "104541/3_2opagelsqxbone35625120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104541/3_2opagelsqxbone35625120560115/3_2opagelsqxbone35625120560115_seg.nii.gz" + }, + { + "image": "104541/3_1opagelsqxbone36525120640115.nii.gz", + "pseudo_label": "104541/3_1opagelsqxbone36525120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104541/3_1opagelsqxbone36525120640115/3_1opagelsqxbone36525120640115_seg.nii.gz" + }, + { + "image": "104541/2_0opagelsqxstandard40025120640115.nii.gz", + "pseudo_label": "104541/2_0opagelsqxstandard40025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104541/2_0opagelsqxstandard40025120640115/2_0opagelsqxstandard40025120640115_seg.nii.gz" + }, + { + "image": "104541/2_1opagelsqxstandard36525120640115.nii.gz", + "pseudo_label": "104541/2_1opagelsqxstandard36525120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104541/2_1opagelsqxstandard36525120640115/2_1opagelsqxstandard36525120640115_seg.nii.gz" + }, + { + "image": "102485/3_2opatoaqul4fc51300212040nana.nii.gz", + "pseudo_label": "102485/3_2opatoaqul4fc51300212040nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102485/3_2opatoaqul4fc51300212040nana/3_2opatoaqul4fc51300212040nana_seg.nii.gz" + }, + { + "image": "102485/3_0opatoaqul4fc512906212045nana.nii.gz", + "pseudo_label": "102485/3_0opatoaqul4fc512906212045nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102485/3_0opatoaqul4fc512906212045nana/3_0opatoaqul4fc512906212045nana_seg.nii.gz" + }, + { + "image": "107563/2_2opagelsqxstandard3802514000na.nii.gz", + "pseudo_label": "107563/2_2opagelsqxstandard3802514000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107563/2_2opagelsqxstandard3802514000na/2_2opagelsqxstandard3802514000na_seg.nii.gz" + }, + { + "image": "107563/2_0opagelsqxstandard3602514000na.nii.gz", + "pseudo_label": "107563/2_0opagelsqxstandard3602514000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107563/2_0opagelsqxstandard3602514000na/2_0opagelsqxstandard3602514000na_seg.nii.gz" + }, + { + "image": "101171/3_2opasesen16b30f33021204530na.nii.gz", + "pseudo_label": "101171/3_2opasesen16b30f33021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101171/3_2opasesen16b30f33021204530na/3_2opasesen16b30f33021204530na_seg.nii.gz" + }, + { + "image": "101171/2_0opasevzoomb50f350212012060na.nii.gz", + "pseudo_label": "101171/2_0opasevzoomb50f350212012060na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101171/2_0opasevzoomb50f350212012060na/2_0opasevzoomb50f350212012060na_seg.nii.gz" + }, + { + "image": "101171/4_2opasesen16b50f33021204530na.nii.gz", + "pseudo_label": "101171/4_2opasesen16b50f33021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101171/4_2opasesen16b50f33021204530na/4_2opasesen16b50f33021204530na_seg.nii.gz" + }, + { + "image": "111123/2_1opasesen16b30f32021204032na.nii.gz", + "pseudo_label": "111123/2_1opasesen16b30f32021204032na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111123/2_1opasesen16b30f32021204032na/2_1opasesen16b30f32021204032na_seg.nii.gz" + }, + { + "image": "111123/2_2opasesen16b30f28021204032na.nii.gz", + "pseudo_label": "111123/2_2opasesen16b30f28021204032na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111123/2_2opasesen16b30f28021204032na/2_2opasesen16b30f28021204032na_seg.nii.gz" + }, + { + "image": "109464/1_1opagelsplusstandard36025120800115.nii.gz", + "pseudo_label": "109464/1_1opagelsplusstandard36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109464/1_1opagelsplusstandard36025120800115/1_1opagelsplusstandard36025120800115_seg.nii.gz" + }, + { + "image": "109464/1_1opagelspluslung36025120800115.nii.gz", + "pseudo_label": "109464/1_1opagelspluslung36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109464/1_1opagelspluslung36025120800115/1_1opagelspluslung36025120800115_seg.nii.gz" + }, + { + "image": "109464/1_2opagelsplusstandard36025120800115.nii.gz", + "pseudo_label": "109464/1_2opagelsplusstandard36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109464/1_2opagelsplusstandard36025120800115/1_2opagelsplusstandard36025120800115_seg.nii.gz" + }, + { + "image": "109464/1_0opagelsplusstandard36025120800108.nii.gz", + "pseudo_label": "109464/1_0opagelsplusstandard36025120800108.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109464/1_0opagelsplusstandard36025120800108/1_0opagelsplusstandard36025120800108_seg.nii.gz" + }, + { + "image": "109464/1_2opagelspluslung36025120800115.nii.gz", + "pseudo_label": "109464/1_2opagelspluslung36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109464/1_2opagelspluslung36025120800115/1_2opagelspluslung36025120800115_seg.nii.gz" + }, + { + "image": "111574/2_2opagehsqxstandard35025120560115.nii.gz", + "pseudo_label": "111574/2_2opagehsqxstandard35025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111574/2_2opagehsqxstandard35025120560115/2_2opagehsqxstandard35025120560115_seg.nii.gz" + }, + { + "image": "111574/3_1opagehsqxbone35025120560115.nii.gz", + "pseudo_label": "111574/3_1opagehsqxbone35025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111574/3_1opagehsqxbone35025120560115/3_1opagehsqxbone35025120560115_seg.nii.gz" + }, + { + "image": "111574/2_1opagehsqxstandard35025120560115.nii.gz", + "pseudo_label": "111574/2_1opagehsqxstandard35025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111574/2_1opagehsqxstandard35025120560115/2_1opagehsqxstandard35025120560115_seg.nii.gz" + }, + { + "image": "111574/3_2opagehsqxbone35025120560115.nii.gz", + "pseudo_label": "111574/3_2opagehsqxbone35025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111574/3_2opagehsqxbone35025120560115/3_2opagehsqxbone35025120560115_seg.nii.gz" + }, + { + "image": "112991/3_1opasevzoomb50f29021207540na.nii.gz", + "pseudo_label": "112991/3_1opasevzoomb50f29021207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112991/3_1opasevzoomb50f29021207540na/3_1opasevzoomb50f29021207540na_seg.nii.gz" + }, + { + "image": "112991/3_2opasevzoomb50f35021207540na.nii.gz", + "pseudo_label": "112991/3_2opasevzoomb50f35021207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112991/3_2opasevzoomb50f35021207540na/3_2opasevzoomb50f35021207540na_seg.nii.gz" + }, + { + "image": "112991/2_1opasevzoomb30f29021207540na.nii.gz", + "pseudo_label": "112991/2_1opasevzoomb30f29021207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112991/2_1opasevzoomb30f29021207540na/2_1opasevzoomb30f29021207540na_seg.nii.gz" + }, + { + "image": "112991/2_2opasevzoomb30f35021207540na.nii.gz", + "pseudo_label": "112991/2_2opasevzoomb30f35021207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112991/2_2opasevzoomb30f35021207540na/2_2opasevzoomb30f35021207540na_seg.nii.gz" + }, + { + "image": "101837/3_0opagelsqxbone31025120nanana.nii.gz", + "pseudo_label": "101837/3_0opagelsqxbone31025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101837/3_0opagelsqxbone31025120nanana/3_0opagelsqxbone31025120nanana_seg.nii.gz" + }, + { + "image": "101837/3_1opagels16bone31025120nanana.nii.gz", + "pseudo_label": "101837/3_1opagels16bone31025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101837/3_1opagels16bone31025120nanana/3_1opagels16bone31025120nanana_seg.nii.gz" + }, + { + "image": "101837/2_1opagels16standard31025120nanana.nii.gz", + "pseudo_label": "101837/2_1opagels16standard31025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101837/2_1opagels16standard31025120nanana/2_1opagels16standard31025120nanana_seg.nii.gz" + }, + { + "image": "101837/2_0opagelsqxstandard31025120nanana.nii.gz", + "pseudo_label": "101837/2_0opagelsqxstandard31025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101837/2_0opagelsqxstandard31025120nanana/2_0opagelsqxstandard31025120nanana_seg.nii.gz" + }, + { + "image": "100364/0_0opaphmx8000c36132120600112.nii.gz", + "pseudo_label": "100364/0_0opaphmx8000c36132120600112.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100364/0_0opaphmx8000c36132120600112/0_0opaphmx8000c36132120600112_seg.nii.gz" + }, + { + "image": "100364/1915_2opaphmx8000d3293212039018.nii.gz", + "pseudo_label": "100364/1915_2opaphmx8000d3293212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100364/1915_2opaphmx8000d3293212039018/1915_2opaphmx8000d3293212039018_seg.nii.gz" + }, + { + "image": "109969/2_1opagelsplusstandard3302514040015.nii.gz", + "pseudo_label": "109969/2_1opagelsplusstandard3302514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109969/2_1opagelsplusstandard3302514040015/2_1opagelsplusstandard3302514040015_seg.nii.gz" + }, + { + "image": "109969/2_0opagelsplusstandard3402514040015.nii.gz", + "pseudo_label": "109969/2_0opagelsplusstandard3402514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109969/2_0opagelsplusstandard3402514040015/2_0opagelsplusstandard3402514040015_seg.nii.gz" + }, + { + "image": "109969/2_2opagelsplusstandard3392514040015.nii.gz", + "pseudo_label": "109969/2_2opagelsplusstandard3392514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109969/2_2opagelsplusstandard3392514040015/2_2opagelsplusstandard3392514040015_seg.nii.gz" + }, + { + "image": "109969/3_2opagelsplusstandard3432514040015.nii.gz", + "pseudo_label": "109969/3_2opagelsplusstandard3432514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109969/3_2opagelsplusstandard3432514040015/3_2opagelsplusstandard3432514040015_seg.nii.gz" + }, + { + "image": "101989/3_1opatoaqul4fc512766212040nana.nii.gz", + "pseudo_label": "101989/3_1opatoaqul4fc512766212040nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101989/3_1opatoaqul4fc512766212040nana/3_1opatoaqul4fc512766212040nana_seg.nii.gz" + }, + { + "image": "106837/2_2opagehsqxstandard32025120560115.nii.gz", + "pseudo_label": "106837/2_2opagehsqxstandard32025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106837/2_2opagehsqxstandard32025120560115/2_2opagehsqxstandard32025120560115_seg.nii.gz" + }, + { + "image": "106837/2_0opagehsqxstandard32025120560115.nii.gz", + "pseudo_label": "106837/2_0opagehsqxstandard32025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106837/2_0opagehsqxstandard32025120560115/2_0opagehsqxstandard32025120560115_seg.nii.gz" + }, + { + "image": "106837/3_0opagehsqxbone32025120560115.nii.gz", + "pseudo_label": "106837/3_0opagehsqxbone32025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106837/3_0opagehsqxbone32025120560115/3_0opagehsqxbone32025120560115_seg.nii.gz" + }, + { + "image": "106837/2_1opagehsqxstandard32025120560115.nii.gz", + "pseudo_label": "106837/2_1opagehsqxstandard32025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106837/2_1opagehsqxstandard32025120560115/2_1opagehsqxstandard32025120560115_seg.nii.gz" + }, + { + "image": "104625/7599_1opaphmx8000c38132120453612.nii.gz", + "pseudo_label": "104625/7599_1opaphmx8000c38132120453612.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104625/7599_1opaphmx8000c38132120453612/7599_1opaphmx8000c38132120453612_seg.nii.gz" + }, + { + "image": "104625/5160_0opaphmx8000c347321208787012.nii.gz", + "pseudo_label": "104625/5160_0opaphmx8000c347321208787012.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104625/5160_0opaphmx8000c347321208787012/5160_0opaphmx8000c347321208787012_seg.nii.gz" + }, + { + "image": "112175/3_2opasevzoomb50f39621207040na.nii.gz", + "pseudo_label": "112175/3_2opasevzoomb50f39621207040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112175/3_2opasevzoomb50f39621207040na/3_2opasevzoomb50f39621207040na_seg.nii.gz" + }, + { + "image": "112175/2_0opasevzoomb30f403212010560na.nii.gz", + "pseudo_label": "112175/2_0opasevzoomb30f403212010560na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112175/2_0opasevzoomb30f403212010560na/2_0opasevzoomb30f403212010560na_seg.nii.gz" + }, + { + "image": "101296/2_0opasevzoomb50f29021206030na.nii.gz", + "pseudo_label": "101296/2_0opasevzoomb50f29021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101296/2_0opasevzoomb50f29021206030na/2_0opasevzoomb50f29021206030na_seg.nii.gz" + }, + { + "image": "101296/3_0opasevzoomb30f29021206030na.nii.gz", + "pseudo_label": "101296/3_0opasevzoomb30f29021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101296/3_0opasevzoomb30f29021206030na/3_0opasevzoomb30f29021206030na_seg.nii.gz" + }, + { + "image": "101296/3_1opasevzoomb50f29021206030na.nii.gz", + "pseudo_label": "101296/3_1opasevzoomb50f29021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101296/3_1opasevzoomb50f29021206030na/3_1opasevzoomb50f29021206030na_seg.nii.gz" + }, + { + "image": "101296/6_1opasevzoomb30f29021206030na.nii.gz", + "pseudo_label": "101296/6_1opasevzoomb30f29021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101296/6_1opasevzoomb30f29021206030na/6_1opasevzoomb30f29021206030na_seg.nii.gz" + }, + { + "image": "101296/5_1opasevzoomb50f29021206030na.nii.gz", + "pseudo_label": "101296/5_1opasevzoomb50f29021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101296/5_1opasevzoomb50f29021206030na/5_1opasevzoomb50f29021206030na_seg.nii.gz" + }, + { + "image": "110181/2_2opagelspr16bone3502512048014.nii.gz", + "pseudo_label": "110181/2_2opagelspr16bone3502512048014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110181/2_2opagelspr16bone3502512048014/2_2opagelspr16bone3502512048014_seg.nii.gz" + }, + { + "image": "110181/3_1opagels16standard3472512048014.nii.gz", + "pseudo_label": "110181/3_1opagels16standard3472512048014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110181/3_1opagels16standard3472512048014/3_1opagels16standard3472512048014_seg.nii.gz" + }, + { + "image": "110181/3_2opagelspr16standard3502512048014.nii.gz", + "pseudo_label": "110181/3_2opagelspr16standard3502512048014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110181/3_2opagelspr16standard3502512048014/3_2opagelspr16standard3502512048014_seg.nii.gz" + }, + { + "image": "110181/2_1opagels16bone3472512048014.nii.gz", + "pseudo_label": "110181/2_1opagels16bone3472512048014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110181/2_1opagels16bone3472512048014/2_1opagels16bone3472512048014_seg.nii.gz" + }, + { + "image": "107656/1_1opatoaqul4fc103398312080nana.nii.gz", + "pseudo_label": "107656/1_1opatoaqul4fc103398312080nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107656/1_1opatoaqul4fc103398312080nana/1_1opatoaqul4fc103398312080nana_seg.nii.gz" + }, + { + "image": "107656/1_0opagelsplusstandard34025120800115.nii.gz", + "pseudo_label": "107656/1_0opagelsplusstandard34025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107656/1_0opagelsplusstandard34025120800115/1_0opagelsplusstandard34025120800115_seg.nii.gz" + }, + { + "image": "107656/1_2opagelsplusstandard36025120800115.nii.gz", + "pseudo_label": "107656/1_2opagelsplusstandard36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107656/1_2opagelsplusstandard36025120800115/1_2opagelsplusstandard36025120800115_seg.nii.gz" + }, + { + "image": "107968/2_1opagelsqxstandard32025120640115.nii.gz", + "pseudo_label": "107968/2_1opagelsqxstandard32025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107968/2_1opagelsqxstandard32025120640115/2_1opagelsqxstandard32025120640115_seg.nii.gz" + }, + { + "image": "107968/3_1opagelsqxbone32025120640115.nii.gz", + "pseudo_label": "107968/3_1opagelsqxbone32025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107968/3_1opagelsqxbone32025120640115/3_1opagelsqxbone32025120640115_seg.nii.gz" + }, + { + "image": "107968/2_2opagelsqxstandard36025120560115.nii.gz", + "pseudo_label": "107968/2_2opagelsqxstandard36025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107968/2_2opagelsqxstandard36025120560115/2_2opagelsqxstandard36025120560115_seg.nii.gz" + }, + { + "image": "107968/3_0opagelsqxbone34025120720115.nii.gz", + "pseudo_label": "107968/3_0opagelsqxbone34025120720115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107968/3_0opagelsqxbone34025120720115/3_0opagelsqxbone34025120720115_seg.nii.gz" + }, + { + "image": "107968/3_2opagelsqxbone36025120560115.nii.gz", + "pseudo_label": "107968/3_2opagelsqxbone36025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107968/3_2opagelsqxbone36025120560115/3_2opagelsqxbone36025120560115_seg.nii.gz" + }, + { + "image": "107968/2_0opagelsqxstandard34025120720115.nii.gz", + "pseudo_label": "107968/2_0opagelsqxstandard34025120720115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107968/2_0opagelsqxstandard34025120720115/2_0opagelsqxstandard34025120720115_seg.nii.gz" + }, + { + "image": "109520/2_0opagelsplusstandard38825120600115.nii.gz", + "pseudo_label": "109520/2_0opagelsplusstandard38825120600115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109520/2_0opagelsplusstandard38825120600115/2_0opagelsplusstandard38825120600115_seg.nii.gz" + }, + { + "image": "107856/6_0opasevzoomb20f32621206030na.nii.gz", + "pseudo_label": "107856/6_0opasevzoomb20f32621206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107856/6_0opasevzoomb20f32621206030na/6_0opasevzoomb20f32621206030na_seg.nii.gz" + }, + { + "image": "107856/5_2opasesen16b50f32051204530na.nii.gz", + "pseudo_label": "107856/5_2opasesen16b50f32051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107856/5_2opasesen16b50f32051204530na/5_2opasesen16b50f32051204530na_seg.nii.gz" + }, + { + "image": "107856/3_1opasesen16b30f30051204530na.nii.gz", + "pseudo_label": "107856/3_1opasesen16b30f30051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107856/3_1opasesen16b30f30051204530na/3_1opasesen16b30f30051204530na_seg.nii.gz" + }, + { + "image": "107856/3_0opasevzoomb30f32651206030na.nii.gz", + "pseudo_label": "107856/3_0opasevzoomb30f32651206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107856/3_0opasevzoomb30f32651206030na/3_0opasevzoomb30f32651206030na_seg.nii.gz" + }, + { + "image": "107856/4_2opasesen16b30f32021204530na.nii.gz", + "pseudo_label": "107856/4_2opasesen16b30f32021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107856/4_2opasesen16b30f32021204530na/4_2opasesen16b30f32021204530na_seg.nii.gz" + }, + { + "image": "107856/4_0opasevzoomb50f32651206030na.nii.gz", + "pseudo_label": "107856/4_0opasevzoomb50f32651206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107856/4_0opasevzoomb50f32651206030na/4_0opasevzoomb50f32651206030na_seg.nii.gz" + }, + { + "image": "107687/2_2opagels16standard3502514040014.nii.gz", + "pseudo_label": "107687/2_2opagels16standard3502514040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107687/2_2opagels16standard3502514040014/2_2opagels16standard3502514040014_seg.nii.gz" + }, + { + "image": "107687/2_1opagels16standard3392514040014.nii.gz", + "pseudo_label": "107687/2_1opagels16standard3392514040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107687/2_1opagels16standard3392514040014/2_1opagels16standard3392514040014_seg.nii.gz" + }, + { + "image": "107687/2_0opagelsqxstandard3202514040015.nii.gz", + "pseudo_label": "107687/2_0opagelsqxstandard3202514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107687/2_0opagelsqxstandard3202514040015/2_0opagelsqxstandard3202514040015_seg.nii.gz" + }, + { + "image": "108482/2_2opagelsqxstandard36025120640115.nii.gz", + "pseudo_label": "108482/2_2opagelsqxstandard36025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108482/2_2opagelsqxstandard36025120640115/2_2opagelsqxstandard36025120640115_seg.nii.gz" + }, + { + "image": "108482/2_0opagelsqxstandard36025120640115.nii.gz", + "pseudo_label": "108482/2_0opagelsqxstandard36025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108482/2_0opagelsqxstandard36025120640115/2_0opagelsqxstandard36025120640115_seg.nii.gz" + }, + { + "image": "108482/3_0opagelsqxbone36025120640115.nii.gz", + "pseudo_label": "108482/3_0opagelsqxbone36025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108482/3_0opagelsqxbone36025120640115/3_0opagelsqxbone36025120640115_seg.nii.gz" + }, + { + "image": "108482/3_1opagelsqxbone36025120640115.nii.gz", + "pseudo_label": "108482/3_1opagelsqxbone36025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108482/3_1opagelsqxbone36025120640115/3_1opagelsqxbone36025120640115_seg.nii.gz" + }, + { + "image": "108482/3_2opagelsqxbone36025120640115.nii.gz", + "pseudo_label": "108482/3_2opagelsqxbone36025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108482/3_2opagelsqxbone36025120640115/3_2opagelsqxbone36025120640115_seg.nii.gz" + }, + { + "image": "111830/2_0opagelsqxstandard2892514048015.nii.gz", + "pseudo_label": "111830/2_0opagelsqxstandard2892514048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111830/2_0opagelsqxstandard2892514048015/2_0opagelsqxstandard2892514048015_seg.nii.gz" + }, + { + "image": "111830/2_2opagelsqxstandard2902514048015.nii.gz", + "pseudo_label": "111830/2_2opagelsqxstandard2902514048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111830/2_2opagelsqxstandard2902514048015/2_2opagelsqxstandard2902514048015_seg.nii.gz" + }, + { + "image": "111830/2_1opageunkstandard2902514048015.nii.gz", + "pseudo_label": "111830/2_1opageunkstandard2902514048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111830/2_1opageunkstandard2902514048015/2_1opageunkstandard2902514048015_seg.nii.gz" + }, + { + "image": "111389/2_2opagels16standard37025120627nana.nii.gz", + "pseudo_label": "111389/2_2opagels16standard37025120627nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111389/2_2opagels16standard37025120627nana/2_2opagels16standard37025120627nana_seg.nii.gz" + }, + { + "image": "111389/3_1opagelsqxstandard3702512048015.nii.gz", + "pseudo_label": "111389/3_1opagelsqxstandard3702512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111389/3_1opagelsqxstandard3702512048015/3_1opagelsqxstandard3702512048015_seg.nii.gz" + }, + { + "image": "108832/2_0opagelsqxstandard36025120640115.nii.gz", + "pseudo_label": "108832/2_0opagelsqxstandard36025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108832/2_0opagelsqxstandard36025120640115/2_0opagelsqxstandard36025120640115_seg.nii.gz" + }, + { + "image": "108832/2_1opagelsqxstandard3102512048015.nii.gz", + "pseudo_label": "108832/2_1opagelsqxstandard3102512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108832/2_1opagelsqxstandard3102512048015/2_1opagelsqxstandard3102512048015_seg.nii.gz" + }, + { + "image": "106110/3_1opasevzoomb30f27251206030na.nii.gz", + "pseudo_label": "106110/3_1opasevzoomb30f27251206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106110/3_1opasevzoomb30f27251206030na/3_1opasevzoomb30f27251206030na_seg.nii.gz" + }, + { + "image": "106110/5_2opasevzoomb50f27551206030na.nii.gz", + "pseudo_label": "106110/5_2opasevzoomb50f27551206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106110/5_2opasevzoomb50f27551206030na/5_2opasevzoomb50f27551206030na_seg.nii.gz" + }, + { + "image": "106110/3_0opasesen16b30f27851209060na.nii.gz", + "pseudo_label": "106110/3_0opasesen16b30f27851209060na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106110/3_0opasesen16b30f27851209060na/3_0opasesen16b30f27851209060na_seg.nii.gz" + }, + { + "image": "106110/6_0opasesen16b30f27821209060na.nii.gz", + "pseudo_label": "106110/6_0opasesen16b30f27821209060na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106110/6_0opasesen16b30f27821209060na/6_0opasesen16b30f27821209060na_seg.nii.gz" + }, + { + "image": "106110/4_2opasevzoomb30f27551206030na.nii.gz", + "pseudo_label": "106110/4_2opasevzoomb30f27551206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106110/4_2opasevzoomb30f27551206030na/4_2opasevzoomb30f27551206030na_seg.nii.gz" + }, + { + "image": "106110/4_1opasevzoomb50f27251206030na.nii.gz", + "pseudo_label": "106110/4_1opasevzoomb50f27251206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106110/4_1opasevzoomb50f27251206030na/4_1opasevzoomb50f27251206030na_seg.nii.gz" + }, + { + "image": "106110/4_0opasesen16b50f27851209060na.nii.gz", + "pseudo_label": "106110/4_0opasesen16b50f27851209060na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106110/4_0opasesen16b50f27851209060na/4_0opasesen16b50f27851209060na_seg.nii.gz" + }, + { + "image": "106127/3_1opatoaqul4fc51300212055nana.nii.gz", + "pseudo_label": "106127/3_1opatoaqul4fc51300212055nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106127/3_1opatoaqul4fc51300212055nana/3_1opatoaqul4fc51300212055nana_seg.nii.gz" + }, + { + "image": "106127/3_2opatoaqul4fc513219212075nana.nii.gz", + "pseudo_label": "106127/3_2opatoaqul4fc513219212075nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106127/3_2opatoaqul4fc513219212075nana/3_2opatoaqul4fc513219212075nana_seg.nii.gz" + }, + { + "image": "103372/3_2opagelspr16standard40025120640114.nii.gz", + "pseudo_label": "103372/3_2opagelspr16standard40025120640114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103372/3_2opagelspr16standard40025120640114/3_2opagelspr16standard40025120640114_seg.nii.gz" + }, + { + "image": "103372/2_1opagels16bone4522512048014.nii.gz", + "pseudo_label": "103372/2_1opagels16bone4522512048014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103372/2_1opagels16bone4522512048014/2_1opagels16bone4522512048014_seg.nii.gz" + }, + { + "image": "103372/5_1opagels16standard4522512048014.nii.gz", + "pseudo_label": "103372/5_1opagels16standard4522512048014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103372/5_1opagels16standard4522512048014/5_1opagels16standard4522512048014_seg.nii.gz" + }, + { + "image": "103372/2_2opagelspr16bone40025120640114.nii.gz", + "pseudo_label": "103372/2_2opagelspr16bone40025120640114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103372/2_2opagelspr16bone40025120640114/2_2opagelspr16bone40025120640114_seg.nii.gz" + }, + { + "image": "103372/3_1opagels16standard4522512048014.nii.gz", + "pseudo_label": "103372/3_1opagels16standard4522512048014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103372/3_1opagels16standard4522512048014/3_1opagels16standard4522512048014_seg.nii.gz" + }, + { + "image": "103372/4_1opagels16bone4522512048014.nii.gz", + "pseudo_label": "103372/4_1opagels16bone4522512048014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103372/4_1opagels16bone4522512048014/4_1opagels16bone4522512048014_seg.nii.gz" + }, + { + "image": "105244/2_2opagelsqxstandard3002514040015.nii.gz", + "pseudo_label": "105244/2_2opagelsqxstandard3002514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105244/2_2opagelsqxstandard3002514040015/2_2opagelsqxstandard3002514040015_seg.nii.gz" + }, + { + "image": "105244/2_0opagelsplusstandard3502514040015.nii.gz", + "pseudo_label": "105244/2_0opagelsplusstandard3502514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105244/2_0opagelsplusstandard3502514040015/2_0opagelsplusstandard3502514040015_seg.nii.gz" + }, + { + "image": "105244/2_1opagelsqxstandard3052514040015.nii.gz", + "pseudo_label": "105244/2_1opagelsqxstandard3052514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105244/2_1opagelsqxstandard3052514040015/2_1opagelsqxstandard3052514040015_seg.nii.gz" + }, + { + "image": "105908/3_1opasevzoomb30f27021206030na.nii.gz", + "pseudo_label": "105908/3_1opasevzoomb30f27021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105908/3_1opasevzoomb30f27021206030na/3_1opasevzoomb30f27021206030na_seg.nii.gz" + }, + { + "image": "105908/2_2opasesen16b50f27021204530na.nii.gz", + "pseudo_label": "105908/2_2opasesen16b50f27021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105908/2_2opasesen16b50f27021204530na/2_2opasesen16b50f27021204530na_seg.nii.gz" + }, + { + "image": "105908/2_0opasevzoomb50f25021206030na.nii.gz", + "pseudo_label": "105908/2_0opasevzoomb50f25021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105908/2_0opasevzoomb50f25021206030na/2_0opasevzoomb50f25021206030na_seg.nii.gz" + }, + { + "image": "100631/3_2opasevzoomb30f34021206030na.nii.gz", + "pseudo_label": "100631/3_2opasevzoomb30f34021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100631/3_2opasevzoomb30f34021206030na/3_2opasevzoomb30f34021206030na_seg.nii.gz" + }, + { + "image": "107463/3_1opatoaqul4fc513203212080nana.nii.gz", + "pseudo_label": "107463/3_1opatoaqul4fc513203212080nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107463/3_1opatoaqul4fc513203212080nana/3_1opatoaqul4fc513203212080nana_seg.nii.gz" + }, + { + "image": "102892/2_2opasevzoomb50f34421206030na.nii.gz", + "pseudo_label": "102892/2_2opasevzoomb50f34421206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102892/2_2opasevzoomb50f34421206030na/2_2opasevzoomb50f34421206030na_seg.nii.gz" + }, + { + "image": "102892/2_1opasesen16b50f33021204530na.nii.gz", + "pseudo_label": "102892/2_1opasesen16b50f33021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102892/2_1opasesen16b50f33021204530na/2_1opasesen16b50f33021204530na_seg.nii.gz" + }, + { + "image": "102892/2_0opasevzoomb50f32021206030na.nii.gz", + "pseudo_label": "102892/2_0opasevzoomb50f32021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102892/2_0opasevzoomb50f32021206030na/2_0opasevzoomb50f32021206030na_seg.nii.gz" + }, + { + "image": "102892/3_0opasevzoomb30f32021206030na.nii.gz", + "pseudo_label": "102892/3_0opasevzoomb30f32021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102892/3_0opasevzoomb30f32021206030na/3_0opasevzoomb30f32021206030na_seg.nii.gz" + }, + { + "image": "112306/2_2opagehsqxstandard32025120560115.nii.gz", + "pseudo_label": "112306/2_2opagehsqxstandard32025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112306/2_2opagehsqxstandard32025120560115/2_2opagehsqxstandard32025120560115_seg.nii.gz" + }, + { + "image": "112306/2_0opagehsqxstandard32025120560115.nii.gz", + "pseudo_label": "112306/2_0opagehsqxstandard32025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112306/2_0opagehsqxstandard32025120560115/2_0opagehsqxstandard32025120560115_seg.nii.gz" + }, + { + "image": "112306/3_2opagehsqxbone32025120560115.nii.gz", + "pseudo_label": "112306/3_2opagehsqxbone32025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112306/3_2opagehsqxbone32025120560115/3_2opagehsqxbone32025120560115_seg.nii.gz" + }, + { + "image": "112306/3_1opagehsqxbone32025120560115.nii.gz", + "pseudo_label": "112306/3_1opagehsqxbone32025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112306/3_1opagehsqxbone32025120560115/3_1opagehsqxbone32025120560115_seg.nii.gz" + }, + { + "image": "112306/2_1opagehsqxstandard32025120560115.nii.gz", + "pseudo_label": "112306/2_1opagehsqxstandard32025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112306/2_1opagehsqxstandard32025120560115/2_1opagehsqxstandard32025120560115_seg.nii.gz" + }, + { + "image": "102708/0_0opaphmx8000c31932120600112.nii.gz", + "pseudo_label": "102708/0_0opaphmx8000c31932120600112.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102708/0_0opaphmx8000c31932120600112/0_0opaphmx8000c31932120600112_seg.nii.gz" + }, + { + "image": "102708/5742_2opaphmx8000d3033212041018.nii.gz", + "pseudo_label": "102708/5742_2opaphmx8000d3033212041018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102708/5742_2opaphmx8000d3033212041018/5742_2opaphmx8000d3033212041018_seg.nii.gz" + }, + { + "image": "102708/1261_1opaphmx8000c3013212039018.nii.gz", + "pseudo_label": "102708/1261_1opaphmx8000c3013212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102708/1261_1opaphmx8000c3013212039018/1261_1opaphmx8000c3013212039018_seg.nii.gz" + }, + { + "image": "102708/0_0opaphmx8000d31932120600112.nii.gz", + "pseudo_label": "102708/0_0opaphmx8000d31932120600112.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102708/0_0opaphmx8000d31932120600112/0_0opaphmx8000d31932120600112_seg.nii.gz" + }, + { + "image": "101155/2_1opagehsqxstandard29025120560115.nii.gz", + "pseudo_label": "101155/2_1opagehsqxstandard29025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101155/2_1opagehsqxstandard29025120560115/2_1opagehsqxstandard29025120560115_seg.nii.gz" + }, + { + "image": "101155/5_2opagehsqxbone29025120560115.nii.gz", + "pseudo_label": "101155/5_2opagehsqxbone29025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101155/5_2opagehsqxbone29025120560115/5_2opagehsqxbone29025120560115_seg.nii.gz" + }, + { + "image": "101155/2_0opagehsqxstandard29025120560115.nii.gz", + "pseudo_label": "101155/2_0opagehsqxstandard29025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101155/2_0opagehsqxstandard29025120560115/2_0opagehsqxstandard29025120560115_seg.nii.gz" + }, + { + "image": "101155/3_0opagehsqxbone29025120560115.nii.gz", + "pseudo_label": "101155/3_0opagehsqxbone29025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101155/3_0opagehsqxbone29025120560115/3_0opagehsqxbone29025120560115_seg.nii.gz" + }, + { + "image": "109034/3_2opasesen16b30f34021204530na.nii.gz", + "pseudo_label": "109034/3_2opasesen16b30f34021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109034/3_2opasesen16b30f34021204530na/3_2opasesen16b30f34021204530na_seg.nii.gz" + }, + { + "image": "109034/3_1opasevzoomb30f35021206030na.nii.gz", + "pseudo_label": "109034/3_1opasevzoomb30f35021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109034/3_1opasevzoomb30f35021206030na/3_1opasevzoomb30f35021206030na_seg.nii.gz" + }, + { + "image": "109034/2_2opasesen16b50f34021204530na.nii.gz", + "pseudo_label": "109034/2_2opasesen16b50f34021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109034/2_2opasesen16b50f34021204530na/2_2opasesen16b50f34021204530na_seg.nii.gz" + }, + { + "image": "107874/2_0opasevzoomb50f34021206030na.nii.gz", + "pseudo_label": "107874/2_0opasevzoomb50f34021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107874/2_0opasevzoomb50f34021206030na/2_0opasevzoomb50f34021206030na_seg.nii.gz" + }, + { + "image": "107874/3_0opasevzoomb30f34021206030na.nii.gz", + "pseudo_label": "107874/3_0opasevzoomb30f34021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107874/3_0opasevzoomb30f34021206030na/3_0opasevzoomb30f34021206030na_seg.nii.gz" + }, + { + "image": "107874/2_1opasesen16b50f37621204530na.nii.gz", + "pseudo_label": "107874/2_1opasesen16b50f37621204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107874/2_1opasesen16b50f37621204530na/2_1opasesen16b50f37621204530na_seg.nii.gz" + }, + { + "image": "107874/3_2opasevzoomb30f35021206030na.nii.gz", + "pseudo_label": "107874/3_2opasevzoomb30f35021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107874/3_2opasevzoomb30f35021206030na/3_2opasevzoomb30f35021206030na_seg.nii.gz" + }, + { + "image": "107874/3_1opasesen16b30f37621204530na.nii.gz", + "pseudo_label": "107874/3_1opasesen16b30f37621204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107874/3_1opasesen16b30f37621204530na/3_1opasesen16b30f37621204530na_seg.nii.gz" + }, + { + "image": "101741/2_0opasevzoomb50f34021206030na.nii.gz", + "pseudo_label": "101741/2_0opasevzoomb50f34021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101741/2_0opasevzoomb50f34021206030na/2_0opasevzoomb50f34021206030na_seg.nii.gz" + }, + { + "image": "101741/3_0opasevzoomb30f34021206030na.nii.gz", + "pseudo_label": "101741/3_0opasevzoomb30f34021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101741/3_0opasevzoomb30f34021206030na/3_0opasevzoomb30f34021206030na_seg.nii.gz" + }, + { + "image": "101741/4_2opasesen16b50f33021204530na.nii.gz", + "pseudo_label": "101741/4_2opasesen16b50f33021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101741/4_2opasesen16b50f33021204530na/4_2opasesen16b50f33021204530na_seg.nii.gz" + }, + { + "image": "110849/3_1opagels16standard34025140600114.nii.gz", + "pseudo_label": "110849/3_1opagels16standard34025140600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110849/3_1opagels16standard34025140600114/3_1opagels16standard34025140600114_seg.nii.gz" + }, + { + "image": "110849/2_1opagels16bone34025140600114.nii.gz", + "pseudo_label": "110849/2_1opagels16bone34025140600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110849/2_1opagels16bone34025140600114/2_1opagels16bone34025140600114_seg.nii.gz" + }, + { + "image": "110849/5_2opagels16standard34025120600114.nii.gz", + "pseudo_label": "110849/5_2opagels16standard34025120600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110849/5_2opagels16standard34025120600114/5_2opagels16standard34025120600114_seg.nii.gz" + }, + { + "image": "112122/2_1opagelsqxstandard31925120640115.nii.gz", + "pseudo_label": "112122/2_1opagelsqxstandard31925120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112122/2_1opagelsqxstandard31925120640115/2_1opagelsqxstandard31925120640115_seg.nii.gz" + }, + { + "image": "112800/2_2opagels16standard3202514040014.nii.gz", + "pseudo_label": "112800/2_2opagels16standard3202514040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112800/2_2opagels16standard3202514040014/2_2opagels16standard3202514040014_seg.nii.gz" + }, + { + "image": "112800/2_0opagelsqxstandard3202514040015.nii.gz", + "pseudo_label": "112800/2_0opagelsqxstandard3202514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112800/2_0opagelsqxstandard3202514040015/2_0opagelsqxstandard3202514040015_seg.nii.gz" + }, + { + "image": "101921/3_0opasevzoomb50f30221207540na.nii.gz", + "pseudo_label": "101921/3_0opasevzoomb50f30221207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101921/3_0opasevzoomb50f30221207540na/3_0opasevzoomb50f30221207540na_seg.nii.gz" + }, + { + "image": "101921/2_0opasevzoomb30f30221207540na.nii.gz", + "pseudo_label": "101921/2_0opasevzoomb30f30221207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101921/2_0opasevzoomb30f30221207540na/2_0opasevzoomb30f30221207540na_seg.nii.gz" + }, + { + "image": "101921/3_1opasevzoomb50f28021207540na.nii.gz", + "pseudo_label": "101921/3_1opasevzoomb50f28021207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101921/3_1opasevzoomb50f28021207540na/3_1opasevzoomb50f28021207540na_seg.nii.gz" + }, + { + "image": "101921/2_2opasevzoomb30f31221207540na.nii.gz", + "pseudo_label": "101921/2_2opasevzoomb30f31221207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101921/2_2opasevzoomb30f31221207540na/2_2opasevzoomb30f31221207540na_seg.nii.gz" + }, + { + "image": "107917/1_1opagelspluslung38025120800115.nii.gz", + "pseudo_label": "107917/1_1opagelspluslung38025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107917/1_1opagelspluslung38025120800115/1_1opagelspluslung38025120800115_seg.nii.gz" + }, + { + "image": "107917/1_0opagelspluslung38025120800115.nii.gz", + "pseudo_label": "107917/1_0opagelspluslung38025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107917/1_0opagelspluslung38025120800115/1_0opagelspluslung38025120800115_seg.nii.gz" + }, + { + "image": "107917/1_1opagelsplusstandard38025120800115.nii.gz", + "pseudo_label": "107917/1_1opagelsplusstandard38025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107917/1_1opagelsplusstandard38025120800115/1_1opagelsplusstandard38025120800115_seg.nii.gz" + }, + { + "image": "107917/1_2opagelsplusstandard38025120800115.nii.gz", + "pseudo_label": "107917/1_2opagelsplusstandard38025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107917/1_2opagelsplusstandard38025120800115/1_2opagelsplusstandard38025120800115_seg.nii.gz" + }, + { + "image": "107917/1_2opagelspluslung38025120800115.nii.gz", + "pseudo_label": "107917/1_2opagelspluslung38025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107917/1_2opagelspluslung38025120800115/1_2opagelspluslung38025120800115_seg.nii.gz" + }, + { + "image": "107917/1_0opagelsplusstandard38025120800115.nii.gz", + "pseudo_label": "107917/1_0opagelsplusstandard38025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107917/1_0opagelsplusstandard38025120800115/1_0opagelsplusstandard38025120800115_seg.nii.gz" + }, + { + "image": "101297/2_0opagelsplusstandard3502514040015.nii.gz", + "pseudo_label": "101297/2_0opagelsplusstandard3502514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101297/2_0opagelsplusstandard3502514040015/2_0opagelsplusstandard3502514040015_seg.nii.gz" + }, + { + "image": "101297/2_1opagelsqxstandard3802514040015.nii.gz", + "pseudo_label": "101297/2_1opagelsqxstandard3802514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101297/2_1opagelsqxstandard3802514040015/2_1opagelsqxstandard3802514040015_seg.nii.gz" + }, + { + "image": "111808/3_0opagels16standard35025120720114.nii.gz", + "pseudo_label": "111808/3_0opagels16standard35025120720114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111808/3_0opagels16standard35025120720114/3_0opagels16standard35025120720114_seg.nii.gz" + }, + { + "image": "111808/3_1opagels16standard35025120600114.nii.gz", + "pseudo_label": "111808/3_1opagels16standard35025120600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111808/3_1opagels16standard35025120600114/3_1opagels16standard35025120600114_seg.nii.gz" + }, + { + "image": "111808/2_1opagels16bone35025120600114.nii.gz", + "pseudo_label": "111808/2_1opagels16bone35025120600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111808/2_1opagels16bone35025120600114/2_1opagels16bone35025120600114_seg.nii.gz" + }, + { + "image": "103604/3_0opagelsqxbone35025120560115.nii.gz", + "pseudo_label": "103604/3_0opagelsqxbone35025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103604/3_0opagelsqxbone35025120560115/3_0opagelsqxbone35025120560115_seg.nii.gz" + }, + { + "image": "103604/2_1opagelsqxstandard33825120560115.nii.gz", + "pseudo_label": "103604/2_1opagelsqxstandard33825120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103604/2_1opagelsqxstandard33825120560115/2_1opagelsqxstandard33825120560115_seg.nii.gz" + }, + { + "image": "103604/2_0opagelsqxstandard35025120560115.nii.gz", + "pseudo_label": "103604/2_0opagelsqxstandard35025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103604/2_0opagelsqxstandard35025120560115/2_0opagelsqxstandard35025120560115_seg.nii.gz" + }, + { + "image": "103604/2_2opagelsqxstandard34525120640115.nii.gz", + "pseudo_label": "103604/2_2opagelsqxstandard34525120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103604/2_2opagelsqxstandard34525120640115/2_2opagelsqxstandard34525120640115_seg.nii.gz" + }, + { + "image": "103604/3_1opagelsqxbone33825120560115.nii.gz", + "pseudo_label": "103604/3_1opagelsqxbone33825120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103604/3_1opagelsqxbone33825120560115/3_1opagelsqxbone33825120560115_seg.nii.gz" + }, + { + "image": "104351/1_1opagelsplusstandard36025120800115.nii.gz", + "pseudo_label": "104351/1_1opagelsplusstandard36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104351/1_1opagelsplusstandard36025120800115/1_1opagelsplusstandard36025120800115_seg.nii.gz" + }, + { + "image": "104351/1_0opagelspluslung36025120800108.nii.gz", + "pseudo_label": "104351/1_0opagelspluslung36025120800108.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104351/1_0opagelspluslung36025120800108/1_0opagelspluslung36025120800108_seg.nii.gz" + }, + { + "image": "104351/1_1opagelspluslung36025120800115.nii.gz", + "pseudo_label": "104351/1_1opagelspluslung36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104351/1_1opagelspluslung36025120800115/1_1opagelspluslung36025120800115_seg.nii.gz" + }, + { + "image": "104351/1_2opagelsplusstandard36025120800115.nii.gz", + "pseudo_label": "104351/1_2opagelsplusstandard36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104351/1_2opagelsplusstandard36025120800115/1_2opagelsplusstandard36025120800115_seg.nii.gz" + }, + { + "image": "104351/1_0opagelsplusstandard36025120800108.nii.gz", + "pseudo_label": "104351/1_0opagelsplusstandard36025120800108.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104351/1_0opagelsplusstandard36025120800108/1_0opagelsplusstandard36025120800108_seg.nii.gz" + }, + { + "image": "102255/3_0opagelsqxstandard3342512048015.nii.gz", + "pseudo_label": "102255/3_0opagelsqxstandard3342512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102255/3_0opagelsqxstandard3342512048015/3_0opagelsqxstandard3342512048015_seg.nii.gz" + }, + { + "image": "102255/2_0opagelsqxbone3342512048015.nii.gz", + "pseudo_label": "102255/2_0opagelsqxbone3342512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102255/2_0opagelsqxbone3342512048015/2_0opagelsqxbone3342512048015_seg.nii.gz" + }, + { + "image": "102255/2_1opagels16bone3202512000na.nii.gz", + "pseudo_label": "102255/2_1opagels16bone3202512000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102255/2_1opagels16bone3202512000na/2_1opagels16bone3202512000na_seg.nii.gz" + }, + { + "image": "102255/3_2opagelspr16standard3002512040014.nii.gz", + "pseudo_label": "102255/3_2opagelspr16standard3002512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102255/3_2opagelspr16standard3002512040014/3_2opagelspr16standard3002512040014_seg.nii.gz" + }, + { + "image": "111310/9753_0opaphmx8000c351321205624512.nii.gz", + "pseudo_label": "111310/9753_0opaphmx8000c351321205624512.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111310/9753_0opaphmx8000c351321205624512/9753_0opaphmx8000c351321205624512_seg.nii.gz" + }, + { + "image": "111310/1465_1opaphmx8000c35332120453612.nii.gz", + "pseudo_label": "111310/1465_1opaphmx8000c35332120453612.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111310/1465_1opaphmx8000c35332120453612/1465_1opaphmx8000c35332120453612_seg.nii.gz" + }, + { + "image": "105499/3_1opasevzoomb50f39021408040na.nii.gz", + "pseudo_label": "105499/3_1opasevzoomb50f39021408040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105499/3_1opasevzoomb50f39021408040na/3_1opasevzoomb50f39021408040na_seg.nii.gz" + }, + { + "image": "105499/2_1opasevzoomb30f39021408040na.nii.gz", + "pseudo_label": "105499/2_1opasevzoomb30f39021408040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105499/2_1opasevzoomb30f39021408040na/2_1opasevzoomb30f39021408040na_seg.nii.gz" + }, + { + "image": "103761/2_0opasevzoomb50f31021206030na.nii.gz", + "pseudo_label": "103761/2_0opasevzoomb50f31021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103761/2_0opasevzoomb50f31021206030na/2_0opasevzoomb50f31021206030na_seg.nii.gz" + }, + { + "image": "103761/3_2opasevzoomb30f29821206030na.nii.gz", + "pseudo_label": "103761/3_2opasevzoomb30f29821206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103761/3_2opasevzoomb30f29821206030na/3_2opasevzoomb30f29821206030na_seg.nii.gz" + }, + { + "image": "112939/3_0opagelsqxbone3082512048015.nii.gz", + "pseudo_label": "112939/3_0opagelsqxbone3082512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112939/3_0opagelsqxbone3082512048015/3_0opagelsqxbone3082512048015_seg.nii.gz" + }, + { + "image": "112939/2_1opagels16bone2892512000na.nii.gz", + "pseudo_label": "112939/2_1opagels16bone2892512000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112939/2_1opagels16bone2892512000na/2_1opagels16bone2892512000na_seg.nii.gz" + }, + { + "image": "112939/2_0opagelsqxstandard3082512048015.nii.gz", + "pseudo_label": "112939/2_0opagelsqxstandard3082512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112939/2_0opagelsqxstandard3082512048015/2_0opagelsqxstandard3082512048015_seg.nii.gz" + }, + { + "image": "112939/3_1opagels16standard2892512000na.nii.gz", + "pseudo_label": "112939/3_1opagels16standard2892512000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112939/3_1opagels16standard2892512000na/3_1opagels16standard2892512000na_seg.nii.gz" + }, + { + "image": "108944/3488_2opaphmx8000c34032120453612.nii.gz", + "pseudo_label": "108944/3488_2opaphmx8000c34032120453612.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108944/3488_2opaphmx8000c34032120453612/3488_2opaphmx8000c34032120453612_seg.nii.gz" + }, + { + "image": "108944/4340_0opaphmx8000c32232120453612.nii.gz", + "pseudo_label": "108944/4340_0opaphmx8000c32232120453612.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108944/4340_0opaphmx8000c32232120453612/4340_0opaphmx8000c32232120453612_seg.nii.gz" + }, + { + "image": "112561/0_0opaphmx8000d34732120600118.nii.gz", + "pseudo_label": "112561/0_0opaphmx8000d34732120600118.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112561/0_0opaphmx8000d34732120600118/0_0opaphmx8000d34732120600118_seg.nii.gz" + }, + { + "image": "112561/964_1opaphmx8000d34932120600118.nii.gz", + "pseudo_label": "112561/964_1opaphmx8000d34932120600118.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112561/964_1opaphmx8000d34932120600118/964_1opaphmx8000d34932120600118_seg.nii.gz" + }, + { + "image": "112561/963_1opaphmx8000c34932120600118.nii.gz", + "pseudo_label": "112561/963_1opaphmx8000c34932120600118.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112561/963_1opaphmx8000c34932120600118/963_1opaphmx8000c34932120600118_seg.nii.gz" + }, + { + "image": "112561/3062_2opaphmx8000c3333212039018.nii.gz", + "pseudo_label": "112561/3062_2opaphmx8000c3333212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112561/3062_2opaphmx8000c3333212039018/3062_2opaphmx8000c3333212039018_seg.nii.gz" + }, + { + "image": "112561/3061_2opaphmx8000d3333212039018.nii.gz", + "pseudo_label": "112561/3061_2opaphmx8000d3333212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112561/3061_2opaphmx8000d3333212039018/3061_2opaphmx8000d3333212039018_seg.nii.gz" + }, + { + "image": "112561/0_0opaphmx8000c34732120600118.nii.gz", + "pseudo_label": "112561/0_0opaphmx8000c34732120600118.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112561/0_0opaphmx8000c34732120600118/0_0opaphmx8000c34732120600118_seg.nii.gz" + }, + { + "image": "103049/2_0opagehsqxstandard38025120560115.nii.gz", + "pseudo_label": "103049/2_0opagehsqxstandard38025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103049/2_0opagehsqxstandard38025120560115/2_0opagehsqxstandard38025120560115_seg.nii.gz" + }, + { + "image": "103049/4_1opagehsqxbone38025120560115.nii.gz", + "pseudo_label": "103049/4_1opagehsqxbone38025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103049/4_1opagehsqxbone38025120560115/4_1opagehsqxbone38025120560115_seg.nii.gz" + }, + { + "image": "103049/3_0opagehsqxbone38025120560115.nii.gz", + "pseudo_label": "103049/3_0opagehsqxbone38025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103049/3_0opagehsqxbone38025120560115/3_0opagehsqxbone38025120560115_seg.nii.gz" + }, + { + "image": "103049/3_1opagehsqxstandard38025120560115.nii.gz", + "pseudo_label": "103049/3_1opagehsqxstandard38025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103049/3_1opagehsqxstandard38025120560115/3_1opagehsqxstandard38025120560115_seg.nii.gz" + }, + { + "image": "103049/2_2opagehsqxstandard38025120560115.nii.gz", + "pseudo_label": "103049/2_2opagehsqxstandard38025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103049/2_2opagehsqxstandard38025120560115/2_2opagehsqxstandard38025120560115_seg.nii.gz" + }, + { + "image": "112616/2_2opasesen16b30f34421204032na.nii.gz", + "pseudo_label": "112616/2_2opasesen16b30f34421204032na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112616/2_2opasesen16b30f34421204032na/2_2opasesen16b30f34421204032na_seg.nii.gz" + }, + { + "image": "100731/3_2opatoaqul4fc513141212050nana.nii.gz", + "pseudo_label": "100731/3_2opatoaqul4fc513141212050nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100731/3_2opatoaqul4fc513141212050nana/3_2opatoaqul4fc513141212050nana_seg.nii.gz" + }, + { + "image": "100731/3_1opatoaqul4fc51300212060nana.nii.gz", + "pseudo_label": "100731/3_1opatoaqul4fc51300212060nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100731/3_1opatoaqul4fc51300212060nana/3_1opatoaqul4fc51300212060nana_seg.nii.gz" + }, + { + "image": "111945/2_1opagelsqxstandard34425120640115.nii.gz", + "pseudo_label": "111945/2_1opagelsqxstandard34425120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111945/2_1opagelsqxstandard34425120640115/2_1opagelsqxstandard34425120640115_seg.nii.gz" + }, + { + "image": "111945/3_1opagelsqxbone34425120640115.nii.gz", + "pseudo_label": "111945/3_1opagelsqxbone34425120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111945/3_1opagelsqxbone34425120640115/3_1opagelsqxbone34425120640115_seg.nii.gz" + }, + { + "image": "111945/3_2opagelsqxbone36025120640115.nii.gz", + "pseudo_label": "111945/3_2opagelsqxbone36025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111945/3_2opagelsqxbone36025120640115/3_2opagelsqxbone36025120640115_seg.nii.gz" + }, + { + "image": "106642/6307_1opaphmx8000c36932120453612.nii.gz", + "pseudo_label": "106642/6307_1opaphmx8000c36932120453612.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106642/6307_1opaphmx8000c36932120453612/6307_1opaphmx8000c36932120453612_seg.nii.gz" + }, + { + "image": "106642/4418_0opaphmx8000c364321208787012.nii.gz", + "pseudo_label": "106642/4418_0opaphmx8000c364321208787012.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106642/4418_0opaphmx8000c364321208787012/4418_0opaphmx8000c364321208787012_seg.nii.gz" + }, + { + "image": "102356/3_2opasevzoomb50f33221207540na.nii.gz", + "pseudo_label": "102356/3_2opasevzoomb50f33221207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102356/3_2opasevzoomb50f33221207540na/3_2opasevzoomb50f33221207540na_seg.nii.gz" + }, + { + "image": "108069/3_1opatoaqul4fc513301212055nana.nii.gz", + "pseudo_label": "108069/3_1opatoaqul4fc513301212055nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108069/3_1opatoaqul4fc513301212055nana/3_1opatoaqul4fc513301212055nana_seg.nii.gz" + }, + { + "image": "103839/2_2opasevzoomb30f33021208040na.nii.gz", + "pseudo_label": "103839/2_2opasevzoomb30f33021208040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103839/2_2opasevzoomb30f33021208040na/2_2opasevzoomb30f33021208040na_seg.nii.gz" + }, + { + "image": "103839/3_0opagels16standard30025120600114.nii.gz", + "pseudo_label": "103839/3_0opagels16standard30025120600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103839/3_0opagels16standard30025120600114/3_0opagels16standard30025120600114_seg.nii.gz" + }, + { + "image": "107414/3_0opagehsqxbone34025120560115.nii.gz", + "pseudo_label": "107414/3_0opagehsqxbone34025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107414/3_0opagehsqxbone34025120560115/3_0opagehsqxbone34025120560115_seg.nii.gz" + }, + { + "image": "107414/3_2opagehsqxbone34025120560115.nii.gz", + "pseudo_label": "107414/3_2opagehsqxbone34025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107414/3_2opagehsqxbone34025120560115/3_2opagehsqxbone34025120560115_seg.nii.gz" + }, + { + "image": "107414/2_0opagehsqxstandard34025120560115.nii.gz", + "pseudo_label": "107414/2_0opagehsqxstandard34025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107414/2_0opagehsqxstandard34025120560115/2_0opagehsqxstandard34025120560115_seg.nii.gz" + }, + { + "image": "107414/2_2opagehsqxstandard34025120560115.nii.gz", + "pseudo_label": "107414/2_2opagehsqxstandard34025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107414/2_2opagehsqxstandard34025120560115/2_2opagehsqxstandard34025120560115_seg.nii.gz" + }, + { + "image": "107414/2_1opagehsqxstandard34025120560115.nii.gz", + "pseudo_label": "107414/2_1opagehsqxstandard34025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107414/2_1opagehsqxstandard34025120560115/2_1opagehsqxstandard34025120560115_seg.nii.gz" + }, + { + "image": "102991/3_1opagelsqxbone41025120720115.nii.gz", + "pseudo_label": "102991/3_1opagelsqxbone41025120720115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102991/3_1opagelsqxbone41025120720115/3_1opagelsqxbone41025120720115_seg.nii.gz" + }, + { + "image": "102991/2_2opagelsqxstandard38725120720115.nii.gz", + "pseudo_label": "102991/2_2opagelsqxstandard38725120720115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102991/2_2opagelsqxstandard38725120720115/2_2opagelsqxstandard38725120720115_seg.nii.gz" + }, + { + "image": "102991/3_2opagelsqxbone38725120720115.nii.gz", + "pseudo_label": "102991/3_2opagelsqxbone38725120720115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102991/3_2opagelsqxbone38725120720115/3_2opagelsqxbone38725120720115_seg.nii.gz" + }, + { + "image": "108790/2_0opagels16standard34925140640114.nii.gz", + "pseudo_label": "108790/2_0opagels16standard34925140640114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108790/2_0opagels16standard34925140640114/2_0opagels16standard34925140640114_seg.nii.gz" + }, + { + "image": "108790/2_2opagels16standard3602514040014.nii.gz", + "pseudo_label": "108790/2_2opagels16standard3602514040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108790/2_2opagels16standard3602514040014/2_2opagels16standard3602514040014_seg.nii.gz" + }, + { + "image": "108790/2_1opagels16standard3402514040014.nii.gz", + "pseudo_label": "108790/2_1opagels16standard3402514040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108790/2_1opagels16standard3402514040014/2_1opagels16standard3402514040014_seg.nii.gz" + }, + { + "image": "106634/2_0opagehsqxstandard26025120560115.nii.gz", + "pseudo_label": "106634/2_0opagehsqxstandard26025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106634/2_0opagehsqxstandard26025120560115/2_0opagehsqxstandard26025120560115_seg.nii.gz" + }, + { + "image": "106634/2_1opagehsqxstandard26025120560115.nii.gz", + "pseudo_label": "106634/2_1opagehsqxstandard26025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106634/2_1opagehsqxstandard26025120560115/2_1opagehsqxstandard26025120560115_seg.nii.gz" + }, + { + "image": "106634/3_1opagehsqxbone26025120560115.nii.gz", + "pseudo_label": "106634/3_1opagehsqxbone26025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106634/3_1opagehsqxbone26025120560115/3_1opagehsqxbone26025120560115_seg.nii.gz" + }, + { + "image": "106634/3_0opagehsqxbone26025120560115.nii.gz", + "pseudo_label": "106634/3_0opagehsqxbone26025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106634/3_0opagehsqxbone26025120560115/3_0opagehsqxbone26025120560115_seg.nii.gz" + }, + { + "image": "106634/2_2opagehsqxstandard26025120560115.nii.gz", + "pseudo_label": "106634/2_2opagehsqxstandard26025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106634/2_2opagehsqxstandard26025120560115/2_2opagehsqxstandard26025120560115_seg.nii.gz" + }, + { + "image": "102763/3_2opasesen16b30f35021204530na.nii.gz", + "pseudo_label": "102763/3_2opasesen16b30f35021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102763/3_2opasesen16b30f35021204530na/3_2opasesen16b30f35021204530na_seg.nii.gz" + }, + { + "image": "102763/5_0opasevzoomb50f38021208040na.nii.gz", + "pseudo_label": "102763/5_0opasevzoomb50f38021208040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102763/5_0opasevzoomb50f38021208040na/5_0opasevzoomb50f38021208040na_seg.nii.gz" + }, + { + "image": "102763/3_1opasevzoomb30f37521206030na.nii.gz", + "pseudo_label": "102763/3_1opasevzoomb30f37521206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102763/3_1opasevzoomb30f37521206030na/3_1opasevzoomb30f37521206030na_seg.nii.gz" + }, + { + "image": "102763/4_0opasevzoomb30f38021208040na.nii.gz", + "pseudo_label": "102763/4_0opasevzoomb30f38021208040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102763/4_0opasevzoomb30f38021208040na/4_0opasevzoomb30f38021208040na_seg.nii.gz" + }, + { + "image": "102689/1_0opagelsplusstandard39025120800115.nii.gz", + "pseudo_label": "102689/1_0opagelsplusstandard39025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102689/1_0opagelsplusstandard39025120800115/1_0opagelsplusstandard39025120800115_seg.nii.gz" + }, + { + "image": "102689/1_1opagelsplusstandard36025120800115.nii.gz", + "pseudo_label": "102689/1_1opagelsplusstandard36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102689/1_1opagelsplusstandard36025120800115/1_1opagelsplusstandard36025120800115_seg.nii.gz" + }, + { + "image": "102689/1_1opagelspluslung36025120800115.nii.gz", + "pseudo_label": "102689/1_1opagelspluslung36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102689/1_1opagelspluslung36025120800115/1_1opagelspluslung36025120800115_seg.nii.gz" + }, + { + "image": "102689/1_2opagelsplusstandard36025120800115.nii.gz", + "pseudo_label": "102689/1_2opagelsplusstandard36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102689/1_2opagelsplusstandard36025120800115/1_2opagelsplusstandard36025120800115_seg.nii.gz" + }, + { + "image": "102689/1_2opagelspluslung36025120800115.nii.gz", + "pseudo_label": "102689/1_2opagelspluslung36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102689/1_2opagelspluslung36025120800115/1_2opagelspluslung36025120800115_seg.nii.gz" + }, + { + "image": "102689/1_0opagelspluslung39025120800115.nii.gz", + "pseudo_label": "102689/1_0opagelspluslung39025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102689/1_0opagelspluslung39025120800115/1_0opagelspluslung39025120800115_seg.nii.gz" + }, + { + "image": "109376/3_1opagels16standard36025120640114.nii.gz", + "pseudo_label": "109376/3_1opagels16standard36025120640114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109376/3_1opagels16standard36025120640114/3_1opagels16standard36025120640114_seg.nii.gz" + }, + { + "image": "109376/3_0opagelsqxstandard38625120800115.nii.gz", + "pseudo_label": "109376/3_0opagelsqxstandard38625120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109376/3_0opagelsqxstandard38625120800115/3_0opagelsqxstandard38625120800115_seg.nii.gz" + }, + { + "image": "109376/2_1opagels16bone36025120640114.nii.gz", + "pseudo_label": "109376/2_1opagels16bone36025120640114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109376/2_1opagels16bone36025120640114/2_1opagels16bone36025120640114_seg.nii.gz" + }, + { + "image": "109376/3_2opagels16standard3302512040014.nii.gz", + "pseudo_label": "109376/3_2opagels16standard3302512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109376/3_2opagels16standard3302512040014/3_2opagels16standard3302512040014_seg.nii.gz" + }, + { + "image": "109376/2_0opagelsqxbone38625120800115.nii.gz", + "pseudo_label": "109376/2_0opagelsqxbone38625120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109376/2_0opagelsqxbone38625120800115/2_0opagelsqxbone38625120800115_seg.nii.gz" + }, + { + "image": "101230/2_2opagelsqxstandard38425120640115.nii.gz", + "pseudo_label": "101230/2_2opagelsqxstandard38425120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101230/2_2opagelsqxstandard38425120640115/2_2opagelsqxstandard38425120640115_seg.nii.gz" + }, + { + "image": "102066/3_1opagels16standard32025120600114.nii.gz", + "pseudo_label": "102066/3_1opagels16standard32025120600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102066/3_1opagels16standard32025120600114/3_1opagels16standard32025120600114_seg.nii.gz" + }, + { + "image": "102066/3_0opagels16standard32025140600114.nii.gz", + "pseudo_label": "102066/3_0opagels16standard32025140600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102066/3_0opagels16standard32025140600114/3_0opagels16standard32025140600114_seg.nii.gz" + }, + { + "image": "105176/4_0opagelsqxbone29025120nanana.nii.gz", + "pseudo_label": "105176/4_0opagelsqxbone29025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105176/4_0opagelsqxbone29025120nanana/4_0opagelsqxbone29025120nanana_seg.nii.gz" + }, + { + "image": "105176/3_1opagels16bone29025120nanana.nii.gz", + "pseudo_label": "105176/3_1opagels16bone29025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105176/3_1opagels16bone29025120nanana/3_1opagels16bone29025120nanana_seg.nii.gz" + }, + { + "image": "105176/3_0opagelsqxstandard29025120nanana.nii.gz", + "pseudo_label": "105176/3_0opagelsqxstandard29025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105176/3_0opagelsqxstandard29025120nanana/3_0opagelsqxstandard29025120nanana_seg.nii.gz" + }, + { + "image": "105176/2_1opagels16standard29025120nanana.nii.gz", + "pseudo_label": "105176/2_1opagels16standard29025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105176/2_1opagels16standard29025120nanana/2_1opagels16standard29025120nanana_seg.nii.gz" + }, + { + "image": "105176/3_2opagels16standard29025120nanana.nii.gz", + "pseudo_label": "105176/3_2opagels16standard29025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105176/3_2opagels16standard29025120nanana/3_2opagels16standard29025120nanana_seg.nii.gz" + }, + { + "image": "111498/3_1opasevzoomb50f30421207540na.nii.gz", + "pseudo_label": "111498/3_1opasevzoomb50f30421207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111498/3_1opasevzoomb50f30421207540na/3_1opasevzoomb50f30421207540na_seg.nii.gz" + }, + { + "image": "111498/2_1opasevzoomb30f30421207540na.nii.gz", + "pseudo_label": "111498/2_1opasevzoomb30f30421207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111498/2_1opasevzoomb30f30421207540na/2_1opasevzoomb30f30421207540na_seg.nii.gz" + }, + { + "image": "111498/3_0opasevzoomb50f28021208040na.nii.gz", + "pseudo_label": "111498/3_0opasevzoomb50f28021208040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111498/3_0opasevzoomb50f28021208040na/3_0opasevzoomb50f28021208040na_seg.nii.gz" + }, + { + "image": "106377/2_2opasesen16b50f36021204530na.nii.gz", + "pseudo_label": "106377/2_2opasesen16b50f36021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106377/2_2opasesen16b50f36021204530na/2_2opasesen16b50f36021204530na_seg.nii.gz" + }, + { + "image": "106377/3_0opasesen16b30f35021204530na.nii.gz", + "pseudo_label": "106377/3_0opasesen16b30f35021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106377/3_0opasesen16b30f35021204530na/3_0opasesen16b30f35021204530na_seg.nii.gz" + }, + { + "image": "107577/2_1opagelsqxstandard3702512048015.nii.gz", + "pseudo_label": "107577/2_1opagelsqxstandard3702512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107577/2_1opagelsqxstandard3702512048015/2_1opagelsqxstandard3702512048015_seg.nii.gz" + }, + { + "image": "101001/2_2opagels16bone33025120720114.nii.gz", + "pseudo_label": "101001/2_2opagels16bone33025120720114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101001/2_2opagels16bone33025120720114/2_2opagels16bone33025120720114_seg.nii.gz" + }, + { + "image": "101001/3_2opagels16standard33025120720114.nii.gz", + "pseudo_label": "101001/3_2opagels16standard33025120720114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101001/3_2opagels16standard33025120720114/3_2opagels16standard33025120720114_seg.nii.gz" + }, + { + "image": "101001/4_0opagels16bone35025140600114.nii.gz", + "pseudo_label": "101001/4_0opagels16bone35025140600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101001/4_0opagels16bone35025140600114/4_0opagels16bone35025140600114_seg.nii.gz" + }, + { + "image": "107438/2_2opagelsqxstandard31525120640115.nii.gz", + "pseudo_label": "107438/2_2opagelsqxstandard31525120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107438/2_2opagelsqxstandard31525120640115/2_2opagelsqxstandard31525120640115_seg.nii.gz" + }, + { + "image": "107438/2_1opagelsqxstandard31325120640115.nii.gz", + "pseudo_label": "107438/2_1opagelsqxstandard31325120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107438/2_1opagelsqxstandard31325120640115/2_1opagelsqxstandard31325120640115_seg.nii.gz" + }, + { + "image": "107438/3_0opagelsqxbone31025120640115.nii.gz", + "pseudo_label": "107438/3_0opagelsqxbone31025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107438/3_0opagelsqxbone31025120640115/3_0opagelsqxbone31025120640115_seg.nii.gz" + }, + { + "image": "107578/3_1opasevzoomb50f37021207540na.nii.gz", + "pseudo_label": "107578/3_1opasevzoomb50f37021207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107578/3_1opasevzoomb50f37021207540na/3_1opasevzoomb50f37021207540na_seg.nii.gz" + }, + { + "image": "107578/2_0opasevzoomb30f380212010560na.nii.gz", + "pseudo_label": "107578/2_0opasevzoomb30f380212010560na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107578/2_0opasevzoomb30f380212010560na/2_0opasevzoomb30f380212010560na_seg.nii.gz" + }, + { + "image": "107578/4_0opasevzoomb50f380212010560na.nii.gz", + "pseudo_label": "107578/4_0opasevzoomb50f380212010560na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107578/4_0opasevzoomb50f380212010560na/4_0opasevzoomb50f380212010560na_seg.nii.gz" + }, + { + "image": "107578/2_2opasevzoomb30f43221207540na.nii.gz", + "pseudo_label": "107578/2_2opasevzoomb30f43221207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107578/2_2opasevzoomb30f43221207540na/2_2opasevzoomb30f43221207540na_seg.nii.gz" + }, + { + "image": "104173/2_2opagelsqxstandard36025120640115.nii.gz", + "pseudo_label": "104173/2_2opagelsqxstandard36025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104173/2_2opagelsqxstandard36025120640115/2_2opagelsqxstandard36025120640115_seg.nii.gz" + }, + { + "image": "104173/2_1opagelsqxstandard36025120640115.nii.gz", + "pseudo_label": "104173/2_1opagelsqxstandard36025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104173/2_1opagelsqxstandard36025120640115/2_1opagelsqxstandard36025120640115_seg.nii.gz" + }, + { + "image": "104173/3_0opagelsqxbone39025120640115.nii.gz", + "pseudo_label": "104173/3_0opagelsqxbone39025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104173/3_0opagelsqxbone39025120640115/3_0opagelsqxbone39025120640115_seg.nii.gz" + }, + { + "image": "104173/3_1opagelsqxbone36025120640115.nii.gz", + "pseudo_label": "104173/3_1opagelsqxbone36025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104173/3_1opagelsqxbone36025120640115/3_1opagelsqxbone36025120640115_seg.nii.gz" + }, + { + "image": "104173/2_0opagelsqxstandard39025120640115.nii.gz", + "pseudo_label": "104173/2_0opagelsqxstandard39025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104173/2_0opagelsqxstandard39025120640115/2_0opagelsqxstandard39025120640115_seg.nii.gz" + }, + { + "image": "105275/2_0opagelsqxstandard37425120640115.nii.gz", + "pseudo_label": "105275/2_0opagelsqxstandard37425120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105275/2_0opagelsqxstandard37425120640115/2_0opagelsqxstandard37425120640115_seg.nii.gz" + }, + { + "image": "104368/2_2opasevzoomb50f30021206030na.nii.gz", + "pseudo_label": "104368/2_2opasevzoomb50f30021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104368/2_2opasevzoomb50f30021206030na/2_2opasevzoomb50f30021206030na_seg.nii.gz" + }, + { + "image": "104368/2_1opasesen16b50f30021204530na.nii.gz", + "pseudo_label": "104368/2_1opasesen16b50f30021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104368/2_1opasesen16b50f30021204530na/2_1opasesen16b50f30021204530na_seg.nii.gz" + }, + { + "image": "104002/3_1opatoaqul4fc513406212080nana.nii.gz", + "pseudo_label": "104002/3_1opatoaqul4fc513406212080nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104002/3_1opatoaqul4fc513406212080nana/3_1opatoaqul4fc513406212080nana_seg.nii.gz" + }, + { + "image": "104002/4_2opatoaqul4fc513453212050nana.nii.gz", + "pseudo_label": "104002/4_2opatoaqul4fc513453212050nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104002/4_2opatoaqul4fc513453212050nana/4_2opatoaqul4fc513453212050nana_seg.nii.gz" + }, + { + "image": "103890/7122_2opaphmx8000c3353212039018.nii.gz", + "pseudo_label": "103890/7122_2opaphmx8000c3353212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103890/7122_2opaphmx8000c3353212039018/7122_2opaphmx8000c3353212039018_seg.nii.gz" + }, + { + "image": "112469/2_0opagelsqxstandard30025120nanana.nii.gz", + "pseudo_label": "112469/2_0opagelsqxstandard30025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112469/2_0opagelsqxstandard30025120nanana/2_0opagelsqxstandard30025120nanana_seg.nii.gz" + }, + { + "image": "112469/3_1opagels16bone30025120nanana.nii.gz", + "pseudo_label": "112469/3_1opagels16bone30025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112469/3_1opagels16bone30025120nanana/3_1opagels16bone30025120nanana_seg.nii.gz" + }, + { + "image": "112469/2_2opagels16standard30025120nanana.nii.gz", + "pseudo_label": "112469/2_2opagels16standard30025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112469/2_2opagels16standard30025120nanana/2_2opagels16standard30025120nanana_seg.nii.gz" + }, + { + "image": "112469/2_1opagels16standard30025120nanana.nii.gz", + "pseudo_label": "112469/2_1opagels16standard30025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112469/2_1opagels16standard30025120nanana/2_1opagels16standard30025120nanana_seg.nii.gz" + }, + { + "image": "112469/3_2opagels16bone30025120nanana.nii.gz", + "pseudo_label": "112469/3_2opagels16bone30025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112469/3_2opagels16bone30025120nanana/3_2opagels16bone30025120nanana_seg.nii.gz" + }, + { + "image": "112469/3_0opagelsqxbone30025120nanana.nii.gz", + "pseudo_label": "112469/3_0opagelsqxbone30025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112469/3_0opagelsqxbone30025120nanana/3_0opagelsqxbone30025120nanana_seg.nii.gz" + }, + { + "image": "102082/2_1opagels16bone36025120600114.nii.gz", + "pseudo_label": "102082/2_1opagels16bone36025120600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102082/2_1opagels16bone36025120600114/2_1opagels16bone36025120600114_seg.nii.gz" + }, + { + "image": "102082/3_0opagels16standard36025120600114.nii.gz", + "pseudo_label": "102082/3_0opagels16standard36025120600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102082/3_0opagels16standard36025120600114/3_0opagels16standard36025120600114_seg.nii.gz" + }, + { + "image": "102082/3_2opagels16standard36025140600114.nii.gz", + "pseudo_label": "102082/3_2opagels16standard36025140600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102082/3_2opagels16standard36025140600114/3_2opagels16standard36025140600114_seg.nii.gz" + }, + { + "image": "107413/5_1opasesen16b50f30451204530na.nii.gz", + "pseudo_label": "107413/5_1opasesen16b50f30451204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107413/5_1opasesen16b50f30451204530na/5_1opasesen16b50f30451204530na_seg.nii.gz" + }, + { + "image": "107413/7_2opasesen16b30f32351204530na.nii.gz", + "pseudo_label": "107413/7_2opasesen16b30f32351204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107413/7_2opasesen16b30f32351204530na/7_2opasesen16b30f32351204530na_seg.nii.gz" + }, + { + "image": "107413/4_2opasesen16b30f32321204530na.nii.gz", + "pseudo_label": "107413/4_2opasesen16b30f32321204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107413/4_2opasesen16b30f32321204530na/4_2opasesen16b30f32321204530na_seg.nii.gz" + }, + { + "image": "107413/3_0opasevzoomb30f32251206030na.nii.gz", + "pseudo_label": "107413/3_0opasevzoomb30f32251206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107413/3_0opasevzoomb30f32251206030na/3_0opasevzoomb30f32251206030na_seg.nii.gz" + }, + { + "image": "107413/5_2opasesen16b50f32351204530na.nii.gz", + "pseudo_label": "107413/5_2opasesen16b50f32351204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107413/5_2opasesen16b50f32351204530na/5_2opasesen16b50f32351204530na_seg.nii.gz" + }, + { + "image": "107413/4_0opasevzoomb50f32251206030na.nii.gz", + "pseudo_label": "107413/4_0opasevzoomb50f32251206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107413/4_0opasevzoomb50f32251206030na/4_0opasevzoomb50f32251206030na_seg.nii.gz" + }, + { + "image": "105820/2_2opagelsqxstandard35725120640115.nii.gz", + "pseudo_label": "105820/2_2opagelsqxstandard35725120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105820/2_2opagelsqxstandard35725120640115/2_2opagelsqxstandard35725120640115_seg.nii.gz" + }, + { + "image": "105820/3_0opagelsqxbone32025120640115.nii.gz", + "pseudo_label": "105820/3_0opagelsqxbone32025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105820/3_0opagelsqxbone32025120640115/3_0opagelsqxbone32025120640115_seg.nii.gz" + }, + { + "image": "105820/2_1opagelsqxstandard34025120640115.nii.gz", + "pseudo_label": "105820/2_1opagelsqxstandard34025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105820/2_1opagelsqxstandard34025120640115/2_1opagelsqxstandard34025120640115_seg.nii.gz" + }, + { + "image": "105820/3_1opagelsqxbone34025120640115.nii.gz", + "pseudo_label": "105820/3_1opagelsqxbone34025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105820/3_1opagelsqxbone34025120640115/3_1opagelsqxbone34025120640115_seg.nii.gz" + }, + { + "image": "105820/3_2opagelsqxbone35725120640115.nii.gz", + "pseudo_label": "105820/3_2opagelsqxbone35725120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105820/3_2opagelsqxbone35725120640115/3_2opagelsqxbone35725120640115_seg.nii.gz" + }, + { + "image": "110771/3_2opatoaqul4fc51350212080nana.nii.gz", + "pseudo_label": "110771/3_2opatoaqul4fc51350212080nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110771/3_2opatoaqul4fc51350212080nana/3_2opatoaqul4fc51350212080nana_seg.nii.gz" + }, + { + "image": "105297/0_0opaphmx8000d2963212039018.nii.gz", + "pseudo_label": "105297/0_0opaphmx8000d2963212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105297/0_0opaphmx8000d2963212039018/0_0opaphmx8000d2963212039018_seg.nii.gz" + }, + { + "image": "105297/0_0opaphmx8000c2963212039018.nii.gz", + "pseudo_label": "105297/0_0opaphmx8000c2963212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105297/0_0opaphmx8000c2963212039018/0_0opaphmx8000c2963212039018_seg.nii.gz" + }, + { + "image": "105297/222_2opaphmx8000c2743212039018.nii.gz", + "pseudo_label": "105297/222_2opaphmx8000c2743212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105297/222_2opaphmx8000c2743212039018/222_2opaphmx8000c2743212039018_seg.nii.gz" + }, + { + "image": "105297/9296_1opaphmx8000d2893212039018.nii.gz", + "pseudo_label": "105297/9296_1opaphmx8000d2893212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105297/9296_1opaphmx8000d2893212039018/9296_1opaphmx8000d2893212039018_seg.nii.gz" + }, + { + "image": "112257/2_0opagelsqxstandard30025120nanana.nii.gz", + "pseudo_label": "112257/2_0opagelsqxstandard30025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112257/2_0opagelsqxstandard30025120nanana/2_0opagelsqxstandard30025120nanana_seg.nii.gz" + }, + { + "image": "112257/3_0opagelsqxbone30025120nanana.nii.gz", + "pseudo_label": "112257/3_0opagelsqxbone30025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112257/3_0opagelsqxbone30025120nanana/3_0opagelsqxbone30025120nanana_seg.nii.gz" + }, + { + "image": "108842/2_2opagelspr16bone3602512048014.nii.gz", + "pseudo_label": "108842/2_2opagelspr16bone3602512048014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108842/2_2opagelspr16bone3602512048014/2_2opagelspr16bone3602512048014_seg.nii.gz" + }, + { + "image": "108842/3_1opagels16standard3602512040014.nii.gz", + "pseudo_label": "108842/3_1opagels16standard3602512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108842/3_1opagels16standard3602512040014/3_1opagels16standard3602512040014_seg.nii.gz" + }, + { + "image": "108842/3_2opagelspr16standard3602512048014.nii.gz", + "pseudo_label": "108842/3_2opagelspr16standard3602512048014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108842/3_2opagelspr16standard3602512048014/3_2opagelspr16standard3602512048014_seg.nii.gz" + }, + { + "image": "108842/3_0opagelsqxstandard3602512048015.nii.gz", + "pseudo_label": "108842/3_0opagelsqxstandard3602512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108842/3_0opagelsqxstandard3602512048015/3_0opagelsqxstandard3602512048015_seg.nii.gz" + }, + { + "image": "108842/2_1opagels16bone3602512040014.nii.gz", + "pseudo_label": "108842/2_1opagels16bone3602512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108842/2_1opagels16bone3602512040014/2_1opagels16bone3602512040014_seg.nii.gz" + }, + { + "image": "108842/2_0opagelsqxbone3602512048015.nii.gz", + "pseudo_label": "108842/2_0opagelsqxbone3602512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108842/2_0opagelsqxbone3602512048015/2_0opagelsqxbone3602512048015_seg.nii.gz" + }, + { + "image": "109531/2_1opagelsqxstandard35225120600115.nii.gz", + "pseudo_label": "109531/2_1opagelsqxstandard35225120600115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109531/2_1opagelsqxstandard35225120600115/2_1opagelsqxstandard35225120600115_seg.nii.gz" + }, + { + "image": "109531/2_0opagelsqxstandard35225120800115.nii.gz", + "pseudo_label": "109531/2_0opagelsqxstandard35225120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109531/2_0opagelsqxstandard35225120800115/2_0opagelsqxstandard35225120800115_seg.nii.gz" + }, + { + "image": "109531/2_2opagels16standard40025120582nana.nii.gz", + "pseudo_label": "109531/2_2opagels16standard40025120582nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109531/2_2opagels16standard40025120582nana/2_2opagels16standard40025120582nana_seg.nii.gz" + }, + { + "image": "106760/3_1opatoaqul4fc513109212040nana.nii.gz", + "pseudo_label": "106760/3_1opatoaqul4fc513109212040nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106760/3_1opatoaqul4fc513109212040nana/3_1opatoaqul4fc513109212040nana_seg.nii.gz" + }, + { + "image": "106760/4_2opatoaqul4fc513203212060nana.nii.gz", + "pseudo_label": "106760/4_2opatoaqul4fc513203212060nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106760/4_2opatoaqul4fc513203212060nana/4_2opatoaqul4fc513203212060nana_seg.nii.gz" + }, + { + "image": "106760/4_1opatoaqul4fc513109212040nana.nii.gz", + "pseudo_label": "106760/4_1opatoaqul4fc513109212040nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106760/4_1opatoaqul4fc513109212040nana/4_1opatoaqul4fc513109212040nana_seg.nii.gz" + }, + { + "image": "113127/2_0opagelsqxstandard34025120nanana.nii.gz", + "pseudo_label": "113127/2_0opagelsqxstandard34025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113127/2_0opagelsqxstandard34025120nanana/2_0opagelsqxstandard34025120nanana_seg.nii.gz" + }, + { + "image": "113127/3_0opagelsqxbone34025120nanana.nii.gz", + "pseudo_label": "113127/3_0opagelsqxbone34025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113127/3_0opagelsqxbone34025120nanana/3_0opagelsqxbone34025120nanana_seg.nii.gz" + }, + { + "image": "113127/3_1opagels16bone34025120nanana.nii.gz", + "pseudo_label": "113127/3_1opagels16bone34025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113127/3_1opagels16bone34025120nanana/3_1opagels16bone34025120nanana_seg.nii.gz" + }, + { + "image": "113127/2_1opagels16standard34025120nanana.nii.gz", + "pseudo_label": "113127/2_1opagels16standard34025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113127/2_1opagels16standard34025120nanana/2_1opagels16standard34025120nanana_seg.nii.gz" + }, + { + "image": "113127/2_2opagels16standard34025120nanana.nii.gz", + "pseudo_label": "113127/2_2opagels16standard34025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113127/2_2opagels16standard34025120nanana/2_2opagels16standard34025120nanana_seg.nii.gz" + }, + { + "image": "113127/3_2opagels16bone34025120nanana.nii.gz", + "pseudo_label": "113127/3_2opagels16bone34025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113127/3_2opagels16bone34025120nanana/3_2opagels16bone34025120nanana_seg.nii.gz" + }, + { + "image": "112211/4_0opagehsqxstandard37025120560115.nii.gz", + "pseudo_label": "112211/4_0opagehsqxstandard37025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112211/4_0opagehsqxstandard37025120560115/4_0opagehsqxstandard37025120560115_seg.nii.gz" + }, + { + "image": "112211/2_2opagehsqxstandard37025120560115.nii.gz", + "pseudo_label": "112211/2_2opagehsqxstandard37025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112211/2_2opagehsqxstandard37025120560115/2_2opagehsqxstandard37025120560115_seg.nii.gz" + }, + { + "image": "103123/5_2opasesen16b50f34951204530na.nii.gz", + "pseudo_label": "103123/5_2opasesen16b50f34951204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103123/5_2opasesen16b50f34951204530na/5_2opasesen16b50f34951204530na_seg.nii.gz" + }, + { + "image": "103123/4_0opasesen16b50f38751206040na.nii.gz", + "pseudo_label": "103123/4_0opasesen16b50f38751206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103123/4_0opasesen16b50f38751206040na/4_0opasesen16b50f38751206040na_seg.nii.gz" + }, + { + "image": "103123/3_2opasesen16b30f34951204530na.nii.gz", + "pseudo_label": "103123/3_2opasesen16b30f34951204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103123/3_2opasesen16b30f34951204530na/3_2opasesen16b30f34951204530na_seg.nii.gz" + }, + { + "image": "103123/3_1opasesen16b30f37751204530na.nii.gz", + "pseudo_label": "103123/3_1opasesen16b30f37751204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103123/3_1opasesen16b30f37751204530na/3_1opasesen16b30f37751204530na_seg.nii.gz" + }, + { + "image": "103123/7_0opasesen16b30f38751206040na.nii.gz", + "pseudo_label": "103123/7_0opasesen16b30f38751206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103123/7_0opasesen16b30f38751206040na/7_0opasesen16b30f38751206040na_seg.nii.gz" + }, + { + "image": "103123/5_1opasesen16b50f37751204530na.nii.gz", + "pseudo_label": "103123/5_1opasesen16b50f37751204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103123/5_1opasesen16b50f37751204530na/5_1opasesen16b50f37751204530na_seg.nii.gz" + }, + { + "image": "101393/2_2opasevzoomb50f32421206030na.nii.gz", + "pseudo_label": "101393/2_2opasevzoomb50f32421206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101393/2_2opasevzoomb50f32421206030na/2_2opasevzoomb50f32421206030na_seg.nii.gz" + }, + { + "image": "101393/2_0opasevzoomb50f32221206030na.nii.gz", + "pseudo_label": "101393/2_0opasevzoomb50f32221206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101393/2_0opasevzoomb50f32221206030na/2_0opasevzoomb50f32221206030na_seg.nii.gz" + }, + { + "image": "101393/3_1opasesen16b30f30021204530na.nii.gz", + "pseudo_label": "101393/3_1opasesen16b30f30021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101393/3_1opasesen16b30f30021204530na/3_1opasesen16b30f30021204530na_seg.nii.gz" + }, + { + "image": "101393/2_1opasesen16b50f30021204530na.nii.gz", + "pseudo_label": "101393/2_1opasesen16b50f30021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101393/2_1opasesen16b50f30021204530na/2_1opasesen16b50f30021204530na_seg.nii.gz" + }, + { + "image": "101393/3_2opasevzoomb30f32421206030na.nii.gz", + "pseudo_label": "101393/3_2opasevzoomb30f32421206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101393/3_2opasevzoomb30f32421206030na/3_2opasevzoomb30f32421206030na_seg.nii.gz" + }, + { + "image": "105620/2_1opagehsqxstandard33025120560115.nii.gz", + "pseudo_label": "105620/2_1opagehsqxstandard33025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105620/2_1opagehsqxstandard33025120560115/2_1opagehsqxstandard33025120560115_seg.nii.gz" + }, + { + "image": "105620/3_0opagehsqxbone33025120560115.nii.gz", + "pseudo_label": "105620/3_0opagehsqxbone33025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105620/3_0opagehsqxbone33025120560115/3_0opagehsqxbone33025120560115_seg.nii.gz" + }, + { + "image": "105620/2_2opagehsqxstandard33025120560115.nii.gz", + "pseudo_label": "105620/2_2opagehsqxstandard33025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105620/2_2opagehsqxstandard33025120560115/2_2opagehsqxstandard33025120560115_seg.nii.gz" + }, + { + "image": "110650/2_2opasevzoomb30f33221207540na.nii.gz", + "pseudo_label": "110650/2_2opasevzoomb30f33221207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110650/2_2opasevzoomb30f33221207540na/2_2opasevzoomb30f33221207540na_seg.nii.gz" + }, + { + "image": "110650/3_0opasevzoomb30f340212010560na.nii.gz", + "pseudo_label": "110650/3_0opasevzoomb30f340212010560na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110650/3_0opasevzoomb30f340212010560na/3_0opasevzoomb30f340212010560na_seg.nii.gz" + }, + { + "image": "101028/2_0opagels16bone32025120600114.nii.gz", + "pseudo_label": "101028/2_0opagels16bone32025120600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101028/2_0opagels16bone32025120600114/2_0opagels16bone32025120600114_seg.nii.gz" + }, + { + "image": "101028/2_2opagels16bone31025120600114.nii.gz", + "pseudo_label": "101028/2_2opagels16bone31025120600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101028/2_2opagels16bone31025120600114/2_2opagels16bone31025120600114_seg.nii.gz" + }, + { + "image": "101028/3_2opagels16standard31025120600114.nii.gz", + "pseudo_label": "101028/3_2opagels16standard31025120600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101028/3_2opagels16standard31025120600114/3_2opagels16standard31025120600114_seg.nii.gz" + }, + { + "image": "112289/5_0opasevzoomb50f34021207540na.nii.gz", + "pseudo_label": "112289/5_0opasevzoomb50f34021207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112289/5_0opasevzoomb50f34021207540na/5_0opasevzoomb50f34021207540na_seg.nii.gz" + }, + { + "image": "110203/2_0opasevzoomb50f33021206030na.nii.gz", + "pseudo_label": "110203/2_0opasevzoomb50f33021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110203/2_0opasevzoomb50f33021206030na/2_0opasevzoomb50f33021206030na_seg.nii.gz" + }, + { + "image": "110203/3_2opasesen16b30f32021204530na.nii.gz", + "pseudo_label": "110203/3_2opasesen16b30f32021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110203/3_2opasesen16b30f32021204530na/3_2opasesen16b30f32021204530na_seg.nii.gz" + }, + { + "image": "101079/3_1opagels16standard3682512000na.nii.gz", + "pseudo_label": "101079/3_1opagels16standard3682512000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101079/3_1opagels16standard3682512000na/3_1opagels16standard3682512000na_seg.nii.gz" + }, + { + "image": "101079/2_1opagels16bone3682512000na.nii.gz", + "pseudo_label": "101079/2_1opagels16bone3682512000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101079/2_1opagels16bone3682512000na/2_1opagels16bone3682512000na_seg.nii.gz" + }, + { + "image": "101079/3_2opagelspr16standard3202512040014.nii.gz", + "pseudo_label": "101079/3_2opagelspr16standard3202512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101079/3_2opagelspr16standard3202512040014/3_2opagelspr16standard3202512040014_seg.nii.gz" + }, + { + "image": "101079/2_2opagelspr16bone3202512040014.nii.gz", + "pseudo_label": "101079/2_2opagelspr16bone3202512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101079/2_2opagelspr16bone3202512040014/2_2opagelspr16bone3202512040014_seg.nii.gz" + }, + { + "image": "101079/3_0opagelsqxstandard3512512048015.nii.gz", + "pseudo_label": "101079/3_0opagelsqxstandard3512512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101079/3_0opagelsqxstandard3512512048015/3_0opagelsqxstandard3512512048015_seg.nii.gz" + }, + { + "image": "112239/3_0opagehsqxbone34025120560115.nii.gz", + "pseudo_label": "112239/3_0opagehsqxbone34025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112239/3_0opagehsqxbone34025120560115/3_0opagehsqxbone34025120560115_seg.nii.gz" + }, + { + "image": "112239/3_2opagehsqxbone34025120560115.nii.gz", + "pseudo_label": "112239/3_2opagehsqxbone34025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112239/3_2opagehsqxbone34025120560115/3_2opagehsqxbone34025120560115_seg.nii.gz" + }, + { + "image": "112239/3_1opagehsqxbone34025120560115.nii.gz", + "pseudo_label": "112239/3_1opagehsqxbone34025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112239/3_1opagehsqxbone34025120560115/3_1opagehsqxbone34025120560115_seg.nii.gz" + }, + { + "image": "112239/2_2opagehsqxstandard34025120560115.nii.gz", + "pseudo_label": "112239/2_2opagehsqxstandard34025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112239/2_2opagehsqxstandard34025120560115/2_2opagehsqxstandard34025120560115_seg.nii.gz" + }, + { + "image": "112239/2_1opagehsqxstandard34025120560115.nii.gz", + "pseudo_label": "112239/2_1opagehsqxstandard34025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112239/2_1opagehsqxstandard34025120560115/2_1opagehsqxstandard34025120560115_seg.nii.gz" + }, + { + "image": "109420/5_1opasevzoomb30f34051206030na.nii.gz", + "pseudo_label": "109420/5_1opasevzoomb30f34051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109420/5_1opasevzoomb30f34051206030na/5_1opasevzoomb30f34051206030na_seg.nii.gz" + }, + { + "image": "109420/5_0opasevzoomb30f366512012060na.nii.gz", + "pseudo_label": "109420/5_0opasevzoomb30f366512012060na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109420/5_0opasevzoomb30f366512012060na/5_0opasevzoomb30f366512012060na_seg.nii.gz" + }, + { + "image": "108935/3_2opasesen16b30f30021204530na.nii.gz", + "pseudo_label": "108935/3_2opasesen16b30f30021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108935/3_2opasesen16b30f30021204530na/3_2opasesen16b30f30021204530na_seg.nii.gz" + }, + { + "image": "108935/2_1opasevzoomb50f30021206030na.nii.gz", + "pseudo_label": "108935/2_1opasevzoomb50f30021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108935/2_1opasevzoomb50f30021206030na/2_1opasevzoomb50f30021206030na_seg.nii.gz" + }, + { + "image": "108248/2_0opagels16bone3202512040014.nii.gz", + "pseudo_label": "108248/2_0opagels16bone3202512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108248/2_0opagels16bone3202512040014/2_0opagels16bone3202512040014_seg.nii.gz" + }, + { + "image": "108248/3_0opagels16standard3202512040014.nii.gz", + "pseudo_label": "108248/3_0opagels16standard3202512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108248/3_0opagels16standard3202512040014/3_0opagels16standard3202512040014_seg.nii.gz" + }, + { + "image": "108248/2_2opagelspr16bone3102512040014.nii.gz", + "pseudo_label": "108248/2_2opagelspr16bone3102512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108248/2_2opagelspr16bone3102512040014/2_2opagelspr16bone3102512040014_seg.nii.gz" + }, + { + "image": "108248/3_1opagelspr16standard3002512040014.nii.gz", + "pseudo_label": "108248/3_1opagelspr16standard3002512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108248/3_1opagelspr16standard3002512040014/3_1opagelspr16standard3002512040014_seg.nii.gz" + }, + { + "image": "107642/2_2opagelsplusstandard32925140888nana.nii.gz", + "pseudo_label": "107642/2_2opagelsplusstandard32925140888nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107642/2_2opagelsplusstandard32925140888nana/2_2opagelsplusstandard32925140888nana_seg.nii.gz" + }, + { + "image": "107642/2_0opagelsqxstandard3202514000na.nii.gz", + "pseudo_label": "107642/2_0opagelsqxstandard3202514000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107642/2_0opagelsqxstandard3202514000na/2_0opagelsqxstandard3202514000na_seg.nii.gz" + }, + { + "image": "102509/3_1opasevzoomb30f32021206030na.nii.gz", + "pseudo_label": "102509/3_1opasevzoomb30f32021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102509/3_1opasevzoomb30f32021206030na/3_1opasevzoomb30f32021206030na_seg.nii.gz" + }, + { + "image": "102509/2_0opasevzoomb50f29021206030na.nii.gz", + "pseudo_label": "102509/2_0opasevzoomb50f29021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102509/2_0opasevzoomb50f29021206030na/2_0opasevzoomb50f29021206030na_seg.nii.gz" + }, + { + "image": "102509/3_2opasevzoomb30f31021206030na.nii.gz", + "pseudo_label": "102509/3_2opasevzoomb30f31021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102509/3_2opasevzoomb30f31021206030na/3_2opasevzoomb30f31021206030na_seg.nii.gz" + }, + { + "image": "102509/2_2opasevzoomb50f31021206030na.nii.gz", + "pseudo_label": "102509/2_2opasevzoomb50f31021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102509/2_2opasevzoomb50f31021206030na/2_2opasevzoomb50f31021206030na_seg.nii.gz" + }, + { + "image": "104086/3_2opasesen16b30f37251204530na.nii.gz", + "pseudo_label": "104086/3_2opasesen16b30f37251204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104086/3_2opasesen16b30f37251204530na/3_2opasesen16b30f37251204530na_seg.nii.gz" + }, + { + "image": "104086/3_1opasesen16b30f37451204530na.nii.gz", + "pseudo_label": "104086/3_1opasesen16b30f37451204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104086/3_1opasesen16b30f37451204530na/3_1opasesen16b30f37451204530na_seg.nii.gz" + }, + { + "image": "104086/5_0opasesen16b50f32851204530na.nii.gz", + "pseudo_label": "104086/5_0opasesen16b50f32851204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104086/5_0opasesen16b50f32851204530na/5_0opasesen16b50f32851204530na_seg.nii.gz" + }, + { + "image": "104086/4_0opasesen16b30f32821204530na.nii.gz", + "pseudo_label": "104086/4_0opasesen16b30f32821204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104086/4_0opasesen16b30f32821204530na/4_0opasesen16b30f32821204530na_seg.nii.gz" + }, + { + "image": "104086/5_2opasesen16b50f37251204530na.nii.gz", + "pseudo_label": "104086/5_2opasesen16b50f37251204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104086/5_2opasesen16b50f37251204530na/5_2opasesen16b50f37251204530na_seg.nii.gz" + }, + { + "image": "104086/5_1opasesen16b50f37451204530na.nii.gz", + "pseudo_label": "104086/5_1opasesen16b50f37451204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104086/5_1opasesen16b50f37451204530na/5_1opasesen16b50f37451204530na_seg.nii.gz" + }, + { + "image": "104086/3_0opasesen16b30f32851204530na.nii.gz", + "pseudo_label": "104086/3_0opasesen16b30f32851204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104086/3_0opasesen16b30f32851204530na/3_0opasesen16b30f32851204530na_seg.nii.gz" + }, + { + "image": "104352/3_1opasevzoomb30f33021206030na.nii.gz", + "pseudo_label": "104352/3_1opasevzoomb30f33021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104352/3_1opasevzoomb30f33021206030na/3_1opasevzoomb30f33021206030na_seg.nii.gz" + }, + { + "image": "104352/2_2opasevzoomb50f33021206030na.nii.gz", + "pseudo_label": "104352/2_2opasevzoomb50f33021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104352/2_2opasevzoomb50f33021206030na/2_2opasevzoomb50f33021206030na_seg.nii.gz" + }, + { + "image": "110923/3_2opagels16standard33025140600114.nii.gz", + "pseudo_label": "110923/3_2opagels16standard33025140600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110923/3_2opagels16standard33025140600114/3_2opagels16standard33025140600114_seg.nii.gz" + }, + { + "image": "110712/5_0opatoaqul4fc823266212080nana.nii.gz", + "pseudo_label": "110712/5_0opatoaqul4fc823266212080nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110712/5_0opatoaqul4fc823266212080nana/5_0opatoaqul4fc823266212080nana_seg.nii.gz" + }, + { + "image": "110712/3_2opatoaqul4fc513496212060nana.nii.gz", + "pseudo_label": "110712/3_2opatoaqul4fc513496212060nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110712/3_2opatoaqul4fc513496212060nana/3_2opatoaqul4fc513496212060nana_seg.nii.gz" + }, + { + "image": "108399/3_2opasesen16b30f38021204530na.nii.gz", + "pseudo_label": "108399/3_2opasesen16b30f38021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108399/3_2opasesen16b30f38021204530na/3_2opasesen16b30f38021204530na_seg.nii.gz" + }, + { + "image": "112742/2_1opagelsqxstandard36025120640115.nii.gz", + "pseudo_label": "112742/2_1opagelsqxstandard36025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112742/2_1opagelsqxstandard36025120640115/2_1opagelsqxstandard36025120640115_seg.nii.gz" + }, + { + "image": "107779/2_0opagehsqxstandard33025120560115.nii.gz", + "pseudo_label": "107779/2_0opagehsqxstandard33025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107779/2_0opagehsqxstandard33025120560115/2_0opagehsqxstandard33025120560115_seg.nii.gz" + }, + { + "image": "107911/2_1opasesen16b30f31021204032na.nii.gz", + "pseudo_label": "107911/2_1opasesen16b30f31021204032na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107911/2_1opasesen16b30f31021204032na/2_1opasesen16b30f31021204032na_seg.nii.gz" + }, + { + "image": "104465/3_2opasevzoomb30f33221206030na.nii.gz", + "pseudo_label": "104465/3_2opasevzoomb30f33221206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104465/3_2opasevzoomb30f33221206030na/3_2opasevzoomb30f33221206030na_seg.nii.gz" + }, + { + "image": "104465/2_0opasevzoomb50f34021206030na.nii.gz", + "pseudo_label": "104465/2_0opasevzoomb50f34021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104465/2_0opasevzoomb50f34021206030na/2_0opasevzoomb50f34021206030na_seg.nii.gz" + }, + { + "image": "104465/3_0opasevzoomb30f34021206030na.nii.gz", + "pseudo_label": "104465/3_0opasevzoomb30f34021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104465/3_0opasevzoomb30f34021206030na/3_0opasevzoomb30f34021206030na_seg.nii.gz" + }, + { + "image": "103340/3_0opasevzoomb50f340212010560na.nii.gz", + "pseudo_label": "103340/3_0opasevzoomb50f340212010560na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103340/3_0opasevzoomb50f340212010560na/3_0opasevzoomb50f340212010560na_seg.nii.gz" + }, + { + "image": "105359/2_1opagehsqxstandard29025120560115.nii.gz", + "pseudo_label": "105359/2_1opagehsqxstandard29025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105359/2_1opagehsqxstandard29025120560115/2_1opagehsqxstandard29025120560115_seg.nii.gz" + }, + { + "image": "105359/2_0opagehsqxstandard29025120560115.nii.gz", + "pseudo_label": "105359/2_0opagehsqxstandard29025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105359/2_0opagehsqxstandard29025120560115/2_0opagehsqxstandard29025120560115_seg.nii.gz" + }, + { + "image": "105359/2_2opagehsqxstandard29025120560115.nii.gz", + "pseudo_label": "105359/2_2opagehsqxstandard29025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105359/2_2opagehsqxstandard29025120560115/2_2opagehsqxstandard29025120560115_seg.nii.gz" + }, + { + "image": "104767/2_0opagelsqxstandard3802514000na.nii.gz", + "pseudo_label": "104767/2_0opagelsqxstandard3802514000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104767/2_0opagelsqxstandard3802514000na/2_0opagelsqxstandard3802514000na_seg.nii.gz" + }, + { + "image": "104767/2_1opagelsplusstandard3702514000na.nii.gz", + "pseudo_label": "104767/2_1opagelsplusstandard3702514000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104767/2_1opagelsplusstandard3702514000na/2_1opagelsplusstandard3702514000na_seg.nii.gz" + }, + { + "image": "110513/2_1opagelsplusstandard38025140794nana.nii.gz", + "pseudo_label": "110513/2_1opagelsplusstandard38025140794nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110513/2_1opagelsplusstandard38025140794nana/2_1opagelsplusstandard38025140794nana_seg.nii.gz" + }, + { + "image": "110513/2_0opagelsplusstandard4042514040015.nii.gz", + "pseudo_label": "110513/2_0opagelsplusstandard4042514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110513/2_0opagelsplusstandard4042514040015/2_0opagelsplusstandard4042514040015_seg.nii.gz" + }, + { + "image": "102817/9556_0opaphmx8000c277321205624512.nii.gz", + "pseudo_label": "102817/9556_0opaphmx8000c277321205624512.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102817/9556_0opaphmx8000c277321205624512/9556_0opaphmx8000c277321205624512_seg.nii.gz" + }, + { + "image": "109823/3_0opatoaqul4fc513094212055nana.nii.gz", + "pseudo_label": "109823/3_0opatoaqul4fc513094212055nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109823/3_0opatoaqul4fc513094212055nana/3_0opatoaqul4fc513094212055nana_seg.nii.gz" + }, + { + "image": "109823/3_1opatoaqul4fc513164212060nana.nii.gz", + "pseudo_label": "109823/3_1opatoaqul4fc513164212060nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109823/3_1opatoaqul4fc513164212060nana/3_1opatoaqul4fc513164212060nana_seg.nii.gz" + }, + { + "image": "109823/3_2opatoaqul4fc513203212050nana.nii.gz", + "pseudo_label": "109823/3_2opatoaqul4fc513203212050nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109823/3_2opatoaqul4fc513203212050nana/3_2opatoaqul4fc513203212050nana_seg.nii.gz" + }, + { + "image": "110086/2_2opagelsqxstandard36825120720115.nii.gz", + "pseudo_label": "110086/2_2opagelsqxstandard36825120720115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110086/2_2opagelsqxstandard36825120720115/2_2opagelsqxstandard36825120720115_seg.nii.gz" + }, + { + "image": "110086/3_1opagelsqxbone39025120640115.nii.gz", + "pseudo_label": "110086/3_1opagelsqxbone39025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110086/3_1opagelsqxbone39025120640115/3_1opagelsqxbone39025120640115_seg.nii.gz" + }, + { + "image": "110086/2_1opagelsqxstandard39025120640115.nii.gz", + "pseudo_label": "110086/2_1opagelsqxstandard39025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110086/2_1opagelsqxstandard39025120640115/2_1opagelsqxstandard39025120640115_seg.nii.gz" + }, + { + "image": "110086/3_2opagelsqxbone36825120720115.nii.gz", + "pseudo_label": "110086/3_2opagelsqxbone36825120720115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110086/3_2opagelsqxbone36825120720115/3_2opagelsqxbone36825120720115_seg.nii.gz" + }, + { + "image": "105426/2_0opagelsqxstandard3302512048015.nii.gz", + "pseudo_label": "105426/2_0opagelsqxstandard3302512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105426/2_0opagelsqxstandard3302512048015/2_0opagelsqxstandard3302512048015_seg.nii.gz" + }, + { + "image": "111640/2_0opagelsqxstandard3612514048015.nii.gz", + "pseudo_label": "111640/2_0opagelsqxstandard3612514048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111640/2_0opagelsqxstandard3612514048015/2_0opagelsqxstandard3612514048015_seg.nii.gz" + }, + { + "image": "111640/2_2opagelsqxstandard3602514048015.nii.gz", + "pseudo_label": "111640/2_2opagelsqxstandard3602514048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111640/2_2opagelsqxstandard3602514048015/2_2opagelsqxstandard3602514048015_seg.nii.gz" + }, + { + "image": "103874/2_2opagelsqxstandard36025120640115.nii.gz", + "pseudo_label": "103874/2_2opagelsqxstandard36025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103874/2_2opagelsqxstandard36025120640115/2_2opagelsqxstandard36025120640115_seg.nii.gz" + }, + { + "image": "110430/2_0opagels16standard36025140400na.nii.gz", + "pseudo_label": "110430/2_0opagels16standard36025140400na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110430/2_0opagels16standard36025140400na/2_0opagels16standard36025140400na_seg.nii.gz" + }, + { + "image": "104589/2_0opasesen16b30f29021204032na.nii.gz", + "pseudo_label": "104589/2_0opasesen16b30f29021204032na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104589/2_0opasesen16b30f29021204032na/2_0opasesen16b30f29021204032na_seg.nii.gz" + }, + { + "image": "105524/2_1opagelsplusstandard3202514040015.nii.gz", + "pseudo_label": "105524/2_1opagelsplusstandard3202514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105524/2_1opagelsplusstandard3202514040015/2_1opagelsplusstandard3202514040015_seg.nii.gz" + }, + { + "image": "105524/2_0opagelsplusstandard33025140560115.nii.gz", + "pseudo_label": "105524/2_0opagelsplusstandard33025140560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105524/2_0opagelsplusstandard33025140560115/2_0opagelsplusstandard33025140560115_seg.nii.gz" + }, + { + "image": "105524/2_2opagelsplusstandard35125140794nana.nii.gz", + "pseudo_label": "105524/2_2opagelsplusstandard35125140794nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105524/2_2opagelsplusstandard35125140794nana/2_2opagelsplusstandard35125140794nana_seg.nii.gz" + }, + { + "image": "108350/3_0opagelsqxstandard3202512048015.nii.gz", + "pseudo_label": "108350/3_0opagelsqxstandard3202512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108350/3_0opagelsqxstandard3202512048015/3_0opagelsqxstandard3202512048015_seg.nii.gz" + }, + { + "image": "108350/3_1opagels16standard3202512048014.nii.gz", + "pseudo_label": "108350/3_1opagels16standard3202512048014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108350/3_1opagels16standard3202512048014/3_1opagels16standard3202512048014_seg.nii.gz" + }, + { + "image": "108350/3_2opagelspr16standard3202512040014.nii.gz", + "pseudo_label": "108350/3_2opagelspr16standard3202512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108350/3_2opagelspr16standard3202512040014/3_2opagelspr16standard3202512040014_seg.nii.gz" + }, + { + "image": "108350/2_0opagelsqxbone3202512048015.nii.gz", + "pseudo_label": "108350/2_0opagelsqxbone3202512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108350/2_0opagelsqxbone3202512048015/2_0opagelsqxbone3202512048015_seg.nii.gz" + }, + { + "image": "108350/2_2opagelspr16bone3202512040014.nii.gz", + "pseudo_label": "108350/2_2opagelspr16bone3202512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108350/2_2opagelspr16bone3202512040014/2_2opagelspr16bone3202512040014_seg.nii.gz" + }, + { + "image": "100805/2_0opagehsqxstandard31025120560115.nii.gz", + "pseudo_label": "100805/2_0opagehsqxstandard31025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100805/2_0opagehsqxstandard31025120560115/2_0opagehsqxstandard31025120560115_seg.nii.gz" + }, + { + "image": "100805/2_1opagehsqxstandard31025120560115.nii.gz", + "pseudo_label": "100805/2_1opagehsqxstandard31025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100805/2_1opagehsqxstandard31025120560115/2_1opagehsqxstandard31025120560115_seg.nii.gz" + }, + { + "image": "109899/2_1opagels16standard32025120453nana.nii.gz", + "pseudo_label": "109899/2_1opagels16standard32025120453nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109899/2_1opagels16standard32025120453nana/2_1opagels16standard32025120453nana_seg.nii.gz" + }, + { + "image": "109899/2_2opagels16standard32025120435nana.nii.gz", + "pseudo_label": "109899/2_2opagels16standard32025120435nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109899/2_2opagels16standard32025120435nana/2_2opagels16standard32025120435nana_seg.nii.gz" + }, + { + "image": "110777/4_2opatoaqul4fc512938212040nana.nii.gz", + "pseudo_label": "110777/4_2opatoaqul4fc512938212040nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110777/4_2opatoaqul4fc512938212040nana/4_2opatoaqul4fc512938212040nana_seg.nii.gz" + }, + { + "image": "110777/5_0opatoaqul4fc512984212040nana.nii.gz", + "pseudo_label": "110777/5_0opatoaqul4fc512984212040nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110777/5_0opatoaqul4fc512984212040nana/5_0opatoaqul4fc512984212040nana_seg.nii.gz" + }, + { + "image": "112119/2_0opasevzoomb30f350214016080na.nii.gz", + "pseudo_label": "112119/2_0opasevzoomb30f350214016080na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112119/2_0opasevzoomb30f350214016080na/2_0opasevzoomb30f350214016080na_seg.nii.gz" + }, + { + "image": "102004/2_1opasesen16b30f33621204032na.nii.gz", + "pseudo_label": "102004/2_1opasesen16b30f33621204032na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102004/2_1opasesen16b30f33621204032na/2_1opasesen16b30f33621204032na_seg.nii.gz" + }, + { + "image": "113316/2_0opagelsplusstandard3002514040015.nii.gz", + "pseudo_label": "113316/2_0opagelsplusstandard3002514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113316/2_0opagelsplusstandard3002514040015/2_0opagelsplusstandard3002514040015_seg.nii.gz" + }, + { + "image": "113316/2_2opagelsplusstandard27925140841nana.nii.gz", + "pseudo_label": "113316/2_2opagelsplusstandard27925140841nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113316/2_2opagelsplusstandard27925140841nana/2_2opagelsplusstandard27925140841nana_seg.nii.gz" + }, + { + "image": "113316/2_1opagelsqxstandard3002514040015.nii.gz", + "pseudo_label": "113316/2_1opagelsqxstandard3002514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113316/2_1opagelsqxstandard3002514040015/2_1opagelsqxstandard3002514040015_seg.nii.gz" + }, + { + "image": "107334/2_2opagelspr16bone3602512040014.nii.gz", + "pseudo_label": "107334/2_2opagelspr16bone3602512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107334/2_2opagelspr16bone3602512040014/2_2opagelspr16bone3602512040014_seg.nii.gz" + }, + { + "image": "107334/3_1opagels16standard3402512048014.nii.gz", + "pseudo_label": "107334/3_1opagels16standard3402512048014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107334/3_1opagels16standard3402512048014/3_1opagels16standard3402512048014_seg.nii.gz" + }, + { + "image": "103078/3_0opasevzoomb50f280212012060na.nii.gz", + "pseudo_label": "103078/3_0opasevzoomb50f280212012060na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103078/3_0opasevzoomb50f280212012060na/3_0opasevzoomb50f280212012060na_seg.nii.gz" + }, + { + "image": "103078/2_2opasevzoomb30f31021208040na.nii.gz", + "pseudo_label": "103078/2_2opasevzoomb30f31021208040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103078/2_2opasevzoomb30f31021208040na/2_2opasevzoomb30f31021208040na_seg.nii.gz" + }, + { + "image": "112251/2_2opasevzoomb30f38021207040na.nii.gz", + "pseudo_label": "112251/2_2opasevzoomb30f38021207040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112251/2_2opasevzoomb30f38021207040na/2_2opasevzoomb30f38021207040na_seg.nii.gz" + }, + { + "image": "112251/3_0opasevzoomb50f34021207540na.nii.gz", + "pseudo_label": "112251/3_0opasevzoomb50f34021207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112251/3_0opasevzoomb50f34021207540na/3_0opasevzoomb50f34021207540na_seg.nii.gz" + }, + { + "image": "106763/2_2opagelsqxstandard3402514000na.nii.gz", + "pseudo_label": "106763/2_2opagelsqxstandard3402514000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106763/2_2opagelsqxstandard3402514000na/2_2opagelsqxstandard3402514000na_seg.nii.gz" + }, + { + "image": "106763/2_1opagels16standard3402514000na.nii.gz", + "pseudo_label": "106763/2_1opagels16standard3402514000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106763/2_1opagels16standard3402514000na/2_1opagels16standard3402514000na_seg.nii.gz" + }, + { + "image": "106763/2_0opagelsqxstandard3402514000na.nii.gz", + "pseudo_label": "106763/2_0opagelsqxstandard3402514000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106763/2_0opagelsqxstandard3402514000na/2_0opagelsqxstandard3402514000na_seg.nii.gz" + }, + { + "image": "101834/2_0opagelsqxstandard3202514040015.nii.gz", + "pseudo_label": "101834/2_0opagelsqxstandard3202514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101834/2_0opagelsqxstandard3202514040015/2_0opagelsqxstandard3202514040015_seg.nii.gz" + }, + { + "image": "103032/3_1opasesen16b30f27551204530na.nii.gz", + "pseudo_label": "103032/3_1opasesen16b30f27551204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103032/3_1opasesen16b30f27551204530na/3_1opasesen16b30f27551204530na_seg.nii.gz" + }, + { + "image": "103032/6_0opasesen16b50f30021204530na.nii.gz", + "pseudo_label": "103032/6_0opasesen16b50f30021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103032/6_0opasesen16b50f30021204530na/6_0opasesen16b50f30021204530na_seg.nii.gz" + }, + { + "image": "103032/9_2opasesen16b50f28021204530na.nii.gz", + "pseudo_label": "103032/9_2opasesen16b50f28021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103032/9_2opasesen16b50f28021204530na/9_2opasesen16b50f28021204530na_seg.nii.gz" + }, + { + "image": "103032/6_2opasesen16b30f28451204530na.nii.gz", + "pseudo_label": "103032/6_2opasesen16b30f28451204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103032/6_2opasesen16b30f28451204530na/6_2opasesen16b30f28451204530na_seg.nii.gz" + }, + { + "image": "103032/5_0opasesen16b50f30051204530na.nii.gz", + "pseudo_label": "103032/5_0opasesen16b50f30051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103032/5_0opasesen16b50f30051204530na/5_0opasesen16b50f30051204530na_seg.nii.gz" + }, + { + "image": "103032/5_2opasesen16b30f28451204530na.nii.gz", + "pseudo_label": "103032/5_2opasesen16b30f28451204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103032/5_2opasesen16b30f28451204530na/5_2opasesen16b30f28451204530na_seg.nii.gz" + }, + { + "image": "103032/3_0opasesen16b30f30051204530na.nii.gz", + "pseudo_label": "103032/3_0opasesen16b30f30051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103032/3_0opasesen16b30f30051204530na/3_0opasesen16b30f30051204530na_seg.nii.gz" + }, + { + "image": "103032/4_1opasesen16b30f27521204530na.nii.gz", + "pseudo_label": "103032/4_1opasesen16b30f27521204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103032/4_1opasesen16b30f27521204530na/4_1opasesen16b30f27521204530na_seg.nii.gz" + }, + { + "image": "103032/5_1opasesen16b50f27551204530na.nii.gz", + "pseudo_label": "103032/5_1opasesen16b50f27551204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103032/5_1opasesen16b50f27551204530na/5_1opasesen16b50f27551204530na_seg.nii.gz" + }, + { + "image": "103032/7_2opasesen16b30f28021204530na.nii.gz", + "pseudo_label": "103032/7_2opasesen16b30f28021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103032/7_2opasesen16b30f28021204530na/7_2opasesen16b30f28021204530na_seg.nii.gz" + }, + { + "image": "110128/2_0opagehsqxstandard30025120560115.nii.gz", + "pseudo_label": "110128/2_0opagehsqxstandard30025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110128/2_0opagehsqxstandard30025120560115/2_0opagehsqxstandard30025120560115_seg.nii.gz" + }, + { + "image": "110128/3_2opagehsqxbone30025120560115.nii.gz", + "pseudo_label": "110128/3_2opagehsqxbone30025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110128/3_2opagehsqxbone30025120560115/3_2opagehsqxbone30025120560115_seg.nii.gz" + }, + { + "image": "110128/2_2opagehsqxstandard30025120560115.nii.gz", + "pseudo_label": "110128/2_2opagehsqxstandard30025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110128/2_2opagehsqxstandard30025120560115/2_2opagehsqxstandard30025120560115_seg.nii.gz" + }, + { + "image": "110128/3_0opagehsqxbone30025120560115.nii.gz", + "pseudo_label": "110128/3_0opagehsqxbone30025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110128/3_0opagehsqxbone30025120560115/3_0opagehsqxbone30025120560115_seg.nii.gz" + }, + { + "image": "110035/2_2opagelspr16bone3002512048014.nii.gz", + "pseudo_label": "110035/2_2opagelspr16bone3002512048014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110035/2_2opagelspr16bone3002512048014/2_2opagelspr16bone3002512048014_seg.nii.gz" + }, + { + "image": "110035/3_2opagelspr16standard3002512048014.nii.gz", + "pseudo_label": "110035/3_2opagelspr16standard3002512048014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110035/3_2opagelspr16standard3002512048014/3_2opagelspr16standard3002512048014_seg.nii.gz" + }, + { + "image": "107399/2_2opagelsqxstandard3602512000na.nii.gz", + "pseudo_label": "107399/2_2opagelsqxstandard3602512000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107399/2_2opagelsqxstandard3602512000na/2_2opagelsqxstandard3602512000na_seg.nii.gz" + }, + { + "image": "101489/2_0opasevzoomb50f34021206030na.nii.gz", + "pseudo_label": "101489/2_0opasevzoomb50f34021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101489/2_0opasevzoomb50f34021206030na/2_0opasevzoomb50f34021206030na_seg.nii.gz" + }, + { + "image": "101489/2_1opasesen16b50f33021204530na.nii.gz", + "pseudo_label": "101489/2_1opasesen16b50f33021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101489/2_1opasesen16b50f33021204530na/2_1opasesen16b50f33021204530na_seg.nii.gz" + }, + { + "image": "101489/2_2opasesen16b50f32021204530na.nii.gz", + "pseudo_label": "101489/2_2opasesen16b50f32021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101489/2_2opasesen16b50f32021204530na/2_2opasesen16b50f32021204530na_seg.nii.gz" + }, + { + "image": "103615/3_0opatoaqul4fc512406212040nana.nii.gz", + "pseudo_label": "103615/3_0opatoaqul4fc512406212040nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103615/3_0opatoaqul4fc512406212040nana/3_0opatoaqul4fc512406212040nana_seg.nii.gz" + }, + { + "image": "103615/3_2opatoaqul4fc512703212040nana.nii.gz", + "pseudo_label": "103615/3_2opatoaqul4fc512703212040nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103615/3_2opatoaqul4fc512703212040nana/3_2opatoaqul4fc512703212040nana_seg.nii.gz" + }, + { + "image": "103797/2_1opasevzoomb30f34021207040na.nii.gz", + "pseudo_label": "103797/2_1opasevzoomb30f34021207040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103797/2_1opasevzoomb30f34021207040na/2_1opasevzoomb30f34021207040na_seg.nii.gz" + }, + { + "image": "103797/3_1opasevzoomb50f34021207040na.nii.gz", + "pseudo_label": "103797/3_1opasevzoomb50f34021207040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103797/3_1opasevzoomb50f34021207040na/3_1opasevzoomb50f34021207040na_seg.nii.gz" + }, + { + "image": "103797/101_2opasevzoomb30f32421207540na.nii.gz", + "pseudo_label": "103797/101_2opasevzoomb30f32421207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103797/101_2opasevzoomb30f32421207540na/101_2opasevzoomb30f32421207540na_seg.nii.gz" + }, + { + "image": "110600/3_1opagelsqxbone31025120640115.nii.gz", + "pseudo_label": "110600/3_1opagelsqxbone31025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110600/3_1opagelsqxbone31025120640115/3_1opagelsqxbone31025120640115_seg.nii.gz" + }, + { + "image": "110600/2_2opagelsqxstandard36025120560115.nii.gz", + "pseudo_label": "110600/2_2opagelsqxstandard36025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110600/2_2opagelsqxstandard36025120560115/2_2opagelsqxstandard36025120560115_seg.nii.gz" + }, + { + "image": "110600/2_0opagelsqxstandard32025120640115.nii.gz", + "pseudo_label": "110600/2_0opagelsqxstandard32025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110600/2_0opagelsqxstandard32025120640115/2_0opagelsqxstandard32025120640115_seg.nii.gz" + }, + { + "image": "109839/1_1opatoaqul4fc303594312080nana.nii.gz", + "pseudo_label": "109839/1_1opatoaqul4fc303594312080nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109839/1_1opatoaqul4fc303594312080nana/1_1opatoaqul4fc303594312080nana_seg.nii.gz" + }, + { + "image": "109839/1_0opagelsplusstandard38425120800115.nii.gz", + "pseudo_label": "109839/1_0opagelsplusstandard38425120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109839/1_0opagelsplusstandard38425120800115/1_0opagelsplusstandard38425120800115_seg.nii.gz" + }, + { + "image": "109839/1_0opagelspluslung38425120800115.nii.gz", + "pseudo_label": "109839/1_0opagelspluslung38425120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109839/1_0opagelspluslung38425120800115/1_0opagelspluslung38425120800115_seg.nii.gz" + }, + { + "image": "109839/1_2opagelspluslung36025120800115.nii.gz", + "pseudo_label": "109839/1_2opagelspluslung36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109839/1_2opagelspluslung36025120800115/1_2opagelspluslung36025120800115_seg.nii.gz" + }, + { + "image": "109839/1_1opatoaqul4fc023594312080nana.nii.gz", + "pseudo_label": "109839/1_1opatoaqul4fc023594312080nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109839/1_1opatoaqul4fc023594312080nana/1_1opatoaqul4fc023594312080nana_seg.nii.gz" + }, + { + "image": "105888/2_0opagehsqxstandard37025120640115.nii.gz", + "pseudo_label": "105888/2_0opagehsqxstandard37025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105888/2_0opagehsqxstandard37025120640115/2_0opagehsqxstandard37025120640115_seg.nii.gz" + }, + { + "image": "105888/2_2opagehsqxstandard37025120560115.nii.gz", + "pseudo_label": "105888/2_2opagehsqxstandard37025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105888/2_2opagehsqxstandard37025120560115/2_2opagehsqxstandard37025120560115_seg.nii.gz" + }, + { + "image": "105888/2_1opagehsqxstandard37025120560115.nii.gz", + "pseudo_label": "105888/2_1opagehsqxstandard37025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105888/2_1opagehsqxstandard37025120560115/2_1opagehsqxstandard37025120560115_seg.nii.gz" + }, + { + "image": "105888/3_0opagehsqxbone37025120640115.nii.gz", + "pseudo_label": "105888/3_0opagehsqxbone37025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105888/3_0opagehsqxbone37025120640115/3_0opagehsqxbone37025120640115_seg.nii.gz" + }, + { + "image": "100949/2_0opagehsqxstandard26025120560115.nii.gz", + "pseudo_label": "100949/2_0opagehsqxstandard26025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100949/2_0opagehsqxstandard26025120560115/2_0opagehsqxstandard26025120560115_seg.nii.gz" + }, + { + "image": "100949/2_1opagehsqxstandard26025120560115.nii.gz", + "pseudo_label": "100949/2_1opagehsqxstandard26025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100949/2_1opagehsqxstandard26025120560115/2_1opagehsqxstandard26025120560115_seg.nii.gz" + }, + { + "image": "100949/3_1opagehsqxbone26025120560115.nii.gz", + "pseudo_label": "100949/3_1opagehsqxbone26025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100949/3_1opagehsqxbone26025120560115/3_1opagehsqxbone26025120560115_seg.nii.gz" + }, + { + "image": "100949/3_2opagehsqxbone26025120560115.nii.gz", + "pseudo_label": "100949/3_2opagehsqxbone26025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100949/3_2opagehsqxbone26025120560115/3_2opagehsqxbone26025120560115_seg.nii.gz" + }, + { + "image": "107091/2_1opagelsplusstandard3302514040015.nii.gz", + "pseudo_label": "107091/2_1opagelsplusstandard3302514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107091/2_1opagelsplusstandard3302514040015/2_1opagelsplusstandard3302514040015_seg.nii.gz" + }, + { + "image": "110545/2_2opagelsqxstandard2902514048015.nii.gz", + "pseudo_label": "110545/2_2opagelsqxstandard2902514048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110545/2_2opagelsqxstandard2902514048015/2_2opagelsqxstandard2902514048015_seg.nii.gz" + }, + { + "image": "110545/2_1opagelsqxstandard2902514048015.nii.gz", + "pseudo_label": "110545/2_1opagelsqxstandard2902514048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110545/2_1opagelsqxstandard2902514048015/2_1opagelsqxstandard2902514048015_seg.nii.gz" + }, + { + "image": "106229/2_0opagelsplusstandard3002514040015.nii.gz", + "pseudo_label": "106229/2_0opagelsplusstandard3002514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106229/2_0opagelsplusstandard3002514040015/2_0opagelsplusstandard3002514040015_seg.nii.gz" + }, + { + "image": "106229/2_2opagelsqxstandard3102514040015.nii.gz", + "pseudo_label": "106229/2_2opagelsqxstandard3102514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106229/2_2opagelsqxstandard3102514040015/2_2opagelsqxstandard3102514040015_seg.nii.gz" + }, + { + "image": "106604/3_2opatoaqul4fc513406212040nana.nii.gz", + "pseudo_label": "106604/3_2opatoaqul4fc513406212040nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106604/3_2opatoaqul4fc513406212040nana/3_2opatoaqul4fc513406212040nana_seg.nii.gz" + }, + { + "image": "106604/3_1opatoaqul4fc513301212040nana.nii.gz", + "pseudo_label": "106604/3_1opatoaqul4fc513301212040nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106604/3_1opatoaqul4fc513301212040nana/3_1opatoaqul4fc513301212040nana_seg.nii.gz" + }, + { + "image": "110959/2_2opagelsplusstandard36025120800115.nii.gz", + "pseudo_label": "110959/2_2opagelsplusstandard36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110959/2_2opagelsplusstandard36025120800115/2_2opagelsplusstandard36025120800115_seg.nii.gz" + }, + { + "image": "110959/1_1opagelsplusstandard36025120800115.nii.gz", + "pseudo_label": "110959/1_1opagelsplusstandard36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110959/1_1opagelsplusstandard36025120800115/1_1opagelsplusstandard36025120800115_seg.nii.gz" + }, + { + "image": "110959/1_1opagelspluslung36025120800115.nii.gz", + "pseudo_label": "110959/1_1opagelspluslung36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110959/1_1opagelspluslung36025120800115/1_1opagelspluslung36025120800115_seg.nii.gz" + }, + { + "image": "110959/1_0opagelsplusstandard36025120800115.nii.gz", + "pseudo_label": "110959/1_0opagelsplusstandard36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110959/1_0opagelsplusstandard36025120800115/1_0opagelsplusstandard36025120800115_seg.nii.gz" + }, + { + "image": "110959/1_0opagelspluslung36025120800115.nii.gz", + "pseudo_label": "110959/1_0opagelspluslung36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110959/1_0opagelspluslung36025120800115/1_0opagelspluslung36025120800115_seg.nii.gz" + }, + { + "image": "110959/2_2opagelspluslung36025120800115.nii.gz", + "pseudo_label": "110959/2_2opagelspluslung36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110959/2_2opagelspluslung36025120800115/2_2opagelspluslung36025120800115_seg.nii.gz" + }, + { + "image": "104650/4_0opasevzoomb50f36021207540na.nii.gz", + "pseudo_label": "104650/4_0opasevzoomb50f36021207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104650/4_0opasevzoomb50f36021207540na/4_0opasevzoomb50f36021207540na_seg.nii.gz" + }, + { + "image": "104300/2_0opasevzoomb50f29021206030na.nii.gz", + "pseudo_label": "104300/2_0opasevzoomb50f29021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104300/2_0opasevzoomb50f29021206030na/2_0opasevzoomb50f29021206030na_seg.nii.gz" + }, + { + "image": "104300/3_2opasevzoomb30f30021206030na.nii.gz", + "pseudo_label": "104300/3_2opasevzoomb30f30021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104300/3_2opasevzoomb30f30021206030na/3_2opasevzoomb30f30021206030na_seg.nii.gz" + }, + { + "image": "103587/3_0opagels16standard40025120640114.nii.gz", + "pseudo_label": "103587/3_0opagels16standard40025120640114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103587/3_0opagels16standard40025120640114/3_0opagels16standard40025120640114_seg.nii.gz" + }, + { + "image": "103587/2_0opagels16bone40025120640114.nii.gz", + "pseudo_label": "103587/2_0opagels16bone40025120640114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103587/2_0opagels16bone40025120640114/2_0opagels16bone40025120640114_seg.nii.gz" + }, + { + "image": "107551/3_1opasesen16b30f30021204530na.nii.gz", + "pseudo_label": "107551/3_1opasesen16b30f30021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107551/3_1opasesen16b30f30021204530na/3_1opasesen16b30f30021204530na_seg.nii.gz" + }, + { + "image": "107551/3_2opasesen16b30f29021204530na.nii.gz", + "pseudo_label": "107551/3_2opasesen16b30f29021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107551/3_2opasesen16b30f29021204530na/3_2opasesen16b30f29021204530na_seg.nii.gz" + }, + { + "image": "107551/2_2opasesen16b50f29021204530na.nii.gz", + "pseudo_label": "107551/2_2opasesen16b50f29021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107551/2_2opasesen16b50f29021204530na/2_2opasesen16b50f29021204530na_seg.nii.gz" + }, + { + "image": "107551/2_1opasesen16b50f30021204530na.nii.gz", + "pseudo_label": "107551/2_1opasesen16b50f30021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107551/2_1opasesen16b50f30021204530na/2_1opasesen16b50f30021204530na_seg.nii.gz" + }, + { + "image": "101593/4_1opasevzoomb50f34251206030na.nii.gz", + "pseudo_label": "101593/4_1opasevzoomb50f34251206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101593/4_1opasevzoomb50f34251206030na/4_1opasevzoomb50f34251206030na_seg.nii.gz" + }, + { + "image": "101593/4_0opasesen16b50f38051206040na.nii.gz", + "pseudo_label": "101593/4_0opasesen16b50f38051206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101593/4_0opasesen16b50f38051206040na/4_0opasesen16b50f38051206040na_seg.nii.gz" + }, + { + "image": "101593/5_1opasevzoomb50f34221206030na.nii.gz", + "pseudo_label": "101593/5_1opasevzoomb50f34221206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101593/5_1opasevzoomb50f34221206030na/5_1opasevzoomb50f34221206030na_seg.nii.gz" + }, + { + "image": "101593/3_0opasesen16b30f38051206040na.nii.gz", + "pseudo_label": "101593/3_0opasesen16b30f38051206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101593/3_0opasesen16b30f38051206040na/3_0opasesen16b30f38051206040na_seg.nii.gz" + }, + { + "image": "101593/3_1opasevzoomb30f34251206030na.nii.gz", + "pseudo_label": "101593/3_1opasevzoomb30f34251206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101593/3_1opasevzoomb30f34251206030na/3_1opasevzoomb30f34251206030na_seg.nii.gz" + }, + { + "image": "110364/0_0opaphmx8000c3503212039018.nii.gz", + "pseudo_label": "110364/0_0opaphmx8000c3503212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110364/0_0opaphmx8000c3503212039018/0_0opaphmx8000c3503212039018_seg.nii.gz" + }, + { + "image": "110364/0_0opaphmx8000d3503212039018.nii.gz", + "pseudo_label": "110364/0_0opaphmx8000d3503212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110364/0_0opaphmx8000d3503212039018/0_0opaphmx8000d3503212039018_seg.nii.gz" + }, + { + "image": "108991/2_1opasesen16b30f30221207056na.nii.gz", + "pseudo_label": "108991/2_1opasesen16b30f30221207056na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108991/2_1opasesen16b30f30221207056na/2_1opasesen16b30f30221207056na_seg.nii.gz" + }, + { + "image": "108991/2_0opasevzoomb30f28421206030na.nii.gz", + "pseudo_label": "108991/2_0opasevzoomb30f28421206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108991/2_0opasevzoomb30f28421206030na/2_0opasevzoomb30f28421206030na_seg.nii.gz" + }, + { + "image": "105408/2_2opasesen16b30f37321204032na.nii.gz", + "pseudo_label": "105408/2_2opasesen16b30f37321204032na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105408/2_2opasesen16b30f37321204032na/2_2opasesen16b30f37321204032na_seg.nii.gz" + }, + { + "image": "105408/4_0opasesen16b30f33621204032na.nii.gz", + "pseudo_label": "105408/4_0opasesen16b30f33621204032na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105408/4_0opasesen16b30f33621204032na/4_0opasesen16b30f33621204032na_seg.nii.gz" + }, + { + "image": "105408/3_2opasesen16b30f37321204032na.nii.gz", + "pseudo_label": "105408/3_2opasesen16b30f37321204032na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105408/3_2opasesen16b30f37321204032na/3_2opasesen16b30f37321204032na_seg.nii.gz" + }, + { + "image": "100811/5_2opasevzoomb50f27921206030na.nii.gz", + "pseudo_label": "100811/5_2opasevzoomb50f27921206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100811/5_2opasevzoomb50f27921206030na/5_2opasevzoomb50f27921206030na_seg.nii.gz" + }, + { + "image": "100811/4_1opasesen16b30f30021204530na.nii.gz", + "pseudo_label": "100811/4_1opasesen16b30f30021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100811/4_1opasesen16b30f30021204530na/4_1opasesen16b30f30021204530na_seg.nii.gz" + }, + { + "image": "100811/5_1opasesen16b50f30051204530na.nii.gz", + "pseudo_label": "100811/5_1opasesen16b50f30051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100811/5_1opasesen16b50f30051204530na/5_1opasesen16b50f30051204530na_seg.nii.gz" + }, + { + "image": "100811/3_2opasevzoomb30f27951206030na.nii.gz", + "pseudo_label": "100811/3_2opasevzoomb30f27951206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100811/3_2opasevzoomb30f27951206030na/3_2opasevzoomb30f27951206030na_seg.nii.gz" + }, + { + "image": "100811/6_0opasesen16b50f34121202828na.nii.gz", + "pseudo_label": "100811/6_0opasesen16b50f34121202828na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100811/6_0opasesen16b50f34121202828na/6_0opasesen16b50f34121202828na_seg.nii.gz" + }, + { + "image": "100811/4_0opasesen16b50f34151202828na.nii.gz", + "pseudo_label": "100811/4_0opasesen16b50f34151202828na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100811/4_0opasesen16b50f34151202828na/4_0opasesen16b50f34151202828na_seg.nii.gz" + }, + { + "image": "100811/3_1opasesen16b30f30051204530na.nii.gz", + "pseudo_label": "100811/3_1opasesen16b30f30051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100811/3_1opasesen16b30f30051204530na/3_1opasesen16b30f30051204530na_seg.nii.gz" + }, + { + "image": "100811/3_0opasesen16b30f28251202828na.nii.gz", + "pseudo_label": "100811/3_0opasesen16b30f28251202828na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100811/3_0opasesen16b30f28251202828na/3_0opasesen16b30f28251202828na_seg.nii.gz" + }, + { + "image": "106669/3_0opasevzoomb50f290212012060na.nii.gz", + "pseudo_label": "106669/3_0opasevzoomb50f290212012060na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106669/3_0opasevzoomb50f290212012060na/3_0opasevzoomb50f290212012060na_seg.nii.gz" + }, + { + "image": "100900/5_2opasevzoomb50f29421206030na.nii.gz", + "pseudo_label": "100900/5_2opasevzoomb50f29421206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100900/5_2opasevzoomb50f29421206030na/5_2opasevzoomb50f29421206030na_seg.nii.gz" + }, + { + "image": "100900/3_0opasesen16b30f36251206040na.nii.gz", + "pseudo_label": "100900/3_0opasesen16b30f36251206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100900/3_0opasesen16b30f36251206040na/3_0opasesen16b30f36251206040na_seg.nii.gz" + }, + { + "image": "100900/6_2opasevzoomb30f29421206030na.nii.gz", + "pseudo_label": "100900/6_2opasevzoomb30f29421206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100900/6_2opasevzoomb30f29421206030na/6_2opasevzoomb30f29421206030na_seg.nii.gz" + }, + { + "image": "100900/4_0opasesen16b50f36251206040na.nii.gz", + "pseudo_label": "100900/4_0opasesen16b50f36251206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100900/4_0opasesen16b50f36251206040na/4_0opasesen16b50f36251206040na_seg.nii.gz" + }, + { + "image": "100900/3_1opasesen16b30f30051204530na.nii.gz", + "pseudo_label": "100900/3_1opasesen16b30f30051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100900/3_1opasesen16b30f30051204530na/3_1opasesen16b30f30051204530na_seg.nii.gz" + }, + { + "image": "100900/3_2opasevzoomb30f29451206030na.nii.gz", + "pseudo_label": "100900/3_2opasevzoomb30f29451206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100900/3_2opasevzoomb30f29451206030na/3_2opasevzoomb30f29451206030na_seg.nii.gz" + }, + { + "image": "100900/6_1opasesen16b60f30021204530na.nii.gz", + "pseudo_label": "100900/6_1opasesen16b60f30021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100900/6_1opasesen16b60f30021204530na/6_1opasesen16b60f30021204530na_seg.nii.gz" + }, + { + "image": "112936/2_0opagels16bone3602512040014.nii.gz", + "pseudo_label": "112936/2_0opagels16bone3602512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112936/2_0opagels16bone3602512040014/2_0opagels16bone3602512040014_seg.nii.gz" + }, + { + "image": "112936/3_2opagelspr16standard3402512040014.nii.gz", + "pseudo_label": "112936/3_2opagelspr16standard3402512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112936/3_2opagelspr16standard3402512040014/3_2opagelspr16standard3402512040014_seg.nii.gz" + }, + { + "image": "112936/3_0opagels16standard3602512040014.nii.gz", + "pseudo_label": "112936/3_0opagels16standard3602512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112936/3_0opagels16standard3602512040014/3_0opagels16standard3602512040014_seg.nii.gz" + }, + { + "image": "112936/2_2opagelspr16bone3402512040014.nii.gz", + "pseudo_label": "112936/2_2opagelspr16bone3402512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112936/2_2opagelspr16bone3402512040014/2_2opagelspr16bone3402512040014_seg.nii.gz" + }, + { + "image": "112936/2_1opagels16bone3392512000na.nii.gz", + "pseudo_label": "112936/2_1opagels16bone3392512000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112936/2_1opagels16bone3392512000na/2_1opagels16bone3392512000na_seg.nii.gz" + }, + { + "image": "112936/3_1opagels16standard3392512000na.nii.gz", + "pseudo_label": "112936/3_1opagels16standard3392512000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112936/3_1opagels16standard3392512000na/3_1opagels16standard3392512000na_seg.nii.gz" + }, + { + "image": "111012/1_1opagelsplusstandard36025120800115.nii.gz", + "pseudo_label": "111012/1_1opagelsplusstandard36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111012/1_1opagelsplusstandard36025120800115/1_1opagelsplusstandard36025120800115_seg.nii.gz" + }, + { + "image": "111012/1_0opagelsplusstandard3602512010250115.nii.gz", + "pseudo_label": "111012/1_0opagelsplusstandard3602512010250115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111012/1_0opagelsplusstandard3602512010250115/1_0opagelsplusstandard3602512010250115_seg.nii.gz" + }, + { + "image": "111012/1_0opagelspluslung3602512010250115.nii.gz", + "pseudo_label": "111012/1_0opagelspluslung3602512010250115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111012/1_0opagelspluslung3602512010250115/1_0opagelspluslung3602512010250115_seg.nii.gz" + }, + { + "image": "110632/3_1opasevzoomb30f32151206030na.nii.gz", + "pseudo_label": "110632/3_1opasevzoomb30f32151206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110632/3_1opasevzoomb30f32151206030na/3_1opasevzoomb30f32151206030na_seg.nii.gz" + }, + { + "image": "110632/4_1opasevzoomb50f32151206030na.nii.gz", + "pseudo_label": "110632/4_1opasevzoomb50f32151206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110632/4_1opasevzoomb50f32151206030na/4_1opasevzoomb50f32151206030na_seg.nii.gz" + }, + { + "image": "110632/4_0opasesen16b30f30651206040na.nii.gz", + "pseudo_label": "110632/4_0opasesen16b30f30651206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110632/4_0opasesen16b30f30651206040na/4_0opasesen16b30f30651206040na_seg.nii.gz" + }, + { + "image": "110632/5_0opasesen16b30f32451206040na.nii.gz", + "pseudo_label": "110632/5_0opasesen16b30f32451206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110632/5_0opasesen16b30f32451206040na/5_0opasesen16b30f32451206040na_seg.nii.gz" + }, + { + "image": "110632/4_2opasevzoomb50f30851206030na.nii.gz", + "pseudo_label": "110632/4_2opasevzoomb50f30851206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110632/4_2opasevzoomb50f30851206030na/4_2opasevzoomb50f30851206030na_seg.nii.gz" + }, + { + "image": "110632/5_1opasevzoomb50f32121206030na.nii.gz", + "pseudo_label": "110632/5_1opasevzoomb50f32121206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110632/5_1opasevzoomb50f32121206030na/5_1opasevzoomb50f32121206030na_seg.nii.gz" + }, + { + "image": "110632/6_0opasesen16b50f30651206040na.nii.gz", + "pseudo_label": "110632/6_0opasesen16b50f30651206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110632/6_0opasesen16b50f30651206040na/6_0opasesen16b50f30651206040na_seg.nii.gz" + }, + { + "image": "110632/3_2opasevzoomb30f30851206030na.nii.gz", + "pseudo_label": "110632/3_2opasevzoomb30f30851206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110632/3_2opasevzoomb30f30851206030na/3_2opasevzoomb30f30851206030na_seg.nii.gz" + }, + { + "image": "109898/4_2opasevzoomb50f35251206030na.nii.gz", + "pseudo_label": "109898/4_2opasevzoomb50f35251206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109898/4_2opasevzoomb50f35251206030na/4_2opasevzoomb50f35251206030na_seg.nii.gz" + }, + { + "image": "109898/5_1opasevzoomb30f35851206030na.nii.gz", + "pseudo_label": "109898/5_1opasevzoomb30f35851206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109898/5_1opasevzoomb30f35851206030na/5_1opasevzoomb30f35851206030na_seg.nii.gz" + }, + { + "image": "109898/6_1opasevzoomb30f35821206030na.nii.gz", + "pseudo_label": "109898/6_1opasevzoomb30f35821206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109898/6_1opasevzoomb30f35821206030na/6_1opasevzoomb30f35821206030na_seg.nii.gz" + }, + { + "image": "109898/4_0opasevzoomb50f38051206030na.nii.gz", + "pseudo_label": "109898/4_0opasevzoomb50f38051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109898/4_0opasevzoomb50f38051206030na/4_0opasevzoomb50f38051206030na_seg.nii.gz" + }, + { + "image": "109898/6_2opasevzoomb30f35221206030na.nii.gz", + "pseudo_label": "109898/6_2opasevzoomb30f35221206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109898/6_2opasevzoomb30f35221206030na/6_2opasevzoomb30f35221206030na_seg.nii.gz" + }, + { + "image": "109898/3_2opasevzoomb50f35221206030na.nii.gz", + "pseudo_label": "109898/3_2opasevzoomb50f35221206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109898/3_2opasevzoomb50f35221206030na/3_2opasevzoomb50f35221206030na_seg.nii.gz" + }, + { + "image": "109898/4_1opasevzoomb50f35851206030na.nii.gz", + "pseudo_label": "109898/4_1opasevzoomb50f35851206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109898/4_1opasevzoomb50f35851206030na/4_1opasevzoomb50f35851206030na_seg.nii.gz" + }, + { + "image": "103736/6516_2opaphmx8000c3153212039018.nii.gz", + "pseudo_label": "103736/6516_2opaphmx8000c3153212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103736/6516_2opaphmx8000c3153212039018/6516_2opaphmx8000c3153212039018_seg.nii.gz" + }, + { + "image": "103736/0_0opaphmx8000d33832120600112.nii.gz", + "pseudo_label": "103736/0_0opaphmx8000d33832120600112.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103736/0_0opaphmx8000d33832120600112/0_0opaphmx8000d33832120600112_seg.nii.gz" + }, + { + "image": "103736/6515_2opaphmx8000d3153212039018.nii.gz", + "pseudo_label": "103736/6515_2opaphmx8000d3153212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103736/6515_2opaphmx8000d3153212039018/6515_2opaphmx8000d3153212039018_seg.nii.gz" + }, + { + "image": "103736/1258_1opaphmx8000c3243212039018.nii.gz", + "pseudo_label": "103736/1258_1opaphmx8000c3243212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103736/1258_1opaphmx8000c3243212039018/1258_1opaphmx8000c3243212039018_seg.nii.gz" + }, + { + "image": "103736/0_0opaphmx8000c33832120600112.nii.gz", + "pseudo_label": "103736/0_0opaphmx8000c33832120600112.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103736/0_0opaphmx8000c33832120600112/0_0opaphmx8000c33832120600112_seg.nii.gz" + }, + { + "image": "100322/3_2opagehsqxbone38025120560115.nii.gz", + "pseudo_label": "100322/3_2opagehsqxbone38025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100322/3_2opagehsqxbone38025120560115/3_2opagehsqxbone38025120560115_seg.nii.gz" + }, + { + "image": "100322/2_1opagehsqxstandard38025120560115.nii.gz", + "pseudo_label": "100322/2_1opagehsqxstandard38025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100322/2_1opagehsqxstandard38025120560115/2_1opagehsqxstandard38025120560115_seg.nii.gz" + }, + { + "image": "112946/2_1opagelsqxstandard3302512048015.nii.gz", + "pseudo_label": "112946/2_1opagelsqxstandard3302512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112946/2_1opagelsqxstandard3302512048015/2_1opagelsqxstandard3302512048015_seg.nii.gz" + }, + { + "image": "106697/2_1opagelsqxstandard31425120640115.nii.gz", + "pseudo_label": "106697/2_1opagelsqxstandard31425120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106697/2_1opagelsqxstandard31425120640115/2_1opagelsqxstandard31425120640115_seg.nii.gz" + }, + { + "image": "106697/3_2opagelsqxbone31825120720115.nii.gz", + "pseudo_label": "106697/3_2opagelsqxbone31825120720115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106697/3_2opagelsqxbone31825120720115/3_2opagelsqxbone31825120720115_seg.nii.gz" + }, + { + "image": "106697/2_2opagelsqxstandard31825120720115.nii.gz", + "pseudo_label": "106697/2_2opagelsqxstandard31825120720115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106697/2_2opagelsqxstandard31825120720115/2_2opagelsqxstandard31825120720115_seg.nii.gz" + }, + { + "image": "106697/2_0opagelsqxstandard30025120560115.nii.gz", + "pseudo_label": "106697/2_0opagelsqxstandard30025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106697/2_0opagelsqxstandard30025120560115/2_0opagelsqxstandard30025120560115_seg.nii.gz" + }, + { + "image": "106697/3_0opagelsqxbone30025120560115.nii.gz", + "pseudo_label": "106697/3_0opagelsqxbone30025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106697/3_0opagelsqxbone30025120560115/3_0opagelsqxbone30025120560115_seg.nii.gz" + }, + { + "image": "106697/3_1opagelsqxbone31425120640115.nii.gz", + "pseudo_label": "106697/3_1opagelsqxbone31425120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106697/3_1opagelsqxbone31425120640115/3_1opagelsqxbone31425120640115_seg.nii.gz" + }, + { + "image": "100788/4_1opasesen16b30f33421204530na.nii.gz", + "pseudo_label": "100788/4_1opasesen16b30f33421204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100788/4_1opasesen16b30f33421204530na/4_1opasesen16b30f33421204530na_seg.nii.gz" + }, + { + "image": "100788/3_2opasesen16b30f33451204530na.nii.gz", + "pseudo_label": "100788/3_2opasesen16b30f33451204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100788/3_2opasesen16b30f33451204530na/3_2opasesen16b30f33451204530na_seg.nii.gz" + }, + { + "image": "100788/3_1opasesen16b30f33451204530na.nii.gz", + "pseudo_label": "100788/3_1opasesen16b30f33451204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100788/3_1opasesen16b30f33451204530na/3_1opasesen16b30f33451204530na_seg.nii.gz" + }, + { + "image": "100788/6_0opasevzoomb60f300512012060na.nii.gz", + "pseudo_label": "100788/6_0opasevzoomb60f300512012060na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100788/6_0opasevzoomb60f300512012060na/6_0opasevzoomb60f300512012060na_seg.nii.gz" + }, + { + "image": "100788/5_0opasevzoomb50f300212012060na.nii.gz", + "pseudo_label": "100788/5_0opasevzoomb50f300212012060na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100788/5_0opasevzoomb50f300212012060na/5_0opasevzoomb50f300212012060na_seg.nii.gz" + }, + { + "image": "100788/6_1opasesen16b50f33421204530na.nii.gz", + "pseudo_label": "100788/6_1opasesen16b50f33421204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100788/6_1opasesen16b50f33421204530na/6_1opasesen16b50f33421204530na_seg.nii.gz" + }, + { + "image": "100788/4_0opasevzoomb30f300512012060na.nii.gz", + "pseudo_label": "100788/4_0opasevzoomb30f300512012060na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100788/4_0opasevzoomb30f300512012060na/4_0opasevzoomb30f300512012060na_seg.nii.gz" + }, + { + "image": "100788/4_2opasesen16b30f33421204530na.nii.gz", + "pseudo_label": "100788/4_2opasesen16b30f33421204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100788/4_2opasesen16b30f33421204530na/4_2opasesen16b30f33421204530na_seg.nii.gz" + }, + { + "image": "100788/5_1opasesen16b50f33451204530na.nii.gz", + "pseudo_label": "100788/5_1opasesen16b50f33451204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100788/5_1opasesen16b50f33451204530na/5_1opasesen16b50f33451204530na_seg.nii.gz" + }, + { + "image": "100788/5_2opasesen16b50f33451204530na.nii.gz", + "pseudo_label": "100788/5_2opasesen16b50f33451204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100788/5_2opasesen16b50f33451204530na/5_2opasesen16b50f33451204530na_seg.nii.gz" + }, + { + "image": "103702/7705_1opaphmx8000c3003212040nana.nii.gz", + "pseudo_label": "103702/7705_1opaphmx8000c3003212040nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103702/7705_1opaphmx8000c3003212040nana/7705_1opaphmx8000c3003212040nana_seg.nii.gz" + }, + { + "image": "103702/443_0opaphmx8000b2973212040nana.nii.gz", + "pseudo_label": "103702/443_0opaphmx8000b2973212040nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103702/443_0opaphmx8000b2973212040nana/443_0opaphmx8000b2973212040nana_seg.nii.gz" + }, + { + "image": "103702/4691_2opaphmx8000d3103212040nana.nii.gz", + "pseudo_label": "103702/4691_2opaphmx8000d3103212040nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103702/4691_2opaphmx8000d3103212040nana/4691_2opaphmx8000d3103212040nana_seg.nii.gz" + }, + { + "image": "103702/444_0opaphmx8000d2973212040nana.nii.gz", + "pseudo_label": "103702/444_0opaphmx8000d2973212040nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103702/444_0opaphmx8000d2973212040nana/444_0opaphmx8000d2973212040nana_seg.nii.gz" + }, + { + "image": "103702/7704_1opaphmx8000a3003212040nana.nii.gz", + "pseudo_label": "103702/7704_1opaphmx8000a3003212040nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103702/7704_1opaphmx8000a3003212040nana/7704_1opaphmx8000a3003212040nana_seg.nii.gz" + }, + { + "image": "108386/3_1opasevzoomb50f30821206030na.nii.gz", + "pseudo_label": "108386/3_1opasevzoomb50f30821206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108386/3_1opasevzoomb50f30821206030na/3_1opasevzoomb50f30821206030na_seg.nii.gz" + }, + { + "image": "108386/4_0opasevzoomb50f34051206030na.nii.gz", + "pseudo_label": "108386/4_0opasevzoomb50f34051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108386/4_0opasevzoomb50f34051206030na/4_0opasevzoomb50f34051206030na_seg.nii.gz" + }, + { + "image": "108386/4_1opasevzoomb50f30851206030na.nii.gz", + "pseudo_label": "108386/4_1opasevzoomb50f30851206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108386/4_1opasevzoomb50f30851206030na/4_1opasevzoomb50f30851206030na_seg.nii.gz" + }, + { + "image": "108386/5_0opasevzoomb30f34051206030na.nii.gz", + "pseudo_label": "108386/5_0opasevzoomb30f34051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108386/5_0opasevzoomb30f34051206030na/5_0opasevzoomb30f34051206030na_seg.nii.gz" + }, + { + "image": "100992/2_1opagelsqxstandard40025120640115.nii.gz", + "pseudo_label": "100992/2_1opagelsqxstandard40025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100992/2_1opagelsqxstandard40025120640115/2_1opagelsqxstandard40025120640115_seg.nii.gz" + }, + { + "image": "100992/2_2opagelsqxstandard38025120640115.nii.gz", + "pseudo_label": "100992/2_2opagelsqxstandard38025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100992/2_2opagelsqxstandard38025120640115/2_2opagelsqxstandard38025120640115_seg.nii.gz" + }, + { + "image": "103184/1_0opagelsplusstandard33025120800108.nii.gz", + "pseudo_label": "103184/1_0opagelsplusstandard33025120800108.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103184/1_0opagelsplusstandard33025120800108/1_0opagelsplusstandard33025120800108_seg.nii.gz" + }, + { + "image": "103184/1_0opagelspluslung33025120800108.nii.gz", + "pseudo_label": "103184/1_0opagelspluslung33025120800108.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103184/1_0opagelspluslung33025120800108/1_0opagelspluslung33025120800108_seg.nii.gz" + }, + { + "image": "103184/1_1opagelspluslung33025120800115.nii.gz", + "pseudo_label": "103184/1_1opagelspluslung33025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103184/1_1opagelspluslung33025120800115/1_1opagelspluslung33025120800115_seg.nii.gz" + }, + { + "image": "103184/1_2opagelsplusstandard33025120800115.nii.gz", + "pseudo_label": "103184/1_2opagelsplusstandard33025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103184/1_2opagelsplusstandard33025120800115/1_2opagelsplusstandard33025120800115_seg.nii.gz" + }, + { + "image": "103184/1_1opagelsplusstandard33025120800115.nii.gz", + "pseudo_label": "103184/1_1opagelsplusstandard33025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103184/1_1opagelsplusstandard33025120800115/1_1opagelsplusstandard33025120800115_seg.nii.gz" + }, + { + "image": "103184/1_2opagelspluslung33025120800115.nii.gz", + "pseudo_label": "103184/1_2opagelspluslung33025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103184/1_2opagelspluslung33025120800115/1_2opagelspluslung33025120800115_seg.nii.gz" + }, + { + "image": "109843/4_2opasevzoomb30f29421206030na.nii.gz", + "pseudo_label": "109843/4_2opasevzoomb30f29421206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109843/4_2opasevzoomb30f29421206030na/4_2opasevzoomb30f29421206030na_seg.nii.gz" + }, + { + "image": "102086/2_2opasevzoomb30f39621207540na.nii.gz", + "pseudo_label": "102086/2_2opasevzoomb30f39621207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102086/2_2opasevzoomb30f39621207540na/2_2opasevzoomb30f39621207540na_seg.nii.gz" + }, + { + "image": "102086/3_1opasevzoomb50f36021207540na.nii.gz", + "pseudo_label": "102086/3_1opasevzoomb50f36021207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102086/3_1opasevzoomb50f36021207540na/3_1opasevzoomb50f36021207540na_seg.nii.gz" + }, + { + "image": "102086/3_2opasevzoomb70f39621207540na.nii.gz", + "pseudo_label": "102086/3_2opasevzoomb70f39621207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102086/3_2opasevzoomb70f39621207540na/3_2opasevzoomb70f39621207540na_seg.nii.gz" + }, + { + "image": "103510/3_2opasesen16b30f34021204530na.nii.gz", + "pseudo_label": "103510/3_2opasesen16b30f34021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103510/3_2opasesen16b30f34021204530na/3_2opasesen16b30f34021204530na_seg.nii.gz" + }, + { + "image": "102275/2_1opagelsplusstandard35025140640115.nii.gz", + "pseudo_label": "102275/2_1opagelsplusstandard35025140640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102275/2_1opagelsplusstandard35025140640115/2_1opagelsplusstandard35025140640115_seg.nii.gz" + }, + { + "image": "102275/2_0opagelsplusstandard3802514040015.nii.gz", + "pseudo_label": "102275/2_0opagelsplusstandard3802514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102275/2_0opagelsplusstandard3802514040015/2_0opagelsplusstandard3802514040015_seg.nii.gz" + }, + { + "image": "100547/8508_1opaphmx8000c35732120453612.nii.gz", + "pseudo_label": "100547/8508_1opaphmx8000c35732120453612.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100547/8508_1opaphmx8000c35732120453612/8508_1opaphmx8000c35732120453612_seg.nii.gz" + }, + { + "image": "100547/4666_0opaphmx8000c328321208787012.nii.gz", + "pseudo_label": "100547/4666_0opaphmx8000c328321208787012.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100547/4666_0opaphmx8000c328321208787012/4666_0opaphmx8000c328321208787012_seg.nii.gz" + }, + { + "image": "101046/2_2opagelsplusstandard34125140841nana.nii.gz", + "pseudo_label": "101046/2_2opagelsplusstandard34125140841nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101046/2_2opagelsplusstandard34125140841nana/2_2opagelsplusstandard34125140841nana_seg.nii.gz" + }, + { + "image": "101046/2_0opagelsplusstandard3302514040015.nii.gz", + "pseudo_label": "101046/2_0opagelsplusstandard3302514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101046/2_0opagelsplusstandard3302514040015/2_0opagelsplusstandard3302514040015_seg.nii.gz" + }, + { + "image": "110100/5_0opasevzoomb50f33221206030na.nii.gz", + "pseudo_label": "110100/5_0opasevzoomb50f33221206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110100/5_0opasevzoomb50f33221206030na/5_0opasevzoomb50f33221206030na_seg.nii.gz" + }, + { + "image": "110100/4_2opasesen16b30f30021204530na.nii.gz", + "pseudo_label": "110100/4_2opasesen16b30f30021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110100/4_2opasesen16b30f30021204530na/4_2opasesen16b30f30021204530na_seg.nii.gz" + }, + { + "image": "110100/3_2opasesen16b30f32551204530na.nii.gz", + "pseudo_label": "110100/3_2opasesen16b30f32551204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110100/3_2opasesen16b30f32551204530na/3_2opasesen16b30f32551204530na_seg.nii.gz" + }, + { + "image": "110100/4_0opasevzoomb50f33251206030na.nii.gz", + "pseudo_label": "110100/4_0opasevzoomb50f33251206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110100/4_0opasevzoomb50f33251206030na/4_0opasevzoomb50f33251206030na_seg.nii.gz" + }, + { + "image": "110100/3_1opasesen16b30f31051204530na.nii.gz", + "pseudo_label": "110100/3_1opasesen16b30f31051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110100/3_1opasesen16b30f31051204530na/3_1opasesen16b30f31051204530na_seg.nii.gz" + }, + { + "image": "110100/3_0opasevzoomb30f33251206030na.nii.gz", + "pseudo_label": "110100/3_0opasevzoomb30f33251206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110100/3_0opasevzoomb30f33251206030na/3_0opasevzoomb30f33251206030na_seg.nii.gz" + }, + { + "image": "110100/6_0opasevzoomb30f33221206030na.nii.gz", + "pseudo_label": "110100/6_0opasevzoomb30f33221206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110100/6_0opasevzoomb30f33221206030na/6_0opasevzoomb30f33221206030na_seg.nii.gz" + }, + { + "image": "103658/2_1opagehsqxstandard39025120560115.nii.gz", + "pseudo_label": "103658/2_1opagehsqxstandard39025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103658/2_1opagehsqxstandard39025120560115/2_1opagehsqxstandard39025120560115_seg.nii.gz" + }, + { + "image": "103658/2_0opagehsqxstandard39025120560115.nii.gz", + "pseudo_label": "103658/2_0opagehsqxstandard39025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103658/2_0opagehsqxstandard39025120560115/2_0opagehsqxstandard39025120560115_seg.nii.gz" + }, + { + "image": "103658/2_2opagehsqxstandard39025120560115.nii.gz", + "pseudo_label": "103658/2_2opagehsqxstandard39025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103658/2_2opagehsqxstandard39025120560115/2_2opagehsqxstandard39025120560115_seg.nii.gz" + }, + { + "image": "104071/2_0opagels16bone34025120520114.nii.gz", + "pseudo_label": "104071/2_0opagels16bone34025120520114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104071/2_0opagels16bone34025120520114/2_0opagels16bone34025120520114_seg.nii.gz" + }, + { + "image": "104071/2_1opagels16bone34025120600114.nii.gz", + "pseudo_label": "104071/2_1opagels16bone34025120600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104071/2_1opagels16bone34025120600114/2_1opagels16bone34025120600114_seg.nii.gz" + }, + { + "image": "105515/3_2opasesen16b30f33021204530na.nii.gz", + "pseudo_label": "105515/3_2opasesen16b30f33021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105515/3_2opasesen16b30f33021204530na/3_2opasesen16b30f33021204530na_seg.nii.gz" + }, + { + "image": "111475/3_1opasesen16b30f40351204530na.nii.gz", + "pseudo_label": "111475/3_1opasesen16b30f40351204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111475/3_1opasesen16b30f40351204530na/3_1opasesen16b30f40351204530na_seg.nii.gz" + }, + { + "image": "111475/6_0opasevzoomb30f35621206030na.nii.gz", + "pseudo_label": "111475/6_0opasevzoomb30f35621206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111475/6_0opasevzoomb30f35621206030na/6_0opasevzoomb30f35621206030na_seg.nii.gz" + }, + { + "image": "111475/5_1opasesen16b50f40351204530na.nii.gz", + "pseudo_label": "111475/5_1opasesen16b50f40351204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111475/5_1opasesen16b50f40351204530na/5_1opasesen16b50f40351204530na_seg.nii.gz" + }, + { + "image": "111475/3_2opasevzoomb30f380512012060na.nii.gz", + "pseudo_label": "111475/3_2opasevzoomb30f380512012060na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111475/3_2opasevzoomb30f380512012060na/3_2opasevzoomb30f380512012060na_seg.nii.gz" + }, + { + "image": "111475/5_2opasevzoomb50f380212012060na.nii.gz", + "pseudo_label": "111475/5_2opasevzoomb50f380212012060na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111475/5_2opasevzoomb50f380212012060na/5_2opasevzoomb50f380212012060na_seg.nii.gz" + }, + { + "image": "111475/4_0opasevzoomb50f35651206030na.nii.gz", + "pseudo_label": "111475/4_0opasevzoomb50f35651206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111475/4_0opasevzoomb50f35651206030na/4_0opasevzoomb50f35651206030na_seg.nii.gz" + }, + { + "image": "111475/3_0opasevzoomb30f39151206030na.nii.gz", + "pseudo_label": "111475/3_0opasevzoomb30f39151206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111475/3_0opasevzoomb30f39151206030na/3_0opasevzoomb30f39151206030na_seg.nii.gz" + }, + { + "image": "111475/4_1opasesen16b30f40321204530na.nii.gz", + "pseudo_label": "111475/4_1opasesen16b30f40321204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111475/4_1opasesen16b30f40321204530na/4_1opasesen16b30f40321204530na_seg.nii.gz" + }, + { + "image": "111475/6_1opasesen16b50f40321204530na.nii.gz", + "pseudo_label": "111475/6_1opasesen16b50f40321204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111475/6_1opasesen16b50f40321204530na/6_1opasesen16b50f40321204530na_seg.nii.gz" + }, + { + "image": "105373/4_0opasevzoomb50f39051206030na.nii.gz", + "pseudo_label": "105373/4_0opasevzoomb50f39051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105373/4_0opasevzoomb50f39051206030na/4_0opasevzoomb50f39051206030na_seg.nii.gz" + }, + { + "image": "105373/4_2opasevzoomb50f36051206030na.nii.gz", + "pseudo_label": "105373/4_2opasevzoomb50f36051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105373/4_2opasevzoomb50f36051206030na/4_2opasevzoomb50f36051206030na_seg.nii.gz" + }, + { + "image": "105373/5_0opasevzoomb30f39051206030na.nii.gz", + "pseudo_label": "105373/5_0opasevzoomb30f39051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105373/5_0opasevzoomb30f39051206030na/5_0opasevzoomb30f39051206030na_seg.nii.gz" + }, + { + "image": "105373/3_1opasevzoomb50f38021206030na.nii.gz", + "pseudo_label": "105373/3_1opasevzoomb50f38021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105373/3_1opasevzoomb50f38021206030na/3_1opasevzoomb50f38021206030na_seg.nii.gz" + }, + { + "image": "105373/4_1opasevzoomb50f38051206030na.nii.gz", + "pseudo_label": "105373/4_1opasevzoomb50f38051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105373/4_1opasevzoomb50f38051206030na/4_1opasevzoomb50f38051206030na_seg.nii.gz" + }, + { + "image": "105373/5_1opasevzoomb30f38051206030na.nii.gz", + "pseudo_label": "105373/5_1opasevzoomb30f38051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105373/5_1opasevzoomb30f38051206030na/5_1opasevzoomb30f38051206030na_seg.nii.gz" + }, + { + "image": "105373/5_2opasevzoomb30f36051206030na.nii.gz", + "pseudo_label": "105373/5_2opasevzoomb30f36051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105373/5_2opasevzoomb30f36051206030na/5_2opasevzoomb30f36051206030na_seg.nii.gz" + }, + { + "image": "100852/2_0opagelsqxstandard4012514048015.nii.gz", + "pseudo_label": "100852/2_0opagelsqxstandard4012514048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100852/2_0opagelsqxstandard4012514048015/2_0opagelsqxstandard4012514048015_seg.nii.gz" + }, + { + "image": "100852/2_1opagelsqxstandard4002514048015.nii.gz", + "pseudo_label": "100852/2_1opagelsqxstandard4002514048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100852/2_1opagelsqxstandard4002514048015/2_1opagelsqxstandard4002514048015_seg.nii.gz" + }, + { + "image": "105708/2_2opagels16standard340251208001na.nii.gz", + "pseudo_label": "105708/2_2opagels16standard340251208001na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105708/2_2opagels16standard340251208001na/2_2opagels16standard340251208001na_seg.nii.gz" + }, + { + "image": "108996/2_1opagels16bone34025120600114.nii.gz", + "pseudo_label": "108996/2_1opagels16bone34025120600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108996/2_1opagels16bone34025120600114/2_1opagels16bone34025120600114_seg.nii.gz" + }, + { + "image": "100619/3_1opagels16standard35025120600114.nii.gz", + "pseudo_label": "100619/3_1opagels16standard35025120600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100619/3_1opagels16standard35025120600114/3_1opagels16standard35025120600114_seg.nii.gz" + }, + { + "image": "100619/4_2opagels16standard35025120600114.nii.gz", + "pseudo_label": "100619/4_2opagels16standard35025120600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100619/4_2opagels16standard35025120600114/4_2opagels16standard35025120600114_seg.nii.gz" + }, + { + "image": "100619/2_1opagels16bone35025120600114.nii.gz", + "pseudo_label": "100619/2_1opagels16bone35025120600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100619/2_1opagels16bone35025120600114/2_1opagels16bone35025120600114_seg.nii.gz" + }, + { + "image": "100619/3_0opagels16standard36025120780114.nii.gz", + "pseudo_label": "100619/3_0opagels16standard36025120780114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100619/3_0opagels16standard36025120780114/3_0opagels16standard36025120780114_seg.nii.gz" + }, + { + "image": "100253/3_2opasesen16b30f34021204530na.nii.gz", + "pseudo_label": "100253/3_2opasesen16b30f34021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100253/3_2opasesen16b30f34021204530na/3_2opasesen16b30f34021204530na_seg.nii.gz" + }, + { + "image": "108335/2_1opasevzoomb50f28821206030na.nii.gz", + "pseudo_label": "108335/2_1opasevzoomb50f28821206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108335/2_1opasevzoomb50f28821206030na/2_1opasevzoomb50f28821206030na_seg.nii.gz" + }, + { + "image": "108335/2_2opasesen16b50f29021204530na.nii.gz", + "pseudo_label": "108335/2_2opasesen16b50f29021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108335/2_2opasesen16b50f29021204530na/2_2opasesen16b50f29021204530na_seg.nii.gz" + }, + { + "image": "108783/3_1opasevzoomb30f29221206030na.nii.gz", + "pseudo_label": "108783/3_1opasevzoomb30f29221206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108783/3_1opasevzoomb30f29221206030na/3_1opasevzoomb30f29221206030na_seg.nii.gz" + }, + { + "image": "108783/2_0opasevzoomb50f29821206030na.nii.gz", + "pseudo_label": "108783/2_0opasevzoomb50f29821206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108783/2_0opasevzoomb50f29821206030na/2_0opasevzoomb50f29821206030na_seg.nii.gz" + }, + { + "image": "107868/2_0opagehsqxstandard35025120560115.nii.gz", + "pseudo_label": "107868/2_0opagehsqxstandard35025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107868/2_0opagehsqxstandard35025120560115/2_0opagehsqxstandard35025120560115_seg.nii.gz" + }, + { + "image": "107868/3_0opagehsqxbone35025120560115.nii.gz", + "pseudo_label": "107868/3_0opagehsqxbone35025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107868/3_0opagehsqxbone35025120560115/3_0opagehsqxbone35025120560115_seg.nii.gz" + }, + { + "image": "108024/3_0opasesen16b30f41251206040na.nii.gz", + "pseudo_label": "108024/3_0opasesen16b30f41251206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108024/3_0opasesen16b30f41251206040na/3_0opasesen16b30f41251206040na_seg.nii.gz" + }, + { + "image": "113008/1_0opagelsplusstandard32925120800115.nii.gz", + "pseudo_label": "113008/1_0opagelsplusstandard32925120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113008/1_0opagelsplusstandard32925120800115/1_0opagelsplusstandard32925120800115_seg.nii.gz" + }, + { + "image": "113008/1_0opagelspluslung32925120800115.nii.gz", + "pseudo_label": "113008/1_0opagelspluslung32925120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113008/1_0opagelspluslung32925120800115/1_0opagelspluslung32925120800115_seg.nii.gz" + }, + { + "image": "113008/1_1opagelspluslung33025120800115.nii.gz", + "pseudo_label": "113008/1_1opagelspluslung33025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113008/1_1opagelspluslung33025120800115/1_1opagelspluslung33025120800115_seg.nii.gz" + }, + { + "image": "113008/1_2opagelsplusstandard33025120800115.nii.gz", + "pseudo_label": "113008/1_2opagelsplusstandard33025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113008/1_2opagelsplusstandard33025120800115/1_2opagelsplusstandard33025120800115_seg.nii.gz" + }, + { + "image": "113143/3_2opasesen16b30f34021204530na.nii.gz", + "pseudo_label": "113143/3_2opasesen16b30f34021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113143/3_2opasesen16b30f34021204530na/3_2opasesen16b30f34021204530na_seg.nii.gz" + }, + { + "image": "108465/2_1opagelsqxstandard33025120560115.nii.gz", + "pseudo_label": "108465/2_1opagelsqxstandard33025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108465/2_1opagelsqxstandard33025120560115/2_1opagelsqxstandard33025120560115_seg.nii.gz" + }, + { + "image": "107988/1_1opagelsplusstandard36025120800115.nii.gz", + "pseudo_label": "107988/1_1opagelsplusstandard36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107988/1_1opagelsplusstandard36025120800115/1_1opagelsplusstandard36025120800115_seg.nii.gz" + }, + { + "image": "107988/1_0opagelspluslung36025120800108.nii.gz", + "pseudo_label": "107988/1_0opagelspluslung36025120800108.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107988/1_0opagelspluslung36025120800108/1_0opagelspluslung36025120800108_seg.nii.gz" + }, + { + "image": "107988/1_1opagelspluslung36025120800115.nii.gz", + "pseudo_label": "107988/1_1opagelspluslung36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107988/1_1opagelspluslung36025120800115/1_1opagelspluslung36025120800115_seg.nii.gz" + }, + { + "image": "107988/1_2opatoaqul4fc013594212080nana.nii.gz", + "pseudo_label": "107988/1_2opatoaqul4fc013594212080nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107988/1_2opatoaqul4fc013594212080nana/1_2opatoaqul4fc013594212080nana_seg.nii.gz" + }, + { + "image": "107988/1_0opagelsplusstandard36025120800108.nii.gz", + "pseudo_label": "107988/1_0opagelsplusstandard36025120800108.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107988/1_0opagelsplusstandard36025120800108/1_0opagelsplusstandard36025120800108_seg.nii.gz" + }, + { + "image": "104860/5_1opasevzoomb30f40851206030na.nii.gz", + "pseudo_label": "104860/5_1opasevzoomb30f40851206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104860/5_1opasevzoomb30f40851206030na/5_1opasevzoomb30f40851206030na_seg.nii.gz" + }, + { + "image": "104860/4_2opasevzoomb50f36051206030na.nii.gz", + "pseudo_label": "104860/4_2opasevzoomb50f36051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104860/4_2opasevzoomb50f36051206030na/4_2opasevzoomb50f36051206030na_seg.nii.gz" + }, + { + "image": "104860/3_1opasevzoomb50f40821206030na.nii.gz", + "pseudo_label": "104860/3_1opasevzoomb50f40821206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104860/3_1opasevzoomb50f40821206030na/3_1opasevzoomb50f40821206030na_seg.nii.gz" + }, + { + "image": "104860/4_0opasevzoomb50f35651206030na.nii.gz", + "pseudo_label": "104860/4_0opasevzoomb50f35651206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104860/4_0opasevzoomb50f35651206030na/4_0opasevzoomb50f35651206030na_seg.nii.gz" + }, + { + "image": "104860/5_0opasevzoomb30f35651206030na.nii.gz", + "pseudo_label": "104860/5_0opasevzoomb30f35651206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104860/5_0opasevzoomb30f35651206030na/5_0opasevzoomb30f35651206030na_seg.nii.gz" + }, + { + "image": "104860/5_2opasevzoomb30f36051206030na.nii.gz", + "pseudo_label": "104860/5_2opasevzoomb30f36051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104860/5_2opasevzoomb30f36051206030na/5_2opasevzoomb30f36051206030na_seg.nii.gz" + }, + { + "image": "104860/4_1opasevzoomb50f40851206030na.nii.gz", + "pseudo_label": "104860/4_1opasevzoomb50f40851206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104860/4_1opasevzoomb50f40851206030na/4_1opasevzoomb50f40851206030na_seg.nii.gz" + }, + { + "image": "104860/3_2opasevzoomb50f36021206030na.nii.gz", + "pseudo_label": "104860/3_2opasevzoomb50f36021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104860/3_2opasevzoomb50f36021206030na/3_2opasevzoomb50f36021206030na_seg.nii.gz" + }, + { + "image": "108867/2_0opagels16bone32025120600114.nii.gz", + "pseudo_label": "108867/2_0opagels16bone32025120600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108867/2_0opagels16bone32025120600114/2_0opagels16bone32025120600114_seg.nii.gz" + }, + { + "image": "108867/3_0opagels16standard32025120600114.nii.gz", + "pseudo_label": "108867/3_0opagels16standard32025120600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108867/3_0opagels16standard32025120600114/3_0opagels16standard32025120600114_seg.nii.gz" + }, + { + "image": "113288/2_1opagels16standard32025120nanana.nii.gz", + "pseudo_label": "113288/2_1opagels16standard32025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113288/2_1opagels16standard32025120nanana/2_1opagels16standard32025120nanana_seg.nii.gz" + }, + { + "image": "113288/2_2opagels16standard32025120nanana.nii.gz", + "pseudo_label": "113288/2_2opagels16standard32025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113288/2_2opagels16standard32025120nanana/2_2opagels16standard32025120nanana_seg.nii.gz" + }, + { + "image": "113288/3_1opagels16bone32025120nanana.nii.gz", + "pseudo_label": "113288/3_1opagels16bone32025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113288/3_1opagels16bone32025120nanana/3_1opagels16bone32025120nanana_seg.nii.gz" + }, + { + "image": "113288/3_2opagels16bone32025120nanana.nii.gz", + "pseudo_label": "113288/3_2opagels16bone32025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113288/3_2opagels16bone32025120nanana/3_2opagels16bone32025120nanana_seg.nii.gz" + }, + { + "image": "113288/4_0opagelsqxbone32025120nanana.nii.gz", + "pseudo_label": "113288/4_0opagelsqxbone32025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113288/4_0opagelsqxbone32025120nanana/4_0opagelsqxbone32025120nanana_seg.nii.gz" + }, + { + "image": "113288/3_0opagelsqxstandard32025120nanana.nii.gz", + "pseudo_label": "113288/3_0opagelsqxstandard32025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113288/3_0opagelsqxstandard32025120nanana/3_0opagelsqxstandard32025120nanana_seg.nii.gz" + }, + { + "image": "105530/2_0opagelsqxstandard34025120800115.nii.gz", + "pseudo_label": "105530/2_0opagelsqxstandard34025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105530/2_0opagelsqxstandard34025120800115/2_0opagelsqxstandard34025120800115_seg.nii.gz" + }, + { + "image": "105530/2_2opagelsqxstandard36025120720115.nii.gz", + "pseudo_label": "105530/2_2opagelsqxstandard36025120720115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105530/2_2opagelsqxstandard36025120720115/2_2opagelsqxstandard36025120720115_seg.nii.gz" + }, + { + "image": "105530/3_1opagelsqxbone32625120640115.nii.gz", + "pseudo_label": "105530/3_1opagelsqxbone32625120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105530/3_1opagelsqxbone32625120640115/3_1opagelsqxbone32625120640115_seg.nii.gz" + }, + { + "image": "105530/2_1opagelsqxstandard32625120640115.nii.gz", + "pseudo_label": "105530/2_1opagelsqxstandard32625120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105530/2_1opagelsqxstandard32625120640115/2_1opagelsqxstandard32625120640115_seg.nii.gz" + }, + { + "image": "109779/4_2opasesen16b30f31721204530na.nii.gz", + "pseudo_label": "109779/4_2opasesen16b30f31721204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109779/4_2opasesen16b30f31721204530na/4_2opasesen16b30f31721204530na_seg.nii.gz" + }, + { + "image": "109779/5_1opasesen16b50f34651204530na.nii.gz", + "pseudo_label": "109779/5_1opasesen16b50f34651204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109779/5_1opasesen16b50f34651204530na/5_1opasesen16b50f34651204530na_seg.nii.gz" + }, + { + "image": "109779/3_2opasesen16b30f31851204530na.nii.gz", + "pseudo_label": "109779/3_2opasesen16b30f31851204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109779/3_2opasesen16b30f31851204530na/3_2opasesen16b30f31851204530na_seg.nii.gz" + }, + { + "image": "109779/3_0opasesen16b30f36551206040na.nii.gz", + "pseudo_label": "109779/3_0opasesen16b30f36551206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109779/3_0opasesen16b30f36551206040na/3_0opasesen16b30f36551206040na_seg.nii.gz" + }, + { + "image": "109779/4_0opasesen16b50f38051206040na.nii.gz", + "pseudo_label": "109779/4_0opasesen16b50f38051206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109779/4_0opasesen16b50f38051206040na/4_0opasesen16b50f38051206040na_seg.nii.gz" + }, + { + "image": "109779/6_0opasesen16b30f36521206040na.nii.gz", + "pseudo_label": "109779/6_0opasesen16b30f36521206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109779/6_0opasesen16b30f36521206040na/6_0opasesen16b30f36521206040na_seg.nii.gz" + }, + { + "image": "109779/6_2opasesen16b50f31821204530na.nii.gz", + "pseudo_label": "109779/6_2opasesen16b50f31821204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109779/6_2opasesen16b50f31821204530na/6_2opasesen16b50f31821204530na_seg.nii.gz" + }, + { + "image": "109779/5_2opasesen16b50f31851204530na.nii.gz", + "pseudo_label": "109779/5_2opasesen16b50f31851204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109779/5_2opasesen16b50f31851204530na/5_2opasesen16b50f31851204530na_seg.nii.gz" + }, + { + "image": "109779/3_1opasesen16b30f34651204530na.nii.gz", + "pseudo_label": "109779/3_1opasesen16b30f34651204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109779/3_1opasesen16b30f34651204530na/3_1opasesen16b30f34651204530na_seg.nii.gz" + }, + { + "image": "102971/2_0opagelsqxstandard3602514048015.nii.gz", + "pseudo_label": "102971/2_0opagelsqxstandard3602514048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102971/2_0opagelsqxstandard3602514048015/2_0opagelsqxstandard3602514048015_seg.nii.gz" + }, + { + "image": "102971/2_1opagelsqxstandard3402514040015.nii.gz", + "pseudo_label": "102971/2_1opagelsqxstandard3402514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102971/2_1opagelsqxstandard3402514040015/2_1opagelsqxstandard3402514040015_seg.nii.gz" + }, + { + "image": "107646/2_2opasesen16b50f28021204530na.nii.gz", + "pseudo_label": "107646/2_2opasesen16b50f28021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107646/2_2opasesen16b50f28021204530na/2_2opasesen16b50f28021204530na_seg.nii.gz" + }, + { + "image": "107646/3_1opasevzoomb50f28021206030na.nii.gz", + "pseudo_label": "107646/3_1opasevzoomb50f28021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107646/3_1opasevzoomb50f28021206030na/3_1opasevzoomb50f28021206030na_seg.nii.gz" + }, + { + "image": "107646/3_0opasevzoomb30f28621206030na.nii.gz", + "pseudo_label": "107646/3_0opasevzoomb30f28621206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107646/3_0opasevzoomb30f28621206030na/3_0opasevzoomb30f28621206030na_seg.nii.gz" + }, + { + "image": "106612/3_2opatoaqul4fc513203212060nana.nii.gz", + "pseudo_label": "106612/3_2opatoaqul4fc513203212060nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106612/3_2opatoaqul4fc513203212060nana/3_2opatoaqul4fc513203212060nana_seg.nii.gz" + }, + { + "image": "111038/3_0opasevzoomb30f32821206030na.nii.gz", + "pseudo_label": "111038/3_0opasevzoomb30f32821206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111038/3_0opasevzoomb30f32821206030na/3_0opasevzoomb30f32821206030na_seg.nii.gz" + }, + { + "image": "111038/2_1opasevzoomb50f30621206030na.nii.gz", + "pseudo_label": "111038/2_1opasevzoomb50f30621206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111038/2_1opasevzoomb50f30621206030na/2_1opasevzoomb50f30621206030na_seg.nii.gz" + }, + { + "image": "109758/2_0opasesen16b30f34621204032na.nii.gz", + "pseudo_label": "109758/2_0opasesen16b30f34621204032na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109758/2_0opasesen16b30f34621204032na/2_0opasesen16b30f34621204032na_seg.nii.gz" + }, + { + "image": "109758/2_1opasesen16b30f36021206048na.nii.gz", + "pseudo_label": "109758/2_1opasesen16b30f36021206048na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109758/2_1opasesen16b30f36021206048na/2_1opasesen16b30f36021206048na_seg.nii.gz" + }, + { + "image": "109758/2_2opasesen16b30f34721204032na.nii.gz", + "pseudo_label": "109758/2_2opasesen16b30f34721204032na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109758/2_2opasesen16b30f34721204032na/2_2opasesen16b30f34721204032na_seg.nii.gz" + }, + { + "image": "105282/5_2opasevzoomb30f38451206030na.nii.gz", + "pseudo_label": "105282/5_2opasevzoomb30f38451206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105282/5_2opasevzoomb30f38451206030na/5_2opasevzoomb30f38451206030na_seg.nii.gz" + }, + { + "image": "105282/4_2opasevzoomb50f38451206030na.nii.gz", + "pseudo_label": "105282/4_2opasevzoomb50f38451206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105282/4_2opasevzoomb50f38451206030na/4_2opasevzoomb50f38451206030na_seg.nii.gz" + }, + { + "image": "105282/5_0opasevzoomb30f41651206030na.nii.gz", + "pseudo_label": "105282/5_0opasevzoomb30f41651206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105282/5_0opasevzoomb30f41651206030na/5_0opasevzoomb30f41651206030na_seg.nii.gz" + }, + { + "image": "105282/4_1opasevzoomb50f38051206030na.nii.gz", + "pseudo_label": "105282/4_1opasevzoomb50f38051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105282/4_1opasevzoomb50f38051206030na/4_1opasevzoomb50f38051206030na_seg.nii.gz" + }, + { + "image": "105282/4_0opasevzoomb50f41651206030na.nii.gz", + "pseudo_label": "105282/4_0opasevzoomb50f41651206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105282/4_0opasevzoomb50f41651206030na/4_0opasevzoomb50f41651206030na_seg.nii.gz" + }, + { + "image": "105282/5_1opasevzoomb30f38051206030na.nii.gz", + "pseudo_label": "105282/5_1opasevzoomb30f38051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105282/5_1opasevzoomb30f38051206030na/5_1opasevzoomb30f38051206030na_seg.nii.gz" + }, + { + "image": "107118/2_0opagelsqxbone38225120640115.nii.gz", + "pseudo_label": "107118/2_0opagelsqxbone38225120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107118/2_0opagelsqxbone38225120640115/2_0opagelsqxbone38225120640115_seg.nii.gz" + }, + { + "image": "107118/3_1opagels16standard35025120640114.nii.gz", + "pseudo_label": "107118/3_1opagels16standard35025120640114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107118/3_1opagels16standard35025120640114/3_1opagels16standard35025120640114_seg.nii.gz" + }, + { + "image": "107118/2_2opagelspr16bone3802512048014.nii.gz", + "pseudo_label": "107118/2_2opagelspr16bone3802512048014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107118/2_2opagelspr16bone3802512048014/2_2opagelspr16bone3802512048014_seg.nii.gz" + }, + { + "image": "107118/2_1opagels16bone35025120640114.nii.gz", + "pseudo_label": "107118/2_1opagels16bone35025120640114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107118/2_1opagels16bone35025120640114/2_1opagels16bone35025120640114_seg.nii.gz" + }, + { + "image": "110715/3_2opasevzoomb50f30021206030na.nii.gz", + "pseudo_label": "110715/3_2opasevzoomb50f30021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110715/3_2opasevzoomb50f30021206030na/3_2opasevzoomb50f30021206030na_seg.nii.gz" + }, + { + "image": "108718/2_1opasesen16b50f30021204530na.nii.gz", + "pseudo_label": "108718/2_1opasesen16b50f30021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108718/2_1opasesen16b50f30021204530na/2_1opasesen16b50f30021204530na_seg.nii.gz" + }, + { + "image": "106924/2_1opagelsqxstandard33025120560115.nii.gz", + "pseudo_label": "106924/2_1opagelsqxstandard33025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106924/2_1opagelsqxstandard33025120560115/2_1opagelsqxstandard33025120560115_seg.nii.gz" + }, + { + "image": "106924/3_2opagelsqxbone32025120640115.nii.gz", + "pseudo_label": "106924/3_2opagelsqxbone32025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106924/3_2opagelsqxbone32025120640115/3_2opagelsqxbone32025120640115_seg.nii.gz" + }, + { + "image": "106924/2_0opagelsqxstandard32025120560115.nii.gz", + "pseudo_label": "106924/2_0opagelsqxstandard32025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106924/2_0opagelsqxstandard32025120560115/2_0opagelsqxstandard32025120560115_seg.nii.gz" + }, + { + "image": "106924/3_0opagelsqxbone32025120560115.nii.gz", + "pseudo_label": "106924/3_0opagelsqxbone32025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106924/3_0opagelsqxbone32025120560115/3_0opagelsqxbone32025120560115_seg.nii.gz" + }, + { + "image": "106924/2_2opagelsqxstandard32025120640115.nii.gz", + "pseudo_label": "106924/2_2opagelsqxstandard32025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106924/2_2opagelsqxstandard32025120640115/2_2opagelsqxstandard32025120640115_seg.nii.gz" + }, + { + "image": "106177/3_0opasesen16b30f27821204032na.nii.gz", + "pseudo_label": "106177/3_0opasesen16b30f27821204032na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106177/3_0opasesen16b30f27821204032na/3_0opasesen16b30f27821204032na_seg.nii.gz" + }, + { + "image": "106177/3_2opasesen16b30f28221204032na.nii.gz", + "pseudo_label": "106177/3_2opasesen16b30f28221204032na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106177/3_2opasesen16b30f28221204032na/3_2opasesen16b30f28221204032na_seg.nii.gz" + }, + { + "image": "106177/2_0opasesen16b30f27821204032na.nii.gz", + "pseudo_label": "106177/2_0opasesen16b30f27821204032na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106177/2_0opasesen16b30f27821204032na/2_0opasesen16b30f27821204032na_seg.nii.gz" + }, + { + "image": "106177/2_2opasesen16b30f28221204032na.nii.gz", + "pseudo_label": "106177/2_2opasesen16b30f28221204032na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106177/2_2opasesen16b30f28221204032na/2_2opasesen16b30f28221204032na_seg.nii.gz" + }, + { + "image": "106177/2_1opasesen16b30f30221206048na.nii.gz", + "pseudo_label": "106177/2_1opasesen16b30f30221206048na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106177/2_1opasesen16b30f30221206048na/2_1opasesen16b30f30221206048na_seg.nii.gz" + }, + { + "image": "106123/4_0opatoaqul4fc513484212040nana.nii.gz", + "pseudo_label": "106123/4_0opatoaqul4fc513484212040nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106123/4_0opatoaqul4fc513484212040nana/4_0opatoaqul4fc513484212040nana_seg.nii.gz" + }, + { + "image": "105987/6_2opasesen16b50f34251204530na.nii.gz", + "pseudo_label": "105987/6_2opasesen16b50f34251204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105987/6_2opasesen16b50f34251204530na/6_2opasesen16b50f34251204530na_seg.nii.gz" + }, + { + "image": "105987/5_1opasesen16b30f35051204530na.nii.gz", + "pseudo_label": "105987/5_1opasesen16b30f35051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105987/5_1opasesen16b30f35051204530na/5_1opasesen16b30f35051204530na_seg.nii.gz" + }, + { + "image": "105987/7_1opasesen16b50f35051204530na.nii.gz", + "pseudo_label": "105987/7_1opasesen16b50f35051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105987/7_1opasesen16b50f35051204530na/7_1opasesen16b50f35051204530na_seg.nii.gz" + }, + { + "image": "105987/4_0opasesen16b50f38051204530na.nii.gz", + "pseudo_label": "105987/4_0opasesen16b50f38051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105987/4_0opasesen16b50f38051204530na/4_0opasesen16b50f38051204530na_seg.nii.gz" + }, + { + "image": "105987/4_2opasesen16b30f34251204530na.nii.gz", + "pseudo_label": "105987/4_2opasesen16b30f34251204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105987/4_2opasesen16b30f34251204530na/4_2opasesen16b30f34251204530na_seg.nii.gz" + }, + { + "image": "105987/3_0opasesen16b30f38051204530na.nii.gz", + "pseudo_label": "105987/3_0opasesen16b30f38051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105987/3_0opasesen16b30f38051204530na/3_0opasesen16b30f38051204530na_seg.nii.gz" + }, + { + "image": "100746/3_1opagels16standard42025140600114.nii.gz", + "pseudo_label": "100746/3_1opagels16standard42025140600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100746/3_1opagels16standard42025140600114/3_1opagels16standard42025140600114_seg.nii.gz" + }, + { + "image": "100746/3_2opagels16standard42025140600114.nii.gz", + "pseudo_label": "100746/3_2opagels16standard42025140600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100746/3_2opagels16standard42025140600114/3_2opagels16standard42025140600114_seg.nii.gz" + }, + { + "image": "100746/2_1opagels16bone42025140600114.nii.gz", + "pseudo_label": "100746/2_1opagels16bone42025140600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100746/2_1opagels16bone42025140600114/2_1opagels16bone42025140600114_seg.nii.gz" + }, + { + "image": "113338/4_0opatoaqul4fc513062212060nana.nii.gz", + "pseudo_label": "113338/4_0opatoaqul4fc513062212060nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113338/4_0opatoaqul4fc513062212060nana/4_0opatoaqul4fc513062212060nana_seg.nii.gz" + }, + { + "image": "105986/3_2opagelsplusstandard32025140688nana.nii.gz", + "pseudo_label": "105986/3_2opagelsplusstandard32025140688nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105986/3_2opagelsplusstandard32025140688nana/3_2opagelsplusstandard32025140688nana_seg.nii.gz" + }, + { + "image": "105986/2_0opagelsplusstandard32025140400na.nii.gz", + "pseudo_label": "105986/2_0opagelsplusstandard32025140400na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105986/2_0opagelsplusstandard32025140400na/2_0opagelsplusstandard32025140400na_seg.nii.gz" + }, + { + "image": "105986/2_1opagelsqxstandard32025140400na.nii.gz", + "pseudo_label": "105986/2_1opagelsqxstandard32025140400na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105986/2_1opagelsqxstandard32025140400na/2_1opagelsqxstandard32025140400na_seg.nii.gz" + }, + { + "image": "105611/4_0opatoaqul4fc51350212060nana.nii.gz", + "pseudo_label": "105611/4_0opatoaqul4fc51350212060nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105611/4_0opatoaqul4fc51350212060nana/4_0opatoaqul4fc51350212060nana_seg.nii.gz" + }, + { + "image": "107520/4_2opasevzoomb50f26851206030na.nii.gz", + "pseudo_label": "107520/4_2opasevzoomb50f26851206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107520/4_2opasevzoomb50f26851206030na/4_2opasevzoomb50f26851206030na_seg.nii.gz" + }, + { + "image": "107520/3_1opasevzoomb30f28651206030na.nii.gz", + "pseudo_label": "107520/3_1opasevzoomb30f28651206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107520/3_1opasevzoomb30f28651206030na/3_1opasevzoomb30f28651206030na_seg.nii.gz" + }, + { + "image": "107520/3_0opasesen16b30f29651206040na.nii.gz", + "pseudo_label": "107520/3_0opasesen16b30f29651206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107520/3_0opasesen16b30f29651206040na/3_0opasesen16b30f29651206040na_seg.nii.gz" + }, + { + "image": "107520/4_0opasesen16b50f29651206040na.nii.gz", + "pseudo_label": "107520/4_0opasesen16b50f29651206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107520/4_0opasesen16b50f29651206040na/4_0opasesen16b50f29651206040na_seg.nii.gz" + }, + { + "image": "107520/6_0opasesen16b50f29651206040na.nii.gz", + "pseudo_label": "107520/6_0opasesen16b50f29651206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107520/6_0opasesen16b50f29651206040na/6_0opasesen16b50f29651206040na_seg.nii.gz" + }, + { + "image": "107520/4_1opasevzoomb50f28651206030na.nii.gz", + "pseudo_label": "107520/4_1opasevzoomb50f28651206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107520/4_1opasevzoomb50f28651206030na/4_1opasevzoomb50f28651206030na_seg.nii.gz" + }, + { + "image": "107520/5_2opasevzoomb50f26821206030na.nii.gz", + "pseudo_label": "107520/5_2opasevzoomb50f26821206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107520/5_2opasevzoomb50f26821206030na/5_2opasevzoomb50f26821206030na_seg.nii.gz" + }, + { + "image": "108694/2_2opagels16standard31025120418nana.nii.gz", + "pseudo_label": "108694/2_2opagels16standard31025120418nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108694/2_2opagels16standard31025120418nana/2_2opagels16standard31025120418nana_seg.nii.gz" + }, + { + "image": "101169/2_2opasevzoomb30f38021207540na.nii.gz", + "pseudo_label": "101169/2_2opasevzoomb30f38021207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101169/2_2opasevzoomb30f38021207540na/2_2opasevzoomb30f38021207540na_seg.nii.gz" + }, + { + "image": "101098/8_2opasesen16b50f30021204530na.nii.gz", + "pseudo_label": "101098/8_2opasesen16b50f30021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101098/8_2opasesen16b50f30021204530na/8_2opasesen16b50f30021204530na_seg.nii.gz" + }, + { + "image": "101098/2_0opasevzoomb50f29021206030na.nii.gz", + "pseudo_label": "101098/2_0opasevzoomb50f29021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101098/2_0opasevzoomb50f29021206030na/2_0opasevzoomb50f29021206030na_seg.nii.gz" + }, + { + "image": "101098/3_1opasevzoomb30f29221206030na.nii.gz", + "pseudo_label": "101098/3_1opasevzoomb30f29221206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101098/3_1opasevzoomb30f29221206030na/3_1opasevzoomb30f29221206030na_seg.nii.gz" + }, + { + "image": "109395/2_0opagelsqxstandard31025120640115.nii.gz", + "pseudo_label": "109395/2_0opagelsqxstandard31025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109395/2_0opagelsqxstandard31025120640115/2_0opagelsqxstandard31025120640115_seg.nii.gz" + }, + { + "image": "113110/2_2opasevzoomb30f37021207040na.nii.gz", + "pseudo_label": "113110/2_2opasevzoomb30f37021207040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113110/2_2opasevzoomb30f37021207040na/2_2opasevzoomb30f37021207040na_seg.nii.gz" + }, + { + "image": "113110/3_0opasevzoomb50f38021208040na.nii.gz", + "pseudo_label": "113110/3_0opasevzoomb50f38021208040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113110/3_0opasevzoomb50f38021208040na/3_0opasevzoomb50f38021208040na_seg.nii.gz" + }, + { + "image": "106498/3_1opasevzoomb50f29021207540na.nii.gz", + "pseudo_label": "106498/3_1opasevzoomb50f29021207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106498/3_1opasevzoomb50f29021207540na/3_1opasevzoomb50f29021207540na_seg.nii.gz" + }, + { + "image": "106498/3_0opasevzoomb50f31021207540na.nii.gz", + "pseudo_label": "106498/3_0opasevzoomb50f31021207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106498/3_0opasevzoomb50f31021207540na/3_0opasevzoomb50f31021207540na_seg.nii.gz" + }, + { + "image": "107702/4_0opasevzoomb30f380512012060na.nii.gz", + "pseudo_label": "107702/4_0opasevzoomb30f380512012060na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107702/4_0opasevzoomb30f380512012060na/4_0opasevzoomb30f380512012060na_seg.nii.gz" + }, + { + "image": "107702/5_2opasesen16b50f34851204530na.nii.gz", + "pseudo_label": "107702/5_2opasesen16b50f34851204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107702/5_2opasesen16b50f34851204530na/5_2opasesen16b50f34851204530na_seg.nii.gz" + }, + { + "image": "107702/6_2opasesen16b60f34821204530na.nii.gz", + "pseudo_label": "107702/6_2opasesen16b60f34821204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107702/6_2opasesen16b60f34821204530na/6_2opasesen16b60f34821204530na_seg.nii.gz" + }, + { + "image": "107702/5_0opasevzoomb50f380212012060na.nii.gz", + "pseudo_label": "107702/5_0opasevzoomb50f380212012060na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107702/5_0opasevzoomb50f380212012060na/5_0opasevzoomb50f380212012060na_seg.nii.gz" + }, + { + "image": "107702/3_2opasesen16b30f34851204530na.nii.gz", + "pseudo_label": "107702/3_2opasesen16b30f34851204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107702/3_2opasesen16b30f34851204530na/3_2opasesen16b30f34851204530na_seg.nii.gz" + }, + { + "image": "107702/6_1opasesen16b50f38221204530na.nii.gz", + "pseudo_label": "107702/6_1opasesen16b50f38221204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107702/6_1opasesen16b50f38221204530na/6_1opasesen16b50f38221204530na_seg.nii.gz" + }, + { + "image": "107702/6_0opasevzoomb50f380512012060na.nii.gz", + "pseudo_label": "107702/6_0opasevzoomb50f380512012060na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107702/6_0opasevzoomb50f380512012060na/6_0opasevzoomb50f380512012060na_seg.nii.gz" + }, + { + "image": "107702/5_1opasesen16b50f38251204530na.nii.gz", + "pseudo_label": "107702/5_1opasesen16b50f38251204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107702/5_1opasesen16b50f38251204530na/5_1opasesen16b50f38251204530na_seg.nii.gz" + }, + { + "image": "107702/3_1opasesen16b30f38051204530na.nii.gz", + "pseudo_label": "107702/3_1opasesen16b30f38051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107702/3_1opasesen16b30f38051204530na/3_1opasesen16b30f38051204530na_seg.nii.gz" + }, + { + "image": "106304/3_0opasevzoomb50f33021207540na.nii.gz", + "pseudo_label": "106304/3_0opasevzoomb50f33021207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106304/3_0opasevzoomb50f33021207540na/3_0opasevzoomb50f33021207540na_seg.nii.gz" + }, + { + "image": "104377/5_1opasevzoomb30f38031201475120na.nii.gz", + "pseudo_label": "104377/5_1opasevzoomb30f38031201475120na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104377/5_1opasevzoomb30f38031201475120na/5_1opasevzoomb30f38031201475120na_seg.nii.gz" + }, + { + "image": "104377/2_1opasevzoomb40f38051201475120na.nii.gz", + "pseudo_label": "104377/2_1opasevzoomb40f38051201475120na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104377/2_1opasevzoomb40f38051201475120na/2_1opasevzoomb40f38051201475120na_seg.nii.gz" + }, + { + "image": "104377/4_1opasevzoomb70f38071201475120na.nii.gz", + "pseudo_label": "104377/4_1opasevzoomb70f38071201475120na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104377/4_1opasevzoomb70f38071201475120na/4_1opasevzoomb70f38071201475120na_seg.nii.gz" + }, + { + "image": "104377/3_1opasevzoomb70f38051201475120na.nii.gz", + "pseudo_label": "104377/3_1opasevzoomb70f38051201475120na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104377/3_1opasevzoomb70f38051201475120na/3_1opasevzoomb70f38051201475120na_seg.nii.gz" + }, + { + "image": "104377/6_1opasevzoomb50f38031201475120na.nii.gz", + "pseudo_label": "104377/6_1opasevzoomb50f38031201475120na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104377/6_1opasevzoomb50f38031201475120na/6_1opasevzoomb50f38031201475120na_seg.nii.gz" + }, + { + "image": "106421/2_0opagelsqxstandard3502512048015.nii.gz", + "pseudo_label": "106421/2_0opagelsqxstandard3502512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106421/2_0opagelsqxstandard3502512048015/2_0opagelsqxstandard3502512048015_seg.nii.gz" + }, + { + "image": "112564/2_2opagels16bone33025120600114.nii.gz", + "pseudo_label": "112564/2_2opagels16bone33025120600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112564/2_2opagels16bone33025120600114/2_2opagels16bone33025120600114_seg.nii.gz" + }, + { + "image": "112564/2_1opagels16bone35025120600114.nii.gz", + "pseudo_label": "112564/2_1opagels16bone35025120600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112564/2_1opagels16bone35025120600114/2_1opagels16bone35025120600114_seg.nii.gz" + }, + { + "image": "108183/4116_0opaphmx8000c351321208787012.nii.gz", + "pseudo_label": "108183/4116_0opaphmx8000c351321208787012.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108183/4116_0opaphmx8000c351321208787012/4116_0opaphmx8000c351321208787012_seg.nii.gz" + }, + { + "image": "110749/3_0opagehsqxbone31025120640115.nii.gz", + "pseudo_label": "110749/3_0opagehsqxbone31025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110749/3_0opagehsqxbone31025120640115/3_0opagehsqxbone31025120640115_seg.nii.gz" + }, + { + "image": "106990/2_2opagelsqxstandard3602514048015.nii.gz", + "pseudo_label": "106990/2_2opagelsqxstandard3602514048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106990/2_2opagelsqxstandard3602514048015/2_2opagelsqxstandard3602514048015_seg.nii.gz" + }, + { + "image": "106990/2_0opagelsqxstandard3622514048015.nii.gz", + "pseudo_label": "106990/2_0opagelsqxstandard3622514048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106990/2_0opagelsqxstandard3622514048015/2_0opagelsqxstandard3622514048015_seg.nii.gz" + }, + { + "image": "101879/0_0opaphmx8000c36332120790112.nii.gz", + "pseudo_label": "101879/0_0opaphmx8000c36332120790112.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101879/0_0opaphmx8000c36332120790112/0_0opaphmx8000c36332120790112_seg.nii.gz" + }, + { + "image": "109439/2_0opagelsplusstandard3002514040015.nii.gz", + "pseudo_label": "109439/2_0opagelsplusstandard3002514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109439/2_0opagelsplusstandard3002514040015/2_0opagelsplusstandard3002514040015_seg.nii.gz" + }, + { + "image": "109439/2_1opagelsplusstandard3002514040015.nii.gz", + "pseudo_label": "109439/2_1opagelsplusstandard3002514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109439/2_1opagelsplusstandard3002514040015/2_1opagelsplusstandard3002514040015_seg.nii.gz" + }, + { + "image": "109439/2_2opagelsplusstandard3302514040015.nii.gz", + "pseudo_label": "109439/2_2opagelsplusstandard3302514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109439/2_2opagelsplusstandard3302514040015/2_2opagelsplusstandard3302514040015_seg.nii.gz" + }, + { + "image": "107228/2_0opagelsqxstandard3602512000na.nii.gz", + "pseudo_label": "107228/2_0opagelsqxstandard3602512000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107228/2_0opagelsqxstandard3602512000na/2_0opagelsqxstandard3602512000na_seg.nii.gz" + }, + { + "image": "100485/2_1opasesen16b50f31021204530na.nii.gz", + "pseudo_label": "100485/2_1opasesen16b50f31021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100485/2_1opasesen16b50f31021204530na/2_1opasesen16b50f31021204530na_seg.nii.gz" + }, + { + "image": "102410/2_2opagels16standard36025120nanana.nii.gz", + "pseudo_label": "102410/2_2opagels16standard36025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102410/2_2opagels16standard36025120nanana/2_2opagels16standard36025120nanana_seg.nii.gz" + }, + { + "image": "102410/2_1opagels16standard36025120nanana.nii.gz", + "pseudo_label": "102410/2_1opagels16standard36025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102410/2_1opagels16standard36025120nanana/2_1opagels16standard36025120nanana_seg.nii.gz" + }, + { + "image": "102410/3_2opagels16bone36025120nanana.nii.gz", + "pseudo_label": "102410/3_2opagels16bone36025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102410/3_2opagels16bone36025120nanana/3_2opagels16bone36025120nanana_seg.nii.gz" + }, + { + "image": "102410/3_0opagelsqxbone36025120nanana.nii.gz", + "pseudo_label": "102410/3_0opagelsqxbone36025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102410/3_0opagelsqxbone36025120nanana/3_0opagelsqxbone36025120nanana_seg.nii.gz" + }, + { + "image": "101375/3_2opasevzoomb50f36221207540na.nii.gz", + "pseudo_label": "101375/3_2opasevzoomb50f36221207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101375/3_2opasevzoomb50f36221207540na/3_2opasevzoomb50f36221207540na_seg.nii.gz" + }, + { + "image": "101375/3_0opasevzoomb50f34021207540na.nii.gz", + "pseudo_label": "101375/3_0opasevzoomb50f34021207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101375/3_0opasevzoomb50f34021207540na/3_0opasevzoomb50f34021207540na_seg.nii.gz" + }, + { + "image": "101375/2_0opasevzoomb30f34021207540na.nii.gz", + "pseudo_label": "101375/2_0opasevzoomb30f34021207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101375/2_0opasevzoomb30f34021207540na/2_0opasevzoomb30f34021207540na_seg.nii.gz" + }, + { + "image": "112761/3_2opagelspr16standard29025120560114.nii.gz", + "pseudo_label": "112761/3_2opagelspr16standard29025120560114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112761/3_2opagelspr16standard29025120560114/3_2opagelspr16standard29025120560114_seg.nii.gz" + }, + { + "image": "112761/2_0opagelsqxbone31825120640115.nii.gz", + "pseudo_label": "112761/2_0opagelsqxbone31825120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112761/2_0opagelsqxbone31825120640115/2_0opagelsqxbone31825120640115_seg.nii.gz" + }, + { + "image": "112761/3_0opagelsqxstandard31825120640115.nii.gz", + "pseudo_label": "112761/3_0opagelsqxstandard31825120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112761/3_0opagelsqxstandard31825120640115/3_0opagelsqxstandard31825120640115_seg.nii.gz" + }, + { + "image": "112761/3_1opagels16standard29025120640114.nii.gz", + "pseudo_label": "112761/3_1opagels16standard29025120640114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112761/3_1opagels16standard29025120640114/3_1opagels16standard29025120640114_seg.nii.gz" + }, + { + "image": "102962/2_0opagelsqxstandard4002512048015.nii.gz", + "pseudo_label": "102962/2_0opagelsqxstandard4002512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102962/2_0opagelsqxstandard4002512048015/2_0opagelsqxstandard4002512048015_seg.nii.gz" + }, + { + "image": "111132/2_0opagelsqxstandard34225120640115.nii.gz", + "pseudo_label": "111132/2_0opagelsqxstandard34225120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111132/2_0opagelsqxstandard34225120640115/2_0opagelsqxstandard34225120640115_seg.nii.gz" + }, + { + "image": "111132/3_0opagelsqxbone34225120640115.nii.gz", + "pseudo_label": "111132/3_0opagelsqxbone34225120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111132/3_0opagelsqxbone34225120640115/3_0opagelsqxbone34225120640115_seg.nii.gz" + }, + { + "image": "111132/2_2opagelsqxstandard34425120640115.nii.gz", + "pseudo_label": "111132/2_2opagelsqxstandard34425120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111132/2_2opagelsqxstandard34425120640115/2_2opagelsqxstandard34425120640115_seg.nii.gz" + }, + { + "image": "111132/2_1opagelsqxstandard33425120640115.nii.gz", + "pseudo_label": "111132/2_1opagelsqxstandard33425120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111132/2_1opagelsqxstandard33425120640115/2_1opagelsqxstandard33425120640115_seg.nii.gz" + }, + { + "image": "111132/5_2opagelsqxbone34425120640115.nii.gz", + "pseudo_label": "111132/5_2opagelsqxbone34425120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111132/5_2opagelsqxbone34425120640115/5_2opagelsqxbone34425120640115_seg.nii.gz" + }, + { + "image": "105526/2_1opagelsqxstandard37125120720115.nii.gz", + "pseudo_label": "105526/2_1opagelsqxstandard37125120720115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105526/2_1opagelsqxstandard37125120720115/2_1opagelsqxstandard37125120720115_seg.nii.gz" + }, + { + "image": "105526/3_0opagelsqxbone37725120720115.nii.gz", + "pseudo_label": "105526/3_0opagelsqxbone37725120720115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105526/3_0opagelsqxbone37725120720115/3_0opagelsqxbone37725120720115_seg.nii.gz" + }, + { + "image": "105526/3_2opagelsqxbone36825120640115.nii.gz", + "pseudo_label": "105526/3_2opagelsqxbone36825120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105526/3_2opagelsqxbone36825120640115/3_2opagelsqxbone36825120640115_seg.nii.gz" + }, + { + "image": "105526/2_2opagelsqxstandard36825120640115.nii.gz", + "pseudo_label": "105526/2_2opagelsqxstandard36825120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105526/2_2opagelsqxstandard36825120640115/2_2opagelsqxstandard36825120640115_seg.nii.gz" + }, + { + "image": "107500/1_0opagelspluslung33025120800115.nii.gz", + "pseudo_label": "107500/1_0opagelspluslung33025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107500/1_0opagelspluslung33025120800115/1_0opagelspluslung33025120800115_seg.nii.gz" + }, + { + "image": "107500/1_0opagelsplusstandard33025120800115.nii.gz", + "pseudo_label": "107500/1_0opagelsplusstandard33025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107500/1_0opagelsplusstandard33025120800115/1_0opagelsplusstandard33025120800115_seg.nii.gz" + }, + { + "image": "107500/1_2opagelsplusstandard33025120800115.nii.gz", + "pseudo_label": "107500/1_2opagelsplusstandard33025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107500/1_2opagelsplusstandard33025120800115/1_2opagelsplusstandard33025120800115_seg.nii.gz" + }, + { + "image": "107500/1_2opagelspluslung33025120800115.nii.gz", + "pseudo_label": "107500/1_2opagelspluslung33025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107500/1_2opagelspluslung33025120800115/1_2opagelspluslung33025120800115_seg.nii.gz" + }, + { + "image": "110969/3_2opagehsqxbone34025120560115.nii.gz", + "pseudo_label": "110969/3_2opagehsqxbone34025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110969/3_2opagehsqxbone34025120560115/3_2opagehsqxbone34025120560115_seg.nii.gz" + }, + { + "image": "110969/2_0opagehsqxstandard34025120640115.nii.gz", + "pseudo_label": "110969/2_0opagehsqxstandard34025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110969/2_0opagehsqxstandard34025120640115/2_0opagehsqxstandard34025120640115_seg.nii.gz" + }, + { + "image": "110969/3_1opagehsqxbone34025120560115.nii.gz", + "pseudo_label": "110969/3_1opagehsqxbone34025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110969/3_1opagehsqxbone34025120560115/3_1opagehsqxbone34025120560115_seg.nii.gz" + }, + { + "image": "110969/2_2opagehsqxstandard34025120560115.nii.gz", + "pseudo_label": "110969/2_2opagehsqxstandard34025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110969/2_2opagehsqxstandard34025120560115/2_2opagehsqxstandard34025120560115_seg.nii.gz" + }, + { + "image": "110969/2_1opagehsqxstandard34025120560115.nii.gz", + "pseudo_label": "110969/2_1opagehsqxstandard34025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110969/2_1opagehsqxstandard34025120560115/2_1opagehsqxstandard34025120560115_seg.nii.gz" + }, + { + "image": "103417/2_1opagelsplusstandard33725120600115.nii.gz", + "pseudo_label": "103417/2_1opagelsplusstandard33725120600115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103417/2_1opagelsplusstandard33725120600115/2_1opagelsplusstandard33725120600115_seg.nii.gz" + }, + { + "image": "106439/3_0opagehsqxbone34025120560115.nii.gz", + "pseudo_label": "106439/3_0opagehsqxbone34025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106439/3_0opagehsqxbone34025120560115/3_0opagehsqxbone34025120560115_seg.nii.gz" + }, + { + "image": "106439/2_2opagehsqxstandard34025120560115.nii.gz", + "pseudo_label": "106439/2_2opagehsqxstandard34025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106439/2_2opagehsqxstandard34025120560115/2_2opagehsqxstandard34025120560115_seg.nii.gz" + }, + { + "image": "106439/2_1opagehsqxstandard34025120560115.nii.gz", + "pseudo_label": "106439/2_1opagehsqxstandard34025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106439/2_1opagehsqxstandard34025120560115/2_1opagehsqxstandard34025120560115_seg.nii.gz" + }, + { + "image": "102095/2_1opasevzoomb50f31621206030na.nii.gz", + "pseudo_label": "102095/2_1opasevzoomb50f31621206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102095/2_1opasevzoomb50f31621206030na/2_1opasevzoomb50f31621206030na_seg.nii.gz" + }, + { + "image": "102095/3_1opasevzoomb30f31621206030na.nii.gz", + "pseudo_label": "102095/3_1opasevzoomb30f31621206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102095/3_1opasevzoomb30f31621206030na/3_1opasevzoomb30f31621206030na_seg.nii.gz" + }, + { + "image": "102095/3_2opasesen16b30f31021204530na.nii.gz", + "pseudo_label": "102095/3_2opasesen16b30f31021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102095/3_2opasesen16b30f31021204530na/3_2opasesen16b30f31021204530na_seg.nii.gz" + }, + { + "image": "102216/2_2opagehsqxstandard36025120560115.nii.gz", + "pseudo_label": "102216/2_2opagehsqxstandard36025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102216/2_2opagehsqxstandard36025120560115/2_2opagehsqxstandard36025120560115_seg.nii.gz" + }, + { + "image": "102216/2_0opagehsqxstandard36025120560115.nii.gz", + "pseudo_label": "102216/2_0opagehsqxstandard36025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102216/2_0opagehsqxstandard36025120560115/2_0opagehsqxstandard36025120560115_seg.nii.gz" + }, + { + "image": "102216/3_2opagehsqxbone36025120560115.nii.gz", + "pseudo_label": "102216/3_2opagehsqxbone36025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102216/3_2opagehsqxbone36025120560115/3_2opagehsqxbone36025120560115_seg.nii.gz" + }, + { + "image": "100539/3068_1opaphmx8000c3383212039018.nii.gz", + "pseudo_label": "100539/3068_1opaphmx8000c3383212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100539/3068_1opaphmx8000c3383212039018/3068_1opaphmx8000c3383212039018_seg.nii.gz" + }, + { + "image": "112956/3_0opasevzoomb50f360212016080na.nii.gz", + "pseudo_label": "112956/3_0opasevzoomb50f360212016080na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112956/3_0opasevzoomb50f360212016080na/3_0opasevzoomb50f360212016080na_seg.nii.gz" + }, + { + "image": "112983/4_2opatoaqul4fc513281212075nana.nii.gz", + "pseudo_label": "112983/4_2opatoaqul4fc513281212075nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112983/4_2opatoaqul4fc513281212075nana/4_2opatoaqul4fc513281212075nana_seg.nii.gz" + }, + { + "image": "104403/3_1opagelspr16standard36425120640114.nii.gz", + "pseudo_label": "104403/3_1opagelspr16standard36425120640114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104403/3_1opagelspr16standard36425120640114/3_1opagelspr16standard36425120640114_seg.nii.gz" + }, + { + "image": "104403/3_0opagels16standard3502512000na.nii.gz", + "pseudo_label": "104403/3_0opagels16standard3502512000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104403/3_0opagels16standard3502512000na/3_0opagels16standard3502512000na_seg.nii.gz" + }, + { + "image": "104403/3_2opagelspr16standard3202512048014.nii.gz", + "pseudo_label": "104403/3_2opagelspr16standard3202512048014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104403/3_2opagelspr16standard3202512048014/3_2opagelspr16standard3202512048014_seg.nii.gz" + }, + { + "image": "104403/2_2opagelspr16bone3202512048014.nii.gz", + "pseudo_label": "104403/2_2opagelspr16bone3202512048014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104403/2_2opagelspr16bone3202512048014/2_2opagelspr16bone3202512048014_seg.nii.gz" + }, + { + "image": "104403/2_0opagels16bone3502512000na.nii.gz", + "pseudo_label": "104403/2_0opagels16bone3502512000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104403/2_0opagels16bone3502512000na/2_0opagels16bone3502512000na_seg.nii.gz" + }, + { + "image": "104403/2_1opagelspr16bone36425120640114.nii.gz", + "pseudo_label": "104403/2_1opagelspr16bone36425120640114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104403/2_1opagelspr16bone36425120640114/2_1opagelspr16bone36425120640114_seg.nii.gz" + }, + { + "image": "111074/2_0opasevzoomb50f30221206030na.nii.gz", + "pseudo_label": "111074/2_0opasevzoomb50f30221206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111074/2_0opasevzoomb50f30221206030na/2_0opasevzoomb50f30221206030na_seg.nii.gz" + }, + { + "image": "103452/2_2opagels16standard4002514040014.nii.gz", + "pseudo_label": "103452/2_2opagels16standard4002514040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103452/2_2opagels16standard4002514040014/2_2opagels16standard4002514040014_seg.nii.gz" + }, + { + "image": "103452/2_1opagels16standard3402514040014.nii.gz", + "pseudo_label": "103452/2_1opagels16standard3402514040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103452/2_1opagels16standard3402514040014/2_1opagels16standard3402514040014_seg.nii.gz" + }, + { + "image": "103452/2_0opagelsqxstandard2922514040015.nii.gz", + "pseudo_label": "103452/2_0opagelsqxstandard2922514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103452/2_0opagelsqxstandard2922514040015/2_0opagelsqxstandard2922514040015_seg.nii.gz" + }, + { + "image": "101070/2_1opagels16standard29025120381nana.nii.gz", + "pseudo_label": "101070/2_1opagels16standard29025120381nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101070/2_1opagels16standard29025120381nana/2_1opagels16standard29025120381nana_seg.nii.gz" + }, + { + "image": "101070/2_2opagels16standard29025120476nana.nii.gz", + "pseudo_label": "101070/2_2opagels16standard29025120476nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101070/2_2opagels16standard29025120476nana/2_2opagels16standard29025120476nana_seg.nii.gz" + }, + { + "image": "112921/2_1opasevzoomb30f34021206030na.nii.gz", + "pseudo_label": "112921/2_1opasevzoomb30f34021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112921/2_1opasevzoomb30f34021206030na/2_1opasevzoomb30f34021206030na_seg.nii.gz" + }, + { + "image": "112921/3_2opasevzoomb50f33021208040na.nii.gz", + "pseudo_label": "112921/3_2opasevzoomb50f33021208040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112921/3_2opasevzoomb50f33021208040na/3_2opasevzoomb50f33021208040na_seg.nii.gz" + }, + { + "image": "112921/2_0opasevzoomb30f33021408040na.nii.gz", + "pseudo_label": "112921/2_0opasevzoomb30f33021408040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112921/2_0opasevzoomb30f33021408040na/2_0opasevzoomb30f33021408040na_seg.nii.gz" + }, + { + "image": "108655/2_1opasevzoomb30f36021207540na.nii.gz", + "pseudo_label": "108655/2_1opasevzoomb30f36021207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108655/2_1opasevzoomb30f36021207540na/2_1opasevzoomb30f36021207540na_seg.nii.gz" + }, + { + "image": "108655/3_2opasevzoomb50f35821207540na.nii.gz", + "pseudo_label": "108655/3_2opasevzoomb50f35821207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108655/3_2opasevzoomb50f35821207540na/3_2opasevzoomb50f35821207540na_seg.nii.gz" + }, + { + "image": "108655/2_2opasevzoomb30f35821207540na.nii.gz", + "pseudo_label": "108655/2_2opasevzoomb30f35821207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108655/2_2opasevzoomb30f35821207540na/2_2opasevzoomb30f35821207540na_seg.nii.gz" + }, + { + "image": "108655/3_0opasevzoomb50f36821207540na.nii.gz", + "pseudo_label": "108655/3_0opasevzoomb50f36821207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108655/3_0opasevzoomb50f36821207540na/3_0opasevzoomb50f36821207540na_seg.nii.gz" + }, + { + "image": "108655/3_1opasevzoomb50f36021207540na.nii.gz", + "pseudo_label": "108655/3_1opasevzoomb50f36021207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108655/3_1opasevzoomb50f36021207540na/3_1opasevzoomb50f36021207540na_seg.nii.gz" + }, + { + "image": "112986/2_1opagelsplusstandard29825140814nana.nii.gz", + "pseudo_label": "112986/2_1opagelsplusstandard29825140814nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112986/2_1opagelsplusstandard29825140814nana/2_1opagelsplusstandard29825140814nana_seg.nii.gz" + }, + { + "image": "112986/2_0opagelsplusstandard3102514040015.nii.gz", + "pseudo_label": "112986/2_0opagelsplusstandard3102514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112986/2_0opagelsplusstandard3102514040015/2_0opagelsplusstandard3102514040015_seg.nii.gz" + }, + { + "image": "101056/2_2opagelsqxstandard318251406401na.nii.gz", + "pseudo_label": "101056/2_2opagelsqxstandard318251406401na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101056/2_2opagelsqxstandard318251406401na/2_2opagelsqxstandard318251406401na_seg.nii.gz" + }, + { + "image": "111565/3639_2opaphmx8000c37932120453612.nii.gz", + "pseudo_label": "111565/3639_2opaphmx8000c37932120453612.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111565/3639_2opaphmx8000c37932120453612/3639_2opaphmx8000c37932120453612_seg.nii.gz" + }, + { + "image": "112506/3_1opasevzoomb50f35021206030na.nii.gz", + "pseudo_label": "112506/3_1opasevzoomb50f35021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112506/3_1opasevzoomb50f35021206030na/3_1opasevzoomb50f35021206030na_seg.nii.gz" + }, + { + "image": "112506/5_2opasevzoomb30f31651206030na.nii.gz", + "pseudo_label": "112506/5_2opasevzoomb30f31651206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112506/5_2opasevzoomb30f31651206030na/5_2opasevzoomb30f31651206030na_seg.nii.gz" + }, + { + "image": "112506/4_2opasevzoomb50f31651206030na.nii.gz", + "pseudo_label": "112506/4_2opasevzoomb50f31651206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112506/4_2opasevzoomb50f31651206030na/4_2opasevzoomb50f31651206030na_seg.nii.gz" + }, + { + "image": "112506/4_0opasevzoomb50f36651206030na.nii.gz", + "pseudo_label": "112506/4_0opasevzoomb50f36651206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112506/4_0opasevzoomb50f36651206030na/4_0opasevzoomb50f36651206030na_seg.nii.gz" + }, + { + "image": "112506/4_1opasevzoomb50f35051206030na.nii.gz", + "pseudo_label": "112506/4_1opasevzoomb50f35051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112506/4_1opasevzoomb50f35051206030na/4_1opasevzoomb50f35051206030na_seg.nii.gz" + }, + { + "image": "112506/6_1opasevzoomb30f35021206030na.nii.gz", + "pseudo_label": "112506/6_1opasevzoomb30f35021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112506/6_1opasevzoomb30f35021206030na/6_1opasevzoomb30f35021206030na_seg.nii.gz" + }, + { + "image": "112506/3_2opasevzoomb50f31621206030na.nii.gz", + "pseudo_label": "112506/3_2opasevzoomb50f31621206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112506/3_2opasevzoomb50f31621206030na/3_2opasevzoomb50f31621206030na_seg.nii.gz" + }, + { + "image": "112506/5_0opasevzoomb30f36651206030na.nii.gz", + "pseudo_label": "112506/5_0opasevzoomb30f36651206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112506/5_0opasevzoomb30f36651206030na/5_0opasevzoomb30f36651206030na_seg.nii.gz" + }, + { + "image": "112506/5_1opasevzoomb30f35051206030na.nii.gz", + "pseudo_label": "112506/5_1opasevzoomb30f35051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112506/5_1opasevzoomb30f35051206030na/5_1opasevzoomb30f35051206030na_seg.nii.gz" + }, + { + "image": "101693/3_0opagels16standard4002512000na.nii.gz", + "pseudo_label": "101693/3_0opagels16standard4002512000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101693/3_0opagels16standard4002512000na/3_0opagels16standard4002512000na_seg.nii.gz" + }, + { + "image": "101693/3_2opagelspr16standard3102512040014.nii.gz", + "pseudo_label": "101693/3_2opagelspr16standard3102512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101693/3_2opagelspr16standard3102512040014/3_2opagelspr16standard3102512040014_seg.nii.gz" + }, + { + "image": "101693/2_2opagelspr16bone3102512040014.nii.gz", + "pseudo_label": "101693/2_2opagelspr16bone3102512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101693/2_2opagelspr16bone3102512040014/2_2opagelspr16bone3102512040014_seg.nii.gz" + }, + { + "image": "101693/3_1opagelspr16standard3202512040014.nii.gz", + "pseudo_label": "101693/3_1opagelspr16standard3202512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101693/3_1opagelspr16standard3202512040014/3_1opagelspr16standard3202512040014_seg.nii.gz" + }, + { + "image": "103972/13_0opasevzoomb30f37051206030na.nii.gz", + "pseudo_label": "103972/13_0opasevzoomb30f37051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103972/13_0opasevzoomb30f37051206030na/13_0opasevzoomb30f37051206030na_seg.nii.gz" + }, + { + "image": "103972/8_0opasevzoomb30f37051206030na.nii.gz", + "pseudo_label": "103972/8_0opasevzoomb30f37051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103972/8_0opasevzoomb30f37051206030na/8_0opasevzoomb30f37051206030na_seg.nii.gz" + }, + { + "image": "103972/6_0opasevzoomb30f35021206030na.nii.gz", + "pseudo_label": "103972/6_0opasevzoomb30f35021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103972/6_0opasevzoomb30f35021206030na/6_0opasevzoomb30f35021206030na_seg.nii.gz" + }, + { + "image": "103972/11_0opasevzoomb50f37021206030na.nii.gz", + "pseudo_label": "103972/11_0opasevzoomb50f37021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103972/11_0opasevzoomb50f37021206030na/11_0opasevzoomb50f37021206030na_seg.nii.gz" + }, + { + "image": "103972/3_2opasevzoomb30f37551206030na.nii.gz", + "pseudo_label": "103972/3_2opasevzoomb30f37551206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103972/3_2opasevzoomb30f37551206030na/3_2opasevzoomb30f37551206030na_seg.nii.gz" + }, + { + "image": "103972/4_2opasevzoomb50f37551206030na.nii.gz", + "pseudo_label": "103972/4_2opasevzoomb50f37551206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103972/4_2opasevzoomb50f37551206030na/4_2opasevzoomb50f37551206030na_seg.nii.gz" + }, + { + "image": "103972/3_1opasesen16b30f36651204530na.nii.gz", + "pseudo_label": "103972/3_1opasesen16b30f36651204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103972/3_1opasesen16b30f36651204530na/3_1opasesen16b30f36651204530na_seg.nii.gz" + }, + { + "image": "103972/9_0opasevzoomb30f37021206030na.nii.gz", + "pseudo_label": "103972/9_0opasevzoomb30f37021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103972/9_0opasevzoomb30f37021206030na/9_0opasevzoomb30f37021206030na_seg.nii.gz" + }, + { + "image": "103972/5_1opasesen16b50f36651204530na.nii.gz", + "pseudo_label": "103972/5_1opasesen16b50f36651204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103972/5_1opasesen16b50f36651204530na/5_1opasesen16b50f36651204530na_seg.nii.gz" + }, + { + "image": "104460/5_2opasevzoomb30f36251206030na.nii.gz", + "pseudo_label": "104460/5_2opasevzoomb30f36251206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104460/5_2opasevzoomb30f36251206030na/5_2opasevzoomb30f36251206030na_seg.nii.gz" + }, + { + "image": "104460/4_0opasevzoomb50f36251206030na.nii.gz", + "pseudo_label": "104460/4_0opasevzoomb50f36251206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104460/4_0opasevzoomb50f36251206030na/4_0opasevzoomb50f36251206030na_seg.nii.gz" + }, + { + "image": "104460/4_2opasevzoomb50f36251206030na.nii.gz", + "pseudo_label": "104460/4_2opasevzoomb50f36251206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104460/4_2opasevzoomb50f36251206030na/4_2opasevzoomb50f36251206030na_seg.nii.gz" + }, + { + "image": "104460/5_1opasevzoomb30f35051206030na.nii.gz", + "pseudo_label": "104460/5_1opasevzoomb30f35051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104460/5_1opasevzoomb30f35051206030na/5_1opasevzoomb30f35051206030na_seg.nii.gz" + }, + { + "image": "104460/5_0opasevzoomb30f36251206030na.nii.gz", + "pseudo_label": "104460/5_0opasevzoomb30f36251206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104460/5_0opasevzoomb30f36251206030na/5_0opasevzoomb30f36251206030na_seg.nii.gz" + }, + { + "image": "109510/2_0opagelsqxstandard3202514040015.nii.gz", + "pseudo_label": "109510/2_0opagelsqxstandard3202514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109510/2_0opagelsqxstandard3202514040015/2_0opagelsqxstandard3202514040015_seg.nii.gz" + }, + { + "image": "104590/2_0opasevzoomb30f330212016080na.nii.gz", + "pseudo_label": "104590/2_0opasevzoomb30f330212016080na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104590/2_0opasevzoomb30f330212016080na/2_0opasevzoomb30f330212016080na_seg.nii.gz" + }, + { + "image": "101289/2_1opagelsplusstandard34525120nanana.nii.gz", + "pseudo_label": "101289/2_1opagelsplusstandard34525120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101289/2_1opagelsplusstandard34525120nanana/2_1opagelsplusstandard34525120nanana_seg.nii.gz" + }, + { + "image": "109900/0_0opaphmx8000d32032120390na.nii.gz", + "pseudo_label": "109900/0_0opaphmx8000d32032120390na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109900/0_0opaphmx8000d32032120390na/0_0opaphmx8000d32032120390na_seg.nii.gz" + }, + { + "image": "109900/9597_2opaphmx8000c2853212039018.nii.gz", + "pseudo_label": "109900/9597_2opaphmx8000c2853212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109900/9597_2opaphmx8000c2853212039018/9597_2opaphmx8000c2853212039018_seg.nii.gz" + }, + { + "image": "102713/4_0opasevzoomb50f34021207540na.nii.gz", + "pseudo_label": "102713/4_0opasevzoomb50f34021207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102713/4_0opasevzoomb50f34021207540na/4_0opasevzoomb50f34021207540na_seg.nii.gz" + }, + { + "image": "108190/3_2opasesen16b30f33051204530na.nii.gz", + "pseudo_label": "108190/3_2opasesen16b30f33051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108190/3_2opasesen16b30f33051204530na/3_2opasesen16b30f33051204530na_seg.nii.gz" + }, + { + "image": "108190/4_0opasevzoomb50f38051206030na.nii.gz", + "pseudo_label": "108190/4_0opasevzoomb50f38051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108190/4_0opasevzoomb50f38051206030na/4_0opasevzoomb50f38051206030na_seg.nii.gz" + }, + { + "image": "108190/9_1opasesen16b50f34051204530na.nii.gz", + "pseudo_label": "108190/9_1opasesen16b50f34051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108190/9_1opasesen16b50f34051204530na/9_1opasesen16b50f34051204530na_seg.nii.gz" + }, + { + "image": "108190/3_0opasevzoomb30f38051206030na.nii.gz", + "pseudo_label": "108190/3_0opasevzoomb30f38051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108190/3_0opasevzoomb30f38051206030na/3_0opasevzoomb30f38051206030na_seg.nii.gz" + }, + { + "image": "108190/5_2opasesen16b50f33051204530na.nii.gz", + "pseudo_label": "108190/5_2opasesen16b50f33051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108190/5_2opasesen16b50f33051204530na/5_2opasesen16b50f33051204530na_seg.nii.gz" + }, + { + "image": "108190/7_1opasesen16b30f34051204530na.nii.gz", + "pseudo_label": "108190/7_1opasesen16b30f34051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108190/7_1opasesen16b30f34051204530na/7_1opasesen16b30f34051204530na_seg.nii.gz" + }, + { + "image": "107848/2_1opagels16bone3592512048014.nii.gz", + "pseudo_label": "107848/2_1opagels16bone3592512048014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107848/2_1opagels16bone3592512048014/2_1opagels16bone3592512048014_seg.nii.gz" + }, + { + "image": "107848/2_2opagelspr16bone36025120560114.nii.gz", + "pseudo_label": "107848/2_2opagelspr16bone36025120560114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107848/2_2opagelspr16bone36025120560114/2_2opagelspr16bone36025120560114_seg.nii.gz" + }, + { + "image": "107848/3_2opagelspr16standard36025120560114.nii.gz", + "pseudo_label": "107848/3_2opagelspr16standard36025120560114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107848/3_2opagelspr16standard36025120560114/3_2opagelspr16standard36025120560114_seg.nii.gz" + }, + { + "image": "107848/3_0opagelsqxstandard36725120800115.nii.gz", + "pseudo_label": "107848/3_0opagelsqxstandard36725120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107848/3_0opagelsqxstandard36725120800115/3_0opagelsqxstandard36725120800115_seg.nii.gz" + }, + { + "image": "102271/2_0opagels16bone34025120600114.nii.gz", + "pseudo_label": "102271/2_0opagels16bone34025120600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102271/2_0opagels16bone34025120600114/2_0opagels16bone34025120600114_seg.nii.gz" + }, + { + "image": "102271/3_2opagels16standard34025120600114.nii.gz", + "pseudo_label": "102271/3_2opagels16standard34025120600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102271/3_2opagels16standard34025120600114/3_2opagels16standard34025120600114_seg.nii.gz" + }, + { + "image": "106769/2_0opasevzoomb30f28621204020na.nii.gz", + "pseudo_label": "106769/2_0opasevzoomb30f28621204020na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106769/2_0opasevzoomb30f28621204020na/2_0opasevzoomb30f28621204020na_seg.nii.gz" + }, + { + "image": "106769/2_1opasesen16b30f27421207056na.nii.gz", + "pseudo_label": "106769/2_1opasesen16b30f27421207056na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106769/2_1opasesen16b30f27421207056na/2_1opasesen16b30f27421207056na_seg.nii.gz" + }, + { + "image": "110162/2_0opagelsqxstandard3402514040015.nii.gz", + "pseudo_label": "110162/2_0opagelsqxstandard3402514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110162/2_0opagelsqxstandard3402514040015/2_0opagelsqxstandard3402514040015_seg.nii.gz" + }, + { + "image": "110162/3_2opagels16standard3402514040014.nii.gz", + "pseudo_label": "110162/3_2opagels16standard3402514040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110162/3_2opagels16standard3402514040014/3_2opagels16standard3402514040014_seg.nii.gz" + }, + { + "image": "110162/2_1opagels16standard3412514040014.nii.gz", + "pseudo_label": "110162/2_1opagels16standard3412514040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110162/2_1opagels16standard3412514040014/2_1opagels16standard3412514040014_seg.nii.gz" + }, + { + "image": "101486/7412_1opaphmx8000d2963212039018.nii.gz", + "pseudo_label": "101486/7412_1opaphmx8000d2963212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101486/7412_1opaphmx8000d2963212039018/7412_1opaphmx8000d2963212039018_seg.nii.gz" + }, + { + "image": "101486/7413_1opaphmx8000c2963212039018.nii.gz", + "pseudo_label": "101486/7413_1opaphmx8000c2963212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101486/7413_1opaphmx8000c2963212039018/7413_1opaphmx8000c2963212039018_seg.nii.gz" + }, + { + "image": "101486/7242_0opaphmx8000d2973212039018.nii.gz", + "pseudo_label": "101486/7242_0opaphmx8000d2973212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101486/7242_0opaphmx8000d2973212039018/7242_0opaphmx8000d2973212039018_seg.nii.gz" + }, + { + "image": "109378/3_1opagehsqxbone28025120560115.nii.gz", + "pseudo_label": "109378/3_1opagehsqxbone28025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109378/3_1opagehsqxbone28025120560115/3_1opagehsqxbone28025120560115_seg.nii.gz" + }, + { + "image": "109378/2_1opagehsqxstandard28025120560115.nii.gz", + "pseudo_label": "109378/2_1opagehsqxstandard28025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109378/2_1opagehsqxstandard28025120560115/2_1opagehsqxstandard28025120560115_seg.nii.gz" + }, + { + "image": "109378/3_0opagehsqxbone28025120560115.nii.gz", + "pseudo_label": "109378/3_0opagehsqxbone28025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109378/3_0opagehsqxbone28025120560115/3_0opagehsqxbone28025120560115_seg.nii.gz" + }, + { + "image": "109378/3_2opagehsqxbone28025120560115.nii.gz", + "pseudo_label": "109378/3_2opagehsqxbone28025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109378/3_2opagehsqxbone28025120560115/3_2opagehsqxbone28025120560115_seg.nii.gz" + }, + { + "image": "109378/2_0opagehsqxstandard28025120560115.nii.gz", + "pseudo_label": "109378/2_0opagehsqxstandard28025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109378/2_0opagehsqxstandard28025120560115/2_0opagehsqxstandard28025120560115_seg.nii.gz" + }, + { + "image": "108587/2_0opagels16bone34025120600114.nii.gz", + "pseudo_label": "108587/2_0opagels16bone34025120600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108587/2_0opagels16bone34025120600114/2_0opagels16bone34025120600114_seg.nii.gz" + }, + { + "image": "106608/2_1opagelsqxstandard36025120640115.nii.gz", + "pseudo_label": "106608/2_1opagelsqxstandard36025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106608/2_1opagelsqxstandard36025120640115/2_1opagelsqxstandard36025120640115_seg.nii.gz" + }, + { + "image": "102568/3_2opasesen16b30f37021204530na.nii.gz", + "pseudo_label": "102568/3_2opasesen16b30f37021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102568/3_2opasesen16b30f37021204530na/3_2opasesen16b30f37021204530na_seg.nii.gz" + }, + { + "image": "102568/2_2opasesen16b50f37021204530na.nii.gz", + "pseudo_label": "102568/2_2opasesen16b50f37021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102568/2_2opasesen16b50f37021204530na/2_2opasesen16b50f37021204530na_seg.nii.gz" + }, + { + "image": "103453/2_0opagelsplusstandard37025140400na.nii.gz", + "pseudo_label": "103453/2_0opagelsplusstandard37025140400na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103453/2_0opagelsplusstandard37025140400na/2_0opagelsplusstandard37025140400na_seg.nii.gz" + }, + { + "image": "103453/2_2opagelsplusstandard36925140954nana.nii.gz", + "pseudo_label": "103453/2_2opagelsplusstandard36925140954nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103453/2_2opagelsplusstandard36925140954nana/2_2opagelsplusstandard36925140954nana_seg.nii.gz" + }, + { + "image": "103453/2_1opagelsqxstandard38025140400na.nii.gz", + "pseudo_label": "103453/2_1opagelsqxstandard38025140400na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103453/2_1opagelsqxstandard38025140400na/2_1opagelsqxstandard38025140400na_seg.nii.gz" + }, + { + "image": "108749/2_1opagelsplusstandard3202514040015.nii.gz", + "pseudo_label": "108749/2_1opagelsplusstandard3202514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108749/2_1opagelsplusstandard3202514040015/2_1opagelsplusstandard3202514040015_seg.nii.gz" + }, + { + "image": "108749/2_2opagelsplusstandard3202514040015.nii.gz", + "pseudo_label": "108749/2_2opagelsplusstandard3202514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108749/2_2opagelsplusstandard3202514040015/2_2opagelsplusstandard3202514040015_seg.nii.gz" + }, + { + "image": "108749/3_0opagelsplusstandard3202514040015.nii.gz", + "pseudo_label": "108749/3_0opagelsplusstandard3202514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108749/3_0opagelsplusstandard3202514040015/3_0opagelsplusstandard3202514040015_seg.nii.gz" + }, + { + "image": "108749/4_0opagelsplusstandard3202514040015.nii.gz", + "pseudo_label": "108749/4_0opagelsplusstandard3202514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108749/4_0opagelsplusstandard3202514040015/4_0opagelsplusstandard3202514040015_seg.nii.gz" + }, + { + "image": "108749/2_0opagelsplusstandard3202514040015.nii.gz", + "pseudo_label": "108749/2_0opagelsplusstandard3202514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108749/2_0opagelsplusstandard3202514040015/2_0opagelsplusstandard3202514040015_seg.nii.gz" + }, + { + "image": "105076/3_2opagels16standard3602514040014.nii.gz", + "pseudo_label": "105076/3_2opagels16standard3602514040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105076/3_2opagels16standard3602514040014/3_2opagels16standard3602514040014_seg.nii.gz" + }, + { + "image": "105076/2_2opagels16standard3402514040014.nii.gz", + "pseudo_label": "105076/2_2opagels16standard3402514040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105076/2_2opagels16standard3402514040014/2_2opagels16standard3402514040014_seg.nii.gz" + }, + { + "image": "106661/2_1opagelsqxstandard3502512048015.nii.gz", + "pseudo_label": "106661/2_1opagelsqxstandard3502512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106661/2_1opagelsqxstandard3502512048015/2_1opagelsqxstandard3502512048015_seg.nii.gz" + }, + { + "image": "106540/3_1opasevzoomb30f31021206030na.nii.gz", + "pseudo_label": "106540/3_1opasevzoomb30f31021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106540/3_1opasevzoomb30f31021206030na/3_1opasevzoomb30f31021206030na_seg.nii.gz" + }, + { + "image": "106540/2_1opasevzoomb50f31021206030na.nii.gz", + "pseudo_label": "106540/2_1opasevzoomb50f31021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106540/2_1opasevzoomb50f31021206030na/2_1opasevzoomb50f31021206030na_seg.nii.gz" + }, + { + "image": "106540/2_2opasesen16b50f31021204530na.nii.gz", + "pseudo_label": "106540/2_2opasesen16b50f31021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106540/2_2opasesen16b50f31021204530na/2_2opasesen16b50f31021204530na_seg.nii.gz" + }, + { + "image": "106057/6_2opasevzoomb30f32421206030na.nii.gz", + "pseudo_label": "106057/6_2opasevzoomb30f32421206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106057/6_2opasevzoomb30f32421206030na/6_2opasevzoomb30f32421206030na_seg.nii.gz" + }, + { + "image": "106057/5_0opasesen16b50f33551205454na.nii.gz", + "pseudo_label": "106057/5_0opasesen16b50f33551205454na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106057/5_0opasesen16b50f33551205454na/5_0opasesen16b50f33551205454na_seg.nii.gz" + }, + { + "image": "106057/3_2opasevzoomb30f32451206030na.nii.gz", + "pseudo_label": "106057/3_2opasevzoomb30f32451206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106057/3_2opasevzoomb30f32451206030na/3_2opasevzoomb30f32451206030na_seg.nii.gz" + }, + { + "image": "106057/5_1opasesen16b50f35851204530na.nii.gz", + "pseudo_label": "106057/5_1opasesen16b50f35851204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106057/5_1opasesen16b50f35851204530na/5_1opasesen16b50f35851204530na_seg.nii.gz" + }, + { + "image": "106057/4_2opasevzoomb50f32451206030na.nii.gz", + "pseudo_label": "106057/4_2opasevzoomb50f32451206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106057/4_2opasevzoomb50f32451206030na/4_2opasevzoomb50f32451206030na_seg.nii.gz" + }, + { + "image": "106057/5_2opasevzoomb50f32221206030na.nii.gz", + "pseudo_label": "106057/5_2opasevzoomb50f32221206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106057/5_2opasevzoomb50f32221206030na/5_2opasevzoomb50f32221206030na_seg.nii.gz" + }, + { + "image": "106057/6_0opasesen16b30f33521205454na.nii.gz", + "pseudo_label": "106057/6_0opasesen16b30f33521205454na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106057/6_0opasesen16b30f33521205454na/6_0opasesen16b30f33521205454na_seg.nii.gz" + }, + { + "image": "106057/3_0opasesen16b30f34051205454na.nii.gz", + "pseudo_label": "106057/3_0opasesen16b30f34051205454na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106057/3_0opasesen16b30f34051205454na/3_0opasesen16b30f34051205454na_seg.nii.gz" + }, + { + "image": "106057/6_1opasesen16b60f35821204530na.nii.gz", + "pseudo_label": "106057/6_1opasesen16b60f35821204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106057/6_1opasesen16b60f35821204530na/6_1opasesen16b60f35821204530na_seg.nii.gz" + }, + { + "image": "106057/3_1opasesen16b30f35851204530na.nii.gz", + "pseudo_label": "106057/3_1opasesen16b30f35851204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106057/3_1opasesen16b30f35851204530na/3_1opasesen16b30f35851204530na_seg.nii.gz" + }, + { + "image": "112183/5_2opasevzoomb50f30221206030na.nii.gz", + "pseudo_label": "112183/5_2opasevzoomb50f30221206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112183/5_2opasevzoomb50f30221206030na/5_2opasevzoomb50f30221206030na_seg.nii.gz" + }, + { + "image": "112183/3_2opasevzoomb30f30251206030na.nii.gz", + "pseudo_label": "112183/3_2opasevzoomb30f30251206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112183/3_2opasevzoomb30f30251206030na/3_2opasevzoomb30f30251206030na_seg.nii.gz" + }, + { + "image": "112183/4_0opasesen16b30f306212025551na.nii.gz", + "pseudo_label": "112183/4_0opasesen16b30f306212025551na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112183/4_0opasesen16b30f306212025551na/4_0opasesen16b30f306212025551na_seg.nii.gz" + }, + { + "image": "112183/4_2opasevzoomb50f30251206030na.nii.gz", + "pseudo_label": "112183/4_2opasevzoomb50f30251206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112183/4_2opasevzoomb50f30251206030na/4_2opasevzoomb50f30251206030na_seg.nii.gz" + }, + { + "image": "112183/5_0opasesen16b50f306512025551na.nii.gz", + "pseudo_label": "112183/5_0opasesen16b50f306512025551na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112183/5_0opasesen16b50f306512025551na/5_0opasesen16b50f306512025551na_seg.nii.gz" + }, + { + "image": "112183/3_0opasesen16b30f306512025551na.nii.gz", + "pseudo_label": "112183/3_0opasesen16b30f306512025551na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112183/3_0opasesen16b30f306512025551na/3_0opasesen16b30f306512025551na_seg.nii.gz" + }, + { + "image": "112183/4_1opasesen16b50f36251204530na.nii.gz", + "pseudo_label": "112183/4_1opasesen16b50f36251204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112183/4_1opasesen16b50f36251204530na/4_1opasesen16b50f36251204530na_seg.nii.gz" + }, + { + "image": "112183/3_1opasesen16b30f36251204530na.nii.gz", + "pseudo_label": "112183/3_1opasesen16b30f36251204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112183/3_1opasesen16b30f36251204530na/3_1opasesen16b30f36251204530na_seg.nii.gz" + }, + { + "image": "103344/2_1opagelsqxstandard36025120640115.nii.gz", + "pseudo_label": "103344/2_1opagelsqxstandard36025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103344/2_1opagelsqxstandard36025120640115/2_1opagelsqxstandard36025120640115_seg.nii.gz" + }, + { + "image": "100470/4_2opasesen16b30f37221204032na.nii.gz", + "pseudo_label": "100470/4_2opasesen16b30f37221204032na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100470/4_2opasesen16b30f37221204032na/4_2opasesen16b30f37221204032na_seg.nii.gz" + }, + { + "image": "100470/3_2opasesen16b30f37221204032na.nii.gz", + "pseudo_label": "100470/3_2opasesen16b30f37221204032na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100470/3_2opasesen16b30f37221204032na/3_2opasesen16b30f37221204032na_seg.nii.gz" + }, + { + "image": "100470/2_0opasevzoomb30f37621204020na.nii.gz", + "pseudo_label": "100470/2_0opasevzoomb30f37621204020na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100470/2_0opasevzoomb30f37621204020na/2_0opasevzoomb30f37621204020na_seg.nii.gz" + }, + { + "image": "103530/2_0opasevzoomb30f31021208040na.nii.gz", + "pseudo_label": "103530/2_0opasevzoomb30f31021208040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103530/2_0opasevzoomb30f31021208040na/2_0opasevzoomb30f31021208040na_seg.nii.gz" + }, + { + "image": "100346/2_1opagehsqxstandard36025120560115.nii.gz", + "pseudo_label": "100346/2_1opagehsqxstandard36025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100346/2_1opagehsqxstandard36025120560115/2_1opagehsqxstandard36025120560115_seg.nii.gz" + }, + { + "image": "100346/2_2opagehsqxstandard36025120560115.nii.gz", + "pseudo_label": "100346/2_2opagehsqxstandard36025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100346/2_2opagehsqxstandard36025120560115/2_2opagehsqxstandard36025120560115_seg.nii.gz" + }, + { + "image": "100346/2_0opagehsqxstandard36025120560115.nii.gz", + "pseudo_label": "100346/2_0opagehsqxstandard36025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100346/2_0opagehsqxstandard36025120560115/2_0opagehsqxstandard36025120560115_seg.nii.gz" + }, + { + "image": "100346/3_1opagehsqxbone36025120560115.nii.gz", + "pseudo_label": "100346/3_1opagehsqxbone36025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100346/3_1opagehsqxbone36025120560115/3_1opagehsqxbone36025120560115_seg.nii.gz" + }, + { + "image": "100400/5_0opasevzoomb50f33021206030na.nii.gz", + "pseudo_label": "100400/5_0opasevzoomb50f33021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100400/5_0opasevzoomb50f33021206030na/5_0opasevzoomb50f33021206030na_seg.nii.gz" + }, + { + "image": "100400/6_0opasevzoomb50f33051206030na.nii.gz", + "pseudo_label": "100400/6_0opasevzoomb50f33051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100400/6_0opasevzoomb50f33051206030na/6_0opasevzoomb50f33051206030na_seg.nii.gz" + }, + { + "image": "100400/5_2opasesen16b50f34051204530na.nii.gz", + "pseudo_label": "100400/5_2opasesen16b50f34051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100400/5_2opasesen16b50f34051204530na/5_2opasesen16b50f34051204530na_seg.nii.gz" + }, + { + "image": "100400/3_2opasesen16b30f32051204530na.nii.gz", + "pseudo_label": "100400/3_2opasesen16b30f32051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100400/3_2opasesen16b30f32051204530na/3_2opasesen16b30f32051204530na_seg.nii.gz" + }, + { + "image": "100400/3_1opasevzoomb30f34051206030na.nii.gz", + "pseudo_label": "100400/3_1opasevzoomb30f34051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100400/3_1opasevzoomb30f34051206030na/3_1opasevzoomb30f34051206030na_seg.nii.gz" + }, + { + "image": "100400/4_0opasevzoomb30f33051206030na.nii.gz", + "pseudo_label": "100400/4_0opasevzoomb30f33051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100400/4_0opasevzoomb30f33051206030na/4_0opasevzoomb30f33051206030na_seg.nii.gz" + }, + { + "image": "100400/4_1opasevzoomb50f34051206030na.nii.gz", + "pseudo_label": "100400/4_1opasevzoomb50f34051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100400/4_1opasevzoomb50f34051206030na/4_1opasevzoomb50f34051206030na_seg.nii.gz" + }, + { + "image": "105972/3_2opagelsqxbone30925120560115.nii.gz", + "pseudo_label": "105972/3_2opagelsqxbone30925120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105972/3_2opagelsqxbone30925120560115/3_2opagelsqxbone30925120560115_seg.nii.gz" + }, + { + "image": "105972/2_0opagelsqxstandard30025120560115.nii.gz", + "pseudo_label": "105972/2_0opagelsqxstandard30025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105972/2_0opagelsqxstandard30025120560115/2_0opagelsqxstandard30025120560115_seg.nii.gz" + }, + { + "image": "105972/2_2opagelsqxstandard30925120560115.nii.gz", + "pseudo_label": "105972/2_2opagelsqxstandard30925120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105972/2_2opagelsqxstandard30925120560115/2_2opagelsqxstandard30925120560115_seg.nii.gz" + }, + { + "image": "105972/3_0opagelsqxbone30025120560115.nii.gz", + "pseudo_label": "105972/3_0opagelsqxbone30025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105972/3_0opagelsqxbone30025120560115/3_0opagelsqxbone30025120560115_seg.nii.gz" + }, + { + "image": "108726/2_0opagelsqxbone37625120640115.nii.gz", + "pseudo_label": "108726/2_0opagelsqxbone37625120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108726/2_0opagelsqxbone37625120640115/2_0opagelsqxbone37625120640115_seg.nii.gz" + }, + { + "image": "108726/2_2opagelspr16bone3502512040014.nii.gz", + "pseudo_label": "108726/2_2opagelspr16bone3502512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108726/2_2opagelspr16bone3502512040014/2_2opagelspr16bone3502512040014_seg.nii.gz" + }, + { + "image": "108726/3_1opagels16standard34025120640114.nii.gz", + "pseudo_label": "108726/3_1opagels16standard34025120640114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108726/3_1opagels16standard34025120640114/3_1opagels16standard34025120640114_seg.nii.gz" + }, + { + "image": "108726/3_0opagelsqxstandard37625120640115.nii.gz", + "pseudo_label": "108726/3_0opagelsqxstandard37625120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108726/3_0opagelsqxstandard37625120640115/3_0opagelsqxstandard37625120640115_seg.nii.gz" + }, + { + "image": "108726/2_1opagels16bone34025120640114.nii.gz", + "pseudo_label": "108726/2_1opagels16bone34025120640114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108726/2_1opagels16bone34025120640114/2_1opagels16bone34025120640114_seg.nii.gz" + }, + { + "image": "102370/2_1opasesen16b50f28021204530na.nii.gz", + "pseudo_label": "102370/2_1opasesen16b50f28021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102370/2_1opasesen16b50f28021204530na/2_1opasesen16b50f28021204530na_seg.nii.gz" + }, + { + "image": "102370/3_1opasesen16b30f28021204530na.nii.gz", + "pseudo_label": "102370/3_1opasesen16b30f28021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102370/3_1opasesen16b30f28021204530na/3_1opasesen16b30f28021204530na_seg.nii.gz" + }, + { + "image": "102370/2_2opasesen16b50f28021204530na.nii.gz", + "pseudo_label": "102370/2_2opasesen16b50f28021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102370/2_2opasesen16b50f28021204530na/2_2opasesen16b50f28021204530na_seg.nii.gz" + }, + { + "image": "104585/2_2opagels16standard3402514040014.nii.gz", + "pseudo_label": "104585/2_2opagels16standard3402514040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104585/2_2opagels16standard3402514040014/2_2opagels16standard3402514040014_seg.nii.gz" + }, + { + "image": "104585/2_1opagels16standard3702514040014.nii.gz", + "pseudo_label": "104585/2_1opagels16standard3702514040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104585/2_1opagels16standard3702514040014/2_1opagels16standard3702514040014_seg.nii.gz" + }, + { + "image": "104585/2_0opagelsqxstandard3242514040015.nii.gz", + "pseudo_label": "104585/2_0opagelsqxstandard3242514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104585/2_0opagelsqxstandard3242514040015/2_0opagelsqxstandard3242514040015_seg.nii.gz" + }, + { + "image": "111373/5_1opasevzoomb30f33051206030na.nii.gz", + "pseudo_label": "111373/5_1opasevzoomb30f33051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111373/5_1opasevzoomb30f33051206030na/5_1opasevzoomb30f33051206030na_seg.nii.gz" + }, + { + "image": "111373/4_1opasevzoomb50f33051206030na.nii.gz", + "pseudo_label": "111373/4_1opasevzoomb50f33051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111373/4_1opasevzoomb50f33051206030na/4_1opasevzoomb50f33051206030na_seg.nii.gz" + }, + { + "image": "111373/4_2opasevzoomb50f35451206030na.nii.gz", + "pseudo_label": "111373/4_2opasevzoomb50f35451206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111373/4_2opasevzoomb50f35451206030na/4_2opasevzoomb50f35451206030na_seg.nii.gz" + }, + { + "image": "111373/5_0opasevzoomb30f34651206030na.nii.gz", + "pseudo_label": "111373/5_0opasevzoomb30f34651206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111373/5_0opasevzoomb30f34651206030na/5_0opasevzoomb30f34651206030na_seg.nii.gz" + }, + { + "image": "111373/5_2opasevzoomb30f35451206030na.nii.gz", + "pseudo_label": "111373/5_2opasevzoomb30f35451206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111373/5_2opasevzoomb30f35451206030na/5_2opasevzoomb30f35451206030na_seg.nii.gz" + }, + { + "image": "111373/6_0opasevzoomb30f34621206030na.nii.gz", + "pseudo_label": "111373/6_0opasevzoomb30f34621206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111373/6_0opasevzoomb30f34621206030na/6_0opasevzoomb30f34621206030na_seg.nii.gz" + }, + { + "image": "111373/6_2opasevzoomb30f35421206030na.nii.gz", + "pseudo_label": "111373/6_2opasevzoomb30f35421206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111373/6_2opasevzoomb30f35421206030na/6_2opasevzoomb30f35421206030na_seg.nii.gz" + }, + { + "image": "111373/4_0opasevzoomb50f34651206030na.nii.gz", + "pseudo_label": "111373/4_0opasevzoomb50f34651206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111373/4_0opasevzoomb50f34651206030na/4_0opasevzoomb50f34651206030na_seg.nii.gz" + }, + { + "image": "101937/2_0opasevzoomb30f45051207540na.nii.gz", + "pseudo_label": "101937/2_0opasevzoomb30f45051207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101937/2_0opasevzoomb30f45051207540na/2_0opasevzoomb30f45051207540na_seg.nii.gz" + }, + { + "image": "101937/4_0opasevzoomb50f45021207540na.nii.gz", + "pseudo_label": "101937/4_0opasevzoomb50f45021207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101937/4_0opasevzoomb50f45021207540na/4_0opasevzoomb50f45021207540na_seg.nii.gz" + }, + { + "image": "101937/3_1opasevzoomb50f42021207540na.nii.gz", + "pseudo_label": "101937/3_1opasevzoomb50f42021207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101937/3_1opasevzoomb50f42021207540na/3_1opasevzoomb50f42021207540na_seg.nii.gz" + }, + { + "image": "101937/2_1opasevzoomb30f42021207540na.nii.gz", + "pseudo_label": "101937/2_1opasevzoomb30f42021207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101937/2_1opasevzoomb30f42021207540na/2_1opasevzoomb30f42021207540na_seg.nii.gz" + }, + { + "image": "102317/2_2opagelsqxstandard36025120640115.nii.gz", + "pseudo_label": "102317/2_2opagelsqxstandard36025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102317/2_2opagelsqxstandard36025120640115/2_2opagelsqxstandard36025120640115_seg.nii.gz" + }, + { + "image": "102317/2_0opagelsqxstandard36025120640115.nii.gz", + "pseudo_label": "102317/2_0opagelsqxstandard36025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102317/2_0opagelsqxstandard36025120640115/2_0opagelsqxstandard36025120640115_seg.nii.gz" + }, + { + "image": "106005/0_0opaphmx8000d2953212039018.nii.gz", + "pseudo_label": "106005/0_0opaphmx8000d2953212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106005/0_0opaphmx8000d2953212039018/0_0opaphmx8000d2953212039018_seg.nii.gz" + }, + { + "image": "106005/8342_2opaphmx8000d2993212039018.nii.gz", + "pseudo_label": "106005/8342_2opaphmx8000d2993212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106005/8342_2opaphmx8000d2993212039018/8342_2opaphmx8000d2993212039018_seg.nii.gz" + }, + { + "image": "107795/7386_1opaphmx8000c29732120390na.nii.gz", + "pseudo_label": "107795/7386_1opaphmx8000c29732120390na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107795/7386_1opaphmx8000c29732120390na/7386_1opaphmx8000c29732120390na_seg.nii.gz" + }, + { + "image": "103458/3_2opagelspr16standard39725120640114.nii.gz", + "pseudo_label": "103458/3_2opagelspr16standard39725120640114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103458/3_2opagelspr16standard39725120640114/3_2opagelspr16standard39725120640114_seg.nii.gz" + }, + { + "image": "103458/3_0opagelsqxbone36025120640115.nii.gz", + "pseudo_label": "103458/3_0opagelsqxbone36025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103458/3_0opagelsqxbone36025120640115/3_0opagelsqxbone36025120640115_seg.nii.gz" + }, + { + "image": "103458/2_1opagels16bone3842512048014.nii.gz", + "pseudo_label": "103458/2_1opagels16bone3842512048014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103458/2_1opagels16bone3842512048014/2_1opagels16bone3842512048014_seg.nii.gz" + }, + { + "image": "103458/2_2opagelspr16bone39725120640114.nii.gz", + "pseudo_label": "103458/2_2opagelspr16bone39725120640114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103458/2_2opagelspr16bone39725120640114/2_2opagelspr16bone39725120640114_seg.nii.gz" + }, + { + "image": "100051/2_1opasevzoomb50f28021206030na.nii.gz", + "pseudo_label": "100051/2_1opasevzoomb50f28021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100051/2_1opasevzoomb50f28021206030na/2_1opasevzoomb50f28021206030na_seg.nii.gz" + }, + { + "image": "100051/3_2opasesen16b30f27021204530na.nii.gz", + "pseudo_label": "100051/3_2opasesen16b30f27021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100051/3_2opasesen16b30f27021204530na/3_2opasesen16b30f27021204530na_seg.nii.gz" + }, + { + "image": "111865/3_0opatoaqul4fc512953212060nana.nii.gz", + "pseudo_label": "111865/3_0opatoaqul4fc512953212060nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111865/3_0opatoaqul4fc512953212060nana/3_0opatoaqul4fc512953212060nana_seg.nii.gz" + }, + { + "image": "111865/3_1opatoaqul4fc512828212040nana.nii.gz", + "pseudo_label": "111865/3_1opatoaqul4fc512828212040nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111865/3_1opatoaqul4fc512828212040nana/3_1opatoaqul4fc512828212040nana_seg.nii.gz" + }, + { + "image": "109237/5_2opasevzoomb30f35351206030na.nii.gz", + "pseudo_label": "109237/5_2opasevzoomb30f35351206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109237/5_2opasevzoomb30f35351206030na/5_2opasevzoomb30f35351206030na_seg.nii.gz" + }, + { + "image": "109237/4_0opasevzoomb50f36451206030na.nii.gz", + "pseudo_label": "109237/4_0opasevzoomb50f36451206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109237/4_0opasevzoomb50f36451206030na/4_0opasevzoomb50f36451206030na_seg.nii.gz" + }, + { + "image": "109237/4_1opasevzoomb50f38051206030na.nii.gz", + "pseudo_label": "109237/4_1opasevzoomb50f38051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109237/4_1opasevzoomb50f38051206030na/4_1opasevzoomb50f38051206030na_seg.nii.gz" + }, + { + "image": "109237/4_2opasevzoomb50f35351206030na.nii.gz", + "pseudo_label": "109237/4_2opasevzoomb50f35351206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109237/4_2opasevzoomb50f35351206030na/4_2opasevzoomb50f35351206030na_seg.nii.gz" + }, + { + "image": "109237/6_2opasevzoomb30f35321206030na.nii.gz", + "pseudo_label": "109237/6_2opasevzoomb30f35321206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109237/6_2opasevzoomb30f35321206030na/6_2opasevzoomb30f35321206030na_seg.nii.gz" + }, + { + "image": "109237/5_1opasevzoomb30f38051206030na.nii.gz", + "pseudo_label": "109237/5_1opasevzoomb30f38051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109237/5_1opasevzoomb30f38051206030na/5_1opasevzoomb30f38051206030na_seg.nii.gz" + }, + { + "image": "109237/6_0opasevzoomb30f36421206030na.nii.gz", + "pseudo_label": "109237/6_0opasevzoomb30f36421206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109237/6_0opasevzoomb30f36421206030na/6_0opasevzoomb30f36421206030na_seg.nii.gz" + }, + { + "image": "108121/2_1opasevzoomb50f35221206030na.nii.gz", + "pseudo_label": "108121/2_1opasevzoomb50f35221206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108121/2_1opasevzoomb50f35221206030na/2_1opasevzoomb50f35221206030na_seg.nii.gz" + }, + { + "image": "108121/2_0opasevzoomb50f33021206030na.nii.gz", + "pseudo_label": "108121/2_0opasevzoomb50f33021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108121/2_0opasevzoomb50f33021206030na/2_0opasevzoomb50f33021206030na_seg.nii.gz" + }, + { + "image": "105144/3_0opasevzoomb30f36021207540na.nii.gz", + "pseudo_label": "105144/3_0opasevzoomb30f36021207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105144/3_0opasevzoomb30f36021207540na/3_0opasevzoomb30f36021207540na_seg.nii.gz" + }, + { + "image": "111011/2_0opagelsqxstandard36025120640115.nii.gz", + "pseudo_label": "111011/2_0opagelsqxstandard36025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111011/2_0opagelsqxstandard36025120640115/2_0opagelsqxstandard36025120640115_seg.nii.gz" + }, + { + "image": "111011/2_2opagelsqxstandard3602512000na.nii.gz", + "pseudo_label": "111011/2_2opagelsqxstandard3602512000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111011/2_2opagelsqxstandard3602512000na/2_2opagelsqxstandard3602512000na_seg.nii.gz" + }, + { + "image": "102025/5_2opasesen16b50f38051204530na.nii.gz", + "pseudo_label": "102025/5_2opasesen16b50f38051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102025/5_2opasesen16b50f38051204530na/5_2opasesen16b50f38051204530na_seg.nii.gz" + }, + { + "image": "102025/3_0opasesen16b30f42951206040na.nii.gz", + "pseudo_label": "102025/3_0opasesen16b30f42951206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102025/3_0opasesen16b30f42951206040na/3_0opasesen16b30f42951206040na_seg.nii.gz" + }, + { + "image": "102025/6_0opasesen16b30f42921206040na.nii.gz", + "pseudo_label": "102025/6_0opasesen16b30f42921206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102025/6_0opasesen16b30f42921206040na/6_0opasesen16b30f42921206040na_seg.nii.gz" + }, + { + "image": "102025/3_1opasevzoomb30f40451206030na.nii.gz", + "pseudo_label": "102025/3_1opasevzoomb30f40451206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102025/3_1opasevzoomb30f40451206030na/3_1opasevzoomb30f40451206030na_seg.nii.gz" + }, + { + "image": "102025/4_1opasevzoomb50f40451206030na.nii.gz", + "pseudo_label": "102025/4_1opasevzoomb50f40451206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102025/4_1opasevzoomb50f40451206030na/4_1opasevzoomb50f40451206030na_seg.nii.gz" + }, + { + "image": "102025/4_0opasesen16b50f42951206040na.nii.gz", + "pseudo_label": "102025/4_0opasesen16b50f42951206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102025/4_0opasesen16b50f42951206040na/4_0opasesen16b50f42951206040na_seg.nii.gz" + }, + { + "image": "109398/2_1opagelsqxstandard29225120560115.nii.gz", + "pseudo_label": "109398/2_1opagelsqxstandard29225120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109398/2_1opagelsqxstandard29225120560115/2_1opagelsqxstandard29225120560115_seg.nii.gz" + }, + { + "image": "100925/1_2opagelspluslung34025120800115.nii.gz", + "pseudo_label": "100925/1_2opagelspluslung34025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100925/1_2opagelspluslung34025120800115/1_2opagelspluslung34025120800115_seg.nii.gz" + }, + { + "image": "100925/1_2opagelsplusstandard34025120800115.nii.gz", + "pseudo_label": "100925/1_2opagelsplusstandard34025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100925/1_2opagelsplusstandard34025120800115/1_2opagelsplusstandard34025120800115_seg.nii.gz" + }, + { + "image": "100925/1_1opagelspluslung34025120800115.nii.gz", + "pseudo_label": "100925/1_1opagelspluslung34025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100925/1_1opagelspluslung34025120800115/1_1opagelspluslung34025120800115_seg.nii.gz" + }, + { + "image": "100925/1_1opagelsplusstandard34025120800115.nii.gz", + "pseudo_label": "100925/1_1opagelsplusstandard34025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100925/1_1opagelsplusstandard34025120800115/1_1opagelsplusstandard34025120800115_seg.nii.gz" + }, + { + "image": "100925/1_0opagelspluslung34025120800108.nii.gz", + "pseudo_label": "100925/1_0opagelspluslung34025120800108.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100925/1_0opagelspluslung34025120800108/1_0opagelspluslung34025120800108_seg.nii.gz" + }, + { + "image": "103164/3786_1opaphmx8000c3473212039018.nii.gz", + "pseudo_label": "103164/3786_1opaphmx8000c3473212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103164/3786_1opaphmx8000c3473212039018/3786_1opaphmx8000c3473212039018_seg.nii.gz" + }, + { + "image": "107038/2_0opagels16bone3112512000na.nii.gz", + "pseudo_label": "107038/2_0opagels16bone3112512000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107038/2_0opagels16bone3112512000na/2_0opagels16bone3112512000na_seg.nii.gz" + }, + { + "image": "107038/2_1opagelspr16bone3002512040014.nii.gz", + "pseudo_label": "107038/2_1opagelspr16bone3002512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107038/2_1opagelspr16bone3002512040014/2_1opagelspr16bone3002512040014_seg.nii.gz" + }, + { + "image": "107038/3_2opagelspr16standard2802512040014.nii.gz", + "pseudo_label": "107038/3_2opagelspr16standard2802512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107038/3_2opagelspr16standard2802512040014/3_2opagelspr16standard2802512040014_seg.nii.gz" + }, + { + "image": "107038/3_1opagelspr16standard3002512040014.nii.gz", + "pseudo_label": "107038/3_1opagelspr16standard3002512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107038/3_1opagelspr16standard3002512040014/3_1opagelspr16standard3002512040014_seg.nii.gz" + }, + { + "image": "107038/2_2opagelspr16bone2802512040014.nii.gz", + "pseudo_label": "107038/2_2opagelspr16bone2802512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107038/2_2opagelspr16bone2802512040014/2_2opagelspr16bone2802512040014_seg.nii.gz" + }, + { + "image": "107038/3_0opagels16standard3112512000na.nii.gz", + "pseudo_label": "107038/3_0opagels16standard3112512000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107038/3_0opagels16standard3112512000na/3_0opagels16standard3112512000na_seg.nii.gz" + }, + { + "image": "100165/2_0opagelsqxstandard3042512000na.nii.gz", + "pseudo_label": "100165/2_0opagelsqxstandard3042512000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100165/2_0opagelsqxstandard3042512000na/2_0opagelsqxstandard3042512000na_seg.nii.gz" + }, + { + "image": "112682/2_2opagelspr16bone3402512048014.nii.gz", + "pseudo_label": "112682/2_2opagelspr16bone3402512048014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112682/2_2opagelspr16bone3402512048014/2_2opagelspr16bone3402512048014_seg.nii.gz" + }, + { + "image": "112682/2_1opagels16bone3702512000na.nii.gz", + "pseudo_label": "112682/2_1opagels16bone3702512000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112682/2_1opagels16bone3702512000na/2_1opagels16bone3702512000na_seg.nii.gz" + }, + { + "image": "112682/2_0opagelsqxbone36025120800115.nii.gz", + "pseudo_label": "112682/2_0opagelsqxbone36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112682/2_0opagelsqxbone36025120800115/2_0opagelsqxbone36025120800115_seg.nii.gz" + }, + { + "image": "105612/3_1opagels16standard33025120600114.nii.gz", + "pseudo_label": "105612/3_1opagels16standard33025120600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105612/3_1opagels16standard33025120600114/3_1opagels16standard33025120600114_seg.nii.gz" + }, + { + "image": "105612/3_2opagels16standard32025120720114.nii.gz", + "pseudo_label": "105612/3_2opagels16standard32025120720114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105612/3_2opagels16standard32025120720114/3_2opagels16standard32025120720114_seg.nii.gz" + }, + { + "image": "105612/3_0opagels16standard32025120600114.nii.gz", + "pseudo_label": "105612/3_0opagels16standard32025120600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105612/3_0opagels16standard32025120600114/3_0opagels16standard32025120600114_seg.nii.gz" + }, + { + "image": "106158/3_1opagels16standard37025120800114.nii.gz", + "pseudo_label": "106158/3_1opagels16standard37025120800114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106158/3_1opagels16standard37025120800114/3_1opagels16standard37025120800114_seg.nii.gz" + }, + { + "image": "106158/2_1opagels16bone37025120800114.nii.gz", + "pseudo_label": "106158/2_1opagels16bone37025120800114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106158/2_1opagels16bone37025120800114/2_1opagels16bone37025120800114_seg.nii.gz" + }, + { + "image": "107742/2_0opasevzoomb30f362212016080na.nii.gz", + "pseudo_label": "107742/2_0opasevzoomb30f362212016080na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107742/2_0opasevzoomb30f362212016080na/2_0opasevzoomb30f362212016080na_seg.nii.gz" + }, + { + "image": "107209/2_0opagelsqxstandard3662514048015.nii.gz", + "pseudo_label": "107209/2_0opagelsqxstandard3662514048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107209/2_0opagelsqxstandard3662514048015/2_0opagelsqxstandard3662514048015_seg.nii.gz" + }, + { + "image": "107526/2_1opagels16standard33025120nanana.nii.gz", + "pseudo_label": "107526/2_1opagels16standard33025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107526/2_1opagels16standard33025120nanana/2_1opagels16standard33025120nanana_seg.nii.gz" + }, + { + "image": "107526/4_2opagels16bone33025120nanana.nii.gz", + "pseudo_label": "107526/4_2opagels16bone33025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107526/4_2opagels16bone33025120nanana/4_2opagels16bone33025120nanana_seg.nii.gz" + }, + { + "image": "107526/3_2opagels16standard33025120nanana.nii.gz", + "pseudo_label": "107526/3_2opagels16standard33025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107526/3_2opagels16standard33025120nanana/3_2opagels16standard33025120nanana_seg.nii.gz" + }, + { + "image": "110716/3_1opasevzoomb50f37021207540na.nii.gz", + "pseudo_label": "110716/3_1opasevzoomb50f37021207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110716/3_1opasevzoomb50f37021207540na/3_1opasevzoomb50f37021207540na_seg.nii.gz" + }, + { + "image": "110716/2_1opasevzoomb30f37021207540na.nii.gz", + "pseudo_label": "110716/2_1opasevzoomb30f37021207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110716/2_1opasevzoomb30f37021207540na/2_1opasevzoomb30f37021207540na_seg.nii.gz" + }, + { + "image": "110716/2_2opasevzoomb30f37221207540na.nii.gz", + "pseudo_label": "110716/2_2opasevzoomb30f37221207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110716/2_2opasevzoomb30f37221207540na/2_2opasevzoomb30f37221207540na_seg.nii.gz" + }, + { + "image": "110716/3_2opasevzoomb50f37221207540na.nii.gz", + "pseudo_label": "110716/3_2opasevzoomb50f37221207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110716/3_2opasevzoomb50f37221207540na/3_2opasevzoomb50f37221207540na_seg.nii.gz" + }, + { + "image": "102360/2_1opagehsqxstandard36025120560115.nii.gz", + "pseudo_label": "102360/2_1opagehsqxstandard36025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102360/2_1opagehsqxstandard36025120560115/2_1opagehsqxstandard36025120560115_seg.nii.gz" + }, + { + "image": "102360/2_2opagehsqxstandard36025120560115.nii.gz", + "pseudo_label": "102360/2_2opagehsqxstandard36025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102360/2_2opagehsqxstandard36025120560115/2_2opagehsqxstandard36025120560115_seg.nii.gz" + }, + { + "image": "102360/2_0opagehsqxstandard36025120560115.nii.gz", + "pseudo_label": "102360/2_0opagehsqxstandard36025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102360/2_0opagehsqxstandard36025120560115/2_0opagehsqxstandard36025120560115_seg.nii.gz" + }, + { + "image": "102360/3_2opagehsqxbone36025120560115.nii.gz", + "pseudo_label": "102360/3_2opagehsqxbone36025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102360/3_2opagehsqxbone36025120560115/3_2opagehsqxbone36025120560115_seg.nii.gz" + }, + { + "image": "102360/3_1opagehsqxbone36025120560115.nii.gz", + "pseudo_label": "102360/3_1opagehsqxbone36025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102360/3_1opagehsqxbone36025120560115/3_1opagehsqxbone36025120560115_seg.nii.gz" + }, + { + "image": "101766/3_2opasevzoomb50f30021208040na.nii.gz", + "pseudo_label": "101766/3_2opasevzoomb50f30021208040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101766/3_2opasevzoomb50f30021208040na/3_2opasevzoomb50f30021208040na_seg.nii.gz" + }, + { + "image": "101766/2_2opasevzoomb30f30021208040na.nii.gz", + "pseudo_label": "101766/2_2opasevzoomb30f30021208040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101766/2_2opasevzoomb30f30021208040na/2_2opasevzoomb30f30021208040na_seg.nii.gz" + }, + { + "image": "113012/3_2opasesen16b30f32021204530na.nii.gz", + "pseudo_label": "113012/3_2opasesen16b30f32021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113012/3_2opasesen16b30f32021204530na/3_2opasesen16b30f32021204530na_seg.nii.gz" + }, + { + "image": "103998/2_0opagels16bone29025120600114.nii.gz", + "pseudo_label": "103998/2_0opagels16bone29025120600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103998/2_0opagels16bone29025120600114/2_0opagels16bone29025120600114_seg.nii.gz" + }, + { + "image": "108364/2_0opagelsqxstandard34025120640115.nii.gz", + "pseudo_label": "108364/2_0opagelsqxstandard34025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108364/2_0opagelsqxstandard34025120640115/2_0opagelsqxstandard34025120640115_seg.nii.gz" + }, + { + "image": "111785/2_1opasesen16b30f30321204032na.nii.gz", + "pseudo_label": "111785/2_1opasesen16b30f30321204032na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111785/2_1opasesen16b30f30321204032na/2_1opasesen16b30f30321204032na_seg.nii.gz" + }, + { + "image": "106700/10_2opasevzoomb30f27021206030na.nii.gz", + "pseudo_label": "106700/10_2opasevzoomb30f27021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106700/10_2opasevzoomb30f27021206030na/10_2opasevzoomb30f27021206030na_seg.nii.gz" + }, + { + "image": "106700/4_1opasesen16b50f27021204530na.nii.gz", + "pseudo_label": "106700/4_1opasesen16b50f27021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106700/4_1opasesen16b50f27021204530na/4_1opasesen16b50f27021204530na_seg.nii.gz" + }, + { + "image": "106011/2_0opagelsqxstandard33025120nanana.nii.gz", + "pseudo_label": "106011/2_0opagelsqxstandard33025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106011/2_0opagelsqxstandard33025120nanana/2_0opagelsqxstandard33025120nanana_seg.nii.gz" + }, + { + "image": "106011/2_2opagels16standard33025120nanana.nii.gz", + "pseudo_label": "106011/2_2opagels16standard33025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106011/2_2opagels16standard33025120nanana/2_2opagels16standard33025120nanana_seg.nii.gz" + }, + { + "image": "106011/2_1opagels16standard33025120nanana.nii.gz", + "pseudo_label": "106011/2_1opagels16standard33025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106011/2_1opagels16standard33025120nanana/2_1opagels16standard33025120nanana_seg.nii.gz" + }, + { + "image": "106011/3_1opagels16bone33025120nanana.nii.gz", + "pseudo_label": "106011/3_1opagels16bone33025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106011/3_1opagels16bone33025120nanana/3_1opagels16bone33025120nanana_seg.nii.gz" + }, + { + "image": "108854/5_1opasesen16b50f38051204530na.nii.gz", + "pseudo_label": "108854/5_1opasesen16b50f38051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108854/5_1opasesen16b50f38051204530na/5_1opasesen16b50f38051204530na_seg.nii.gz" + }, + { + "image": "108854/5_2opasesen16b50f39451204530na.nii.gz", + "pseudo_label": "108854/5_2opasesen16b50f39451204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108854/5_2opasesen16b50f39451204530na/5_2opasesen16b50f39451204530na_seg.nii.gz" + }, + { + "image": "108854/3_2opasesen16b30f39451204530na.nii.gz", + "pseudo_label": "108854/3_2opasesen16b30f39451204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108854/3_2opasesen16b30f39451204530na/3_2opasesen16b30f39451204530na_seg.nii.gz" + }, + { + "image": "108854/6_1opasesen16b50f38021204530na.nii.gz", + "pseudo_label": "108854/6_1opasesen16b50f38021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108854/6_1opasesen16b50f38021204530na/6_1opasesen16b50f38021204530na_seg.nii.gz" + }, + { + "image": "108854/4_0opasevzoomb30f408512012060na.nii.gz", + "pseudo_label": "108854/4_0opasevzoomb30f408512012060na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108854/4_0opasevzoomb30f408512012060na/4_0opasevzoomb30f408512012060na_seg.nii.gz" + }, + { + "image": "108854/6_2opasesen16b50f39421204530na.nii.gz", + "pseudo_label": "108854/6_2opasesen16b50f39421204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108854/6_2opasesen16b50f39421204530na/6_2opasesen16b50f39421204530na_seg.nii.gz" + }, + { + "image": "108854/6_0opasevzoomb50f408512012060na.nii.gz", + "pseudo_label": "108854/6_0opasevzoomb50f408512012060na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108854/6_0opasevzoomb50f408512012060na/6_0opasevzoomb50f408512012060na_seg.nii.gz" + }, + { + "image": "108854/3_1opasesen16b30f38051204530na.nii.gz", + "pseudo_label": "108854/3_1opasesen16b30f38051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108854/3_1opasesen16b30f38051204530na/3_1opasesen16b30f38051204530na_seg.nii.gz" + }, + { + "image": "103321/1_2opagelspluslung32025120800115.nii.gz", + "pseudo_label": "103321/1_2opagelspluslung32025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103321/1_2opagelspluslung32025120800115/1_2opagelspluslung32025120800115_seg.nii.gz" + }, + { + "image": "103321/1_1opatoaqul4fc103203312080nana.nii.gz", + "pseudo_label": "103321/1_1opatoaqul4fc103203312080nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103321/1_1opatoaqul4fc103203312080nana/1_1opatoaqul4fc103203312080nana_seg.nii.gz" + }, + { + "image": "103321/1_1opatoaqul4fc303203312080nana.nii.gz", + "pseudo_label": "103321/1_1opatoaqul4fc303203312080nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103321/1_1opatoaqul4fc303203312080nana/1_1opatoaqul4fc303203312080nana_seg.nii.gz" + }, + { + "image": "103321/1_2opagelsplusstandard32025120800115.nii.gz", + "pseudo_label": "103321/1_2opagelsplusstandard32025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103321/1_2opagelsplusstandard32025120800115/1_2opagelsplusstandard32025120800115_seg.nii.gz" + }, + { + "image": "112725/3_2opasevzoomb50f40221207540na.nii.gz", + "pseudo_label": "112725/3_2opasevzoomb50f40221207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112725/3_2opasevzoomb50f40221207540na/3_2opasevzoomb50f40221207540na_seg.nii.gz" + }, + { + "image": "110271/2_0opagelsqxstandard3202514040015.nii.gz", + "pseudo_label": "110271/2_0opagelsqxstandard3202514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110271/2_0opagelsqxstandard3202514040015/2_0opagelsqxstandard3202514040015_seg.nii.gz" + }, + { + "image": "110271/2_2opagelsqxstandard3402514040015.nii.gz", + "pseudo_label": "110271/2_2opagelsqxstandard3402514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110271/2_2opagelsqxstandard3402514040015/2_2opagelsqxstandard3402514040015_seg.nii.gz" + }, + { + "image": "108900/1_0opagelsplusstandard32025120800115.nii.gz", + "pseudo_label": "108900/1_0opagelsplusstandard32025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108900/1_0opagelsplusstandard32025120800115/1_0opagelsplusstandard32025120800115_seg.nii.gz" + }, + { + "image": "108900/1_0opagelspluslung32025120800115.nii.gz", + "pseudo_label": "108900/1_0opagelspluslung32025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108900/1_0opagelspluslung32025120800115/1_0opagelspluslung32025120800115_seg.nii.gz" + }, + { + "image": "111515/2_2opagelsqxstandard36025120560115.nii.gz", + "pseudo_label": "111515/2_2opagelsqxstandard36025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111515/2_2opagelsqxstandard36025120560115/2_2opagelsqxstandard36025120560115_seg.nii.gz" + }, + { + "image": "111515/3_0opagelsqxbone34025120720115.nii.gz", + "pseudo_label": "111515/3_0opagelsqxbone34025120720115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111515/3_0opagelsqxbone34025120720115/3_0opagelsqxbone34025120720115_seg.nii.gz" + }, + { + "image": "111515/2_1opagelsqxstandard32725120720115.nii.gz", + "pseudo_label": "111515/2_1opagelsqxstandard32725120720115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111515/2_1opagelsqxstandard32725120720115/2_1opagelsqxstandard32725120720115_seg.nii.gz" + }, + { + "image": "111515/3_2opagelsqxbone36025120560115.nii.gz", + "pseudo_label": "111515/3_2opagelsqxbone36025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111515/3_2opagelsqxbone36025120560115/3_2opagelsqxbone36025120560115_seg.nii.gz" + }, + { + "image": "111515/2_0opagelsqxstandard34025120720115.nii.gz", + "pseudo_label": "111515/2_0opagelsqxstandard34025120720115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111515/2_0opagelsqxstandard34025120720115/2_0opagelsqxstandard34025120720115_seg.nii.gz" + }, + { + "image": "104513/7_0opasesen16b30f31021204530na.nii.gz", + "pseudo_label": "104513/7_0opasesen16b30f31021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104513/7_0opasesen16b30f31021204530na/7_0opasesen16b30f31021204530na_seg.nii.gz" + }, + { + "image": "104513/5_1opasesen16b30f31621204530na.nii.gz", + "pseudo_label": "104513/5_1opasesen16b30f31621204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104513/5_1opasesen16b30f31621204530na/5_1opasesen16b30f31621204530na_seg.nii.gz" + }, + { + "image": "104513/4_1opasesen16b30f31651204530na.nii.gz", + "pseudo_label": "104513/4_1opasesen16b30f31651204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104513/4_1opasesen16b30f31651204530na/4_1opasesen16b30f31651204530na_seg.nii.gz" + }, + { + "image": "104513/5_0opasesen16b50f31051204530na.nii.gz", + "pseudo_label": "104513/5_0opasesen16b50f31051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104513/5_0opasesen16b50f31051204530na/5_0opasesen16b50f31051204530na_seg.nii.gz" + }, + { + "image": "104513/6_0opasesen16b50f31021204530na.nii.gz", + "pseudo_label": "104513/6_0opasesen16b50f31021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104513/6_0opasesen16b50f31021204530na/6_0opasesen16b50f31021204530na_seg.nii.gz" + }, + { + "image": "104513/6_1opasesen16b50f31651204530na.nii.gz", + "pseudo_label": "104513/6_1opasesen16b50f31651204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104513/6_1opasesen16b50f31651204530na/6_1opasesen16b50f31651204530na_seg.nii.gz" + }, + { + "image": "104513/5_2opasesen16b50f30251204530na.nii.gz", + "pseudo_label": "104513/5_2opasesen16b50f30251204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104513/5_2opasesen16b50f30251204530na/5_2opasesen16b50f30251204530na_seg.nii.gz" + }, + { + "image": "104513/3_2opasesen16b30f30251204530na.nii.gz", + "pseudo_label": "104513/3_2opasesen16b30f30251204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104513/3_2opasesen16b30f30251204530na/3_2opasesen16b30f30251204530na_seg.nii.gz" + }, + { + "image": "104513/4_0opasesen16b30f31051204530na.nii.gz", + "pseudo_label": "104513/4_0opasesen16b30f31051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104513/4_0opasesen16b30f31051204530na/4_0opasesen16b30f31051204530na_seg.nii.gz" + }, + { + "image": "112280/4_2opasevzoomb50f33151206030na.nii.gz", + "pseudo_label": "112280/4_2opasevzoomb50f33151206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112280/4_2opasevzoomb50f33151206030na/4_2opasevzoomb50f33151206030na_seg.nii.gz" + }, + { + "image": "112280/5_2opasevzoomb30f33151206030na.nii.gz", + "pseudo_label": "112280/5_2opasevzoomb30f33151206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112280/5_2opasevzoomb30f33151206030na/5_2opasevzoomb30f33151206030na_seg.nii.gz" + }, + { + "image": "112280/3_0opasevzoomb50f35521206030na.nii.gz", + "pseudo_label": "112280/3_0opasevzoomb50f35521206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112280/3_0opasevzoomb50f35521206030na/3_0opasevzoomb50f35521206030na_seg.nii.gz" + }, + { + "image": "112280/4_1opasevzoomb50f35051206030na.nii.gz", + "pseudo_label": "112280/4_1opasevzoomb50f35051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112280/4_1opasevzoomb50f35051206030na/4_1opasevzoomb50f35051206030na_seg.nii.gz" + }, + { + "image": "112280/4_0opasevzoomb50f33051206030na.nii.gz", + "pseudo_label": "112280/4_0opasevzoomb50f33051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112280/4_0opasevzoomb50f33051206030na/4_0opasevzoomb50f33051206030na_seg.nii.gz" + }, + { + "image": "112280/5_0opasevzoomb30f33051206030na.nii.gz", + "pseudo_label": "112280/5_0opasevzoomb30f33051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112280/5_0opasevzoomb30f33051206030na/5_0opasevzoomb30f33051206030na_seg.nii.gz" + }, + { + "image": "112280/5_1opasevzoomb30f35051206030na.nii.gz", + "pseudo_label": "112280/5_1opasevzoomb30f35051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112280/5_1opasevzoomb30f35051206030na/5_1opasevzoomb30f35051206030na_seg.nii.gz" + }, + { + "image": "112280/6_2opasevzoomb30f33121206030na.nii.gz", + "pseudo_label": "112280/6_2opasevzoomb30f33121206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112280/6_2opasevzoomb30f33121206030na/6_2opasevzoomb30f33121206030na_seg.nii.gz" + }, + { + "image": "101821/2_2opagels16standard37025120666nana.nii.gz", + "pseudo_label": "101821/2_2opagels16standard37025120666nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101821/2_2opagels16standard37025120666nana/2_2opagels16standard37025120666nana_seg.nii.gz" + }, + { + "image": "104056/6_1opasevzoomb30f33821206030na.nii.gz", + "pseudo_label": "104056/6_1opasevzoomb30f33821206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104056/6_1opasevzoomb30f33821206030na/6_1opasevzoomb30f33821206030na_seg.nii.gz" + }, + { + "image": "104056/4_2opasevzoomb50f30051206030na.nii.gz", + "pseudo_label": "104056/4_2opasevzoomb50f30051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104056/4_2opasevzoomb50f30051206030na/4_2opasevzoomb50f30051206030na_seg.nii.gz" + }, + { + "image": "104056/5_0opasevzoomb30f29051206030na.nii.gz", + "pseudo_label": "104056/5_0opasevzoomb30f29051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104056/5_0opasevzoomb30f29051206030na/5_0opasevzoomb30f29051206030na_seg.nii.gz" + }, + { + "image": "104056/5_2opasevzoomb30f30051206030na.nii.gz", + "pseudo_label": "104056/5_2opasevzoomb30f30051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104056/5_2opasevzoomb30f30051206030na/5_2opasevzoomb30f30051206030na_seg.nii.gz" + }, + { + "image": "104056/6_2opasevzoomb30f30021206030na.nii.gz", + "pseudo_label": "104056/6_2opasevzoomb30f30021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104056/6_2opasevzoomb30f30021206030na/6_2opasevzoomb30f30021206030na_seg.nii.gz" + }, + { + "image": "104056/4_0opasevzoomb50f29051206030na.nii.gz", + "pseudo_label": "104056/4_0opasevzoomb50f29051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104056/4_0opasevzoomb50f29051206030na/4_0opasevzoomb50f29051206030na_seg.nii.gz" + }, + { + "image": "104056/4_1opasevzoomb50f33851206030na.nii.gz", + "pseudo_label": "104056/4_1opasevzoomb50f33851206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104056/4_1opasevzoomb50f33851206030na/4_1opasevzoomb50f33851206030na_seg.nii.gz" + }, + { + "image": "104056/3_0opasevzoomb50f29021206030na.nii.gz", + "pseudo_label": "104056/3_0opasevzoomb50f29021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104056/3_0opasevzoomb50f29021206030na/3_0opasevzoomb50f29021206030na_seg.nii.gz" + }, + { + "image": "104056/5_1opasevzoomb30f33851206030na.nii.gz", + "pseudo_label": "104056/5_1opasevzoomb30f33851206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104056/5_1opasevzoomb30f33851206030na/5_1opasevzoomb30f33851206030na_seg.nii.gz" + }, + { + "image": "104056/6_0opasevzoomb30f29021206030na.nii.gz", + "pseudo_label": "104056/6_0opasevzoomb30f29021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104056/6_0opasevzoomb30f29021206030na/6_0opasevzoomb30f29021206030na_seg.nii.gz" + }, + { + "image": "112945/2_2opagelsplusstandard34025140828nana.nii.gz", + "pseudo_label": "112945/2_2opagelsplusstandard34025140828nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112945/2_2opagelsplusstandard34025140828nana/2_2opagelsplusstandard34025140828nana_seg.nii.gz" + }, + { + "image": "104595/6_0opasesen16b50f32021204530na.nii.gz", + "pseudo_label": "104595/6_0opasesen16b50f32021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104595/6_0opasesen16b50f32021204530na/6_0opasesen16b50f32021204530na_seg.nii.gz" + }, + { + "image": "104595/5_0opasesen16b50f32051204530na.nii.gz", + "pseudo_label": "104595/5_0opasesen16b50f32051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104595/5_0opasesen16b50f32051204530na/5_0opasesen16b50f32051204530na_seg.nii.gz" + }, + { + "image": "104595/4_0opasesen16b30f32021204530na.nii.gz", + "pseudo_label": "104595/4_0opasesen16b30f32021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104595/4_0opasesen16b30f32021204530na/4_0opasesen16b30f32021204530na_seg.nii.gz" + }, + { + "image": "112448/3_1opatoaqul4fc513027212080nana.nii.gz", + "pseudo_label": "112448/3_1opatoaqul4fc513027212080nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112448/3_1opatoaqul4fc513027212080nana/3_1opatoaqul4fc513027212080nana_seg.nii.gz" + }, + { + "image": "112448/3_2opatoaqul4fc513078212060nana.nii.gz", + "pseudo_label": "112448/3_2opatoaqul4fc513078212060nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112448/3_2opatoaqul4fc513078212060nana/3_2opatoaqul4fc513078212060nana_seg.nii.gz" + }, + { + "image": "112448/5_0opatoaqul4fc513422212080nana.nii.gz", + "pseudo_label": "112448/5_0opatoaqul4fc513422212080nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112448/5_0opatoaqul4fc513422212080nana/5_0opatoaqul4fc513422212080nana_seg.nii.gz" + }, + { + "image": "113340/693_2opaphmx8000c3173212039018.nii.gz", + "pseudo_label": "113340/693_2opaphmx8000c3173212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113340/693_2opaphmx8000c3173212039018/693_2opaphmx8000c3173212039018_seg.nii.gz" + }, + { + "image": "113340/0_0opaphmx8000c32932120600112.nii.gz", + "pseudo_label": "113340/0_0opaphmx8000c32932120600112.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113340/0_0opaphmx8000c32932120600112/0_0opaphmx8000c32932120600112_seg.nii.gz" + }, + { + "image": "108507/6_2opasesen16b50f36221204530na.nii.gz", + "pseudo_label": "108507/6_2opasesen16b50f36221204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108507/6_2opasesen16b50f36221204530na/6_2opasesen16b50f36221204530na_seg.nii.gz" + }, + { + "image": "108507/3_1opasesen16b30f34851204530na.nii.gz", + "pseudo_label": "108507/3_1opasesen16b30f34851204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108507/3_1opasesen16b30f34851204530na/3_1opasesen16b30f34851204530na_seg.nii.gz" + }, + { + "image": "108507/6_1opasesen16b50f34821204530na.nii.gz", + "pseudo_label": "108507/6_1opasesen16b50f34821204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108507/6_1opasesen16b50f34821204530na/6_1opasesen16b50f34821204530na_seg.nii.gz" + }, + { + "image": "108507/3_2opasesen16b30f36251204530na.nii.gz", + "pseudo_label": "108507/3_2opasesen16b30f36251204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108507/3_2opasesen16b30f36251204530na/3_2opasesen16b30f36251204530na_seg.nii.gz" + }, + { + "image": "108507/1_0opasesen16b50f38021206040na.nii.gz", + "pseudo_label": "108507/1_0opasesen16b50f38021206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108507/1_0opasesen16b50f38021206040na/1_0opasesen16b50f38021206040na_seg.nii.gz" + }, + { + "image": "108507/1_0opasesen16b30f38051206040na.nii.gz", + "pseudo_label": "108507/1_0opasesen16b30f38051206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108507/1_0opasesen16b30f38051206040na/1_0opasesen16b30f38051206040na_seg.nii.gz" + }, + { + "image": "108507/1_0opasesen16b50f38051206040na.nii.gz", + "pseudo_label": "108507/1_0opasesen16b50f38051206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108507/1_0opasesen16b50f38051206040na/1_0opasesen16b50f38051206040na_seg.nii.gz" + }, + { + "image": "109155/2_0opagelsqxstandard36025120640115.nii.gz", + "pseudo_label": "109155/2_0opagelsqxstandard36025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109155/2_0opagelsqxstandard36025120640115/2_0opagelsqxstandard36025120640115_seg.nii.gz" + }, + { + "image": "102416/2_0opasevzoomb50f27021206030na.nii.gz", + "pseudo_label": "102416/2_0opasevzoomb50f27021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102416/2_0opasevzoomb50f27021206030na/2_0opasevzoomb50f27021206030na_seg.nii.gz" + }, + { + "image": "108830/3_2opagels16standard39025120600114.nii.gz", + "pseudo_label": "108830/3_2opagels16standard39025120600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108830/3_2opagels16standard39025120600114/3_2opagels16standard39025120600114_seg.nii.gz" + }, + { + "image": "108830/3_0opagels16standard39025140600114.nii.gz", + "pseudo_label": "108830/3_0opagels16standard39025140600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108830/3_0opagels16standard39025140600114/3_0opagels16standard39025140600114_seg.nii.gz" + }, + { + "image": "100012/3_1opasevzoomb50f28021207040na.nii.gz", + "pseudo_label": "100012/3_1opasevzoomb50f28021207040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100012/3_1opasevzoomb50f28021207040na/3_1opasevzoomb50f28021207040na_seg.nii.gz" + }, + { + "image": "100971/2_1opagels16bone4262512000na.nii.gz", + "pseudo_label": "100971/2_1opagels16bone4262512000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100971/2_1opagels16bone4262512000na/2_1opagels16bone4262512000na_seg.nii.gz" + }, + { + "image": "100971/2_0opagelsqxbone40025120560115.nii.gz", + "pseudo_label": "100971/2_0opagelsqxbone40025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100971/2_0opagelsqxbone40025120560115/2_0opagelsqxbone40025120560115_seg.nii.gz" + }, + { + "image": "100971/3_2opagelspr16standard3902512048014.nii.gz", + "pseudo_label": "100971/3_2opagelspr16standard3902512048014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100971/3_2opagelspr16standard3902512048014/3_2opagelspr16standard3902512048014_seg.nii.gz" + }, + { + "image": "100971/3_0opagelsqxstandard40025120560115.nii.gz", + "pseudo_label": "100971/3_0opagelsqxstandard40025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100971/3_0opagelsqxstandard40025120560115/3_0opagelsqxstandard40025120560115_seg.nii.gz" + }, + { + "image": "100971/2_2opagelspr16bone3902512048014.nii.gz", + "pseudo_label": "100971/2_2opagelspr16bone3902512048014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100971/2_2opagelspr16bone3902512048014/2_2opagelspr16bone3902512048014_seg.nii.gz" + }, + { + "image": "100971/3_1opagels16standard4262512000na.nii.gz", + "pseudo_label": "100971/3_1opagels16standard4262512000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100971/3_1opagels16standard4262512000na/3_1opagels16standard4262512000na_seg.nii.gz" + }, + { + "image": "107722/4_0opatoaqul4fc513094212040nana.nii.gz", + "pseudo_label": "107722/4_0opatoaqul4fc513094212040nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107722/4_0opatoaqul4fc513094212040nana/4_0opatoaqul4fc513094212040nana_seg.nii.gz" + }, + { + "image": "107722/3_2opatoaqul4fc513281212040nana.nii.gz", + "pseudo_label": "107722/3_2opatoaqul4fc513281212040nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107722/3_2opatoaqul4fc513281212040nana/3_2opatoaqul4fc513281212040nana_seg.nii.gz" + }, + { + "image": "108570/2_2opagelsqxstandard3802514048015.nii.gz", + "pseudo_label": "108570/2_2opagelsqxstandard3802514048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108570/2_2opagelsqxstandard3802514048015/2_2opagelsqxstandard3802514048015_seg.nii.gz" + }, + { + "image": "108570/2_1opagelsqxstandard3802514048015.nii.gz", + "pseudo_label": "108570/2_1opagelsqxstandard3802514048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108570/2_1opagelsqxstandard3802514048015/2_1opagelsqxstandard3802514048015_seg.nii.gz" + }, + { + "image": "108570/2_0opagelsqxstandard3792514048015.nii.gz", + "pseudo_label": "108570/2_0opagelsqxstandard3792514048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108570/2_0opagelsqxstandard3792514048015/2_0opagelsqxstandard3792514048015_seg.nii.gz" + }, + { + "image": "104073/2_1opagelsqxstandard32525120640115.nii.gz", + "pseudo_label": "104073/2_1opagelsqxstandard32525120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104073/2_1opagelsqxstandard32525120640115/2_1opagelsqxstandard32525120640115_seg.nii.gz" + }, + { + "image": "104073/3_1opagelsqxbone32525120640115.nii.gz", + "pseudo_label": "104073/3_1opagelsqxbone32525120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104073/3_1opagelsqxbone32525120640115/3_1opagelsqxbone32525120640115_seg.nii.gz" + }, + { + "image": "104073/2_0opagelsqxstandard32025120560115.nii.gz", + "pseudo_label": "104073/2_0opagelsqxstandard32025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104073/2_0opagelsqxstandard32025120560115/2_0opagelsqxstandard32025120560115_seg.nii.gz" + }, + { + "image": "104073/2_2opagelsqxstandard30225120560115.nii.gz", + "pseudo_label": "104073/2_2opagelsqxstandard30225120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104073/2_2opagelsqxstandard30225120560115/2_2opagelsqxstandard30225120560115_seg.nii.gz" + }, + { + "image": "104073/3_2opagelsqxbone30225120560115.nii.gz", + "pseudo_label": "104073/3_2opagelsqxbone30225120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104073/3_2opagelsqxbone30225120560115/3_2opagelsqxbone30225120560115_seg.nii.gz" + }, + { + "image": "104073/3_0opagelsqxbone32025120560115.nii.gz", + "pseudo_label": "104073/3_0opagelsqxbone32025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104073/3_0opagelsqxbone32025120560115/3_0opagelsqxbone32025120560115_seg.nii.gz" + }, + { + "image": "103259/5_2opasesen16b50f34851204530na.nii.gz", + "pseudo_label": "103259/5_2opasesen16b50f34851204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103259/5_2opasesen16b50f34851204530na/5_2opasesen16b50f34851204530na_seg.nii.gz" + }, + { + "image": "103259/3_2opasesen16b30f34851204530na.nii.gz", + "pseudo_label": "103259/3_2opasesen16b30f34851204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103259/3_2opasesen16b30f34851204530na/3_2opasesen16b30f34851204530na_seg.nii.gz" + }, + { + "image": "103259/3_1opasesen16b30f38251204530na.nii.gz", + "pseudo_label": "103259/3_1opasesen16b30f38251204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103259/3_1opasesen16b30f38251204530na/3_1opasesen16b30f38251204530na_seg.nii.gz" + }, + { + "image": "103259/6_1opasesen16b50f38221204530na.nii.gz", + "pseudo_label": "103259/6_1opasesen16b50f38221204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103259/6_1opasesen16b50f38221204530na/6_1opasesen16b50f38221204530na_seg.nii.gz" + }, + { + "image": "103259/6_2opasesen16b50f34821204530na.nii.gz", + "pseudo_label": "103259/6_2opasesen16b50f34821204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103259/6_2opasesen16b50f34821204530na/6_2opasesen16b50f34821204530na_seg.nii.gz" + }, + { + "image": "103259/4_0opasesen16b50f38051206040na.nii.gz", + "pseudo_label": "103259/4_0opasesen16b50f38051206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103259/4_0opasesen16b50f38051206040na/4_0opasesen16b50f38051206040na_seg.nii.gz" + }, + { + "image": "103259/6_0opasesen16b30f38021206040na.nii.gz", + "pseudo_label": "103259/6_0opasesen16b30f38021206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103259/6_0opasesen16b30f38021206040na/6_0opasesen16b30f38021206040na_seg.nii.gz" + }, + { + "image": "103259/5_1opasesen16b50f38251204530na.nii.gz", + "pseudo_label": "103259/5_1opasesen16b50f38251204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103259/5_1opasesen16b50f38251204530na/5_1opasesen16b50f38251204530na_seg.nii.gz" + }, + { + "image": "103259/3_0opasesen16b30f38051206040na.nii.gz", + "pseudo_label": "103259/3_0opasesen16b30f38051206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103259/3_0opasesen16b30f38051206040na/3_0opasesen16b30f38051206040na_seg.nii.gz" + }, + { + "image": "107679/3_2opasesen16b30f34051204530na.nii.gz", + "pseudo_label": "107679/3_2opasesen16b30f34051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107679/3_2opasesen16b30f34051204530na/3_2opasesen16b30f34051204530na_seg.nii.gz" + }, + { + "image": "107679/3_1opasesen16b30f37051204530na.nii.gz", + "pseudo_label": "107679/3_1opasesen16b30f37051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107679/3_1opasesen16b30f37051204530na/3_1opasesen16b30f37051204530na_seg.nii.gz" + }, + { + "image": "107679/4_2opasesen16b30f34021204530na.nii.gz", + "pseudo_label": "107679/4_2opasesen16b30f34021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107679/4_2opasesen16b30f34021204530na/4_2opasesen16b30f34021204530na_seg.nii.gz" + }, + { + "image": "107679/6_0opasesen16b30f38051206040na.nii.gz", + "pseudo_label": "107679/6_0opasesen16b30f38051206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107679/6_0opasesen16b30f38051206040na/6_0opasesen16b30f38051206040na_seg.nii.gz" + }, + { + "image": "107679/5_2opasesen16b50f34051204530na.nii.gz", + "pseudo_label": "107679/5_2opasesen16b50f34051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107679/5_2opasesen16b50f34051204530na/5_2opasesen16b50f34051204530na_seg.nii.gz" + }, + { + "image": "107679/5_1opasesen16b50f37051204530na.nii.gz", + "pseudo_label": "107679/5_1opasesen16b50f37051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107679/5_1opasesen16b50f37051204530na/5_1opasesen16b50f37051204530na_seg.nii.gz" + }, + { + "image": "107679/3_0opasesen16b30f38051206040na.nii.gz", + "pseudo_label": "107679/3_0opasesen16b30f38051206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107679/3_0opasesen16b30f38051206040na/3_0opasesen16b30f38051206040na_seg.nii.gz" + }, + { + "image": "113183/3_2opagehsqxbone37025120560115.nii.gz", + "pseudo_label": "113183/3_2opagehsqxbone37025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113183/3_2opagehsqxbone37025120560115/3_2opagehsqxbone37025120560115_seg.nii.gz" + }, + { + "image": "113183/2_2opagehsqxstandard37025120560115.nii.gz", + "pseudo_label": "113183/2_2opagehsqxstandard37025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113183/2_2opagehsqxstandard37025120560115/2_2opagehsqxstandard37025120560115_seg.nii.gz" + }, + { + "image": "113183/2_1opagehsqxstandard37025120560115.nii.gz", + "pseudo_label": "113183/2_1opagehsqxstandard37025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113183/2_1opagehsqxstandard37025120560115/2_1opagehsqxstandard37025120560115_seg.nii.gz" + }, + { + "image": "106389/2_2opagels16standard34425120695nana.nii.gz", + "pseudo_label": "106389/2_2opagels16standard34425120695nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106389/2_2opagels16standard34425120695nana/2_2opagels16standard34425120695nana_seg.nii.gz" + }, + { + "image": "106389/2_1opagelsqxstandard34425120700115.nii.gz", + "pseudo_label": "106389/2_1opagelsqxstandard34425120700115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106389/2_1opagelsqxstandard34425120700115/2_1opagelsqxstandard34425120700115_seg.nii.gz" + }, + { + "image": "103149/2_0opagelsqxstandard3422514048015.nii.gz", + "pseudo_label": "103149/2_0opagelsqxstandard3422514048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103149/2_0opagelsqxstandard3422514048015/2_0opagelsqxstandard3422514048015_seg.nii.gz" + }, + { + "image": "103149/2_1opagelsqxstandard3402514048015.nii.gz", + "pseudo_label": "103149/2_1opagelsqxstandard3402514048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103149/2_1opagelsqxstandard3402514048015/2_1opagelsqxstandard3402514048015_seg.nii.gz" + }, + { + "image": "103149/2_2opagelsqxstandard3402514048015.nii.gz", + "pseudo_label": "103149/2_2opagelsqxstandard3402514048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103149/2_2opagelsqxstandard3402514048015/2_2opagelsqxstandard3402514048015_seg.nii.gz" + }, + { + "image": "105046/2_1opasevzoomb50f34421206030na.nii.gz", + "pseudo_label": "105046/2_1opasevzoomb50f34421206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105046/2_1opasevzoomb50f34421206030na/2_1opasevzoomb50f34421206030na_seg.nii.gz" + }, + { + "image": "105046/2_0opasevzoomb50f35021208040na.nii.gz", + "pseudo_label": "105046/2_0opasevzoomb50f35021208040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105046/2_0opasevzoomb50f35021208040na/2_0opasevzoomb50f35021208040na_seg.nii.gz" + }, + { + "image": "108673/1_1opagelspluslung34025120800115.nii.gz", + "pseudo_label": "108673/1_1opagelspluslung34025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108673/1_1opagelspluslung34025120800115/1_1opagelspluslung34025120800115_seg.nii.gz" + }, + { + "image": "108673/1_0opagelsplusstandard34025120800115.nii.gz", + "pseudo_label": "108673/1_0opagelsplusstandard34025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108673/1_0opagelsplusstandard34025120800115/1_0opagelsplusstandard34025120800115_seg.nii.gz" + }, + { + "image": "108673/1_1opagelsplusstandard34025120800115.nii.gz", + "pseudo_label": "108673/1_1opagelsplusstandard34025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108673/1_1opagelsplusstandard34025120800115/1_1opagelsplusstandard34025120800115_seg.nii.gz" + }, + { + "image": "108673/1_2opagelsplusstandard36025120800115.nii.gz", + "pseudo_label": "108673/1_2opagelsplusstandard36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108673/1_2opagelsplusstandard36025120800115/1_2opagelsplusstandard36025120800115_seg.nii.gz" + }, + { + "image": "108673/1_0opagelspluslung34025120800115.nii.gz", + "pseudo_label": "108673/1_0opagelspluslung34025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108673/1_0opagelspluslung34025120800115/1_0opagelspluslung34025120800115_seg.nii.gz" + }, + { + "image": "111575/2_1opasevzoomb30f33621207540na.nii.gz", + "pseudo_label": "111575/2_1opasevzoomb30f33621207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111575/2_1opasevzoomb30f33621207540na/2_1opasevzoomb30f33621207540na_seg.nii.gz" + }, + { + "image": "111575/2_2opasevzoomb30f35021207540na.nii.gz", + "pseudo_label": "111575/2_2opasevzoomb30f35021207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111575/2_2opasevzoomb30f35021207540na/2_2opasevzoomb30f35021207540na_seg.nii.gz" + }, + { + "image": "111575/3_0opasevzoomb50f350212010560na.nii.gz", + "pseudo_label": "111575/3_0opasevzoomb50f350212010560na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111575/3_0opasevzoomb50f350212010560na/3_0opasevzoomb50f350212010560na_seg.nii.gz" + }, + { + "image": "105767/2_0opasevzoomb50f35221206030na.nii.gz", + "pseudo_label": "105767/2_0opasevzoomb50f35221206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105767/2_0opasevzoomb50f35221206030na/2_0opasevzoomb50f35221206030na_seg.nii.gz" + }, + { + "image": "101680/6_0opasesen16b30f40021204530na.nii.gz", + "pseudo_label": "101680/6_0opasesen16b30f40021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101680/6_0opasesen16b30f40021204530na/6_0opasesen16b30f40021204530na_seg.nii.gz" + }, + { + "image": "101680/5_1opasesen16b50f35451204530na.nii.gz", + "pseudo_label": "101680/5_1opasesen16b50f35451204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101680/5_1opasesen16b50f35451204530na/5_1opasesen16b50f35451204530na_seg.nii.gz" + }, + { + "image": "101680/4_0opasesen16b50f40051204530na.nii.gz", + "pseudo_label": "101680/4_0opasesen16b50f40051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101680/4_0opasesen16b50f40051204530na/4_0opasesen16b50f40051204530na_seg.nii.gz" + }, + { + "image": "101680/3_2opasesen16b30f37051204530na.nii.gz", + "pseudo_label": "101680/3_2opasesen16b30f37051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101680/3_2opasesen16b30f37051204530na/3_2opasesen16b30f37051204530na_seg.nii.gz" + }, + { + "image": "101680/3_1opasesen16b30f35451204530na.nii.gz", + "pseudo_label": "101680/3_1opasesen16b30f35451204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101680/3_1opasesen16b30f35451204530na/3_1opasesen16b30f35451204530na_seg.nii.gz" + }, + { + "image": "101680/5_2opasesen16b50f37051204530na.nii.gz", + "pseudo_label": "101680/5_2opasesen16b50f37051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101680/5_2opasesen16b50f37051204530na/5_2opasesen16b50f37051204530na_seg.nii.gz" + }, + { + "image": "101680/6_2opasesen16b50f37021204530na.nii.gz", + "pseudo_label": "101680/6_2opasesen16b50f37021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101680/6_2opasesen16b50f37021204530na/6_2opasesen16b50f37021204530na_seg.nii.gz" + }, + { + "image": "104563/1_1opagelspluslung36025120800115.nii.gz", + "pseudo_label": "104563/1_1opagelspluslung36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104563/1_1opagelspluslung36025120800115/1_1opagelspluslung36025120800115_seg.nii.gz" + }, + { + "image": "104563/1_2opagelsplusstandard36025120800115.nii.gz", + "pseudo_label": "104563/1_2opagelsplusstandard36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104563/1_2opagelsplusstandard36025120800115/1_2opagelsplusstandard36025120800115_seg.nii.gz" + }, + { + "image": "104563/1_2opagelspluslung36025120800115.nii.gz", + "pseudo_label": "104563/1_2opagelspluslung36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104563/1_2opagelspluslung36025120800115/1_2opagelspluslung36025120800115_seg.nii.gz" + }, + { + "image": "105315/2_0opagels16bone3282512040014.nii.gz", + "pseudo_label": "105315/2_0opagels16bone3282512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105315/2_0opagels16bone3282512040014/2_0opagels16bone3282512040014_seg.nii.gz" + }, + { + "image": "105315/2_1opagelspr16bone3002512040014.nii.gz", + "pseudo_label": "105315/2_1opagelspr16bone3002512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105315/2_1opagelspr16bone3002512040014/2_1opagelspr16bone3002512040014_seg.nii.gz" + }, + { + "image": "105315/3_0opagels16standard3282512040014.nii.gz", + "pseudo_label": "105315/3_0opagels16standard3282512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105315/3_0opagels16standard3282512040014/3_0opagels16standard3282512040014_seg.nii.gz" + }, + { + "image": "105315/3_1opagelspr16standard3002512040014.nii.gz", + "pseudo_label": "105315/3_1opagelspr16standard3002512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105315/3_1opagelspr16standard3002512040014/3_1opagelspr16standard3002512040014_seg.nii.gz" + }, + { + "image": "102058/1_0opagelspluslung3782512010250115.nii.gz", + "pseudo_label": "102058/1_0opagelspluslung3782512010250115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102058/1_0opagelspluslung3782512010250115/1_0opagelspluslung3782512010250115_seg.nii.gz" + }, + { + "image": "102058/1_1opagelspluslung37825120800115.nii.gz", + "pseudo_label": "102058/1_1opagelspluslung37825120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102058/1_1opagelspluslung37825120800115/1_1opagelspluslung37825120800115_seg.nii.gz" + }, + { + "image": "102058/1_2opatoaqul4fc013809212080nana.nii.gz", + "pseudo_label": "102058/1_2opatoaqul4fc013809212080nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102058/1_2opatoaqul4fc013809212080nana/1_2opatoaqul4fc013809212080nana_seg.nii.gz" + }, + { + "image": "102058/1_1opagelsplusstandard37825120800115.nii.gz", + "pseudo_label": "102058/1_1opagelsplusstandard37825120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102058/1_1opagelsplusstandard37825120800115/1_1opagelsplusstandard37825120800115_seg.nii.gz" + }, + { + "image": "101224/1120_1opaphmx8000d34532120390na.nii.gz", + "pseudo_label": "101224/1120_1opaphmx8000d34532120390na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101224/1120_1opaphmx8000d34532120390na/1120_1opaphmx8000d34532120390na_seg.nii.gz" + }, + { + "image": "101224/169_0opaphmx8000d3503212039018.nii.gz", + "pseudo_label": "101224/169_0opaphmx8000d3503212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101224/169_0opaphmx8000d3503212039018/169_0opaphmx8000d3503212039018_seg.nii.gz" + }, + { + "image": "102020/3_1opagehsqxbone37025120560115.nii.gz", + "pseudo_label": "102020/3_1opagehsqxbone37025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102020/3_1opagehsqxbone37025120560115/3_1opagehsqxbone37025120560115_seg.nii.gz" + }, + { + "image": "102020/2_2opagehsqxstandard37025120560115.nii.gz", + "pseudo_label": "102020/2_2opagehsqxstandard37025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102020/2_2opagehsqxstandard37025120560115/2_2opagehsqxstandard37025120560115_seg.nii.gz" + }, + { + "image": "102020/2_1opagehsqxstandard37025120560115.nii.gz", + "pseudo_label": "102020/2_1opagehsqxstandard37025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102020/2_1opagehsqxstandard37025120560115/2_1opagehsqxstandard37025120560115_seg.nii.gz" + }, + { + "image": "102020/2_0opagehsqxstandard37025120560115.nii.gz", + "pseudo_label": "102020/2_0opagehsqxstandard37025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102020/2_0opagehsqxstandard37025120560115/2_0opagehsqxstandard37025120560115_seg.nii.gz" + }, + { + "image": "113132/2_0opasevzoomb50f29021206030na.nii.gz", + "pseudo_label": "113132/2_0opasevzoomb50f29021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113132/2_0opasevzoomb50f29021206030na/2_0opasevzoomb50f29021206030na_seg.nii.gz" + }, + { + "image": "100252/2_0opagehsqxstandard26025120560115.nii.gz", + "pseudo_label": "100252/2_0opagehsqxstandard26025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100252/2_0opagehsqxstandard26025120560115/2_0opagehsqxstandard26025120560115_seg.nii.gz" + }, + { + "image": "100252/2_2opagehsqxstandard26025120560115.nii.gz", + "pseudo_label": "100252/2_2opagehsqxstandard26025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100252/2_2opagehsqxstandard26025120560115/2_2opagehsqxstandard26025120560115_seg.nii.gz" + }, + { + "image": "102764/2_0opasevzoomb50f32021206030na.nii.gz", + "pseudo_label": "102764/2_0opasevzoomb50f32021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102764/2_0opasevzoomb50f32021206030na/2_0opasevzoomb50f32021206030na_seg.nii.gz" + }, + { + "image": "102764/3_0opasevzoomb30f32021206030na.nii.gz", + "pseudo_label": "102764/3_0opasevzoomb30f32021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102764/3_0opasevzoomb30f32021206030na/3_0opasevzoomb30f32021206030na_seg.nii.gz" + }, + { + "image": "112612/3_2opagehsqxbone34025120560115.nii.gz", + "pseudo_label": "112612/3_2opagehsqxbone34025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112612/3_2opagehsqxbone34025120560115/3_2opagehsqxbone34025120560115_seg.nii.gz" + }, + { + "image": "112612/2_1opagehsqxstandard33025120560115.nii.gz", + "pseudo_label": "112612/2_1opagehsqxstandard33025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112612/2_1opagehsqxstandard33025120560115/2_1opagehsqxstandard33025120560115_seg.nii.gz" + }, + { + "image": "112612/3_0opagehsqxbone33025120560115.nii.gz", + "pseudo_label": "112612/3_0opagehsqxbone33025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112612/3_0opagehsqxbone33025120560115/3_0opagehsqxbone33025120560115_seg.nii.gz" + }, + { + "image": "112612/2_2opagehsqxstandard34025120560115.nii.gz", + "pseudo_label": "112612/2_2opagehsqxstandard34025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112612/2_2opagehsqxstandard34025120560115/2_2opagehsqxstandard34025120560115_seg.nii.gz" + }, + { + "image": "113139/367_0opaphmx8000d3293212039018.nii.gz", + "pseudo_label": "113139/367_0opaphmx8000d3293212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113139/367_0opaphmx8000d3293212039018/367_0opaphmx8000d3293212039018_seg.nii.gz" + }, + { + "image": "111161/2_0opagelsplusstandard37025140400na.nii.gz", + "pseudo_label": "111161/2_0opagelsplusstandard37025140400na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111161/2_0opagelsplusstandard37025140400na/2_0opagelsplusstandard37025140400na_seg.nii.gz" + }, + { + "image": "111161/2_1opagelsplusstandard3492514040015.nii.gz", + "pseudo_label": "111161/2_1opagelsplusstandard3492514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111161/2_1opagelsplusstandard3492514040015/2_1opagelsplusstandard3492514040015_seg.nii.gz" + }, + { + "image": "111161/2_2opagelsplusstandard38025140400na.nii.gz", + "pseudo_label": "111161/2_2opagelsplusstandard38025140400na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111161/2_2opagelsplusstandard38025140400na/2_2opagelsplusstandard38025140400na_seg.nii.gz" + }, + { + "image": "106554/5_1opasesen16b30f38021204530na.nii.gz", + "pseudo_label": "106554/5_1opasesen16b30f38021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106554/5_1opasesen16b30f38021204530na/5_1opasesen16b30f38021204530na_seg.nii.gz" + }, + { + "image": "106554/2_2opasevzoomb50f41621206030na.nii.gz", + "pseudo_label": "106554/2_2opasevzoomb50f41621206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106554/2_2opasevzoomb50f41621206030na/2_2opasevzoomb50f41621206030na_seg.nii.gz" + }, + { + "image": "106554/4_1opasesen16b50f38021204530na.nii.gz", + "pseudo_label": "106554/4_1opasesen16b50f38021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106554/4_1opasesen16b50f38021204530na/4_1opasesen16b50f38021204530na_seg.nii.gz" + }, + { + "image": "102208/3_0opatoaqul4fc512578212080nana.nii.gz", + "pseudo_label": "102208/3_0opatoaqul4fc512578212080nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102208/3_0opatoaqul4fc512578212080nana/3_0opatoaqul4fc512578212080nana_seg.nii.gz" + }, + { + "image": "102208/3_2opatoaqul4fc512922212040nana.nii.gz", + "pseudo_label": "102208/3_2opatoaqul4fc512922212040nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102208/3_2opatoaqul4fc512922212040nana/3_2opatoaqul4fc512922212040nana_seg.nii.gz" + }, + { + "image": "103055/2_0opagelsqxstandard2932514040015.nii.gz", + "pseudo_label": "103055/2_0opagelsqxstandard2932514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103055/2_0opagelsqxstandard2932514040015/2_0opagelsqxstandard2932514040015_seg.nii.gz" + }, + { + "image": "100136/2_1opagels16bone31025120600114.nii.gz", + "pseudo_label": "100136/2_1opagels16bone31025120600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100136/2_1opagels16bone31025120600114/2_1opagels16bone31025120600114_seg.nii.gz" + }, + { + "image": "100136/3_1opagels16standard31025120600114.nii.gz", + "pseudo_label": "100136/3_1opagels16standard31025120600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100136/3_1opagels16standard31025120600114/3_1opagels16standard31025120600114_seg.nii.gz" + }, + { + "image": "102879/2_0opagelsqxstandard3342514040015.nii.gz", + "pseudo_label": "102879/2_0opagelsqxstandard3342514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102879/2_0opagelsqxstandard3342514040015/2_0opagelsqxstandard3342514040015_seg.nii.gz" + }, + { + "image": "102879/2_2opagels16standard3502514040014.nii.gz", + "pseudo_label": "102879/2_2opagels16standard3502514040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102879/2_2opagels16standard3502514040014/2_2opagels16standard3502514040014_seg.nii.gz" + }, + { + "image": "102879/2_1opagelsqxstandard3502514040015.nii.gz", + "pseudo_label": "102879/2_1opagelsqxstandard3502514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102879/2_1opagelsqxstandard3502514040015/2_1opagelsqxstandard3502514040015_seg.nii.gz" + }, + { + "image": "108362/2_0opagelsqxstandard3992514040015.nii.gz", + "pseudo_label": "108362/2_0opagelsqxstandard3992514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108362/2_0opagelsqxstandard3992514040015/2_0opagelsqxstandard3992514040015_seg.nii.gz" + }, + { + "image": "108362/2_2opagels16standard4282514040014.nii.gz", + "pseudo_label": "108362/2_2opagels16standard4282514040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108362/2_2opagels16standard4282514040014/2_2opagels16standard4282514040014_seg.nii.gz" + }, + { + "image": "108362/2_1opagels16standard3752514040014.nii.gz", + "pseudo_label": "108362/2_1opagels16standard3752514040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108362/2_1opagels16standard3752514040014/2_1opagels16standard3752514040014_seg.nii.gz" + }, + { + "image": "101319/2_0opagelsplusstandard36725140640115.nii.gz", + "pseudo_label": "101319/2_0opagelsplusstandard36725140640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101319/2_0opagelsplusstandard36725140640115/2_0opagelsplusstandard36725140640115_seg.nii.gz" + }, + { + "image": "101319/2_2opagelsplusstandard3902514040015.nii.gz", + "pseudo_label": "101319/2_2opagelsplusstandard3902514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101319/2_2opagelsplusstandard3902514040015/2_2opagelsplusstandard3902514040015_seg.nii.gz" + }, + { + "image": "101319/2_1opagelsplusstandard3542514040015.nii.gz", + "pseudo_label": "101319/2_1opagelsplusstandard3542514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101319/2_1opagelsplusstandard3542514040015/2_1opagelsplusstandard3542514040015_seg.nii.gz" + }, + { + "image": "101488/2_0opagelsqxstandard3302512048015.nii.gz", + "pseudo_label": "101488/2_0opagelsqxstandard3302512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101488/2_0opagelsqxstandard3302512048015/2_0opagelsqxstandard3302512048015_seg.nii.gz" + }, + { + "image": "106723/2_1opagelsplusstandard3602514040015.nii.gz", + "pseudo_label": "106723/2_1opagelsplusstandard3602514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106723/2_1opagelsplusstandard3602514040015/2_1opagelsplusstandard3602514040015_seg.nii.gz" + }, + { + "image": "106723/2_0opagelsplusstandard36025140800115.nii.gz", + "pseudo_label": "106723/2_0opagelsplusstandard36025140800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106723/2_0opagelsplusstandard36025140800115/2_0opagelsplusstandard36025140800115_seg.nii.gz" + }, + { + "image": "106723/2_2opagelsplusstandard3502514040015.nii.gz", + "pseudo_label": "106723/2_2opagelsplusstandard3502514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106723/2_2opagelsplusstandard3502514040015/2_2opagelsplusstandard3502514040015_seg.nii.gz" + }, + { + "image": "105438/2_2opagelsqxstandard3602512048015.nii.gz", + "pseudo_label": "105438/2_2opagelsqxstandard3602512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105438/2_2opagelsqxstandard3602512048015/2_2opagelsqxstandard3602512048015_seg.nii.gz" + }, + { + "image": "105438/2_0opagelsqxstandard32225120640115.nii.gz", + "pseudo_label": "105438/2_0opagelsqxstandard32225120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105438/2_0opagelsqxstandard32225120640115/2_0opagelsqxstandard32225120640115_seg.nii.gz" + }, + { + "image": "105438/2_1opagelsqxstandard37025120640115.nii.gz", + "pseudo_label": "105438/2_1opagelsqxstandard37025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105438/2_1opagelsqxstandard37025120640115/2_1opagelsqxstandard37025120640115_seg.nii.gz" + }, + { + "image": "110161/3_1opasesen16b30f31021204530na.nii.gz", + "pseudo_label": "110161/3_1opasesen16b30f31021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110161/3_1opasesen16b30f31021204530na/3_1opasesen16b30f31021204530na_seg.nii.gz" + }, + { + "image": "107432/2_1opagelsqxstandard3402512048015.nii.gz", + "pseudo_label": "107432/2_1opagelsqxstandard3402512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107432/2_1opagelsqxstandard3402512048015/2_1opagelsqxstandard3402512048015_seg.nii.gz" + }, + { + "image": "107432/2_0opagelsqxstandard2902512048015.nii.gz", + "pseudo_label": "107432/2_0opagelsqxstandard2902512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107432/2_0opagelsqxstandard2902512048015/2_0opagelsqxstandard2902512048015_seg.nii.gz" + }, + { + "image": "111999/2_2opagelsqxstandard36025120640115.nii.gz", + "pseudo_label": "111999/2_2opagelsqxstandard36025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111999/2_2opagelsqxstandard36025120640115/2_2opagelsqxstandard36025120640115_seg.nii.gz" + }, + { + "image": "102300/2_0opagelsplusstandard3302514040015.nii.gz", + "pseudo_label": "102300/2_0opagelsplusstandard3302514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102300/2_0opagelsplusstandard3302514040015/2_0opagelsplusstandard3302514040015_seg.nii.gz" + }, + { + "image": "102300/2_2opagelsplusstandard35725140974nana.nii.gz", + "pseudo_label": "102300/2_2opagelsplusstandard35725140974nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102300/2_2opagelsplusstandard35725140974nana/2_2opagelsplusstandard35725140974nana_seg.nii.gz" + }, + { + "image": "102088/1_2opagelsplusstandard38725120800115.nii.gz", + "pseudo_label": "102088/1_2opagelsplusstandard38725120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102088/1_2opagelsplusstandard38725120800115/1_2opagelsplusstandard38725120800115_seg.nii.gz" + }, + { + "image": "102088/1_0opagelspluslung38725120800108.nii.gz", + "pseudo_label": "102088/1_0opagelspluslung38725120800108.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102088/1_0opagelspluslung38725120800108/1_0opagelspluslung38725120800108_seg.nii.gz" + }, + { + "image": "102088/1_1opagelsplusstandard38725120800115.nii.gz", + "pseudo_label": "102088/1_1opagelsplusstandard38725120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102088/1_1opagelsplusstandard38725120800115/1_1opagelsplusstandard38725120800115_seg.nii.gz" + }, + { + "image": "102088/1_2opagelspluslung38725120800115.nii.gz", + "pseudo_label": "102088/1_2opagelspluslung38725120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102088/1_2opagelspluslung38725120800115/1_2opagelspluslung38725120800115_seg.nii.gz" + }, + { + "image": "102088/1_0opagelsplusstandard39025120800108.nii.gz", + "pseudo_label": "102088/1_0opagelsplusstandard39025120800108.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102088/1_0opagelsplusstandard39025120800108/1_0opagelsplusstandard39025120800108_seg.nii.gz" + }, + { + "image": "102088/1_1opagelspluslung38725120800115.nii.gz", + "pseudo_label": "102088/1_1opagelspluslung38725120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102088/1_1opagelspluslung38725120800115/1_1opagelspluslung38725120800115_seg.nii.gz" + }, + { + "image": "108020/5_1opagelspr16standard42225120800114.nii.gz", + "pseudo_label": "108020/5_1opagelspr16standard42225120800114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108020/5_1opagelspr16standard42225120800114/5_1opagelspr16standard42225120800114_seg.nii.gz" + }, + { + "image": "108020/4_1opagelspr16bone42225120800114.nii.gz", + "pseudo_label": "108020/4_1opagelspr16bone42225120800114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108020/4_1opagelspr16bone42225120800114/4_1opagelspr16bone42225120800114_seg.nii.gz" + }, + { + "image": "108020/3_1opagelspr16standard42225120800114.nii.gz", + "pseudo_label": "108020/3_1opagelspr16standard42225120800114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108020/3_1opagelspr16standard42225120800114/3_1opagelspr16standard42225120800114_seg.nii.gz" + }, + { + "image": "108020/3_2opagelspr16standard39025120640114.nii.gz", + "pseudo_label": "108020/3_2opagelspr16standard39025120640114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108020/3_2opagelspr16standard39025120640114/3_2opagelspr16standard39025120640114_seg.nii.gz" + }, + { + "image": "108020/4_0opagels16standard3902512000na.nii.gz", + "pseudo_label": "108020/4_0opagels16standard3902512000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108020/4_0opagels16standard3902512000na/4_0opagels16standard3902512000na_seg.nii.gz" + }, + { + "image": "108020/2_2opagelspr16bone39025120640114.nii.gz", + "pseudo_label": "108020/2_2opagelspr16bone39025120640114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108020/2_2opagelspr16bone39025120640114/2_2opagelspr16bone39025120640114_seg.nii.gz" + }, + { + "image": "108020/3_0opagels16bone3902512000na.nii.gz", + "pseudo_label": "108020/3_0opagels16bone3902512000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108020/3_0opagels16bone3902512000na/3_0opagels16bone3902512000na_seg.nii.gz" + }, + { + "image": "108020/2_1opagelspr16bone42225120800114.nii.gz", + "pseudo_label": "108020/2_1opagelspr16bone42225120800114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108020/2_1opagelspr16bone42225120800114/2_1opagelspr16bone42225120800114_seg.nii.gz" + }, + { + "image": "107367/2083_2opaphmx8000d2663212039018.nii.gz", + "pseudo_label": "107367/2083_2opaphmx8000d2663212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107367/2083_2opaphmx8000d2663212039018/2083_2opaphmx8000d2663212039018_seg.nii.gz" + }, + { + "image": "101928/1_1opagelspluslung39025120800115.nii.gz", + "pseudo_label": "101928/1_1opagelspluslung39025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101928/1_1opagelspluslung39025120800115/1_1opagelspluslung39025120800115_seg.nii.gz" + }, + { + "image": "101928/1_2opatoaqul4fc303906212080nana.nii.gz", + "pseudo_label": "101928/1_2opatoaqul4fc303906212080nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101928/1_2opatoaqul4fc303906212080nana/1_2opatoaqul4fc303906212080nana_seg.nii.gz" + }, + { + "image": "101928/1_0opagelspluslung39025120800108.nii.gz", + "pseudo_label": "101928/1_0opagelspluslung39025120800108.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101928/1_0opagelspluslung39025120800108/1_0opagelspluslung39025120800108_seg.nii.gz" + }, + { + "image": "101928/1_2opatoaqul4fc013906212080nana.nii.gz", + "pseudo_label": "101928/1_2opatoaqul4fc013906212080nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101928/1_2opatoaqul4fc013906212080nana/1_2opatoaqul4fc013906212080nana_seg.nii.gz" + }, + { + "image": "101928/1_1opagelsplusstandard39025120800115.nii.gz", + "pseudo_label": "101928/1_1opagelsplusstandard39025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101928/1_1opagelsplusstandard39025120800115/1_1opagelsplusstandard39025120800115_seg.nii.gz" + }, + { + "image": "106274/2_2opagelspr16bone36025120560114.nii.gz", + "pseudo_label": "106274/2_2opagelspr16bone36025120560114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106274/2_2opagelspr16bone36025120560114/2_2opagelspr16bone36025120560114_seg.nii.gz" + }, + { + "image": "106274/3_2opagelspr16standard36025120560114.nii.gz", + "pseudo_label": "106274/3_2opagelspr16standard36025120560114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106274/3_2opagelspr16standard36025120560114/3_2opagelspr16standard36025120560114_seg.nii.gz" + }, + { + "image": "106274/2_1opagels16bone35225120560114.nii.gz", + "pseudo_label": "106274/2_1opagels16bone35225120560114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106274/2_1opagels16bone35225120560114/2_1opagels16bone35225120560114_seg.nii.gz" + }, + { + "image": "106274/3_0opagelsqxstandard36025120800115.nii.gz", + "pseudo_label": "106274/3_0opagelsqxstandard36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106274/3_0opagelsqxstandard36025120800115/3_0opagelsqxstandard36025120800115_seg.nii.gz" + }, + { + "image": "106274/3_1opagels16standard35225120560114.nii.gz", + "pseudo_label": "106274/3_1opagels16standard35225120560114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106274/3_1opagels16standard35225120560114/3_1opagels16standard35225120560114_seg.nii.gz" + }, + { + "image": "101633/2_0opasevzoomb50f36021206030na.nii.gz", + "pseudo_label": "101633/2_0opasevzoomb50f36021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101633/2_0opasevzoomb50f36021206030na/2_0opasevzoomb50f36021206030na_seg.nii.gz" + }, + { + "image": "101633/3_0opasevzoomb30f36021206030na.nii.gz", + "pseudo_label": "101633/3_0opasevzoomb30f36021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101633/3_0opasevzoomb30f36021206030na/3_0opasevzoomb30f36021206030na_seg.nii.gz" + }, + { + "image": "110490/1103_2opaphmx8000d3313212039018.nii.gz", + "pseudo_label": "110490/1103_2opaphmx8000d3313212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110490/1103_2opaphmx8000d3313212039018/1103_2opaphmx8000d3313212039018_seg.nii.gz" + }, + { + "image": "110490/2655_1opaphmx8000c3223212039018.nii.gz", + "pseudo_label": "110490/2655_1opaphmx8000c3223212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110490/2655_1opaphmx8000c3223212039018/2655_1opaphmx8000c3223212039018_seg.nii.gz" + }, + { + "image": "104773/3_1opasesen16b30f38251204530na.nii.gz", + "pseudo_label": "104773/3_1opasesen16b30f38251204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104773/3_1opasesen16b30f38251204530na/3_1opasesen16b30f38251204530na_seg.nii.gz" + }, + { + "image": "104773/5_1opasesen16b50f38851204530na.nii.gz", + "pseudo_label": "104773/5_1opasesen16b50f38851204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104773/5_1opasesen16b50f38851204530na/5_1opasesen16b50f38851204530na_seg.nii.gz" + }, + { + "image": "104773/4_0opasesen16b50f38051206040na.nii.gz", + "pseudo_label": "104773/4_0opasesen16b50f38051206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104773/4_0opasesen16b50f38051206040na/4_0opasesen16b50f38051206040na_seg.nii.gz" + }, + { + "image": "104773/3_0opasesen16b30f38051206040na.nii.gz", + "pseudo_label": "104773/3_0opasesen16b30f38051206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104773/3_0opasesen16b30f38051206040na/3_0opasesen16b30f38051206040na_seg.nii.gz" + }, + { + "image": "104773/5_2opasesen16b50f37351204530na.nii.gz", + "pseudo_label": "104773/5_2opasesen16b50f37351204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104773/5_2opasesen16b50f37351204530na/5_2opasesen16b50f37351204530na_seg.nii.gz" + }, + { + "image": "104773/3_2opasesen16b30f37351204530na.nii.gz", + "pseudo_label": "104773/3_2opasesen16b30f37351204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104773/3_2opasesen16b30f37351204530na/3_2opasesen16b30f37351204530na_seg.nii.gz" + }, + { + "image": "103489/1_1opagelsplusstandard36025120800115.nii.gz", + "pseudo_label": "103489/1_1opagelsplusstandard36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103489/1_1opagelsplusstandard36025120800115/1_1opagelsplusstandard36025120800115_seg.nii.gz" + }, + { + "image": "103489/1_1opagelspluslung36025120800115.nii.gz", + "pseudo_label": "103489/1_1opagelspluslung36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103489/1_1opagelspluslung36025120800115/1_1opagelspluslung36025120800115_seg.nii.gz" + }, + { + "image": "103489/1_0opagelsplusstandard36025120800115.nii.gz", + "pseudo_label": "103489/1_0opagelsplusstandard36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103489/1_0opagelsplusstandard36025120800115/1_0opagelsplusstandard36025120800115_seg.nii.gz" + }, + { + "image": "103489/1_2opagelsplusstandard36025120800115.nii.gz", + "pseudo_label": "103489/1_2opagelsplusstandard36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103489/1_2opagelsplusstandard36025120800115/1_2opagelsplusstandard36025120800115_seg.nii.gz" + }, + { + "image": "103489/1_2opagelspluslung36025120800115.nii.gz", + "pseudo_label": "103489/1_2opagelspluslung36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103489/1_2opagelspluslung36025120800115/1_2opagelspluslung36025120800115_seg.nii.gz" + }, + { + "image": "103489/1_0opagelspluslung36025120800115.nii.gz", + "pseudo_label": "103489/1_0opagelspluslung36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103489/1_0opagelspluslung36025120800115/1_0opagelspluslung36025120800115_seg.nii.gz" + }, + { + "image": "100906/0_0opaphmx8000c38632120790112.nii.gz", + "pseudo_label": "100906/0_0opaphmx8000c38632120790112.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100906/0_0opaphmx8000c38632120790112/0_0opaphmx8000c38632120790112_seg.nii.gz" + }, + { + "image": "100906/2312_1opaphmx8000c4003212039018.nii.gz", + "pseudo_label": "100906/2312_1opaphmx8000c4003212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100906/2312_1opaphmx8000c4003212039018/2312_1opaphmx8000c4003212039018_seg.nii.gz" + }, + { + "image": "112347/2_0opagelsqxstandard38025120600115.nii.gz", + "pseudo_label": "112347/2_0opagelsqxstandard38025120600115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112347/2_0opagelsqxstandard38025120600115/2_0opagelsqxstandard38025120600115_seg.nii.gz" + }, + { + "image": "112347/2_2opagels16standard38025120683nana.nii.gz", + "pseudo_label": "112347/2_2opagels16standard38025120683nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112347/2_2opagels16standard38025120683nana/2_2opagels16standard38025120683nana_seg.nii.gz" + }, + { + "image": "108041/2_2opagelsqxstandard38525120640115.nii.gz", + "pseudo_label": "108041/2_2opagelsqxstandard38525120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108041/2_2opagelsqxstandard38525120640115/2_2opagelsqxstandard38525120640115_seg.nii.gz" + }, + { + "image": "108537/1_1opagelspluslung39025120800115.nii.gz", + "pseudo_label": "108537/1_1opagelspluslung39025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108537/1_1opagelspluslung39025120800115/1_1opagelspluslung39025120800115_seg.nii.gz" + }, + { + "image": "108537/1_2opatoaqul4fc303906312080nana.nii.gz", + "pseudo_label": "108537/1_2opatoaqul4fc303906312080nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108537/1_2opatoaqul4fc303906312080nana/1_2opatoaqul4fc303906312080nana_seg.nii.gz" + }, + { + "image": "108537/1_0opagelsplusstandard38825120800108.nii.gz", + "pseudo_label": "108537/1_0opagelsplusstandard38825120800108.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108537/1_0opagelsplusstandard38825120800108/1_0opagelsplusstandard38825120800108_seg.nii.gz" + }, + { + "image": "108537/1_0opagelspluslung38825120800108.nii.gz", + "pseudo_label": "108537/1_0opagelspluslung38825120800108.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108537/1_0opagelspluslung38825120800108/1_0opagelspluslung38825120800108_seg.nii.gz" + }, + { + "image": "108537/1_1opagelsplusstandard39025120800115.nii.gz", + "pseudo_label": "108537/1_1opagelsplusstandard39025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108537/1_1opagelsplusstandard39025120800115/1_1opagelsplusstandard39025120800115_seg.nii.gz" + }, + { + "image": "105189/2_2opagelsplusstandard3302514000na.nii.gz", + "pseudo_label": "105189/2_2opagelsplusstandard3302514000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105189/2_2opagelsplusstandard3302514000na/2_2opagelsplusstandard3302514000na_seg.nii.gz" + }, + { + "image": "105189/2_0opagelsplusstandard3302514000na.nii.gz", + "pseudo_label": "105189/2_0opagelsplusstandard3302514000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105189/2_0opagelsplusstandard3302514000na/2_0opagelsplusstandard3302514000na_seg.nii.gz" + }, + { + "image": "105189/2_1opagelsplusstandard3302514000na.nii.gz", + "pseudo_label": "105189/2_1opagelsplusstandard3302514000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105189/2_1opagelsplusstandard3302514000na/2_1opagelsplusstandard3302514000na_seg.nii.gz" + }, + { + "image": "100870/2_2opagels16standard30025120383nana.nii.gz", + "pseudo_label": "100870/2_2opagels16standard30025120383nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100870/2_2opagels16standard30025120383nana/2_2opagels16standard30025120383nana_seg.nii.gz" + }, + { + "image": "100870/2_1opagelsqxstandard30025120700115.nii.gz", + "pseudo_label": "100870/2_1opagelsqxstandard30025120700115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100870/2_1opagelsqxstandard30025120700115/2_1opagelsqxstandard30025120700115_seg.nii.gz" + }, + { + "image": "100870/2_0opagelsqxstandard29525120700115.nii.gz", + "pseudo_label": "100870/2_0opagelsqxstandard29525120700115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100870/2_0opagelsqxstandard29525120700115/2_0opagelsqxstandard29525120700115_seg.nii.gz" + }, + { + "image": "100611/3_0opasevzoomb30f33021206030na.nii.gz", + "pseudo_label": "100611/3_0opasevzoomb30f33021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100611/3_0opasevzoomb30f33021206030na/3_0opasevzoomb30f33021206030na_seg.nii.gz" + }, + { + "image": "100528/2_0opasevzoomb30f35021208040na.nii.gz", + "pseudo_label": "100528/2_0opasevzoomb30f35021208040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100528/2_0opasevzoomb30f35021208040na/2_0opasevzoomb30f35021208040na_seg.nii.gz" + }, + { + "image": "100528/2_1opasevzoomb30f36021408040na.nii.gz", + "pseudo_label": "100528/2_1opasevzoomb30f36021408040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100528/2_1opasevzoomb30f36021408040na/2_1opasevzoomb30f36021408040na_seg.nii.gz" + }, + { + "image": "103261/2_2opagelsqxstandard3102512048015.nii.gz", + "pseudo_label": "103261/2_2opagelsqxstandard3102512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103261/2_2opagelsqxstandard3102512048015/2_2opagelsqxstandard3102512048015_seg.nii.gz" + }, + { + "image": "103261/2_0opagelsqxstandard3102512048015.nii.gz", + "pseudo_label": "103261/2_0opagelsqxstandard3102512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103261/2_0opagelsqxstandard3102512048015/2_0opagelsqxstandard3102512048015_seg.nii.gz" + }, + { + "image": "103561/3_2opasevzoomb50f36021208040na.nii.gz", + "pseudo_label": "103561/3_2opasevzoomb50f36021208040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103561/3_2opasevzoomb50f36021208040na/3_2opasevzoomb50f36021208040na_seg.nii.gz" + }, + { + "image": "110922/2_1opagelsplusstandard38025140640115.nii.gz", + "pseudo_label": "110922/2_1opagelsplusstandard38025140640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110922/2_1opagelsplusstandard38025140640115/2_1opagelsplusstandard38025140640115_seg.nii.gz" + }, + { + "image": "108161/6_2opasesen16b50f29921204530na.nii.gz", + "pseudo_label": "108161/6_2opasesen16b50f29921204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108161/6_2opasesen16b50f29921204530na/6_2opasesen16b50f29921204530na_seg.nii.gz" + }, + { + "image": "108161/6_0opasevzoomb20f38021206030na.nii.gz", + "pseudo_label": "108161/6_0opasevzoomb20f38021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108161/6_0opasevzoomb20f38021206030na/6_0opasevzoomb20f38021206030na_seg.nii.gz" + }, + { + "image": "108161/3_1opasesen16b30f28451204530na.nii.gz", + "pseudo_label": "108161/3_1opasesen16b30f28451204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108161/3_1opasesen16b30f28451204530na/3_1opasesen16b30f28451204530na_seg.nii.gz" + }, + { + "image": "108161/4_0opasevzoomb50f38051206030na.nii.gz", + "pseudo_label": "108161/4_0opasevzoomb50f38051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108161/4_0opasevzoomb50f38051206030na/4_0opasevzoomb50f38051206030na_seg.nii.gz" + }, + { + "image": "108161/3_0opasevzoomb30f38051206030na.nii.gz", + "pseudo_label": "108161/3_0opasevzoomb30f38051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108161/3_0opasevzoomb30f38051206030na/3_0opasevzoomb30f38051206030na_seg.nii.gz" + }, + { + "image": "108161/5_2opasesen16b50f29951204530na.nii.gz", + "pseudo_label": "108161/5_2opasesen16b50f29951204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108161/5_2opasesen16b50f29951204530na/5_2opasesen16b50f29951204530na_seg.nii.gz" + }, + { + "image": "108161/5_1opasesen16b30f28421204530na.nii.gz", + "pseudo_label": "108161/5_1opasesen16b30f28421204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108161/5_1opasesen16b30f28421204530na/5_1opasesen16b30f28421204530na_seg.nii.gz" + }, + { + "image": "108161/3_2opasesen16b30f29951204530na.nii.gz", + "pseudo_label": "108161/3_2opasesen16b30f29951204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108161/3_2opasesen16b30f29951204530na/3_2opasesen16b30f29951204530na_seg.nii.gz" + }, + { + "image": "108161/4_1opasesen16b50f28451204530na.nii.gz", + "pseudo_label": "108161/4_1opasesen16b50f28451204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108161/4_1opasesen16b50f28451204530na/4_1opasesen16b50f28451204530na_seg.nii.gz" + }, + { + "image": "110320/2_0opagehsqxstandard34025120560115.nii.gz", + "pseudo_label": "110320/2_0opagehsqxstandard34025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110320/2_0opagehsqxstandard34025120560115/2_0opagehsqxstandard34025120560115_seg.nii.gz" + }, + { + "image": "110320/3_1opagehsqxbone34025120560115.nii.gz", + "pseudo_label": "110320/3_1opagehsqxbone34025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110320/3_1opagehsqxbone34025120560115/3_1opagehsqxbone34025120560115_seg.nii.gz" + }, + { + "image": "110320/2_2opagehsqxstandard34025120560115.nii.gz", + "pseudo_label": "110320/2_2opagehsqxstandard34025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110320/2_2opagehsqxstandard34025120560115/2_2opagehsqxstandard34025120560115_seg.nii.gz" + }, + { + "image": "110166/4760_2opaphmx8000c3733212039018.nii.gz", + "pseudo_label": "110166/4760_2opaphmx8000c3733212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110166/4760_2opaphmx8000c3733212039018/4760_2opaphmx8000c3733212039018_seg.nii.gz" + }, + { + "image": "110166/2596_1opaphmx8000d336321206001na.nii.gz", + "pseudo_label": "110166/2596_1opaphmx8000d336321206001na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110166/2596_1opaphmx8000d336321206001na/2596_1opaphmx8000d336321206001na_seg.nii.gz" + }, + { + "image": "104148/2_1opagels16bone31025120600114.nii.gz", + "pseudo_label": "104148/2_1opagels16bone31025120600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104148/2_1opagels16bone31025120600114/2_1opagels16bone31025120600114_seg.nii.gz" + }, + { + "image": "100200/3_1opatoaqul4fc513711212060nana.nii.gz", + "pseudo_label": "100200/3_1opatoaqul4fc513711212060nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100200/3_1opatoaqul4fc513711212060nana/3_1opatoaqul4fc513711212060nana_seg.nii.gz" + }, + { + "image": "112224/2_2opagelsqxstandard33025120640115.nii.gz", + "pseudo_label": "112224/2_2opagelsqxstandard33025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112224/2_2opagelsqxstandard33025120640115/2_2opagelsqxstandard33025120640115_seg.nii.gz" + }, + { + "image": "106848/2_1opasevzoomb30f32021208040na.nii.gz", + "pseudo_label": "106848/2_1opasevzoomb30f32021208040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106848/2_1opasevzoomb30f32021208040na/2_1opasevzoomb30f32021208040na_seg.nii.gz" + }, + { + "image": "106848/3_0opasevzoomb50f330214016080na.nii.gz", + "pseudo_label": "106848/3_0opasevzoomb50f330214016080na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106848/3_0opasevzoomb50f330214016080na/3_0opasevzoomb50f330214016080na_seg.nii.gz" + }, + { + "image": "109574/2_2opasesen16b30f27421204032na.nii.gz", + "pseudo_label": "109574/2_2opasesen16b30f27421204032na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109574/2_2opasesen16b30f27421204032na/2_2opasesen16b30f27421204032na_seg.nii.gz" + }, + { + "image": "100469/2_0opasesen16b30f29621206048na.nii.gz", + "pseudo_label": "100469/2_0opasesen16b30f29621206048na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100469/2_0opasesen16b30f29621206048na/2_0opasesen16b30f29621206048na_seg.nii.gz" + }, + { + "image": "100469/2_2opasesen16b30f281212032nana.nii.gz", + "pseudo_label": "100469/2_2opasesen16b30f281212032nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100469/2_2opasesen16b30f281212032nana/2_2opasesen16b30f281212032nana_seg.nii.gz" + }, + { + "image": "103637/4_0opagels16bone35025120600114.nii.gz", + "pseudo_label": "103637/4_0opagels16bone35025120600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103637/4_0opagels16bone35025120600114/4_0opagels16bone35025120600114_seg.nii.gz" + }, + { + "image": "107877/3_0opagels16standard3602512040014.nii.gz", + "pseudo_label": "107877/3_0opagels16standard3602512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107877/3_0opagels16standard3602512040014/3_0opagels16standard3602512040014_seg.nii.gz" + }, + { + "image": "107877/3_1opagelspr16standard3202512040014.nii.gz", + "pseudo_label": "107877/3_1opagelspr16standard3202512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107877/3_1opagelspr16standard3202512040014/3_1opagelspr16standard3202512040014_seg.nii.gz" + }, + { + "image": "107877/2_1opagelspr16bone3202512040014.nii.gz", + "pseudo_label": "107877/2_1opagelspr16bone3202512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107877/2_1opagelspr16bone3202512040014/2_1opagelspr16bone3202512040014_seg.nii.gz" + }, + { + "image": "107877/4_0opagels16standard360512040014.nii.gz", + "pseudo_label": "107877/4_0opagels16standard360512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107877/4_0opagels16standard360512040014/4_0opagels16standard360512040014_seg.nii.gz" + }, + { + "image": "101986/2_2opagelsplusstandard36025140994nana.nii.gz", + "pseudo_label": "101986/2_2opagelsplusstandard36025140994nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101986/2_2opagelsplusstandard36025140994nana/2_2opagelsplusstandard36025140994nana_seg.nii.gz" + }, + { + "image": "108054/2_1opagels16bone28025120600114.nii.gz", + "pseudo_label": "108054/2_1opagels16bone28025120600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108054/2_1opagels16bone28025120600114/2_1opagels16bone28025120600114_seg.nii.gz" + }, + { + "image": "108054/3_0opagels16standard28025120600114.nii.gz", + "pseudo_label": "108054/3_0opagels16standard28025120600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108054/3_0opagels16standard28025120600114/3_0opagels16standard28025120600114_seg.nii.gz" + }, + { + "image": "101806/2_1opagelsqxstandard3602514048015.nii.gz", + "pseudo_label": "101806/2_1opagelsqxstandard3602514048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101806/2_1opagelsqxstandard3602514048015/2_1opagelsqxstandard3602514048015_seg.nii.gz" + }, + { + "image": "101806/2_2opagelsqxstandard3602514048015.nii.gz", + "pseudo_label": "101806/2_2opagelsqxstandard3602514048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101806/2_2opagelsqxstandard3602514048015/2_2opagelsqxstandard3602514048015_seg.nii.gz" + }, + { + "image": "109646/1_0opagelspluslung35025120800115.nii.gz", + "pseudo_label": "109646/1_0opagelspluslung35025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109646/1_0opagelspluslung35025120800115/1_0opagelspluslung35025120800115_seg.nii.gz" + }, + { + "image": "109646/1_0opagelsplusstandard35025120800115.nii.gz", + "pseudo_label": "109646/1_0opagelsplusstandard35025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109646/1_0opagelsplusstandard35025120800115/1_0opagelsplusstandard35025120800115_seg.nii.gz" + }, + { + "image": "110503/4_2opagels16standard34025120600114.nii.gz", + "pseudo_label": "110503/4_2opagels16standard34025120600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110503/4_2opagels16standard34025120600114/4_2opagels16standard34025120600114_seg.nii.gz" + }, + { + "image": "108945/2_0opagels16bone37025120780114.nii.gz", + "pseudo_label": "108945/2_0opagels16bone37025120780114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108945/2_0opagels16bone37025120780114/2_0opagels16bone37025120780114_seg.nii.gz" + }, + { + "image": "107411/2_0opagelsqxstandard28025120nanana.nii.gz", + "pseudo_label": "107411/2_0opagelsqxstandard28025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107411/2_0opagelsqxstandard28025120nanana/2_0opagelsqxstandard28025120nanana_seg.nii.gz" + }, + { + "image": "107411/3_0opagelsqxbone28025120nanana.nii.gz", + "pseudo_label": "107411/3_0opagelsqxbone28025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107411/3_0opagelsqxbone28025120nanana/3_0opagelsqxbone28025120nanana_seg.nii.gz" + }, + { + "image": "107411/2_1opagels16standard28025120nanana.nii.gz", + "pseudo_label": "107411/2_1opagels16standard28025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107411/2_1opagels16standard28025120nanana/2_1opagels16standard28025120nanana_seg.nii.gz" + }, + { + "image": "107411/2_2opagels16standard28025120nanana.nii.gz", + "pseudo_label": "107411/2_2opagels16standard28025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107411/2_2opagels16standard28025120nanana/2_2opagels16standard28025120nanana_seg.nii.gz" + }, + { + "image": "107411/3_2opagels16bone28025120nanana.nii.gz", + "pseudo_label": "107411/3_2opagels16bone28025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107411/3_2opagels16bone28025120nanana/3_2opagels16bone28025120nanana_seg.nii.gz" + }, + { + "image": "107411/3_1opagels16bone28025120nanana.nii.gz", + "pseudo_label": "107411/3_1opagels16bone28025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107411/3_1opagels16bone28025120nanana/3_1opagels16bone28025120nanana_seg.nii.gz" + }, + { + "image": "108275/2_1opagelsqxstandard3402514048015.nii.gz", + "pseudo_label": "108275/2_1opagelsqxstandard3402514048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108275/2_1opagelsqxstandard3402514048015/2_1opagelsqxstandard3402514048015_seg.nii.gz" + }, + { + "image": "108275/2_2opagelsqxstandard3402514048015.nii.gz", + "pseudo_label": "108275/2_2opagelsqxstandard3402514048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108275/2_2opagelsqxstandard3402514048015/2_2opagelsqxstandard3402514048015_seg.nii.gz" + }, + { + "image": "113217/3_1opasevzoomb30f27051206030na.nii.gz", + "pseudo_label": "113217/3_1opasevzoomb30f27051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113217/3_1opasevzoomb30f27051206030na/3_1opasevzoomb30f27051206030na_seg.nii.gz" + }, + { + "image": "113217/3_2opasesen16b30f25851204530na.nii.gz", + "pseudo_label": "113217/3_2opasesen16b30f25851204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113217/3_2opasesen16b30f25851204530na/3_2opasesen16b30f25851204530na_seg.nii.gz" + }, + { + "image": "113217/5_0opasesen16b50f27621204530na.nii.gz", + "pseudo_label": "113217/5_0opasesen16b50f27621204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113217/5_0opasesen16b50f27621204530na/5_0opasesen16b50f27621204530na_seg.nii.gz" + }, + { + "image": "113217/5_2opasesen16b50f25851204530na.nii.gz", + "pseudo_label": "113217/5_2opasesen16b50f25851204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113217/5_2opasesen16b50f25851204530na/5_2opasesen16b50f25851204530na_seg.nii.gz" + }, + { + "image": "113217/6_2opasesen16b50f25821204530na.nii.gz", + "pseudo_label": "113217/6_2opasesen16b50f25821204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113217/6_2opasesen16b50f25821204530na/6_2opasesen16b50f25821204530na_seg.nii.gz" + }, + { + "image": "113217/4_1opasevzoomb50f30651206030na.nii.gz", + "pseudo_label": "113217/4_1opasevzoomb50f30651206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113217/4_1opasevzoomb50f30651206030na/4_1opasevzoomb50f30651206030na_seg.nii.gz" + }, + { + "image": "113217/3_0opasesen16b30f27051204530na.nii.gz", + "pseudo_label": "113217/3_0opasesen16b30f27051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113217/3_0opasesen16b30f27051204530na/3_0opasesen16b30f27051204530na_seg.nii.gz" + }, + { + "image": "113217/4_0opasesen16b50f27051204530na.nii.gz", + "pseudo_label": "113217/4_0opasesen16b50f27051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113217/4_0opasesen16b50f27051204530na/4_0opasesen16b50f27051204530na_seg.nii.gz" + }, + { + "image": "104143/7186_1opaphmx8000a3403212060nana.nii.gz", + "pseudo_label": "104143/7186_1opaphmx8000a3403212060nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104143/7186_1opaphmx8000a3403212060nana/7186_1opaphmx8000a3403212060nana_seg.nii.gz" + }, + { + "image": "104143/597_0opaphmx8000d3343212060nana.nii.gz", + "pseudo_label": "104143/597_0opaphmx8000d3343212060nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104143/597_0opaphmx8000d3343212060nana/597_0opaphmx8000d3343212060nana_seg.nii.gz" + }, + { + "image": "104143/3952_2opaphmx8000a3403212060nana.nii.gz", + "pseudo_label": "104143/3952_2opaphmx8000a3403212060nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104143/3952_2opaphmx8000a3403212060nana/3952_2opaphmx8000a3403212060nana_seg.nii.gz" + }, + { + "image": "104143/3953_2opaphmx8000d3403212060nana.nii.gz", + "pseudo_label": "104143/3953_2opaphmx8000d3403212060nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104143/3953_2opaphmx8000d3403212060nana/3953_2opaphmx8000d3403212060nana_seg.nii.gz" + }, + { + "image": "104143/596_0opaphmx8000b3343212060nana.nii.gz", + "pseudo_label": "104143/596_0opaphmx8000b3343212060nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104143/596_0opaphmx8000b3343212060nana/596_0opaphmx8000b3343212060nana_seg.nii.gz" + }, + { + "image": "109059/2_0opagelsqxstandard3702512048015.nii.gz", + "pseudo_label": "109059/2_0opagelsqxstandard3702512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109059/2_0opagelsqxstandard3702512048015/2_0opagelsqxstandard3702512048015_seg.nii.gz" + }, + { + "image": "111284/5_0opasevzoomb30f38051206030na.nii.gz", + "pseudo_label": "111284/5_0opasevzoomb30f38051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111284/5_0opasevzoomb30f38051206030na/5_0opasevzoomb30f38051206030na_seg.nii.gz" + }, + { + "image": "111284/3_0opasevzoomb50f38021206030na.nii.gz", + "pseudo_label": "111284/3_0opasevzoomb50f38021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111284/3_0opasevzoomb50f38021206030na/3_0opasevzoomb50f38021206030na_seg.nii.gz" + }, + { + "image": "111284/4_0opasevzoomb50f38051206030na.nii.gz", + "pseudo_label": "111284/4_0opasevzoomb50f38051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111284/4_0opasevzoomb50f38051206030na/4_0opasevzoomb50f38051206030na_seg.nii.gz" + }, + { + "image": "111284/6_0opasevzoomb30f38021206030na.nii.gz", + "pseudo_label": "111284/6_0opasevzoomb30f38021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111284/6_0opasevzoomb30f38021206030na/6_0opasevzoomb30f38021206030na_seg.nii.gz" + }, + { + "image": "109637/5888_2opaphmx8000c31832120453612.nii.gz", + "pseudo_label": "109637/5888_2opaphmx8000c31832120453612.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109637/5888_2opaphmx8000c31832120453612/5888_2opaphmx8000c31832120453612_seg.nii.gz" + }, + { + "image": "109637/8087_1opaphmx8000c30532120453612.nii.gz", + "pseudo_label": "109637/8087_1opaphmx8000c30532120453612.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109637/8087_1opaphmx8000c30532120453612/8087_1opaphmx8000c30532120453612_seg.nii.gz" + }, + { + "image": "101347/2_2opagelsqxstandard40025120800115.nii.gz", + "pseudo_label": "101347/2_2opagelsqxstandard40025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101347/2_2opagelsqxstandard40025120800115/2_2opagelsqxstandard40025120800115_seg.nii.gz" + }, + { + "image": "101347/2_0opagelsqxstandard3602512048015.nii.gz", + "pseudo_label": "101347/2_0opagelsqxstandard3602512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101347/2_0opagelsqxstandard3602512048015/2_0opagelsqxstandard3602512048015_seg.nii.gz" + }, + { + "image": "101347/2_1opagelsqxstandard4002514048015.nii.gz", + "pseudo_label": "101347/2_1opagelsqxstandard4002514048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101347/2_1opagelsqxstandard4002514048015/2_1opagelsqxstandard4002514048015_seg.nii.gz" + }, + { + "image": "100459/7_2opasesen16b50f363512013590na.nii.gz", + "pseudo_label": "100459/7_2opasesen16b50f363512013590na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100459/7_2opasesen16b50f363512013590na/7_2opasesen16b50f363512013590na_seg.nii.gz" + }, + { + "image": "100459/5_1opasesen16b50f38151204530na.nii.gz", + "pseudo_label": "100459/5_1opasesen16b50f38151204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100459/5_1opasesen16b50f38151204530na/5_1opasesen16b50f38151204530na_seg.nii.gz" + }, + { + "image": "100459/6_0opasevzoomb30f44421206030na.nii.gz", + "pseudo_label": "100459/6_0opasevzoomb30f44421206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100459/6_0opasevzoomb30f44421206030na/6_0opasevzoomb30f44421206030na_seg.nii.gz" + }, + { + "image": "100459/5_0opasevzoomb50f44421206030na.nii.gz", + "pseudo_label": "100459/5_0opasevzoomb50f44421206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100459/5_0opasevzoomb50f44421206030na/5_0opasevzoomb50f44421206030na_seg.nii.gz" + }, + { + "image": "100459/3_0opasevzoomb30f44451206030na.nii.gz", + "pseudo_label": "100459/3_0opasevzoomb30f44451206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100459/3_0opasevzoomb30f44451206030na/3_0opasevzoomb30f44451206030na_seg.nii.gz" + }, + { + "image": "100459/7_1opasesen16b50f38121204530na.nii.gz", + "pseudo_label": "100459/7_1opasesen16b50f38121204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100459/7_1opasesen16b50f38121204530na/7_1opasesen16b50f38121204530na_seg.nii.gz" + }, + { + "image": "100459/3_1opasesen16b30f38151204530na.nii.gz", + "pseudo_label": "100459/3_1opasesen16b30f38151204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100459/3_1opasesen16b30f38151204530na/3_1opasesen16b30f38151204530na_seg.nii.gz" + }, + { + "image": "100459/4_0opasevzoomb50f44451206030na.nii.gz", + "pseudo_label": "100459/4_0opasevzoomb50f44451206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100459/4_0opasevzoomb50f44451206030na/4_0opasevzoomb50f44451206030na_seg.nii.gz" + }, + { + "image": "100660/2_0opagehsqxstandard33025120560115.nii.gz", + "pseudo_label": "100660/2_0opagehsqxstandard33025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100660/2_0opagehsqxstandard33025120560115/2_0opagehsqxstandard33025120560115_seg.nii.gz" + }, + { + "image": "100660/2_1opagehsqxstandard33025120560115.nii.gz", + "pseudo_label": "100660/2_1opagehsqxstandard33025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100660/2_1opagehsqxstandard33025120560115/2_1opagehsqxstandard33025120560115_seg.nii.gz" + }, + { + "image": "100660/3_0opagehsqxbone33025120560115.nii.gz", + "pseudo_label": "100660/3_0opagehsqxbone33025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100660/3_0opagehsqxbone33025120560115/3_0opagehsqxbone33025120560115_seg.nii.gz" + }, + { + "image": "105937/4_2opasesen16b30f31121204530na.nii.gz", + "pseudo_label": "105937/4_2opasesen16b30f31121204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105937/4_2opasesen16b30f31121204530na/4_2opasesen16b30f31121204530na_seg.nii.gz" + }, + { + "image": "105937/6_1opasesen16b50f30021204530na.nii.gz", + "pseudo_label": "105937/6_1opasesen16b50f30021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105937/6_1opasesen16b50f30021204530na/6_1opasesen16b50f30021204530na_seg.nii.gz" + }, + { + "image": "105937/6_0opasesen16b30f32021206040na.nii.gz", + "pseudo_label": "105937/6_0opasesen16b30f32021206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105937/6_0opasesen16b30f32021206040na/6_0opasesen16b30f32021206040na_seg.nii.gz" + }, + { + "image": "105937/5_2opasesen16b50f31151204530na.nii.gz", + "pseudo_label": "105937/5_2opasesen16b50f31151204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105937/5_2opasesen16b50f31151204530na/5_2opasesen16b50f31151204530na_seg.nii.gz" + }, + { + "image": "105937/4_1opasesen16b30f30021204530na.nii.gz", + "pseudo_label": "105937/4_1opasesen16b30f30021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105937/4_1opasesen16b30f30021204530na/4_1opasesen16b30f30021204530na_seg.nii.gz" + }, + { + "image": "105937/4_0opasesen16b50f38051206040na.nii.gz", + "pseudo_label": "105937/4_0opasesen16b50f38051206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105937/4_0opasesen16b50f38051206040na/4_0opasesen16b50f38051206040na_seg.nii.gz" + }, + { + "image": "105937/6_2opasesen16b50f31121204530na.nii.gz", + "pseudo_label": "105937/6_2opasesen16b50f31121204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105937/6_2opasesen16b50f31121204530na/6_2opasesen16b50f31121204530na_seg.nii.gz" + }, + { + "image": "105937/3_1opasesen16b30f30051204530na.nii.gz", + "pseudo_label": "105937/3_1opasesen16b30f30051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105937/3_1opasesen16b30f30051204530na/3_1opasesen16b30f30051204530na_seg.nii.gz" + }, + { + "image": "100010/2_0opagelsqxstandard3542514048015.nii.gz", + "pseudo_label": "100010/2_0opagelsqxstandard3542514048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100010/2_0opagelsqxstandard3542514048015/2_0opagelsqxstandard3542514048015_seg.nii.gz" + }, + { + "image": "100010/2_1opagelsqxstandard3502514048015.nii.gz", + "pseudo_label": "100010/2_1opagelsqxstandard3502514048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100010/2_1opagelsqxstandard3502514048015/2_1opagelsqxstandard3502514048015_seg.nii.gz" + }, + { + "image": "108635/1_0opagelsplusstandard3172512010250115.nii.gz", + "pseudo_label": "108635/1_0opagelsplusstandard3172512010250115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108635/1_0opagelsplusstandard3172512010250115/1_0opagelsplusstandard3172512010250115_seg.nii.gz" + }, + { + "image": "108635/1_2opagelspluslung32025120800115.nii.gz", + "pseudo_label": "108635/1_2opagelspluslung32025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108635/1_2opagelspluslung32025120800115/1_2opagelspluslung32025120800115_seg.nii.gz" + }, + { + "image": "108635/1_1opagelsplusstandard32025120800115.nii.gz", + "pseudo_label": "108635/1_1opagelsplusstandard32025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108635/1_1opagelsplusstandard32025120800115/1_1opagelsplusstandard32025120800115_seg.nii.gz" + }, + { + "image": "108635/1_1opagelspluslung32025120800115.nii.gz", + "pseudo_label": "108635/1_1opagelspluslung32025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108635/1_1opagelspluslung32025120800115/1_1opagelspluslung32025120800115_seg.nii.gz" + }, + { + "image": "108635/1_2opagelsplusstandard32025120800115.nii.gz", + "pseudo_label": "108635/1_2opagelsplusstandard32025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108635/1_2opagelsplusstandard32025120800115/1_2opagelsplusstandard32025120800115_seg.nii.gz" + }, + { + "image": "108635/1_0opagelspluslung3172512010250115.nii.gz", + "pseudo_label": "108635/1_0opagelspluslung3172512010250115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108635/1_0opagelspluslung3172512010250115/1_0opagelspluslung3172512010250115_seg.nii.gz" + }, + { + "image": "106059/4_1opasesen16b30f32121204530na.nii.gz", + "pseudo_label": "106059/4_1opasesen16b30f32121204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106059/4_1opasesen16b30f32121204530na/4_1opasesen16b30f32121204530na_seg.nii.gz" + }, + { + "image": "106059/6_1opasesen16b50f32121204530na.nii.gz", + "pseudo_label": "106059/6_1opasesen16b50f32121204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106059/6_1opasesen16b50f32121204530na/6_1opasesen16b50f32121204530na_seg.nii.gz" + }, + { + "image": "106059/4_0opasevzoomb50f38051206030na.nii.gz", + "pseudo_label": "106059/4_0opasevzoomb50f38051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106059/4_0opasevzoomb50f38051206030na/4_0opasevzoomb50f38051206030na_seg.nii.gz" + }, + { + "image": "106059/3_0opasevzoomb30f38051206030na.nii.gz", + "pseudo_label": "106059/3_0opasevzoomb30f38051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106059/3_0opasevzoomb30f38051206030na/3_0opasevzoomb30f38051206030na_seg.nii.gz" + }, + { + "image": "106059/6_0opasevzoomb30f38021206030na.nii.gz", + "pseudo_label": "106059/6_0opasevzoomb30f38021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106059/6_0opasevzoomb30f38021206030na/6_0opasevzoomb30f38021206030na_seg.nii.gz" + }, + { + "image": "106059/5_2opasesen16b50f32251204530na.nii.gz", + "pseudo_label": "106059/5_2opasesen16b50f32251204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106059/5_2opasesen16b50f32251204530na/5_2opasesen16b50f32251204530na_seg.nii.gz" + }, + { + "image": "110358/6_1opasesen16b50f38051204530na.nii.gz", + "pseudo_label": "110358/6_1opasesen16b50f38051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110358/6_1opasesen16b50f38051204530na/6_1opasesen16b50f38051204530na_seg.nii.gz" + }, + { + "image": "110358/6_0opasevzoomb50f372512012060na.nii.gz", + "pseudo_label": "110358/6_0opasevzoomb50f372512012060na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110358/6_0opasevzoomb50f372512012060na/6_0opasevzoomb50f372512012060na_seg.nii.gz" + }, + { + "image": "110358/4_2opasevzoomb50f38051206030na.nii.gz", + "pseudo_label": "110358/4_2opasevzoomb50f38051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110358/4_2opasevzoomb50f38051206030na/4_2opasevzoomb50f38051206030na_seg.nii.gz" + }, + { + "image": "110358/3_2opasevzoomb30f38051206030na.nii.gz", + "pseudo_label": "110358/3_2opasevzoomb30f38051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110358/3_2opasevzoomb30f38051206030na/3_2opasevzoomb30f38051206030na_seg.nii.gz" + }, + { + "image": "110358/4_1opasesen16b30f38051204530na.nii.gz", + "pseudo_label": "110358/4_1opasesen16b30f38051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110358/4_1opasesen16b30f38051204530na/4_1opasesen16b30f38051204530na_seg.nii.gz" + }, + { + "image": "110358/4_0opasevzoomb30f372512012060na.nii.gz", + "pseudo_label": "110358/4_0opasevzoomb30f372512012060na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110358/4_0opasevzoomb30f372512012060na/4_0opasevzoomb30f372512012060na_seg.nii.gz" + }, + { + "image": "110432/2_1opagelsqxstandard3402512048015.nii.gz", + "pseudo_label": "110432/2_1opagelsqxstandard3402512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110432/2_1opagelsqxstandard3402512048015/2_1opagelsqxstandard3402512048015_seg.nii.gz" + }, + { + "image": "110432/2_0opagelsqxstandard3102512048015.nii.gz", + "pseudo_label": "110432/2_0opagelsqxstandard3102512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110432/2_0opagelsqxstandard3102512048015/2_0opagelsqxstandard3102512048015_seg.nii.gz" + }, + { + "image": "105178/4_2opatoaqul4fc513156212060nana.nii.gz", + "pseudo_label": "105178/4_2opatoaqul4fc513156212060nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105178/4_2opatoaqul4fc513156212060nana/4_2opatoaqul4fc513156212060nana_seg.nii.gz" + }, + { + "image": "105178/4_0opatoaqul4fc513125212040nana.nii.gz", + "pseudo_label": "105178/4_0opatoaqul4fc513125212040nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105178/4_0opatoaqul4fc513125212040nana/4_0opatoaqul4fc513125212040nana_seg.nii.gz" + }, + { + "image": "102587/2_0opagelsqxstandard37625120640115.nii.gz", + "pseudo_label": "102587/2_0opagelsqxstandard37625120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102587/2_0opagelsqxstandard37625120640115/2_0opagelsqxstandard37625120640115_seg.nii.gz" + }, + { + "image": "102744/5_0opasesen16b50f32551204530na.nii.gz", + "pseudo_label": "102744/5_0opasesen16b50f32551204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102744/5_0opasesen16b50f32551204530na/5_0opasesen16b50f32551204530na_seg.nii.gz" + }, + { + "image": "102744/6_2opasesen16b30f33851204530na.nii.gz", + "pseudo_label": "102744/6_2opasesen16b30f33851204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102744/6_2opasesen16b30f33851204530na/6_2opasesen16b30f33851204530na_seg.nii.gz" + }, + { + "image": "102744/4_0opasesen16b30f32521204530na.nii.gz", + "pseudo_label": "102744/4_0opasesen16b30f32521204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102744/4_0opasesen16b30f32521204530na/4_0opasesen16b30f32521204530na_seg.nii.gz" + }, + { + "image": "102744/5_1opasesen16b50f32051204530na.nii.gz", + "pseudo_label": "102744/5_1opasesen16b50f32051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102744/5_1opasesen16b50f32051204530na/5_1opasesen16b50f32051204530na_seg.nii.gz" + }, + { + "image": "102744/5_2opasesen16b50f33851204530na.nii.gz", + "pseudo_label": "102744/5_2opasesen16b50f33851204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102744/5_2opasesen16b50f33851204530na/5_2opasesen16b50f33851204530na_seg.nii.gz" + }, + { + "image": "102744/3_2opasesen16b30f30651204530na.nii.gz", + "pseudo_label": "102744/3_2opasesen16b30f30651204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102744/3_2opasesen16b30f30651204530na/3_2opasesen16b30f30651204530na_seg.nii.gz" + }, + { + "image": "102744/3_0opasesen16b30f28451204530na.nii.gz", + "pseudo_label": "102744/3_0opasesen16b30f28451204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102744/3_0opasesen16b30f28451204530na/3_0opasesen16b30f28451204530na_seg.nii.gz" + }, + { + "image": "102744/6_1opasesen16b30f32051204530na.nii.gz", + "pseudo_label": "102744/6_1opasesen16b30f32051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102744/6_1opasesen16b30f32051204530na/6_1opasesen16b30f32051204530na_seg.nii.gz" + }, + { + "image": "102744/7_0opasesen16b30f32551204530na.nii.gz", + "pseudo_label": "102744/7_0opasesen16b30f32551204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102744/7_0opasesen16b30f32551204530na/7_0opasesen16b30f32551204530na_seg.nii.gz" + }, + { + "image": "110175/2_1opagehsqxstandard29025120560115.nii.gz", + "pseudo_label": "110175/2_1opagehsqxstandard29025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110175/2_1opagehsqxstandard29025120560115/2_1opagehsqxstandard29025120560115_seg.nii.gz" + }, + { + "image": "110175/2_0opagehsqxstandard29025120640115.nii.gz", + "pseudo_label": "110175/2_0opagehsqxstandard29025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110175/2_0opagehsqxstandard29025120640115/2_0opagehsqxstandard29025120640115_seg.nii.gz" + }, + { + "image": "110175/3_2opagehsqxstandard29025120560115.nii.gz", + "pseudo_label": "110175/3_2opagehsqxstandard29025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110175/3_2opagehsqxstandard29025120560115/3_2opagehsqxstandard29025120560115_seg.nii.gz" + }, + { + "image": "109000/2_2opagelsqxstandard3502514048015.nii.gz", + "pseudo_label": "109000/2_2opagelsqxstandard3502514048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109000/2_2opagelsqxstandard3502514048015/2_2opagelsqxstandard3502514048015_seg.nii.gz" + }, + { + "image": "105346/2_2opagelspr16bone3602512048014.nii.gz", + "pseudo_label": "105346/2_2opagelspr16bone3602512048014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105346/2_2opagelspr16bone3602512048014/2_2opagelspr16bone3602512048014_seg.nii.gz" + }, + { + "image": "105346/3_2opagelspr16standard3602512048014.nii.gz", + "pseudo_label": "105346/3_2opagelspr16standard3602512048014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105346/3_2opagelspr16standard3602512048014/3_2opagelspr16standard3602512048014_seg.nii.gz" + }, + { + "image": "109880/2_2opagelsqxstandard3402512048015.nii.gz", + "pseudo_label": "109880/2_2opagelsqxstandard3402512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109880/2_2opagelsqxstandard3402512048015/2_2opagelsqxstandard3402512048015_seg.nii.gz" + }, + { + "image": "109880/2_0opagelsqxstandard3102512048015.nii.gz", + "pseudo_label": "109880/2_0opagelsqxstandard3102512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109880/2_0opagelsqxstandard3102512048015/2_0opagelsqxstandard3102512048015_seg.nii.gz" + }, + { + "image": "102716/3_2opatoaqul4fc513125212040nana.nii.gz", + "pseudo_label": "102716/3_2opatoaqul4fc513125212040nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102716/3_2opatoaqul4fc513125212040nana/3_2opatoaqul4fc513125212040nana_seg.nii.gz" + }, + { + "image": "102716/3_1opatoaqul4fc513105212050nana.nii.gz", + "pseudo_label": "102716/3_1opatoaqul4fc513105212050nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102716/3_1opatoaqul4fc513105212050nana/3_1opatoaqul4fc513105212050nana_seg.nii.gz" + }, + { + "image": "102716/4_0opatoaqul4fc513031212075nana.nii.gz", + "pseudo_label": "102716/4_0opatoaqul4fc513031212075nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102716/4_0opatoaqul4fc513031212075nana/4_0opatoaqul4fc513031212075nana_seg.nii.gz" + }, + { + "image": "106845/3_2opagelspr16standard3702512048014.nii.gz", + "pseudo_label": "106845/3_2opagelspr16standard3702512048014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106845/3_2opagelspr16standard3702512048014/3_2opagelspr16standard3702512048014_seg.nii.gz" + }, + { + "image": "106845/3_0opagels16standard3852512000na.nii.gz", + "pseudo_label": "106845/3_0opagels16standard3852512000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106845/3_0opagels16standard3852512000na/3_0opagels16standard3852512000na_seg.nii.gz" + }, + { + "image": "106845/2_2opagelspr16bone3702512048014.nii.gz", + "pseudo_label": "106845/2_2opagelspr16bone3702512048014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106845/2_2opagelspr16bone3702512048014/2_2opagelspr16bone3702512048014_seg.nii.gz" + }, + { + "image": "106845/3_1opagelspr16standard39125120560114.nii.gz", + "pseudo_label": "106845/3_1opagelspr16standard39125120560114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106845/3_1opagelspr16standard39125120560114/3_1opagelspr16standard39125120560114_seg.nii.gz" + }, + { + "image": "106845/2_0opagels16bone3852512000na.nii.gz", + "pseudo_label": "106845/2_0opagels16bone3852512000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106845/2_0opagels16bone3852512000na/2_0opagels16bone3852512000na_seg.nii.gz" + }, + { + "image": "113052/2016_2opaphmx8000d3293212039018.nii.gz", + "pseudo_label": "113052/2016_2opaphmx8000d3293212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113052/2016_2opaphmx8000d3293212039018/2016_2opaphmx8000d3293212039018_seg.nii.gz" + }, + { + "image": "101188/4_1opasevzoomb50f36651206030na.nii.gz", + "pseudo_label": "101188/4_1opasevzoomb50f36651206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101188/4_1opasevzoomb50f36651206030na/4_1opasevzoomb50f36651206030na_seg.nii.gz" + }, + { + "image": "101188/3_2opasesen16b30f37051204530na.nii.gz", + "pseudo_label": "101188/3_2opasesen16b30f37051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101188/3_2opasesen16b30f37051204530na/3_2opasesen16b30f37051204530na_seg.nii.gz" + }, + { + "image": "101188/7_2opasesen16b50f37051204530na.nii.gz", + "pseudo_label": "101188/7_2opasesen16b50f37051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101188/7_2opasesen16b50f37051204530na/7_2opasesen16b50f37051204530na_seg.nii.gz" + }, + { + "image": "101188/5_2opasesen16b30f37021204530na.nii.gz", + "pseudo_label": "101188/5_2opasesen16b30f37021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101188/5_2opasesen16b30f37021204530na/5_2opasesen16b30f37021204530na_seg.nii.gz" + }, + { + "image": "101188/4_0opasesen16b50f38051206040na.nii.gz", + "pseudo_label": "101188/4_0opasesen16b50f38051206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101188/4_0opasesen16b50f38051206040na/4_0opasesen16b50f38051206040na_seg.nii.gz" + }, + { + "image": "101188/6_2opasesen16b50f37021204530na.nii.gz", + "pseudo_label": "101188/6_2opasesen16b50f37021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101188/6_2opasesen16b50f37021204530na/6_2opasesen16b50f37021204530na_seg.nii.gz" + }, + { + "image": "101188/3_1opasevzoomb30f36651206030na.nii.gz", + "pseudo_label": "101188/3_1opasevzoomb30f36651206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101188/3_1opasevzoomb30f36651206030na/3_1opasevzoomb30f36651206030na_seg.nii.gz" + }, + { + "image": "101188/3_0opasesen16b30f38051206040na.nii.gz", + "pseudo_label": "101188/3_0opasesen16b30f38051206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101188/3_0opasesen16b30f38051206040na/3_0opasesen16b30f38051206040na_seg.nii.gz" + }, + { + "image": "102435/2_2opagelsqxstandard4302512048015.nii.gz", + "pseudo_label": "102435/2_2opagelsqxstandard4302512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102435/2_2opagelsqxstandard4302512048015/2_2opagelsqxstandard4302512048015_seg.nii.gz" + }, + { + "image": "106157/2_2opasesen16b30f30421204032na.nii.gz", + "pseudo_label": "106157/2_2opasesen16b30f30421204032na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106157/2_2opasesen16b30f30421204032na/2_2opasesen16b30f30421204032na_seg.nii.gz" + }, + { + "image": "103958/2_0opagelsqxstandard4202514040015.nii.gz", + "pseudo_label": "103958/2_0opagelsqxstandard4202514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103958/2_0opagelsqxstandard4202514040015/2_0opagelsqxstandard4202514040015_seg.nii.gz" + }, + { + "image": "103958/2_2opagelsqxstandard3402514040015.nii.gz", + "pseudo_label": "103958/2_2opagelsqxstandard3402514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103958/2_2opagelsqxstandard3402514040015/2_2opagelsqxstandard3402514040015_seg.nii.gz" + }, + { + "image": "105906/2_0opagelsqxbone3402512048015.nii.gz", + "pseudo_label": "105906/2_0opagelsqxbone3402512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105906/2_0opagelsqxbone3402512048015/2_0opagelsqxbone3402512048015_seg.nii.gz" + }, + { + "image": "105906/3_0opagelsqxstandard3402512048015.nii.gz", + "pseudo_label": "105906/3_0opagelsqxstandard3402512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105906/3_0opagelsqxstandard3402512048015/3_0opagelsqxstandard3402512048015_seg.nii.gz" + }, + { + "image": "103995/2_1opasesen16b30f35021204032na.nii.gz", + "pseudo_label": "103995/2_1opasesen16b30f35021204032na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103995/2_1opasesen16b30f35021204032na/2_1opasesen16b30f35021204032na_seg.nii.gz" + }, + { + "image": "110507/3_0opagehsqxbone34025120560115.nii.gz", + "pseudo_label": "110507/3_0opagehsqxbone34025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110507/3_0opagehsqxbone34025120560115/3_0opagehsqxbone34025120560115_seg.nii.gz" + }, + { + "image": "110507/3_2opagehsqxbone34025120560115.nii.gz", + "pseudo_label": "110507/3_2opagehsqxbone34025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110507/3_2opagehsqxbone34025120560115/3_2opagehsqxbone34025120560115_seg.nii.gz" + }, + { + "image": "110507/2_0opagehsqxstandard34025120560115.nii.gz", + "pseudo_label": "110507/2_0opagehsqxstandard34025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110507/2_0opagehsqxstandard34025120560115/2_0opagehsqxstandard34025120560115_seg.nii.gz" + }, + { + "image": "110507/2_2opagehsqxstandard34025120560115.nii.gz", + "pseudo_label": "110507/2_2opagehsqxstandard34025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110507/2_2opagehsqxstandard34025120560115/2_2opagehsqxstandard34025120560115_seg.nii.gz" + }, + { + "image": "110821/3_2opasevzoomb30f35621206030na.nii.gz", + "pseudo_label": "110821/3_2opasevzoomb30f35621206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110821/3_2opasevzoomb30f35621206030na/3_2opasevzoomb30f35621206030na_seg.nii.gz" + }, + { + "image": "103341/3_1opasevzoomb50f35021408040na.nii.gz", + "pseudo_label": "103341/3_1opasevzoomb50f35021408040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103341/3_1opasevzoomb50f35021408040na/3_1opasevzoomb50f35021408040na_seg.nii.gz" + }, + { + "image": "103341/2_1opasevzoomb30f35021408040na.nii.gz", + "pseudo_label": "103341/2_1opasevzoomb30f35021408040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103341/2_1opasevzoomb30f35021408040na/2_1opasevzoomb30f35021408040na_seg.nii.gz" + }, + { + "image": "108597/2_1opagelspr16bone3102512040014.nii.gz", + "pseudo_label": "108597/2_1opagelspr16bone3102512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108597/2_1opagelspr16bone3102512040014/2_1opagelspr16bone3102512040014_seg.nii.gz" + }, + { + "image": "108597/3_1opagelspr16standard3102512040014.nii.gz", + "pseudo_label": "108597/3_1opagelspr16standard3102512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108597/3_1opagelspr16standard3102512040014/3_1opagelspr16standard3102512040014_seg.nii.gz" + }, + { + "image": "108597/3_0opagels16standard3602512000na.nii.gz", + "pseudo_label": "108597/3_0opagels16standard3602512000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108597/3_0opagels16standard3602512000na/3_0opagels16standard3602512000na_seg.nii.gz" + }, + { + "image": "108597/2_2opagels16bone3312512040014.nii.gz", + "pseudo_label": "108597/2_2opagels16bone3312512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108597/2_2opagels16bone3312512040014/2_2opagels16bone3312512040014_seg.nii.gz" + }, + { + "image": "103371/101_0opasevzoomb30f37821207540na.nii.gz", + "pseudo_label": "103371/101_0opasevzoomb30f37821207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103371/101_0opasevzoomb30f37821207540na/101_0opasevzoomb30f37821207540na_seg.nii.gz" + }, + { + "image": "103371/2_1opasevzoomb30f37221207540na.nii.gz", + "pseudo_label": "103371/2_1opasevzoomb30f37221207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103371/2_1opasevzoomb30f37221207540na/2_1opasevzoomb30f37221207540na_seg.nii.gz" + }, + { + "image": "103371/3_2opasevzoomb50f38621207540na.nii.gz", + "pseudo_label": "103371/3_2opasevzoomb50f38621207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103371/3_2opasevzoomb50f38621207540na/3_2opasevzoomb50f38621207540na_seg.nii.gz" + }, + { + "image": "110273/4_1opatoaqul4fc513535212080nana.nii.gz", + "pseudo_label": "110273/4_1opatoaqul4fc513535212080nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110273/4_1opatoaqul4fc513535212080nana/4_1opatoaqul4fc513535212080nana_seg.nii.gz" + }, + { + "image": "103959/6_0opasesen16b30f31621206040na.nii.gz", + "pseudo_label": "103959/6_0opasesen16b30f31621206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103959/6_0opasesen16b30f31621206040na/6_0opasesen16b30f31621206040na_seg.nii.gz" + }, + { + "image": "103959/6_2opasesen16b50f30051204530na.nii.gz", + "pseudo_label": "103959/6_2opasesen16b50f30051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103959/6_2opasesen16b50f30051204530na/6_2opasesen16b50f30051204530na_seg.nii.gz" + }, + { + "image": "103959/5_2opasesen16b30f30021204530na.nii.gz", + "pseudo_label": "103959/5_2opasesen16b30f30021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103959/5_2opasesen16b30f30021204530na/5_2opasesen16b30f30021204530na_seg.nii.gz" + }, + { + "image": "103959/6_1opasesen16b50f30021204530na.nii.gz", + "pseudo_label": "103959/6_1opasesen16b50f30021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103959/6_1opasesen16b50f30021204530na/6_1opasesen16b50f30021204530na_seg.nii.gz" + }, + { + "image": "103959/4_2opasesen16b30f30051204530na.nii.gz", + "pseudo_label": "103959/4_2opasesen16b30f30051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103959/4_2opasesen16b30f30051204530na/4_2opasesen16b30f30051204530na_seg.nii.gz" + }, + { + "image": "103959/5_1opasesen16b50f30051204530na.nii.gz", + "pseudo_label": "103959/5_1opasesen16b50f30051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103959/5_1opasesen16b50f30051204530na/5_1opasesen16b50f30051204530na_seg.nii.gz" + }, + { + "image": "103959/7_2opasesen16b50f30021204530na.nii.gz", + "pseudo_label": "103959/7_2opasesen16b50f30021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103959/7_2opasesen16b50f30021204530na/7_2opasesen16b50f30021204530na_seg.nii.gz" + }, + { + "image": "103959/3_1opasesen16b30f30051204530na.nii.gz", + "pseudo_label": "103959/3_1opasesen16b30f30051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103959/3_1opasesen16b30f30051204530na/3_1opasesen16b30f30051204530na_seg.nii.gz" + }, + { + "image": "103959/4_0opasesen16b50f31651206040na.nii.gz", + "pseudo_label": "103959/4_0opasesen16b50f31651206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103959/4_0opasesen16b50f31651206040na/4_0opasesen16b50f31651206040na_seg.nii.gz" + }, + { + "image": "103959/3_0opasesen16b30f31651206040na.nii.gz", + "pseudo_label": "103959/3_0opasesen16b30f31651206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103959/3_0opasesen16b30f31651206040na/3_0opasesen16b30f31651206040na_seg.nii.gz" + }, + { + "image": "107250/0_0opaphmx8000d36532120600112.nii.gz", + "pseudo_label": "107250/0_0opaphmx8000d36532120600112.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107250/0_0opaphmx8000d36532120600112/0_0opaphmx8000d36532120600112_seg.nii.gz" + }, + { + "image": "107250/510_2opaphmx8000c3243212039018.nii.gz", + "pseudo_label": "107250/510_2opaphmx8000c3243212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107250/510_2opaphmx8000c3243212039018/510_2opaphmx8000c3243212039018_seg.nii.gz" + }, + { + "image": "107250/509_2opaphmx8000d3243212039018.nii.gz", + "pseudo_label": "107250/509_2opaphmx8000d3243212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107250/509_2opaphmx8000d3243212039018/509_2opaphmx8000d3243212039018_seg.nii.gz" + }, + { + "image": "107475/4220_2opaphmx8000d3083212039018.nii.gz", + "pseudo_label": "107475/4220_2opaphmx8000d3083212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107475/4220_2opaphmx8000d3083212039018/4220_2opaphmx8000d3083212039018_seg.nii.gz" + }, + { + "image": "107475/4221_2opaphmx8000c3083212039018.nii.gz", + "pseudo_label": "107475/4221_2opaphmx8000c3083212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107475/4221_2opaphmx8000c3083212039018/4221_2opaphmx8000c3083212039018_seg.nii.gz" + }, + { + "image": "107475/305_1opaphmx8000c3133212039018.nii.gz", + "pseudo_label": "107475/305_1opaphmx8000c3133212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107475/305_1opaphmx8000c3133212039018/305_1opaphmx8000c3133212039018_seg.nii.gz" + }, + { + "image": "107885/2_1opagelsplusstandard3202514000na.nii.gz", + "pseudo_label": "107885/2_1opagelsplusstandard3202514000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107885/2_1opagelsplusstandard3202514000na/2_1opagelsplusstandard3202514000na_seg.nii.gz" + }, + { + "image": "107885/2_2opagelsqxstandard3402514000na.nii.gz", + "pseudo_label": "107885/2_2opagelsqxstandard3402514000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107885/2_2opagelsqxstandard3402514000na/2_2opagelsqxstandard3402514000na_seg.nii.gz" + }, + { + "image": "107885/2_0opagelsqxstandard3432514000na.nii.gz", + "pseudo_label": "107885/2_0opagelsqxstandard3432514000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107885/2_0opagelsqxstandard3432514000na/2_0opagelsqxstandard3432514000na_seg.nii.gz" + }, + { + "image": "108601/2_0opasevzoomb30f36221207540na.nii.gz", + "pseudo_label": "108601/2_0opasevzoomb30f36221207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108601/2_0opasevzoomb30f36221207540na/2_0opasevzoomb30f36221207540na_seg.nii.gz" + }, + { + "image": "108601/3_0opasevzoomb50f36221207540na.nii.gz", + "pseudo_label": "108601/3_0opasevzoomb50f36221207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108601/3_0opasevzoomb50f36221207540na/3_0opasevzoomb50f36221207540na_seg.nii.gz" + }, + { + "image": "102796/2_2opagels16standard32025120nanana.nii.gz", + "pseudo_label": "102796/2_2opagels16standard32025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102796/2_2opagels16standard32025120nanana/2_2opagels16standard32025120nanana_seg.nii.gz" + }, + { + "image": "102796/3_1opagels16bone32025120nanana.nii.gz", + "pseudo_label": "102796/3_1opagels16bone32025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102796/3_1opagels16bone32025120nanana/3_1opagels16bone32025120nanana_seg.nii.gz" + }, + { + "image": "102796/3_0opagelsqxbone32025120nanana.nii.gz", + "pseudo_label": "102796/3_0opagelsqxbone32025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102796/3_0opagelsqxbone32025120nanana/3_0opagelsqxbone32025120nanana_seg.nii.gz" + }, + { + "image": "102796/3_2opagels16bone32025120nanana.nii.gz", + "pseudo_label": "102796/3_2opagels16bone32025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102796/3_2opagels16bone32025120nanana/3_2opagels16bone32025120nanana_seg.nii.gz" + }, + { + "image": "106050/2_0opagelsplusstandard27525120600115.nii.gz", + "pseudo_label": "106050/2_0opagelsplusstandard27525120600115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106050/2_0opagelsplusstandard27525120600115/2_0opagelsplusstandard27525120600115_seg.nii.gz" + }, + { + "image": "104428/2_2opagelsqxstandard36025120640115.nii.gz", + "pseudo_label": "104428/2_2opagelsqxstandard36025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104428/2_2opagelsqxstandard36025120640115/2_2opagelsqxstandard36025120640115_seg.nii.gz" + }, + { + "image": "104428/2_1opagelsqxstandard33125120640115.nii.gz", + "pseudo_label": "104428/2_1opagelsqxstandard33125120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104428/2_1opagelsqxstandard33125120640115/2_1opagelsqxstandard33125120640115_seg.nii.gz" + }, + { + "image": "103600/2_0opagelsqxstandard36025120640115.nii.gz", + "pseudo_label": "103600/2_0opagelsqxstandard36025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103600/2_0opagelsqxstandard36025120640115/2_0opagelsqxstandard36025120640115_seg.nii.gz" + }, + { + "image": "105903/3_2opasevzoomb30f32021206030na.nii.gz", + "pseudo_label": "105903/3_2opasevzoomb30f32021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105903/3_2opasevzoomb30f32021206030na/3_2opasevzoomb30f32021206030na_seg.nii.gz" + }, + { + "image": "106012/4_2opasevzoomb50f38051206030na.nii.gz", + "pseudo_label": "106012/4_2opasevzoomb50f38051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106012/4_2opasevzoomb50f38051206030na/4_2opasevzoomb50f38051206030na_seg.nii.gz" + }, + { + "image": "108116/3_1opatoaqul4fc513094212040nana.nii.gz", + "pseudo_label": "108116/3_1opatoaqul4fc513094212040nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108116/3_1opatoaqul4fc513094212040nana/3_1opatoaqul4fc513094212040nana_seg.nii.gz" + }, + { + "image": "108116/3_2opatoaqul4fc513109212040nana.nii.gz", + "pseudo_label": "108116/3_2opatoaqul4fc513109212040nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108116/3_2opatoaqul4fc513109212040nana/3_2opatoaqul4fc513109212040nana_seg.nii.gz" + }, + { + "image": "100955/2_2opagels16bone36025140720114.nii.gz", + "pseudo_label": "100955/2_2opagels16bone36025140720114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100955/2_2opagels16bone36025140720114/2_2opagels16bone36025140720114_seg.nii.gz" + }, + { + "image": "104305/2_2opasevzoomb50f36021206030na.nii.gz", + "pseudo_label": "104305/2_2opasevzoomb50f36021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104305/2_2opasevzoomb50f36021206030na/2_2opasevzoomb50f36021206030na_seg.nii.gz" + }, + { + "image": "101946/2_1opagels16bone2702512000na.nii.gz", + "pseudo_label": "101946/2_1opagels16bone2702512000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101946/2_1opagels16bone2702512000na/2_1opagels16bone2702512000na_seg.nii.gz" + }, + { + "image": "112202/2_0opagelsqxstandard37025120nanana.nii.gz", + "pseudo_label": "112202/2_0opagelsqxstandard37025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112202/2_0opagelsqxstandard37025120nanana/2_0opagelsqxstandard37025120nanana_seg.nii.gz" + }, + { + "image": "106025/1_1opagelsplusstandard36025120800115.nii.gz", + "pseudo_label": "106025/1_1opagelsplusstandard36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106025/1_1opagelsplusstandard36025120800115/1_1opagelsplusstandard36025120800115_seg.nii.gz" + }, + { + "image": "103039/2_0opagelsqxstandard30025120nanana.nii.gz", + "pseudo_label": "103039/2_0opagelsqxstandard30025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103039/2_0opagelsqxstandard30025120nanana/2_0opagelsqxstandard30025120nanana_seg.nii.gz" + }, + { + "image": "111642/5542_1opaphmx8000c34132120453612.nii.gz", + "pseudo_label": "111642/5542_1opaphmx8000c34132120453612.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111642/5542_1opaphmx8000c34132120453612/5542_1opaphmx8000c34132120453612_seg.nii.gz" + }, + { + "image": "109731/5_1opasesen16b50f35451204530na.nii.gz", + "pseudo_label": "109731/5_1opasesen16b50f35451204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109731/5_1opasesen16b50f35451204530na/5_1opasesen16b50f35451204530na_seg.nii.gz" + }, + { + "image": "109731/5_2opasesen16b30f35621204530na.nii.gz", + "pseudo_label": "109731/5_2opasesen16b30f35621204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109731/5_2opasesen16b30f35621204530na/5_2opasesen16b30f35621204530na_seg.nii.gz" + }, + { + "image": "107758/2_1opagelsplusstandard34025140861nana.nii.gz", + "pseudo_label": "107758/2_1opagelsplusstandard34025140861nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107758/2_1opagelsplusstandard34025140861nana/2_1opagelsplusstandard34025140861nana_seg.nii.gz" + }, + { + "image": "111230/1_2opagelspluslung34025120800115.nii.gz", + "pseudo_label": "111230/1_2opagelspluslung34025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111230/1_2opagelspluslung34025120800115/1_2opagelspluslung34025120800115_seg.nii.gz" + }, + { + "image": "107341/2_0opasevzoomb50f33021206030na.nii.gz", + "pseudo_label": "107341/2_0opasevzoomb50f33021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107341/2_0opasevzoomb50f33021206030na/2_0opasevzoomb50f33021206030na_seg.nii.gz" + }, + { + "image": "109135/7954_0opaphmx8000d3403212039018.nii.gz", + "pseudo_label": "109135/7954_0opaphmx8000d3403212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109135/7954_0opaphmx8000d3403212039018/7954_0opaphmx8000d3403212039018_seg.nii.gz" + }, + { + "image": "106204/2_0opasesen16b30f28221206048na.nii.gz", + "pseudo_label": "106204/2_0opasesen16b30f28221206048na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106204/2_0opasesen16b30f28221206048na/2_0opasesen16b30f28221206048na_seg.nii.gz" + }, + { + "image": "109965/5_1opasevzoomb30f27451206030na.nii.gz", + "pseudo_label": "109965/5_1opasevzoomb30f27451206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109965/5_1opasevzoomb30f27451206030na/5_1opasevzoomb30f27451206030na_seg.nii.gz" + }, + { + "image": "105749/6_0opasesen16b30f29821206040na.nii.gz", + "pseudo_label": "105749/6_0opasesen16b30f29821206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105749/6_0opasesen16b30f29821206040na/6_0opasesen16b30f29821206040na_seg.nii.gz" + }, + { + "image": "103416/7712_2opaphmx8000c3353212039018.nii.gz", + "pseudo_label": "103416/7712_2opaphmx8000c3353212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103416/7712_2opaphmx8000c3353212039018/7712_2opaphmx8000c3353212039018_seg.nii.gz" + }, + { + "image": "113307/1_1opagelsplusstandard34025120800115.nii.gz", + "pseudo_label": "113307/1_1opagelsplusstandard34025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113307/1_1opagelsplusstandard34025120800115/1_1opagelsplusstandard34025120800115_seg.nii.gz" + }, + { + "image": "102000/2_2opagelsqxstandard36025120640115.nii.gz", + "pseudo_label": "102000/2_2opagelsqxstandard36025120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102000/2_2opagelsqxstandard36025120640115/2_2opagelsqxstandard36025120640115_seg.nii.gz" + }, + { + "image": "110461/4_2opasesen16b30f32821204530na.nii.gz", + "pseudo_label": "110461/4_2opasesen16b30f32821204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110461/4_2opasesen16b30f32821204530na/4_2opasesen16b30f32821204530na_seg.nii.gz" + }, + { + "image": "110461/6_2opasesen16b60f32821204530na.nii.gz", + "pseudo_label": "110461/6_2opasesen16b60f32821204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110461/6_2opasesen16b60f32821204530na/6_2opasesen16b60f32821204530na_seg.nii.gz" + }, + { + "image": "107524/5_0opasesen16b30f30021204530na.nii.gz", + "pseudo_label": "107524/5_0opasesen16b30f30021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107524/5_0opasesen16b30f30021204530na/5_0opasesen16b30f30021204530na_seg.nii.gz" + }, + { + "image": "100224/3_0opagelsqxstandard3632512048015.nii.gz", + "pseudo_label": "100224/3_0opagelsqxstandard3632512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100224/3_0opagelsqxstandard3632512048015/3_0opagelsqxstandard3632512048015_seg.nii.gz" + }, + { + "image": "111712/77_2opaphmx8000c3293212039018.nii.gz", + "pseudo_label": "111712/77_2opaphmx8000c3293212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111712/77_2opaphmx8000c3293212039018/77_2opaphmx8000c3293212039018_seg.nii.gz" + }, + { + "image": "109142/3_2opasevzoomb50f34021207540na.nii.gz", + "pseudo_label": "109142/3_2opasevzoomb50f34021207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109142/3_2opasevzoomb50f34021207540na/3_2opasevzoomb50f34021207540na_seg.nii.gz" + }, + { + "image": "107188/2_2opagels16standard3502514040014.nii.gz", + "pseudo_label": "107188/2_2opagels16standard3502514040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107188/2_2opagels16standard3502514040014/2_2opagels16standard3502514040014_seg.nii.gz" + }, + { + "image": "107861/5_2opasevzoomb30f40051206030na.nii.gz", + "pseudo_label": "107861/5_2opasevzoomb30f40051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107861/5_2opasevzoomb30f40051206030na/5_2opasevzoomb30f40051206030na_seg.nii.gz" + }, + { + "image": "107639/3_2opagelsqxbone35225120640115.nii.gz", + "pseudo_label": "107639/3_2opagelsqxbone35225120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107639/3_2opagelsqxbone35225120640115/3_2opagelsqxbone35225120640115_seg.nii.gz" + }, + { + "image": "106647/2_1opagelsqxstandard3602512048015.nii.gz", + "pseudo_label": "106647/2_1opagelsqxstandard3602512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106647/2_1opagelsqxstandard3602512048015/2_1opagelsqxstandard3602512048015_seg.nii.gz" + }, + { + "image": "106663/2_1opagelsqxstandard3502514040015.nii.gz", + "pseudo_label": "106663/2_1opagelsqxstandard3502514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106663/2_1opagelsqxstandard3502514040015/2_1opagelsqxstandard3502514040015_seg.nii.gz" + }, + { + "image": "102749/3_1opasevzoomb30f37021206030na.nii.gz", + "pseudo_label": "102749/3_1opasevzoomb30f37021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102749/3_1opasevzoomb30f37021206030na/3_1opasevzoomb30f37021206030na_seg.nii.gz" + }, + { + "image": "109113/2_0opasevzoomb50f360212012060na.nii.gz", + "pseudo_label": "109113/2_0opasevzoomb50f360212012060na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109113/2_0opasevzoomb50f360212012060na/2_0opasevzoomb50f360212012060na_seg.nii.gz" + }, + { + "image": "106552/4_0opasevzoomb50f35021208040na.nii.gz", + "pseudo_label": "106552/4_0opasevzoomb50f35021208040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106552/4_0opasevzoomb50f35021208040na/4_0opasevzoomb50f35021208040na_seg.nii.gz" + }, + { + "image": "112302/3_2opagelspr16standard2802512040014.nii.gz", + "pseudo_label": "112302/3_2opagelspr16standard2802512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112302/3_2opagelspr16standard2802512040014/3_2opagelspr16standard2802512040014_seg.nii.gz" + }, + { + "image": "102808/2_1opasesen16b30f35621204032na.nii.gz", + "pseudo_label": "102808/2_1opasesen16b30f35621204032na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102808/2_1opasesen16b30f35621204032na/2_1opasesen16b30f35621204032na_seg.nii.gz" + }, + { + "image": "105302/2_2opasevzoomb30f38021206030na.nii.gz", + "pseudo_label": "105302/2_2opasevzoomb30f38021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105302/2_2opasevzoomb30f38021206030na/2_2opasevzoomb30f38021206030na_seg.nii.gz" + }, + { + "image": "110017/2_2opagelsqxstandard3702512048015.nii.gz", + "pseudo_label": "110017/2_2opagelsqxstandard3702512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110017/2_2opagelsqxstandard3702512048015/2_2opagelsqxstandard3702512048015_seg.nii.gz" + }, + { + "image": "106800/3_1opagehsqxbone35025120560115.nii.gz", + "pseudo_label": "106800/3_1opagehsqxbone35025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106800/3_1opagehsqxbone35025120560115/3_1opagehsqxbone35025120560115_seg.nii.gz" + }, + { + "image": "106811/3_1opasevzoomb50f26021206030na.nii.gz", + "pseudo_label": "106811/3_1opasevzoomb50f26021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106811/3_1opasevzoomb50f26021206030na/3_1opasevzoomb50f26021206030na_seg.nii.gz" + }, + { + "image": "103519/526_1opaphmx8000d3633212039018.nii.gz", + "pseudo_label": "103519/526_1opaphmx8000d3633212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103519/526_1opaphmx8000d3633212039018/526_1opaphmx8000d3633212039018_seg.nii.gz" + }, + { + "image": "105211/6_0opasevzoomb30f41421206030na.nii.gz", + "pseudo_label": "105211/6_0opasevzoomb30f41421206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105211/6_0opasevzoomb30f41421206030na/6_0opasevzoomb30f41421206030na_seg.nii.gz" + }, + { + "image": "108547/3_1opagels16standard30025120600114.nii.gz", + "pseudo_label": "108547/3_1opagels16standard30025120600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108547/3_1opagels16standard30025120600114/3_1opagels16standard30025120600114_seg.nii.gz" + }, + { + "image": "101190/3_0opagels16standard3792512000na.nii.gz", + "pseudo_label": "101190/3_0opagels16standard3792512000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101190/3_0opagels16standard3792512000na/3_0opagels16standard3792512000na_seg.nii.gz" + }, + { + "image": "101972/2_1opasevzoomb30f34221207540na.nii.gz", + "pseudo_label": "101972/2_1opasevzoomb30f34221207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101972/2_1opasevzoomb30f34221207540na/2_1opasevzoomb30f34221207540na_seg.nii.gz" + }, + { + "image": "109999/3_1opagehsqxbone31025120560115.nii.gz", + "pseudo_label": "109999/3_1opagehsqxbone31025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109999/3_1opagehsqxbone31025120560115/3_1opagehsqxbone31025120560115_seg.nii.gz" + }, + { + "image": "103996/3_1opagels16bone29025120600114.nii.gz", + "pseudo_label": "103996/3_1opagels16bone29025120600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103996/3_1opagels16bone29025120600114/3_1opagels16bone29025120600114_seg.nii.gz" + }, + { + "image": "108878/2_2opasesen16b30f30021204032na.nii.gz", + "pseudo_label": "108878/2_2opasesen16b30f30021204032na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108878/2_2opasesen16b30f30021204032na/2_2opasesen16b30f30021204032na_seg.nii.gz" + }, + { + "image": "112583/2_1opagelsqxstandard36525120640115.nii.gz", + "pseudo_label": "112583/2_1opagelsqxstandard36525120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112583/2_1opagelsqxstandard36525120640115/2_1opagelsqxstandard36525120640115_seg.nii.gz" + }, + { + "image": "112693/3_1opatoaqul4fc513418212080nana.nii.gz", + "pseudo_label": "112693/3_1opatoaqul4fc513418212080nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112693/3_1opatoaqul4fc513418212080nana/3_1opatoaqul4fc513418212080nana_seg.nii.gz" + }, + { + "image": "112575/4_0opasevzoomb50f36651206030na.nii.gz", + "pseudo_label": "112575/4_0opasevzoomb50f36651206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112575/4_0opasevzoomb50f36651206030na/4_0opasevzoomb50f36651206030na_seg.nii.gz" + }, + { + "image": "109906/2_0opagelsplusstandard3002514040015.nii.gz", + "pseudo_label": "109906/2_0opagelsplusstandard3002514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109906/2_0opagelsplusstandard3002514040015/2_0opagelsplusstandard3002514040015_seg.nii.gz" + }, + { + "image": "101845/3_2opatoaqul4fc51300212045nana.nii.gz", + "pseudo_label": "101845/3_2opatoaqul4fc51300212045nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101845/3_2opatoaqul4fc51300212045nana/3_2opatoaqul4fc51300212045nana_seg.nii.gz" + }, + { + "image": "102821/3_1opatoaqul4fc513203212050nana.nii.gz", + "pseudo_label": "102821/3_1opatoaqul4fc513203212050nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102821/3_1opatoaqul4fc513203212050nana/3_1opatoaqul4fc513203212050nana_seg.nii.gz" + }, + { + "image": "108580/2_0opagels16standard3302512048014.nii.gz", + "pseudo_label": "108580/2_0opagels16standard3302512048014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108580/2_0opagels16standard3302512048014/2_0opagels16standard3302512048014_seg.nii.gz" + }, + { + "image": "100530/2_0opagehsqxstandard30025120560115.nii.gz", + "pseudo_label": "100530/2_0opagehsqxstandard30025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100530/2_0opagehsqxstandard30025120560115/2_0opagehsqxstandard30025120560115_seg.nii.gz" + }, + { + "image": "112697/3_0opasesen16b30f36251206040na.nii.gz", + "pseudo_label": "112697/3_0opasesen16b30f36251206040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112697/3_0opasesen16b30f36251206040na/3_0opasesen16b30f36251206040na_seg.nii.gz" + }, + { + "image": "112697/4_1opasesen16b30f32021204530na.nii.gz", + "pseudo_label": "112697/4_1opasesen16b30f32021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112697/4_1opasesen16b30f32021204530na/4_1opasesen16b30f32021204530na_seg.nii.gz" + }, + { + "image": "100064/3_0opatoaqul4fc512793212050nana.nii.gz", + "pseudo_label": "100064/3_0opatoaqul4fc512793212050nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100064/3_0opatoaqul4fc512793212050nana/3_0opatoaqul4fc512793212050nana_seg.nii.gz" + }, + { + "image": "103685/3_0opasevzoomb30f31021206030na.nii.gz", + "pseudo_label": "103685/3_0opasevzoomb30f31021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103685/3_0opasevzoomb30f31021206030na/3_0opasevzoomb30f31021206030na_seg.nii.gz" + }, + { + "image": "111047/2_2opagels16standard32025120464nana.nii.gz", + "pseudo_label": "111047/2_2opagels16standard32025120464nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111047/2_2opagels16standard32025120464nana/2_2opagels16standard32025120464nana_seg.nii.gz" + }, + { + "image": "103662/2_1opagelsqxstandard3102514048015.nii.gz", + "pseudo_label": "103662/2_1opagelsqxstandard3102514048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103662/2_1opagelsqxstandard3102514048015/2_1opagelsqxstandard3102514048015_seg.nii.gz" + }, + { + "image": "101483/3_2opatoaqul4fc513105212060nana.nii.gz", + "pseudo_label": "101483/3_2opatoaqul4fc513105212060nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101483/3_2opatoaqul4fc513105212060nana/3_2opatoaqul4fc513105212060nana_seg.nii.gz" + }, + { + "image": "102756/2_0opagelsplusstandard3202514040015.nii.gz", + "pseudo_label": "102756/2_0opagelsplusstandard3202514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102756/2_0opagelsplusstandard3202514040015/2_0opagelsplusstandard3202514040015_seg.nii.gz" + }, + { + "image": "102910/1_1opagelsplusstandard32025120800115.nii.gz", + "pseudo_label": "102910/1_1opagelsplusstandard32025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102910/1_1opagelsplusstandard32025120800115/1_1opagelsplusstandard32025120800115_seg.nii.gz" + }, + { + "image": "112474/2_0opagehsqxstandard37025120560115.nii.gz", + "pseudo_label": "112474/2_0opagehsqxstandard37025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112474/2_0opagehsqxstandard37025120560115/2_0opagehsqxstandard37025120560115_seg.nii.gz" + }, + { + "image": "112707/3_2opasevzoomb50f34421207540na.nii.gz", + "pseudo_label": "112707/3_2opasevzoomb50f34421207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112707/3_2opasevzoomb50f34421207540na/3_2opasevzoomb50f34421207540na_seg.nii.gz" + }, + { + "image": "108279/5_1opasevzoomb30f35851206030na.nii.gz", + "pseudo_label": "108279/5_1opasevzoomb30f35851206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108279/5_1opasevzoomb30f35851206030na/5_1opasevzoomb30f35851206030na_seg.nii.gz" + }, + { + "image": "108279/4_1opasevzoomb50f35851206030na.nii.gz", + "pseudo_label": "108279/4_1opasevzoomb50f35851206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108279/4_1opasevzoomb50f35851206030na/4_1opasevzoomb50f35851206030na_seg.nii.gz" + }, + { + "image": "103680/2_0opagels16bone34025120600114.nii.gz", + "pseudo_label": "103680/2_0opagels16bone34025120600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103680/2_0opagels16bone34025120600114/2_0opagels16bone34025120600114_seg.nii.gz" + }, + { + "image": "105676/2_2opasevzoomb50f33021206030na.nii.gz", + "pseudo_label": "105676/2_2opasevzoomb50f33021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105676/2_2opasevzoomb50f33021206030na/2_2opasevzoomb50f33021206030na_seg.nii.gz" + }, + { + "image": "110519/1_1opagelsplusstandard39025120800115.nii.gz", + "pseudo_label": "110519/1_1opagelsplusstandard39025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110519/1_1opagelsplusstandard39025120800115/1_1opagelsplusstandard39025120800115_seg.nii.gz" + }, + { + "image": "108936/5_0opasevzoomb30f36051206030na.nii.gz", + "pseudo_label": "108936/5_0opasevzoomb30f36051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108936/5_0opasevzoomb30f36051206030na/5_0opasevzoomb30f36051206030na_seg.nii.gz" + }, + { + "image": "108936/3_1opasevzoomb50f39021206030na.nii.gz", + "pseudo_label": "108936/3_1opasevzoomb50f39021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108936/3_1opasevzoomb50f39021206030na/3_1opasevzoomb50f39021206030na_seg.nii.gz" + }, + { + "image": "111202/2_1opagelsplusstandard27425120600115.nii.gz", + "pseudo_label": "111202/2_1opagelsplusstandard27425120600115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111202/2_1opagelsplusstandard27425120600115/2_1opagelsplusstandard27425120600115_seg.nii.gz" + }, + { + "image": "105996/1_0opagelsplusstandard33025120800108.nii.gz", + "pseudo_label": "105996/1_0opagelsplusstandard33025120800108.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105996/1_0opagelsplusstandard33025120800108/1_0opagelsplusstandard33025120800108_seg.nii.gz" + }, + { + "image": "111438/4_2opasesen16b30f33821204530na.nii.gz", + "pseudo_label": "111438/4_2opasesen16b30f33821204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111438/4_2opasesen16b30f33821204530na/4_2opasesen16b30f33821204530na_seg.nii.gz" + }, + { + "image": "101536/2_1opagels16bone36025120560114.nii.gz", + "pseudo_label": "101536/2_1opagels16bone36025120560114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101536/2_1opagels16bone36025120560114/2_1opagels16bone36025120560114_seg.nii.gz" + }, + { + "image": "100856/2_0opagelsplusstandard3202514040015.nii.gz", + "pseudo_label": "100856/2_0opagelsplusstandard3202514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100856/2_0opagelsplusstandard3202514040015/2_0opagelsplusstandard3202514040015_seg.nii.gz" + }, + { + "image": "111204/3_0opasevzoomb30f35021206030na.nii.gz", + "pseudo_label": "111204/3_0opasevzoomb30f35021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111204/3_0opasevzoomb30f35021206030na/3_0opasevzoomb30f35021206030na_seg.nii.gz" + }, + { + "image": "102023/5_0opasevzoomb30f370212012060na.nii.gz", + "pseudo_label": "102023/5_0opasevzoomb30f370212012060na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102023/5_0opasevzoomb30f370212012060na/5_0opasevzoomb30f370212012060na_seg.nii.gz" + }, + { + "image": "108316/3_0opagels16standard33025140600114.nii.gz", + "pseudo_label": "108316/3_0opagels16standard33025140600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108316/3_0opagels16standard33025140600114/3_0opagels16standard33025140600114_seg.nii.gz" + }, + { + "image": "110265/2_0opasevzoomb50f32021206030na.nii.gz", + "pseudo_label": "110265/2_0opasevzoomb50f32021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110265/2_0opasevzoomb50f32021206030na/2_0opasevzoomb50f32021206030na_seg.nii.gz" + }, + { + "image": "109107/2_0opagelsplusstandard33025140400na.nii.gz", + "pseudo_label": "109107/2_0opagelsplusstandard33025140400na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109107/2_0opagelsplusstandard33025140400na/2_0opagelsplusstandard33025140400na_seg.nii.gz" + }, + { + "image": "109445/2_1opagels16bone3522512000na.nii.gz", + "pseudo_label": "109445/2_1opagels16bone3522512000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109445/2_1opagels16bone3522512000na/2_1opagels16bone3522512000na_seg.nii.gz" + }, + { + "image": "108178/2_2opagehsqxstandard31025120560115.nii.gz", + "pseudo_label": "108178/2_2opagehsqxstandard31025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108178/2_2opagehsqxstandard31025120560115/2_2opagehsqxstandard31025120560115_seg.nii.gz" + }, + { + "image": "100877/4_0opasevzoomb50f40021207540na.nii.gz", + "pseudo_label": "100877/4_0opasevzoomb50f40021207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100877/4_0opasevzoomb50f40021207540na/4_0opasevzoomb50f40021207540na_seg.nii.gz" + }, + { + "image": "102522/3_2opatoaqul4fc513094212040nana.nii.gz", + "pseudo_label": "102522/3_2opatoaqul4fc513094212040nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102522/3_2opatoaqul4fc513094212040nana/3_2opatoaqul4fc513094212040nana_seg.nii.gz" + }, + { + "image": "104136/2_0opasesen16b30f35021204032na.nii.gz", + "pseudo_label": "104136/2_0opasesen16b30f35021204032na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104136/2_0opasesen16b30f35021204032na/2_0opasesen16b30f35021204032na_seg.nii.gz" + }, + { + "image": "106884/2_2opasevzoomb30f37621207540na.nii.gz", + "pseudo_label": "106884/2_2opasevzoomb30f37621207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106884/2_2opasevzoomb30f37621207540na/2_2opasevzoomb30f37621207540na_seg.nii.gz" + }, + { + "image": "105843/3_2opasesen16b30f38021204530na.nii.gz", + "pseudo_label": "105843/3_2opasesen16b30f38021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105843/3_2opasesen16b30f38021204530na/3_2opasesen16b30f38021204530na_seg.nii.gz" + }, + { + "image": "105905/3_0opagels16standard36025120800114.nii.gz", + "pseudo_label": "105905/3_0opagels16standard36025120800114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105905/3_0opagels16standard36025120800114/3_0opagels16standard36025120800114_seg.nii.gz" + }, + { + "image": "105778/3_1opagels16standard40025120600114.nii.gz", + "pseudo_label": "105778/3_1opagels16standard40025120600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105778/3_1opagels16standard40025120600114/3_1opagels16standard40025120600114_seg.nii.gz" + }, + { + "image": "105304/6_0opasevzoomb30f38021206030na.nii.gz", + "pseudo_label": "105304/6_0opasevzoomb30f38021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105304/6_0opasevzoomb30f38021206030na/6_0opasevzoomb30f38021206030na_seg.nii.gz" + }, + { + "image": "110279/3_2opasevzoomb50f35421207540na.nii.gz", + "pseudo_label": "110279/3_2opasevzoomb50f35421207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110279/3_2opasevzoomb50f35421207540na/3_2opasevzoomb50f35421207540na_seg.nii.gz" + }, + { + "image": "103528/2_1opasevzoomb30f38021207540na.nii.gz", + "pseudo_label": "103528/2_1opasevzoomb30f38021207540na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103528/2_1opasevzoomb30f38021207540na/2_1opasevzoomb30f38021207540na_seg.nii.gz" + }, + { + "image": "107921/2_2opagelsqxstandard3602514048015.nii.gz", + "pseudo_label": "107921/2_2opagelsqxstandard3602514048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107921/2_2opagelsqxstandard3602514048015/2_2opagelsqxstandard3602514048015_seg.nii.gz" + }, + { + "image": "103540/2_1opasevzoomb30f36021208040na.nii.gz", + "pseudo_label": "103540/2_1opasevzoomb30f36021208040na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103540/2_1opasevzoomb30f36021208040na/2_1opasevzoomb30f36021208040na_seg.nii.gz" + }, + { + "image": "107695/2_2opagelsqxstandard32725120640115.nii.gz", + "pseudo_label": "107695/2_2opagelsqxstandard32725120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107695/2_2opagelsqxstandard32725120640115/2_2opagelsqxstandard32725120640115_seg.nii.gz" + }, + { + "image": "106509/5_1opasesen16b30f33021204530na.nii.gz", + "pseudo_label": "106509/5_1opasesen16b30f33021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106509/5_1opasesen16b30f33021204530na/5_1opasesen16b30f33021204530na_seg.nii.gz" + }, + { + "image": "109442/4_1opasevzoomb50f35251206030na.nii.gz", + "pseudo_label": "109442/4_1opasevzoomb50f35251206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109442/4_1opasevzoomb50f35251206030na/4_1opasevzoomb50f35251206030na_seg.nii.gz" + }, + { + "image": "104623/2_2opasesen16b50f35021204530na.nii.gz", + "pseudo_label": "104623/2_2opasesen16b50f35021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104623/2_2opasesen16b50f35021204530na/2_2opasesen16b50f35021204530na_seg.nii.gz" + }, + { + "image": "103495/2_0opasevzoomb50f31021206030na.nii.gz", + "pseudo_label": "103495/2_0opasevzoomb50f31021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103495/2_0opasevzoomb50f31021206030na/2_0opasevzoomb50f31021206030na_seg.nii.gz" + }, + { + "image": "108729/3_2opasesen16b30f33551204530na.nii.gz", + "pseudo_label": "108729/3_2opasesen16b30f33551204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108729/3_2opasesen16b30f33551204530na/3_2opasesen16b30f33551204530na_seg.nii.gz" + }, + { + "image": "111221/2_0opasevzoomb30f33021206030na.nii.gz", + "pseudo_label": "111221/2_0opasevzoomb30f33021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111221/2_0opasevzoomb30f33021206030na/2_0opasevzoomb30f33021206030na_seg.nii.gz" + }, + { + "image": "102899/3_1opasevzoomb50f38021206030na.nii.gz", + "pseudo_label": "102899/3_1opasevzoomb50f38021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102899/3_1opasevzoomb50f38021206030na/3_1opasevzoomb50f38021206030na_seg.nii.gz" + }, + { + "image": "113170/5_2opasevzoomb30f29051206030na.nii.gz", + "pseudo_label": "113170/5_2opasevzoomb30f29051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113170/5_2opasevzoomb30f29051206030na/5_2opasevzoomb30f29051206030na_seg.nii.gz" + }, + { + "image": "101271/2_1opasesen16b30f34221204032na.nii.gz", + "pseudo_label": "101271/2_1opasesen16b30f34221204032na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101271/2_1opasesen16b30f34221204032na/2_1opasesen16b30f34221204032na_seg.nii.gz" + }, + { + "image": "100783/2_2opagehsqxstandard35025120560115.nii.gz", + "pseudo_label": "100783/2_2opagehsqxstandard35025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100783/2_2opagehsqxstandard35025120560115/2_2opagehsqxstandard35025120560115_seg.nii.gz" + }, + { + "image": "104436/2_2opagelsqxstandard2602512048015.nii.gz", + "pseudo_label": "104436/2_2opagelsqxstandard2602512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104436/2_2opagelsqxstandard2602512048015/2_2opagelsqxstandard2602512048015_seg.nii.gz" + }, + { + "image": "105054/3_2opagelspr16standard39025120640114.nii.gz", + "pseudo_label": "105054/3_2opagelspr16standard39025120640114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105054/3_2opagelspr16standard39025120640114/3_2opagelspr16standard39025120640114_seg.nii.gz" + }, + { + "image": "109801/5_2opasevzoomb50f38021206030na.nii.gz", + "pseudo_label": "109801/5_2opasevzoomb50f38021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109801/5_2opasevzoomb50f38021206030na/5_2opasevzoomb50f38021206030na_seg.nii.gz" + }, + { + "image": "109801/5_1opasesen16b50f36251204530na.nii.gz", + "pseudo_label": "109801/5_1opasesen16b50f36251204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109801/5_1opasesen16b50f36251204530na/5_1opasesen16b50f36251204530na_seg.nii.gz" + }, + { + "image": "102332/3_0opagelsqxbone31925120640115.nii.gz", + "pseudo_label": "102332/3_0opagelsqxbone31925120640115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102332/3_0opagelsqxbone31925120640115/3_0opagelsqxbone31925120640115_seg.nii.gz" + }, + { + "image": "112000/3_0opagelsqxbone36425120720115.nii.gz", + "pseudo_label": "112000/3_0opagelsqxbone36425120720115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112000/3_0opagelsqxbone36425120720115/3_0opagelsqxbone36425120720115_seg.nii.gz" + }, + { + "image": "101470/2_0opagelsqxstandard3322514040015.nii.gz", + "pseudo_label": "101470/2_0opagelsqxstandard3322514040015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101470/2_0opagelsqxstandard3322514040015/2_0opagelsqxstandard3322514040015_seg.nii.gz" + }, + { + "image": "111604/3_0opasesen16b30f38451204530na.nii.gz", + "pseudo_label": "111604/3_0opasesen16b30f38451204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111604/3_0opasesen16b30f38451204530na/3_0opasesen16b30f38451204530na_seg.nii.gz" + }, + { + "image": "111604/3_1opasesen16b30f35851204530na.nii.gz", + "pseudo_label": "111604/3_1opasesen16b30f35851204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111604/3_1opasesen16b30f35851204530na/3_1opasesen16b30f35851204530na_seg.nii.gz" + }, + { + "image": "105805/2_1opagehsqxstandard32025120560115.nii.gz", + "pseudo_label": "105805/2_1opagehsqxstandard32025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105805/2_1opagehsqxstandard32025120560115/2_1opagehsqxstandard32025120560115_seg.nii.gz" + }, + { + "image": "109414/2_2opagels16standard31025120500114.nii.gz", + "pseudo_label": "109414/2_2opagels16standard31025120500114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109414/2_2opagels16standard31025120500114/2_2opagels16standard31025120500114_seg.nii.gz" + }, + { + "image": "109566/5_1opasesen16b50f30851204530na.nii.gz", + "pseudo_label": "109566/5_1opasesen16b50f30851204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109566/5_1opasesen16b50f30851204530na/5_1opasesen16b50f30851204530na_seg.nii.gz" + }, + { + "image": "107744/6239_1opaphmx8000c30532120453612.nii.gz", + "pseudo_label": "107744/6239_1opaphmx8000c30532120453612.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107744/6239_1opaphmx8000c30532120453612/6239_1opaphmx8000c30532120453612_seg.nii.gz" + }, + { + "image": "100205/4715_1opaphmx8000d3503212039018.nii.gz", + "pseudo_label": "100205/4715_1opaphmx8000d3503212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100205/4715_1opaphmx8000d3503212039018/4715_1opaphmx8000d3503212039018_seg.nii.gz" + }, + { + "image": "103866/102_1osagehsqxstandard33025120560115.nii.gz", + "pseudo_label": "103866/102_1osagehsqxstandard33025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103866/102_1osagehsqxstandard33025120560115/102_1osagehsqxstandard33025120560115_seg.nii.gz" + }, + { + "image": "102704/2_0opagelsqxstandard3292514048015.nii.gz", + "pseudo_label": "102704/2_0opagelsqxstandard3292514048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102704/2_0opagelsqxstandard3292514048015/2_0opagelsqxstandard3292514048015_seg.nii.gz" + }, + { + "image": "102896/0_0opaphmx8000c33632120600112.nii.gz", + "pseudo_label": "102896/0_0opaphmx8000c33632120600112.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102896/0_0opaphmx8000c33632120600112/0_0opaphmx8000c33632120600112_seg.nii.gz" + }, + { + "image": "113153/3_2opasesen16b30f32051204530na.nii.gz", + "pseudo_label": "113153/3_2opasesen16b30f32051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/113153/3_2opasesen16b30f32051204530na/3_2opasesen16b30f32051204530na_seg.nii.gz" + }, + { + "image": "106948/4_0opatoaqul4fc512891212040nana.nii.gz", + "pseudo_label": "106948/4_0opatoaqul4fc512891212040nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106948/4_0opatoaqul4fc512891212040nana/4_0opatoaqul4fc512891212040nana_seg.nii.gz" + }, + { + "image": "100480/1_2opagelsplusstandard34025120800115.nii.gz", + "pseudo_label": "100480/1_2opagelsplusstandard34025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100480/1_2opagelsplusstandard34025120800115/1_2opagelsplusstandard34025120800115_seg.nii.gz" + }, + { + "image": "110109/7239_2opaphmx8000c3193212039018.nii.gz", + "pseudo_label": "110109/7239_2opaphmx8000c3193212039018.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110109/7239_2opaphmx8000c3193212039018/7239_2opaphmx8000c3193212039018_seg.nii.gz" + }, + { + "image": "104008/2_0opagehsqxstandard36025120560115.nii.gz", + "pseudo_label": "104008/2_0opagehsqxstandard36025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/104008/2_0opagehsqxstandard36025120560115/2_0opagehsqxstandard36025120560115_seg.nii.gz" + }, + { + "image": "101477/2_0opasevzoomb50f31021206030na.nii.gz", + "pseudo_label": "101477/2_0opasevzoomb50f31021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101477/2_0opasevzoomb50f31021206030na/2_0opasevzoomb50f31021206030na_seg.nii.gz" + }, + { + "image": "109648/3_1opasevzoomb30f33621206030na.nii.gz", + "pseudo_label": "109648/3_1opasevzoomb30f33621206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109648/3_1opasevzoomb30f33621206030na/3_1opasevzoomb30f33621206030na_seg.nii.gz" + }, + { + "image": "108461/2_0opagelsqxstandard2702512048015.nii.gz", + "pseudo_label": "108461/2_0opagelsqxstandard2702512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108461/2_0opagelsqxstandard2702512048015/2_0opagelsqxstandard2702512048015_seg.nii.gz" + }, + { + "image": "110943/2_2opasesen16b50f31021204530na.nii.gz", + "pseudo_label": "110943/2_2opasesen16b50f31021204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/110943/2_2opasesen16b50f31021204530na/2_2opasesen16b50f31021204530na_seg.nii.gz" + }, + { + "image": "106970/3_0opasevzoomb50f330512012060na.nii.gz", + "pseudo_label": "106970/3_0opasevzoomb50f330512012060na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106970/3_0opasevzoomb50f330512012060na/3_0opasevzoomb50f330512012060na_seg.nii.gz" + }, + { + "image": "105459/2_1opagelsplusstandard36025140nanana.nii.gz", + "pseudo_label": "105459/2_1opagelsplusstandard36025140nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105459/2_1opagelsplusstandard36025140nanana/2_1opagelsplusstandard36025140nanana_seg.nii.gz" + }, + { + "image": "106205/2_0opagelsqxbone3302512048015.nii.gz", + "pseudo_label": "106205/2_0opagelsqxbone3302512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106205/2_0opagelsqxbone3302512048015/2_0opagelsqxbone3302512048015_seg.nii.gz" + }, + { + "image": "109147/2_0opagels16bone32025120600114.nii.gz", + "pseudo_label": "109147/2_0opagels16bone32025120600114.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109147/2_0opagels16bone32025120600114/2_0opagels16bone32025120600114_seg.nii.gz" + }, + { + "image": "112886/4_0opasevzoomb50f38051206030na.nii.gz", + "pseudo_label": "112886/4_0opasevzoomb50f38051206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112886/4_0opasevzoomb50f38051206030na/4_0opasevzoomb50f38051206030na_seg.nii.gz" + }, + { + "image": "111984/2_0opasevzoomb50f33021206030na.nii.gz", + "pseudo_label": "111984/2_0opasevzoomb50f33021206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/111984/2_0opasevzoomb50f33021206030na/2_0opasevzoomb50f33021206030na_seg.nii.gz" + }, + { + "image": "103462/2_1opagels16standard28025120nanana.nii.gz", + "pseudo_label": "103462/2_1opagels16standard28025120nanana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103462/2_1opagels16standard28025120nanana/2_1opagels16standard28025120nanana_seg.nii.gz" + }, + { + "image": "105129/2_1opagels16bone3302512040014.nii.gz", + "pseudo_label": "105129/2_1opagels16bone3302512040014.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105129/2_1opagels16bone3302512040014/2_1opagels16bone3302512040014_seg.nii.gz" + }, + { + "image": "101725/2_0opagehsqxstandard29025120560115.nii.gz", + "pseudo_label": "101725/2_0opagehsqxstandard29025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/101725/2_0opagehsqxstandard29025120560115/2_0opagehsqxstandard29025120560115_seg.nii.gz" + }, + { + "image": "102434/2_0opagelsqxstandard3102512048015.nii.gz", + "pseudo_label": "102434/2_0opagelsqxstandard3102512048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/102434/2_0opagelsqxstandard3102512048015/2_0opagelsqxstandard3102512048015_seg.nii.gz" + }, + { + "image": "103923/2_1opagelsplusstandard3742514000na.nii.gz", + "pseudo_label": "103923/2_1opagelsplusstandard3742514000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/103923/2_1opagelsplusstandard3742514000na/2_1opagelsplusstandard3742514000na_seg.nii.gz" + }, + { + "image": "105915/4_2opasesen16b30f34051204530na.nii.gz", + "pseudo_label": "105915/4_2opasesen16b30f34051204530na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105915/4_2opasesen16b30f34051204530na/4_2opasesen16b30f34051204530na_seg.nii.gz" + }, + { + "image": "107186/2_0opagelsqxstandard3282514000na.nii.gz", + "pseudo_label": "107186/2_0opagelsqxstandard3282514000na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/107186/2_0opagelsqxstandard3282514000na/2_0opagelsqxstandard3282514000na_seg.nii.gz" + }, + { + "image": "106181/1_1opagelsplusstandard36025120800115.nii.gz", + "pseudo_label": "106181/1_1opagelsplusstandard36025120800115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/106181/1_1opagelsplusstandard36025120800115/1_1opagelsplusstandard36025120800115_seg.nii.gz" + }, + { + "image": "109143/4_1opasevzoomb50f28851206030na.nii.gz", + "pseudo_label": "109143/4_1opasevzoomb50f28851206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109143/4_1opasevzoomb50f28851206030na/4_1opasevzoomb50f28851206030na_seg.nii.gz" + }, + { + "image": "109143/6_1opasevzoomb30f28821206030na.nii.gz", + "pseudo_label": "109143/6_1opasevzoomb30f28821206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109143/6_1opasevzoomb30f28821206030na/6_1opasevzoomb30f28821206030na_seg.nii.gz" + }, + { + "image": "109725/3_0opasevzoomb30f45251206030na.nii.gz", + "pseudo_label": "109725/3_0opasevzoomb30f45251206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/109725/3_0opasevzoomb30f45251206030na/3_0opasevzoomb30f45251206030na_seg.nii.gz" + }, + { + "image": "105358/2_1opagehsqxstandard30025120560115.nii.gz", + "pseudo_label": "105358/2_1opagehsqxstandard30025120560115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105358/2_1opagehsqxstandard30025120560115/2_1opagehsqxstandard30025120560115_seg.nii.gz" + }, + { + "image": "112808/2_1opagelsqxstandard32725120720115.nii.gz", + "pseudo_label": "112808/2_1opagelsqxstandard32725120720115.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/112808/2_1opagelsqxstandard32725120720115/2_1opagelsqxstandard32725120720115_seg.nii.gz" + }, + { + "image": "105010/1_1opatoaqul4fc103301312080nana.nii.gz", + "pseudo_label": "105010/1_1opatoaqul4fc103301312080nana.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/105010/1_1opatoaqul4fc103301312080nana/1_1opatoaqul4fc103301312080nana_seg.nii.gz" + }, + { + "image": "100282/5_2opasevzoomb50f28721206030na.nii.gz", + "pseudo_label": "100282/5_2opasevzoomb50f28721206030na.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/100282/5_2opasevzoomb50f28721206030na/5_2opasevzoomb50f28721206030na_seg.nii.gz" + }, + { + "image": "108698/1_0opagelspluslung36025120800108.nii.gz", + "pseudo_label": "108698/1_0opagelspluslung36025120800108.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108698/1_0opagelspluslung36025120800108/1_0opagelspluslung36025120800108_seg.nii.gz" + }, + { + "image": "108470/2_0opagelsqxstandard2852514048015.nii.gz", + "pseudo_label": "108470/2_0opagelsqxstandard2852514048015.nii.gz", + "dataset": "/data/NLST/NLST", + "region": "/data/NLST/chest", + "label_sv": "/workspace_infer/supervoxel_sam/nlst/108470/2_0opagelsqxstandard2852514048015/2_0opagelsqxstandard2852514048015_seg.nii.gz" + } + ], + "training_transform": [ + { + "_target_": "RandCropByLabelClassesd", + "keys": [ + "@image_key", + "@label_key", + "@pseudo_label_key", + "@label_sv_key" + ], + "label_key": "@pseudo_label_key", + "num_classes": 133, + "num_samples": "@num_patches_per_image", + "spatial_size": "@patch_size", + "ratios": "$tuple(float(i >= 0) for i in range(133))", + "warn": false, + "allow_missing_keys": true + }, + { + "_target_": "RandZoomd", + "keys": [ + "@image_key", + "@label_key", + "@pseudo_label_key", + "@label_sv_key" + ], + "min_zoom": 0.8, + "max_zoom": 1.2, + "mode": [ + "trilinear", + "nearest", + "nearest", + "nearest" + ], + "prob": 0.2, + "allow_missing_keys": true + }, + { + "_target_": "RandSimulateLowResolutiond", + "keys": [ + "@image_key" + ], + "zoom_range": [ + 0.3, + 1 + ], + "prob": 0.2, + "allow_missing_keys": true + }, + { + "_target_": "RandGaussianSmoothd", + "keys": [ + "@image_key" + ], + "prob": 0.2, + "sigma_x": [ + 0.5, + 1.0 + ], + "sigma_y": [ + 0.5, + 1.0 + ], + "sigma_z": [ + 0.5, + 1.0 + ] + }, + { + "_target_": "RandScaleIntensityd", + "keys": [ + "@image_key" + ], + "factors": 0.1, + "prob": 0.2 + }, + { + "_target_": "RandShiftIntensityd", + "keys": [ + "@image_key" + ], + "offsets": 0.1, + "prob": 0.2 + }, + { + "_target_": "RandGaussianNoised", + "keys": [ + "@image_key" + ], + "prob": 0.2, + "mean": 0.0, + "std": 0.2 + } + ] +} diff --git a/vista3d/data/jsons/Pancreas-CT_5_folds.json b/vista3d/data/jsons/Pancreas-CT_5_folds.json new file mode 100644 index 0000000..81772c5 --- /dev/null +++ b/vista3d/data/jsons/Pancreas-CT_5_folds.json @@ -0,0 +1,667 @@ +{ + "training": [ + { + "image": "manifest-1599750808610/nifti/PANCREAS_0008.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0008.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0008.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0019.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0019.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0019.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0068.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0068.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0068.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0067.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0067.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0067.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0031.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0031.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0031.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0072.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0072.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0072.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0005.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0005.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0005.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0006.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0006.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0006.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0014.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0014.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0014.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0017.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0017.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0017.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0002.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0002.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0002.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0079.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0079.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0079.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0028.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0028.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0028.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0004.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0004.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0004.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0004/PANCREAS_0004_seg.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0077.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0077.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0077.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0077/PANCREAS_0077_seg.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0020.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0020.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0020.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0020/PANCREAS_0020_seg.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0054.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0054.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0054.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0054/PANCREAS_0054_seg.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0052.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0052.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0052.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0052/PANCREAS_0052_seg.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0081.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0081.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0081.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0081/PANCREAS_0081_seg.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0034.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0034.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0034.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0034/PANCREAS_0034_seg.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0041.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0041.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0041.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0041/PANCREAS_0041_seg.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0033.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0033.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0033.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0033/PANCREAS_0033_seg.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0001.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0001.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0001.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0001/PANCREAS_0001_seg.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0064.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0064.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0064.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0064/PANCREAS_0064_seg.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0040.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0040.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0040.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0040/PANCREAS_0040_seg.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0011.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0011.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0011.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0011/PANCREAS_0011_seg.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0059.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0059.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0059.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0059/PANCREAS_0059_seg.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0046.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0046.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0046.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0046/PANCREAS_0046_seg.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0024.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0024.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0024.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0024/PANCREAS_0024_seg.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0039.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0039.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0039.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0039/PANCREAS_0039_seg.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0074.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0074.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0074.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0074/PANCREAS_0074_seg.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0010.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0010.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0010.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0010/PANCREAS_0010_seg.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0012.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0012.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0012.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0012/PANCREAS_0012_seg.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0078.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0078.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0078.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0078/PANCREAS_0078_seg.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0066.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0066.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0066.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0066/PANCREAS_0066_seg.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0003.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0003.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0003.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0003/PANCREAS_0003_seg.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0071.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0071.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0071.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0071/PANCREAS_0071_seg.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0026.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0026.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0026.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0026/PANCREAS_0026_seg.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0063.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0063.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0063.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0063/PANCREAS_0063_seg.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0069.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0069.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0069.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0069/PANCREAS_0069_seg.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0042.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0042.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0042.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0042/PANCREAS_0042_seg.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0037.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0037.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0037.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1 + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0053.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0053.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0053.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0053/PANCREAS_0053_seg.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0050.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0050.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0050.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0050/PANCREAS_0050_seg.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0007.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0007.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0007.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0007/PANCREAS_0007_seg.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0009.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0009.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0009.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0009/PANCREAS_0009_seg.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0049.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0049.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0049.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0049/PANCREAS_0049_seg.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0036.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0036.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0036.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0036/PANCREAS_0036_seg.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0051.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0051.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0051.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0051/PANCREAS_0051_seg.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0035.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0035.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0035.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0035/PANCREAS_0035_seg.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0061.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0061.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0061.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0061/PANCREAS_0061_seg.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0013.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0013.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0013.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0013/PANCREAS_0013_seg.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0057.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0057.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0057.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0057/PANCREAS_0057_seg.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0015.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0015.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0015.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0015/PANCREAS_0015_seg.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0055.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0055.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0055.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0055/PANCREAS_0055_seg.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0030.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0030.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0030.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0030/PANCREAS_0030_seg.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0062.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0062.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0062.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0062/PANCREAS_0062_seg.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0021.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0021.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0021.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0021/PANCREAS_0021_seg.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0038.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0038.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0038.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0038/PANCREAS_0038_seg.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0065.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0065.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0065.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0065/PANCREAS_0065_seg.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0032.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0032.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0032.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0032/PANCREAS_0032_seg.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0016.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0016.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0016.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0016/PANCREAS_0016_seg.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0080.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0080.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0080.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0080/PANCREAS_0080_seg.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0023.nii.gz", + "pseudo_label": "manifest-1599750808610/nifti/PANCREAS_0023.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0023.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Pancreas-CT_100/PANCREAS_0023/PANCREAS_0023_seg.nii.gz" + } + ], + "training_transform": [ + { + "_target_": "RandCropByLabelClassesd", + "keys": [ + "@image_key", + "@label_key", + "@pseudo_label_key", + "@label_sv_key" + ], + "label_key": "@pseudo_label_key", + "num_classes": 133, + "num_samples": "@num_patches_per_image", + "spatial_size": "@patch_size", + "ratios": "$tuple(float(i >= 0) for i in range(133))", + "warn": false, + "allow_missing_keys": true + }, + { + "_target_": "RandZoomd", + "keys": [ + "@image_key", + "@label_key", + "@pseudo_label_key", + "@label_sv_key" + ], + "min_zoom": 0.8, + "max_zoom": 1.2, + "mode": [ + "trilinear", + "nearest", + "nearest", + "nearest" + ], + "prob": 0.2, + "allow_missing_keys": true + }, + { + "_target_": "RandSimulateLowResolutiond", + "keys": [ + "@image_key" + ], + "zoom_range": [ + 0.3, + 1 + ], + "prob": 0.2, + "allow_missing_keys": true + }, + { + "_target_": "RandGaussianSmoothd", + "keys": [ + "@image_key" + ], + "prob": 0.2, + "sigma_x": [ + 0.5, + 1.0 + ], + "sigma_y": [ + 0.5, + 1.0 + ], + "sigma_z": [ + 0.5, + 1.0 + ] + }, + { + "_target_": "RandScaleIntensityd", + "keys": [ + "@image_key" + ], + "factors": 0.1, + "prob": 0.2 + }, + { + "_target_": "RandShiftIntensityd", + "keys": [ + "@image_key" + ], + "offsets": 0.1, + "prob": 0.2 + }, + { + "_target_": "RandGaussianNoised", + "keys": [ + "@image_key" + ], + "prob": 0.2, + "mean": 0.0, + "std": 0.2 + } + ], + "label_dict": { + "1": "pancreas" + }, + "original_label_dict": { + "1": "pancreas" + }, + "testing": [ + { + "image": "manifest-1599750808610/nifti/PANCREAS_0082.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0082.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0060.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0060.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0073.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0073.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0043.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0043.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0058.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0058.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0027.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0027.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0076.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0076.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0075.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0075.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0018.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0018.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0056.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0056.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0044.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0044.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0029.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0029.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0045.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0045.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0048.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0048.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0047.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0047.nii.gz" + }, + { + "image": "manifest-1599750808610/nifti/PANCREAS_0022.nii.gz", + "label": "TCIA_pancreas_labels-02-05-2017/label0022.nii.gz" + } + ] +} diff --git a/vista3d/data/jsons/StonyBrook-CT_5_folds.json b/vista3d/data/jsons/StonyBrook-CT_5_folds.json new file mode 100644 index 0000000..bb8614d --- /dev/null +++ b/vista3d/data/jsons/StonyBrook-CT_5_folds.json @@ -0,0 +1,9008 @@ +{ + "training": [ + { + "image": "A724565/5_lung_5_mm.nii.gz", + "pseudo_label": "A724565/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A724565/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A574632/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A574632/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A574632/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A574632/3_lung_5_mm.nii.gz", + "pseudo_label": "A574632/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A574632/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A574632/2_5_mm_standard.nii.gz", + "pseudo_label": "A574632/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A574632/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A943106/2_abdpel_25_mm.nii.gz", + "pseudo_label": "A943106/2_abdpel_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A943106/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz" + }, + { + "image": "A981814/2_body_50.nii.gz", + "pseudo_label": "A981814/2_body_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A981814/2_body_50/2_body_50_seg.nii.gz" + }, + { + "image": "A981814/4_lung_10.nii.gz", + "pseudo_label": "A981814/4_lung_10.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A981814/4_lung_10/4_lung_10_seg.nii.gz" + }, + { + "image": "A981814/3_lung_50.nii.gz", + "pseudo_label": "A981814/3_lung_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A981814/3_lung_50/3_lung_50_seg.nii.gz" + }, + { + "image": "A492240/2_chest_25_mmabdpel_25mm.nii.gz", + "pseudo_label": "A492240/2_chest_25_mmabdpel_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A492240/2_chest_25_mmabdpel_25mm/2_chest_25_mmabdpel_25mm_seg.nii.gz" + }, + { + "image": "A492240/2_standard_25mm.nii.gz", + "pseudo_label": "A492240/2_standard_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A492240/2_standard_25mm/2_standard_25mm_seg.nii.gz" + }, + { + "image": "A504423/4_lung_125_mm.nii.gz", + "pseudo_label": "A504423/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A504423/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A504423/2_chest_125_mm.nii.gz", + "pseudo_label": "A504423/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A504423/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A504423/5_lung_5_mm.nii.gz", + "pseudo_label": "A504423/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A504423/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A382814/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A382814/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A382814/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A382814/3_lung_5_mm.nii.gz", + "pseudo_label": "A382814/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A382814/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A382814/2_5_mm_standard.nii.gz", + "pseudo_label": "A382814/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A382814/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A877538/2_standard.nii.gz", + "pseudo_label": "A877538/2_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A877538/2_standard/2_standard_seg.nii.gz" + }, + { + "image": "A923527/105_ref.nii.gz", + "pseudo_label": "A923527/105_ref.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A923527/105_ref/105_ref_seg.nii.gz" + }, + { + "image": "A923527/100_axiallung_reconhres_recon.nii.gz", + "pseudo_label": "A923527/100_axiallung_reconhres_recon.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A923527/100_axiallung_reconhres_recon/100_axiallung_reconhres_recon_seg.nii.gz" + }, + { + "image": "A920434/2_body_30_ce.nii.gz", + "pseudo_label": "A920434/2_body_30_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A920434/2_body_30_ce/2_body_30_ce_seg.nii.gz" + }, + { + "image": "A120022/2_standard_25mm.nii.gz", + "pseudo_label": "A120022/2_standard_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A120022/2_standard_25mm/2_standard_25mm_seg.nii.gz" + }, + { + "image": "A120022/2_abdpel_25_mm.nii.gz", + "pseudo_label": "A120022/2_abdpel_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A120022/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz" + }, + { + "image": "A843974/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A843974/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A843974/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A843974/3_lung_5_mm.nii.gz", + "pseudo_label": "A843974/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A843974/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A843974/2_5_mm_standard.nii.gz", + "pseudo_label": "A843974/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A843974/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A729169/8_cta_05_ce.nii.gz", + "pseudo_label": "A729169/8_cta_05_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A729169/8_cta_05_ce/8_cta_05_ce_seg.nii.gz" + }, + { + "image": "A729169/4_lung_10_ce.nii.gz", + "pseudo_label": "A729169/4_lung_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A729169/4_lung_10_ce/4_lung_10_ce_seg.nii.gz" + }, + { + "image": "A729169/5_cta_50_ce.nii.gz", + "pseudo_label": "A729169/5_cta_50_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A729169/5_cta_50_ce/5_cta_50_ce_seg.nii.gz" + }, + { + "image": "A729169/3_cta_10_ce.nii.gz", + "pseudo_label": "A729169/3_cta_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A729169/3_cta_10_ce/3_cta_10_ce_seg.nii.gz" + }, + { + "image": "A096081/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A096081/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A096081/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A096081/3_lung_5_mm.nii.gz", + "pseudo_label": "A096081/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A096081/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A096081/2_5_mm_standard.nii.gz", + "pseudo_label": "A096081/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A096081/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A649144/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A649144/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A649144/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A649144/3_lung_5_mm.nii.gz", + "pseudo_label": "A649144/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A649144/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A649144/2_5_mm_standard.nii.gz", + "pseudo_label": "A649144/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A649144/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A944071/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A944071/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A944071/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A944071/3_lung_5_mm.nii.gz", + "pseudo_label": "A944071/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A944071/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A944071/2_5_mm_standard.nii.gz", + "pseudo_label": "A944071/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A944071/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A417830/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A417830/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A417830/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A417830/3_lung_5_mm.nii.gz", + "pseudo_label": "A417830/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A417830/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A417830/2_5_mm_standard.nii.gz", + "pseudo_label": "A417830/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A417830/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A002304/4_lung_125_mm.nii.gz", + "pseudo_label": "A002304/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A002304/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A002304/2_chest_25_mmabdpel_25mm.nii.gz", + "pseudo_label": "A002304/2_chest_25_mmabdpel_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A002304/2_chest_25_mmabdpel_25mm/2_chest_25_mmabdpel_25mm_seg.nii.gz" + }, + { + "image": "A002304/2_chest_125_mm.nii.gz", + "pseudo_label": "A002304/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A002304/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A002304/2_body_30_ce.nii.gz", + "pseudo_label": "A002304/2_body_30_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A002304/2_body_30_ce/2_body_30_ce_seg.nii.gz" + }, + { + "image": "A002304/5_lung_5_mm.nii.gz", + "pseudo_label": "A002304/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A002304/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A951599/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A951599/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A951599/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A951599/3_lung_5_mm.nii.gz", + "pseudo_label": "A951599/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A951599/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A951599/2_body_30_ce.nii.gz", + "pseudo_label": "A951599/2_body_30_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A951599/2_body_30_ce/2_body_30_ce_seg.nii.gz" + }, + { + "image": "A951599/2_5_mm_standard.nii.gz", + "pseudo_label": "A951599/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A951599/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A665943/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A665943/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A665943/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A665943/2_body_50.nii.gz", + "pseudo_label": "A665943/2_body_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A665943/2_body_50/2_body_50_seg.nii.gz" + }, + { + "image": "A665943/3_lung_5_mm.nii.gz", + "pseudo_label": "A665943/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A665943/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A665943/4_lung_10.nii.gz", + "pseudo_label": "A665943/4_lung_10.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A665943/4_lung_10/4_lung_10_seg.nii.gz" + }, + { + "image": "A665943/2_5_mm_standard.nii.gz", + "pseudo_label": "A665943/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A665943/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A665943/3_lung_50.nii.gz", + "pseudo_label": "A665943/3_lung_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A665943/3_lung_50/3_lung_50_seg.nii.gz" + }, + { + "image": "A225093/4_lung_125_mm.nii.gz", + "pseudo_label": "A225093/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A225093/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A225093/2_chest_25_mm.nii.gz", + "pseudo_label": "A225093/2_chest_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A225093/2_chest_25_mm/2_chest_25_mm_seg.nii.gz" + }, + { + "image": "A225093/6_abdpel_25_mm.nii.gz", + "pseudo_label": "A225093/6_abdpel_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A225093/6_abdpel_25_mm/6_abdpel_25_mm_seg.nii.gz" + }, + { + "image": "A225093/603_ct_thick_axials_5mm.nii.gz", + "pseudo_label": "A225093/603_ct_thick_axials_5mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A225093/603_ct_thick_axials_5mm/603_ct_thick_axials_5mm_seg.nii.gz" + }, + { + "image": "A225093/5_lung_5_mm.nii.gz", + "pseudo_label": "A225093/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A225093/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A851902/4_hi_res_chest.nii.gz", + "pseudo_label": "A851902/4_hi_res_chest.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A851902/4_hi_res_chest/4_hi_res_chest_seg.nii.gz" + }, + { + "image": "A851902/2_chest_5x5.nii.gz", + "pseudo_label": "A851902/2_chest_5x5.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A851902/2_chest_5x5/2_chest_5x5_seg.nii.gz" + }, + { + "image": "A851902/3_lung_5x5.nii.gz", + "pseudo_label": "A851902/3_lung_5x5.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A851902/3_lung_5x5/3_lung_5x5_seg.nii.gz" + }, + { + "image": "A851902/603_3x3_axial.nii.gz", + "pseudo_label": "A851902/603_3x3_axial.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A851902/603_3x3_axial/603_3x3_axial_seg.nii.gz" + }, + { + "image": "A349708/4_lung_125_mm.nii.gz", + "pseudo_label": "A349708/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A349708/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A349708/2_chest_125_mm.nii.gz", + "pseudo_label": "A349708/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A349708/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A349708/5_lung_5_mm.nii.gz", + "pseudo_label": "A349708/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A349708/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A785523/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A785523/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A785523/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A785523/3_lung_5_mm.nii.gz", + "pseudo_label": "A785523/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A785523/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A785523/2_5_mm_standard.nii.gz", + "pseudo_label": "A785523/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A785523/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A836342/2_abdpel_25_mm.nii.gz", + "pseudo_label": "A836342/2_abdpel_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A836342/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz" + }, + { + "image": "A038694/4_lung_125_mm.nii.gz", + "pseudo_label": "A038694/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A038694/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A038694/2_chest_125_mm.nii.gz", + "pseudo_label": "A038694/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A038694/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A038694/5_lung_5_mm.nii.gz", + "pseudo_label": "A038694/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A038694/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A358446/3_chest__50__b30s.nii.gz", + "pseudo_label": "A358446/3_chest__50__b30s.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A358446/3_chest__50__b30s/3_chest__50__b30s_seg.nii.gz" + }, + { + "image": "A358446/2_body_30_ce.nii.gz", + "pseudo_label": "A358446/2_body_30_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A358446/2_body_30_ce/2_body_30_ce_seg.nii.gz" + }, + { + "image": "A358446/5_chest__30__b70s_lung.nii.gz", + "pseudo_label": "A358446/5_chest__30__b70s_lung.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A358446/5_chest__30__b70s_lung/5_chest__30__b70s_lung_seg.nii.gz" + }, + { + "image": "A302988/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A302988/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A302988/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A302988/3_lung_5_mm.nii.gz", + "pseudo_label": "A302988/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A302988/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A302988/2_5_mm_standard.nii.gz", + "pseudo_label": "A302988/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A302988/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A475550/4_lung_125_mm.nii.gz", + "pseudo_label": "A475550/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A475550/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A475550/2_chest_125_mm.nii.gz", + "pseudo_label": "A475550/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A475550/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A475550/5_lung_5_mm.nii.gz", + "pseudo_label": "A475550/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A475550/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A811941/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A811941/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A811941/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A811941/3_lung_5_mm.nii.gz", + "pseudo_label": "A811941/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A811941/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A811941/2_5_mm_standard.nii.gz", + "pseudo_label": "A811941/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A811941/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A062576/4_lung_125_mm.nii.gz", + "pseudo_label": "A062576/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A062576/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A062576/2_chest_125_mm.nii.gz", + "pseudo_label": "A062576/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A062576/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A062576/5_lung_5_mm.nii.gz", + "pseudo_label": "A062576/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A062576/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A264703/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A264703/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A264703/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A264703/3_lung_5_mm.nii.gz", + "pseudo_label": "A264703/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A264703/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A264703/2_5_mm_standard.nii.gz", + "pseudo_label": "A264703/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A264703/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A434920/4_lung_125_mm.nii.gz", + "pseudo_label": "A434920/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A434920/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A434920/2_chest_125_mm.nii.gz", + "pseudo_label": "A434920/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A434920/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A434920/5_lung_5_mm.nii.gz", + "pseudo_label": "A434920/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A434920/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A291463/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A291463/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A291463/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A291463/3_lung_5_mm.nii.gz", + "pseudo_label": "A291463/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A291463/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A291463/2_5_mm_standard.nii.gz", + "pseudo_label": "A291463/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A291463/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A104425/2_standard_25mm.nii.gz", + "pseudo_label": "A104425/2_standard_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A104425/2_standard_25mm/2_standard_25mm_seg.nii.gz" + }, + { + "image": "A104810/8_cta_05_ce.nii.gz", + "pseudo_label": "A104810/8_cta_05_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A104810/8_cta_05_ce/8_cta_05_ce_seg.nii.gz" + }, + { + "image": "A104810/4_lung_10_ce.nii.gz", + "pseudo_label": "A104810/4_lung_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A104810/4_lung_10_ce/4_lung_10_ce_seg.nii.gz" + }, + { + "image": "A104810/5_cta_50_ce.nii.gz", + "pseudo_label": "A104810/5_cta_50_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A104810/5_cta_50_ce/5_cta_50_ce_seg.nii.gz" + }, + { + "image": "A104810/3_cta_10_ce.nii.gz", + "pseudo_label": "A104810/3_cta_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A104810/3_cta_10_ce/3_cta_10_ce_seg.nii.gz" + }, + { + "image": "A670621/2_chest_25_mmabdpel_25mm.nii.gz", + "pseudo_label": "A670621/2_chest_25_mmabdpel_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A670621/2_chest_25_mmabdpel_25mm/2_chest_25_mmabdpel_25mm_seg.nii.gz" + }, + { + "image": "A670621/2_body_50.nii.gz", + "pseudo_label": "A670621/2_body_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A670621/2_body_50/2_body_50_seg.nii.gz" + }, + { + "image": "A670621/4_lung_10.nii.gz", + "pseudo_label": "A670621/4_lung_10.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A670621/4_lung_10/4_lung_10_seg.nii.gz" + }, + { + "image": "A670621/3_lung_50.nii.gz", + "pseudo_label": "A670621/3_lung_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A670621/3_lung_50/3_lung_50_seg.nii.gz" + }, + { + "image": "A981055/4_lung_125_mm.nii.gz", + "pseudo_label": "A981055/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A981055/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A981055/2_chest_125_mm.nii.gz", + "pseudo_label": "A981055/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A981055/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A981055/5_lung_5_mm.nii.gz", + "pseudo_label": "A981055/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A981055/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A243970/2_chest_25_mmabdpel_25mm.nii.gz", + "pseudo_label": "A243970/2_chest_25_mmabdpel_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A243970/2_chest_25_mmabdpel_25mm/2_chest_25_mmabdpel_25mm_seg.nii.gz" + }, + { + "image": "A515953/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A515953/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A515953/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A515953/4_lung_125_mm.nii.gz", + "pseudo_label": "A515953/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A515953/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A515953/2_chest_125_mm.nii.gz", + "pseudo_label": "A515953/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A515953/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A515953/3_lung_5_mm.nii.gz", + "pseudo_label": "A515953/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A515953/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A515953/2_5_mm_standard.nii.gz", + "pseudo_label": "A515953/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A515953/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A515953/5_lung_5_mm.nii.gz", + "pseudo_label": "A515953/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A515953/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A123434/2_abdpel_25_mm.nii.gz", + "pseudo_label": "A123434/2_abdpel_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A123434/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz" + }, + { + "image": "A942131/2_chest_25_mmabdpel_25mm.nii.gz", + "pseudo_label": "A942131/2_chest_25_mmabdpel_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A942131/2_chest_25_mmabdpel_25mm/2_chest_25_mmabdpel_25mm_seg.nii.gz" + }, + { + "image": "A438102/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A438102/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A438102/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A438102/3_lung_5_mm.nii.gz", + "pseudo_label": "A438102/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A438102/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A438102/4_hr_chest_125x125.nii.gz", + "pseudo_label": "A438102/4_hr_chest_125x125.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A438102/4_hr_chest_125x125/4_hr_chest_125x125_seg.nii.gz" + }, + { + "image": "A438102/3_lung_5x5.nii.gz", + "pseudo_label": "A438102/3_lung_5x5.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A438102/3_lung_5x5/3_lung_5x5_seg.nii.gz" + }, + { + "image": "A438102/2_5_mm_standard.nii.gz", + "pseudo_label": "A438102/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A438102/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A438102/2_axiallung_reconhres_recon.nii.gz", + "pseudo_label": "A438102/2_axiallung_reconhres_recon.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A438102/2_axiallung_reconhres_recon/2_axiallung_reconhres_recon_seg.nii.gz" + }, + { + "image": "A915677/8_cta_05_ce.nii.gz", + "pseudo_label": "A915677/8_cta_05_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A915677/8_cta_05_ce/8_cta_05_ce_seg.nii.gz" + }, + { + "image": "A915677/4_lung_10_ce.nii.gz", + "pseudo_label": "A915677/4_lung_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A915677/4_lung_10_ce/4_lung_10_ce_seg.nii.gz" + }, + { + "image": "A915677/4_lung_125_mm.nii.gz", + "pseudo_label": "A915677/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A915677/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A915677/2_chest_25_mm.nii.gz", + "pseudo_label": "A915677/2_chest_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A915677/2_chest_25_mm/2_chest_25_mm_seg.nii.gz" + }, + { + "image": "A915677/5_cta_50_ce.nii.gz", + "pseudo_label": "A915677/5_cta_50_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A915677/5_cta_50_ce/5_cta_50_ce_seg.nii.gz" + }, + { + "image": "A915677/3_cta_10_ce.nii.gz", + "pseudo_label": "A915677/3_cta_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A915677/3_cta_10_ce/3_cta_10_ce_seg.nii.gz" + }, + { + "image": "A915677/603_ct_thick_axials_5mm.nii.gz", + "pseudo_label": "A915677/603_ct_thick_axials_5mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A915677/603_ct_thick_axials_5mm/603_ct_thick_axials_5mm_seg.nii.gz" + }, + { + "image": "A915677/5_lung_5_mm.nii.gz", + "pseudo_label": "A915677/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A915677/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A315352/4_lung_125_mm.nii.gz", + "pseudo_label": "A315352/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A315352/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A315352/2_chest_125_mm.nii.gz", + "pseudo_label": "A315352/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A315352/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A315352/2_body_50.nii.gz", + "pseudo_label": "A315352/2_body_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A315352/2_body_50/2_body_50_seg.nii.gz" + }, + { + "image": "A315352/4_lung_10.nii.gz", + "pseudo_label": "A315352/4_lung_10.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A315352/4_lung_10/4_lung_10_seg.nii.gz" + }, + { + "image": "A315352/3_lung_50.nii.gz", + "pseudo_label": "A315352/3_lung_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A315352/3_lung_50/3_lung_50_seg.nii.gz" + }, + { + "image": "A315352/5_lung_5_mm.nii.gz", + "pseudo_label": "A315352/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A315352/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A368647/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A368647/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A368647/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A368647/3_lung_5_mm.nii.gz", + "pseudo_label": "A368647/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A368647/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A368647/2_5_mm_standard.nii.gz", + "pseudo_label": "A368647/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A368647/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A056396/5_wb_standard_25.nii.gz", + "pseudo_label": "A056396/5_wb_standard_25.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A056396/5_wb_standard_25/5_wb_standard_25_seg.nii.gz" + }, + { + "image": "A056396/3_lung.nii.gz", + "pseudo_label": "A056396/3_lung.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A056396/3_lung/3_lung_seg.nii.gz" + }, + { + "image": "A630027/4_lung_125_mm.nii.gz", + "pseudo_label": "A630027/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A630027/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A630027/2_chest_125_mm.nii.gz", + "pseudo_label": "A630027/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A630027/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A630027/5_lung_5_mm.nii.gz", + "pseudo_label": "A630027/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A630027/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A178769/4_body_10_ce.nii.gz", + "pseudo_label": "A178769/4_body_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A178769/4_body_10_ce/4_body_10_ce_seg.nii.gz" + }, + { + "image": "A178769/2_body_10_ce.nii.gz", + "pseudo_label": "A178769/2_body_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A178769/2_body_10_ce/2_body_10_ce_seg.nii.gz" + }, + { + "image": "A370011/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A370011/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A370011/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A370011/2_chest_25_mmabdpel_25mm.nii.gz", + "pseudo_label": "A370011/2_chest_25_mmabdpel_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A370011/2_chest_25_mmabdpel_25mm/2_chest_25_mmabdpel_25mm_seg.nii.gz" + }, + { + "image": "A370011/3_lung_5_mm.nii.gz", + "pseudo_label": "A370011/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A370011/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A370011/2_5_mm_standard.nii.gz", + "pseudo_label": "A370011/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A370011/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A138356/2_body_30_ce.nii.gz", + "pseudo_label": "A138356/2_body_30_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A138356/2_body_30_ce/2_body_30_ce_seg.nii.gz" + }, + { + "image": "A670597/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A670597/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A670597/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A670597/3_lung_5_mm.nii.gz", + "pseudo_label": "A670597/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A670597/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A670597/2_5_mm_standard.nii.gz", + "pseudo_label": "A670597/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A670597/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A822542/2_body_30.nii.gz", + "pseudo_label": "A822542/2_body_30.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A822542/2_body_30/2_body_30_seg.nii.gz" + }, + { + "image": "A822542/14_body_05_ce.nii.gz", + "pseudo_label": "A822542/14_body_05_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A822542/14_body_05_ce/14_body_05_ce_seg.nii.gz" + }, + { + "image": "A822542/6_body_10_ce.nii.gz", + "pseudo_label": "A822542/6_body_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A822542/6_body_10_ce/6_body_10_ce_seg.nii.gz" + }, + { + "image": "A822542/5_body_10_ce.nii.gz", + "pseudo_label": "A822542/5_body_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A822542/5_body_10_ce/5_body_10_ce_seg.nii.gz" + }, + { + "image": "A883692/601_chest_ax.nii.gz", + "pseudo_label": "A883692/601_chest_ax.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A883692/601_chest_ax/601_chest_ax_seg.nii.gz" + }, + { + "image": "A883692/606_abdomen_ax.nii.gz", + "pseudo_label": "A883692/606_abdomen_ax.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A883692/606_abdomen_ax/606_abdomen_ax_seg.nii.gz" + }, + { + "image": "A113004/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A113004/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A113004/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A113004/3_ct_wb__40__b30f.nii.gz", + "pseudo_label": "A113004/3_ct_wb__40__b30f.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A113004/3_ct_wb__40__b30f/3_ct_wb__40__b30f_seg.nii.gz" + }, + { + "image": "A113004/3_lung_5_mm.nii.gz", + "pseudo_label": "A113004/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A113004/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A113004/5_ct_lung_recon.nii.gz", + "pseudo_label": "A113004/5_ct_lung_recon.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A113004/5_ct_lung_recon/5_ct_lung_recon_seg.nii.gz" + }, + { + "image": "A113004/2_5_mm_standard.nii.gz", + "pseudo_label": "A113004/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A113004/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A340955/4_lung_125_mm.nii.gz", + "pseudo_label": "A340955/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A340955/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A340955/2_chest_125_mm.nii.gz", + "pseudo_label": "A340955/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A340955/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A340955/5_lung_5_mm.nii.gz", + "pseudo_label": "A340955/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A340955/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A485953/2_abdomenpelvis_25_mm.nii.gz", + "pseudo_label": "A485953/2_abdomenpelvis_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A485953/2_abdomenpelvis_25_mm/2_abdomenpelvis_25_mm_seg.nii.gz" + }, + { + "image": "A257013/5_body_10_ce.nii.gz", + "pseudo_label": "A257013/5_body_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A257013/5_body_10_ce/5_body_10_ce_seg.nii.gz" + }, + { + "image": "A257013/3_body_10_ce.nii.gz", + "pseudo_label": "A257013/3_body_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A257013/3_body_10_ce/3_body_10_ce_seg.nii.gz" + }, + { + "image": "A817311/4_lung_125_mm.nii.gz", + "pseudo_label": "A817311/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A817311/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A817311/2_chest_125_mm.nii.gz", + "pseudo_label": "A817311/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A817311/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A817311/5_lung_5_mm.nii.gz", + "pseudo_label": "A817311/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A817311/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A316058/2_body_30_ce.nii.gz", + "pseudo_label": "A316058/2_body_30_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A316058/2_body_30_ce/2_body_30_ce_seg.nii.gz" + }, + { + "image": "A035815/601_chest_ax.nii.gz", + "pseudo_label": "A035815/601_chest_ax.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A035815/601_chest_ax/601_chest_ax_seg.nii.gz" + }, + { + "image": "A035815/606_abdomen_ax.nii.gz", + "pseudo_label": "A035815/606_abdomen_ax.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A035815/606_abdomen_ax/606_abdomen_ax_seg.nii.gz" + }, + { + "image": "A770557/5_lung_10.nii.gz", + "pseudo_label": "A770557/5_lung_10.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A770557/5_lung_10/5_lung_10_seg.nii.gz" + }, + { + "image": "A770557/4_lung_50.nii.gz", + "pseudo_label": "A770557/4_lung_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A770557/4_lung_50/4_lung_50_seg.nii.gz" + }, + { + "image": "A770557/3_body_50.nii.gz", + "pseudo_label": "A770557/3_body_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A770557/3_body_50/3_body_50_seg.nii.gz" + }, + { + "image": "A770557/2_standard.nii.gz", + "pseudo_label": "A770557/2_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A770557/2_standard/2_standard_seg.nii.gz" + }, + { + "image": "A770557/2_abdpel_25_mm.nii.gz", + "pseudo_label": "A770557/2_abdpel_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A770557/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz" + }, + { + "image": "A642580/4_lung_125_mm.nii.gz", + "pseudo_label": "A642580/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A642580/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A642580/2_chest_125_mm.nii.gz", + "pseudo_label": "A642580/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A642580/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A642580/5_lung_5_mm.nii.gz", + "pseudo_label": "A642580/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A642580/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A969170/2_body_50.nii.gz", + "pseudo_label": "A969170/2_body_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A969170/2_body_50/2_body_50_seg.nii.gz" + }, + { + "image": "A969170/4_lung_10.nii.gz", + "pseudo_label": "A969170/4_lung_10.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A969170/4_lung_10/4_lung_10_seg.nii.gz" + }, + { + "image": "A969170/3_lung_50.nii.gz", + "pseudo_label": "A969170/3_lung_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A969170/3_lung_50/3_lung_50_seg.nii.gz" + }, + { + "image": "A301444/4_lung_125_mm.nii.gz", + "pseudo_label": "A301444/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A301444/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A301444/2_chest_125_mm.nii.gz", + "pseudo_label": "A301444/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A301444/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A301444/5_lung_5_mm.nii.gz", + "pseudo_label": "A301444/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A301444/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A467564/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A467564/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A467564/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A467564/3_lung_5_mm.nii.gz", + "pseudo_label": "A467564/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A467564/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A467564/2_5_mm_standard.nii.gz", + "pseudo_label": "A467564/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A467564/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A376320/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A376320/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A376320/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A376320/3_lung_5_mm.nii.gz", + "pseudo_label": "A376320/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A376320/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A376320/2_5_mm_standard.nii.gz", + "pseudo_label": "A376320/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A376320/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A062055/4_125_chest.nii.gz", + "pseudo_label": "A062055/4_125_chest.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A062055/4_125_chest/4_125_chest_seg.nii.gz" + }, + { + "image": "A062055/2_chestabdpel_25.nii.gz", + "pseudo_label": "A062055/2_chestabdpel_25.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A062055/2_chestabdpel_25/2_chestabdpel_25_seg.nii.gz" + }, + { + "image": "A062055/2_chest_25_mmabdpel_25mm.nii.gz", + "pseudo_label": "A062055/2_chest_25_mmabdpel_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A062055/2_chest_25_mmabdpel_25mm/2_chest_25_mmabdpel_25mm_seg.nii.gz" + }, + { + "image": "A062055/3_lung_5x5.nii.gz", + "pseudo_label": "A062055/3_lung_5x5.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A062055/3_lung_5x5/3_lung_5x5_seg.nii.gz" + }, + { + "image": "A946381/4_lung_125_mm.nii.gz", + "pseudo_label": "A946381/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A946381/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A946381/2_chest_125_mm.nii.gz", + "pseudo_label": "A946381/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A946381/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A946381/5_lung_5_mm.nii.gz", + "pseudo_label": "A946381/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A946381/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A069414/6_body_10_ce.nii.gz", + "pseudo_label": "A069414/6_body_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A069414/6_body_10_ce/6_body_10_ce_seg.nii.gz" + }, + { + "image": "A069414/2_body_10_ce.nii.gz", + "pseudo_label": "A069414/2_body_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A069414/2_body_10_ce/2_body_10_ce_seg.nii.gz" + }, + { + "image": "A244641/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A244641/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A244641/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A244641/3_lung_5_mm.nii.gz", + "pseudo_label": "A244641/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A244641/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A244641/2_5_mm_standard.nii.gz", + "pseudo_label": "A244641/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A244641/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A117394/7_abdpel_25_mm.nii.gz", + "pseudo_label": "A117394/7_abdpel_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A117394/7_abdpel_25_mm/7_abdpel_25_mm_seg.nii.gz" + }, + { + "image": "A117394/4_lung_10_ce.nii.gz", + "pseudo_label": "A117394/4_lung_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A117394/4_lung_10_ce/4_lung_10_ce_seg.nii.gz" + }, + { + "image": "A117394/4_lung_125_mm.nii.gz", + "pseudo_label": "A117394/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A117394/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A117394/7_body_30_ce.nii.gz", + "pseudo_label": "A117394/7_body_30_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A117394/7_body_30_ce/7_body_30_ce_seg.nii.gz" + }, + { + "image": "A117394/9_cta_05_ce.nii.gz", + "pseudo_label": "A117394/9_cta_05_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A117394/9_cta_05_ce/9_cta_05_ce_seg.nii.gz" + }, + { + "image": "A117394/6_chest_125_mm.nii.gz", + "pseudo_label": "A117394/6_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A117394/6_chest_125_mm/6_chest_125_mm_seg.nii.gz" + }, + { + "image": "A117394/5_cta_50_ce.nii.gz", + "pseudo_label": "A117394/5_cta_50_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A117394/5_cta_50_ce/5_cta_50_ce_seg.nii.gz" + }, + { + "image": "A117394/16_cta_20000_ce.nii.gz", + "pseudo_label": "A117394/16_cta_20000_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A117394/16_cta_20000_ce/16_cta_20000_ce_seg.nii.gz" + }, + { + "image": "A117394/3_cta_10_ce.nii.gz", + "pseudo_label": "A117394/3_cta_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A117394/3_cta_10_ce/3_cta_10_ce_seg.nii.gz" + }, + { + "image": "A117394/5_lung_5_mm.nii.gz", + "pseudo_label": "A117394/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A117394/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A193060/3_lung_5x5.nii.gz", + "pseudo_label": "A193060/3_lung_5x5.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A193060/3_lung_5x5/3_lung_5x5_seg.nii.gz" + }, + { + "image": "A193060/4_hr_chest_125_x_125.nii.gz", + "pseudo_label": "A193060/4_hr_chest_125_x_125.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A193060/4_hr_chest_125_x_125/4_hr_chest_125_x_125_seg.nii.gz" + }, + { + "image": "A193060/2_axiallung_reconhres_recon.nii.gz", + "pseudo_label": "A193060/2_axiallung_reconhres_recon.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A193060/2_axiallung_reconhres_recon/2_axiallung_reconhres_recon_seg.nii.gz" + }, + { + "image": "A046441/2_body_50.nii.gz", + "pseudo_label": "A046441/2_body_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A046441/2_body_50/2_body_50_seg.nii.gz" + }, + { + "image": "A046441/2_standard_25mm.nii.gz", + "pseudo_label": "A046441/2_standard_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A046441/2_standard_25mm/2_standard_25mm_seg.nii.gz" + }, + { + "image": "A046441/4_lung_10.nii.gz", + "pseudo_label": "A046441/4_lung_10.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A046441/4_lung_10/4_lung_10_seg.nii.gz" + }, + { + "image": "A046441/3_lung_50.nii.gz", + "pseudo_label": "A046441/3_lung_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A046441/3_lung_50/3_lung_50_seg.nii.gz" + }, + { + "image": "A711969/2_standard_25mm.nii.gz", + "pseudo_label": "A711969/2_standard_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A711969/2_standard_25mm/2_standard_25mm_seg.nii.gz" + }, + { + "image": "A028914/4_lung_125_mm.nii.gz", + "pseudo_label": "A028914/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A028914/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A028914/2_chest_125_mm.nii.gz", + "pseudo_label": "A028914/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A028914/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A028914/5_lung_5_mm.nii.gz", + "pseudo_label": "A028914/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A028914/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A925089/2_body_50.nii.gz", + "pseudo_label": "A925089/2_body_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A925089/2_body_50/2_body_50_seg.nii.gz" + }, + { + "image": "A925089/4_lung_10.nii.gz", + "pseudo_label": "A925089/4_lung_10.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A925089/4_lung_10/4_lung_10_seg.nii.gz" + }, + { + "image": "A925089/3_lung_50.nii.gz", + "pseudo_label": "A925089/3_lung_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A925089/3_lung_50/3_lung_50_seg.nii.gz" + }, + { + "image": "A534059/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A534059/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A534059/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A534059/3_lung_5_mm.nii.gz", + "pseudo_label": "A534059/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A534059/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A534059/2_5_mm_standard.nii.gz", + "pseudo_label": "A534059/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A534059/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A792369/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A792369/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A792369/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A792369/3_lung_5_mm.nii.gz", + "pseudo_label": "A792369/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A792369/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A792369/2_body_30_ce.nii.gz", + "pseudo_label": "A792369/2_body_30_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A792369/2_body_30_ce/2_body_30_ce_seg.nii.gz" + }, + { + "image": "A792369/2_5_mm_standard.nii.gz", + "pseudo_label": "A792369/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A792369/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A980322/4_lung_125_mm.nii.gz", + "pseudo_label": "A980322/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A980322/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A980322/601_chest_ax.nii.gz", + "pseudo_label": "A980322/601_chest_ax.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A980322/601_chest_ax/601_chest_ax_seg.nii.gz" + }, + { + "image": "A980322/2_chest_125_mm.nii.gz", + "pseudo_label": "A980322/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A980322/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A980322/6_body_10_ce.nii.gz", + "pseudo_label": "A980322/6_body_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A980322/6_body_10_ce/6_body_10_ce_seg.nii.gz" + }, + { + "image": "A980322/6_abdpel_25_mm.nii.gz", + "pseudo_label": "A980322/6_abdpel_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A980322/6_abdpel_25_mm/6_abdpel_25_mm_seg.nii.gz" + }, + { + "image": "A980322/3_lung_5x5.nii.gz", + "pseudo_label": "A980322/3_lung_5x5.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A980322/3_lung_5x5/3_lung_5x5_seg.nii.gz" + }, + { + "image": "A980322/4_hr_chest_125_x_125.nii.gz", + "pseudo_label": "A980322/4_hr_chest_125_x_125.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A980322/4_hr_chest_125_x_125/4_hr_chest_125_x_125_seg.nii.gz" + }, + { + "image": "A980322/2_axiallung_reconhres_recon.nii.gz", + "pseudo_label": "A980322/2_axiallung_reconhres_recon.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A980322/2_axiallung_reconhres_recon/2_axiallung_reconhres_recon_seg.nii.gz" + }, + { + "image": "A980322/2_body_10_ce.nii.gz", + "pseudo_label": "A980322/2_body_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A980322/2_body_10_ce/2_body_10_ce_seg.nii.gz" + }, + { + "image": "A980322/606_abdomen_ax.nii.gz", + "pseudo_label": "A980322/606_abdomen_ax.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A980322/606_abdomen_ax/606_abdomen_ax_seg.nii.gz" + }, + { + "image": "A980322/5_lung_5_mm.nii.gz", + "pseudo_label": "A980322/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A980322/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A843997/8_cta_05_ce.nii.gz", + "pseudo_label": "A843997/8_cta_05_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A843997/8_cta_05_ce/8_cta_05_ce_seg.nii.gz" + }, + { + "image": "A843997/4_lung_10_ce.nii.gz", + "pseudo_label": "A843997/4_lung_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A843997/4_lung_10_ce/4_lung_10_ce_seg.nii.gz" + }, + { + "image": "A843997/5_cta_50_ce.nii.gz", + "pseudo_label": "A843997/5_cta_50_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A843997/5_cta_50_ce/5_cta_50_ce_seg.nii.gz" + }, + { + "image": "A843997/12_cta_15000_ce.nii.gz", + "pseudo_label": "A843997/12_cta_15000_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A843997/12_cta_15000_ce/12_cta_15000_ce_seg.nii.gz" + }, + { + "image": "A843997/3_cta_10_ce.nii.gz", + "pseudo_label": "A843997/3_cta_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A843997/3_cta_10_ce/3_cta_10_ce_seg.nii.gz" + }, + { + "image": "A821176/2_body_30_ce.nii.gz", + "pseudo_label": "A821176/2_body_30_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A821176/2_body_30_ce/2_body_30_ce_seg.nii.gz" + }, + { + "image": "A919626/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A919626/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A919626/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A919626/3_lung_5_mm.nii.gz", + "pseudo_label": "A919626/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A919626/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A919626/2_5_mm_standard.nii.gz", + "pseudo_label": "A919626/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A919626/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A232246/2_body_50.nii.gz", + "pseudo_label": "A232246/2_body_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A232246/2_body_50/2_body_50_seg.nii.gz" + }, + { + "image": "A232246/4_lung_10.nii.gz", + "pseudo_label": "A232246/4_lung_10.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A232246/4_lung_10/4_lung_10_seg.nii.gz" + }, + { + "image": "A232246/2_abdomenpelvis_25_mm.nii.gz", + "pseudo_label": "A232246/2_abdomenpelvis_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A232246/2_abdomenpelvis_25_mm/2_abdomenpelvis_25_mm_seg.nii.gz" + }, + { + "image": "A232246/3_lung_50.nii.gz", + "pseudo_label": "A232246/3_lung_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A232246/3_lung_50/3_lung_50_seg.nii.gz" + }, + { + "image": "A762254/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A762254/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A762254/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A762254/3_lung_5_mm.nii.gz", + "pseudo_label": "A762254/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A762254/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A762254/2_5_mm_standard.nii.gz", + "pseudo_label": "A762254/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A762254/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A856738/2_standard_25mm.nii.gz", + "pseudo_label": "A856738/2_standard_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A856738/2_standard_25mm/2_standard_25mm_seg.nii.gz" + }, + { + "image": "A417522/9_cta_3000_ce.nii.gz", + "pseudo_label": "A417522/9_cta_3000_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A417522/9_cta_3000_ce/9_cta_3000_ce_seg.nii.gz" + }, + { + "image": "A417522/5_cta_15000_ce.nii.gz", + "pseudo_label": "A417522/5_cta_15000_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A417522/5_cta_15000_ce/5_cta_15000_ce_seg.nii.gz" + }, + { + "image": "A417522/3_cta_10_ce.nii.gz", + "pseudo_label": "A417522/3_cta_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A417522/3_cta_10_ce/3_cta_10_ce_seg.nii.gz" + }, + { + "image": "A751519/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A751519/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A751519/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A751519/9_cta_3000_ce.nii.gz", + "pseudo_label": "A751519/9_cta_3000_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A751519/9_cta_3000_ce/9_cta_3000_ce_seg.nii.gz" + }, + { + "image": "A751519/3_lung_5_mm.nii.gz", + "pseudo_label": "A751519/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A751519/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A751519/5_cta_15000_ce.nii.gz", + "pseudo_label": "A751519/5_cta_15000_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A751519/5_cta_15000_ce/5_cta_15000_ce_seg.nii.gz" + }, + { + "image": "A751519/2_5_mm_standard.nii.gz", + "pseudo_label": "A751519/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A751519/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A751519/3_cta_10_ce.nii.gz", + "pseudo_label": "A751519/3_cta_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A751519/3_cta_10_ce/3_cta_10_ce_seg.nii.gz" + }, + { + "image": "A136789/3_axiallung_reconhres_recon.nii.gz", + "pseudo_label": "A136789/3_axiallung_reconhres_recon.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A136789/3_axiallung_reconhres_recon/3_axiallung_reconhres_recon_seg.nii.gz" + }, + { + "image": "A136789/5_hr_chest_125_x_125.nii.gz", + "pseudo_label": "A136789/5_hr_chest_125_x_125.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A136789/5_hr_chest_125_x_125/5_hr_chest_125_x_125_seg.nii.gz" + }, + { + "image": "A136789/106_ref_ax.nii.gz", + "pseudo_label": "A136789/106_ref_ax.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A136789/106_ref_ax/106_ref_ax_seg.nii.gz" + }, + { + "image": "A136789/4_lung_5x5.nii.gz", + "pseudo_label": "A136789/4_lung_5x5.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A136789/4_lung_5x5/4_lung_5x5_seg.nii.gz" + }, + { + "image": "A666238/2_standard_25mm.nii.gz", + "pseudo_label": "A666238/2_standard_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A666238/2_standard_25mm/2_standard_25mm_seg.nii.gz" + }, + { + "image": "A138005/3_lung_5x5.nii.gz", + "pseudo_label": "A138005/3_lung_5x5.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A138005/3_lung_5x5/3_lung_5x5_seg.nii.gz" + }, + { + "image": "A138005/4_hr_chest_125_x_125.nii.gz", + "pseudo_label": "A138005/4_hr_chest_125_x_125.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A138005/4_hr_chest_125_x_125/4_hr_chest_125_x_125_seg.nii.gz" + }, + { + "image": "A138005/2_axiallung_reconhres_recon.nii.gz", + "pseudo_label": "A138005/2_axiallung_reconhres_recon.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A138005/2_axiallung_reconhres_recon/2_axiallung_reconhres_recon_seg.nii.gz" + }, + { + "image": "A172203/4_lung_125_mm.nii.gz", + "pseudo_label": "A172203/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A172203/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A172203/2_chest_125_mm.nii.gz", + "pseudo_label": "A172203/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A172203/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A172203/5_lung_5_mm.nii.gz", + "pseudo_label": "A172203/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A172203/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A221230/2_chest_25_mmabdpel_25mm.nii.gz", + "pseudo_label": "A221230/2_chest_25_mmabdpel_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A221230/2_chest_25_mmabdpel_25mm/2_chest_25_mmabdpel_25mm_seg.nii.gz" + }, + { + "image": "A221230/2_standard_25mm.nii.gz", + "pseudo_label": "A221230/2_standard_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A221230/2_standard_25mm/2_standard_25mm_seg.nii.gz" + }, + { + "image": "A111169/2_body_50.nii.gz", + "pseudo_label": "A111169/2_body_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A111169/2_body_50/2_body_50_seg.nii.gz" + }, + { + "image": "A111169/4_lung_10.nii.gz", + "pseudo_label": "A111169/4_lung_10.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A111169/4_lung_10/4_lung_10_seg.nii.gz" + }, + { + "image": "A111169/3_lung_50.nii.gz", + "pseudo_label": "A111169/3_lung_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A111169/3_lung_50/3_lung_50_seg.nii.gz" + }, + { + "image": "A450512/5_lung_10.nii.gz", + "pseudo_label": "A450512/5_lung_10.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A450512/5_lung_10/5_lung_10_seg.nii.gz" + }, + { + "image": "A450512/4_lung_50.nii.gz", + "pseudo_label": "A450512/4_lung_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A450512/4_lung_50/4_lung_50_seg.nii.gz" + }, + { + "image": "A450512/3_body_50.nii.gz", + "pseudo_label": "A450512/3_body_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A450512/3_body_50/3_body_50_seg.nii.gz" + }, + { + "image": "A097839/4_lung_125_mm.nii.gz", + "pseudo_label": "A097839/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A097839/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A097839/2_chest_125_mm.nii.gz", + "pseudo_label": "A097839/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A097839/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A097839/5_lung_5_mm.nii.gz", + "pseudo_label": "A097839/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A097839/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A750765/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A750765/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A750765/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A750765/3_lung_5_mm.nii.gz", + "pseudo_label": "A750765/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A750765/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A750765/2_chest_abd_pel_5x5.nii.gz", + "pseudo_label": "A750765/2_chest_abd_pel_5x5.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A750765/2_chest_abd_pel_5x5/2_chest_abd_pel_5x5_seg.nii.gz" + }, + { + "image": "A750765/2_body_30_ce.nii.gz", + "pseudo_label": "A750765/2_body_30_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A750765/2_body_30_ce/2_body_30_ce_seg.nii.gz" + }, + { + "image": "A750765/2_5_mm_standard.nii.gz", + "pseudo_label": "A750765/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A750765/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A128603/3_lung_5x5.nii.gz", + "pseudo_label": "A128603/3_lung_5x5.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A128603/3_lung_5x5/3_lung_5x5_seg.nii.gz" + }, + { + "image": "A128603/4_hr_chest_125_x_125.nii.gz", + "pseudo_label": "A128603/4_hr_chest_125_x_125.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A128603/4_hr_chest_125_x_125/4_hr_chest_125_x_125_seg.nii.gz" + }, + { + "image": "A128603/2_axiallung_reconhres_recon.nii.gz", + "pseudo_label": "A128603/2_axiallung_reconhres_recon.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A128603/2_axiallung_reconhres_recon/2_axiallung_reconhres_recon_seg.nii.gz" + }, + { + "image": "A943730/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A943730/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A943730/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A943730/3_50_x_50_lung.nii.gz", + "pseudo_label": "A943730/3_50_x_50_lung.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A943730/3_50_x_50_lung/3_50_x_50_lung_seg.nii.gz" + }, + { + "image": "A943730/4_125_x_125_high_resolution.nii.gz", + "pseudo_label": "A943730/4_125_x_125_high_resolution.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A943730/4_125_x_125_high_resolution/4_125_x_125_high_resolution_seg.nii.gz" + }, + { + "image": "A943730/3_lung_5_mm.nii.gz", + "pseudo_label": "A943730/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A943730/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A943730/2_5_mm_standard.nii.gz", + "pseudo_label": "A943730/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A943730/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A943730/2_50_x_50_standard.nii.gz", + "pseudo_label": "A943730/2_50_x_50_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A943730/2_50_x_50_standard/2_50_x_50_standard_seg.nii.gz" + }, + { + "image": "A653181/2_standard.nii.gz", + "pseudo_label": "A653181/2_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A653181/2_standard/2_standard_seg.nii.gz" + }, + { + "image": "A843980/2_standard_25mm.nii.gz", + "pseudo_label": "A843980/2_standard_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A843980/2_standard_25mm/2_standard_25mm_seg.nii.gz" + }, + { + "image": "A599118/2_standard_25mm.nii.gz", + "pseudo_label": "A599118/2_standard_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A599118/2_standard_25mm/2_standard_25mm_seg.nii.gz" + }, + { + "image": "A979115/5_body_10_ce.nii.gz", + "pseudo_label": "A979115/5_body_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A979115/5_body_10_ce/5_body_10_ce_seg.nii.gz" + }, + { + "image": "A979115/3_body_10_ce.nii.gz", + "pseudo_label": "A979115/3_body_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A979115/3_body_10_ce/3_body_10_ce_seg.nii.gz" + }, + { + "image": "A757672/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A757672/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A757672/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A757672/3_lung_5_mm.nii.gz", + "pseudo_label": "A757672/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A757672/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A757672/2_5_mm_standard.nii.gz", + "pseudo_label": "A757672/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A757672/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A525539/7_body_10_ce.nii.gz", + "pseudo_label": "A525539/7_body_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A525539/7_body_10_ce/7_body_10_ce_seg.nii.gz" + }, + { + "image": "A525539/3_body_10_ce.nii.gz", + "pseudo_label": "A525539/3_body_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A525539/3_body_10_ce/3_body_10_ce_seg.nii.gz" + }, + { + "image": "A421290/4_lung_125_mm.nii.gz", + "pseudo_label": "A421290/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A421290/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A421290/2_chest_125_mm.nii.gz", + "pseudo_label": "A421290/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A421290/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A421290/5_lung_5_mm.nii.gz", + "pseudo_label": "A421290/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A421290/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A921077/2_body_30_ce.nii.gz", + "pseudo_label": "A921077/2_body_30_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A921077/2_body_30_ce/2_body_30_ce_seg.nii.gz" + }, + { + "image": "A244589/2_body_50.nii.gz", + "pseudo_label": "A244589/2_body_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A244589/2_body_50/2_body_50_seg.nii.gz" + }, + { + "image": "A244589/4_lung_10.nii.gz", + "pseudo_label": "A244589/4_lung_10.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A244589/4_lung_10/4_lung_10_seg.nii.gz" + }, + { + "image": "A244589/3_lung_50.nii.gz", + "pseudo_label": "A244589/3_lung_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A244589/3_lung_50/3_lung_50_seg.nii.gz" + }, + { + "image": "A424256/2_body_30_ce.nii.gz", + "pseudo_label": "A424256/2_body_30_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A424256/2_body_30_ce/2_body_30_ce_seg.nii.gz" + }, + { + "image": "A099771/4_lung_125_mm.nii.gz", + "pseudo_label": "A099771/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A099771/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A099771/2_chest_125_mm.nii.gz", + "pseudo_label": "A099771/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A099771/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A099771/5_lung_5_mm.nii.gz", + "pseudo_label": "A099771/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A099771/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A638206/2_chest_25_mmabdpel_25mm.nii.gz", + "pseudo_label": "A638206/2_chest_25_mmabdpel_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A638206/2_chest_25_mmabdpel_25mm/2_chest_25_mmabdpel_25mm_seg.nii.gz" + }, + { + "image": "A964563/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A964563/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A964563/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A964563/3_lung_5_mm.nii.gz", + "pseudo_label": "A964563/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A964563/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A964563/2_5_mm_standard.nii.gz", + "pseudo_label": "A964563/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A964563/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A210180/4_lung_125_mm.nii.gz", + "pseudo_label": "A210180/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A210180/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A210180/2_chest_125_mm.nii.gz", + "pseudo_label": "A210180/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A210180/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A210180/5_lung_5_mm.nii.gz", + "pseudo_label": "A210180/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A210180/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A383281/2_chest_25_mmabdpel_25mm.nii.gz", + "pseudo_label": "A383281/2_chest_25_mmabdpel_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A383281/2_chest_25_mmabdpel_25mm/2_chest_25_mmabdpel_25mm_seg.nii.gz" + }, + { + "image": "A383281/4_chest__30__b70s.nii.gz", + "pseudo_label": "A383281/4_chest__30__b70s.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A383281/4_chest__30__b70s/4_chest__30__b70s_seg.nii.gz" + }, + { + "image": "A383281/2_ac__chest__50__b08s.nii.gz", + "pseudo_label": "A383281/2_ac__chest__50__b08s.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A383281/2_ac__chest__50__b08s/2_ac__chest__50__b08s_seg.nii.gz" + }, + { + "image": "A383281/3_chest__50__b30s.nii.gz", + "pseudo_label": "A383281/3_chest__50__b30s.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A383281/3_chest__50__b30s/3_chest__50__b30s_seg.nii.gz" + }, + { + "image": "A383281/2_abdpel_25_mm.nii.gz", + "pseudo_label": "A383281/2_abdpel_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A383281/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz" + }, + { + "image": "A776019/2_body_50.nii.gz", + "pseudo_label": "A776019/2_body_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A776019/2_body_50/2_body_50_seg.nii.gz" + }, + { + "image": "A776019/4_lung_10.nii.gz", + "pseudo_label": "A776019/4_lung_10.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A776019/4_lung_10/4_lung_10_seg.nii.gz" + }, + { + "image": "A776019/3_lung_5x5.nii.gz", + "pseudo_label": "A776019/3_lung_5x5.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A776019/3_lung_5x5/3_lung_5x5_seg.nii.gz" + }, + { + "image": "A776019/4_hr_chest_125_x_125.nii.gz", + "pseudo_label": "A776019/4_hr_chest_125_x_125.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A776019/4_hr_chest_125_x_125/4_hr_chest_125_x_125_seg.nii.gz" + }, + { + "image": "A776019/2_axiallung_reconhres_recon.nii.gz", + "pseudo_label": "A776019/2_axiallung_reconhres_recon.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A776019/2_axiallung_reconhres_recon/2_axiallung_reconhres_recon_seg.nii.gz" + }, + { + "image": "A776019/2_abdpel_25_mm.nii.gz", + "pseudo_label": "A776019/2_abdpel_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A776019/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz" + }, + { + "image": "A776019/3_lung_50.nii.gz", + "pseudo_label": "A776019/3_lung_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A776019/3_lung_50/3_lung_50_seg.nii.gz" + }, + { + "image": "A581050/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A581050/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A581050/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A581050/3_lung_5_mm.nii.gz", + "pseudo_label": "A581050/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A581050/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A581050/2_5_mm_standard.nii.gz", + "pseudo_label": "A581050/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A581050/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A890029/4_lung_125_mm.nii.gz", + "pseudo_label": "A890029/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A890029/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A890029/2_chest_125_mm.nii.gz", + "pseudo_label": "A890029/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A890029/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A890029/5_lung_5_mm.nii.gz", + "pseudo_label": "A890029/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A890029/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A727764/4_lung_125_mm.nii.gz", + "pseudo_label": "A727764/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A727764/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A727764/2_chest_125_mm.nii.gz", + "pseudo_label": "A727764/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A727764/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A727764/5_lung_5_mm.nii.gz", + "pseudo_label": "A727764/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A727764/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A523411/4_lung_125_mm.nii.gz", + "pseudo_label": "A523411/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A523411/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A523411/2_chest_125_mm.nii.gz", + "pseudo_label": "A523411/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A523411/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A523411/5_lung_5_mm.nii.gz", + "pseudo_label": "A523411/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A523411/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A930175/8_cta_05_ce.nii.gz", + "pseudo_label": "A930175/8_cta_05_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A930175/8_cta_05_ce/8_cta_05_ce_seg.nii.gz" + }, + { + "image": "A930175/4_lung_10_ce.nii.gz", + "pseudo_label": "A930175/4_lung_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A930175/4_lung_10_ce/4_lung_10_ce_seg.nii.gz" + }, + { + "image": "A930175/4_lung_125_mm.nii.gz", + "pseudo_label": "A930175/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A930175/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A930175/2_chest_125_mm.nii.gz", + "pseudo_label": "A930175/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A930175/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A930175/5_cta_50_ce.nii.gz", + "pseudo_label": "A930175/5_cta_50_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A930175/5_cta_50_ce/5_cta_50_ce_seg.nii.gz" + }, + { + "image": "A930175/3_cta_10_ce.nii.gz", + "pseudo_label": "A930175/3_cta_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A930175/3_cta_10_ce/3_cta_10_ce_seg.nii.gz" + }, + { + "image": "A930175/2_standard.nii.gz", + "pseudo_label": "A930175/2_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A930175/2_standard/2_standard_seg.nii.gz" + }, + { + "image": "A930175/5_lung_5_mm.nii.gz", + "pseudo_label": "A930175/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A930175/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A758961/601_chest_ax.nii.gz", + "pseudo_label": "A758961/601_chest_ax.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A758961/601_chest_ax/601_chest_ax_seg.nii.gz" + }, + { + "image": "A758961/606_abdomen_ax.nii.gz", + "pseudo_label": "A758961/606_abdomen_ax.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A758961/606_abdomen_ax/606_abdomen_ax_seg.nii.gz" + }, + { + "image": "A539716/2_body_30_ce.nii.gz", + "pseudo_label": "A539716/2_body_30_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A539716/2_body_30_ce/2_body_30_ce_seg.nii.gz" + }, + { + "image": "A024026/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A024026/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A024026/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A024026/3_lung_5_mm.nii.gz", + "pseudo_label": "A024026/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A024026/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A024026/2_5_mm_standard.nii.gz", + "pseudo_label": "A024026/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A024026/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A695246/601_chest_ax.nii.gz", + "pseudo_label": "A695246/601_chest_ax.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A695246/601_chest_ax/601_chest_ax_seg.nii.gz" + }, + { + "image": "A695246/606_abdomen_ax.nii.gz", + "pseudo_label": "A695246/606_abdomen_ax.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A695246/606_abdomen_ax/606_abdomen_ax_seg.nii.gz" + }, + { + "image": "A543432/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A543432/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A543432/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A543432/3_lung_5_mm.nii.gz", + "pseudo_label": "A543432/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A543432/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A543432/2_5_mm_standard.nii.gz", + "pseudo_label": "A543432/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A543432/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A937798/2_axials.nii.gz", + "pseudo_label": "A937798/2_axials.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A937798/2_axials/2_axials_seg.nii.gz" + }, + { + "image": "A937798/2_chest_25_mmabdpel_25mm.nii.gz", + "pseudo_label": "A937798/2_chest_25_mmabdpel_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A937798/2_chest_25_mmabdpel_25mm/2_chest_25_mmabdpel_25mm_seg.nii.gz" + }, + { + "image": "A676609/2_abdpel_25_mm.nii.gz", + "pseudo_label": "A676609/2_abdpel_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A676609/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz" + }, + { + "image": "A789646/2_body_50.nii.gz", + "pseudo_label": "A789646/2_body_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A789646/2_body_50/2_body_50_seg.nii.gz" + }, + { + "image": "A789646/4_lung_10.nii.gz", + "pseudo_label": "A789646/4_lung_10.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A789646/4_lung_10/4_lung_10_seg.nii.gz" + }, + { + "image": "A789646/3_lung_50.nii.gz", + "pseudo_label": "A789646/3_lung_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A789646/3_lung_50/3_lung_50_seg.nii.gz" + }, + { + "image": "A057590/2_body_50.nii.gz", + "pseudo_label": "A057590/2_body_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A057590/2_body_50/2_body_50_seg.nii.gz" + }, + { + "image": "A057590/4_lung_10.nii.gz", + "pseudo_label": "A057590/4_lung_10.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A057590/4_lung_10/4_lung_10_seg.nii.gz" + }, + { + "image": "A057590/3_lung_50.nii.gz", + "pseudo_label": "A057590/3_lung_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A057590/3_lung_50/3_lung_50_seg.nii.gz" + }, + { + "image": "A703220/2_25_x_25_standard.nii.gz", + "pseudo_label": "A703220/2_25_x_25_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A703220/2_25_x_25_standard/2_25_x_25_standard_seg.nii.gz" + }, + { + "image": "A703220/2_body_30_ce.nii.gz", + "pseudo_label": "A703220/2_body_30_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A703220/2_body_30_ce/2_body_30_ce_seg.nii.gz" + }, + { + "image": "A703220/2_abdomenpelvis_25_mm.nii.gz", + "pseudo_label": "A703220/2_abdomenpelvis_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A703220/2_abdomenpelvis_25_mm/2_abdomenpelvis_25_mm_seg.nii.gz" + }, + { + "image": "A899201/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A899201/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A899201/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A899201/3_lung_5_mm.nii.gz", + "pseudo_label": "A899201/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A899201/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A899201/2_5_mm_standard.nii.gz", + "pseudo_label": "A899201/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A899201/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A939326/2_abdpel_25_mm.nii.gz", + "pseudo_label": "A939326/2_abdpel_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A939326/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz" + }, + { + "image": "A691964/2_body_30_ce.nii.gz", + "pseudo_label": "A691964/2_body_30_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A691964/2_body_30_ce/2_body_30_ce_seg.nii.gz" + }, + { + "image": "A587516/2_body_50.nii.gz", + "pseudo_label": "A587516/2_body_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A587516/2_body_50/2_body_50_seg.nii.gz" + }, + { + "image": "A587516/4_lung_10.nii.gz", + "pseudo_label": "A587516/4_lung_10.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A587516/4_lung_10/4_lung_10_seg.nii.gz" + }, + { + "image": "A587516/3_lung_50.nii.gz", + "pseudo_label": "A587516/3_lung_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A587516/3_lung_50/3_lung_50_seg.nii.gz" + }, + { + "image": "A802521/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A802521/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A802521/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A802521/3_lung_5_mm.nii.gz", + "pseudo_label": "A802521/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A802521/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A802521/2_5_mm_standard.nii.gz", + "pseudo_label": "A802521/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A802521/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A086562/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A086562/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A086562/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A086562/3_lung_5_mm.nii.gz", + "pseudo_label": "A086562/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A086562/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A086562/2_5_mm_standard.nii.gz", + "pseudo_label": "A086562/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A086562/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A747011/2_standard_25mm.nii.gz", + "pseudo_label": "A747011/2_standard_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A747011/2_standard_25mm/2_standard_25mm_seg.nii.gz" + }, + { + "image": "A530219/2_abdpel_25_mm.nii.gz", + "pseudo_label": "A530219/2_abdpel_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A530219/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz" + }, + { + "image": "A179118/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A179118/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A179118/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A179118/3_lung_5_mm.nii.gz", + "pseudo_label": "A179118/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A179118/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A179118/2_5_mm_standard.nii.gz", + "pseudo_label": "A179118/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A179118/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A635855/4_lung_125_mm.nii.gz", + "pseudo_label": "A635855/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A635855/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A635855/2_chest_125_mm.nii.gz", + "pseudo_label": "A635855/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A635855/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A635855/6_chest_125_mm.nii.gz", + "pseudo_label": "A635855/6_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A635855/6_chest_125_mm/6_chest_125_mm_seg.nii.gz" + }, + { + "image": "A635855/3_lung_5x5.nii.gz", + "pseudo_label": "A635855/3_lung_5x5.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A635855/3_lung_5x5/3_lung_5x5_seg.nii.gz" + }, + { + "image": "A635855/4_hr_chest_125_x_125.nii.gz", + "pseudo_label": "A635855/4_hr_chest_125_x_125.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A635855/4_hr_chest_125_x_125/4_hr_chest_125_x_125_seg.nii.gz" + }, + { + "image": "A635855/9_lung_5_mm.nii.gz", + "pseudo_label": "A635855/9_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A635855/9_lung_5_mm/9_lung_5_mm_seg.nii.gz" + }, + { + "image": "A635855/2_axiallung_reconhres_recon.nii.gz", + "pseudo_label": "A635855/2_axiallung_reconhres_recon.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A635855/2_axiallung_reconhres_recon/2_axiallung_reconhres_recon_seg.nii.gz" + }, + { + "image": "A635855/8_lung_125_mm.nii.gz", + "pseudo_label": "A635855/8_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A635855/8_lung_125_mm/8_lung_125_mm_seg.nii.gz" + }, + { + "image": "A635855/5_lung_5_mm.nii.gz", + "pseudo_label": "A635855/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A635855/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A056642/4_lung_125_mm.nii.gz", + "pseudo_label": "A056642/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A056642/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A056642/2_chest_125_mm.nii.gz", + "pseudo_label": "A056642/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A056642/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A056642/2_standard_25mm.nii.gz", + "pseudo_label": "A056642/2_standard_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A056642/2_standard_25mm/2_standard_25mm_seg.nii.gz" + }, + { + "image": "A056642/5_lung_5_mm.nii.gz", + "pseudo_label": "A056642/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A056642/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A423765/4_lung_125_mm.nii.gz", + "pseudo_label": "A423765/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A423765/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A423765/2_chest_125_mm.nii.gz", + "pseudo_label": "A423765/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A423765/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A423765/5_lung_5_mm.nii.gz", + "pseudo_label": "A423765/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A423765/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A923411/4_body_30_ce.nii.gz", + "pseudo_label": "A923411/4_body_30_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A923411/4_body_30_ce/4_body_30_ce_seg.nii.gz" + }, + { + "image": "A114403/4_lung_125_mm.nii.gz", + "pseudo_label": "A114403/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A114403/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A114403/2_chest_125_mm.nii.gz", + "pseudo_label": "A114403/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A114403/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A114403/5_lung_5_mm.nii.gz", + "pseudo_label": "A114403/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A114403/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A034518/4_lung_10_ce.nii.gz", + "pseudo_label": "A034518/4_lung_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A034518/4_lung_10_ce/4_lung_10_ce_seg.nii.gz" + }, + { + "image": "A034518/2_body_50_ce.nii.gz", + "pseudo_label": "A034518/2_body_50_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A034518/2_body_50_ce/2_body_50_ce_seg.nii.gz" + }, + { + "image": "A034518/3_lung_50_ce.nii.gz", + "pseudo_label": "A034518/3_lung_50_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A034518/3_lung_50_ce/3_lung_50_ce_seg.nii.gz" + }, + { + "image": "A019464/4_lung_125_mm.nii.gz", + "pseudo_label": "A019464/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A019464/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A019464/300_axial_mips.nii.gz", + "pseudo_label": "A019464/300_axial_mips.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A019464/300_axial_mips/300_axial_mips_seg.nii.gz" + }, + { + "image": "A019464/2_chest_125_mm.nii.gz", + "pseudo_label": "A019464/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A019464/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A019464/6_abdpel_25_mm.nii.gz", + "pseudo_label": "A019464/6_abdpel_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A019464/6_abdpel_25_mm/6_abdpel_25_mm_seg.nii.gz" + }, + { + "image": "A019464/5_lung_5_mm.nii.gz", + "pseudo_label": "A019464/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A019464/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A501952/4_lung_125_mm.nii.gz", + "pseudo_label": "A501952/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A501952/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A501952/2_chest_125_mm.nii.gz", + "pseudo_label": "A501952/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A501952/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A501952/5_lung_5_mm.nii.gz", + "pseudo_label": "A501952/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A501952/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A418141/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A418141/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A418141/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A418141/3_lung_5_mm.nii.gz", + "pseudo_label": "A418141/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A418141/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A418141/2_5_mm_standard.nii.gz", + "pseudo_label": "A418141/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A418141/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A402838/6_body_10_ce.nii.gz", + "pseudo_label": "A402838/6_body_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A402838/6_body_10_ce/6_body_10_ce_seg.nii.gz" + }, + { + "image": "A402838/2_body_10_ce.nii.gz", + "pseudo_label": "A402838/2_body_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A402838/2_body_10_ce/2_body_10_ce_seg.nii.gz" + }, + { + "image": "A964207/601_chest_ax.nii.gz", + "pseudo_label": "A964207/601_chest_ax.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A964207/601_chest_ax/601_chest_ax_seg.nii.gz" + }, + { + "image": "A964207/606_abdomen_ax.nii.gz", + "pseudo_label": "A964207/606_abdomen_ax.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A964207/606_abdomen_ax/606_abdomen_ax_seg.nii.gz" + }, + { + "image": "A235514/6_lung_hr_125_mm.nii.gz", + "pseudo_label": "A235514/6_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A235514/6_lung_hr_125_mm/6_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A235514/4_5_mm_standard.nii.gz", + "pseudo_label": "A235514/4_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A235514/4_5_mm_standard/4_5_mm_standard_seg.nii.gz" + }, + { + "image": "A235514/5_lung_5_mm.nii.gz", + "pseudo_label": "A235514/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A235514/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A574117/3_body_30_ce.nii.gz", + "pseudo_label": "A574117/3_body_30_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A574117/3_body_30_ce/3_body_30_ce_seg.nii.gz" + }, + { + "image": "A040293/4_lung_125_mm.nii.gz", + "pseudo_label": "A040293/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A040293/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A040293/2_chest_125_mm.nii.gz", + "pseudo_label": "A040293/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A040293/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A040293/5_lung_5_mm.nii.gz", + "pseudo_label": "A040293/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A040293/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A922673/4_lung_125_mm.nii.gz", + "pseudo_label": "A922673/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A922673/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A922673/2_chest_125_mm.nii.gz", + "pseudo_label": "A922673/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A922673/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A922673/4_hr_chest_125x125.nii.gz", + "pseudo_label": "A922673/4_hr_chest_125x125.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A922673/4_hr_chest_125x125/4_hr_chest_125x125_seg.nii.gz" + }, + { + "image": "A922673/3_lung_5x5.nii.gz", + "pseudo_label": "A922673/3_lung_5x5.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A922673/3_lung_5x5/3_lung_5x5_seg.nii.gz" + }, + { + "image": "A922673/2_axiallung_reconhres_recon.nii.gz", + "pseudo_label": "A922673/2_axiallung_reconhres_recon.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A922673/2_axiallung_reconhres_recon/2_axiallung_reconhres_recon_seg.nii.gz" + }, + { + "image": "A922673/5_lung_5_mm.nii.gz", + "pseudo_label": "A922673/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A922673/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A130302/3_chest__25__b41s.nii.gz", + "pseudo_label": "A130302/3_chest__25__b41s.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A130302/3_chest__25__b41s/3_chest__25__b41s_seg.nii.gz" + }, + { + "image": "A130302/4_2_min_venous_delay.nii.gz", + "pseudo_label": "A130302/4_2_min_venous_delay.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A130302/4_2_min_venous_delay/4_2_min_venous_delay_seg.nii.gz" + }, + { + "image": "A130302/5_chest__25__b30s.nii.gz", + "pseudo_label": "A130302/5_chest__25__b30s.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A130302/5_chest__25__b30s/5_chest__25__b30s_seg.nii.gz" + }, + { + "image": "A130302/6_lung_30__b70s.nii.gz", + "pseudo_label": "A130302/6_lung_30__b70s.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A130302/6_lung_30__b70s/6_lung_30__b70s_seg.nii.gz" + }, + { + "image": "A130302/4_cardiac_25__b41s.nii.gz", + "pseudo_label": "A130302/4_cardiac_25__b41s.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A130302/4_cardiac_25__b41s/4_cardiac_25__b41s_seg.nii.gz" + }, + { + "image": "A130302/2_ac__chest__50__b08s.nii.gz", + "pseudo_label": "A130302/2_ac__chest__50__b08s.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A130302/2_ac__chest__50__b08s/2_ac__chest__50__b08s_seg.nii.gz" + }, + { + "image": "A130302/2_abdomenpelvis_25_mm.nii.gz", + "pseudo_label": "A130302/2_abdomenpelvis_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A130302/2_abdomenpelvis_25_mm/2_abdomenpelvis_25_mm_seg.nii.gz" + }, + { + "image": "A079945/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A079945/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A079945/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A079945/3_lung_5_mm.nii.gz", + "pseudo_label": "A079945/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A079945/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A079945/2_5_mm_standard.nii.gz", + "pseudo_label": "A079945/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A079945/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A813763/2_25_x_25_standard.nii.gz", + "pseudo_label": "A813763/2_25_x_25_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A813763/2_25_x_25_standard/2_25_x_25_standard_seg.nii.gz" + }, + { + "image": "A813763/2_abdpel_25_mm.nii.gz", + "pseudo_label": "A813763/2_abdpel_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A813763/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz" + }, + { + "image": "A963786/2_standard_25mm.nii.gz", + "pseudo_label": "A963786/2_standard_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A963786/2_standard_25mm/2_standard_25mm_seg.nii.gz" + }, + { + "image": "A728722/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A728722/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A728722/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A728722/3_lung_5_mm.nii.gz", + "pseudo_label": "A728722/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A728722/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A728722/2_5_mm_standard.nii.gz", + "pseudo_label": "A728722/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A728722/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A329601/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A329601/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A329601/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A329601/3_lung_5_mm.nii.gz", + "pseudo_label": "A329601/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A329601/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A329601/2_5_mm_standard.nii.gz", + "pseudo_label": "A329601/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A329601/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A431574/2_standard_25mm.nii.gz", + "pseudo_label": "A431574/2_standard_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A431574/2_standard_25mm/2_standard_25mm_seg.nii.gz" + }, + { + "image": "A292777/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A292777/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A292777/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A292777/7_abdpel_25_mm.nii.gz", + "pseudo_label": "A292777/7_abdpel_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A292777/7_abdpel_25_mm/7_abdpel_25_mm_seg.nii.gz" + }, + { + "image": "A292777/4_lung_125_mm.nii.gz", + "pseudo_label": "A292777/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A292777/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A292777/3_lung_5_mm.nii.gz", + "pseudo_label": "A292777/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A292777/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A292777/6_chest_125_mm.nii.gz", + "pseudo_label": "A292777/6_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A292777/6_chest_125_mm/6_chest_125_mm_seg.nii.gz" + }, + { + "image": "A292777/3_lung_5x5.nii.gz", + "pseudo_label": "A292777/3_lung_5x5.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A292777/3_lung_5x5/3_lung_5x5_seg.nii.gz" + }, + { + "image": "A292777/4_hr_chest_125_x_125.nii.gz", + "pseudo_label": "A292777/4_hr_chest_125_x_125.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A292777/4_hr_chest_125_x_125/4_hr_chest_125_x_125_seg.nii.gz" + }, + { + "image": "A292777/2_5_mm_standard.nii.gz", + "pseudo_label": "A292777/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A292777/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A292777/2_axiallung_reconhres_recon.nii.gz", + "pseudo_label": "A292777/2_axiallung_reconhres_recon.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A292777/2_axiallung_reconhres_recon/2_axiallung_reconhres_recon_seg.nii.gz" + }, + { + "image": "A292777/5_lung_5_mm.nii.gz", + "pseudo_label": "A292777/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A292777/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A784270/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A784270/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A784270/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A784270/3_lung_5_mm.nii.gz", + "pseudo_label": "A784270/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A784270/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A784270/2_5_mm_standard.nii.gz", + "pseudo_label": "A784270/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A784270/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A221570/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A221570/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A221570/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A221570/3_lung_5_mm.nii.gz", + "pseudo_label": "A221570/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A221570/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A221570/2_5_mm_standard.nii.gz", + "pseudo_label": "A221570/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A221570/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A221570/2_body_10_ce.nii.gz", + "pseudo_label": "A221570/2_body_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A221570/2_body_10_ce/2_body_10_ce_seg.nii.gz" + }, + { + "image": "A201130/4_chest__30__b70s.nii.gz", + "pseudo_label": "A201130/4_chest__30__b70s.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A201130/4_chest__30__b70s/4_chest__30__b70s_seg.nii.gz" + }, + { + "image": "A201130/3_chest__50__b30s.nii.gz", + "pseudo_label": "A201130/3_chest__50__b30s.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A201130/3_chest__50__b30s/3_chest__50__b30s_seg.nii.gz" + }, + { + "image": "A201130/2_standard.nii.gz", + "pseudo_label": "A201130/2_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A201130/2_standard/2_standard_seg.nii.gz" + }, + { + "image": "A321377/3_lung_5x5.nii.gz", + "pseudo_label": "A321377/3_lung_5x5.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A321377/3_lung_5x5/3_lung_5x5_seg.nii.gz" + }, + { + "image": "A321377/4_hr_chest_125_x_125.nii.gz", + "pseudo_label": "A321377/4_hr_chest_125_x_125.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A321377/4_hr_chest_125_x_125/4_hr_chest_125_x_125_seg.nii.gz" + }, + { + "image": "A321377/2_axiallung_reconhres_recon.nii.gz", + "pseudo_label": "A321377/2_axiallung_reconhres_recon.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A321377/2_axiallung_reconhres_recon/2_axiallung_reconhres_recon_seg.nii.gz" + }, + { + "image": "A321377/2_abdomenpelvis_25_mm.nii.gz", + "pseudo_label": "A321377/2_abdomenpelvis_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A321377/2_abdomenpelvis_25_mm/2_abdomenpelvis_25_mm_seg.nii.gz" + }, + { + "image": "A563909/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A563909/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A563909/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A563909/3_lung_5_mm.nii.gz", + "pseudo_label": "A563909/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A563909/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A563909/2_5_mm_standard.nii.gz", + "pseudo_label": "A563909/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A563909/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A802005/2_body_50.nii.gz", + "pseudo_label": "A802005/2_body_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A802005/2_body_50/2_body_50_seg.nii.gz" + }, + { + "image": "A802005/4_lung_10.nii.gz", + "pseudo_label": "A802005/4_lung_10.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A802005/4_lung_10/4_lung_10_seg.nii.gz" + }, + { + "image": "A802005/3_lung_50.nii.gz", + "pseudo_label": "A802005/3_lung_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A802005/3_lung_50/3_lung_50_seg.nii.gz" + }, + { + "image": "A179258/2_body_50.nii.gz", + "pseudo_label": "A179258/2_body_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A179258/2_body_50/2_body_50_seg.nii.gz" + }, + { + "image": "A179258/4_lung_10.nii.gz", + "pseudo_label": "A179258/4_lung_10.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A179258/4_lung_10/4_lung_10_seg.nii.gz" + }, + { + "image": "A179258/3_lung_50.nii.gz", + "pseudo_label": "A179258/3_lung_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A179258/3_lung_50/3_lung_50_seg.nii.gz" + }, + { + "image": "A059254/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A059254/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A059254/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A059254/3_lung_5_mm.nii.gz", + "pseudo_label": "A059254/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A059254/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A059254/2_5_mm_standard.nii.gz", + "pseudo_label": "A059254/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A059254/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A457364/9_cta_3000_ce.nii.gz", + "pseudo_label": "A457364/9_cta_3000_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A457364/9_cta_3000_ce/9_cta_3000_ce_seg.nii.gz" + }, + { + "image": "A457364/5_cta_15000_ce.nii.gz", + "pseudo_label": "A457364/5_cta_15000_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A457364/5_cta_15000_ce/5_cta_15000_ce_seg.nii.gz" + }, + { + "image": "A457364/3_cta_10_ce.nii.gz", + "pseudo_label": "A457364/3_cta_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A457364/3_cta_10_ce/3_cta_10_ce_seg.nii.gz" + }, + { + "image": "A829297/6_cta_50_ce.nii.gz", + "pseudo_label": "A829297/6_cta_50_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A829297/6_cta_50_ce/6_cta_50_ce_seg.nii.gz" + }, + { + "image": "A829297/5_lung_10_ce.nii.gz", + "pseudo_label": "A829297/5_lung_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A829297/5_lung_10_ce/5_lung_10_ce_seg.nii.gz" + }, + { + "image": "A829297/9_cta_05_ce.nii.gz", + "pseudo_label": "A829297/9_cta_05_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A829297/9_cta_05_ce/9_cta_05_ce_seg.nii.gz" + }, + { + "image": "A829297/4_cta_10_ce.nii.gz", + "pseudo_label": "A829297/4_cta_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A829297/4_cta_10_ce/4_cta_10_ce_seg.nii.gz" + }, + { + "image": "A878506/2_standard_25mm.nii.gz", + "pseudo_label": "A878506/2_standard_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A878506/2_standard_25mm/2_standard_25mm_seg.nii.gz" + }, + { + "image": "A192022/2_body_50.nii.gz", + "pseudo_label": "A192022/2_body_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A192022/2_body_50/2_body_50_seg.nii.gz" + }, + { + "image": "A192022/4_lung_10.nii.gz", + "pseudo_label": "A192022/4_lung_10.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A192022/4_lung_10/4_lung_10_seg.nii.gz" + }, + { + "image": "A192022/3_lung_50.nii.gz", + "pseudo_label": "A192022/3_lung_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A192022/3_lung_50/3_lung_50_seg.nii.gz" + }, + { + "image": "A296336/4_lung_125_mm.nii.gz", + "pseudo_label": "A296336/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A296336/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A296336/2_chest_125_mm.nii.gz", + "pseudo_label": "A296336/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A296336/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A296336/5_lung_5_mm.nii.gz", + "pseudo_label": "A296336/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A296336/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A072894/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A072894/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A072894/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A072894/601_chest_ax.nii.gz", + "pseudo_label": "A072894/601_chest_ax.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A072894/601_chest_ax/601_chest_ax_seg.nii.gz" + }, + { + "image": "A072894/3_lung_5_mm.nii.gz", + "pseudo_label": "A072894/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A072894/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A072894/618_2_mm_t_spine_axial.nii.gz", + "pseudo_label": "A072894/618_2_mm_t_spine_axial.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A072894/618_2_mm_t_spine_axial/618_2_mm_t_spine_axial_seg.nii.gz" + }, + { + "image": "A072894/2_5_mm_standard.nii.gz", + "pseudo_label": "A072894/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A072894/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A072894/622_2_mm__lumbar_axial.nii.gz", + "pseudo_label": "A072894/622_2_mm__lumbar_axial.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A072894/622_2_mm__lumbar_axial/622_2_mm__lumbar_axial_seg.nii.gz" + }, + { + "image": "A072894/606_abdomen_ax.nii.gz", + "pseudo_label": "A072894/606_abdomen_ax.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A072894/606_abdomen_ax/606_abdomen_ax_seg.nii.gz" + }, + { + "image": "A464604/7_abdpel_25_mm.nii.gz", + "pseudo_label": "A464604/7_abdpel_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A464604/7_abdpel_25_mm/7_abdpel_25_mm_seg.nii.gz" + }, + { + "image": "A464604/4_lung_125_mm.nii.gz", + "pseudo_label": "A464604/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A464604/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A464604/6_chest_125_mm.nii.gz", + "pseudo_label": "A464604/6_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A464604/6_chest_125_mm/6_chest_125_mm_seg.nii.gz" + }, + { + "image": "A464604/2_body_30_ce.nii.gz", + "pseudo_label": "A464604/2_body_30_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A464604/2_body_30_ce/2_body_30_ce_seg.nii.gz" + }, + { + "image": "A464604/2_abdpel_25_mm.nii.gz", + "pseudo_label": "A464604/2_abdpel_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A464604/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz" + }, + { + "image": "A464604/5_lung_5_mm.nii.gz", + "pseudo_label": "A464604/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A464604/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A670367/2_body_50.nii.gz", + "pseudo_label": "A670367/2_body_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A670367/2_body_50/2_body_50_seg.nii.gz" + }, + { + "image": "A670367/4_lung_10.nii.gz", + "pseudo_label": "A670367/4_lung_10.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A670367/4_lung_10/4_lung_10_seg.nii.gz" + }, + { + "image": "A670367/3_lung_50.nii.gz", + "pseudo_label": "A670367/3_lung_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A670367/3_lung_50/3_lung_50_seg.nii.gz" + }, + { + "image": "A536105/2_chest_25_mmabdpel_25mm.nii.gz", + "pseudo_label": "A536105/2_chest_25_mmabdpel_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A536105/2_chest_25_mmabdpel_25mm/2_chest_25_mmabdpel_25mm_seg.nii.gz" + }, + { + "image": "A783752/2_body_50.nii.gz", + "pseudo_label": "A783752/2_body_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A783752/2_body_50/2_body_50_seg.nii.gz" + }, + { + "image": "A783752/4_lung_10.nii.gz", + "pseudo_label": "A783752/4_lung_10.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A783752/4_lung_10/4_lung_10_seg.nii.gz" + }, + { + "image": "A783752/3_lung_50.nii.gz", + "pseudo_label": "A783752/3_lung_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A783752/3_lung_50/3_lung_50_seg.nii.gz" + }, + { + "image": "A048383/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A048383/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A048383/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A048383/4_hi_res_chest.nii.gz", + "pseudo_label": "A048383/4_hi_res_chest.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A048383/4_hi_res_chest/4_hi_res_chest_seg.nii.gz" + }, + { + "image": "A048383/3_lung_5_mm.nii.gz", + "pseudo_label": "A048383/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A048383/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A048383/2_chest_5x5.nii.gz", + "pseudo_label": "A048383/2_chest_5x5.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A048383/2_chest_5x5/2_chest_5x5_seg.nii.gz" + }, + { + "image": "A048383/3_lung_5x5.nii.gz", + "pseudo_label": "A048383/3_lung_5x5.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A048383/3_lung_5x5/3_lung_5x5_seg.nii.gz" + }, + { + "image": "A048383/2_5_mm_standard.nii.gz", + "pseudo_label": "A048383/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A048383/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A048383/603_3x3_axial.nii.gz", + "pseudo_label": "A048383/603_3x3_axial.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A048383/603_3x3_axial/603_3x3_axial_seg.nii.gz" + }, + { + "image": "A099036/4_lung_125_mm.nii.gz", + "pseudo_label": "A099036/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A099036/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A099036/2_chest_125_mm.nii.gz", + "pseudo_label": "A099036/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A099036/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A099036/2_abdpel_25_mm.nii.gz", + "pseudo_label": "A099036/2_abdpel_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A099036/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz" + }, + { + "image": "A099036/5_lung_5_mm.nii.gz", + "pseudo_label": "A099036/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A099036/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A346398/4_lung_125_mm.nii.gz", + "pseudo_label": "A346398/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A346398/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A346398/2_chest_125_mm.nii.gz", + "pseudo_label": "A346398/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A346398/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A346398/6_chest_125_mm.nii.gz", + "pseudo_label": "A346398/6_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A346398/6_chest_125_mm/6_chest_125_mm_seg.nii.gz" + }, + { + "image": "A346398/9_lung_5_mm.nii.gz", + "pseudo_label": "A346398/9_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A346398/9_lung_5_mm/9_lung_5_mm_seg.nii.gz" + }, + { + "image": "A346398/8_lung_125_mm.nii.gz", + "pseudo_label": "A346398/8_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A346398/8_lung_125_mm/8_lung_125_mm_seg.nii.gz" + }, + { + "image": "A346398/5_lung_5_mm.nii.gz", + "pseudo_label": "A346398/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A346398/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A776010/2_abdpel_25_mm.nii.gz", + "pseudo_label": "A776010/2_abdpel_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A776010/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz" + }, + { + "image": "A152200/9_cta_3000_ce.nii.gz", + "pseudo_label": "A152200/9_cta_3000_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A152200/9_cta_3000_ce/9_cta_3000_ce_seg.nii.gz" + }, + { + "image": "A152200/5_cta_15000_ce.nii.gz", + "pseudo_label": "A152200/5_cta_15000_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A152200/5_cta_15000_ce/5_cta_15000_ce_seg.nii.gz" + }, + { + "image": "A152200/3_cta_10_ce.nii.gz", + "pseudo_label": "A152200/3_cta_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A152200/3_cta_10_ce/3_cta_10_ce_seg.nii.gz" + }, + { + "image": "A799184/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A799184/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A799184/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A799184/3_lung_5_mm.nii.gz", + "pseudo_label": "A799184/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A799184/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A799184/2_5_mm_standard.nii.gz", + "pseudo_label": "A799184/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A799184/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A920949/2_abdomenpelvis_25_mm.nii.gz", + "pseudo_label": "A920949/2_abdomenpelvis_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A920949/2_abdomenpelvis_25_mm/2_abdomenpelvis_25_mm_seg.nii.gz" + }, + { + "image": "A027914/601_chest_ax.nii.gz", + "pseudo_label": "A027914/601_chest_ax.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A027914/601_chest_ax/601_chest_ax_seg.nii.gz" + }, + { + "image": "A027914/606_abdomen_ax.nii.gz", + "pseudo_label": "A027914/606_abdomen_ax.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A027914/606_abdomen_ax/606_abdomen_ax_seg.nii.gz" + }, + { + "image": "A382815/2_standard_25mm.nii.gz", + "pseudo_label": "A382815/2_standard_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A382815/2_standard_25mm/2_standard_25mm_seg.nii.gz" + }, + { + "image": "A643986/2_body_50.nii.gz", + "pseudo_label": "A643986/2_body_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A643986/2_body_50/2_body_50_seg.nii.gz" + }, + { + "image": "A643986/4_lung_10.nii.gz", + "pseudo_label": "A643986/4_lung_10.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A643986/4_lung_10/4_lung_10_seg.nii.gz" + }, + { + "image": "A643986/3_lung_50.nii.gz", + "pseudo_label": "A643986/3_lung_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A643986/3_lung_50/3_lung_50_seg.nii.gz" + }, + { + "image": "A494186/2_standard_25mm.nii.gz", + "pseudo_label": "A494186/2_standard_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A494186/2_standard_25mm/2_standard_25mm_seg.nii.gz" + }, + { + "image": "A329548/8_cta_05_ce.nii.gz", + "pseudo_label": "A329548/8_cta_05_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A329548/8_cta_05_ce/8_cta_05_ce_seg.nii.gz" + }, + { + "image": "A329548/4_lung_10_ce.nii.gz", + "pseudo_label": "A329548/4_lung_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A329548/4_lung_10_ce/4_lung_10_ce_seg.nii.gz" + }, + { + "image": "A329548/5_cta_50_ce.nii.gz", + "pseudo_label": "A329548/5_cta_50_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A329548/5_cta_50_ce/5_cta_50_ce_seg.nii.gz" + }, + { + "image": "A329548/3_cta_10_ce.nii.gz", + "pseudo_label": "A329548/3_cta_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A329548/3_cta_10_ce/3_cta_10_ce_seg.nii.gz" + }, + { + "image": "A619214/4_lung_10_ce.nii.gz", + "pseudo_label": "A619214/4_lung_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A619214/4_lung_10_ce/4_lung_10_ce_seg.nii.gz" + }, + { + "image": "A619214/2_body_50_ce.nii.gz", + "pseudo_label": "A619214/2_body_50_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A619214/2_body_50_ce/2_body_50_ce_seg.nii.gz" + }, + { + "image": "A619214/3_lung_50_ce.nii.gz", + "pseudo_label": "A619214/3_lung_50_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A619214/3_lung_50_ce/3_lung_50_ce_seg.nii.gz" + }, + { + "image": "A095019/8_cta_05_ce.nii.gz", + "pseudo_label": "A095019/8_cta_05_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A095019/8_cta_05_ce/8_cta_05_ce_seg.nii.gz" + }, + { + "image": "A095019/2_body_30.nii.gz", + "pseudo_label": "A095019/2_body_30.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A095019/2_body_30/2_body_30_seg.nii.gz" + }, + { + "image": "A095019/4_lung_10_ce.nii.gz", + "pseudo_label": "A095019/4_lung_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A095019/4_lung_10_ce/4_lung_10_ce_seg.nii.gz" + }, + { + "image": "A095019/5_cta_50_ce.nii.gz", + "pseudo_label": "A095019/5_cta_50_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A095019/5_cta_50_ce/5_cta_50_ce_seg.nii.gz" + }, + { + "image": "A695805/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A695805/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A695805/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A695805/3_lung_5_mm.nii.gz", + "pseudo_label": "A695805/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A695805/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A695805/2_5_mm_standard.nii.gz", + "pseudo_label": "A695805/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A695805/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A281009/4_lung_125_mm.nii.gz", + "pseudo_label": "A281009/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A281009/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A281009/2_chest_125_mm.nii.gz", + "pseudo_label": "A281009/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A281009/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A281009/5_lung_5_mm.nii.gz", + "pseudo_label": "A281009/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A281009/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A966468/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A966468/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A966468/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A966468/3_lung_5_mm.nii.gz", + "pseudo_label": "A966468/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A966468/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A966468/2_5_mm_standard.nii.gz", + "pseudo_label": "A966468/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A966468/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A968829/4_lung_125_mm.nii.gz", + "pseudo_label": "A968829/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A968829/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A968829/2_chest_125_mm.nii.gz", + "pseudo_label": "A968829/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A968829/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A968829/5_lung_5_mm.nii.gz", + "pseudo_label": "A968829/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A968829/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A274818/2_standard_25mm.nii.gz", + "pseudo_label": "A274818/2_standard_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A274818/2_standard_25mm/2_standard_25mm_seg.nii.gz" + }, + { + "image": "A305147/2_25.nii.gz", + "pseudo_label": "A305147/2_25.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A305147/2_25/2_25_seg.nii.gz" + }, + { + "image": "A918899/4_lung_125_mm.nii.gz", + "pseudo_label": "A918899/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A918899/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A918899/2_chest_125_mm.nii.gz", + "pseudo_label": "A918899/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A918899/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A918899/5_lung_5_mm.nii.gz", + "pseudo_label": "A918899/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A918899/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A973227/3_stone_study_5mm.nii.gz", + "pseudo_label": "A973227/3_stone_study_5mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A973227/3_stone_study_5mm/3_stone_study_5mm_seg.nii.gz" + }, + { + "image": "A973227/2_stone_study_25.nii.gz", + "pseudo_label": "A973227/2_stone_study_25.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A973227/2_stone_study_25/2_stone_study_25_seg.nii.gz" + }, + { + "image": "A973227/2_standard.nii.gz", + "pseudo_label": "A973227/2_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A973227/2_standard/2_standard_seg.nii.gz" + }, + { + "image": "A973227/102_stone_study_25.nii.gz", + "pseudo_label": "A973227/102_stone_study_25.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A973227/102_stone_study_25/102_stone_study_25_seg.nii.gz" + }, + { + "image": "A992004/5_body_10_ce.nii.gz", + "pseudo_label": "A992004/5_body_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A992004/5_body_10_ce/5_body_10_ce_seg.nii.gz" + }, + { + "image": "A992004/2_body_10_ce.nii.gz", + "pseudo_label": "A992004/2_body_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A992004/2_body_10_ce/2_body_10_ce_seg.nii.gz" + }, + { + "image": "A368474/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A368474/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A368474/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A368474/3_lung_5_mm.nii.gz", + "pseudo_label": "A368474/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A368474/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A368474/2_5_mm_standard.nii.gz", + "pseudo_label": "A368474/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A368474/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A114381/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A114381/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A114381/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A114381/3_lung_5_mm.nii.gz", + "pseudo_label": "A114381/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A114381/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A114381/2_5_mm_standard.nii.gz", + "pseudo_label": "A114381/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A114381/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A840445/9_cta_3000_ce.nii.gz", + "pseudo_label": "A840445/9_cta_3000_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A840445/9_cta_3000_ce/9_cta_3000_ce_seg.nii.gz" + }, + { + "image": "A840445/5_cta_15000_ce.nii.gz", + "pseudo_label": "A840445/5_cta_15000_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A840445/5_cta_15000_ce/5_cta_15000_ce_seg.nii.gz" + }, + { + "image": "A840445/3_cta_10_ce.nii.gz", + "pseudo_label": "A840445/3_cta_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A840445/3_cta_10_ce/3_cta_10_ce_seg.nii.gz" + }, + { + "image": "A701295/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A701295/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A701295/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A701295/4_lung_125_mm.nii.gz", + "pseudo_label": "A701295/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A701295/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A701295/2_chest_125_mm.nii.gz", + "pseudo_label": "A701295/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A701295/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A701295/3_lung_5_mm.nii.gz", + "pseudo_label": "A701295/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A701295/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A701295/3_lung_5x5.nii.gz", + "pseudo_label": "A701295/3_lung_5x5.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A701295/3_lung_5x5/3_lung_5x5_seg.nii.gz" + }, + { + "image": "A701295/4_hr_chest_125_x_125.nii.gz", + "pseudo_label": "A701295/4_hr_chest_125_x_125.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A701295/4_hr_chest_125_x_125/4_hr_chest_125_x_125_seg.nii.gz" + }, + { + "image": "A701295/2_5_mm_standard.nii.gz", + "pseudo_label": "A701295/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A701295/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A701295/2_axiallung_reconhres_recon.nii.gz", + "pseudo_label": "A701295/2_axiallung_reconhres_recon.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A701295/2_axiallung_reconhres_recon/2_axiallung_reconhres_recon_seg.nii.gz" + }, + { + "image": "A701295/5_lung_5_mm.nii.gz", + "pseudo_label": "A701295/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A701295/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A237029/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A237029/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A237029/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A237029/3_lung_5_mm.nii.gz", + "pseudo_label": "A237029/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A237029/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A237029/2_5_mm_standard.nii.gz", + "pseudo_label": "A237029/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A237029/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A111952/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A111952/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A111952/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A111952/3_lung_5_mm.nii.gz", + "pseudo_label": "A111952/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A111952/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A111952/2_5_mm_standard.nii.gz", + "pseudo_label": "A111952/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A111952/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A458800/2_body_50.nii.gz", + "pseudo_label": "A458800/2_body_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A458800/2_body_50/2_body_50_seg.nii.gz" + }, + { + "image": "A458800/4_lung_10.nii.gz", + "pseudo_label": "A458800/4_lung_10.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A458800/4_lung_10/4_lung_10_seg.nii.gz" + }, + { + "image": "A458800/3_lung_50.nii.gz", + "pseudo_label": "A458800/3_lung_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A458800/3_lung_50/3_lung_50_seg.nii.gz" + }, + { + "image": "A067967/4_body_10_ce.nii.gz", + "pseudo_label": "A067967/4_body_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A067967/4_body_10_ce/4_body_10_ce_seg.nii.gz" + }, + { + "image": "A067967/3_body_30.nii.gz", + "pseudo_label": "A067967/3_body_30.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A067967/3_body_30/3_body_30_seg.nii.gz" + }, + { + "image": "A067967/6_body_10_ce.nii.gz", + "pseudo_label": "A067967/6_body_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A067967/6_body_10_ce/6_body_10_ce_seg.nii.gz" + }, + { + "image": "A067967/5_body_10_ce.nii.gz", + "pseudo_label": "A067967/5_body_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A067967/5_body_10_ce/5_body_10_ce_seg.nii.gz" + }, + { + "image": "A067967/2_body_10_ce.nii.gz", + "pseudo_label": "A067967/2_body_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A067967/2_body_10_ce/2_body_10_ce_seg.nii.gz" + }, + { + "image": "A582694/2_abdpel_25_mm.nii.gz", + "pseudo_label": "A582694/2_abdpel_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A582694/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz" + }, + { + "image": "A978197/4_lung_125_mm.nii.gz", + "pseudo_label": "A978197/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A978197/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A978197/2_chest_125_mm.nii.gz", + "pseudo_label": "A978197/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A978197/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A978197/5_lung_5_mm.nii.gz", + "pseudo_label": "A978197/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A978197/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A198259/4_lung_125_mm.nii.gz", + "pseudo_label": "A198259/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A198259/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A198259/2_chest_125_mm.nii.gz", + "pseudo_label": "A198259/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A198259/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A198259/5_lung_5_mm.nii.gz", + "pseudo_label": "A198259/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A198259/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A798811/4_lung_125_mm.nii.gz", + "pseudo_label": "A798811/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A798811/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A798811/2_chest_125_mm.nii.gz", + "pseudo_label": "A798811/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A798811/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A798811/5_lung_5_mm.nii.gz", + "pseudo_label": "A798811/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A798811/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A825484/4_hi_res_chest.nii.gz", + "pseudo_label": "A825484/4_hi_res_chest.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A825484/4_hi_res_chest/4_hi_res_chest_seg.nii.gz" + }, + { + "image": "A825484/2_chest_5x5.nii.gz", + "pseudo_label": "A825484/2_chest_5x5.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A825484/2_chest_5x5/2_chest_5x5_seg.nii.gz" + }, + { + "image": "A825484/3_lung_5x5.nii.gz", + "pseudo_label": "A825484/3_lung_5x5.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A825484/3_lung_5x5/3_lung_5x5_seg.nii.gz" + }, + { + "image": "A825484/603_3x3_axial.nii.gz", + "pseudo_label": "A825484/603_3x3_axial.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A825484/603_3x3_axial/603_3x3_axial_seg.nii.gz" + }, + { + "image": "A919264/2_body_50.nii.gz", + "pseudo_label": "A919264/2_body_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A919264/2_body_50/2_body_50_seg.nii.gz" + }, + { + "image": "A919264/4_lung_10.nii.gz", + "pseudo_label": "A919264/4_lung_10.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A919264/4_lung_10/4_lung_10_seg.nii.gz" + }, + { + "image": "A919264/3_lung_50.nii.gz", + "pseudo_label": "A919264/3_lung_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A919264/3_lung_50/3_lung_50_seg.nii.gz" + }, + { + "image": "A168835/2_body_30_ce.nii.gz", + "pseudo_label": "A168835/2_body_30_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A168835/2_body_30_ce/2_body_30_ce_seg.nii.gz" + }, + { + "image": "A168835/2_standard.nii.gz", + "pseudo_label": "A168835/2_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A168835/2_standard/2_standard_seg.nii.gz" + }, + { + "image": "A342350/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A342350/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A342350/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A342350/3_lung_5_mm.nii.gz", + "pseudo_label": "A342350/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A342350/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A342350/2_5_mm_standard.nii.gz", + "pseudo_label": "A342350/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A342350/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A363549/2_body_50.nii.gz", + "pseudo_label": "A363549/2_body_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A363549/2_body_50/2_body_50_seg.nii.gz" + }, + { + "image": "A363549/4_lung_10.nii.gz", + "pseudo_label": "A363549/4_lung_10.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A363549/4_lung_10/4_lung_10_seg.nii.gz" + }, + { + "image": "A363549/3_lung_50.nii.gz", + "pseudo_label": "A363549/3_lung_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A363549/3_lung_50/3_lung_50_seg.nii.gz" + }, + { + "image": "A317359/4_lung_125_mm.nii.gz", + "pseudo_label": "A317359/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A317359/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A317359/2_chest_125_mm.nii.gz", + "pseudo_label": "A317359/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A317359/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A317359/5_lung_5_mm.nii.gz", + "pseudo_label": "A317359/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A317359/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A548506/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A548506/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A548506/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A548506/3_lung_5_mm.nii.gz", + "pseudo_label": "A548506/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A548506/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A548506/2_5_mm_standard.nii.gz", + "pseudo_label": "A548506/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A548506/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A158497/2_standard_25mm.nii.gz", + "pseudo_label": "A158497/2_standard_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A158497/2_standard_25mm/2_standard_25mm_seg.nii.gz" + }, + { + "image": "A374161/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A374161/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A374161/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A374161/3_lung_5_mm.nii.gz", + "pseudo_label": "A374161/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A374161/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A374161/2_5_mm_standard.nii.gz", + "pseudo_label": "A374161/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A374161/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A181248/103_ref.nii.gz", + "pseudo_label": "A181248/103_ref.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A181248/103_ref/103_ref_seg.nii.gz" + }, + { + "image": "A181248/2_abdomenpelvis_25_mm.nii.gz", + "pseudo_label": "A181248/2_abdomenpelvis_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A181248/2_abdomenpelvis_25_mm/2_abdomenpelvis_25_mm_seg.nii.gz" + }, + { + "image": "A181248/2_standard.nii.gz", + "pseudo_label": "A181248/2_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A181248/2_standard/2_standard_seg.nii.gz" + }, + { + "image": "A528910/4_lung_125_mm.nii.gz", + "pseudo_label": "A528910/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A528910/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A528910/2_chest_25_mm.nii.gz", + "pseudo_label": "A528910/2_chest_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A528910/2_chest_25_mm/2_chest_25_mm_seg.nii.gz" + }, + { + "image": "A528910/603_ct_thick_axials_5mm.nii.gz", + "pseudo_label": "A528910/603_ct_thick_axials_5mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A528910/603_ct_thick_axials_5mm/603_ct_thick_axials_5mm_seg.nii.gz" + }, + { + "image": "A528910/5_lung_5_mm.nii.gz", + "pseudo_label": "A528910/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A528910/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A918980/2_abdpel_25_mm.nii.gz", + "pseudo_label": "A918980/2_abdpel_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A918980/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz" + }, + { + "image": "A878067/2_25_x_25_standard.nii.gz", + "pseudo_label": "A878067/2_25_x_25_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A878067/2_25_x_25_standard/2_25_x_25_standard_seg.nii.gz" + }, + { + "image": "A878067/2_abdpel_25_mm.nii.gz", + "pseudo_label": "A878067/2_abdpel_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A878067/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz" + }, + { + "image": "A263860/2_body_30_ce.nii.gz", + "pseudo_label": "A263860/2_body_30_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A263860/2_body_30_ce/2_body_30_ce_seg.nii.gz" + }, + { + "image": "A296208/3_50_x_50_lung.nii.gz", + "pseudo_label": "A296208/3_50_x_50_lung.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A296208/3_50_x_50_lung/3_50_x_50_lung_seg.nii.gz" + }, + { + "image": "A296208/4_125_x_125_high_resolution.nii.gz", + "pseudo_label": "A296208/4_125_x_125_high_resolution.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A296208/4_125_x_125_high_resolution/4_125_x_125_high_resolution_seg.nii.gz" + }, + { + "image": "A296208/2_50_x_50_standard.nii.gz", + "pseudo_label": "A296208/2_50_x_50_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A296208/2_50_x_50_standard/2_50_x_50_standard_seg.nii.gz" + }, + { + "image": "A469136/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A469136/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A469136/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A469136/3_lung_5_mm.nii.gz", + "pseudo_label": "A469136/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A469136/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A469136/2_5_mm_standard.nii.gz", + "pseudo_label": "A469136/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A469136/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A823307/2_body_30.nii.gz", + "pseudo_label": "A823307/2_body_30.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A823307/2_body_30/2_body_30_seg.nii.gz" + }, + { + "image": "A363883/7_venous.nii.gz", + "pseudo_label": "A363883/7_venous.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A363883/7_venous/7_venous_seg.nii.gz" + }, + { + "image": "A363883/4_lung_125_mm.nii.gz", + "pseudo_label": "A363883/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A363883/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A363883/2_chest_125_mm.nii.gz", + "pseudo_label": "A363883/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A363883/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A363883/6_arterial.nii.gz", + "pseudo_label": "A363883/6_arterial.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A363883/6_arterial/6_arterial_seg.nii.gz" + }, + { + "image": "A363883/2_non_contrast_abd_pel.nii.gz", + "pseudo_label": "A363883/2_non_contrast_abd_pel.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A363883/2_non_contrast_abd_pel/2_non_contrast_abd_pel_seg.nii.gz" + }, + { + "image": "A363883/5_lung_5_mm.nii.gz", + "pseudo_label": "A363883/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A363883/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A399451/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A399451/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A399451/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A399451/3_lung_5_mm.nii.gz", + "pseudo_label": "A399451/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A399451/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A399451/2_5_mm_standard.nii.gz", + "pseudo_label": "A399451/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A399451/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A945931/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A945931/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A945931/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A945931/4_lung_125_mm.nii.gz", + "pseudo_label": "A945931/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A945931/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A945931/2_chest_125_mm.nii.gz", + "pseudo_label": "A945931/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A945931/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A945931/3_lung_5_mm.nii.gz", + "pseudo_label": "A945931/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A945931/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A945931/2_5_mm_standard.nii.gz", + "pseudo_label": "A945931/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A945931/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A945931/5_lung_5_mm.nii.gz", + "pseudo_label": "A945931/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A945931/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A948163/3_lung_5x5.nii.gz", + "pseudo_label": "A948163/3_lung_5x5.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A948163/3_lung_5x5/3_lung_5x5_seg.nii.gz" + }, + { + "image": "A948163/4_hr_chest_125_x_125.nii.gz", + "pseudo_label": "A948163/4_hr_chest_125_x_125.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A948163/4_hr_chest_125_x_125/4_hr_chest_125_x_125_seg.nii.gz" + }, + { + "image": "A948163/2_axiallung_reconhres_recon.nii.gz", + "pseudo_label": "A948163/2_axiallung_reconhres_recon.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A948163/2_axiallung_reconhres_recon/2_axiallung_reconhres_recon_seg.nii.gz" + }, + { + "image": "A296112/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A296112/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A296112/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A296112/3_lung_5_mm.nii.gz", + "pseudo_label": "A296112/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A296112/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A296112/2_5_mm_standard.nii.gz", + "pseudo_label": "A296112/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A296112/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A918856/5_arterial_125mm.nii.gz", + "pseudo_label": "A918856/5_arterial_125mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A918856/5_arterial_125mm/5_arterial_125mm_seg.nii.gz" + }, + { + "image": "A918856/6_5_mm_delay.nii.gz", + "pseudo_label": "A918856/6_5_mm_delay.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A918856/6_5_mm_delay/6_5_mm_delay_seg.nii.gz" + }, + { + "image": "A918856/2_pre_contrast.nii.gz", + "pseudo_label": "A918856/2_pre_contrast.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A918856/2_pre_contrast/2_pre_contrast_seg.nii.gz" + }, + { + "image": "A783230/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A783230/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A783230/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A783230/3_lung_5_mm.nii.gz", + "pseudo_label": "A783230/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A783230/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A783230/2_5_mm_standard.nii.gz", + "pseudo_label": "A783230/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A783230/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A765481/7_abdpel_25_mm.nii.gz", + "pseudo_label": "A765481/7_abdpel_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A765481/7_abdpel_25_mm/7_abdpel_25_mm_seg.nii.gz" + }, + { + "image": "A765481/4_lung_125_mm.nii.gz", + "pseudo_label": "A765481/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A765481/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A765481/6_chest_125_mm.nii.gz", + "pseudo_label": "A765481/6_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A765481/6_chest_125_mm/6_chest_125_mm_seg.nii.gz" + }, + { + "image": "A765481/5_lung_5_mm.nii.gz", + "pseudo_label": "A765481/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A765481/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A528780/4_lung_125_mm.nii.gz", + "pseudo_label": "A528780/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A528780/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A528780/2_chest_125_mm.nii.gz", + "pseudo_label": "A528780/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A528780/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A528780/5_lung_5_mm.nii.gz", + "pseudo_label": "A528780/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A528780/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A703838/2_abdpel_25_mm.nii.gz", + "pseudo_label": "A703838/2_abdpel_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A703838/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz" + }, + { + "image": "A713279/2_standard_25mm.nii.gz", + "pseudo_label": "A713279/2_standard_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A713279/2_standard_25mm/2_standard_25mm_seg.nii.gz" + }, + { + "image": "A713279/2_abdpel_25_mm.nii.gz", + "pseudo_label": "A713279/2_abdpel_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A713279/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz" + }, + { + "image": "A437957/4_lung_125_mm.nii.gz", + "pseudo_label": "A437957/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A437957/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A437957/2_chest_125_mm.nii.gz", + "pseudo_label": "A437957/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A437957/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A437957/5_lung_5_mm.nii.gz", + "pseudo_label": "A437957/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A437957/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A148030/4_lung_125_mm.nii.gz", + "pseudo_label": "A148030/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A148030/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A148030/2_chest_125_mm.nii.gz", + "pseudo_label": "A148030/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A148030/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A148030/5_lung_5_mm.nii.gz", + "pseudo_label": "A148030/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A148030/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A926330/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A926330/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A926330/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A926330/3_lung_5_mm.nii.gz", + "pseudo_label": "A926330/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A926330/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A926330/2_5_mm_standard.nii.gz", + "pseudo_label": "A926330/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A926330/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A926330/2_abdpel_25_mm.nii.gz", + "pseudo_label": "A926330/2_abdpel_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A926330/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz" + }, + { + "image": "A326684/2_chest_abd_pel_5x5.nii.gz", + "pseudo_label": "A326684/2_chest_abd_pel_5x5.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A326684/2_chest_abd_pel_5x5/2_chest_abd_pel_5x5_seg.nii.gz" + }, + { + "image": "A845985/4_lung_125_mm.nii.gz", + "pseudo_label": "A845985/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A845985/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A845985/2_chest_125_mm.nii.gz", + "pseudo_label": "A845985/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A845985/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A845985/5_lung_5_mm.nii.gz", + "pseudo_label": "A845985/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A845985/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A288451/4_lung_125_mm.nii.gz", + "pseudo_label": "A288451/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A288451/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A288451/2_chest_125_mm.nii.gz", + "pseudo_label": "A288451/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A288451/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A288451/5_lung_5_mm.nii.gz", + "pseudo_label": "A288451/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A288451/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A297208/7_lung_5_mm.nii.gz", + "pseudo_label": "A297208/7_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A297208/7_lung_5_mm/7_lung_5_mm_seg.nii.gz" + }, + { + "image": "A297208/8_chest_125_mm.nii.gz", + "pseudo_label": "A297208/8_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A297208/8_chest_125_mm/8_chest_125_mm_seg.nii.gz" + }, + { + "image": "A297208/6_lung_125_mm.nii.gz", + "pseudo_label": "A297208/6_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A297208/6_lung_125_mm/6_lung_125_mm_seg.nii.gz" + }, + { + "image": "A297208/2_abdpel_25_mm.nii.gz", + "pseudo_label": "A297208/2_abdpel_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A297208/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz" + }, + { + "image": "A577419/4_lung_125_mm.nii.gz", + "pseudo_label": "A577419/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A577419/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A577419/2_chest_125_mm.nii.gz", + "pseudo_label": "A577419/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A577419/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A577419/5_lung_5_mm.nii.gz", + "pseudo_label": "A577419/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A577419/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A603249/2_body_50.nii.gz", + "pseudo_label": "A603249/2_body_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A603249/2_body_50/2_body_50_seg.nii.gz" + }, + { + "image": "A603249/4_lung_10.nii.gz", + "pseudo_label": "A603249/4_lung_10.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A603249/4_lung_10/4_lung_10_seg.nii.gz" + }, + { + "image": "A603249/3_lung_50.nii.gz", + "pseudo_label": "A603249/3_lung_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A603249/3_lung_50/3_lung_50_seg.nii.gz" + }, + { + "image": "A679473/2_abdpel_25_mm.nii.gz", + "pseudo_label": "A679473/2_abdpel_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A679473/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz" + }, + { + "image": "A810286/3_body_30_ce.nii.gz", + "pseudo_label": "A810286/3_body_30_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A810286/3_body_30_ce/3_body_30_ce_seg.nii.gz" + }, + { + "image": "A389295/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A389295/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A389295/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A389295/5_wb_standard_25.nii.gz", + "pseudo_label": "A389295/5_wb_standard_25.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A389295/5_wb_standard_25/5_wb_standard_25_seg.nii.gz" + }, + { + "image": "A389295/3_lung_5_mm.nii.gz", + "pseudo_label": "A389295/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A389295/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A389295/102_ctac_70cm_fov.nii.gz", + "pseudo_label": "A389295/102_ctac_70cm_fov.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A389295/102_ctac_70cm_fov/102_ctac_70cm_fov_seg.nii.gz" + }, + { + "image": "A389295/3_lung_delay.nii.gz", + "pseudo_label": "A389295/3_lung_delay.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A389295/3_lung_delay/3_lung_delay_seg.nii.gz" + }, + { + "image": "A389295/2_5_mm_standard.nii.gz", + "pseudo_label": "A389295/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A389295/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A389295/3_lung.nii.gz", + "pseudo_label": "A389295/3_lung.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A389295/3_lung/3_lung_seg.nii.gz" + }, + { + "image": "A389295/2_abdpel_25_mm.nii.gz", + "pseudo_label": "A389295/2_abdpel_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A389295/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz" + }, + { + "image": "A389295/2_ct_delay.nii.gz", + "pseudo_label": "A389295/2_ct_delay.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A389295/2_ct_delay/2_ct_delay_seg.nii.gz" + }, + { + "image": "A760933/4_lung_10_ce.nii.gz", + "pseudo_label": "A760933/4_lung_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A760933/4_lung_10_ce/4_lung_10_ce_seg.nii.gz" + }, + { + "image": "A760933/7_body_30_ce.nii.gz", + "pseudo_label": "A760933/7_body_30_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A760933/7_body_30_ce/7_body_30_ce_seg.nii.gz" + }, + { + "image": "A760933/9_cta_05_ce.nii.gz", + "pseudo_label": "A760933/9_cta_05_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A760933/9_cta_05_ce/9_cta_05_ce_seg.nii.gz" + }, + { + "image": "A760933/5_cta_50_ce.nii.gz", + "pseudo_label": "A760933/5_cta_50_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A760933/5_cta_50_ce/5_cta_50_ce_seg.nii.gz" + }, + { + "image": "A760933/3_cta_10_ce.nii.gz", + "pseudo_label": "A760933/3_cta_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A760933/3_cta_10_ce/3_cta_10_ce_seg.nii.gz" + }, + { + "image": "A358591/4_lung_125_mm.nii.gz", + "pseudo_label": "A358591/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A358591/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A358591/2_chest_125_mm.nii.gz", + "pseudo_label": "A358591/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A358591/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A358591/2_chest_abd_pel_5x5.nii.gz", + "pseudo_label": "A358591/2_chest_abd_pel_5x5.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A358591/2_chest_abd_pel_5x5/2_chest_abd_pel_5x5_seg.nii.gz" + }, + { + "image": "A358591/5_lung_5_mm.nii.gz", + "pseudo_label": "A358591/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A358591/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A777561/4_lung_125_mm.nii.gz", + "pseudo_label": "A777561/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A777561/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A777561/2_chest_125_mm.nii.gz", + "pseudo_label": "A777561/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A777561/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A777561/5_lung_5_mm.nii.gz", + "pseudo_label": "A777561/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A777561/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A617583/2_body_30_ce.nii.gz", + "pseudo_label": "A617583/2_body_30_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A617583/2_body_30_ce/2_body_30_ce_seg.nii.gz" + }, + { + "image": "A340910/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A340910/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A340910/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A340910/3_lung_5_mm.nii.gz", + "pseudo_label": "A340910/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A340910/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A340910/2_5_mm_standard.nii.gz", + "pseudo_label": "A340910/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A340910/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A652157/4_lung_125_mm.nii.gz", + "pseudo_label": "A652157/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A652157/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A652157/2_chest_125_mm.nii.gz", + "pseudo_label": "A652157/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A652157/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A652157/5_lung_5_mm.nii.gz", + "pseudo_label": "A652157/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A652157/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A976899/2_standard_25mm.nii.gz", + "pseudo_label": "A976899/2_standard_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A976899/2_standard_25mm/2_standard_25mm_seg.nii.gz" + }, + { + "image": "A255554/8_cta_05_ce.nii.gz", + "pseudo_label": "A255554/8_cta_05_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A255554/8_cta_05_ce/8_cta_05_ce_seg.nii.gz" + }, + { + "image": "A255554/4_lung_10_ce.nii.gz", + "pseudo_label": "A255554/4_lung_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A255554/4_lung_10_ce/4_lung_10_ce_seg.nii.gz" + }, + { + "image": "A255554/5_cta_50_ce.nii.gz", + "pseudo_label": "A255554/5_cta_50_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A255554/5_cta_50_ce/5_cta_50_ce_seg.nii.gz" + }, + { + "image": "A255554/3_cta_10_ce.nii.gz", + "pseudo_label": "A255554/3_cta_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A255554/3_cta_10_ce/3_cta_10_ce_seg.nii.gz" + }, + { + "image": "A998879/2_body_30_ce.nii.gz", + "pseudo_label": "A998879/2_body_30_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A998879/2_body_30_ce/2_body_30_ce_seg.nii.gz" + }, + { + "image": "A183655/4_body_10_ce.nii.gz", + "pseudo_label": "A183655/4_body_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A183655/4_body_10_ce/4_body_10_ce_seg.nii.gz" + }, + { + "image": "A183655/2_body_10_ce.nii.gz", + "pseudo_label": "A183655/2_body_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A183655/2_body_10_ce/2_body_10_ce_seg.nii.gz" + }, + { + "image": "A352169/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A352169/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A352169/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A352169/3_lung_5_mm.nii.gz", + "pseudo_label": "A352169/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A352169/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A352169/2_5_mm_standard.nii.gz", + "pseudo_label": "A352169/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A352169/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A089940/3_50_x_50_lung.nii.gz", + "pseudo_label": "A089940/3_50_x_50_lung.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A089940/3_50_x_50_lung/3_50_x_50_lung_seg.nii.gz" + }, + { + "image": "A089940/4_125_x_125_high_resolution.nii.gz", + "pseudo_label": "A089940/4_125_x_125_high_resolution.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A089940/4_125_x_125_high_resolution/4_125_x_125_high_resolution_seg.nii.gz" + }, + { + "image": "A089940/2_50_x_50_standard.nii.gz", + "pseudo_label": "A089940/2_50_x_50_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A089940/2_50_x_50_standard/2_50_x_50_standard_seg.nii.gz" + }, + { + "image": "A576685/7_lung_hr_125_mm.nii.gz", + "pseudo_label": "A576685/7_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A576685/7_lung_hr_125_mm/7_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A576685/5_5_mm_standard.nii.gz", + "pseudo_label": "A576685/5_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A576685/5_5_mm_standard/5_5_mm_standard_seg.nii.gz" + }, + { + "image": "A576685/2_chest_25_mmabdpel_25mm.nii.gz", + "pseudo_label": "A576685/2_chest_25_mmabdpel_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A576685/2_chest_25_mmabdpel_25mm/2_chest_25_mmabdpel_25mm_seg.nii.gz" + }, + { + "image": "A576685/6_lung_5_mm.nii.gz", + "pseudo_label": "A576685/6_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A576685/6_lung_5_mm/6_lung_5_mm_seg.nii.gz" + }, + { + "image": "A793685/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A793685/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A793685/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A793685/3_lung_5_mm.nii.gz", + "pseudo_label": "A793685/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A793685/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A793685/2_5_mm_standard.nii.gz", + "pseudo_label": "A793685/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A793685/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A789647/2_body_30_ce.nii.gz", + "pseudo_label": "A789647/2_body_30_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A789647/2_body_30_ce/2_body_30_ce_seg.nii.gz" + }, + { + "image": "A700420/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A700420/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A700420/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A700420/3_50_x_50_lung.nii.gz", + "pseudo_label": "A700420/3_50_x_50_lung.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A700420/3_50_x_50_lung/3_50_x_50_lung_seg.nii.gz" + }, + { + "image": "A700420/4_125_x_125_high_resolution.nii.gz", + "pseudo_label": "A700420/4_125_x_125_high_resolution.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A700420/4_125_x_125_high_resolution/4_125_x_125_high_resolution_seg.nii.gz" + }, + { + "image": "A700420/3_lung_5_mm.nii.gz", + "pseudo_label": "A700420/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A700420/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A700420/2_standard_25mm.nii.gz", + "pseudo_label": "A700420/2_standard_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A700420/2_standard_25mm/2_standard_25mm_seg.nii.gz" + }, + { + "image": "A700420/2_5_mm_standard.nii.gz", + "pseudo_label": "A700420/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A700420/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A700420/2_50_x_50_standard.nii.gz", + "pseudo_label": "A700420/2_50_x_50_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A700420/2_50_x_50_standard/2_50_x_50_standard_seg.nii.gz" + }, + { + "image": "A700420/2_abdpel_25_mm.nii.gz", + "pseudo_label": "A700420/2_abdpel_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A700420/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz" + }, + { + "image": "A201660/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A201660/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A201660/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A201660/3_lung_5_mm.nii.gz", + "pseudo_label": "A201660/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A201660/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A201660/2_5_mm_standard.nii.gz", + "pseudo_label": "A201660/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A201660/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A831693/2_standard_25mm.nii.gz", + "pseudo_label": "A831693/2_standard_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A831693/2_standard_25mm/2_standard_25mm_seg.nii.gz" + }, + { + "image": "A111874/2_abdpel_25_mm.nii.gz", + "pseudo_label": "A111874/2_abdpel_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A111874/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz" + }, + { + "image": "A222465/2_standard_25mm.nii.gz", + "pseudo_label": "A222465/2_standard_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A222465/2_standard_25mm/2_standard_25mm_seg.nii.gz" + }, + { + "image": "A704496/2_chest_25_mmabdpel_25mm.nii.gz", + "pseudo_label": "A704496/2_chest_25_mmabdpel_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A704496/2_chest_25_mmabdpel_25mm/2_chest_25_mmabdpel_25mm_seg.nii.gz" + }, + { + "image": "A704496/6_body_10_ce.nii.gz", + "pseudo_label": "A704496/6_body_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A704496/6_body_10_ce/6_body_10_ce_seg.nii.gz" + }, + { + "image": "A704496/2_body_10_ce.nii.gz", + "pseudo_label": "A704496/2_body_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A704496/2_body_10_ce/2_body_10_ce_seg.nii.gz" + }, + { + "image": "A704496/2_abdpel_25_mm.nii.gz", + "pseudo_label": "A704496/2_abdpel_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A704496/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz" + }, + { + "image": "A524254/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A524254/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A524254/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A524254/4_lung_125_mm.nii.gz", + "pseudo_label": "A524254/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A524254/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A524254/2_chest_125_mm.nii.gz", + "pseudo_label": "A524254/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A524254/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A524254/3_lung_5_mm.nii.gz", + "pseudo_label": "A524254/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A524254/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A524254/2_5_mm_standard.nii.gz", + "pseudo_label": "A524254/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A524254/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A524254/5_lung_5_mm.nii.gz", + "pseudo_label": "A524254/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A524254/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A079927/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A079927/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A079927/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A079927/3_lung_5_mm.nii.gz", + "pseudo_label": "A079927/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A079927/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A079927/2_5_mm_standard.nii.gz", + "pseudo_label": "A079927/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A079927/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A207560/4_lung_125_mm.nii.gz", + "pseudo_label": "A207560/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A207560/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A207560/2_chest_125_mm.nii.gz", + "pseudo_label": "A207560/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A207560/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A207560/5_lung_5_mm.nii.gz", + "pseudo_label": "A207560/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A207560/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A130408/7_abdpel_25_mm.nii.gz", + "pseudo_label": "A130408/7_abdpel_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A130408/7_abdpel_25_mm/7_abdpel_25_mm_seg.nii.gz" + }, + { + "image": "A130408/4_lung_125_mm.nii.gz", + "pseudo_label": "A130408/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A130408/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A130408/6_chest_125_mm.nii.gz", + "pseudo_label": "A130408/6_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A130408/6_chest_125_mm/6_chest_125_mm_seg.nii.gz" + }, + { + "image": "A130408/2_standard_25mm.nii.gz", + "pseudo_label": "A130408/2_standard_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A130408/2_standard_25mm/2_standard_25mm_seg.nii.gz" + }, + { + "image": "A130408/5_lung_5_mm.nii.gz", + "pseudo_label": "A130408/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A130408/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A199199/2_body_30_ce.nii.gz", + "pseudo_label": "A199199/2_body_30_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A199199/2_body_30_ce/2_body_30_ce_seg.nii.gz" + }, + { + "image": "A056206/2_chest_25_mmabdpel_25mm.nii.gz", + "pseudo_label": "A056206/2_chest_25_mmabdpel_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A056206/2_chest_25_mmabdpel_25mm/2_chest_25_mmabdpel_25mm_seg.nii.gz" + }, + { + "image": "A768042/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A768042/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A768042/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A768042/7_abdpel_25_mm.nii.gz", + "pseudo_label": "A768042/7_abdpel_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A768042/7_abdpel_25_mm/7_abdpel_25_mm_seg.nii.gz" + }, + { + "image": "A768042/4_lung_125_mm.nii.gz", + "pseudo_label": "A768042/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A768042/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A768042/3_lung_5_mm.nii.gz", + "pseudo_label": "A768042/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A768042/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A768042/6_chest_125_mm.nii.gz", + "pseudo_label": "A768042/6_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A768042/6_chest_125_mm/6_chest_125_mm_seg.nii.gz" + }, + { + "image": "A768042/2_5_mm_standard.nii.gz", + "pseudo_label": "A768042/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A768042/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A768042/5_lung_5_mm.nii.gz", + "pseudo_label": "A768042/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A768042/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A387558/4_lung_125_mm.nii.gz", + "pseudo_label": "A387558/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A387558/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A387558/2_chest_125_mm.nii.gz", + "pseudo_label": "A387558/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A387558/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A387558/5_lung_5_mm.nii.gz", + "pseudo_label": "A387558/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A387558/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A531622/4_body_10_ce.nii.gz", + "pseudo_label": "A531622/4_body_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A531622/4_body_10_ce/4_body_10_ce_seg.nii.gz" + }, + { + "image": "A531622/2_body_10_ce.nii.gz", + "pseudo_label": "A531622/2_body_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A531622/2_body_10_ce/2_body_10_ce_seg.nii.gz" + }, + { + "image": "A929180/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A929180/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A929180/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A929180/3_lung_5_mm.nii.gz", + "pseudo_label": "A929180/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A929180/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A929180/6_body_10_ce.nii.gz", + "pseudo_label": "A929180/6_body_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A929180/6_body_10_ce/6_body_10_ce_seg.nii.gz" + }, + { + "image": "A929180/2_5_mm_standard.nii.gz", + "pseudo_label": "A929180/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A929180/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A929180/2_body_10_ce.nii.gz", + "pseudo_label": "A929180/2_body_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A929180/2_body_10_ce/2_body_10_ce_seg.nii.gz" + }, + { + "image": "A540132/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A540132/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A540132/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A540132/3_lung_5_mm.nii.gz", + "pseudo_label": "A540132/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A540132/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A540132/2_5_mm_standard.nii.gz", + "pseudo_label": "A540132/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A540132/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A540132/2_abdpel_25_mm.nii.gz", + "pseudo_label": "A540132/2_abdpel_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A540132/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz" + }, + { + "image": "A763364/4_lung_125_mm.nii.gz", + "pseudo_label": "A763364/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A763364/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A763364/2_chest_125_mm.nii.gz", + "pseudo_label": "A763364/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A763364/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A763364/4_chest__30__b70s.nii.gz", + "pseudo_label": "A763364/4_chest__30__b70s.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A763364/4_chest__30__b70s/4_chest__30__b70s_seg.nii.gz" + }, + { + "image": "A763364/3_chest__50__b30s.nii.gz", + "pseudo_label": "A763364/3_chest__50__b30s.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A763364/3_chest__50__b30s/3_chest__50__b30s_seg.nii.gz" + }, + { + "image": "A763364/5_lung_5_mm.nii.gz", + "pseudo_label": "A763364/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A763364/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A041535/2_chest_abd_pel_5x5.nii.gz", + "pseudo_label": "A041535/2_chest_abd_pel_5x5.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A041535/2_chest_abd_pel_5x5/2_chest_abd_pel_5x5_seg.nii.gz" + }, + { + "image": "A443780/2_standard_25mm.nii.gz", + "pseudo_label": "A443780/2_standard_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A443780/2_standard_25mm/2_standard_25mm_seg.nii.gz" + }, + { + "image": "A313717/601_chest_ax.nii.gz", + "pseudo_label": "A313717/601_chest_ax.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A313717/601_chest_ax/601_chest_ax_seg.nii.gz" + }, + { + "image": "A313717/606_abdomen_ax.nii.gz", + "pseudo_label": "A313717/606_abdomen_ax.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A313717/606_abdomen_ax/606_abdomen_ax_seg.nii.gz" + }, + { + "image": "A761147/6_body_10_ce.nii.gz", + "pseudo_label": "A761147/6_body_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A761147/6_body_10_ce/6_body_10_ce_seg.nii.gz" + }, + { + "image": "A761147/2_body_10_ce.nii.gz", + "pseudo_label": "A761147/2_body_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A761147/2_body_10_ce/2_body_10_ce_seg.nii.gz" + }, + { + "image": "A803165/2_chest_25_mmabdpel_25mm.nii.gz", + "pseudo_label": "A803165/2_chest_25_mmabdpel_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A803165/2_chest_25_mmabdpel_25mm/2_chest_25_mmabdpel_25mm_seg.nii.gz" + }, + { + "image": "A803165/4_arterial.nii.gz", + "pseudo_label": "A803165/4_arterial.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A803165/4_arterial/4_arterial_seg.nii.gz" + }, + { + "image": "A803165/2_chest_25_mm_abd_pel_25_mm.nii.gz", + "pseudo_label": "A803165/2_chest_25_mm_abd_pel_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A803165/2_chest_25_mm_abd_pel_25_mm/2_chest_25_mm_abd_pel_25_mm_seg.nii.gz" + }, + { + "image": "A803165/5_venous.nii.gz", + "pseudo_label": "A803165/5_venous.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A803165/5_venous/5_venous_seg.nii.gz" + }, + { + "image": "A680757/2_standard.nii.gz", + "pseudo_label": "A680757/2_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A680757/2_standard/2_standard_seg.nii.gz" + }, + { + "image": "A342688/601_chest_ax.nii.gz", + "pseudo_label": "A342688/601_chest_ax.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A342688/601_chest_ax/601_chest_ax_seg.nii.gz" + }, + { + "image": "A342688/606_abdomen_ax.nii.gz", + "pseudo_label": "A342688/606_abdomen_ax.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A342688/606_abdomen_ax/606_abdomen_ax_seg.nii.gz" + }, + { + "image": "A093786/2_abdpel_25_mm.nii.gz", + "pseudo_label": "A093786/2_abdpel_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A093786/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz" + }, + { + "image": "A720956/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A720956/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A720956/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A720956/3_lung_5_mm.nii.gz", + "pseudo_label": "A720956/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A720956/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A720956/2_5_mm_standard.nii.gz", + "pseudo_label": "A720956/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A720956/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A605679/2_standard_25mm.nii.gz", + "pseudo_label": "A605679/2_standard_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A605679/2_standard_25mm/2_standard_25mm_seg.nii.gz" + }, + { + "image": "A166885/4_lung_125_mm.nii.gz", + "pseudo_label": "A166885/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A166885/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A166885/2_chest_25_mm.nii.gz", + "pseudo_label": "A166885/2_chest_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A166885/2_chest_25_mm/2_chest_25_mm_seg.nii.gz" + }, + { + "image": "A166885/603_ct_thick_axials_5mm.nii.gz", + "pseudo_label": "A166885/603_ct_thick_axials_5mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A166885/603_ct_thick_axials_5mm/603_ct_thick_axials_5mm_seg.nii.gz" + }, + { + "image": "A166885/5_lung_5_mm.nii.gz", + "pseudo_label": "A166885/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A166885/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A812385/5_lung_10.nii.gz", + "pseudo_label": "A812385/5_lung_10.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A812385/5_lung_10/5_lung_10_seg.nii.gz" + }, + { + "image": "A812385/4_lung_50.nii.gz", + "pseudo_label": "A812385/4_lung_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A812385/4_lung_50/4_lung_50_seg.nii.gz" + }, + { + "image": "A812385/3_body_50.nii.gz", + "pseudo_label": "A812385/3_body_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A812385/3_body_50/3_body_50_seg.nii.gz" + }, + { + "image": "A627834/3_50_x_50_lung.nii.gz", + "pseudo_label": "A627834/3_50_x_50_lung.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A627834/3_50_x_50_lung/3_50_x_50_lung_seg.nii.gz" + }, + { + "image": "A627834/4_125_x_125_high_resolution.nii.gz", + "pseudo_label": "A627834/4_125_x_125_high_resolution.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A627834/4_125_x_125_high_resolution/4_125_x_125_high_resolution_seg.nii.gz" + }, + { + "image": "A627834/2_50_x_50_mm_standard.nii.gz", + "pseudo_label": "A627834/2_50_x_50_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A627834/2_50_x_50_mm_standard/2_50_x_50_mm_standard_seg.nii.gz" + }, + { + "image": "A725719/2_body_50.nii.gz", + "pseudo_label": "A725719/2_body_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A725719/2_body_50/2_body_50_seg.nii.gz" + }, + { + "image": "A725719/4_lung_10.nii.gz", + "pseudo_label": "A725719/4_lung_10.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A725719/4_lung_10/4_lung_10_seg.nii.gz" + }, + { + "image": "A725719/3_lung_50.nii.gz", + "pseudo_label": "A725719/3_lung_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A725719/3_lung_50/3_lung_50_seg.nii.gz" + }, + { + "image": "A656786/4_lung_125_mm.nii.gz", + "pseudo_label": "A656786/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A656786/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A656786/6_chest_125_mm.nii.gz", + "pseudo_label": "A656786/6_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A656786/6_chest_125_mm/6_chest_125_mm_seg.nii.gz" + }, + { + "image": "A656786/5_lung_5_mm.nii.gz", + "pseudo_label": "A656786/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A656786/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A480571/2_standard.nii.gz", + "pseudo_label": "A480571/2_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A480571/2_standard/2_standard_seg.nii.gz" + }, + { + "image": "A136951/9_cta_3000_ce.nii.gz", + "pseudo_label": "A136951/9_cta_3000_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A136951/9_cta_3000_ce/9_cta_3000_ce_seg.nii.gz" + }, + { + "image": "A136951/5_cta_15000_ce.nii.gz", + "pseudo_label": "A136951/5_cta_15000_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A136951/5_cta_15000_ce/5_cta_15000_ce_seg.nii.gz" + }, + { + "image": "A136951/3_cta_10_ce.nii.gz", + "pseudo_label": "A136951/3_cta_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A136951/3_cta_10_ce/3_cta_10_ce_seg.nii.gz" + }, + { + "image": "A518486/4_lung_125_mm.nii.gz", + "pseudo_label": "A518486/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A518486/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A518486/2_chest_125_mm.nii.gz", + "pseudo_label": "A518486/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A518486/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A518486/5_lung_5_mm.nii.gz", + "pseudo_label": "A518486/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A518486/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A768565/7_body_10_ce.nii.gz", + "pseudo_label": "A768565/7_body_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A768565/7_body_10_ce/7_body_10_ce_seg.nii.gz" + }, + { + "image": "A768565/4_body_30.nii.gz", + "pseudo_label": "A768565/4_body_30.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A768565/4_body_30/4_body_30_seg.nii.gz" + }, + { + "image": "A768565/4_arterial.nii.gz", + "pseudo_label": "A768565/4_arterial.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A768565/4_arterial/4_arterial_seg.nii.gz" + }, + { + "image": "A768565/6_body_10_ce.nii.gz", + "pseudo_label": "A768565/6_body_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A768565/6_body_10_ce/6_body_10_ce_seg.nii.gz" + }, + { + "image": "A768565/15_body_05_ce.nii.gz", + "pseudo_label": "A768565/15_body_05_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A768565/15_body_05_ce/15_body_05_ce_seg.nii.gz" + }, + { + "image": "A768565/5_venous.nii.gz", + "pseudo_label": "A768565/5_venous.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A768565/5_venous/5_venous_seg.nii.gz" + }, + { + "image": "A157352/2_body_50.nii.gz", + "pseudo_label": "A157352/2_body_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A157352/2_body_50/2_body_50_seg.nii.gz" + }, + { + "image": "A157352/4_lung_10.nii.gz", + "pseudo_label": "A157352/4_lung_10.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A157352/4_lung_10/4_lung_10_seg.nii.gz" + }, + { + "image": "A157352/3_lung_50.nii.gz", + "pseudo_label": "A157352/3_lung_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A157352/3_lung_50/3_lung_50_seg.nii.gz" + }, + { + "image": "A390754/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A390754/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A390754/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A390754/3_lung_5_mm.nii.gz", + "pseudo_label": "A390754/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A390754/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A390754/2_5_mm_standard.nii.gz", + "pseudo_label": "A390754/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A390754/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A973206/2_chest_abd_pel_5x5.nii.gz", + "pseudo_label": "A973206/2_chest_abd_pel_5x5.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A973206/2_chest_abd_pel_5x5/2_chest_abd_pel_5x5_seg.nii.gz" + }, + { + "image": "A647750/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A647750/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A647750/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A647750/3_lung_5_mm.nii.gz", + "pseudo_label": "A647750/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A647750/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A647750/2_5_mm_standard.nii.gz", + "pseudo_label": "A647750/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A647750/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A398126/6_125mm_venous.nii.gz", + "pseudo_label": "A398126/6_125mm_venous.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A398126/6_125mm_venous/6_125mm_venous_seg.nii.gz" + }, + { + "image": "A398126/5_125_mm_arterial.nii.gz", + "pseudo_label": "A398126/5_125_mm_arterial.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A398126/5_125_mm_arterial/5_125_mm_arterial_seg.nii.gz" + }, + { + "image": "A398126/2_pre_contrast.nii.gz", + "pseudo_label": "A398126/2_pre_contrast.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A398126/2_pre_contrast/2_pre_contrast_seg.nii.gz" + }, + { + "image": "A684870/4_lung_125_mm.nii.gz", + "pseudo_label": "A684870/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A684870/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A684870/2_chest_125_mm.nii.gz", + "pseudo_label": "A684870/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A684870/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A684870/300_mips.nii.gz", + "pseudo_label": "A684870/300_mips.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A684870/300_mips/300_mips_seg.nii.gz" + }, + { + "image": "A684870/6_abdpel_25_mm.nii.gz", + "pseudo_label": "A684870/6_abdpel_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A684870/6_abdpel_25_mm/6_abdpel_25_mm_seg.nii.gz" + }, + { + "image": "A684870/5_lung_5_mm.nii.gz", + "pseudo_label": "A684870/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A684870/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A146146/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A146146/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A146146/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A146146/3_lung_5_mm.nii.gz", + "pseudo_label": "A146146/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A146146/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A146146/2_5_mm_standard.nii.gz", + "pseudo_label": "A146146/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A146146/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A636688/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A636688/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A636688/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A636688/4_lung_125_mm.nii.gz", + "pseudo_label": "A636688/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A636688/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A636688/2_chest_125_mm.nii.gz", + "pseudo_label": "A636688/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A636688/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A636688/3_ct_wb__40__b30f.nii.gz", + "pseudo_label": "A636688/3_ct_wb__40__b30f.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A636688/3_ct_wb__40__b30f/3_ct_wb__40__b30f_seg.nii.gz" + }, + { + "image": "A636688/3_lung_5_mm.nii.gz", + "pseudo_label": "A636688/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A636688/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A636688/5_ct_lung_recon.nii.gz", + "pseudo_label": "A636688/5_ct_lung_recon.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A636688/5_ct_lung_recon/5_ct_lung_recon_seg.nii.gz" + }, + { + "image": "A636688/2_5_mm_standard.nii.gz", + "pseudo_label": "A636688/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A636688/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A636688/5_lung_5_mm.nii.gz", + "pseudo_label": "A636688/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A636688/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A572854/2_body_50.nii.gz", + "pseudo_label": "A572854/2_body_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A572854/2_body_50/2_body_50_seg.nii.gz" + }, + { + "image": "A572854/4_lung_10.nii.gz", + "pseudo_label": "A572854/4_lung_10.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A572854/4_lung_10/4_lung_10_seg.nii.gz" + }, + { + "image": "A572854/3_lung_50.nii.gz", + "pseudo_label": "A572854/3_lung_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A572854/3_lung_50/3_lung_50_seg.nii.gz" + }, + { + "image": "A482525/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A482525/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A482525/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A482525/3_lung_5_mm.nii.gz", + "pseudo_label": "A482525/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A482525/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A482525/2_5_mm_standard.nii.gz", + "pseudo_label": "A482525/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A482525/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A744067/2_body_30_ce.nii.gz", + "pseudo_label": "A744067/2_body_30_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A744067/2_body_30_ce/2_body_30_ce_seg.nii.gz" + }, + { + "image": "A085151/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A085151/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A085151/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A085151/3_lung_5_mm.nii.gz", + "pseudo_label": "A085151/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A085151/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A085151/2_5_mm_standard.nii.gz", + "pseudo_label": "A085151/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A085151/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A098752/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A098752/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A098752/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A098752/3_125_x_125_lung.nii.gz", + "pseudo_label": "A098752/3_125_x_125_lung.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A098752/3_125_x_125_lung/3_125_x_125_lung_seg.nii.gz" + }, + { + "image": "A098752/4_lung_125_mm.nii.gz", + "pseudo_label": "A098752/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A098752/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A098752/2_125_x_125_standard.nii.gz", + "pseudo_label": "A098752/2_125_x_125_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A098752/2_125_x_125_standard/2_125_x_125_standard_seg.nii.gz" + }, + { + "image": "A098752/4_50_x_50_standard.nii.gz", + "pseudo_label": "A098752/4_50_x_50_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A098752/4_50_x_50_standard/4_50_x_50_standard_seg.nii.gz" + }, + { + "image": "A098752/2_chest_125_mm.nii.gz", + "pseudo_label": "A098752/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A098752/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A098752/2_body_50.nii.gz", + "pseudo_label": "A098752/2_body_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A098752/2_body_50/2_body_50_seg.nii.gz" + }, + { + "image": "A098752/3_lung_5_mm.nii.gz", + "pseudo_label": "A098752/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A098752/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A098752/4_lung_10.nii.gz", + "pseudo_label": "A098752/4_lung_10.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A098752/4_lung_10/4_lung_10_seg.nii.gz" + }, + { + "image": "A098752/2_5_mm_standard.nii.gz", + "pseudo_label": "A098752/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A098752/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A098752/3_lung_50.nii.gz", + "pseudo_label": "A098752/3_lung_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A098752/3_lung_50/3_lung_50_seg.nii.gz" + }, + { + "image": "A098752/5_lung_5_mm.nii.gz", + "pseudo_label": "A098752/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A098752/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A610315/2_body_50.nii.gz", + "pseudo_label": "A610315/2_body_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A610315/2_body_50/2_body_50_seg.nii.gz" + }, + { + "image": "A610315/4_lung_10.nii.gz", + "pseudo_label": "A610315/4_lung_10.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A610315/4_lung_10/4_lung_10_seg.nii.gz" + }, + { + "image": "A610315/3_lung_50.nii.gz", + "pseudo_label": "A610315/3_lung_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A610315/3_lung_50/3_lung_50_seg.nii.gz" + }, + { + "image": "A616705/601_chest_ax.nii.gz", + "pseudo_label": "A616705/601_chest_ax.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A616705/601_chest_ax/601_chest_ax_seg.nii.gz" + }, + { + "image": "A616705/2_standard_25mm.nii.gz", + "pseudo_label": "A616705/2_standard_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A616705/2_standard_25mm/2_standard_25mm_seg.nii.gz" + }, + { + "image": "A616705/606_abdomen_ax.nii.gz", + "pseudo_label": "A616705/606_abdomen_ax.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A616705/606_abdomen_ax/606_abdomen_ax_seg.nii.gz" + }, + { + "image": "A190935/2_chest_25_mmabdpel_25mm.nii.gz", + "pseudo_label": "A190935/2_chest_25_mmabdpel_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A190935/2_chest_25_mmabdpel_25mm/2_chest_25_mmabdpel_25mm_seg.nii.gz" + }, + { + "image": "A143943/4_lung_125_mm.nii.gz", + "pseudo_label": "A143943/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A143943/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A143943/2_chest_125_mm.nii.gz", + "pseudo_label": "A143943/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A143943/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A143943/5_lung_5_mm.nii.gz", + "pseudo_label": "A143943/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A143943/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A211654/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A211654/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A211654/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A211654/3_lung_5_mm.nii.gz", + "pseudo_label": "A211654/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A211654/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A211654/3_chest_125_mm.nii.gz", + "pseudo_label": "A211654/3_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A211654/3_chest_125_mm/3_chest_125_mm_seg.nii.gz" + }, + { + "image": "A211654/2_5_mm_standard.nii.gz", + "pseudo_label": "A211654/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A211654/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A211654/6_lung_5_mm.nii.gz", + "pseudo_label": "A211654/6_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A211654/6_lung_5_mm/6_lung_5_mm_seg.nii.gz" + }, + { + "image": "A211654/5_lung_125_mm.nii.gz", + "pseudo_label": "A211654/5_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A211654/5_lung_125_mm/5_lung_125_mm_seg.nii.gz" + }, + { + "image": "A701587/5_body_10_ce.nii.gz", + "pseudo_label": "A701587/5_body_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A701587/5_body_10_ce/5_body_10_ce_seg.nii.gz" + }, + { + "image": "A701587/3_body_10_ce.nii.gz", + "pseudo_label": "A701587/3_body_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A701587/3_body_10_ce/3_body_10_ce_seg.nii.gz" + }, + { + "image": "A230707/3_lung_5x5.nii.gz", + "pseudo_label": "A230707/3_lung_5x5.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A230707/3_lung_5x5/3_lung_5x5_seg.nii.gz" + }, + { + "image": "A230707/2_axiallung_reconhres_recon.nii.gz", + "pseudo_label": "A230707/2_axiallung_reconhres_recon.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A230707/2_axiallung_reconhres_recon/2_axiallung_reconhres_recon_seg.nii.gz" + }, + { + "image": "A399216/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A399216/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A399216/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A399216/3_lung_5_mm.nii.gz", + "pseudo_label": "A399216/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A399216/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A399216/2_5_mm_standard.nii.gz", + "pseudo_label": "A399216/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A399216/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A806933/2_body_50.nii.gz", + "pseudo_label": "A806933/2_body_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A806933/2_body_50/2_body_50_seg.nii.gz" + }, + { + "image": "A806933/4_lung_10.nii.gz", + "pseudo_label": "A806933/4_lung_10.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A806933/4_lung_10/4_lung_10_seg.nii.gz" + }, + { + "image": "A806933/3_lung_50.nii.gz", + "pseudo_label": "A806933/3_lung_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A806933/3_lung_50/3_lung_50_seg.nii.gz" + }, + { + "image": "A711426/4_lung_125_mm.nii.gz", + "pseudo_label": "A711426/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A711426/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A711426/2_chest_25_mm.nii.gz", + "pseudo_label": "A711426/2_chest_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A711426/2_chest_25_mm/2_chest_25_mm_seg.nii.gz" + }, + { + "image": "A711426/603_ct_thick_axials_5mm.nii.gz", + "pseudo_label": "A711426/603_ct_thick_axials_5mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A711426/603_ct_thick_axials_5mm/603_ct_thick_axials_5mm_seg.nii.gz" + }, + { + "image": "A711426/5_lung_5_mm.nii.gz", + "pseudo_label": "A711426/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A711426/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A766483/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A766483/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A766483/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A766483/3_lung_5_mm.nii.gz", + "pseudo_label": "A766483/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A766483/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A766483/2_5_mm_standard.nii.gz", + "pseudo_label": "A766483/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A766483/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A562171/4_lung_125_mm.nii.gz", + "pseudo_label": "A562171/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A562171/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A562171/2_chest_125_mm.nii.gz", + "pseudo_label": "A562171/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A562171/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A562171/5_lung_5_mm.nii.gz", + "pseudo_label": "A562171/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A562171/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A145968/2_body_30_ce.nii.gz", + "pseudo_label": "A145968/2_body_30_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A145968/2_body_30_ce/2_body_30_ce_seg.nii.gz" + }, + { + "image": "A293330/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A293330/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A293330/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A293330/3_lung_5_mm.nii.gz", + "pseudo_label": "A293330/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A293330/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A293330/2_5_mm_standard.nii.gz", + "pseudo_label": "A293330/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A293330/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A353550/2_standard_25mm.nii.gz", + "pseudo_label": "A353550/2_standard_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A353550/2_standard_25mm/2_standard_25mm_seg.nii.gz" + }, + { + "image": "A405246/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A405246/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A405246/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A405246/3_lung_5_mm.nii.gz", + "pseudo_label": "A405246/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A405246/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A405246/2_5_mm_standard.nii.gz", + "pseudo_label": "A405246/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A405246/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A457297/2_standard_25mm.nii.gz", + "pseudo_label": "A457297/2_standard_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A457297/2_standard_25mm/2_standard_25mm_seg.nii.gz" + }, + { + "image": "A921742/2_abdpel_25_mm.nii.gz", + "pseudo_label": "A921742/2_abdpel_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A921742/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz" + }, + { + "image": "A301237/2_chest_25_mmabdpel_25mm.nii.gz", + "pseudo_label": "A301237/2_chest_25_mmabdpel_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A301237/2_chest_25_mmabdpel_25mm/2_chest_25_mmabdpel_25mm_seg.nii.gz" + }, + { + "image": "A408220/2_body_50.nii.gz", + "pseudo_label": "A408220/2_body_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A408220/2_body_50/2_body_50_seg.nii.gz" + }, + { + "image": "A408220/4_lung_10.nii.gz", + "pseudo_label": "A408220/4_lung_10.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A408220/4_lung_10/4_lung_10_seg.nii.gz" + }, + { + "image": "A408220/3_lung_50.nii.gz", + "pseudo_label": "A408220/3_lung_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A408220/3_lung_50/3_lung_50_seg.nii.gz" + }, + { + "image": "A526021/3_lung_5x5.nii.gz", + "pseudo_label": "A526021/3_lung_5x5.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A526021/3_lung_5x5/3_lung_5x5_seg.nii.gz" + }, + { + "image": "A526021/4_hr_chest_125_x_125.nii.gz", + "pseudo_label": "A526021/4_hr_chest_125_x_125.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A526021/4_hr_chest_125_x_125/4_hr_chest_125_x_125_seg.nii.gz" + }, + { + "image": "A526021/2_axiallung_reconhres_recon.nii.gz", + "pseudo_label": "A526021/2_axiallung_reconhres_recon.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A526021/2_axiallung_reconhres_recon/2_axiallung_reconhres_recon_seg.nii.gz" + }, + { + "image": "A689562/2_body_30_ce.nii.gz", + "pseudo_label": "A689562/2_body_30_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A689562/2_body_30_ce/2_body_30_ce_seg.nii.gz" + }, + { + "image": "A111996/7_cta_15000_ce.nii.gz", + "pseudo_label": "A111996/7_cta_15000_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A111996/7_cta_15000_ce/7_cta_15000_ce_seg.nii.gz" + }, + { + "image": "A111996/4_lung_125_mm.nii.gz", + "pseudo_label": "A111996/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A111996/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A111996/2_chest_125_mm.nii.gz", + "pseudo_label": "A111996/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A111996/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A111996/12_cta_3000_ce.nii.gz", + "pseudo_label": "A111996/12_cta_3000_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A111996/12_cta_3000_ce/12_cta_3000_ce_seg.nii.gz" + }, + { + "image": "A111996/11_body_30_ce.nii.gz", + "pseudo_label": "A111996/11_body_30_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A111996/11_body_30_ce/11_body_30_ce_seg.nii.gz" + }, + { + "image": "A111996/5_cta_10_ce.nii.gz", + "pseudo_label": "A111996/5_cta_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A111996/5_cta_10_ce/5_cta_10_ce_seg.nii.gz" + }, + { + "image": "A111996/5_lung_5_mm.nii.gz", + "pseudo_label": "A111996/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A111996/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A832393/7_abdpel_25_mm.nii.gz", + "pseudo_label": "A832393/7_abdpel_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A832393/7_abdpel_25_mm/7_abdpel_25_mm_seg.nii.gz" + }, + { + "image": "A832393/4_lung_125_mm.nii.gz", + "pseudo_label": "A832393/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A832393/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A832393/6_chest_125_mm.nii.gz", + "pseudo_label": "A832393/6_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A832393/6_chest_125_mm/6_chest_125_mm_seg.nii.gz" + }, + { + "image": "A832393/5_lung_5_mm.nii.gz", + "pseudo_label": "A832393/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A832393/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A466369/2_abdpel_25_mm.nii.gz", + "pseudo_label": "A466369/2_abdpel_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A466369/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz" + }, + { + "image": "A820804/2_abdpel_25_mm.nii.gz", + "pseudo_label": "A820804/2_abdpel_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A820804/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz" + }, + { + "image": "A780880/3_50_x_50_lung.nii.gz", + "pseudo_label": "A780880/3_50_x_50_lung.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A780880/3_50_x_50_lung/3_50_x_50_lung_seg.nii.gz" + }, + { + "image": "A780880/4_125_x_125_high_resolution.nii.gz", + "pseudo_label": "A780880/4_125_x_125_high_resolution.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A780880/4_125_x_125_high_resolution/4_125_x_125_high_resolution_seg.nii.gz" + }, + { + "image": "A780880/2_body_50.nii.gz", + "pseudo_label": "A780880/2_body_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A780880/2_body_50/2_body_50_seg.nii.gz" + }, + { + "image": "A780880/4_lung_10.nii.gz", + "pseudo_label": "A780880/4_lung_10.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A780880/4_lung_10/4_lung_10_seg.nii.gz" + }, + { + "image": "A780880/2_50_x_50_standard.nii.gz", + "pseudo_label": "A780880/2_50_x_50_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A780880/2_50_x_50_standard/2_50_x_50_standard_seg.nii.gz" + }, + { + "image": "A780880/3_lung_50.nii.gz", + "pseudo_label": "A780880/3_lung_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A780880/3_lung_50/3_lung_50_seg.nii.gz" + }, + { + "image": "A257079/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A257079/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A257079/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A257079/3_lung_5_mm.nii.gz", + "pseudo_label": "A257079/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A257079/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A257079/2_5_mm_standard.nii.gz", + "pseudo_label": "A257079/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A257079/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A192601/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A192601/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A192601/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A192601/3_lung_5_mm.nii.gz", + "pseudo_label": "A192601/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A192601/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A192601/2_5_mm_standard.nii.gz", + "pseudo_label": "A192601/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A192601/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A458393/2_body_30_ce.nii.gz", + "pseudo_label": "A458393/2_body_30_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A458393/2_body_30_ce/2_body_30_ce_seg.nii.gz" + }, + { + "image": "A780838/4_lung_125_mm.nii.gz", + "pseudo_label": "A780838/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A780838/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A780838/2_chest_125_mm.nii.gz", + "pseudo_label": "A780838/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A780838/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A780838/5_lung_5_mm.nii.gz", + "pseudo_label": "A780838/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A780838/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A469587/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A469587/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A469587/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A469587/3_lung_5_mm.nii.gz", + "pseudo_label": "A469587/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A469587/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A469587/2_5_mm_standard.nii.gz", + "pseudo_label": "A469587/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A469587/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A058062/2_25_x_25_standard.nii.gz", + "pseudo_label": "A058062/2_25_x_25_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A058062/2_25_x_25_standard/2_25_x_25_standard_seg.nii.gz" + }, + { + "image": "A058062/2_abdpel_25_mm.nii.gz", + "pseudo_label": "A058062/2_abdpel_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A058062/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz" + }, + { + "image": "A824589/4_lung_125_mm.nii.gz", + "pseudo_label": "A824589/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A824589/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A824589/2_chest_125_mm.nii.gz", + "pseudo_label": "A824589/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A824589/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A824589/5_lung_5_mm.nii.gz", + "pseudo_label": "A824589/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A824589/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A160394/2_standard_25mm.nii.gz", + "pseudo_label": "A160394/2_standard_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A160394/2_standard_25mm/2_standard_25mm_seg.nii.gz" + }, + { + "image": "A955704/2_standard.nii.gz", + "pseudo_label": "A955704/2_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A955704/2_standard/2_standard_seg.nii.gz" + }, + { + "image": "A955704/2_abdpel_25_mm.nii.gz", + "pseudo_label": "A955704/2_abdpel_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A955704/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz" + }, + { + "image": "A565890/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A565890/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A565890/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A565890/3_lung_5_mm.nii.gz", + "pseudo_label": "A565890/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A565890/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A565890/2_5_mm_standard.nii.gz", + "pseudo_label": "A565890/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A565890/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A546520/9_cta_3000_ce.nii.gz", + "pseudo_label": "A546520/9_cta_3000_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A546520/9_cta_3000_ce/9_cta_3000_ce_seg.nii.gz" + }, + { + "image": "A546520/4_lung_125_mm.nii.gz", + "pseudo_label": "A546520/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A546520/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A546520/2_chest_125_mm.nii.gz", + "pseudo_label": "A546520/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A546520/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A546520/5_cta_15000_ce.nii.gz", + "pseudo_label": "A546520/5_cta_15000_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A546520/5_cta_15000_ce/5_cta_15000_ce_seg.nii.gz" + }, + { + "image": "A546520/3_cta_10_ce.nii.gz", + "pseudo_label": "A546520/3_cta_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A546520/3_cta_10_ce/3_cta_10_ce_seg.nii.gz" + }, + { + "image": "A546520/12_body_30_ce.nii.gz", + "pseudo_label": "A546520/12_body_30_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A546520/12_body_30_ce/12_body_30_ce_seg.nii.gz" + }, + { + "image": "A546520/5_lung_5_mm.nii.gz", + "pseudo_label": "A546520/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A546520/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A534946/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A534946/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A534946/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A534946/3_lung_5_mm.nii.gz", + "pseudo_label": "A534946/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A534946/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A534946/2_5_mm_standard.nii.gz", + "pseudo_label": "A534946/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A534946/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A910807/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A910807/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A910807/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A910807/3_lung_5_mm.nii.gz", + "pseudo_label": "A910807/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A910807/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A910807/2_5_mm_standard.nii.gz", + "pseudo_label": "A910807/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A910807/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A473308/2_body_30_ce.nii.gz", + "pseudo_label": "A473308/2_body_30_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A473308/2_body_30_ce/2_body_30_ce_seg.nii.gz" + }, + { + "image": "A362446/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A362446/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A362446/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A362446/3_lung_5_mm.nii.gz", + "pseudo_label": "A362446/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A362446/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A362446/2_5_mm_standard.nii.gz", + "pseudo_label": "A362446/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A362446/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A727037/4_lung_125_mm.nii.gz", + "pseudo_label": "A727037/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A727037/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A727037/2_chest_125_mm.nii.gz", + "pseudo_label": "A727037/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A727037/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A727037/2_standard_25mm.nii.gz", + "pseudo_label": "A727037/2_standard_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A727037/2_standard_25mm/2_standard_25mm_seg.nii.gz" + }, + { + "image": "A727037/5_lung_5_mm.nii.gz", + "pseudo_label": "A727037/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A727037/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A767767/2_abdpel_25_mm.nii.gz", + "pseudo_label": "A767767/2_abdpel_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A767767/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz" + }, + { + "image": "A858373/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A858373/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A858373/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A858373/3_lung_5_mm.nii.gz", + "pseudo_label": "A858373/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A858373/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A858373/2_5_mm_standard.nii.gz", + "pseudo_label": "A858373/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A858373/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A561224/4_lung_125_mm.nii.gz", + "pseudo_label": "A561224/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A561224/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A561224/2_chest_125_mm.nii.gz", + "pseudo_label": "A561224/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A561224/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A561224/5_lung_5_mm.nii.gz", + "pseudo_label": "A561224/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A561224/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A485373/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A485373/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A485373/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A485373/3_lung_5_mm.nii.gz", + "pseudo_label": "A485373/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A485373/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A485373/2_5_mm_standard.nii.gz", + "pseudo_label": "A485373/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A485373/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A485648/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A485648/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A485648/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A485648/3_lung_5_mm.nii.gz", + "pseudo_label": "A485648/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A485648/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A485648/2_5_mm_standard.nii.gz", + "pseudo_label": "A485648/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A485648/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A902510/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A902510/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A902510/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A902510/3_lung_5_mm.nii.gz", + "pseudo_label": "A902510/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A902510/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A902510/2_5_mm_standard.nii.gz", + "pseudo_label": "A902510/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A902510/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A951074/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A951074/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A951074/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A951074/3_lung_5_mm.nii.gz", + "pseudo_label": "A951074/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A951074/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A951074/2_body_30_ce.nii.gz", + "pseudo_label": "A951074/2_body_30_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A951074/2_body_30_ce/2_body_30_ce_seg.nii.gz" + }, + { + "image": "A951074/2_5_mm_standard.nii.gz", + "pseudo_label": "A951074/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A951074/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A106133/4_body_10_ce.nii.gz", + "pseudo_label": "A106133/4_body_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A106133/4_body_10_ce/4_body_10_ce_seg.nii.gz" + }, + { + "image": "A106133/2_body_10_ce.nii.gz", + "pseudo_label": "A106133/2_body_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A106133/2_body_10_ce/2_body_10_ce_seg.nii.gz" + }, + { + "image": "A055532/2_abdomenpelvis_25_mm.nii.gz", + "pseudo_label": "A055532/2_abdomenpelvis_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A055532/2_abdomenpelvis_25_mm/2_abdomenpelvis_25_mm_seg.nii.gz" + }, + { + "image": "A841860/2_body_50.nii.gz", + "pseudo_label": "A841860/2_body_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A841860/2_body_50/2_body_50_seg.nii.gz" + }, + { + "image": "A841860/4_lung_10.nii.gz", + "pseudo_label": "A841860/4_lung_10.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A841860/4_lung_10/4_lung_10_seg.nii.gz" + }, + { + "image": "A841860/3_lung_50.nii.gz", + "pseudo_label": "A841860/3_lung_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A841860/3_lung_50/3_lung_50_seg.nii.gz" + }, + { + "image": "A619772/4_lung_125_mm.nii.gz", + "pseudo_label": "A619772/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A619772/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A619772/2_chest_125_mm.nii.gz", + "pseudo_label": "A619772/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A619772/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A619772/5_lung_5_mm.nii.gz", + "pseudo_label": "A619772/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A619772/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A027284/5_arterial_125mm.nii.gz", + "pseudo_label": "A027284/5_arterial_125mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A027284/5_arterial_125mm/5_arterial_125mm_seg.nii.gz" + }, + { + "image": "A027284/2_standard_25mm.nii.gz", + "pseudo_label": "A027284/2_standard_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A027284/2_standard_25mm/2_standard_25mm_seg.nii.gz" + }, + { + "image": "A027284/6_5_mm_delay.nii.gz", + "pseudo_label": "A027284/6_5_mm_delay.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A027284/6_5_mm_delay/6_5_mm_delay_seg.nii.gz" + }, + { + "image": "A027284/2_pre_contrast.nii.gz", + "pseudo_label": "A027284/2_pre_contrast.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A027284/2_pre_contrast/2_pre_contrast_seg.nii.gz" + }, + { + "image": "A968238/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A968238/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A968238/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A968238/3_lung_5_mm.nii.gz", + "pseudo_label": "A968238/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A968238/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A968238/2_5_mm_standard.nii.gz", + "pseudo_label": "A968238/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A968238/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A045825/2_abdpel_25_mm.nii.gz", + "pseudo_label": "A045825/2_abdpel_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A045825/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz" + }, + { + "image": "A751818/4_lung_125_mm.nii.gz", + "pseudo_label": "A751818/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A751818/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A751818/2_chest_125_mm.nii.gz", + "pseudo_label": "A751818/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A751818/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A751818/5_lung_5_mm.nii.gz", + "pseudo_label": "A751818/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A751818/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A962025/2_abdpel_25_mm.nii.gz", + "pseudo_label": "A962025/2_abdpel_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A962025/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz" + }, + { + "image": "A597975/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A597975/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A597975/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A597975/3_lung_5_mm.nii.gz", + "pseudo_label": "A597975/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A597975/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A597975/2_5_mm_standard.nii.gz", + "pseudo_label": "A597975/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A597975/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A549020/4_lung_125_mm.nii.gz", + "pseudo_label": "A549020/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A549020/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A549020/2_chest_125_mm.nii.gz", + "pseudo_label": "A549020/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A549020/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A549020/6_abdpel_25_mm.nii.gz", + "pseudo_label": "A549020/6_abdpel_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A549020/6_abdpel_25_mm/6_abdpel_25_mm_seg.nii.gz" + }, + { + "image": "A549020/5_lung_5_mm.nii.gz", + "pseudo_label": "A549020/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A549020/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A404063/2_body_30.nii.gz", + "pseudo_label": "A404063/2_body_30.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A404063/2_body_30/2_body_30_seg.nii.gz" + }, + { + "image": "A104964/4_lung_125_mm.nii.gz", + "pseudo_label": "A104964/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A104964/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A104964/2_chest_125_mm.nii.gz", + "pseudo_label": "A104964/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A104964/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A104964/5_lung_5_mm.nii.gz", + "pseudo_label": "A104964/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A104964/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A660468/4_lung_125_mm.nii.gz", + "pseudo_label": "A660468/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A660468/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A660468/2_chest_125_mm.nii.gz", + "pseudo_label": "A660468/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A660468/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A660468/6_body_10_ce.nii.gz", + "pseudo_label": "A660468/6_body_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A660468/6_body_10_ce/6_body_10_ce_seg.nii.gz" + }, + { + "image": "A660468/2_body_10_ce.nii.gz", + "pseudo_label": "A660468/2_body_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A660468/2_body_10_ce/2_body_10_ce_seg.nii.gz" + }, + { + "image": "A660468/5_lung_5_mm.nii.gz", + "pseudo_label": "A660468/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A660468/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A083074/4_lung_125_mm.nii.gz", + "pseudo_label": "A083074/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A083074/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A083074/2_chest_25_mm.nii.gz", + "pseudo_label": "A083074/2_chest_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A083074/2_chest_25_mm/2_chest_25_mm_seg.nii.gz" + }, + { + "image": "A083074/603_ct_thick_axials_5mm.nii.gz", + "pseudo_label": "A083074/603_ct_thick_axials_5mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A083074/603_ct_thick_axials_5mm/603_ct_thick_axials_5mm_seg.nii.gz" + }, + { + "image": "A083074/5_lung_5_mm.nii.gz", + "pseudo_label": "A083074/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A083074/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A516538/601_chest_ax.nii.gz", + "pseudo_label": "A516538/601_chest_ax.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A516538/601_chest_ax/601_chest_ax_seg.nii.gz" + }, + { + "image": "A516538/606_abdomen_ax.nii.gz", + "pseudo_label": "A516538/606_abdomen_ax.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A516538/606_abdomen_ax/606_abdomen_ax_seg.nii.gz" + }, + { + "image": "A239706/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A239706/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A239706/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A239706/2_body_30.nii.gz", + "pseudo_label": "A239706/2_body_30.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A239706/2_body_30/2_body_30_seg.nii.gz" + }, + { + "image": "A239706/3_lung_5_mm.nii.gz", + "pseudo_label": "A239706/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A239706/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A239706/2_5_mm_standard.nii.gz", + "pseudo_label": "A239706/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A239706/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A368055/2_standard_25mm.nii.gz", + "pseudo_label": "A368055/2_standard_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A368055/2_standard_25mm/2_standard_25mm_seg.nii.gz" + }, + { + "image": "A223205/8_cta_05_ce.nii.gz", + "pseudo_label": "A223205/8_cta_05_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A223205/8_cta_05_ce/8_cta_05_ce_seg.nii.gz" + }, + { + "image": "A223205/4_lung_10_ce.nii.gz", + "pseudo_label": "A223205/4_lung_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A223205/4_lung_10_ce/4_lung_10_ce_seg.nii.gz" + }, + { + "image": "A223205/5_cta_50_ce.nii.gz", + "pseudo_label": "A223205/5_cta_50_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A223205/5_cta_50_ce/5_cta_50_ce_seg.nii.gz" + }, + { + "image": "A223205/3_cta_10_ce.nii.gz", + "pseudo_label": "A223205/3_cta_10_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A223205/3_cta_10_ce/3_cta_10_ce_seg.nii.gz" + }, + { + "image": "A698900/4_lung_125_mm.nii.gz", + "pseudo_label": "A698900/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A698900/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A698900/2_chest_125_mm.nii.gz", + "pseudo_label": "A698900/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A698900/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A698900/5_lung_5_mm.nii.gz", + "pseudo_label": "A698900/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A698900/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A551607/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A551607/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A551607/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A551607/601_chest_ax.nii.gz", + "pseudo_label": "A551607/601_chest_ax.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A551607/601_chest_ax/601_chest_ax_seg.nii.gz" + }, + { + "image": "A551607/3_lung_5_mm.nii.gz", + "pseudo_label": "A551607/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A551607/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A551607/2_5_mm_standard.nii.gz", + "pseudo_label": "A551607/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A551607/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A551607/606_abdomen_ax.nii.gz", + "pseudo_label": "A551607/606_abdomen_ax.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A551607/606_abdomen_ax/606_abdomen_ax_seg.nii.gz" + }, + { + "image": "A799695/5_lung_10.nii.gz", + "pseudo_label": "A799695/5_lung_10.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A799695/5_lung_10/5_lung_10_seg.nii.gz" + }, + { + "image": "A799695/4_lung_50.nii.gz", + "pseudo_label": "A799695/4_lung_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A799695/4_lung_50/4_lung_50_seg.nii.gz" + }, + { + "image": "A799695/4_hr_chest_125x125.nii.gz", + "pseudo_label": "A799695/4_hr_chest_125x125.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A799695/4_hr_chest_125x125/4_hr_chest_125x125_seg.nii.gz" + }, + { + "image": "A799695/3_body_50.nii.gz", + "pseudo_label": "A799695/3_body_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A799695/3_body_50/3_body_50_seg.nii.gz" + }, + { + "image": "A799695/3_lung_5x5.nii.gz", + "pseudo_label": "A799695/3_lung_5x5.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A799695/3_lung_5x5/3_lung_5x5_seg.nii.gz" + }, + { + "image": "A799695/2_axiallung_reconhres_recon.nii.gz", + "pseudo_label": "A799695/2_axiallung_reconhres_recon.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A799695/2_axiallung_reconhres_recon/2_axiallung_reconhres_recon_seg.nii.gz" + }, + { + "image": "A799695/2_abdpel_25_mm.nii.gz", + "pseudo_label": "A799695/2_abdpel_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A799695/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz" + }, + { + "image": "A862000/4_lung_125_mm.nii.gz", + "pseudo_label": "A862000/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A862000/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A862000/2_chest_125_mm.nii.gz", + "pseudo_label": "A862000/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A862000/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A862000/5_lung_5_mm.nii.gz", + "pseudo_label": "A862000/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A862000/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A347680/6_venous.nii.gz", + "pseudo_label": "A347680/6_venous.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A347680/6_venous/6_venous_seg.nii.gz" + }, + { + "image": "A347680/2_chest_25_mmabdpel_25mm.nii.gz", + "pseudo_label": "A347680/2_chest_25_mmabdpel_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A347680/2_chest_25_mmabdpel_25mm/2_chest_25_mmabdpel_25mm_seg.nii.gz" + }, + { + "image": "A347680/5_arterial.nii.gz", + "pseudo_label": "A347680/5_arterial.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A347680/5_arterial/5_arterial_seg.nii.gz" + }, + { + "image": "A347680/2_standard_25mm.nii.gz", + "pseudo_label": "A347680/2_standard_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A347680/2_standard_25mm/2_standard_25mm_seg.nii.gz" + }, + { + "image": "A347680/2_chest_abd_pel_5x5.nii.gz", + "pseudo_label": "A347680/2_chest_abd_pel_5x5.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A347680/2_chest_abd_pel_5x5/2_chest_abd_pel_5x5_seg.nii.gz" + }, + { + "image": "A347680/2_pre_contrast.nii.gz", + "pseudo_label": "A347680/2_pre_contrast.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A347680/2_pre_contrast/2_pre_contrast_seg.nii.gz" + }, + { + "image": "A994393/2_body_50.nii.gz", + "pseudo_label": "A994393/2_body_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A994393/2_body_50/2_body_50_seg.nii.gz" + }, + { + "image": "A994393/4_lung_10.nii.gz", + "pseudo_label": "A994393/4_lung_10.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A994393/4_lung_10/4_lung_10_seg.nii.gz" + }, + { + "image": "A994393/3_lung_50.nii.gz", + "pseudo_label": "A994393/3_lung_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A994393/3_lung_50/3_lung_50_seg.nii.gz" + }, + { + "image": "A766547/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A766547/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A766547/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A766547/3_abdpel_25_mm.nii.gz", + "pseudo_label": "A766547/3_abdpel_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A766547/3_abdpel_25_mm/3_abdpel_25_mm_seg.nii.gz" + }, + { + "image": "A766547/4_lung_125_mm.nii.gz", + "pseudo_label": "A766547/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A766547/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A766547/2_chest_125_mm.nii.gz", + "pseudo_label": "A766547/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A766547/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A766547/3_lung_5_mm.nii.gz", + "pseudo_label": "A766547/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A766547/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A766547/2_5_mm_standard.nii.gz", + "pseudo_label": "A766547/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A766547/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A766547/5_lung_5_mm.nii.gz", + "pseudo_label": "A766547/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A766547/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A735124/102_chest_25_mmabdpel_25mm.nii.gz", + "pseudo_label": "A735124/102_chest_25_mmabdpel_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A735124/102_chest_25_mmabdpel_25mm/102_chest_25_mmabdpel_25mm_seg.nii.gz" + }, + { + "image": "A735124/2_chest_25_mmabdpel_25mm.nii.gz", + "pseudo_label": "A735124/2_chest_25_mmabdpel_25mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A735124/2_chest_25_mmabdpel_25mm/2_chest_25_mmabdpel_25mm_seg.nii.gz" + }, + { + "image": "A110373/4_lung_125_mm.nii.gz", + "pseudo_label": "A110373/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A110373/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A110373/2_chest_125_mm.nii.gz", + "pseudo_label": "A110373/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A110373/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A110373/5_lung_5_mm.nii.gz", + "pseudo_label": "A110373/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A110373/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A872440/2_body_30_ce.nii.gz", + "pseudo_label": "A872440/2_body_30_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A872440/2_body_30_ce/2_body_30_ce_seg.nii.gz" + }, + { + "image": "A087492/4_lung_125_mm.nii.gz", + "pseudo_label": "A087492/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A087492/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A087492/2_chest_125_mm.nii.gz", + "pseudo_label": "A087492/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A087492/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A087492/5_lung_5_mm.nii.gz", + "pseudo_label": "A087492/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A087492/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A790978/4_lung_125_mm.nii.gz", + "pseudo_label": "A790978/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A790978/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A790978/2_chest_125_mm.nii.gz", + "pseudo_label": "A790978/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A790978/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A790978/4_arterial_125_mm.nii.gz", + "pseudo_label": "A790978/4_arterial_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all" + }, + { + "image": "A790978/5_venous_125_mm.nii.gz", + "pseudo_label": "A790978/5_venous_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A790978/5_venous_125_mm/5_venous_125_mm_seg.nii.gz" + }, + { + "image": "A790978/6_delay_125_mm.nii.gz", + "pseudo_label": "A790978/6_delay_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A790978/6_delay_125_mm/6_delay_125_mm_seg.nii.gz" + }, + { + "image": "A790978/5_lung_5_mm.nii.gz", + "pseudo_label": "A790978/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A790978/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A531756/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A531756/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A531756/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A531756/5_lung_10.nii.gz", + "pseudo_label": "A531756/5_lung_10.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A531756/5_lung_10/5_lung_10_seg.nii.gz" + }, + { + "image": "A531756/4_lung_50.nii.gz", + "pseudo_label": "A531756/4_lung_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A531756/4_lung_50/4_lung_50_seg.nii.gz" + }, + { + "image": "A531756/3_lung_5_mm.nii.gz", + "pseudo_label": "A531756/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A531756/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A531756/3_body_50.nii.gz", + "pseudo_label": "A531756/3_body_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all" + }, + { + "image": "A531756/2_5_mm_standard.nii.gz", + "pseudo_label": "A531756/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A531756/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A531756/2_abdomenpelvis_25_mm.nii.gz", + "pseudo_label": "A531756/2_abdomenpelvis_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A531756/2_abdomenpelvis_25_mm/2_abdomenpelvis_25_mm_seg.nii.gz" + }, + { + "image": "A602816/2_body_50.nii.gz", + "pseudo_label": "A602816/2_body_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A602816/2_body_50/2_body_50_seg.nii.gz" + }, + { + "image": "A602816/4_lung_10.nii.gz", + "pseudo_label": "A602816/4_lung_10.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A602816/4_lung_10/4_lung_10_seg.nii.gz" + }, + { + "image": "A602816/3_lung_50.nii.gz", + "pseudo_label": "A602816/3_lung_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A602816/3_lung_50/3_lung_50_seg.nii.gz" + }, + { + "image": "A792765/2_abdpel_25_mm.nii.gz", + "pseudo_label": "A792765/2_abdpel_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A792765/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz" + }, + { + "image": "A654746/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A654746/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A654746/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A654746/4_lung_125_mm.nii.gz", + "pseudo_label": "A654746/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all" + }, + { + "image": "A654746/2_chest_125_mm.nii.gz", + "pseudo_label": "A654746/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A654746/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A654746/3_lung_5_mm.nii.gz", + "pseudo_label": "A654746/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A654746/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A654746/2_5_mm_standard.nii.gz", + "pseudo_label": "A654746/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A654746/2_5_mm_standard/2_5_mm_standard_seg.nii.gz" + }, + { + "image": "A654746/5_lung_5_mm.nii.gz", + "pseudo_label": "A654746/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A654746/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A214994/4_lung_hr_125_mm.nii.gz", + "pseudo_label": "A214994/4_lung_hr_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A214994/4_lung_hr_125_mm/4_lung_hr_125_mm_seg.nii.gz" + }, + { + "image": "A214994/3_body_30_ce.nii.gz", + "pseudo_label": "A214994/3_body_30_ce.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A214994/3_body_30_ce/3_body_30_ce_seg.nii.gz" + }, + { + "image": "A214994/3_lung_5_mm.nii.gz", + "pseudo_label": "A214994/3_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A214994/3_lung_5_mm/3_lung_5_mm_seg.nii.gz" + }, + { + "image": "A214994/2_5_mm_standard.nii.gz", + "pseudo_label": "A214994/2_5_mm_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all" + }, + { + "image": "A214994/2_abdpel_25_mm.nii.gz", + "pseudo_label": "A214994/2_abdpel_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A214994/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz" + }, + { + "image": "A237035/601_chest_ax.nii.gz", + "pseudo_label": "A237035/601_chest_ax.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A237035/601_chest_ax/601_chest_ax_seg.nii.gz" + }, + { + "image": "A237035/606_abdomen_ax.nii.gz", + "pseudo_label": "A237035/606_abdomen_ax.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A237035/606_abdomen_ax/606_abdomen_ax_seg.nii.gz" + }, + { + "image": "A230732/4_lung_125_mm.nii.gz", + "pseudo_label": "A230732/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A230732/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A230732/2_chest_125_mm.nii.gz", + "pseudo_label": "A230732/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A230732/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A230732/5_lung_5_mm.nii.gz", + "pseudo_label": "A230732/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A230732/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A103074/3_50_x_50_lung.nii.gz", + "pseudo_label": "A103074/3_50_x_50_lung.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A103074/3_50_x_50_lung/3_50_x_50_lung_seg.nii.gz" + }, + { + "image": "A103074/4_hi_res_chest.nii.gz", + "pseudo_label": "A103074/4_hi_res_chest.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all" + }, + { + "image": "A103074/4_125_x_125_high_resolution.nii.gz", + "pseudo_label": "A103074/4_125_x_125_high_resolution.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A103074/4_125_x_125_high_resolution/4_125_x_125_high_resolution_seg.nii.gz" + }, + { + "image": "A103074/4_lung_125_mm.nii.gz", + "pseudo_label": "A103074/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A103074/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A103074/2_chest_125_mm.nii.gz", + "pseudo_label": "A103074/2_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A103074/2_chest_125_mm/2_chest_125_mm_seg.nii.gz" + }, + { + "image": "A103074/2_chest_5x5.nii.gz", + "pseudo_label": "A103074/2_chest_5x5.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A103074/2_chest_5x5/2_chest_5x5_seg.nii.gz" + }, + { + "image": "A103074/3_lung_5x5.nii.gz", + "pseudo_label": "A103074/3_lung_5x5.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A103074/3_lung_5x5/3_lung_5x5_seg.nii.gz" + }, + { + "image": "A103074/603_3x3_axial.nii.gz", + "pseudo_label": "A103074/603_3x3_axial.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A103074/603_3x3_axial/603_3x3_axial_seg.nii.gz" + }, + { + "image": "A103074/2_50_x_50_standard.nii.gz", + "pseudo_label": "A103074/2_50_x_50_standard.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A103074/2_50_x_50_standard/2_50_x_50_standard_seg.nii.gz" + }, + { + "image": "A103074/5_lung_5_mm.nii.gz", + "pseudo_label": "A103074/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all" + }, + { + "image": "A811401/2_body_50.nii.gz", + "pseudo_label": "A811401/2_body_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A811401/2_body_50/2_body_50_seg.nii.gz" + }, + { + "image": "A811401/4_lung_10.nii.gz", + "pseudo_label": "A811401/4_lung_10.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A811401/4_lung_10/4_lung_10_seg.nii.gz" + }, + { + "image": "A811401/3_lung_50.nii.gz", + "pseudo_label": "A811401/3_lung_50.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A811401/3_lung_50/3_lung_50_seg.nii.gz" + }, + { + "image": "A993649/3_lung_5x5.nii.gz", + "pseudo_label": "A993649/3_lung_5x5.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A993649/3_lung_5x5/3_lung_5x5_seg.nii.gz" + }, + { + "image": "A993649/4_hr_chest_125_x_125.nii.gz", + "pseudo_label": "A993649/4_hr_chest_125_x_125.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A993649/4_hr_chest_125_x_125/4_hr_chest_125_x_125_seg.nii.gz" + }, + { + "image": "A993649/2_axiallung_reconhres_recon.nii.gz", + "pseudo_label": "A993649/2_axiallung_reconhres_recon.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A993649/2_axiallung_reconhres_recon/2_axiallung_reconhres_recon_seg.nii.gz" + }, + { + "image": "A735762/4_lung_125_mm.nii.gz", + "pseudo_label": "A735762/4_lung_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A735762/4_lung_125_mm/4_lung_125_mm_seg.nii.gz" + }, + { + "image": "A735762/6_chest_125_mm.nii.gz", + "pseudo_label": "A735762/6_chest_125_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all" + }, + { + "image": "A735762/5_lung_5_mm.nii.gz", + "pseudo_label": "A735762/5_lung_5_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A735762/5_lung_5_mm/5_lung_5_mm_seg.nii.gz" + }, + { + "image": "A714137/2_abdpel_25_mm.nii.gz", + "pseudo_label": "A714137/2_abdpel_25_mm.nii.gz", + "dataset": "/data/StonyBrook-CT/Stony_Brook", + "region": "/data/StonyBrook-CT/all", + "label_sv": "/workspace_infer/supervoxel_sam/sb_ct_100/A714137/2_abdpel_25_mm/2_abdpel_25_mm_seg.nii.gz" + } + ], + "training_transform": [ + { + "_target_": "RandCropByLabelClassesd", + "keys": [ + "@image_key", + "@label_key", + "@pseudo_label_key", + "@label_sv_key" + ], + "label_key": "@pseudo_label_key", + "num_classes": 133, + "num_samples": "@num_patches_per_image", + "spatial_size": "@patch_size", + "ratios": "$tuple(float(i >= 0) for i in range(133))", + "warn": false, + "allow_missing_keys": true + }, + { + "_target_": "RandZoomd", + "keys": [ + "@image_key", + "@label_key", + "@pseudo_label_key", + "@label_sv_key" + ], + "min_zoom": 0.8, + "max_zoom": 1.2, + "mode": [ + "trilinear", + "nearest", + "nearest", + "nearest" + ], + "prob": 0.2, + "allow_missing_keys": true + }, + { + "_target_": "RandSimulateLowResolutiond", + "keys": [ + "@image_key" + ], + "zoom_range": [ + 0.3, + 1 + ], + "prob": 0.2, + "allow_missing_keys": true + }, + { + "_target_": "RandGaussianSmoothd", + "keys": [ + "@image_key" + ], + "prob": 0.2, + "sigma_x": [ + 0.5, + 1.0 + ], + "sigma_y": [ + 0.5, + 1.0 + ], + "sigma_z": [ + 0.5, + 1.0 + ] + }, + { + "_target_": "RandScaleIntensityd", + "keys": [ + "@image_key" + ], + "factors": 0.1, + "prob": 0.2 + }, + { + "_target_": "RandShiftIntensityd", + "keys": [ + "@image_key" + ], + "offsets": 0.1, + "prob": 0.2 + }, + { + "_target_": "RandGaussianNoised", + "keys": [ + "@image_key" + ], + "prob": 0.2, + "mean": 0.0, + "std": 0.2 + } + ] +} diff --git a/vista3d/data/jsons/TCIA_Colon_5_folds.json b/vista3d/data/jsons/TCIA_Colon_5_folds.json new file mode 100644 index 0000000..1be8ef3 --- /dev/null +++ b/vista3d/data/jsons/TCIA_Colon_5_folds.json @@ -0,0 +1,9751 @@ +{ + "training": [ + { + "image": "images/img_2701.nii.gz", + "pseudo_label": "images/img_2701.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2701/img_2701_seg.nii.gz" + }, + { + "image": "images/img_2500.nii.gz", + "pseudo_label": "images/img_2500.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2500/img_2500_seg.nii.gz" + }, + { + "image": "images/img_279.nii.gz", + "pseudo_label": "images/img_279.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_279/img_279_seg.nii.gz" + }, + { + "image": "images/img_3034.nii.gz", + "pseudo_label": "images/img_3034.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3034/img_3034_seg.nii.gz" + }, + { + "image": "images/img_2733.nii.gz", + "pseudo_label": "images/img_2733.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2733/img_2733_seg.nii.gz" + }, + { + "image": "images/img_2042.nii.gz", + "pseudo_label": "images/img_2042.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2042/img_2042_seg.nii.gz" + }, + { + "image": "images/img_548.nii.gz", + "pseudo_label": "images/img_548.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_548/img_548_seg.nii.gz" + }, + { + "image": "images/img_2717.nii.gz", + "pseudo_label": "images/img_2717.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2717/img_2717_seg.nii.gz" + }, + { + "image": "images/img_3406.nii.gz", + "pseudo_label": "images/img_3406.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3406/img_3406_seg.nii.gz" + }, + { + "image": "images/img_2865.nii.gz", + "pseudo_label": "images/img_2865.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2865/img_2865_seg.nii.gz" + }, + { + "image": "images/img_454.nii.gz", + "pseudo_label": "images/img_454.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_454/img_454_seg.nii.gz" + }, + { + "image": "images/img_2307.nii.gz", + "pseudo_label": "images/img_2307.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2307/img_2307_seg.nii.gz" + }, + { + "image": "images/img_2468.nii.gz", + "pseudo_label": "images/img_2468.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2468/img_2468_seg.nii.gz" + }, + { + "image": "images/img_2416.nii.gz", + "pseudo_label": "images/img_2416.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2416/img_2416_seg.nii.gz" + }, + { + "image": "images/img_1005.nii.gz", + "pseudo_label": "images/img_1005.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1005/img_1005_seg.nii.gz" + }, + { + "image": "images/img_2632.nii.gz", + "pseudo_label": "images/img_2632.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2632/img_2632_seg.nii.gz" + }, + { + "image": "images/img_667.nii.gz", + "pseudo_label": "images/img_667.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_667/img_667_seg.nii.gz" + }, + { + "image": "images/img_2622.nii.gz", + "pseudo_label": "images/img_2622.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2622/img_2622_seg.nii.gz" + }, + { + "image": "images/img_2727.nii.gz", + "pseudo_label": "images/img_2727.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2727/img_2727_seg.nii.gz" + }, + { + "image": "images/img_394.nii.gz", + "pseudo_label": "images/img_394.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_394/img_394_seg.nii.gz" + }, + { + "image": "images/img_941.nii.gz", + "pseudo_label": "images/img_941.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_941/img_941_seg.nii.gz" + }, + { + "image": "images/img_2048.nii.gz", + "pseudo_label": "images/img_2048.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2048/img_2048_seg.nii.gz" + }, + { + "image": "images/img_127.nii.gz", + "pseudo_label": "images/img_127.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_127/img_127_seg.nii.gz" + }, + { + "image": "images/img_2050.nii.gz", + "pseudo_label": "images/img_2050.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2050/img_2050_seg.nii.gz" + }, + { + "image": "images/img_256.nii.gz", + "pseudo_label": "images/img_256.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_256/img_256_seg.nii.gz" + }, + { + "image": "images/img_1977.nii.gz", + "pseudo_label": "images/img_1977.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1977/img_1977_seg.nii.gz" + }, + { + "image": "images/img_3016.nii.gz", + "pseudo_label": "images/img_3016.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3016/img_3016_seg.nii.gz" + }, + { + "image": "images/img_386.nii.gz", + "pseudo_label": "images/img_386.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_386/img_386_seg.nii.gz" + }, + { + "image": "images/img_3337.nii.gz", + "pseudo_label": "images/img_3337.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3337/img_3337_seg.nii.gz" + }, + { + "image": "images/img_3305.nii.gz", + "pseudo_label": "images/img_3305.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3305/img_3305_seg.nii.gz" + }, + { + "image": "images/img_2424.nii.gz", + "pseudo_label": "images/img_2424.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2424/img_2424_seg.nii.gz" + }, + { + "image": "images/img_2569.nii.gz", + "pseudo_label": "images/img_2569.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2569/img_2569_seg.nii.gz" + }, + { + "image": "images/img_536.nii.gz", + "pseudo_label": "images/img_536.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_536/img_536_seg.nii.gz" + }, + { + "image": "images/img_1132.nii.gz", + "pseudo_label": "images/img_1132.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1132/img_1132_seg.nii.gz" + }, + { + "image": "images/img_96.nii.gz", + "pseudo_label": "images/img_96.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_96/img_96_seg.nii.gz" + }, + { + "image": "images/img_1073.nii.gz", + "pseudo_label": "images/img_1073.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1073/img_1073_seg.nii.gz" + }, + { + "image": "images/img_1512.nii.gz", + "pseudo_label": "images/img_1512.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1512/img_1512_seg.nii.gz" + }, + { + "image": "images/img_2618.nii.gz", + "pseudo_label": "images/img_2618.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2618/img_2618_seg.nii.gz" + }, + { + "image": "images/img_2247.nii.gz", + "pseudo_label": "images/img_2247.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2247/img_2247_seg.nii.gz" + }, + { + "image": "images/img_2690.nii.gz", + "pseudo_label": "images/img_2690.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2690/img_2690_seg.nii.gz" + }, + { + "image": "images/img_457.nii.gz", + "pseudo_label": "images/img_457.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_457/img_457_seg.nii.gz" + }, + { + "image": "images/img_426.nii.gz", + "pseudo_label": "images/img_426.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_426/img_426_seg.nii.gz" + }, + { + "image": "images/img_501.nii.gz", + "pseudo_label": "images/img_501.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_501/img_501_seg.nii.gz" + }, + { + "image": "images/img_2268.nii.gz", + "pseudo_label": "images/img_2268.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2268/img_2268_seg.nii.gz" + }, + { + "image": "images/img_2276.nii.gz", + "pseudo_label": "images/img_2276.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2276/img_2276_seg.nii.gz" + }, + { + "image": "images/img_3188.nii.gz", + "pseudo_label": "images/img_3188.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3188/img_3188_seg.nii.gz" + }, + { + "image": "images/img_2710.nii.gz", + "pseudo_label": "images/img_2710.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2710/img_2710_seg.nii.gz" + }, + { + "image": "images/img_1542.nii.gz", + "pseudo_label": "images/img_1542.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1542/img_1542_seg.nii.gz" + }, + { + "image": "images/img_1006.nii.gz", + "pseudo_label": "images/img_1006.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1006/img_1006_seg.nii.gz" + }, + { + "image": "images/img_483.nii.gz", + "pseudo_label": "images/img_483.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_483/img_483_seg.nii.gz" + }, + { + "image": "images/img_1537.nii.gz", + "pseudo_label": "images/img_1537.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1537/img_1537_seg.nii.gz" + }, + { + "image": "images/img_15.nii.gz", + "pseudo_label": "images/img_15.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_15/img_15_seg.nii.gz" + }, + { + "image": "images/img_1761.nii.gz", + "pseudo_label": "images/img_1761.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1761/img_1761_seg.nii.gz" + }, + { + "image": "images/img_283.nii.gz", + "pseudo_label": "images/img_283.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_283/img_283_seg.nii.gz" + }, + { + "image": "images/img_2125.nii.gz", + "pseudo_label": "images/img_2125.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2125/img_2125_seg.nii.gz" + }, + { + "image": "images/img_2109.nii.gz", + "pseudo_label": "images/img_2109.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2109/img_2109_seg.nii.gz" + }, + { + "image": "images/img_2807.nii.gz", + "pseudo_label": "images/img_2807.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2807/img_2807_seg.nii.gz" + }, + { + "image": "images/img_2154.nii.gz", + "pseudo_label": "images/img_2154.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2154/img_2154_seg.nii.gz" + }, + { + "image": "images/img_442.nii.gz", + "pseudo_label": "images/img_442.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_442/img_442_seg.nii.gz" + }, + { + "image": "images/img_447.nii.gz", + "pseudo_label": "images/img_447.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_447/img_447_seg.nii.gz" + }, + { + "image": "images/img_1614.nii.gz", + "pseudo_label": "images/img_1614.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1614/img_1614_seg.nii.gz" + }, + { + "image": "images/img_2095.nii.gz", + "pseudo_label": "images/img_2095.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2095/img_2095_seg.nii.gz" + }, + { + "image": "images/img_3401.nii.gz", + "pseudo_label": "images/img_3401.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3401/img_3401_seg.nii.gz" + }, + { + "image": "images/img_1859.nii.gz", + "pseudo_label": "images/img_1859.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1859/img_1859_seg.nii.gz" + }, + { + "image": "images/img_492.nii.gz", + "pseudo_label": "images/img_492.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_492/img_492_seg.nii.gz" + }, + { + "image": "images/img_513.nii.gz", + "pseudo_label": "images/img_513.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_513/img_513_seg.nii.gz" + }, + { + "image": "images/img_2473.nii.gz", + "pseudo_label": "images/img_2473.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2473/img_2473_seg.nii.gz" + }, + { + "image": "images/img_2446.nii.gz", + "pseudo_label": "images/img_2446.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2446/img_2446_seg.nii.gz" + }, + { + "image": "images/img_1777.nii.gz", + "pseudo_label": "images/img_1777.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1777/img_1777_seg.nii.gz" + }, + { + "image": "images/img_799.nii.gz", + "pseudo_label": "images/img_799.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_799/img_799_seg.nii.gz" + }, + { + "image": "images/img_3004.nii.gz", + "pseudo_label": "images/img_3004.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3004/img_3004_seg.nii.gz" + }, + { + "image": "images/img_1945.nii.gz", + "pseudo_label": "images/img_1945.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1945/img_1945_seg.nii.gz" + }, + { + "image": "images/img_1107.nii.gz", + "pseudo_label": "images/img_1107.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1107/img_1107_seg.nii.gz" + }, + { + "image": "images/img_68.nii.gz", + "pseudo_label": "images/img_68.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_68/img_68_seg.nii.gz" + }, + { + "image": "images/img_215.nii.gz", + "pseudo_label": "images/img_215.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_215/img_215_seg.nii.gz" + }, + { + "image": "images/img_340.nii.gz", + "pseudo_label": "images/img_340.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_340/img_340_seg.nii.gz" + }, + { + "image": "images/img_2361.nii.gz", + "pseudo_label": "images/img_2361.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2361/img_2361_seg.nii.gz" + }, + { + "image": "images/img_2179.nii.gz", + "pseudo_label": "images/img_2179.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2179/img_2179_seg.nii.gz" + }, + { + "image": "images/img_789.nii.gz", + "pseudo_label": "images/img_789.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_789/img_789_seg.nii.gz" + }, + { + "image": "images/img_1180.nii.gz", + "pseudo_label": "images/img_1180.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1180/img_1180_seg.nii.gz" + }, + { + "image": "images/img_736.nii.gz", + "pseudo_label": "images/img_736.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_736/img_736_seg.nii.gz" + }, + { + "image": "images/img_1129.nii.gz", + "pseudo_label": "images/img_1129.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1129/img_1129_seg.nii.gz" + }, + { + "image": "images/img_2559.nii.gz", + "pseudo_label": "images/img_2559.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2559/img_2559_seg.nii.gz" + }, + { + "image": "images/img_344.nii.gz", + "pseudo_label": "images/img_344.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_344/img_344_seg.nii.gz" + }, + { + "image": "images/img_1075.nii.gz", + "pseudo_label": "images/img_1075.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1075/img_1075_seg.nii.gz" + }, + { + "image": "images/img_2737.nii.gz", + "pseudo_label": "images/img_2737.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2737/img_2737_seg.nii.gz" + }, + { + "image": "images/img_564.nii.gz", + "pseudo_label": "images/img_564.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_564/img_564_seg.nii.gz" + }, + { + "image": "images/img_271.nii.gz", + "pseudo_label": "images/img_271.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_271/img_271_seg.nii.gz" + }, + { + "image": "images/img_318.nii.gz", + "pseudo_label": "images/img_318.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_318/img_318_seg.nii.gz" + }, + { + "image": "images/img_2177.nii.gz", + "pseudo_label": "images/img_2177.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2177/img_2177_seg.nii.gz" + }, + { + "image": "images/img_729.nii.gz", + "pseudo_label": "images/img_729.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_729/img_729_seg.nii.gz" + }, + { + "image": "images/img_2749.nii.gz", + "pseudo_label": "images/img_2749.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2749/img_2749_seg.nii.gz" + }, + { + "image": "images/img_2317.nii.gz", + "pseudo_label": "images/img_2317.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2317/img_2317_seg.nii.gz" + }, + { + "image": "images/img_2567.nii.gz", + "pseudo_label": "images/img_2567.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2567/img_2567_seg.nii.gz" + }, + { + "image": "images/img_1905.nii.gz", + "pseudo_label": "images/img_1905.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1905/img_1905_seg.nii.gz" + }, + { + "image": "images/img_1885.nii.gz", + "pseudo_label": "images/img_1885.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1885/img_1885_seg.nii.gz" + }, + { + "image": "images/img_1916.nii.gz", + "pseudo_label": "images/img_1916.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1916/img_1916_seg.nii.gz" + }, + { + "image": "images/img_3248.nii.gz", + "pseudo_label": "images/img_3248.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3248/img_3248_seg.nii.gz" + }, + { + "image": "images/img_358.nii.gz", + "pseudo_label": "images/img_358.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_358/img_358_seg.nii.gz" + }, + { + "image": "images/img_89.nii.gz", + "pseudo_label": "images/img_89.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_89/img_89_seg.nii.gz" + }, + { + "image": "images/img_1199.nii.gz", + "pseudo_label": "images/img_1199.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1199/img_1199_seg.nii.gz" + }, + { + "image": "images/img_1590.nii.gz", + "pseudo_label": "images/img_1590.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1590/img_1590_seg.nii.gz" + }, + { + "image": "images/img_3094.nii.gz", + "pseudo_label": "images/img_3094.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3094/img_3094_seg.nii.gz" + }, + { + "image": "images/img_1684.nii.gz", + "pseudo_label": "images/img_1684.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1684/img_1684_seg.nii.gz" + }, + { + "image": "images/img_2895.nii.gz", + "pseudo_label": "images/img_2895.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2895/img_2895_seg.nii.gz" + }, + { + "image": "images/img_2003.nii.gz", + "pseudo_label": "images/img_2003.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2003/img_2003_seg.nii.gz" + }, + { + "image": "images/img_1769.nii.gz", + "pseudo_label": "images/img_1769.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1769/img_1769_seg.nii.gz" + }, + { + "image": "images/img_1706.nii.gz", + "pseudo_label": "images/img_1706.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1706/img_1706_seg.nii.gz" + }, + { + "image": "images/img_928.nii.gz", + "pseudo_label": "images/img_928.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_928/img_928_seg.nii.gz" + }, + { + "image": "images/img_3110.nii.gz", + "pseudo_label": "images/img_3110.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3110/img_3110_seg.nii.gz" + }, + { + "image": "images/img_681.nii.gz", + "pseudo_label": "images/img_681.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_681/img_681_seg.nii.gz" + }, + { + "image": "images/img_2353.nii.gz", + "pseudo_label": "images/img_2353.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2353/img_2353_seg.nii.gz" + }, + { + "image": "images/img_1530.nii.gz", + "pseudo_label": "images/img_1530.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1530/img_1530_seg.nii.gz" + }, + { + "image": "images/img_3162.nii.gz", + "pseudo_label": "images/img_3162.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3162/img_3162_seg.nii.gz" + }, + { + "image": "images/img_2208.nii.gz", + "pseudo_label": "images/img_2208.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2208/img_2208_seg.nii.gz" + }, + { + "image": "images/img_26.nii.gz", + "pseudo_label": "images/img_26.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_26/img_26_seg.nii.gz" + }, + { + "image": "images/img_1545.nii.gz", + "pseudo_label": "images/img_1545.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1545/img_1545_seg.nii.gz" + }, + { + "image": "images/img_750.nii.gz", + "pseudo_label": "images/img_750.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_750/img_750_seg.nii.gz" + }, + { + "image": "images/img_2407.nii.gz", + "pseudo_label": "images/img_2407.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2407/img_2407_seg.nii.gz" + }, + { + "image": "images/img_1604.nii.gz", + "pseudo_label": "images/img_1604.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1604/img_1604_seg.nii.gz" + }, + { + "image": "images/img_94.nii.gz", + "pseudo_label": "images/img_94.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_94/img_94_seg.nii.gz" + }, + { + "image": "images/img_1079.nii.gz", + "pseudo_label": "images/img_1079.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1079/img_1079_seg.nii.gz" + }, + { + "image": "images/img_3212.nii.gz", + "pseudo_label": "images/img_3212.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3212/img_3212_seg.nii.gz" + }, + { + "image": "images/img_2973.nii.gz", + "pseudo_label": "images/img_2973.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2973/img_2973_seg.nii.gz" + }, + { + "image": "images/img_2045.nii.gz", + "pseudo_label": "images/img_2045.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2045/img_2045_seg.nii.gz" + }, + { + "image": "images/img_3182.nii.gz", + "pseudo_label": "images/img_3182.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3182/img_3182_seg.nii.gz" + }, + { + "image": "images/img_3347.nii.gz", + "pseudo_label": "images/img_3347.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3347/img_3347_seg.nii.gz" + }, + { + "image": "images/img_2351.nii.gz", + "pseudo_label": "images/img_2351.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2351/img_2351_seg.nii.gz" + }, + { + "image": "images/img_3147.nii.gz", + "pseudo_label": "images/img_3147.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3147/img_3147_seg.nii.gz" + }, + { + "image": "images/img_3104.nii.gz", + "pseudo_label": "images/img_3104.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3104/img_3104_seg.nii.gz" + }, + { + "image": "images/img_3301.nii.gz", + "pseudo_label": "images/img_3301.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3301/img_3301_seg.nii.gz" + }, + { + "image": "images/img_154.nii.gz", + "pseudo_label": "images/img_154.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_154/img_154_seg.nii.gz" + }, + { + "image": "images/img_298.nii.gz", + "pseudo_label": "images/img_298.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_298/img_298_seg.nii.gz" + }, + { + "image": "images/img_2751.nii.gz", + "pseudo_label": "images/img_2751.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2751/img_2751_seg.nii.gz" + }, + { + "image": "images/img_638.nii.gz", + "pseudo_label": "images/img_638.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_638/img_638_seg.nii.gz" + }, + { + "image": "images/img_3365.nii.gz", + "pseudo_label": "images/img_3365.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3365/img_3365_seg.nii.gz" + }, + { + "image": "images/img_1529.nii.gz", + "pseudo_label": "images/img_1529.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1529/img_1529_seg.nii.gz" + }, + { + "image": "images/img_947.nii.gz", + "pseudo_label": "images/img_947.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_947/img_947_seg.nii.gz" + }, + { + "image": "images/img_2373.nii.gz", + "pseudo_label": "images/img_2373.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2373/img_2373_seg.nii.gz" + }, + { + "image": "images/img_1739.nii.gz", + "pseudo_label": "images/img_1739.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1739/img_1739_seg.nii.gz" + }, + { + "image": "images/img_1978.nii.gz", + "pseudo_label": "images/img_1978.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1978/img_1978_seg.nii.gz" + }, + { + "image": "images/img_1840.nii.gz", + "pseudo_label": "images/img_1840.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1840/img_1840_seg.nii.gz" + }, + { + "image": "images/img_1937.nii.gz", + "pseudo_label": "images/img_1937.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1937/img_1937_seg.nii.gz" + }, + { + "image": "images/img_2670.nii.gz", + "pseudo_label": "images/img_2670.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2670/img_2670_seg.nii.gz" + }, + { + "image": "images/img_631.nii.gz", + "pseudo_label": "images/img_631.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_631/img_631_seg.nii.gz" + }, + { + "image": "images/img_946.nii.gz", + "pseudo_label": "images/img_946.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_946/img_946_seg.nii.gz" + }, + { + "image": "images/img_829.nii.gz", + "pseudo_label": "images/img_829.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_829/img_829_seg.nii.gz" + }, + { + "image": "images/img_1164.nii.gz", + "pseudo_label": "images/img_1164.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1164/img_1164_seg.nii.gz" + }, + { + "image": "images/img_3076.nii.gz", + "pseudo_label": "images/img_3076.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3076/img_3076_seg.nii.gz" + }, + { + "image": "images/img_1646.nii.gz", + "pseudo_label": "images/img_1646.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1646/img_1646_seg.nii.gz" + }, + { + "image": "images/img_2436.nii.gz", + "pseudo_label": "images/img_2436.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2436/img_2436_seg.nii.gz" + }, + { + "image": "images/img_465.nii.gz", + "pseudo_label": "images/img_465.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_465/img_465_seg.nii.gz" + }, + { + "image": "images/img_960.nii.gz", + "pseudo_label": "images/img_960.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_960/img_960_seg.nii.gz" + }, + { + "image": "images/img_2800.nii.gz", + "pseudo_label": "images/img_2800.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2800/img_2800_seg.nii.gz" + }, + { + "image": "images/img_746.nii.gz", + "pseudo_label": "images/img_746.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_746/img_746_seg.nii.gz" + }, + { + "image": "images/img_2824.nii.gz", + "pseudo_label": "images/img_2824.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2824/img_2824_seg.nii.gz" + }, + { + "image": "images/img_770.nii.gz", + "pseudo_label": "images/img_770.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_770/img_770_seg.nii.gz" + }, + { + "image": "images/img_2601.nii.gz", + "pseudo_label": "images/img_2601.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2601/img_2601_seg.nii.gz" + }, + { + "image": "images/img_1832.nii.gz", + "pseudo_label": "images/img_1832.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1832/img_1832_seg.nii.gz" + }, + { + "image": "images/img_1877.nii.gz", + "pseudo_label": "images/img_1877.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1877/img_1877_seg.nii.gz" + }, + { + "image": "images/img_2588.nii.gz", + "pseudo_label": "images/img_2588.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2588/img_2588_seg.nii.gz" + }, + { + "image": "images/img_2531.nii.gz", + "pseudo_label": "images/img_2531.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2531/img_2531_seg.nii.gz" + }, + { + "image": "images/img_3278.nii.gz", + "pseudo_label": "images/img_3278.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3278/img_3278_seg.nii.gz" + }, + { + "image": "images/img_1671.nii.gz", + "pseudo_label": "images/img_1671.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1671/img_1671_seg.nii.gz" + }, + { + "image": "images/img_2992.nii.gz", + "pseudo_label": "images/img_2992.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2992/img_2992_seg.nii.gz" + }, + { + "image": "images/img_1507.nii.gz", + "pseudo_label": "images/img_1507.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1507/img_1507_seg.nii.gz" + }, + { + "image": "images/img_957.nii.gz", + "pseudo_label": "images/img_957.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_957/img_957_seg.nii.gz" + }, + { + "image": "images/img_1062.nii.gz", + "pseudo_label": "images/img_1062.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1062/img_1062_seg.nii.gz" + }, + { + "image": "images/img_1690.nii.gz", + "pseudo_label": "images/img_1690.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1690/img_1690_seg.nii.gz" + }, + { + "image": "images/img_985.nii.gz", + "pseudo_label": "images/img_985.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_985/img_985_seg.nii.gz" + }, + { + "image": "images/img_1973.nii.gz", + "pseudo_label": "images/img_1973.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1973/img_1973_seg.nii.gz" + }, + { + "image": "images/img_903.nii.gz", + "pseudo_label": "images/img_903.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_903/img_903_seg.nii.gz" + }, + { + "image": "images/img_2999.nii.gz", + "pseudo_label": "images/img_2999.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2999/img_2999_seg.nii.gz" + }, + { + "image": "images/img_1508.nii.gz", + "pseudo_label": "images/img_1508.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1508/img_1508_seg.nii.gz" + }, + { + "image": "images/img_368.nii.gz", + "pseudo_label": "images/img_368.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_368/img_368_seg.nii.gz" + }, + { + "image": "images/img_820.nii.gz", + "pseudo_label": "images/img_820.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_820/img_820_seg.nii.gz" + }, + { + "image": "images/img_882.nii.gz", + "pseudo_label": "images/img_882.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_882/img_882_seg.nii.gz" + }, + { + "image": "images/img_2656.nii.gz", + "pseudo_label": "images/img_2656.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2656/img_2656_seg.nii.gz" + }, + { + "image": "images/img_1897.nii.gz", + "pseudo_label": "images/img_1897.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1897/img_1897_seg.nii.gz" + }, + { + "image": "images/img_3160.nii.gz", + "pseudo_label": "images/img_3160.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3160/img_3160_seg.nii.gz" + }, + { + "image": "images/img_1063.nii.gz", + "pseudo_label": "images/img_1063.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1063/img_1063_seg.nii.gz" + }, + { + "image": "images/img_1133.nii.gz", + "pseudo_label": "images/img_1133.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1133/img_1133_seg.nii.gz" + }, + { + "image": "images/img_2391.nii.gz", + "pseudo_label": "images/img_2391.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2391/img_2391_seg.nii.gz" + }, + { + "image": "images/img_474.nii.gz", + "pseudo_label": "images/img_474.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_474/img_474_seg.nii.gz" + }, + { + "image": "images/img_2256.nii.gz", + "pseudo_label": "images/img_2256.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2256/img_2256_seg.nii.gz" + }, + { + "image": "images/img_413.nii.gz", + "pseudo_label": "images/img_413.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_413/img_413_seg.nii.gz" + }, + { + "image": "images/img_2123.nii.gz", + "pseudo_label": "images/img_2123.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2123/img_2123_seg.nii.gz" + }, + { + "image": "images/img_1985.nii.gz", + "pseudo_label": "images/img_1985.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1985/img_1985_seg.nii.gz" + }, + { + "image": "images/img_204.nii.gz", + "pseudo_label": "images/img_204.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_204/img_204_seg.nii.gz" + }, + { + "image": "images/img_1191.nii.gz", + "pseudo_label": "images/img_1191.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1191/img_1191_seg.nii.gz" + }, + { + "image": "images/img_2069.nii.gz", + "pseudo_label": "images/img_2069.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2069/img_2069_seg.nii.gz" + }, + { + "image": "images/img_2911.nii.gz", + "pseudo_label": "images/img_2911.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2911/img_2911_seg.nii.gz" + }, + { + "image": "images/img_1197.nii.gz", + "pseudo_label": "images/img_1197.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1197/img_1197_seg.nii.gz" + }, + { + "image": "images/img_682.nii.gz", + "pseudo_label": "images/img_682.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_682/img_682_seg.nii.gz" + }, + { + "image": "images/img_812.nii.gz", + "pseudo_label": "images/img_812.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_812/img_812_seg.nii.gz" + }, + { + "image": "images/img_833.nii.gz", + "pseudo_label": "images/img_833.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_833/img_833_seg.nii.gz" + }, + { + "image": "images/img_372.nii.gz", + "pseudo_label": "images/img_372.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_372/img_372_seg.nii.gz" + }, + { + "image": "images/img_3129.nii.gz", + "pseudo_label": "images/img_3129.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3129/img_3129_seg.nii.gz" + }, + { + "image": "images/img_2272.nii.gz", + "pseudo_label": "images/img_2272.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2272/img_2272_seg.nii.gz" + }, + { + "image": "images/img_3433.nii.gz", + "pseudo_label": "images/img_3433.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3433/img_3433_seg.nii.gz" + }, + { + "image": "images/img_2164.nii.gz", + "pseudo_label": "images/img_2164.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2164/img_2164_seg.nii.gz" + }, + { + "image": "images/img_1755.nii.gz", + "pseudo_label": "images/img_1755.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1755/img_1755_seg.nii.gz" + }, + { + "image": "images/img_432.nii.gz", + "pseudo_label": "images/img_432.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_432/img_432_seg.nii.gz" + }, + { + "image": "images/img_3017.nii.gz", + "pseudo_label": "images/img_3017.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3017/img_3017_seg.nii.gz" + }, + { + "image": "images/img_2937.nii.gz", + "pseudo_label": "images/img_2937.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2937/img_2937_seg.nii.gz" + }, + { + "image": "images/img_521.nii.gz", + "pseudo_label": "images/img_521.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_521/img_521_seg.nii.gz" + }, + { + "image": "images/img_196.nii.gz", + "pseudo_label": "images/img_196.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_196/img_196_seg.nii.gz" + }, + { + "image": "images/img_2945.nii.gz", + "pseudo_label": "images/img_2945.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2945/img_2945_seg.nii.gz" + }, + { + "image": "images/img_1731.nii.gz", + "pseudo_label": "images/img_1731.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1731/img_1731_seg.nii.gz" + }, + { + "image": "images/img_2591.nii.gz", + "pseudo_label": "images/img_2591.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2591/img_2591_seg.nii.gz" + }, + { + "image": "images/img_237.nii.gz", + "pseudo_label": "images/img_237.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_237/img_237_seg.nii.gz" + }, + { + "image": "images/img_1045.nii.gz", + "pseudo_label": "images/img_1045.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1045/img_1045_seg.nii.gz" + }, + { + "image": "images/img_792.nii.gz", + "pseudo_label": "images/img_792.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_792/img_792_seg.nii.gz" + }, + { + "image": "images/img_843.nii.gz", + "pseudo_label": "images/img_843.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_843/img_843_seg.nii.gz" + }, + { + "image": "images/img_809.nii.gz", + "pseudo_label": "images/img_809.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_809/img_809_seg.nii.gz" + }, + { + "image": "images/img_3022.nii.gz", + "pseudo_label": "images/img_3022.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3022/img_3022_seg.nii.gz" + }, + { + "image": "images/img_1002.nii.gz", + "pseudo_label": "images/img_1002.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1002/img_1002_seg.nii.gz" + }, + { + "image": "images/img_3065.nii.gz", + "pseudo_label": "images/img_3065.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3065/img_3065_seg.nii.gz" + }, + { + "image": "images/img_1616.nii.gz", + "pseudo_label": "images/img_1616.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1616/img_1616_seg.nii.gz" + }, + { + "image": "images/img_998.nii.gz", + "pseudo_label": "images/img_998.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_998/img_998_seg.nii.gz" + }, + { + "image": "images/img_1183.nii.gz", + "pseudo_label": "images/img_1183.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1183/img_1183_seg.nii.gz" + }, + { + "image": "images/img_1056.nii.gz", + "pseudo_label": "images/img_1056.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1056/img_1056_seg.nii.gz" + }, + { + "image": "images/img_1855.nii.gz", + "pseudo_label": "images/img_1855.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1855/img_1855_seg.nii.gz" + }, + { + "image": "images/img_2693.nii.gz", + "pseudo_label": "images/img_2693.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2693/img_2693_seg.nii.gz" + }, + { + "image": "images/img_683.nii.gz", + "pseudo_label": "images/img_683.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_683/img_683_seg.nii.gz" + }, + { + "image": "images/img_802.nii.gz", + "pseudo_label": "images/img_802.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_802/img_802_seg.nii.gz" + }, + { + "image": "images/img_2729.nii.gz", + "pseudo_label": "images/img_2729.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2729/img_2729_seg.nii.gz" + }, + { + "image": "images/img_2160.nii.gz", + "pseudo_label": "images/img_2160.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2160/img_2160_seg.nii.gz" + }, + { + "image": "images/img_499.nii.gz", + "pseudo_label": "images/img_499.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_499/img_499_seg.nii.gz" + }, + { + "image": "images/img_3226.nii.gz", + "pseudo_label": "images/img_3226.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3226/img_3226_seg.nii.gz" + }, + { + "image": "images/img_757.nii.gz", + "pseudo_label": "images/img_757.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_757/img_757_seg.nii.gz" + }, + { + "image": "images/img_927.nii.gz", + "pseudo_label": "images/img_927.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_927/img_927_seg.nii.gz" + }, + { + "image": "images/img_2484.nii.gz", + "pseudo_label": "images/img_2484.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2484/img_2484_seg.nii.gz" + }, + { + "image": "images/img_2515.nii.gz", + "pseudo_label": "images/img_2515.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2515/img_2515_seg.nii.gz" + }, + { + "image": "images/img_2579.nii.gz", + "pseudo_label": "images/img_2579.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2579/img_2579_seg.nii.gz" + }, + { + "image": "images/img_1184.nii.gz", + "pseudo_label": "images/img_1184.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1184/img_1184_seg.nii.gz" + }, + { + "image": "images/img_741.nii.gz", + "pseudo_label": "images/img_741.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_741/img_741_seg.nii.gz" + }, + { + "image": "images/img_244.nii.gz", + "pseudo_label": "images/img_244.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_244/img_244_seg.nii.gz" + }, + { + "image": "images/img_2427.nii.gz", + "pseudo_label": "images/img_2427.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2427/img_2427_seg.nii.gz" + }, + { + "image": "images/img_248.nii.gz", + "pseudo_label": "images/img_248.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_248/img_248_seg.nii.gz" + }, + { + "image": "images/img_3132.nii.gz", + "pseudo_label": "images/img_3132.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3132/img_3132_seg.nii.gz" + }, + { + "image": "images/img_2761.nii.gz", + "pseudo_label": "images/img_2761.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2761/img_2761_seg.nii.gz" + }, + { + "image": "images/img_961.nii.gz", + "pseudo_label": "images/img_961.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_961/img_961_seg.nii.gz" + }, + { + "image": "images/img_2722.nii.gz", + "pseudo_label": "images/img_2722.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2722/img_2722_seg.nii.gz" + }, + { + "image": "images/img_38.nii.gz", + "pseudo_label": "images/img_38.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_38/img_38_seg.nii.gz" + }, + { + "image": "images/img_1516.nii.gz", + "pseudo_label": "images/img_1516.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1516/img_1516_seg.nii.gz" + }, + { + "image": "images/img_1863.nii.gz", + "pseudo_label": "images/img_1863.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1863/img_1863_seg.nii.gz" + }, + { + "image": "images/img_2853.nii.gz", + "pseudo_label": "images/img_2853.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2853/img_2853_seg.nii.gz" + }, + { + "image": "images/img_87.nii.gz", + "pseudo_label": "images/img_87.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_87/img_87_seg.nii.gz" + }, + { + "image": "images/img_195.nii.gz", + "pseudo_label": "images/img_195.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_195/img_195_seg.nii.gz" + }, + { + "image": "images/img_626.nii.gz", + "pseudo_label": "images/img_626.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_626/img_626_seg.nii.gz" + }, + { + "image": "images/img_529.nii.gz", + "pseudo_label": "images/img_529.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_529/img_529_seg.nii.gz" + }, + { + "image": "images/img_1951.nii.gz", + "pseudo_label": "images/img_1951.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1951/img_1951_seg.nii.gz" + }, + { + "image": "images/img_1122.nii.gz", + "pseudo_label": "images/img_1122.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1122/img_1122_seg.nii.gz" + }, + { + "image": "images/img_2235.nii.gz", + "pseudo_label": "images/img_2235.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2235/img_2235_seg.nii.gz" + }, + { + "image": "images/img_92.nii.gz", + "pseudo_label": "images/img_92.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_92/img_92_seg.nii.gz" + }, + { + "image": "images/img_1518.nii.gz", + "pseudo_label": "images/img_1518.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1518/img_1518_seg.nii.gz" + }, + { + "image": "images/img_3363.nii.gz", + "pseudo_label": "images/img_3363.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3363/img_3363_seg.nii.gz" + }, + { + "image": "images/img_647.nii.gz", + "pseudo_label": "images/img_647.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_647/img_647_seg.nii.gz" + }, + { + "image": "images/img_714.nii.gz", + "pseudo_label": "images/img_714.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_714/img_714_seg.nii.gz" + }, + { + "image": "images/img_2833.nii.gz", + "pseudo_label": "images/img_2833.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2833/img_2833_seg.nii.gz" + }, + { + "image": "images/img_798.nii.gz", + "pseudo_label": "images/img_798.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_798/img_798_seg.nii.gz" + }, + { + "image": "images/img_2605.nii.gz", + "pseudo_label": "images/img_2605.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2605/img_2605_seg.nii.gz" + }, + { + "image": "images/img_98.nii.gz", + "pseudo_label": "images/img_98.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_98/img_98_seg.nii.gz" + }, + { + "image": "images/img_2731.nii.gz", + "pseudo_label": "images/img_2731.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2731/img_2731_seg.nii.gz" + }, + { + "image": "images/img_2283.nii.gz", + "pseudo_label": "images/img_2283.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2283/img_2283_seg.nii.gz" + }, + { + "image": "images/img_497.nii.gz", + "pseudo_label": "images/img_497.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_497/img_497_seg.nii.gz" + }, + { + "image": "images/img_2344.nii.gz", + "pseudo_label": "images/img_2344.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2344/img_2344_seg.nii.gz" + }, + { + "image": "images/img_3283.nii.gz", + "pseudo_label": "images/img_3283.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3283/img_3283_seg.nii.gz" + }, + { + "image": "images/img_3179.nii.gz", + "pseudo_label": "images/img_3179.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3179/img_3179_seg.nii.gz" + }, + { + "image": "images/img_2869.nii.gz", + "pseudo_label": "images/img_2869.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2869/img_2869_seg.nii.gz" + }, + { + "image": "images/img_338.nii.gz", + "pseudo_label": "images/img_338.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_338/img_338_seg.nii.gz" + }, + { + "image": "images/img_2794.nii.gz", + "pseudo_label": "images/img_2794.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2794/img_2794_seg.nii.gz" + }, + { + "image": "images/img_854.nii.gz", + "pseudo_label": "images/img_854.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_854/img_854_seg.nii.gz" + }, + { + "image": "images/img_2991.nii.gz", + "pseudo_label": "images/img_2991.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2991/img_2991_seg.nii.gz" + }, + { + "image": "images/img_780.nii.gz", + "pseudo_label": "images/img_780.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_780/img_780_seg.nii.gz" + }, + { + "image": "images/img_2964.nii.gz", + "pseudo_label": "images/img_2964.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2964/img_2964_seg.nii.gz" + }, + { + "image": "images/img_2518.nii.gz", + "pseudo_label": "images/img_2518.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2518/img_2518_seg.nii.gz" + }, + { + "image": "images/img_3145.nii.gz", + "pseudo_label": "images/img_3145.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3145/img_3145_seg.nii.gz" + }, + { + "image": "images/img_1772.nii.gz", + "pseudo_label": "images/img_1772.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1772/img_1772_seg.nii.gz" + }, + { + "image": "images/img_598.nii.gz", + "pseudo_label": "images/img_598.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_598/img_598_seg.nii.gz" + }, + { + "image": "images/img_944.nii.gz", + "pseudo_label": "images/img_944.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_944/img_944_seg.nii.gz" + }, + { + "image": "images/img_2066.nii.gz", + "pseudo_label": "images/img_2066.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2066/img_2066_seg.nii.gz" + }, + { + "image": "images/img_2476.nii.gz", + "pseudo_label": "images/img_2476.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2476/img_2476_seg.nii.gz" + }, + { + "image": "images/img_3024.nii.gz", + "pseudo_label": "images/img_3024.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3024/img_3024_seg.nii.gz" + }, + { + "image": "images/img_2181.nii.gz", + "pseudo_label": "images/img_2181.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2181/img_2181_seg.nii.gz" + }, + { + "image": "images/img_3423.nii.gz", + "pseudo_label": "images/img_3423.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3423/img_3423_seg.nii.gz" + }, + { + "image": "images/img_2036.nii.gz", + "pseudo_label": "images/img_2036.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2036/img_2036_seg.nii.gz" + }, + { + "image": "images/img_176.nii.gz", + "pseudo_label": "images/img_176.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_176/img_176_seg.nii.gz" + }, + { + "image": "images/img_3233.nii.gz", + "pseudo_label": "images/img_3233.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3233/img_3233_seg.nii.gz" + }, + { + "image": "images/img_1583.nii.gz", + "pseudo_label": "images/img_1583.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1583/img_1583_seg.nii.gz" + }, + { + "image": "images/img_2713.nii.gz", + "pseudo_label": "images/img_2713.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2713/img_2713_seg.nii.gz" + }, + { + "image": "images/img_1179.nii.gz", + "pseudo_label": "images/img_1179.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1179/img_1179_seg.nii.gz" + }, + { + "image": "images/img_1026.nii.gz", + "pseudo_label": "images/img_1026.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1026/img_1026_seg.nii.gz" + }, + { + "image": "images/img_1501.nii.gz", + "pseudo_label": "images/img_1501.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1501/img_1501_seg.nii.gz" + }, + { + "image": "images/img_2698.nii.gz", + "pseudo_label": "images/img_2698.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2698/img_2698_seg.nii.gz" + }, + { + "image": "images/img_541.nii.gz", + "pseudo_label": "images/img_541.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_541/img_541_seg.nii.gz" + }, + { + "image": "images/img_3080.nii.gz", + "pseudo_label": "images/img_3080.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3080/img_3080_seg.nii.gz" + }, + { + "image": "images/img_3443.nii.gz", + "pseudo_label": "images/img_3443.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3443/img_3443_seg.nii.gz" + }, + { + "image": "images/img_2551.nii.gz", + "pseudo_label": "images/img_2551.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2551/img_2551_seg.nii.gz" + }, + { + "image": "images/img_376.nii.gz", + "pseudo_label": "images/img_376.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_376/img_376_seg.nii.gz" + }, + { + "image": "images/img_1057.nii.gz", + "pseudo_label": "images/img_1057.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1057/img_1057_seg.nii.gz" + }, + { + "image": "images/img_1506.nii.gz", + "pseudo_label": "images/img_1506.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1506/img_1506_seg.nii.gz" + }, + { + "image": "images/img_1665.nii.gz", + "pseudo_label": "images/img_1665.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1665/img_1665_seg.nii.gz" + }, + { + "image": "images/img_147.nii.gz", + "pseudo_label": "images/img_147.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_147/img_147_seg.nii.gz" + }, + { + "image": "images/img_2388.nii.gz", + "pseudo_label": "images/img_2388.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2388/img_2388_seg.nii.gz" + }, + { + "image": "images/img_1917.nii.gz", + "pseudo_label": "images/img_1917.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1917/img_1917_seg.nii.gz" + }, + { + "image": "images/img_1912.nii.gz", + "pseudo_label": "images/img_1912.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1912/img_1912_seg.nii.gz" + }, + { + "image": "images/img_3378.nii.gz", + "pseudo_label": "images/img_3378.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3378/img_3378_seg.nii.gz" + }, + { + "image": "images/img_982.nii.gz", + "pseudo_label": "images/img_982.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_982/img_982_seg.nii.gz" + }, + { + "image": "images/img_3049.nii.gz", + "pseudo_label": "images/img_3049.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3049/img_3049_seg.nii.gz" + }, + { + "image": "images/img_378.nii.gz", + "pseudo_label": "images/img_378.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_378/img_378_seg.nii.gz" + }, + { + "image": "images/img_3243.nii.gz", + "pseudo_label": "images/img_3243.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3243/img_3243_seg.nii.gz" + }, + { + "image": "images/img_2102.nii.gz", + "pseudo_label": "images/img_2102.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2102/img_2102_seg.nii.gz" + }, + { + "image": "images/img_2565.nii.gz", + "pseudo_label": "images/img_2565.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2565/img_2565_seg.nii.gz" + }, + { + "image": "images/img_2952.nii.gz", + "pseudo_label": "images/img_2952.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2952/img_2952_seg.nii.gz" + }, + { + "image": "images/img_3050.nii.gz", + "pseudo_label": "images/img_3050.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3050/img_3050_seg.nii.gz" + }, + { + "image": "images/img_733.nii.gz", + "pseudo_label": "images/img_733.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_733/img_733_seg.nii.gz" + }, + { + "image": "images/img_1820.nii.gz", + "pseudo_label": "images/img_1820.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1820/img_1820_seg.nii.gz" + }, + { + "image": "images/img_2828.nii.gz", + "pseudo_label": "images/img_2828.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2828/img_2828_seg.nii.gz" + }, + { + "image": "images/img_1033.nii.gz", + "pseudo_label": "images/img_1033.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1033/img_1033_seg.nii.gz" + }, + { + "image": "images/img_3008.nii.gz", + "pseudo_label": "images/img_3008.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3008/img_3008_seg.nii.gz" + }, + { + "image": "images/img_1619.nii.gz", + "pseudo_label": "images/img_1619.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1619/img_1619_seg.nii.gz" + }, + { + "image": "images/img_1533.nii.gz", + "pseudo_label": "images/img_1533.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1533/img_1533_seg.nii.gz" + }, + { + "image": "images/img_2271.nii.gz", + "pseudo_label": "images/img_2271.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2271/img_2271_seg.nii.gz" + }, + { + "image": "images/img_1872.nii.gz", + "pseudo_label": "images/img_1872.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1872/img_1872_seg.nii.gz" + }, + { + "image": "images/img_1968.nii.gz", + "pseudo_label": "images/img_1968.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1968/img_1968_seg.nii.gz" + }, + { + "image": "images/img_60.nii.gz", + "pseudo_label": "images/img_60.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_60/img_60_seg.nii.gz" + }, + { + "image": "images/img_102.nii.gz", + "pseudo_label": "images/img_102.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_102/img_102_seg.nii.gz" + }, + { + "image": "images/img_199.nii.gz", + "pseudo_label": "images/img_199.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_199/img_199_seg.nii.gz" + }, + { + "image": "images/img_458.nii.gz", + "pseudo_label": "images/img_458.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_458/img_458_seg.nii.gz" + }, + { + "image": "images/img_453.nii.gz", + "pseudo_label": "images/img_453.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_453/img_453_seg.nii.gz" + }, + { + "image": "images/img_731.nii.gz", + "pseudo_label": "images/img_731.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_731/img_731_seg.nii.gz" + }, + { + "image": "images/img_3339.nii.gz", + "pseudo_label": "images/img_3339.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3339/img_3339_seg.nii.gz" + }, + { + "image": "images/img_2319.nii.gz", + "pseudo_label": "images/img_2319.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2319/img_2319_seg.nii.gz" + }, + { + "image": "images/img_614.nii.gz", + "pseudo_label": "images/img_614.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_614/img_614_seg.nii.gz" + }, + { + "image": "images/img_303.nii.gz", + "pseudo_label": "images/img_303.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_303/img_303_seg.nii.gz" + }, + { + "image": "images/img_1952.nii.gz", + "pseudo_label": "images/img_1952.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1952/img_1952_seg.nii.gz" + }, + { + "image": "images/img_3230.nii.gz", + "pseudo_label": "images/img_3230.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3230/img_3230_seg.nii.gz" + }, + { + "image": "images/img_3012.nii.gz", + "pseudo_label": "images/img_3012.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3012/img_3012_seg.nii.gz" + }, + { + "image": "images/img_981.nii.gz", + "pseudo_label": "images/img_981.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_981/img_981_seg.nii.gz" + }, + { + "image": "images/img_188.nii.gz", + "pseudo_label": "images/img_188.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_188/img_188_seg.nii.gz" + }, + { + "image": "images/img_867.nii.gz", + "pseudo_label": "images/img_867.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_867/img_867_seg.nii.gz" + }, + { + "image": "images/img_2977.nii.gz", + "pseudo_label": "images/img_2977.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2977/img_2977_seg.nii.gz" + }, + { + "image": "images/img_1629.nii.gz", + "pseudo_label": "images/img_1629.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1629/img_1629_seg.nii.gz" + }, + { + "image": "images/img_3083.nii.gz", + "pseudo_label": "images/img_3083.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3083/img_3083_seg.nii.gz" + }, + { + "image": "images/img_2057.nii.gz", + "pseudo_label": "images/img_2057.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2057/img_2057_seg.nii.gz" + }, + { + "image": "images/img_3205.nii.gz", + "pseudo_label": "images/img_3205.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3205/img_3205_seg.nii.gz" + }, + { + "image": "images/img_3128.nii.gz", + "pseudo_label": "images/img_3128.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3128/img_3128_seg.nii.gz" + }, + { + "image": "images/img_352.nii.gz", + "pseudo_label": "images/img_352.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_352/img_352_seg.nii.gz" + }, + { + "image": "images/img_76.nii.gz", + "pseudo_label": "images/img_76.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_76/img_76_seg.nii.gz" + }, + { + "image": "images/img_2547.nii.gz", + "pseudo_label": "images/img_2547.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2547/img_2547_seg.nii.gz" + }, + { + "image": "images/img_687.nii.gz", + "pseudo_label": "images/img_687.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_687/img_687_seg.nii.gz" + }, + { + "image": "images/img_3021.nii.gz", + "pseudo_label": "images/img_3021.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3021/img_3021_seg.nii.gz" + }, + { + "image": "images/img_404.nii.gz", + "pseudo_label": "images/img_404.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_404/img_404_seg.nii.gz" + }, + { + "image": "images/img_382.nii.gz", + "pseudo_label": "images/img_382.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_382/img_382_seg.nii.gz" + }, + { + "image": "images/img_743.nii.gz", + "pseudo_label": "images/img_743.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_743/img_743_seg.nii.gz" + }, + { + "image": "images/img_2878.nii.gz", + "pseudo_label": "images/img_2878.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2878/img_2878_seg.nii.gz" + }, + { + "image": "images/img_1515.nii.gz", + "pseudo_label": "images/img_1515.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1515/img_1515_seg.nii.gz" + }, + { + "image": "images/img_2778.nii.gz", + "pseudo_label": "images/img_2778.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2778/img_2778_seg.nii.gz" + }, + { + "image": "images/img_134.nii.gz", + "pseudo_label": "images/img_134.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_134/img_134_seg.nii.gz" + }, + { + "image": "images/img_508.nii.gz", + "pseudo_label": "images/img_508.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_508/img_508_seg.nii.gz" + }, + { + "image": "images/img_650.nii.gz", + "pseudo_label": "images/img_650.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_650/img_650_seg.nii.gz" + }, + { + "image": "images/img_2819.nii.gz", + "pseudo_label": "images/img_2819.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2819/img_2819_seg.nii.gz" + }, + { + "image": "images/img_2034.nii.gz", + "pseudo_label": "images/img_2034.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2034/img_2034_seg.nii.gz" + }, + { + "image": "images/img_1964.nii.gz", + "pseudo_label": "images/img_1964.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1964/img_1964_seg.nii.gz" + }, + { + "image": "images/img_3029.nii.gz", + "pseudo_label": "images/img_3029.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3029/img_3029_seg.nii.gz" + }, + { + "image": "images/img_1190.nii.gz", + "pseudo_label": "images/img_1190.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1190/img_1190_seg.nii.gz" + }, + { + "image": "images/img_1085.nii.gz", + "pseudo_label": "images/img_1085.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1085/img_1085_seg.nii.gz" + }, + { + "image": "images/img_2995.nii.gz", + "pseudo_label": "images/img_2995.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2995/img_2995_seg.nii.gz" + }, + { + "image": "images/img_2222.nii.gz", + "pseudo_label": "images/img_2222.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2222/img_2222_seg.nii.gz" + }, + { + "image": "images/img_2280.nii.gz", + "pseudo_label": "images/img_2280.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2280/img_2280_seg.nii.gz" + }, + { + "image": "images/img_1692.nii.gz", + "pseudo_label": "images/img_1692.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1692/img_1692_seg.nii.gz" + }, + { + "image": "images/img_2415.nii.gz", + "pseudo_label": "images/img_2415.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2415/img_2415_seg.nii.gz" + }, + { + "image": "images/img_618.nii.gz", + "pseudo_label": "images/img_618.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_618/img_618_seg.nii.gz" + }, + { + "image": "images/img_1049.nii.gz", + "pseudo_label": "images/img_1049.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1049/img_1049_seg.nii.gz" + }, + { + "image": "images/img_3154.nii.gz", + "pseudo_label": "images/img_3154.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3154/img_3154_seg.nii.gz" + }, + { + "image": "images/img_2575.nii.gz", + "pseudo_label": "images/img_2575.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2575/img_2575_seg.nii.gz" + }, + { + "image": "images/img_3157.nii.gz", + "pseudo_label": "images/img_3157.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3157/img_3157_seg.nii.gz" + }, + { + "image": "images/img_319.nii.gz", + "pseudo_label": "images/img_319.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_319/img_319_seg.nii.gz" + }, + { + "image": "images/img_2304.nii.gz", + "pseudo_label": "images/img_2304.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2304/img_2304_seg.nii.gz" + }, + { + "image": "images/img_2779.nii.gz", + "pseudo_label": "images/img_2779.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2779/img_2779_seg.nii.gz" + }, + { + "image": "images/img_401.nii.gz", + "pseudo_label": "images/img_401.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_401/img_401_seg.nii.gz" + }, + { + "image": "images/img_807.nii.gz", + "pseudo_label": "images/img_807.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_807/img_807_seg.nii.gz" + }, + { + "image": "images/img_220.nii.gz", + "pseudo_label": "images/img_220.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_220/img_220_seg.nii.gz" + }, + { + "image": "images/img_1121.nii.gz", + "pseudo_label": "images/img_1121.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1121/img_1121_seg.nii.gz" + }, + { + "image": "images/img_1159.nii.gz", + "pseudo_label": "images/img_1159.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1159/img_1159_seg.nii.gz" + }, + { + "image": "images/img_2702.nii.gz", + "pseudo_label": "images/img_2702.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2702/img_2702_seg.nii.gz" + }, + { + "image": "images/img_2861.nii.gz", + "pseudo_label": "images/img_2861.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2861/img_2861_seg.nii.gz" + }, + { + "image": "images/img_2968.nii.gz", + "pseudo_label": "images/img_2968.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2968/img_2968_seg.nii.gz" + }, + { + "image": "images/img_1800.nii.gz", + "pseudo_label": "images/img_1800.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1800/img_1800_seg.nii.gz" + }, + { + "image": "images/img_3087.nii.gz", + "pseudo_label": "images/img_3087.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3087/img_3087_seg.nii.gz" + }, + { + "image": "images/img_120.nii.gz", + "pseudo_label": "images/img_120.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_120/img_120_seg.nii.gz" + }, + { + "image": "images/img_988.nii.gz", + "pseudo_label": "images/img_988.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_988/img_988_seg.nii.gz" + }, + { + "image": "images/img_380.nii.gz", + "pseudo_label": "images/img_380.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_380/img_380_seg.nii.gz" + }, + { + "image": "images/img_2739.nii.gz", + "pseudo_label": "images/img_2739.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2739/img_2739_seg.nii.gz" + }, + { + "image": "images/img_2093.nii.gz", + "pseudo_label": "images/img_2093.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2093/img_2093_seg.nii.gz" + }, + { + "image": "images/img_572.nii.gz", + "pseudo_label": "images/img_572.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_572/img_572_seg.nii.gz" + }, + { + "image": "images/img_1816.nii.gz", + "pseudo_label": "images/img_1816.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1816/img_1816_seg.nii.gz" + }, + { + "image": "images/img_356.nii.gz", + "pseudo_label": "images/img_356.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_356/img_356_seg.nii.gz" + }, + { + "image": "images/img_1860.nii.gz", + "pseudo_label": "images/img_1860.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1860/img_1860_seg.nii.gz" + }, + { + "image": "images/img_2882.nii.gz", + "pseudo_label": "images/img_2882.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2882/img_2882_seg.nii.gz" + }, + { + "image": "images/img_593.nii.gz", + "pseudo_label": "images/img_593.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_593/img_593_seg.nii.gz" + }, + { + "image": "images/img_56.nii.gz", + "pseudo_label": "images/img_56.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_56/img_56_seg.nii.gz" + }, + { + "image": "images/img_2982.nii.gz", + "pseudo_label": "images/img_2982.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2982/img_2982_seg.nii.gz" + }, + { + "image": "images/img_2775.nii.gz", + "pseudo_label": "images/img_2775.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2775/img_2775_seg.nii.gz" + }, + { + "image": "images/img_1643.nii.gz", + "pseudo_label": "images/img_1643.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1643/img_1643_seg.nii.gz" + }, + { + "image": "images/img_1839.nii.gz", + "pseudo_label": "images/img_1839.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1839/img_1839_seg.nii.gz" + }, + { + "image": "images/img_2030.nii.gz", + "pseudo_label": "images/img_2030.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2030/img_2030_seg.nii.gz" + }, + { + "image": "images/img_2480.nii.gz", + "pseudo_label": "images/img_2480.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2480/img_2480_seg.nii.gz" + }, + { + "image": "images/img_52.nii.gz", + "pseudo_label": "images/img_52.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_52/img_52_seg.nii.gz" + }, + { + "image": "images/img_3088.nii.gz", + "pseudo_label": "images/img_3088.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3088/img_3088_seg.nii.gz" + }, + { + "image": "images/img_671.nii.gz", + "pseudo_label": "images/img_671.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_671/img_671_seg.nii.gz" + }, + { + "image": "images/img_2210.nii.gz", + "pseudo_label": "images/img_2210.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2210/img_2210_seg.nii.gz" + }, + { + "image": "images/img_191.nii.gz", + "pseudo_label": "images/img_191.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_191/img_191_seg.nii.gz" + }, + { + "image": "images/img_334.nii.gz", + "pseudo_label": "images/img_334.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_334/img_334_seg.nii.gz" + }, + { + "image": "images/img_3213.nii.gz", + "pseudo_label": "images/img_3213.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3213/img_3213_seg.nii.gz" + }, + { + "image": "images/img_839.nii.gz", + "pseudo_label": "images/img_839.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_839/img_839_seg.nii.gz" + }, + { + "image": "images/img_336.nii.gz", + "pseudo_label": "images/img_336.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_336/img_336_seg.nii.gz" + }, + { + "image": "images/img_1525.nii.gz", + "pseudo_label": "images/img_1525.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1525/img_1525_seg.nii.gz" + }, + { + "image": "images/img_136.nii.gz", + "pseudo_label": "images/img_136.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_136/img_136_seg.nii.gz" + }, + { + "image": "images/img_2390.nii.gz", + "pseudo_label": "images/img_2390.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2390/img_2390_seg.nii.gz" + }, + { + "image": "images/img_2523.nii.gz", + "pseudo_label": "images/img_2523.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2523/img_2523_seg.nii.gz" + }, + { + "image": "images/img_3409.nii.gz", + "pseudo_label": "images/img_3409.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3409/img_3409_seg.nii.gz" + }, + { + "image": "images/img_2456.nii.gz", + "pseudo_label": "images/img_2456.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2456/img_2456_seg.nii.gz" + }, + { + "image": "images/img_450.nii.gz", + "pseudo_label": "images/img_450.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_450/img_450_seg.nii.gz" + }, + { + "image": "images/img_3371.nii.gz", + "pseudo_label": "images/img_3371.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3371/img_3371_seg.nii.gz" + }, + { + "image": "images/img_2435.nii.gz", + "pseudo_label": "images/img_2435.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2435/img_2435_seg.nii.gz" + }, + { + "image": "images/img_838.nii.gz", + "pseudo_label": "images/img_838.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_838/img_838_seg.nii.gz" + }, + { + "image": "images/img_2519.nii.gz", + "pseudo_label": "images/img_2519.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2519/img_2519_seg.nii.gz" + }, + { + "image": "images/img_2284.nii.gz", + "pseudo_label": "images/img_2284.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2284/img_2284_seg.nii.gz" + }, + { + "image": "images/img_2916.nii.gz", + "pseudo_label": "images/img_2916.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2916/img_2916_seg.nii.gz" + }, + { + "image": "images/img_1606.nii.gz", + "pseudo_label": "images/img_1606.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1606/img_1606_seg.nii.gz" + }, + { + "image": "images/img_70.nii.gz", + "pseudo_label": "images/img_70.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_70/img_70_seg.nii.gz" + }, + { + "image": "images/img_2404.nii.gz", + "pseudo_label": "images/img_2404.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2404/img_2404_seg.nii.gz" + }, + { + "image": "images/img_485.nii.gz", + "pseudo_label": "images/img_485.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_485/img_485_seg.nii.gz" + }, + { + "image": "images/img_1675.nii.gz", + "pseudo_label": "images/img_1675.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1675/img_1675_seg.nii.gz" + }, + { + "image": "images/img_1892.nii.gz", + "pseudo_label": "images/img_1892.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1892/img_1892_seg.nii.gz" + }, + { + "image": "images/img_3161.nii.gz", + "pseudo_label": "images/img_3161.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3161/img_3161_seg.nii.gz" + }, + { + "image": "images/img_3042.nii.gz", + "pseudo_label": "images/img_3042.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3042/img_3042_seg.nii.gz" + }, + { + "image": "images/img_384.nii.gz", + "pseudo_label": "images/img_384.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_384/img_384_seg.nii.gz" + }, + { + "image": "images/img_2251.nii.gz", + "pseudo_label": "images/img_2251.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2251/img_2251_seg.nii.gz" + }, + { + "image": "images/img_2439.nii.gz", + "pseudo_label": "images/img_2439.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2439/img_2439_seg.nii.gz" + }, + { + "image": "images/img_2419.nii.gz", + "pseudo_label": "images/img_2419.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2419/img_2419_seg.nii.gz" + }, + { + "image": "images/img_37.nii.gz", + "pseudo_label": "images/img_37.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_37/img_37_seg.nii.gz" + }, + { + "image": "images/img_2019.nii.gz", + "pseudo_label": "images/img_2019.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2019/img_2019_seg.nii.gz" + }, + { + "image": "images/img_635.nii.gz", + "pseudo_label": "images/img_635.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_635/img_635_seg.nii.gz" + }, + { + "image": "images/img_505.nii.gz", + "pseudo_label": "images/img_505.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_505/img_505_seg.nii.gz" + }, + { + "image": "images/img_1946.nii.gz", + "pseudo_label": "images/img_1946.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1946/img_1946_seg.nii.gz" + }, + { + "image": "images/img_1784.nii.gz", + "pseudo_label": "images/img_1784.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1784/img_1784_seg.nii.gz" + }, + { + "image": "images/img_3046.nii.gz", + "pseudo_label": "images/img_3046.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3046/img_3046_seg.nii.gz" + }, + { + "image": "images/img_226.nii.gz", + "pseudo_label": "images/img_226.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_226/img_226_seg.nii.gz" + }, + { + "image": "images/img_2303.nii.gz", + "pseudo_label": "images/img_2303.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2303/img_2303_seg.nii.gz" + }, + { + "image": "images/img_2343.nii.gz", + "pseudo_label": "images/img_2343.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2343/img_2343_seg.nii.gz" + }, + { + "image": "images/img_72.nii.gz", + "pseudo_label": "images/img_72.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_72/img_72_seg.nii.gz" + }, + { + "image": "images/img_1070.nii.gz", + "pseudo_label": "images/img_1070.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1070/img_1070_seg.nii.gz" + }, + { + "image": "images/img_517.nii.gz", + "pseudo_label": "images/img_517.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_517/img_517_seg.nii.gz" + }, + { + "image": "images/img_2613.nii.gz", + "pseudo_label": "images/img_2613.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2613/img_2613_seg.nii.gz" + }, + { + "image": "images/img_2321.nii.gz", + "pseudo_label": "images/img_2321.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2321/img_2321_seg.nii.gz" + }, + { + "image": "images/img_406.nii.gz", + "pseudo_label": "images/img_406.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_406/img_406_seg.nii.gz" + }, + { + "image": "images/img_482.nii.gz", + "pseudo_label": "images/img_482.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_482/img_482_seg.nii.gz" + }, + { + "image": "images/img_2214.nii.gz", + "pseudo_label": "images/img_2214.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2214/img_2214_seg.nii.gz" + }, + { + "image": "images/img_2543.nii.gz", + "pseudo_label": "images/img_2543.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2543/img_2543_seg.nii.gz" + }, + { + "image": "images/img_895.nii.gz", + "pseudo_label": "images/img_895.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_895/img_895_seg.nii.gz" + }, + { + "image": "images/img_2459.nii.gz", + "pseudo_label": "images/img_2459.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2459/img_2459_seg.nii.gz" + }, + { + "image": "images/img_349.nii.gz", + "pseudo_label": "images/img_349.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_349/img_349_seg.nii.gz" + }, + { + "image": "images/img_1038.nii.gz", + "pseudo_label": "images/img_1038.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1038/img_1038_seg.nii.gz" + }, + { + "image": "images/img_3361.nii.gz", + "pseudo_label": "images/img_3361.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3361/img_3361_seg.nii.gz" + }, + { + "image": "images/img_658.nii.gz", + "pseudo_label": "images/img_658.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_658/img_658_seg.nii.gz" + }, + { + "image": "images/img_2504.nii.gz", + "pseudo_label": "images/img_2504.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2504/img_2504_seg.nii.gz" + }, + { + "image": "images/img_160.nii.gz", + "pseudo_label": "images/img_160.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_160/img_160_seg.nii.gz" + }, + { + "image": "images/img_268.nii.gz", + "pseudo_label": "images/img_268.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_268/img_268_seg.nii.gz" + }, + { + "image": "images/img_42.nii.gz", + "pseudo_label": "images/img_42.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_42/img_42_seg.nii.gz" + }, + { + "image": "images/img_691.nii.gz", + "pseudo_label": "images/img_691.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_691/img_691_seg.nii.gz" + }, + { + "image": "images/img_1999.nii.gz", + "pseudo_label": "images/img_1999.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1999/img_1999_seg.nii.gz" + }, + { + "image": "images/img_2078.nii.gz", + "pseudo_label": "images/img_2078.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2078/img_2078_seg.nii.gz" + }, + { + "image": "images/img_3239.nii.gz", + "pseudo_label": "images/img_3239.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3239/img_3239_seg.nii.gz" + }, + { + "image": "images/img_606.nii.gz", + "pseudo_label": "images/img_606.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_606/img_606_seg.nii.gz" + }, + { + "image": "images/img_1751.nii.gz", + "pseudo_label": "images/img_1751.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1751/img_1751_seg.nii.gz" + }, + { + "image": "images/img_2689.nii.gz", + "pseudo_label": "images/img_2689.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2689/img_2689_seg.nii.gz" + }, + { + "image": "images/img_2790.nii.gz", + "pseudo_label": "images/img_2790.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2790/img_2790_seg.nii.gz" + }, + { + "image": "images/img_4.nii.gz", + "pseudo_label": "images/img_4.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_4/img_4_seg.nii.gz" + }, + { + "image": "images/img_2651.nii.gz", + "pseudo_label": "images/img_2651.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2651/img_2651_seg.nii.gz" + }, + { + "image": "images/img_740.nii.gz", + "pseudo_label": "images/img_740.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_740/img_740_seg.nii.gz" + }, + { + "image": "images/img_2753.nii.gz", + "pseudo_label": "images/img_2753.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2753/img_2753_seg.nii.gz" + }, + { + "image": "images/img_1160.nii.gz", + "pseudo_label": "images/img_1160.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1160/img_1160_seg.nii.gz" + }, + { + "image": "images/img_1696.nii.gz", + "pseudo_label": "images/img_1696.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1696/img_1696_seg.nii.gz" + }, + { + "image": "images/img_2557.nii.gz", + "pseudo_label": "images/img_2557.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2557/img_2557_seg.nii.gz" + }, + { + "image": "images/img_2553.nii.gz", + "pseudo_label": "images/img_2553.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2553/img_2553_seg.nii.gz" + }, + { + "image": "images/img_3092.nii.gz", + "pseudo_label": "images/img_3092.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3092/img_3092_seg.nii.gz" + }, + { + "image": "images/img_2820.nii.gz", + "pseudo_label": "images/img_2820.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2820/img_2820_seg.nii.gz" + }, + { + "image": "images/img_1521.nii.gz", + "pseudo_label": "images/img_1521.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1521/img_1521_seg.nii.gz" + }, + { + "image": "images/img_2587.nii.gz", + "pseudo_label": "images/img_2587.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2587/img_2587_seg.nii.gz" + }, + { + "image": "images/img_255.nii.gz", + "pseudo_label": "images/img_255.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_255/img_255_seg.nii.gz" + }, + { + "image": "images/img_2884.nii.gz", + "pseudo_label": "images/img_2884.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2884/img_2884_seg.nii.gz" + }, + { + "image": "images/img_3351.nii.gz", + "pseudo_label": "images/img_3351.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3351/img_3351_seg.nii.gz" + }, + { + "image": "images/img_1718.nii.gz", + "pseudo_label": "images/img_1718.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1718/img_1718_seg.nii.gz" + }, + { + "image": "images/img_2110.nii.gz", + "pseudo_label": "images/img_2110.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2110/img_2110_seg.nii.gz" + }, + { + "image": "images/img_1763.nii.gz", + "pseudo_label": "images/img_1763.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1763/img_1763_seg.nii.gz" + }, + { + "image": "images/img_2805.nii.gz", + "pseudo_label": "images/img_2805.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2805/img_2805_seg.nii.gz" + }, + { + "image": "images/img_1711.nii.gz", + "pseudo_label": "images/img_1711.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1711/img_1711_seg.nii.gz" + }, + { + "image": "images/img_1001.nii.gz", + "pseudo_label": "images/img_1001.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1001/img_1001_seg.nii.gz" + }, + { + "image": "images/img_389.nii.gz", + "pseudo_label": "images/img_389.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_389/img_389_seg.nii.gz" + }, + { + "image": "images/img_2440.nii.gz", + "pseudo_label": "images/img_2440.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2440/img_2440_seg.nii.gz" + }, + { + "image": "images/img_3153.nii.gz", + "pseudo_label": "images/img_3153.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3153/img_3153_seg.nii.gz" + }, + { + "image": "images/img_2431.nii.gz", + "pseudo_label": "images/img_2431.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2431/img_2431_seg.nii.gz" + }, + { + "image": "images/img_462.nii.gz", + "pseudo_label": "images/img_462.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_462/img_462_seg.nii.gz" + }, + { + "image": "images/img_576.nii.gz", + "pseudo_label": "images/img_576.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_576/img_576_seg.nii.gz" + }, + { + "image": "images/img_1908.nii.gz", + "pseudo_label": "images/img_1908.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1908/img_1908_seg.nii.gz" + }, + { + "image": "images/img_2371.nii.gz", + "pseudo_label": "images/img_2371.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2371/img_2371_seg.nii.gz" + }, + { + "image": "images/img_3062.nii.gz", + "pseudo_label": "images/img_3062.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3062/img_3062_seg.nii.gz" + }, + { + "image": "images/img_2635.nii.gz", + "pseudo_label": "images/img_2635.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2635/img_2635_seg.nii.gz" + }, + { + "image": "images/img_3007.nii.gz", + "pseudo_label": "images/img_3007.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3007/img_3007_seg.nii.gz" + }, + { + "image": "images/img_1922.nii.gz", + "pseudo_label": "images/img_1922.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1922/img_1922_seg.nii.gz" + }, + { + "image": "images/img_3294.nii.gz", + "pseudo_label": "images/img_3294.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3294/img_3294_seg.nii.gz" + }, + { + "image": "images/img_3244.nii.gz", + "pseudo_label": "images/img_3244.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3244/img_3244_seg.nii.gz" + }, + { + "image": "images/img_3202.nii.gz", + "pseudo_label": "images/img_3202.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3202/img_3202_seg.nii.gz" + }, + { + "image": "images/img_2129.nii.gz", + "pseudo_label": "images/img_2129.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2129/img_2129_seg.nii.gz" + }, + { + "image": "images/img_2899.nii.gz", + "pseudo_label": "images/img_2899.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2899/img_2899_seg.nii.gz" + }, + { + "image": "images/img_2481.nii.gz", + "pseudo_label": "images/img_2481.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2481/img_2481_seg.nii.gz" + }, + { + "image": "images/img_3397.nii.gz", + "pseudo_label": "images/img_3397.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3397/img_3397_seg.nii.gz" + }, + { + "image": "images/img_105.nii.gz", + "pseudo_label": "images/img_105.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_105/img_105_seg.nii.gz" + }, + { + "image": "images/img_3444.nii.gz", + "pseudo_label": "images/img_3444.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3444/img_3444_seg.nii.gz" + }, + { + "image": "images/img_2428.nii.gz", + "pseudo_label": "images/img_2428.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2428/img_2428_seg.nii.gz" + }, + { + "image": "images/img_846.nii.gz", + "pseudo_label": "images/img_846.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_846/img_846_seg.nii.gz" + }, + { + "image": "images/img_2024.nii.gz", + "pseudo_label": "images/img_2024.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2024/img_2024_seg.nii.gz" + }, + { + "image": "images/img_2150.nii.gz", + "pseudo_label": "images/img_2150.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2150/img_2150_seg.nii.gz" + }, + { + "image": "images/img_3297.nii.gz", + "pseudo_label": "images/img_3297.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3297/img_3297_seg.nii.gz" + }, + { + "image": "images/img_977.nii.gz", + "pseudo_label": "images/img_977.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_977/img_977_seg.nii.gz" + }, + { + "image": "images/img_2665.nii.gz", + "pseudo_label": "images/img_2665.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2665/img_2665_seg.nii.gz" + }, + { + "image": "images/img_1732.nii.gz", + "pseudo_label": "images/img_1732.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1732/img_1732_seg.nii.gz" + }, + { + "image": "images/img_1044.nii.gz", + "pseudo_label": "images/img_1044.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1044/img_1044_seg.nii.gz" + }, + { + "image": "images/img_1655.nii.gz", + "pseudo_label": "images/img_1655.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1655/img_1655_seg.nii.gz" + }, + { + "image": "images/img_813.nii.gz", + "pseudo_label": "images/img_813.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_813/img_813_seg.nii.gz" + }, + { + "image": "images/img_2114.nii.gz", + "pseudo_label": "images/img_2114.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2114/img_2114_seg.nii.gz" + }, + { + "image": "images/img_332.nii.gz", + "pseudo_label": "images/img_332.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_332/img_332_seg.nii.gz" + }, + { + "image": "images/img_1686.nii.gz", + "pseudo_label": "images/img_1686.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1686/img_1686_seg.nii.gz" + }, + { + "image": "images/img_1927.nii.gz", + "pseudo_label": "images/img_1927.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1927/img_1927_seg.nii.gz" + }, + { + "image": "images/img_2640.nii.gz", + "pseudo_label": "images/img_2640.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2640/img_2640_seg.nii.gz" + }, + { + "image": "images/img_3249.nii.gz", + "pseudo_label": "images/img_3249.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3249/img_3249_seg.nii.gz" + }, + { + "image": "images/img_1810.nii.gz", + "pseudo_label": "images/img_1810.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1810/img_1810_seg.nii.gz" + }, + { + "image": "images/img_1673.nii.gz", + "pseudo_label": "images/img_1673.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1673/img_1673_seg.nii.gz" + }, + { + "image": "images/img_2327.nii.gz", + "pseudo_label": "images/img_2327.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2327/img_2327_seg.nii.gz" + }, + { + "image": "images/img_175.nii.gz", + "pseudo_label": "images/img_175.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_175/img_175_seg.nii.gz" + }, + { + "image": "images/img_764.nii.gz", + "pseudo_label": "images/img_764.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_764/img_764_seg.nii.gz" + }, + { + "image": "images/img_292.nii.gz", + "pseudo_label": "images/img_292.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_292/img_292_seg.nii.gz" + }, + { + "image": "images/img_594.nii.gz", + "pseudo_label": "images/img_594.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_594/img_594_seg.nii.gz" + }, + { + "image": "images/img_148.nii.gz", + "pseudo_label": "images/img_148.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_148/img_148_seg.nii.gz" + }, + { + "image": "images/img_3426.nii.gz", + "pseudo_label": "images/img_3426.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3426/img_3426_seg.nii.gz" + }, + { + "image": "images/img_2593.nii.gz", + "pseudo_label": "images/img_2593.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2593/img_2593_seg.nii.gz" + }, + { + "image": "images/img_2870.nii.gz", + "pseudo_label": "images/img_2870.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2870/img_2870_seg.nii.gz" + }, + { + "image": "images/img_1994.nii.gz", + "pseudo_label": "images/img_1994.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1994/img_1994_seg.nii.gz" + }, + { + "image": "images/img_2852.nii.gz", + "pseudo_label": "images/img_2852.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2852/img_2852_seg.nii.gz" + }, + { + "image": "images/img_124.nii.gz", + "pseudo_label": "images/img_124.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_124/img_124_seg.nii.gz" + }, + { + "image": "images/img_2025.nii.gz", + "pseudo_label": "images/img_2025.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2025/img_2025_seg.nii.gz" + }, + { + "image": "images/img_1953.nii.gz", + "pseudo_label": "images/img_1953.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1953/img_1953_seg.nii.gz" + }, + { + "image": "images/img_858.nii.gz", + "pseudo_label": "images/img_858.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_858/img_858_seg.nii.gz" + }, + { + "image": "images/img_2653.nii.gz", + "pseudo_label": "images/img_2653.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2653/img_2653_seg.nii.gz" + }, + { + "image": "images/img_3445.nii.gz", + "pseudo_label": "images/img_3445.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3445/img_3445_seg.nii.gz" + }, + { + "image": "images/img_3259.nii.gz", + "pseudo_label": "images/img_3259.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3259/img_3259_seg.nii.gz" + }, + { + "image": "images/img_1592.nii.gz", + "pseudo_label": "images/img_1592.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1592/img_1592_seg.nii.gz" + }, + { + "image": "images/img_1198.nii.gz", + "pseudo_label": "images/img_1198.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1198/img_1198_seg.nii.gz" + }, + { + "image": "images/img_2967.nii.gz", + "pseudo_label": "images/img_2967.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2967/img_2967_seg.nii.gz" + }, + { + "image": "images/img_345.nii.gz", + "pseudo_label": "images/img_345.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_345/img_345_seg.nii.gz" + }, + { + "image": "images/img_588.nii.gz", + "pseudo_label": "images/img_588.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_588/img_588_seg.nii.gz" + }, + { + "image": "images/img_2919.nii.gz", + "pseudo_label": "images/img_2919.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2919/img_2919_seg.nii.gz" + }, + { + "image": "images/img_2469.nii.gz", + "pseudo_label": "images/img_2469.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2469/img_2469_seg.nii.gz" + }, + { + "image": "images/img_718.nii.gz", + "pseudo_label": "images/img_718.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_718/img_718_seg.nii.gz" + }, + { + "image": "images/img_203.nii.gz", + "pseudo_label": "images/img_203.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_203/img_203_seg.nii.gz" + }, + { + "image": "images/img_1083.nii.gz", + "pseudo_label": "images/img_1083.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1083/img_1083_seg.nii.gz" + }, + { + "image": "images/img_1502.nii.gz", + "pseudo_label": "images/img_1502.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1502/img_1502_seg.nii.gz" + }, + { + "image": "images/img_509.nii.gz", + "pseudo_label": "images/img_509.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_509/img_509_seg.nii.gz" + }, + { + "image": "images/img_2735.nii.gz", + "pseudo_label": "images/img_2735.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2735/img_2735_seg.nii.gz" + }, + { + "image": "images/img_2216.nii.gz", + "pseudo_label": "images/img_2216.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2216/img_2216_seg.nii.gz" + }, + { + "image": "images/img_902.nii.gz", + "pseudo_label": "images/img_902.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_902/img_902_seg.nii.gz" + }, + { + "image": "images/img_599.nii.gz", + "pseudo_label": "images/img_599.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_599/img_599_seg.nii.gz" + }, + { + "image": "images/img_164.nii.gz", + "pseudo_label": "images/img_164.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_164/img_164_seg.nii.gz" + }, + { + "image": "images/img_654.nii.gz", + "pseudo_label": "images/img_654.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_654/img_654_seg.nii.gz" + }, + { + "image": "images/img_3019.nii.gz", + "pseudo_label": "images/img_3019.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3019/img_3019_seg.nii.gz" + }, + { + "image": "images/img_932.nii.gz", + "pseudo_label": "images/img_932.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_932/img_932_seg.nii.gz" + }, + { + "image": "images/img_116.nii.gz", + "pseudo_label": "images/img_116.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_116/img_116_seg.nii.gz" + }, + { + "image": "images/img_580.nii.gz", + "pseudo_label": "images/img_580.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_580/img_580_seg.nii.gz" + }, + { + "image": "images/img_3173.nii.gz", + "pseudo_label": "images/img_3173.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3173/img_3173_seg.nii.gz" + }, + { + "image": "images/img_1137.nii.gz", + "pseudo_label": "images/img_1137.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1137/img_1137_seg.nii.gz" + }, + { + "image": "images/img_1550.nii.gz", + "pseudo_label": "images/img_1550.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1550/img_1550_seg.nii.gz" + }, + { + "image": "images/img_3245.nii.gz", + "pseudo_label": "images/img_3245.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3245/img_3245_seg.nii.gz" + }, + { + "image": "images/img_2488.nii.gz", + "pseudo_label": "images/img_2488.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2488/img_2488_seg.nii.gz" + }, + { + "image": "images/img_803.nii.gz", + "pseudo_label": "images/img_803.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_803/img_803_seg.nii.gz" + }, + { + "image": "images/img_3123.nii.gz", + "pseudo_label": "images/img_3123.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3123/img_3123_seg.nii.gz" + }, + { + "image": "images/img_3276.nii.gz", + "pseudo_label": "images/img_3276.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3276/img_3276_seg.nii.gz" + }, + { + "image": "images/img_30.nii.gz", + "pseudo_label": "images/img_30.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_30/img_30_seg.nii.gz" + }, + { + "image": "images/img_140.nii.gz", + "pseudo_label": "images/img_140.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_140/img_140_seg.nii.gz" + }, + { + "image": "images/img_1136.nii.gz", + "pseudo_label": "images/img_1136.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1136/img_1136_seg.nii.gz" + }, + { + "image": "images/img_646.nii.gz", + "pseudo_label": "images/img_646.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_646/img_646_seg.nii.gz" + }, + { + "image": "images/img_1118.nii.gz", + "pseudo_label": "images/img_1118.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1118/img_1118_seg.nii.gz" + }, + { + "image": "images/img_1814.nii.gz", + "pseudo_label": "images/img_1814.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1814/img_1814_seg.nii.gz" + }, + { + "image": "images/img_19.nii.gz", + "pseudo_label": "images/img_19.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_19/img_19_seg.nii.gz" + }, + { + "image": "images/img_2677.nii.gz", + "pseudo_label": "images/img_2677.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2677/img_2677_seg.nii.gz" + }, + { + "image": "images/img_552.nii.gz", + "pseudo_label": "images/img_552.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_552/img_552_seg.nii.gz" + }, + { + "image": "images/img_545.nii.gz", + "pseudo_label": "images/img_545.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_545/img_545_seg.nii.gz" + }, + { + "image": "images/img_2092.nii.gz", + "pseudo_label": "images/img_2092.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2092/img_2092_seg.nii.gz" + }, + { + "image": "images/img_3155.nii.gz", + "pseudo_label": "images/img_3155.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3155/img_3155_seg.nii.gz" + }, + { + "image": "images/img_179.nii.gz", + "pseudo_label": "images/img_179.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_179/img_179_seg.nii.gz" + }, + { + "image": "images/img_2173.nii.gz", + "pseudo_label": "images/img_2173.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2173/img_2173_seg.nii.gz" + }, + { + "image": "images/img_993.nii.gz", + "pseudo_label": "images/img_993.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_993/img_993_seg.nii.gz" + }, + { + "image": "images/img_3067.nii.gz", + "pseudo_label": "images/img_3067.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3067/img_3067_seg.nii.gz" + }, + { + "image": "images/img_130.nii.gz", + "pseudo_label": "images/img_130.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_130/img_130_seg.nii.gz" + }, + { + "image": "images/img_2759.nii.gz", + "pseudo_label": "images/img_2759.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2759/img_2759_seg.nii.gz" + }, + { + "image": "images/img_2652.nii.gz", + "pseudo_label": "images/img_2652.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2652/img_2652_seg.nii.gz" + }, + { + "image": "images/img_1681.nii.gz", + "pseudo_label": "images/img_1681.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1681/img_1681_seg.nii.gz" + }, + { + "image": "images/img_2983.nii.gz", + "pseudo_label": "images/img_2983.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2983/img_2983_seg.nii.gz" + }, + { + "image": "images/img_1602.nii.gz", + "pseudo_label": "images/img_1602.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1602/img_1602_seg.nii.gz" + }, + { + "image": "images/img_864.nii.gz", + "pseudo_label": "images/img_864.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_864/img_864_seg.nii.gz" + }, + { + "image": "images/img_118.nii.gz", + "pseudo_label": "images/img_118.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_118/img_118_seg.nii.gz" + }, + { + "image": "images/img_581.nii.gz", + "pseudo_label": "images/img_581.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_581/img_581_seg.nii.gz" + }, + { + "image": "images/img_738.nii.gz", + "pseudo_label": "images/img_738.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_738/img_738_seg.nii.gz" + }, + { + "image": "images/img_3279.nii.gz", + "pseudo_label": "images/img_3279.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3279/img_3279_seg.nii.gz" + }, + { + "image": "images/img_3134.nii.gz", + "pseudo_label": "images/img_3134.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3134/img_3134_seg.nii.gz" + }, + { + "image": "images/img_304.nii.gz", + "pseudo_label": "images/img_304.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_304/img_304_seg.nii.gz" + }, + { + "image": "images/img_2432.nii.gz", + "pseudo_label": "images/img_2432.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2432/img_2432_seg.nii.gz" + }, + { + "image": "images/img_1549.nii.gz", + "pseudo_label": "images/img_1549.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1549/img_1549_seg.nii.gz" + }, + { + "image": "images/img_2666.nii.gz", + "pseudo_label": "images/img_2666.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2666/img_2666_seg.nii.gz" + }, + { + "image": "images/img_284.nii.gz", + "pseudo_label": "images/img_284.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_284/img_284_seg.nii.gz" + }, + { + "image": "images/img_1202.nii.gz", + "pseudo_label": "images/img_1202.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1202/img_1202_seg.nii.gz" + }, + { + "image": "images/img_2798.nii.gz", + "pseudo_label": "images/img_2798.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2798/img_2798_seg.nii.gz" + }, + { + "image": "images/img_1712.nii.gz", + "pseudo_label": "images/img_1712.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1712/img_1712_seg.nii.gz" + }, + { + "image": "images/img_836.nii.gz", + "pseudo_label": "images/img_836.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_836/img_836_seg.nii.gz" + }, + { + "image": "images/img_704.nii.gz", + "pseudo_label": "images/img_704.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_704/img_704_seg.nii.gz" + }, + { + "image": "images/img_2139.nii.gz", + "pseudo_label": "images/img_2139.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2139/img_2139_seg.nii.gz" + }, + { + "image": "images/img_1534.nii.gz", + "pseudo_label": "images/img_1534.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1534/img_1534_seg.nii.gz" + }, + { + "image": "images/img_161.nii.gz", + "pseudo_label": "images/img_161.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_161/img_161_seg.nii.gz" + }, + { + "image": "images/img_561.nii.gz", + "pseudo_label": "images/img_561.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_561/img_561_seg.nii.gz" + }, + { + "image": "images/img_280.nii.gz", + "pseudo_label": "images/img_280.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_280/img_280_seg.nii.gz" + }, + { + "image": "images/img_2888.nii.gz", + "pseudo_label": "images/img_2888.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2888/img_2888_seg.nii.gz" + }, + { + "image": "images/img_2187.nii.gz", + "pseudo_label": "images/img_2187.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2187/img_2187_seg.nii.gz" + }, + { + "image": "images/img_3419.nii.gz", + "pseudo_label": "images/img_3419.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3419/img_3419_seg.nii.gz" + }, + { + "image": "images/img_2472.nii.gz", + "pseudo_label": "images/img_2472.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2472/img_2472_seg.nii.gz" + }, + { + "image": "images/img_1624.nii.gz", + "pseudo_label": "images/img_1624.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1624/img_1624_seg.nii.gz" + }, + { + "image": "images/img_2014.nii.gz", + "pseudo_label": "images/img_2014.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2014/img_2014_seg.nii.gz" + }, + { + "image": "images/img_1555.nii.gz", + "pseudo_label": "images/img_1555.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1555/img_1555_seg.nii.gz" + }, + { + "image": "images/img_276.nii.gz", + "pseudo_label": "images/img_276.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_276/img_276_seg.nii.gz" + }, + { + "image": "images/img_2398.nii.gz", + "pseudo_label": "images/img_2398.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2398/img_2398_seg.nii.gz" + }, + { + "image": "images/img_679.nii.gz", + "pseudo_label": "images/img_679.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_679/img_679_seg.nii.gz" + }, + { + "image": "images/img_34.nii.gz", + "pseudo_label": "images/img_34.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_34/img_34_seg.nii.gz" + }, + { + "image": "images/img_1081.nii.gz", + "pseudo_label": "images/img_1081.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1081/img_1081_seg.nii.gz" + }, + { + "image": "images/img_299.nii.gz", + "pseudo_label": "images/img_299.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_299/img_299_seg.nii.gz" + }, + { + "image": "images/img_2637.nii.gz", + "pseudo_label": "images/img_2637.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2637/img_2637_seg.nii.gz" + }, + { + "image": "images/img_2844.nii.gz", + "pseudo_label": "images/img_2844.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2844/img_2844_seg.nii.gz" + }, + { + "image": "images/img_595.nii.gz", + "pseudo_label": "images/img_595.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_595/img_595_seg.nii.gz" + }, + { + "image": "images/img_1933.nii.gz", + "pseudo_label": "images/img_1933.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1933/img_1933_seg.nii.gz" + }, + { + "image": "images/img_808.nii.gz", + "pseudo_label": "images/img_808.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_808/img_808_seg.nii.gz" + }, + { + "image": "images/img_1093.nii.gz", + "pseudo_label": "images/img_1093.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1093/img_1093_seg.nii.gz" + }, + { + "image": "images/img_1931.nii.gz", + "pseudo_label": "images/img_1931.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1931/img_1931_seg.nii.gz" + }, + { + "image": "images/img_863.nii.gz", + "pseudo_label": "images/img_863.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_863/img_863_seg.nii.gz" + }, + { + "image": "images/img_990.nii.gz", + "pseudo_label": "images/img_990.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_990/img_990_seg.nii.gz" + }, + { + "image": "images/img_183.nii.gz", + "pseudo_label": "images/img_183.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_183/img_183_seg.nii.gz" + }, + { + "image": "images/img_2924.nii.gz", + "pseudo_label": "images/img_2924.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2924/img_2924_seg.nii.gz" + }, + { + "image": "images/img_1561.nii.gz", + "pseudo_label": "images/img_1561.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1561/img_1561_seg.nii.gz" + }, + { + "image": "images/img_1558.nii.gz", + "pseudo_label": "images/img_1558.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1558/img_1558_seg.nii.gz" + }, + { + "image": "images/img_1171.nii.gz", + "pseudo_label": "images/img_1171.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1171/img_1171_seg.nii.gz" + }, + { + "image": "images/img_2313.nii.gz", + "pseudo_label": "images/img_2313.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2313/img_2313_seg.nii.gz" + }, + { + "image": "images/img_263.nii.gz", + "pseudo_label": "images/img_263.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_263/img_263_seg.nii.gz" + }, + { + "image": "images/img_1650.nii.gz", + "pseudo_label": "images/img_1650.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1650/img_1650_seg.nii.gz" + }, + { + "image": "images/img_2455.nii.gz", + "pseudo_label": "images/img_2455.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2455/img_2455_seg.nii.gz" + }, + { + "image": "images/img_3452.nii.gz", + "pseudo_label": "images/img_3452.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3452/img_3452_seg.nii.gz" + }, + { + "image": "images/img_3258.nii.gz", + "pseudo_label": "images/img_3258.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3258/img_3258_seg.nii.gz" + }, + { + "image": "images/img_3342.nii.gz", + "pseudo_label": "images/img_3342.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3342/img_3342_seg.nii.gz" + }, + { + "image": "images/img_940.nii.gz", + "pseudo_label": "images/img_940.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_940/img_940_seg.nii.gz" + }, + { + "image": "images/img_2325.nii.gz", + "pseudo_label": "images/img_2325.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2325/img_2325_seg.nii.gz" + }, + { + "image": "images/img_1016.nii.gz", + "pseudo_label": "images/img_1016.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1016/img_1016_seg.nii.gz" + }, + { + "image": "images/img_1538.nii.gz", + "pseudo_label": "images/img_1538.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1538/img_1538_seg.nii.gz" + }, + { + "image": "images/img_3265.nii.gz", + "pseudo_label": "images/img_3265.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3265/img_3265_seg.nii.gz" + }, + { + "image": "images/img_295.nii.gz", + "pseudo_label": "images/img_295.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_295/img_295_seg.nii.gz" + }, + { + "image": "images/img_3033.nii.gz", + "pseudo_label": "images/img_3033.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3033/img_3033_seg.nii.gz" + }, + { + "image": "images/img_2927.nii.gz", + "pseudo_label": "images/img_2927.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2927/img_2927_seg.nii.gz" + }, + { + "image": "images/img_966.nii.gz", + "pseudo_label": "images/img_966.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_966/img_966_seg.nii.gz" + }, + { + "image": "images/img_3.nii.gz", + "pseudo_label": "images/img_3.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3/img_3_seg.nii.gz" + }, + { + "image": "images/img_2907.nii.gz", + "pseudo_label": "images/img_2907.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2907/img_2907_seg.nii.gz" + }, + { + "image": "images/img_1913.nii.gz", + "pseudo_label": "images/img_1913.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1913/img_1913_seg.nii.gz" + }, + { + "image": "images/img_3389.nii.gz", + "pseudo_label": "images/img_3389.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3389/img_3389_seg.nii.gz" + }, + { + "image": "images/img_1052.nii.gz", + "pseudo_label": "images/img_1052.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1052/img_1052_seg.nii.gz" + }, + { + "image": "images/img_2203.nii.gz", + "pseudo_label": "images/img_2203.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2203/img_2203_seg.nii.gz" + }, + { + "image": "images/img_1105.nii.gz", + "pseudo_label": "images/img_1105.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1105/img_1105_seg.nii.gz" + }, + { + "image": "images/img_560.nii.gz", + "pseudo_label": "images/img_560.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_560/img_560_seg.nii.gz" + }, + { + "image": "images/img_422.nii.gz", + "pseudo_label": "images/img_422.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_422/img_422_seg.nii.gz" + }, + { + "image": "images/img_1505.nii.gz", + "pseudo_label": "images/img_1505.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1505/img_1505_seg.nii.gz" + }, + { + "image": "images/img_2636.nii.gz", + "pseudo_label": "images/img_2636.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2636/img_2636_seg.nii.gz" + }, + { + "image": "images/img_2380.nii.gz", + "pseudo_label": "images/img_2380.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2380/img_2380_seg.nii.gz" + }, + { + "image": "images/img_2193.nii.gz", + "pseudo_label": "images/img_2193.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2193/img_2193_seg.nii.gz" + }, + { + "image": "images/img_1658.nii.gz", + "pseudo_label": "images/img_1658.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1658/img_1658_seg.nii.gz" + }, + { + "image": "images/img_2990.nii.gz", + "pseudo_label": "images/img_2990.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2990/img_2990_seg.nii.gz" + }, + { + "image": "images/img_1722.nii.gz", + "pseudo_label": "images/img_1722.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1722/img_1722_seg.nii.gz" + }, + { + "image": "images/img_2972.nii.gz", + "pseudo_label": "images/img_2972.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2972/img_2972_seg.nii.gz" + }, + { + "image": "images/img_3438.nii.gz", + "pseudo_label": "images/img_3438.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3438/img_3438_seg.nii.gz" + }, + { + "image": "images/img_122.nii.gz", + "pseudo_label": "images/img_122.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_122/img_122_seg.nii.gz" + }, + { + "image": "images/img_685.nii.gz", + "pseudo_label": "images/img_685.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_685/img_685_seg.nii.gz" + }, + { + "image": "images/img_524.nii.gz", + "pseudo_label": "images/img_524.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_524/img_524_seg.nii.gz" + }, + { + "image": "images/img_1517.nii.gz", + "pseudo_label": "images/img_1517.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1517/img_1517_seg.nii.gz" + }, + { + "image": "images/img_152.nii.gz", + "pseudo_label": "images/img_152.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_152/img_152_seg.nii.gz" + }, + { + "image": "images/img_2976.nii.gz", + "pseudo_label": "images/img_2976.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2976/img_2976_seg.nii.gz" + }, + { + "image": "images/img_187.nii.gz", + "pseudo_label": "images/img_187.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_187/img_187_seg.nii.gz" + }, + { + "image": "images/img_1708.nii.gz", + "pseudo_label": "images/img_1708.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1708/img_1708_seg.nii.gz" + }, + { + "image": "images/img_3274.nii.gz", + "pseudo_label": "images/img_3274.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3274/img_3274_seg.nii.gz" + }, + { + "image": "images/img_2773.nii.gz", + "pseudo_label": "images/img_2773.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2773/img_2773_seg.nii.gz" + }, + { + "image": "images/img_481.nii.gz", + "pseudo_label": "images/img_481.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_481/img_481_seg.nii.gz" + }, + { + "image": "images/img_1948.nii.gz", + "pseudo_label": "images/img_1948.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1948/img_1948_seg.nii.gz" + }, + { + "image": "images/img_466.nii.gz", + "pseudo_label": "images/img_466.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_466/img_466_seg.nii.gz" + }, + { + "image": "images/img_3000.nii.gz", + "pseudo_label": "images/img_3000.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3000/img_3000_seg.nii.gz" + }, + { + "image": "images/img_589.nii.gz", + "pseudo_label": "images/img_589.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_589/img_589_seg.nii.gz" + }, + { + "image": "images/img_235.nii.gz", + "pseudo_label": "images/img_235.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_235/img_235_seg.nii.gz" + }, + { + "image": "images/img_3408.nii.gz", + "pseudo_label": "images/img_3408.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3408/img_3408_seg.nii.gz" + }, + { + "image": "images/img_855.nii.gz", + "pseudo_label": "images/img_855.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_855/img_855_seg.nii.gz" + }, + { + "image": "images/img_2080.nii.gz", + "pseudo_label": "images/img_2080.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2080/img_2080_seg.nii.gz" + }, + { + "image": "images/img_302.nii.gz", + "pseudo_label": "images/img_302.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_302/img_302_seg.nii.gz" + }, + { + "image": "images/img_1035.nii.gz", + "pseudo_label": "images/img_1035.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1035/img_1035_seg.nii.gz" + }, + { + "image": "images/img_3332.nii.gz", + "pseudo_label": "images/img_3332.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3332/img_3332_seg.nii.gz" + }, + { + "image": "images/img_3290.nii.gz", + "pseudo_label": "images/img_3290.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3290/img_3290_seg.nii.gz" + }, + { + "image": "images/img_1659.nii.gz", + "pseudo_label": "images/img_1659.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1659/img_1659_seg.nii.gz" + }, + { + "image": "images/img_911.nii.gz", + "pseudo_label": "images/img_911.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_911/img_911_seg.nii.gz" + }, + { + "image": "images/img_702.nii.gz", + "pseudo_label": "images/img_702.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_702/img_702_seg.nii.gz" + }, + { + "image": "images/img_2142.nii.gz", + "pseudo_label": "images/img_2142.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2142/img_2142_seg.nii.gz" + }, + { + "image": "images/img_311.nii.gz", + "pseudo_label": "images/img_311.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_311/img_311_seg.nii.gz" + }, + { + "image": "images/img_2489.nii.gz", + "pseudo_label": "images/img_2489.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2489/img_2489_seg.nii.gz" + }, + { + "image": "images/img_1901.nii.gz", + "pseudo_label": "images/img_1901.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1901/img_1901_seg.nii.gz" + }, + { + "image": "images/img_1733.nii.gz", + "pseudo_label": "images/img_1733.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1733/img_1733_seg.nii.gz" + }, + { + "image": "images/img_2369.nii.gz", + "pseudo_label": "images/img_2369.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2369/img_2369_seg.nii.gz" + }, + { + "image": "images/img_1754.nii.gz", + "pseudo_label": "images/img_1754.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1754/img_1754_seg.nii.gz" + }, + { + "image": "images/img_3149.nii.gz", + "pseudo_label": "images/img_3149.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3149/img_3149_seg.nii.gz" + }, + { + "image": "images/img_2007.nii.gz", + "pseudo_label": "images/img_2007.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2007/img_2007_seg.nii.gz" + }, + { + "image": "images/img_3331.nii.gz", + "pseudo_label": "images/img_3331.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3331/img_3331_seg.nii.gz" + }, + { + "image": "images/img_1667.nii.gz", + "pseudo_label": "images/img_1667.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1667/img_1667_seg.nii.gz" + }, + { + "image": "images/img_630.nii.gz", + "pseudo_label": "images/img_630.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_630/img_630_seg.nii.gz" + }, + { + "image": "images/img_1864.nii.gz", + "pseudo_label": "images/img_1864.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1864/img_1864_seg.nii.gz" + }, + { + "image": "images/img_1576.nii.gz", + "pseudo_label": "images/img_1576.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1576/img_1576_seg.nii.gz" + }, + { + "image": "images/img_12.nii.gz", + "pseudo_label": "images/img_12.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_12/img_12_seg.nii.gz" + }, + { + "image": "images/img_2941.nii.gz", + "pseudo_label": "images/img_2941.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2941/img_2941_seg.nii.gz" + }, + { + "image": "images/img_3448.nii.gz", + "pseudo_label": "images/img_3448.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3448/img_3448_seg.nii.gz" + }, + { + "image": "images/img_1669.nii.gz", + "pseudo_label": "images/img_1669.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1669/img_1669_seg.nii.gz" + }, + { + "image": "images/img_3267.nii.gz", + "pseudo_label": "images/img_3267.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3267/img_3267_seg.nii.gz" + }, + { + "image": "images/img_3282.nii.gz", + "pseudo_label": "images/img_3282.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3282/img_3282_seg.nii.gz" + }, + { + "image": "images/img_2442.nii.gz", + "pseudo_label": "images/img_2442.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2442/img_2442_seg.nii.gz" + }, + { + "image": "images/img_793.nii.gz", + "pseudo_label": "images/img_793.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_793/img_793_seg.nii.gz" + }, + { + "image": "images/img_2900.nii.gz", + "pseudo_label": "images/img_2900.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2900/img_2900_seg.nii.gz" + }, + { + "image": "images/img_3315.nii.gz", + "pseudo_label": "images/img_3315.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3315/img_3315_seg.nii.gz" + }, + { + "image": "images/img_2023.nii.gz", + "pseudo_label": "images/img_2023.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2023/img_2023_seg.nii.gz" + }, + { + "image": "images/img_890.nii.gz", + "pseudo_label": "images/img_890.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_890/img_890_seg.nii.gz" + }, + { + "image": "images/img_2673.nii.gz", + "pseudo_label": "images/img_2673.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2673/img_2673_seg.nii.gz" + }, + { + "image": "images/img_20.nii.gz", + "pseudo_label": "images/img_20.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_20/img_20_seg.nii.gz" + }, + { + "image": "images/img_565.nii.gz", + "pseudo_label": "images/img_565.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_565/img_565_seg.nii.gz" + }, + { + "image": "images/img_623.nii.gz", + "pseudo_label": "images/img_623.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_623/img_623_seg.nii.gz" + }, + { + "image": "images/img_720.nii.gz", + "pseudo_label": "images/img_720.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_720/img_720_seg.nii.gz" + }, + { + "image": "images/img_1780.nii.gz", + "pseudo_label": "images/img_1780.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1780/img_1780_seg.nii.gz" + }, + { + "image": "images/img_783.nii.gz", + "pseudo_label": "images/img_783.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_783/img_783_seg.nii.gz" + }, + { + "image": "images/img_2511.nii.gz", + "pseudo_label": "images/img_2511.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2511/img_2511_seg.nii.gz" + }, + { + "image": "images/img_1827.nii.gz", + "pseudo_label": "images/img_1827.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1827/img_1827_seg.nii.gz" + }, + { + "image": "images/img_2083.nii.gz", + "pseudo_label": "images/img_2083.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2083/img_2083_seg.nii.gz" + }, + { + "image": "images/img_1541.nii.gz", + "pseudo_label": "images/img_1541.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1541/img_1541_seg.nii.gz" + }, + { + "image": "images/img_48.nii.gz", + "pseudo_label": "images/img_48.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_48/img_48_seg.nii.gz" + }, + { + "image": "images/img_1824.nii.gz", + "pseudo_label": "images/img_1824.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1824/img_1824_seg.nii.gz" + }, + { + "image": "images/img_710.nii.gz", + "pseudo_label": "images/img_710.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_710/img_710_seg.nii.gz" + }, + { + "image": "images/img_1522.nii.gz", + "pseudo_label": "images/img_1522.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1522/img_1522_seg.nii.gz" + }, + { + "image": "images/img_3057.nii.gz", + "pseudo_label": "images/img_3057.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3057/img_3057_seg.nii.gz" + }, + { + "image": "images/img_914.nii.gz", + "pseudo_label": "images/img_914.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_914/img_914_seg.nii.gz" + }, + { + "image": "images/img_3254.nii.gz", + "pseudo_label": "images/img_3254.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3254/img_3254_seg.nii.gz" + }, + { + "image": "images/img_1746.nii.gz", + "pseudo_label": "images/img_1746.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1746/img_1746_seg.nii.gz" + }, + { + "image": "images/img_1101.nii.gz", + "pseudo_label": "images/img_1101.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1101/img_1101_seg.nii.gz" + }, + { + "image": "images/img_2661.nii.gz", + "pseudo_label": "images/img_2661.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2661/img_2661_seg.nii.gz" + }, + { + "image": "images/img_622.nii.gz", + "pseudo_label": "images/img_622.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_622/img_622_seg.nii.gz" + }, + { + "image": "images/img_3447.nii.gz", + "pseudo_label": "images/img_3447.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3447/img_3447_seg.nii.gz" + }, + { + "image": "images/img_3422.nii.gz", + "pseudo_label": "images/img_3422.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3422/img_3422_seg.nii.gz" + }, + { + "image": "images/img_1623.nii.gz", + "pseudo_label": "images/img_1623.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1623/img_1623_seg.nii.gz" + }, + { + "image": "images/img_2718.nii.gz", + "pseudo_label": "images/img_2718.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2718/img_2718_seg.nii.gz" + }, + { + "image": "images/img_640.nii.gz", + "pseudo_label": "images/img_640.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_640/img_640_seg.nii.gz" + }, + { + "image": "images/img_1758.nii.gz", + "pseudo_label": "images/img_1758.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1758/img_1758_seg.nii.gz" + }, + { + "image": "images/img_1788.nii.gz", + "pseudo_label": "images/img_1788.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1788/img_1788_seg.nii.gz" + }, + { + "image": "images/img_2942.nii.gz", + "pseudo_label": "images/img_2942.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2942/img_2942_seg.nii.gz" + }, + { + "image": "images/img_430.nii.gz", + "pseudo_label": "images/img_430.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_430/img_430_seg.nii.gz" + }, + { + "image": "images/img_659.nii.gz", + "pseudo_label": "images/img_659.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_659/img_659_seg.nii.gz" + }, + { + "image": "images/img_997.nii.gz", + "pseudo_label": "images/img_997.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_997/img_997_seg.nii.gz" + }, + { + "image": "images/img_484.nii.gz", + "pseudo_label": "images/img_484.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_484/img_484_seg.nii.gz" + }, + { + "image": "images/img_2378.nii.gz", + "pseudo_label": "images/img_2378.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2378/img_2378_seg.nii.gz" + }, + { + "image": "images/img_2597.nii.gz", + "pseudo_label": "images/img_2597.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2597/img_2597_seg.nii.gz" + }, + { + "image": "images/img_2155.nii.gz", + "pseudo_label": "images/img_2155.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2155/img_2155_seg.nii.gz" + }, + { + "image": "images/img_3376.nii.gz", + "pseudo_label": "images/img_3376.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3376/img_3376_seg.nii.gz" + }, + { + "image": "images/img_887.nii.gz", + "pseudo_label": "images/img_887.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_887/img_887_seg.nii.gz" + }, + { + "image": "images/img_2608.nii.gz", + "pseudo_label": "images/img_2608.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2608/img_2608_seg.nii.gz" + }, + { + "image": "images/img_842.nii.gz", + "pseudo_label": "images/img_842.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_842/img_842_seg.nii.gz" + }, + { + "image": "images/img_3068.nii.gz", + "pseudo_label": "images/img_3068.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3068/img_3068_seg.nii.gz" + }, + { + "image": "images/img_525.nii.gz", + "pseudo_label": "images/img_525.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_525/img_525_seg.nii.gz" + }, + { + "image": "images/img_1147.nii.gz", + "pseudo_label": "images/img_1147.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1147/img_1147_seg.nii.gz" + }, + { + "image": "images/img_2464.nii.gz", + "pseudo_label": "images/img_2464.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2464/img_2464_seg.nii.gz" + }, + { + "image": "images/img_445.nii.gz", + "pseudo_label": "images/img_445.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_445/img_445_seg.nii.gz" + }, + { + "image": "images/img_983.nii.gz", + "pseudo_label": "images/img_983.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_983/img_983_seg.nii.gz" + }, + { + "image": "images/img_784.nii.gz", + "pseudo_label": "images/img_784.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_784/img_784_seg.nii.gz" + }, + { + "image": "images/img_259.nii.gz", + "pseudo_label": "images/img_259.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_259/img_259_seg.nii.gz" + }, + { + "image": "images/img_252.nii.gz", + "pseudo_label": "images/img_252.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_252/img_252_seg.nii.gz" + }, + { + "image": "images/img_1067.nii.gz", + "pseudo_label": "images/img_1067.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1067/img_1067_seg.nii.gz" + }, + { + "image": "images/img_2441.nii.gz", + "pseudo_label": "images/img_2441.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2441/img_2441_seg.nii.gz" + }, + { + "image": "images/img_2452.nii.gz", + "pseudo_label": "images/img_2452.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2452/img_2452_seg.nii.gz" + }, + { + "image": "images/img_1867.nii.gz", + "pseudo_label": "images/img_1867.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1867/img_1867_seg.nii.gz" + }, + { + "image": "images/img_2153.nii.gz", + "pseudo_label": "images/img_2153.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2153/img_2153_seg.nii.gz" + }, + { + "image": "images/img_2403.nii.gz", + "pseudo_label": "images/img_2403.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2403/img_2403_seg.nii.gz" + }, + { + "image": "images/img_2227.nii.gz", + "pseudo_label": "images/img_2227.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2227/img_2227_seg.nii.gz" + }, + { + "image": "images/img_2860.nii.gz", + "pseudo_label": "images/img_2860.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2860/img_2860_seg.nii.gz" + }, + { + "image": "images/img_965.nii.gz", + "pseudo_label": "images/img_965.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_965/img_965_seg.nii.gz" + }, + { + "image": "images/img_112.nii.gz", + "pseudo_label": "images/img_112.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_112/img_112_seg.nii.gz" + }, + { + "image": "images/img_2746.nii.gz", + "pseudo_label": "images/img_2746.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2746/img_2746_seg.nii.gz" + }, + { + "image": "images/img_207.nii.gz", + "pseudo_label": "images/img_207.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_207/img_207_seg.nii.gz" + }, + { + "image": "images/img_2106.nii.gz", + "pseudo_label": "images/img_2106.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2106/img_2106_seg.nii.gz" + }, + { + "image": "images/img_1982.nii.gz", + "pseudo_label": "images/img_1982.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1982/img_1982_seg.nii.gz" + }, + { + "image": "images/img_1806.nii.gz", + "pseudo_label": "images/img_1806.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1806/img_1806_seg.nii.gz" + }, + { + "image": "images/img_1014.nii.gz", + "pseudo_label": "images/img_1014.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1014/img_1014_seg.nii.gz" + }, + { + "image": "images/img_247.nii.gz", + "pseudo_label": "images/img_247.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_247/img_247_seg.nii.gz" + }, + { + "image": "images/img_2549.nii.gz", + "pseudo_label": "images/img_2549.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2549/img_2549_seg.nii.gz" + }, + { + "image": "images/img_3382.nii.gz", + "pseudo_label": "images/img_3382.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3382/img_3382_seg.nii.gz" + }, + { + "image": "images/img_1734.nii.gz", + "pseudo_label": "images/img_1734.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1734/img_1734_seg.nii.gz" + }, + { + "image": "images/img_1637.nii.gz", + "pseudo_label": "images/img_1637.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1637/img_1637_seg.nii.gz" + }, + { + "image": "images/img_469.nii.gz", + "pseudo_label": "images/img_469.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_469/img_469_seg.nii.gz" + }, + { + "image": "images/img_1738.nii.gz", + "pseudo_label": "images/img_1738.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1738/img_1738_seg.nii.gz" + }, + { + "image": "images/img_90.nii.gz", + "pseudo_label": "images/img_90.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_90/img_90_seg.nii.gz" + }, + { + "image": "images/img_3324.nii.gz", + "pseudo_label": "images/img_3324.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3324/img_3324_seg.nii.gz" + }, + { + "image": "images/img_2928.nii.gz", + "pseudo_label": "images/img_2928.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2928/img_2928_seg.nii.gz" + }, + { + "image": "images/img_1936.nii.gz", + "pseudo_label": "images/img_1936.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1936/img_1936_seg.nii.gz" + }, + { + "image": "images/img_851.nii.gz", + "pseudo_label": "images/img_851.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_851/img_851_seg.nii.gz" + }, + { + "image": "images/img_2387.nii.gz", + "pseudo_label": "images/img_2387.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2387/img_2387_seg.nii.gz" + }, + { + "image": "images/img_760.nii.gz", + "pseudo_label": "images/img_760.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_760/img_760_seg.nii.gz" + }, + { + "image": "images/img_1680.nii.gz", + "pseudo_label": "images/img_1680.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1680/img_1680_seg.nii.gz" + }, + { + "image": "images/img_2603.nii.gz", + "pseudo_label": "images/img_2603.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2603/img_2603_seg.nii.gz" + }, + { + "image": "images/img_8.nii.gz", + "pseudo_label": "images/img_8.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_8/img_8_seg.nii.gz" + }, + { + "image": "images/img_2340.nii.gz", + "pseudo_label": "images/img_2340.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2340/img_2340_seg.nii.gz" + }, + { + "image": "images/img_1112.nii.gz", + "pseudo_label": "images/img_1112.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1112/img_1112_seg.nii.gz" + }, + { + "image": "images/img_2397.nii.gz", + "pseudo_label": "images/img_2397.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2397/img_2397_seg.nii.gz" + }, + { + "image": "images/img_2185.nii.gz", + "pseudo_label": "images/img_2185.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2185/img_2185_seg.nii.gz" + }, + { + "image": "images/img_2996.nii.gz", + "pseudo_label": "images/img_2996.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2996/img_2996_seg.nii.gz" + }, + { + "image": "images/img_2963.nii.gz", + "pseudo_label": "images/img_2963.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2963/img_2963_seg.nii.gz" + }, + { + "image": "images/img_57.nii.gz", + "pseudo_label": "images/img_57.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_57/img_57_seg.nii.gz" + }, + { + "image": "images/img_2175.nii.gz", + "pseudo_label": "images/img_2175.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2175/img_2175_seg.nii.gz" + }, + { + "image": "images/img_2688.nii.gz", + "pseudo_label": "images/img_2688.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2688/img_2688_seg.nii.gz" + }, + { + "image": "images/img_837.nii.gz", + "pseudo_label": "images/img_837.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_837/img_837_seg.nii.gz" + }, + { + "image": "images/img_260.nii.gz", + "pseudo_label": "images/img_260.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_260/img_260_seg.nii.gz" + }, + { + "image": "images/img_1510.nii.gz", + "pseudo_label": "images/img_1510.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1510/img_1510_seg.nii.gz" + }, + { + "image": "images/img_2958.nii.gz", + "pseudo_label": "images/img_2958.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2958/img_2958_seg.nii.gz" + }, + { + "image": "images/img_2444.nii.gz", + "pseudo_label": "images/img_2444.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2444/img_2444_seg.nii.gz" + }, + { + "image": "images/img_3288.nii.gz", + "pseudo_label": "images/img_3288.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3288/img_3288_seg.nii.gz" + }, + { + "image": "images/img_2138.nii.gz", + "pseudo_label": "images/img_2138.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2138/img_2138_seg.nii.gz" + }, + { + "image": "images/img_184.nii.gz", + "pseudo_label": "images/img_184.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_184/img_184_seg.nii.gz" + }, + { + "image": "images/img_2105.nii.gz", + "pseudo_label": "images/img_2105.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2105/img_2105_seg.nii.gz" + }, + { + "image": "images/img_1574.nii.gz", + "pseudo_label": "images/img_1574.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1574/img_1574_seg.nii.gz" + }, + { + "image": "images/img_878.nii.gz", + "pseudo_label": "images/img_878.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_878/img_878_seg.nii.gz" + }, + { + "image": "images/img_2520.nii.gz", + "pseudo_label": "images/img_2520.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2520/img_2520_seg.nii.gz" + }, + { + "image": "images/img_745.nii.gz", + "pseudo_label": "images/img_745.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_745/img_745_seg.nii.gz" + }, + { + "image": "images/img_2072.nii.gz", + "pseudo_label": "images/img_2072.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2072/img_2072_seg.nii.gz" + }, + { + "image": "images/img_3120.nii.gz", + "pseudo_label": "images/img_3120.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3120/img_3120_seg.nii.gz" + }, + { + "image": "images/img_370.nii.gz", + "pseudo_label": "images/img_370.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_370/img_370_seg.nii.gz" + }, + { + "image": "images/img_824.nii.gz", + "pseudo_label": "images/img_824.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_824/img_824_seg.nii.gz" + }, + { + "image": "images/img_3333.nii.gz", + "pseudo_label": "images/img_3333.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3333/img_3333_seg.nii.gz" + }, + { + "image": "images/img_236.nii.gz", + "pseudo_label": "images/img_236.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_236/img_236_seg.nii.gz" + }, + { + "image": "images/img_3417.nii.gz", + "pseudo_label": "images/img_3417.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3417/img_3417_seg.nii.gz" + }, + { + "image": "images/img_192.nii.gz", + "pseudo_label": "images/img_192.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_192/img_192_seg.nii.gz" + }, + { + "image": "images/img_3434.nii.gz", + "pseudo_label": "images/img_3434.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3434/img_3434_seg.nii.gz" + }, + { + "image": "images/img_891.nii.gz", + "pseudo_label": "images/img_891.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_891/img_891_seg.nii.gz" + }, + { + "image": "images/img_3413.nii.gz", + "pseudo_label": "images/img_3413.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3413/img_3413_seg.nii.gz" + }, + { + "image": "images/img_212.nii.gz", + "pseudo_label": "images/img_212.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_212/img_212_seg.nii.gz" + }, + { + "image": "images/img_3200.nii.gz", + "pseudo_label": "images/img_3200.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3200/img_3200_seg.nii.gz" + }, + { + "image": "images/img_2573.nii.gz", + "pseudo_label": "images/img_2573.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2573/img_2573_seg.nii.gz" + }, + { + "image": "images/img_2913.nii.gz", + "pseudo_label": "images/img_2913.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2913/img_2913_seg.nii.gz" + }, + { + "image": "images/img_528.nii.gz", + "pseudo_label": "images/img_528.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_528/img_528_seg.nii.gz" + }, + { + "image": "images/img_706.nii.gz", + "pseudo_label": "images/img_706.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_706/img_706_seg.nii.gz" + }, + { + "image": "images/img_307.nii.gz", + "pseudo_label": "images/img_307.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_307/img_307_seg.nii.gz" + }, + { + "image": "images/img_3038.nii.gz", + "pseudo_label": "images/img_3038.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3038/img_3038_seg.nii.gz" + }, + { + "image": "images/img_2264.nii.gz", + "pseudo_label": "images/img_2264.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2264/img_2264_seg.nii.gz" + }, + { + "image": "images/img_2815.nii.gz", + "pseudo_label": "images/img_2815.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2815/img_2815_seg.nii.gz" + }, + { + "image": "images/img_850.nii.gz", + "pseudo_label": "images/img_850.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_850/img_850_seg.nii.gz" + }, + { + "image": "images/img_2253.nii.gz", + "pseudo_label": "images/img_2253.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2253/img_2253_seg.nii.gz" + }, + { + "image": "images/img_2955.nii.gz", + "pseudo_label": "images/img_2955.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2955/img_2955_seg.nii.gz" + }, + { + "image": "images/img_785.nii.gz", + "pseudo_label": "images/img_785.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_785/img_785_seg.nii.gz" + }, + { + "image": "images/img_1560.nii.gz", + "pseudo_label": "images/img_1560.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1560/img_1560_seg.nii.gz" + }, + { + "image": "images/img_2923.nii.gz", + "pseudo_label": "images/img_2923.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2923/img_2923_seg.nii.gz" + }, + { + "image": "images/img_1569.nii.gz", + "pseudo_label": "images/img_1569.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1569/img_1569_seg.nii.gz" + }, + { + "image": "images/img_1956.nii.gz", + "pseudo_label": "images/img_1956.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1956/img_1956_seg.nii.gz" + }, + { + "image": "images/img_107.nii.gz", + "pseudo_label": "images/img_107.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_107/img_107_seg.nii.gz" + }, + { + "image": "images/img_2674.nii.gz", + "pseudo_label": "images/img_2674.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2674/img_2674_seg.nii.gz" + }, + { + "image": "images/img_3026.nii.gz", + "pseudo_label": "images/img_3026.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3026/img_3026_seg.nii.gz" + }, + { + "image": "images/img_2866.nii.gz", + "pseudo_label": "images/img_2866.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2866/img_2866_seg.nii.gz" + }, + { + "image": "images/img_1103.nii.gz", + "pseudo_label": "images/img_1103.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1103/img_1103_seg.nii.gz" + }, + { + "image": "images/img_2127.nii.gz", + "pseudo_label": "images/img_2127.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2127/img_2127_seg.nii.gz" + }, + { + "image": "images/img_3206.nii.gz", + "pseudo_label": "images/img_3206.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3206/img_3206_seg.nii.gz" + }, + { + "image": "images/img_2357.nii.gz", + "pseudo_label": "images/img_2357.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2357/img_2357_seg.nii.gz" + }, + { + "image": "images/img_3066.nii.gz", + "pseudo_label": "images/img_3066.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3066/img_3066_seg.nii.gz" + }, + { + "image": "images/img_2896.nii.gz", + "pseudo_label": "images/img_2896.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2896/img_2896_seg.nii.gz" + }, + { + "image": "images/img_2682.nii.gz", + "pseudo_label": "images/img_2682.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2682/img_2682_seg.nii.gz" + }, + { + "image": "images/img_1612.nii.gz", + "pseudo_label": "images/img_1612.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1612/img_1612_seg.nii.gz" + }, + { + "image": "images/img_828.nii.gz", + "pseudo_label": "images/img_828.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_828/img_828_seg.nii.gz" + }, + { + "image": "images/img_3003.nii.gz", + "pseudo_label": "images/img_3003.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3003/img_3003_seg.nii.gz" + }, + { + "image": "images/img_1747.nii.gz", + "pseudo_label": "images/img_1747.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1747/img_1747_seg.nii.gz" + }, + { + "image": "images/img_2535.nii.gz", + "pseudo_label": "images/img_2535.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2535/img_2535_seg.nii.gz" + }, + { + "image": "images/img_488.nii.gz", + "pseudo_label": "images/img_488.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_488/img_488_seg.nii.gz" + }, + { + "image": "images/img_3191.nii.gz", + "pseudo_label": "images/img_3191.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3191/img_3191_seg.nii.gz" + }, + { + "image": "images/img_1812.nii.gz", + "pseudo_label": "images/img_1812.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1812/img_1812_seg.nii.gz" + }, + { + "image": "images/img_2260.nii.gz", + "pseudo_label": "images/img_2260.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2260/img_2260_seg.nii.gz" + }, + { + "image": "images/img_2626.nii.gz", + "pseudo_label": "images/img_2626.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2626/img_2626_seg.nii.gz" + }, + { + "image": "images/img_776.nii.gz", + "pseudo_label": "images/img_776.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_776/img_776_seg.nii.gz" + }, + { + "image": "images/img_1960.nii.gz", + "pseudo_label": "images/img_1960.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1960/img_1960_seg.nii.gz" + }, + { + "image": "images/img_920.nii.gz", + "pseudo_label": "images/img_920.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_920/img_920_seg.nii.gz" + }, + { + "image": "images/img_2892.nii.gz", + "pseudo_label": "images/img_2892.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2892/img_2892_seg.nii.gz" + }, + { + "image": "images/img_978.nii.gz", + "pseudo_label": "images/img_978.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_978/img_978_seg.nii.gz" + }, + { + "image": "images/img_2183.nii.gz", + "pseudo_label": "images/img_2183.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2183/img_2183_seg.nii.gz" + }, + { + "image": "images/img_3084.nii.gz", + "pseudo_label": "images/img_3084.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3084/img_3084_seg.nii.gz" + }, + { + "image": "images/img_3135.nii.gz", + "pseudo_label": "images/img_3135.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3135/img_3135_seg.nii.gz" + }, + { + "image": "images/img_3295.nii.gz", + "pseudo_label": "images/img_3295.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3295/img_3295_seg.nii.gz" + }, + { + "image": "images/img_1940.nii.gz", + "pseudo_label": "images/img_1940.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1940/img_1940_seg.nii.gz" + }, + { + "image": "images/img_1628.nii.gz", + "pseudo_label": "images/img_1628.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1628/img_1628_seg.nii.gz" + }, + { + "image": "images/img_1040.nii.gz", + "pseudo_label": "images/img_1040.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1040/img_1040_seg.nii.gz" + }, + { + "image": "images/img_956.nii.gz", + "pseudo_label": "images/img_956.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_956/img_956_seg.nii.gz" + }, + { + "image": "images/img_2339.nii.gz", + "pseudo_label": "images/img_2339.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2339/img_2339_seg.nii.gz" + }, + { + "image": "images/img_1727.nii.gz", + "pseudo_label": "images/img_1727.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1727/img_1727_seg.nii.gz" + }, + { + "image": "images/img_756.nii.gz", + "pseudo_label": "images/img_756.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_756/img_756_seg.nii.gz" + }, + { + "image": "images/img_2599.nii.gz", + "pseudo_label": "images/img_2599.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2599/img_2599_seg.nii.gz" + }, + { + "image": "images/img_323.nii.gz", + "pseudo_label": "images/img_323.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_323/img_323_seg.nii.gz" + }, + { + "image": "images/img_1123.nii.gz", + "pseudo_label": "images/img_1123.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1123/img_1123_seg.nii.gz" + }, + { + "image": "images/img_155.nii.gz", + "pseudo_label": "images/img_155.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_155/img_155_seg.nii.gz" + }, + { + "image": "images/img_2244.nii.gz", + "pseudo_label": "images/img_2244.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2244/img_2244_seg.nii.gz" + }, + { + "image": "images/img_937.nii.gz", + "pseudo_label": "images/img_937.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_937/img_937_seg.nii.gz" + }, + { + "image": "images/img_1022.nii.gz", + "pseudo_label": "images/img_1022.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1022/img_1022_seg.nii.gz" + }, + { + "image": "images/img_1546.nii.gz", + "pseudo_label": "images/img_1546.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1546/img_1546_seg.nii.gz" + }, + { + "image": "images/img_2530.nii.gz", + "pseudo_label": "images/img_2530.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2530/img_2530_seg.nii.gz" + }, + { + "image": "images/img_3141.nii.gz", + "pseudo_label": "images/img_3141.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3141/img_3141_seg.nii.gz" + }, + { + "image": "images/img_2411.nii.gz", + "pseudo_label": "images/img_2411.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2411/img_2411_seg.nii.gz" + }, + { + "image": "images/img_2166.nii.gz", + "pseudo_label": "images/img_2166.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2166/img_2166_seg.nii.gz" + }, + { + "image": "images/img_2461.nii.gz", + "pseudo_label": "images/img_2461.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2461/img_2461_seg.nii.gz" + }, + { + "image": "images/img_899.nii.gz", + "pseudo_label": "images/img_899.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_899/img_899_seg.nii.gz" + }, + { + "image": "images/img_1694.nii.gz", + "pseudo_label": "images/img_1694.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1694/img_1694_seg.nii.gz" + }, + { + "image": "images/img_1030.nii.gz", + "pseudo_label": "images/img_1030.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1030/img_1030_seg.nii.gz" + }, + { + "image": "images/img_3262.nii.gz", + "pseudo_label": "images/img_3262.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3262/img_3262_seg.nii.gz" + }, + { + "image": "images/img_1097.nii.gz", + "pseudo_label": "images/img_1097.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1097/img_1097_seg.nii.gz" + }, + { + "image": "images/img_3183.nii.gz", + "pseudo_label": "images/img_3183.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3183/img_3183_seg.nii.gz" + }, + { + "image": "images/img_400.nii.gz", + "pseudo_label": "images/img_400.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_400/img_400_seg.nii.gz" + }, + { + "image": "images/img_3061.nii.gz", + "pseudo_label": "images/img_3061.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3061/img_3061_seg.nii.gz" + }, + { + "image": "images/img_3159.nii.gz", + "pseudo_label": "images/img_3159.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3159/img_3159_seg.nii.gz" + }, + { + "image": "images/img_3010.nii.gz", + "pseudo_label": "images/img_3010.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3010/img_3010_seg.nii.gz" + }, + { + "image": "images/img_2795.nii.gz", + "pseudo_label": "images/img_2795.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2795/img_2795_seg.nii.gz" + }, + { + "image": "images/img_2374.nii.gz", + "pseudo_label": "images/img_2374.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2374/img_2374_seg.nii.gz" + }, + { + "image": "images/img_2627.nii.gz", + "pseudo_label": "images/img_2627.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2627/img_2627_seg.nii.gz" + }, + { + "image": "images/img_1155.nii.gz", + "pseudo_label": "images/img_1155.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1155/img_1155_seg.nii.gz" + }, + { + "image": "images/img_907.nii.gz", + "pseudo_label": "images/img_907.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_907/img_907_seg.nii.gz" + }, + { + "image": "images/img_2011.nii.gz", + "pseudo_label": "images/img_2011.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2011/img_2011_seg.nii.gz" + }, + { + "image": "images/img_2200.nii.gz", + "pseudo_label": "images/img_2200.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2200/img_2200_seg.nii.gz" + }, + { + "image": "images/img_3313.nii.gz", + "pseudo_label": "images/img_3313.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3313/img_3313_seg.nii.gz" + }, + { + "image": "images/img_1061.nii.gz", + "pseudo_label": "images/img_1061.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1061/img_1061_seg.nii.gz" + }, + { + "image": "images/img_1988.nii.gz", + "pseudo_label": "images/img_1988.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1988/img_1988_seg.nii.gz" + }, + { + "image": "images/img_1911.nii.gz", + "pseudo_label": "images/img_1911.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1911/img_1911_seg.nii.gz" + }, + { + "image": "images/img_398.nii.gz", + "pseudo_label": "images/img_398.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_398/img_398_seg.nii.gz" + }, + { + "image": "images/img_2741.nii.gz", + "pseudo_label": "images/img_2741.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2741/img_2741_seg.nii.gz" + }, + { + "image": "images/img_1620.nii.gz", + "pseudo_label": "images/img_1620.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1620/img_1620_seg.nii.gz" + }, + { + "image": "images/img_1852.nii.gz", + "pseudo_label": "images/img_1852.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1852/img_1852_seg.nii.gz" + }, + { + "image": "images/img_374.nii.gz", + "pseudo_label": "images/img_374.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_374/img_374_seg.nii.gz" + }, + { + "image": "images/img_3385.nii.gz", + "pseudo_label": "images/img_3385.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3385/img_3385_seg.nii.gz" + }, + { + "image": "images/img_1598.nii.gz", + "pseudo_label": "images/img_1598.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1598/img_1598_seg.nii.gz" + }, + { + "image": "images/img_1856.nii.gz", + "pseudo_label": "images/img_1856.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1856/img_1856_seg.nii.gz" + }, + { + "image": "images/img_1896.nii.gz", + "pseudo_label": "images/img_1896.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1896/img_1896_seg.nii.gz" + }, + { + "image": "images/img_2248.nii.gz", + "pseudo_label": "images/img_2248.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2248/img_2248_seg.nii.gz" + }, + { + "image": "images/img_1719.nii.gz", + "pseudo_label": "images/img_1719.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1719/img_1719_seg.nii.gz" + }, + { + "image": "images/img_3405.nii.gz", + "pseudo_label": "images/img_3405.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3405/img_3405_seg.nii.gz" + }, + { + "image": "images/img_2149.nii.gz", + "pseudo_label": "images/img_2149.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2149/img_2149_seg.nii.gz" + }, + { + "image": "images/img_2112.nii.gz", + "pseudo_label": "images/img_2112.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2112/img_2112_seg.nii.gz" + }, + { + "image": "images/img_1742.nii.gz", + "pseudo_label": "images/img_1742.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1742/img_1742_seg.nii.gz" + }, + { + "image": "images/img_602.nii.gz", + "pseudo_label": "images/img_602.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_602/img_602_seg.nii.gz" + }, + { + "image": "images/img_2143.nii.gz", + "pseudo_label": "images/img_2143.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2143/img_2143_seg.nii.gz" + }, + { + "image": "images/img_1792.nii.gz", + "pseudo_label": "images/img_1792.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1792/img_1792_seg.nii.gz" + }, + { + "image": "images/img_3328.nii.gz", + "pseudo_label": "images/img_3328.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3328/img_3328_seg.nii.gz" + }, + { + "image": "images/img_3177.nii.gz", + "pseudo_label": "images/img_3177.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3177/img_3177_seg.nii.gz" + }, + { + "image": "images/img_2595.nii.gz", + "pseudo_label": "images/img_2595.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2595/img_2595_seg.nii.gz" + }, + { + "image": "images/img_2232.nii.gz", + "pseudo_label": "images/img_2232.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2232/img_2232_seg.nii.gz" + }, + { + "image": "images/img_994.nii.gz", + "pseudo_label": "images/img_994.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_994/img_994_seg.nii.gz" + }, + { + "image": "images/img_251.nii.gz", + "pseudo_label": "images/img_251.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_251/img_251_seg.nii.gz" + }, + { + "image": "images/img_723.nii.gz", + "pseudo_label": "images/img_723.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_723/img_723_seg.nii.gz" + }, + { + "image": "images/img_405.nii.gz", + "pseudo_label": "images/img_405.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_405/img_405_seg.nii.gz" + }, + { + "image": "images/img_81.nii.gz", + "pseudo_label": "images/img_81.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_81/img_81_seg.nii.gz" + }, + { + "image": "images/img_1020.nii.gz", + "pseudo_label": "images/img_1020.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1020/img_1020_seg.nii.gz" + }, + { + "image": "images/img_847.nii.gz", + "pseudo_label": "images/img_847.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_847/img_847_seg.nii.gz" + }, + { + "image": "images/img_2877.nii.gz", + "pseudo_label": "images/img_2877.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2877/img_2877_seg.nii.gz" + }, + { + "image": "images/img_2445.nii.gz", + "pseudo_label": "images/img_2445.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2445/img_2445_seg.nii.gz" + }, + { + "image": "images/img_1950.nii.gz", + "pseudo_label": "images/img_1950.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1950/img_1950_seg.nii.gz" + }, + { + "image": "images/img_2097.nii.gz", + "pseudo_label": "images/img_2097.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2097/img_2097_seg.nii.gz" + }, + { + "image": "images/img_923.nii.gz", + "pseudo_label": "images/img_923.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_923/img_923_seg.nii.gz" + }, + { + "image": "images/img_1584.nii.gz", + "pseudo_label": "images/img_1584.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1584/img_1584_seg.nii.gz" + }, + { + "image": "images/img_2394.nii.gz", + "pseudo_label": "images/img_2394.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2394/img_2394_seg.nii.gz" + }, + { + "image": "images/img_461.nii.gz", + "pseudo_label": "images/img_461.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_461/img_461_seg.nii.gz" + }, + { + "image": "images/img_2412.nii.gz", + "pseudo_label": "images/img_2412.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2412/img_2412_seg.nii.gz" + }, + { + "image": "images/img_2767.nii.gz", + "pseudo_label": "images/img_2767.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2767/img_2767_seg.nii.gz" + }, + { + "image": "images/img_2765.nii.gz", + "pseudo_label": "images/img_2765.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2765/img_2765_seg.nii.gz" + }, + { + "image": "images/img_3316.nii.gz", + "pseudo_label": "images/img_3316.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3316/img_3316_seg.nii.gz" + }, + { + "image": "images/img_2423.nii.gz", + "pseudo_label": "images/img_2423.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2423/img_2423_seg.nii.gz" + }, + { + "image": "images/img_1808.nii.gz", + "pseudo_label": "images/img_1808.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1808/img_1808_seg.nii.gz" + }, + { + "image": "images/img_910.nii.gz", + "pseudo_label": "images/img_910.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_910/img_910_seg.nii.gz" + }, + { + "image": "images/img_2845.nii.gz", + "pseudo_label": "images/img_2845.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1142.nii.gz", + "pseudo_label": "images/img_1142.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1142/img_1142_seg.nii.gz" + }, + { + "image": "images/img_1651.nii.gz", + "pseudo_label": "images/img_1651.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1651/img_1651_seg.nii.gz" + }, + { + "image": "images/img_906.nii.gz", + "pseudo_label": "images/img_906.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_906/img_906_seg.nii.gz" + }, + { + "image": "images/img_2101.nii.gz", + "pseudo_label": "images/img_2101.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2101/img_2101_seg.nii.gz" + }, + { + "image": "images/img_2527.nii.gz", + "pseudo_label": "images/img_2527.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_762.nii.gz", + "pseudo_label": "images/img_762.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_762/img_762_seg.nii.gz" + }, + { + "image": "images/img_3221.nii.gz", + "pseudo_label": "images/img_3221.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_3221/img_3221_seg.nii.gz" + }, + { + "image": "images/img_59.nii.gz", + "pseudo_label": "images/img_59.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_67.nii.gz", + "pseudo_label": "images/img_67.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_67/img_67_seg.nii.gz" + }, + { + "image": "images/img_2931.nii.gz", + "pseudo_label": "images/img_2931.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2931/img_2931_seg.nii.gz" + }, + { + "image": "images/img_1880.nii.gz", + "pseudo_label": "images/img_1880.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1880/img_1880_seg.nii.gz" + }, + { + "image": "images/img_2204.nii.gz", + "pseudo_label": "images/img_2204.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2204/img_2204_seg.nii.gz" + }, + { + "image": "images/img_557.nii.gz", + "pseudo_label": "images/img_557.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2987.nii.gz", + "pseudo_label": "images/img_2987.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2218.nii.gz", + "pseudo_label": "images/img_2218.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2956.nii.gz", + "pseudo_label": "images/img_2956.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_412.nii.gz", + "pseudo_label": "images/img_412.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_412/img_412_seg.nii.gz" + }, + { + "image": "images/img_2846.nii.gz", + "pseudo_label": "images/img_2846.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2846/img_2846_seg.nii.gz" + }, + { + "image": "images/img_540.nii.gz", + "pseudo_label": "images/img_540.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_540/img_540_seg.nii.gz" + }, + { + "image": "images/img_1526.nii.gz", + "pseudo_label": "images/img_1526.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2022.nii.gz", + "pseudo_label": "images/img_2022.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_879.nii.gz", + "pseudo_label": "images/img_879.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1120.nii.gz", + "pseudo_label": "images/img_1120.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2539.nii.gz", + "pseudo_label": "images/img_2539.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_696.nii.gz", + "pseudo_label": "images/img_696.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_696/img_696_seg.nii.gz" + }, + { + "image": "images/img_329.nii.gz", + "pseudo_label": "images/img_329.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_329/img_329_seg.nii.gz" + }, + { + "image": "images/img_1148.nii.gz", + "pseudo_label": "images/img_1148.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_1148/img_1148_seg.nii.gz" + }, + { + "image": "images/img_2571.nii.gz", + "pseudo_label": "images/img_2571.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_767.nii.gz", + "pseudo_label": "images/img_767.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2443.nii.gz", + "pseudo_label": "images/img_2443.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2465.nii.gz", + "pseudo_label": "images/img_2465.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3196.nii.gz", + "pseudo_label": "images/img_3196.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_694.nii.gz", + "pseudo_label": "images/img_694.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_694/img_694_seg.nii.gz" + }, + { + "image": "images/img_2199.nii.gz", + "pseudo_label": "images/img_2199.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_2199/img_2199_seg.nii.gz" + }, + { + "image": "images/img_33.nii.gz", + "pseudo_label": "images/img_33.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen", + "label_sv": "/workspace_infer/supervoxel_sam/tcia_colon_100/img_33/img_33_seg.nii.gz" + }, + { + "image": "images/img_228.nii.gz", + "pseudo_label": "images/img_228.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2932.nii.gz", + "pseudo_label": "images/img_2932.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_627.nii.gz", + "pseudo_label": "images/img_627.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_859.nii.gz", + "pseudo_label": "images/img_859.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2065.nii.gz", + "pseudo_label": "images/img_2065.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_615.nii.gz", + "pseudo_label": "images/img_615.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_162.nii.gz", + "pseudo_label": "images/img_162.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_953.nii.gz", + "pseudo_label": "images/img_953.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2836.nii.gz", + "pseudo_label": "images/img_2836.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1889.nii.gz", + "pseudo_label": "images/img_1889.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_974.nii.gz", + "pseudo_label": "images/img_974.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_267.nii.gz", + "pseudo_label": "images/img_267.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3281.nii.gz", + "pseudo_label": "images/img_3281.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1176.nii.gz", + "pseudo_label": "images/img_1176.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_7.nii.gz", + "pseudo_label": "images/img_7.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1871.nii.gz", + "pseudo_label": "images/img_1871.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1987.nii.gz", + "pseudo_label": "images/img_1987.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1726.nii.gz", + "pseudo_label": "images/img_1726.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3250.nii.gz", + "pseudo_label": "images/img_3250.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_437.nii.gz", + "pseudo_label": "images/img_437.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1663.nii.gz", + "pseudo_label": "images/img_1663.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2082.nii.gz", + "pseudo_label": "images/img_2082.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_788.nii.gz", + "pseudo_label": "images/img_788.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_438.nii.gz", + "pseudo_label": "images/img_438.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1921.nii.gz", + "pseudo_label": "images/img_1921.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2664.nii.gz", + "pseudo_label": "images/img_2664.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_945.nii.gz", + "pseudo_label": "images/img_945.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_520.nii.gz", + "pseudo_label": "images/img_520.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2192.nii.gz", + "pseudo_label": "images/img_2192.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_272.nii.gz", + "pseudo_label": "images/img_272.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_321.nii.gz", + "pseudo_label": "images/img_321.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1029.nii.gz", + "pseudo_label": "images/img_1029.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_496.nii.gz", + "pseudo_label": "images/img_496.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_585.nii.gz", + "pseudo_label": "images/img_585.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_511.nii.gz", + "pseudo_label": "images/img_511.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2355.nii.gz", + "pseudo_label": "images/img_2355.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2006.nii.gz", + "pseudo_label": "images/img_2006.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2823.nii.gz", + "pseudo_label": "images/img_2823.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2832.nii.gz", + "pseudo_label": "images/img_2832.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3323.nii.gz", + "pseudo_label": "images/img_3323.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3082.nii.gz", + "pseudo_label": "images/img_3082.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_288.nii.gz", + "pseudo_label": "images/img_288.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2039.nii.gz", + "pseudo_label": "images/img_2039.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1698.nii.gz", + "pseudo_label": "images/img_1698.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_514.nii.gz", + "pseudo_label": "images/img_514.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_225.nii.gz", + "pseudo_label": "images/img_225.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_894.nii.gz", + "pseudo_label": "images/img_894.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2337.nii.gz", + "pseudo_label": "images/img_2337.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2206.nii.gz", + "pseudo_label": "images/img_2206.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1920.nii.gz", + "pseudo_label": "images/img_1920.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2936.nii.gz", + "pseudo_label": "images/img_2936.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2811.nii.gz", + "pseudo_label": "images/img_2811.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3163.nii.gz", + "pseudo_label": "images/img_3163.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2291.nii.gz", + "pseudo_label": "images/img_2291.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_544.nii.gz", + "pseudo_label": "images/img_544.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2714.nii.gz", + "pseudo_label": "images/img_2714.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2490.nii.gz", + "pseudo_label": "images/img_2490.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_862.nii.gz", + "pseudo_label": "images/img_862.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_100.nii.gz", + "pseudo_label": "images/img_100.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2648.nii.gz", + "pseudo_label": "images/img_2648.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2158.nii.gz", + "pseudo_label": "images/img_2158.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2365.nii.gz", + "pseudo_label": "images/img_2365.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2254.nii.gz", + "pseudo_label": "images/img_2254.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1794.nii.gz", + "pseudo_label": "images/img_1794.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3198.nii.gz", + "pseudo_label": "images/img_3198.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_768.nii.gz", + "pseudo_label": "images/img_768.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1783.nii.gz", + "pseudo_label": "images/img_1783.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1192.nii.gz", + "pseudo_label": "images/img_1192.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2376.nii.gz", + "pseudo_label": "images/img_2376.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2506.nii.gz", + "pseudo_label": "images/img_2506.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1642.nii.gz", + "pseudo_label": "images/img_1642.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2856.nii.gz", + "pseudo_label": "images/img_2856.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2669.nii.gz", + "pseudo_label": "images/img_2669.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_754.nii.gz", + "pseudo_label": "images/img_754.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2225.nii.gz", + "pseudo_label": "images/img_2225.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2156.nii.gz", + "pseudo_label": "images/img_2156.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1841.nii.gz", + "pseudo_label": "images/img_1841.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3240.nii.gz", + "pseudo_label": "images/img_3240.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2275.nii.gz", + "pseudo_label": "images/img_2275.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2526.nii.gz", + "pseudo_label": "images/img_2526.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_143.nii.gz", + "pseudo_label": "images/img_143.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2841.nii.gz", + "pseudo_label": "images/img_2841.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2638.nii.gz", + "pseudo_label": "images/img_2638.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1822.nii.gz", + "pseudo_label": "images/img_1822.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2134.nii.gz", + "pseudo_label": "images/img_2134.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3354.nii.gz", + "pseudo_label": "images/img_3354.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2874.nii.gz", + "pseudo_label": "images/img_2874.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1851.nii.gz", + "pseudo_label": "images/img_1851.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2563.nii.gz", + "pseudo_label": "images/img_2563.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2891.nii.gz", + "pseudo_label": "images/img_2891.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1798.nii.gz", + "pseudo_label": "images/img_1798.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_752.nii.gz", + "pseudo_label": "images/img_752.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1089.nii.gz", + "pseudo_label": "images/img_1089.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2074.nii.gz", + "pseudo_label": "images/img_2074.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2763.nii.gz", + "pseudo_label": "images/img_2763.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1703.nii.gz", + "pseudo_label": "images/img_1703.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1143.nii.gz", + "pseudo_label": "images/img_1143.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2705.nii.gz", + "pseudo_label": "images/img_2705.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_239.nii.gz", + "pseudo_label": "images/img_239.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1173.nii.gz", + "pseudo_label": "images/img_1173.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_898.nii.gz", + "pseudo_label": "images/img_898.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1847.nii.gz", + "pseudo_label": "images/img_1847.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1638.nii.gz", + "pseudo_label": "images/img_1638.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2016.nii.gz", + "pseudo_label": "images/img_2016.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_584.nii.gz", + "pseudo_label": "images/img_584.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2643.nii.gz", + "pseudo_label": "images/img_2643.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2159.nii.gz", + "pseudo_label": "images/img_2159.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3058.nii.gz", + "pseudo_label": "images/img_3058.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3222.nii.gz", + "pseudo_label": "images/img_3222.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_27.nii.gz", + "pseudo_label": "images/img_27.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3431.nii.gz", + "pseudo_label": "images/img_3431.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1804.nii.gz", + "pseudo_label": "images/img_1804.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1970.nii.gz", + "pseudo_label": "images/img_1970.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1678.nii.gz", + "pseudo_label": "images/img_1678.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2447.nii.gz", + "pseudo_label": "images/img_2447.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_610.nii.gz", + "pseudo_label": "images/img_610.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_806.nii.gz", + "pseudo_label": "images/img_806.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1998.nii.gz", + "pseudo_label": "images/img_1998.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_104.nii.gz", + "pseudo_label": "images/img_104.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2849.nii.gz", + "pseudo_label": "images/img_2849.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2451.nii.gz", + "pseudo_label": "images/img_2451.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_227.nii.gz", + "pseudo_label": "images/img_227.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2115.nii.gz", + "pseudo_label": "images/img_2115.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1587.nii.gz", + "pseudo_label": "images/img_1587.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_425.nii.gz", + "pseudo_label": "images/img_425.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1579.nii.gz", + "pseudo_label": "images/img_1579.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2396.nii.gz", + "pseudo_label": "images/img_2396.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2169.nii.gz", + "pseudo_label": "images/img_2169.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2438.nii.gz", + "pseudo_label": "images/img_2438.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_74.nii.gz", + "pseudo_label": "images/img_74.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_973.nii.gz", + "pseudo_label": "images/img_973.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_569.nii.gz", + "pseudo_label": "images/img_569.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_875.nii.gz", + "pseudo_label": "images/img_875.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2577.nii.gz", + "pseudo_label": "images/img_2577.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_326.nii.gz", + "pseudo_label": "images/img_326.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2061.nii.gz", + "pseudo_label": "images/img_2061.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_153.nii.gz", + "pseudo_label": "images/img_153.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1759.nii.gz", + "pseudo_label": "images/img_1759.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_210.nii.gz", + "pseudo_label": "images/img_210.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_817.nii.gz", + "pseudo_label": "images/img_817.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_619.nii.gz", + "pseudo_label": "images/img_619.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3416.nii.gz", + "pseudo_label": "images/img_3416.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_727.nii.gz", + "pseudo_label": "images/img_727.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1682.nii.gz", + "pseudo_label": "images/img_1682.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_144.nii.gz", + "pseudo_label": "images/img_144.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2287.nii.gz", + "pseudo_label": "images/img_2287.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3398.nii.gz", + "pseudo_label": "images/img_3398.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2294.nii.gz", + "pseudo_label": "images/img_2294.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3428.nii.gz", + "pseudo_label": "images/img_3428.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_821.nii.gz", + "pseudo_label": "images/img_821.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_310.nii.gz", + "pseudo_label": "images/img_310.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_434.nii.gz", + "pseudo_label": "images/img_434.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_11.nii.gz", + "pseudo_label": "images/img_11.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3074.nii.gz", + "pseudo_label": "images/img_3074.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2015.nii.gz", + "pseudo_label": "images/img_2015.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3041.nii.gz", + "pseudo_label": "images/img_3041.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2951.nii.gz", + "pseudo_label": "images/img_2951.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1893.nii.gz", + "pseudo_label": "images/img_1893.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3321.nii.gz", + "pseudo_label": "images/img_3321.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2840.nii.gz", + "pseudo_label": "images/img_2840.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3327.nii.gz", + "pseudo_label": "images/img_3327.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3192.nii.gz", + "pseudo_label": "images/img_3192.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_532.nii.gz", + "pseudo_label": "images/img_532.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2119.nii.gz", + "pseudo_label": "images/img_2119.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3255.nii.gz", + "pseudo_label": "images/img_3255.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_680.nii.gz", + "pseudo_label": "images/img_680.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_931.nii.gz", + "pseudo_label": "images/img_931.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_670.nii.gz", + "pseudo_label": "images/img_670.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3306.nii.gz", + "pseudo_label": "images/img_3306.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3238.nii.gz", + "pseudo_label": "images/img_3238.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_675.nii.gz", + "pseudo_label": "images/img_675.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1771.nii.gz", + "pseudo_label": "images/img_1771.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3101.nii.gz", + "pseudo_label": "images/img_3101.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_778.nii.gz", + "pseudo_label": "images/img_778.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3051.nii.gz", + "pseudo_label": "images/img_3051.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3436.nii.gz", + "pseudo_label": "images/img_3436.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1596.nii.gz", + "pseudo_label": "images/img_1596.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2804.nii.gz", + "pseudo_label": "images/img_2804.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2647.nii.gz", + "pseudo_label": "images/img_2647.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3358.nii.gz", + "pseudo_label": "images/img_3358.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_287.nii.gz", + "pseudo_label": "images/img_287.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2935.nii.gz", + "pseudo_label": "images/img_2935.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_639.nii.gz", + "pseudo_label": "images/img_639.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_936.nii.gz", + "pseudo_label": "images/img_936.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1986.nii.gz", + "pseudo_label": "images/img_1986.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2619.nii.gz", + "pseudo_label": "images/img_2619.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_428.nii.gz", + "pseudo_label": "images/img_428.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2121.nii.gz", + "pseudo_label": "images/img_2121.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1649.nii.gz", + "pseudo_label": "images/img_1649.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1600.nii.gz", + "pseudo_label": "images/img_1600.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2288.nii.gz", + "pseudo_label": "images/img_2288.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2220.nii.gz", + "pseudo_label": "images/img_2220.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_392.nii.gz", + "pseudo_label": "images/img_392.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3102.nii.gz", + "pseudo_label": "images/img_3102.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3336.nii.gz", + "pseudo_label": "images/img_3336.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3119.nii.gz", + "pseudo_label": "images/img_3119.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2812.nii.gz", + "pseudo_label": "images/img_2812.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1974.nii.gz", + "pseudo_label": "images/img_1974.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_391.nii.gz", + "pseudo_label": "images/img_391.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_232.nii.gz", + "pseudo_label": "images/img_232.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2781.nii.gz", + "pseudo_label": "images/img_2781.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_342.nii.gz", + "pseudo_label": "images/img_342.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2054.nii.gz", + "pseudo_label": "images/img_2054.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2165.nii.gz", + "pseudo_label": "images/img_2165.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1989.nii.gz", + "pseudo_label": "images/img_1989.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2938.nii.gz", + "pseudo_label": "images/img_2938.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1111.nii.gz", + "pseudo_label": "images/img_1111.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2607.nii.gz", + "pseudo_label": "images/img_2607.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_64.nii.gz", + "pseudo_label": "images/img_64.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1941.nii.gz", + "pseudo_label": "images/img_1941.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1009.nii.gz", + "pseudo_label": "images/img_1009.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1710.nii.gz", + "pseudo_label": "images/img_1710.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3298.nii.gz", + "pseudo_label": "images/img_3298.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1959.nii.gz", + "pseudo_label": "images/img_1959.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_80.nii.gz", + "pseudo_label": "images/img_80.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2052.nii.gz", + "pseudo_label": "images/img_2052.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2385.nii.gz", + "pseudo_label": "images/img_2385.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_869.nii.gz", + "pseudo_label": "images/img_869.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3139.nii.gz", + "pseudo_label": "images/img_3139.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2634.nii.gz", + "pseudo_label": "images/img_2634.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_712.nii.gz", + "pseudo_label": "images/img_712.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_533.nii.gz", + "pseudo_label": "images/img_533.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1888.nii.gz", + "pseudo_label": "images/img_1888.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2785.nii.gz", + "pseudo_label": "images/img_2785.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3377.nii.gz", + "pseudo_label": "images/img_3377.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_350.nii.gz", + "pseudo_label": "images/img_350.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_883.nii.gz", + "pseudo_label": "images/img_883.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_735.nii.gz", + "pseudo_label": "images/img_735.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1113.nii.gz", + "pseudo_label": "images/img_1113.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_410.nii.gz", + "pseudo_label": "images/img_410.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_327.nii.gz", + "pseudo_label": "images/img_327.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2437.nii.gz", + "pseudo_label": "images/img_2437.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1875.nii.gz", + "pseudo_label": "images/img_1875.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3309.nii.gz", + "pseudo_label": "images/img_3309.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_611.nii.gz", + "pseudo_label": "images/img_611.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1779.nii.gz", + "pseudo_label": "images/img_1779.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3218.nii.gz", + "pseudo_label": "images/img_3218.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1077.nii.gz", + "pseudo_label": "images/img_1077.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_416.nii.gz", + "pseudo_label": "images/img_416.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3185.nii.gz", + "pseudo_label": "images/img_3185.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1559.nii.gz", + "pseudo_label": "images/img_1559.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_643.nii.gz", + "pseudo_label": "images/img_643.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2791.nii.gz", + "pseudo_label": "images/img_2791.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1018.nii.gz", + "pseudo_label": "images/img_1018.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2657.nii.gz", + "pseudo_label": "images/img_2657.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2639.nii.gz", + "pseudo_label": "images/img_2639.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_171.nii.gz", + "pseudo_label": "images/img_171.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2857.nii.gz", + "pseudo_label": "images/img_2857.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2883.nii.gz", + "pseudo_label": "images/img_2883.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2420.nii.gz", + "pseudo_label": "images/img_2420.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3374.nii.gz", + "pseudo_label": "images/img_3374.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1702.nii.gz", + "pseudo_label": "images/img_1702.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_651.nii.gz", + "pseudo_label": "images/img_651.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3052.nii.gz", + "pseudo_label": "images/img_3052.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_85.nii.gz", + "pseudo_label": "images/img_85.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3292.nii.gz", + "pseudo_label": "images/img_3292.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2348.nii.gz", + "pseudo_label": "images/img_2348.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3311.nii.gz", + "pseudo_label": "images/img_3311.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2782.nii.gz", + "pseudo_label": "images/img_2782.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1743.nii.gz", + "pseudo_label": "images/img_1743.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_419.nii.gz", + "pseudo_label": "images/img_419.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3420.nii.gz", + "pseudo_label": "images/img_3420.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_219.nii.gz", + "pseudo_label": "images/img_219.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3348.nii.gz", + "pseudo_label": "images/img_3348.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2448.nii.gz", + "pseudo_label": "images/img_2448.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_78.nii.gz", + "pseudo_label": "images/img_78.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_919.nii.gz", + "pseudo_label": "images/img_919.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1661.nii.gz", + "pseudo_label": "images/img_1661.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_832.nii.gz", + "pseudo_label": "images/img_832.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1048.nii.gz", + "pseudo_label": "images/img_1048.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2723.nii.gz", + "pseudo_label": "images/img_2723.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1580.nii.gz", + "pseudo_label": "images/img_1580.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1575.nii.gz", + "pseudo_label": "images/img_1575.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2382.nii.gz", + "pseudo_label": "images/img_2382.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1723.nii.gz", + "pseudo_label": "images/img_1723.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3075.nii.gz", + "pseudo_label": "images/img_3075.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2912.nii.gz", + "pseudo_label": "images/img_2912.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_360.nii.gz", + "pseudo_label": "images/img_360.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_157.nii.gz", + "pseudo_label": "images/img_157.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2157.nii.gz", + "pseudo_label": "images/img_2157.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2148.nii.gz", + "pseudo_label": "images/img_2148.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_766.nii.gz", + "pseudo_label": "images/img_766.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3318.nii.gz", + "pseudo_label": "images/img_3318.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3386.nii.gz", + "pseudo_label": "images/img_3386.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_537.nii.gz", + "pseudo_label": "images/img_537.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_603.nii.gz", + "pseudo_label": "images/img_603.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_478.nii.gz", + "pseudo_label": "images/img_478.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1568.nii.gz", + "pseudo_label": "images/img_1568.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3030.nii.gz", + "pseudo_label": "images/img_3030.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2545.nii.gz", + "pseudo_label": "images/img_2545.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2301.nii.gz", + "pseudo_label": "images/img_2301.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_264.nii.gz", + "pseudo_label": "images/img_264.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_163.nii.gz", + "pseudo_label": "images/img_163.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_634.nii.gz", + "pseudo_label": "images/img_634.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3344.nii.gz", + "pseudo_label": "images/img_3344.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3165.nii.gz", + "pseudo_label": "images/img_3165.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_708.nii.gz", + "pseudo_label": "images/img_708.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2495.nii.gz", + "pseudo_label": "images/img_2495.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1053.nii.gz", + "pseudo_label": "images/img_1053.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2581.nii.gz", + "pseudo_label": "images/img_2581.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3166.nii.gz", + "pseudo_label": "images/img_3166.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1010.nii.gz", + "pseudo_label": "images/img_1010.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2263.nii.gz", + "pseudo_label": "images/img_2263.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1688.nii.gz", + "pseudo_label": "images/img_1688.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2267.nii.gz", + "pseudo_label": "images/img_2267.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_489.nii.gz", + "pseudo_label": "images/img_489.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_915.nii.gz", + "pseudo_label": "images/img_915.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2279.nii.gz", + "pseudo_label": "images/img_2279.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3121.nii.gz", + "pseudo_label": "images/img_3121.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_577.nii.gz", + "pseudo_label": "images/img_577.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2901.nii.gz", + "pseudo_label": "images/img_2901.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1926.nii.gz", + "pseudo_label": "images/img_1926.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1981.nii.gz", + "pseudo_label": "images/img_1981.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1944.nii.gz", + "pseudo_label": "images/img_1944.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_291.nii.gz", + "pseudo_label": "images/img_291.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2537.nii.gz", + "pseudo_label": "images/img_2537.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_314.nii.gz", + "pseudo_label": "images/img_314.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_698.nii.gz", + "pseudo_label": "images/img_698.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2329.nii.gz", + "pseudo_label": "images/img_2329.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_126.nii.gz", + "pseudo_label": "images/img_126.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2043.nii.gz", + "pseudo_label": "images/img_2043.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2837.nii.gz", + "pseudo_label": "images/img_2837.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1109.nii.gz", + "pseudo_label": "images/img_1109.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2212.nii.gz", + "pseudo_label": "images/img_2212.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3201.nii.gz", + "pseudo_label": "images/img_3201.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2333.nii.gz", + "pseudo_label": "images/img_2333.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2706.nii.gz", + "pseudo_label": "images/img_2706.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_396.nii.gz", + "pseudo_label": "images/img_396.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_473.nii.gz", + "pseudo_label": "images/img_473.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_573.nii.gz", + "pseudo_label": "images/img_573.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1154.nii.gz", + "pseudo_label": "images/img_1154.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3072.nii.gz", + "pseudo_label": "images/img_3072.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_216.nii.gz", + "pseudo_label": "images/img_216.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_315.nii.gz", + "pseudo_label": "images/img_315.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2721.nii.gz", + "pseudo_label": "images/img_2721.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2697.nii.gz", + "pseudo_label": "images/img_2697.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_53.nii.gz", + "pseudo_label": "images/img_53.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1775.nii.gz", + "pseudo_label": "images/img_1775.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1932.nii.gz", + "pseudo_label": "images/img_1932.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1903.nii.gz", + "pseudo_label": "images/img_1903.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1641.nii.gz", + "pseudo_label": "images/img_1641.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_477.nii.gz", + "pseudo_label": "images/img_477.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2829.nii.gz", + "pseudo_label": "images/img_2829.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2297.nii.gz", + "pseudo_label": "images/img_2297.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2816.nii.gz", + "pseudo_label": "images/img_2816.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3037.nii.gz", + "pseudo_label": "images/img_3037.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2583.nii.gz", + "pseudo_label": "images/img_2583.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2315.nii.gz", + "pseudo_label": "images/img_2315.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1060.nii.gz", + "pseudo_label": "images/img_1060.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_168.nii.gz", + "pseudo_label": "images/img_168.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1969.nii.gz", + "pseudo_label": "images/img_1969.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1610.nii.gz", + "pseudo_label": "images/img_1610.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1013.nii.gz", + "pseudo_label": "images/img_1013.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1868.nii.gz", + "pseudo_label": "images/img_1868.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2920.nii.gz", + "pseudo_label": "images/img_2920.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1206.nii.gz", + "pseudo_label": "images/img_1206.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2249.nii.gz", + "pseudo_label": "images/img_2249.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1876.nii.gz", + "pseudo_label": "images/img_1876.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2555.nii.gz", + "pseudo_label": "images/img_2555.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_63.nii.gz", + "pseudo_label": "images/img_63.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1654.nii.gz", + "pseudo_label": "images/img_1654.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_590.nii.gz", + "pseudo_label": "images/img_590.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2131.nii.gz", + "pseudo_label": "images/img_2131.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2349.nii.gz", + "pseudo_label": "images/img_2349.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2585.nii.gz", + "pseudo_label": "images/img_2585.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2496.nii.gz", + "pseudo_label": "images/img_2496.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1068.nii.gz", + "pseudo_label": "images/img_1068.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_49.nii.gz", + "pseudo_label": "images/img_49.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_666.nii.gz", + "pseudo_label": "images/img_666.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2623.nii.gz", + "pseudo_label": "images/img_2623.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2058.nii.gz", + "pseudo_label": "images/img_2058.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2541.nii.gz", + "pseudo_label": "images/img_2541.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3400.nii.gz", + "pseudo_label": "images/img_3400.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3133.nii.gz", + "pseudo_label": "images/img_3133.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2335.nii.gz", + "pseudo_label": "images/img_2335.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_952.nii.gz", + "pseudo_label": "images/img_952.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1167.nii.gz", + "pseudo_label": "images/img_1167.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_172.nii.gz", + "pseudo_label": "images/img_172.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_825.nii.gz", + "pseudo_label": "images/img_825.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2505.nii.gz", + "pseudo_label": "images/img_2505.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2769.nii.gz", + "pseudo_label": "images/img_2769.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2986.nii.gz", + "pseudo_label": "images/img_2986.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_924.nii.gz", + "pseudo_label": "images/img_924.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2808.nii.gz", + "pseudo_label": "images/img_2808.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2609.nii.gz", + "pseudo_label": "images/img_2609.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_354.nii.gz", + "pseudo_label": "images/img_354.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1848.nii.gz", + "pseudo_label": "images/img_1848.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_180.nii.gz", + "pseudo_label": "images/img_180.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3151.nii.gz", + "pseudo_label": "images/img_3151.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2309.nii.gz", + "pseudo_label": "images/img_2309.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2499.nii.gz", + "pseudo_label": "images/img_2499.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2681.nii.gz", + "pseudo_label": "images/img_2681.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_3270.nii.gz", + "pseudo_label": "images/img_3270.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1065.nii.gz", + "pseudo_label": "images/img_1065.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2755.nii.gz", + "pseudo_label": "images/img_2755.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2292.nii.gz", + "pseudo_label": "images/img_2292.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_773.nii.gz", + "pseudo_label": "images/img_773.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_114.nii.gz", + "pseudo_label": "images/img_114.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1031.nii.gz", + "pseudo_label": "images/img_1031.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1090.nii.gz", + "pseudo_label": "images/img_1090.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2743.nii.gz", + "pseudo_label": "images/img_2743.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_689.nii.gz", + "pseudo_label": "images/img_689.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2678.nii.gz", + "pseudo_label": "images/img_2678.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_139.nii.gz", + "pseudo_label": "images/img_139.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2612.nii.gz", + "pseudo_label": "images/img_2612.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_1099.nii.gz", + "pseudo_label": "images/img_1099.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2485.nii.gz", + "pseudo_label": "images/img_2485.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_2660.nii.gz", + "pseudo_label": "images/img_2660.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + }, + { + "image": "images/img_674.nii.gz", + "pseudo_label": "images/img_674.nii.gz", + "dataset": "/data/TCIA_Colon/tcia_colon", + "region": "/data/TCIA_Colon/Abdomen" + } + ], + "training_transform": [ + { + "_target_": "RandCropByLabelClassesd", + "keys": [ + "@image_key", + "@label_key", + "@pseudo_label_key", + "@label_sv_key" + ], + "label_key": "@pseudo_label_key", + "num_classes": 133, + "num_samples": "@num_patches_per_image", + "spatial_size": "@patch_size", + "ratios": "$tuple(float(i >= 0) for i in range(133))", + "warn": false, + "allow_missing_keys": true + }, + { + "_target_": "RandZoomd", + "keys": [ + "@image_key", + "@label_key", + "@pseudo_label_key", + "@label_sv_key" + ], + "min_zoom": 0.8, + "max_zoom": 1.2, + "mode": [ + "trilinear", + "nearest", + "nearest", + "nearest" + ], + "prob": 0.2, + "allow_missing_keys": true + }, + { + "_target_": "RandSimulateLowResolutiond", + "keys": [ + "@image_key" + ], + "zoom_range": [ + 0.3, + 1 + ], + "prob": 0.2, + "allow_missing_keys": true + }, + { + "_target_": "RandGaussianSmoothd", + "keys": [ + "@image_key" + ], + "prob": 0.2, + "sigma_x": [ + 0.5, + 1.0 + ], + "sigma_y": [ + 0.5, + 1.0 + ], + "sigma_z": [ + 0.5, + 1.0 + ] + }, + { + "_target_": "RandScaleIntensityd", + "keys": [ + "@image_key" + ], + "factors": 0.1, + "prob": 0.2 + }, + { + "_target_": "RandShiftIntensityd", + "keys": [ + "@image_key" + ], + "offsets": 0.1, + "prob": 0.2 + }, + { + "_target_": "RandGaussianNoised", + "keys": [ + "@image_key" + ], + "prob": 0.2, + "mean": 0.0, + "std": 0.2 + } + ] +} diff --git a/vista3d/data/jsons/Task03_5_folds.json b/vista3d/data/jsons/Task03_5_folds.json new file mode 100644 index 0000000..e2f92e9 --- /dev/null +++ b/vista3d/data/jsons/Task03_5_folds.json @@ -0,0 +1,1030 @@ +{ + "training": [ + { + "image": "imagesTr/liver_84.nii.gz", + "pseudo_label": "imagesTr/liver_84.nii.gz", + "label": "labelsTr/liver_84.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/liver_85.nii.gz", + "pseudo_label": "imagesTr/liver_85.nii.gz", + "label": "labelsTr/liver_85.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/liver_14.nii.gz", + "pseudo_label": "imagesTr/liver_14.nii.gz", + "label": "labelsTr/liver_14.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/liver_7.nii.gz", + "pseudo_label": "imagesTr/liver_7.nii.gz", + "label": "labelsTr/liver_7.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/liver_68.nii.gz", + "pseudo_label": "imagesTr/liver_68.nii.gz", + "label": "labelsTr/liver_68.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "imagesTr/liver_27.nii.gz", + "pseudo_label": "imagesTr/liver_27.nii.gz", + "label": "labelsTr/liver_27.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "imagesTr/liver_13.nii.gz", + "pseudo_label": "imagesTr/liver_13.nii.gz", + "label": "labelsTr/liver_13.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/liver_124.nii.gz", + "pseudo_label": "imagesTr/liver_124.nii.gz", + "label": "labelsTr/liver_124.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/liver_46.nii.gz", + "pseudo_label": "imagesTr/liver_46.nii.gz", + "label": "labelsTr/liver_46.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "imagesTr/liver_25.nii.gz", + "pseudo_label": "imagesTr/liver_25.nii.gz", + "label": "labelsTr/liver_25.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/liver_71.nii.gz", + "pseudo_label": "imagesTr/liver_71.nii.gz", + "label": "labelsTr/liver_71.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/liver_26.nii.gz", + "pseudo_label": "imagesTr/liver_26.nii.gz", + "label": "labelsTr/liver_26.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "imagesTr/liver_75.nii.gz", + "pseudo_label": "imagesTr/liver_75.nii.gz", + "label": "labelsTr/liver_75.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/liver_86.nii.gz", + "pseudo_label": "imagesTr/liver_86.nii.gz", + "label": "labelsTr/liver_86.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/liver_123.nii.gz", + "pseudo_label": "imagesTr/liver_123.nii.gz", + "label": "labelsTr/liver_123.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/liver_44.nii.gz", + "pseudo_label": "imagesTr/liver_44.nii.gz", + "label": "labelsTr/liver_44.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "imagesTr/liver_21.nii.gz", + "pseudo_label": "imagesTr/liver_21.nii.gz", + "label": "labelsTr/liver_21.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/liver_24.nii.gz", + "pseudo_label": "imagesTr/liver_24.nii.gz", + "label": "labelsTr/liver_24.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/liver_23.nii.gz", + "pseudo_label": "imagesTr/liver_23.nii.gz", + "label": "labelsTr/liver_23.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "imagesTr/liver_49.nii.gz", + "pseudo_label": "imagesTr/liver_49.nii.gz", + "label": "labelsTr/liver_49.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/liver_12.nii.gz", + "pseudo_label": "imagesTr/liver_12.nii.gz", + "label": "labelsTr/liver_12.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/liver_87.nii.gz", + "pseudo_label": "imagesTr/liver_87.nii.gz", + "label": "labelsTr/liver_87.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_87/liver_87_seg.nii.gz" + }, + { + "image": "imagesTr/liver_50.nii.gz", + "pseudo_label": "imagesTr/liver_50.nii.gz", + "label": "labelsTr/liver_50.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_50/liver_50_seg.nii.gz" + }, + { + "image": "imagesTr/liver_20.nii.gz", + "pseudo_label": "imagesTr/liver_20.nii.gz", + "label": "labelsTr/liver_20.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_20/liver_20_seg.nii.gz" + }, + { + "image": "imagesTr/liver_32.nii.gz", + "pseudo_label": "imagesTr/liver_32.nii.gz", + "label": "labelsTr/liver_32.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_32/liver_32_seg.nii.gz" + }, + { + "image": "imagesTr/liver_98.nii.gz", + "pseudo_label": "imagesTr/liver_98.nii.gz", + "label": "labelsTr/liver_98.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_98/liver_98_seg.nii.gz" + }, + { + "image": "imagesTr/liver_64.nii.gz", + "pseudo_label": "imagesTr/liver_64.nii.gz", + "label": "labelsTr/liver_64.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_64/liver_64_seg.nii.gz" + }, + { + "image": "imagesTr/liver_83.nii.gz", + "pseudo_label": "imagesTr/liver_83.nii.gz", + "label": "labelsTr/liver_83.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_83/liver_83_seg.nii.gz" + }, + { + "image": "imagesTr/liver_15.nii.gz", + "pseudo_label": "imagesTr/liver_15.nii.gz", + "label": "labelsTr/liver_15.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_15/liver_15_seg.nii.gz" + }, + { + "image": "imagesTr/liver_22.nii.gz", + "pseudo_label": "imagesTr/liver_22.nii.gz", + "label": "labelsTr/liver_22.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_22/liver_22_seg.nii.gz" + }, + { + "image": "imagesTr/liver_35.nii.gz", + "pseudo_label": "imagesTr/liver_35.nii.gz", + "label": "labelsTr/liver_35.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_35/liver_35_seg.nii.gz" + }, + { + "image": "imagesTr/liver_16.nii.gz", + "pseudo_label": "imagesTr/liver_16.nii.gz", + "label": "labelsTr/liver_16.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_16/liver_16_seg.nii.gz" + }, + { + "image": "imagesTr/liver_126.nii.gz", + "pseudo_label": "imagesTr/liver_126.nii.gz", + "label": "labelsTr/liver_126.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_126/liver_126_seg.nii.gz" + }, + { + "image": "imagesTr/liver_38.nii.gz", + "pseudo_label": "imagesTr/liver_38.nii.gz", + "label": "labelsTr/liver_38.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_38/liver_38_seg.nii.gz" + }, + { + "image": "imagesTr/liver_121.nii.gz", + "pseudo_label": "imagesTr/liver_121.nii.gz", + "label": "labelsTr/liver_121.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_121/liver_121_seg.nii.gz" + }, + { + "image": "imagesTr/liver_76.nii.gz", + "pseudo_label": "imagesTr/liver_76.nii.gz", + "label": "labelsTr/liver_76.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_76/liver_76_seg.nii.gz" + }, + { + "image": "imagesTr/liver_45.nii.gz", + "pseudo_label": "imagesTr/liver_45.nii.gz", + "label": "labelsTr/liver_45.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_45/liver_45_seg.nii.gz" + }, + { + "image": "imagesTr/liver_53.nii.gz", + "pseudo_label": "imagesTr/liver_53.nii.gz", + "label": "labelsTr/liver_53.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_53/liver_53_seg.nii.gz" + }, + { + "image": "imagesTr/liver_110.nii.gz", + "pseudo_label": "imagesTr/liver_110.nii.gz", + "label": "labelsTr/liver_110.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_110/liver_110_seg.nii.gz" + }, + { + "image": "imagesTr/liver_37.nii.gz", + "pseudo_label": "imagesTr/liver_37.nii.gz", + "label": "labelsTr/liver_37.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_37/liver_37_seg.nii.gz" + }, + { + "image": "imagesTr/liver_100.nii.gz", + "pseudo_label": "imagesTr/liver_100.nii.gz", + "label": "labelsTr/liver_100.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_100/liver_100_seg.nii.gz" + }, + { + "image": "imagesTr/liver_95.nii.gz", + "pseudo_label": "imagesTr/liver_95.nii.gz", + "label": "labelsTr/liver_95.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_95/liver_95_seg.nii.gz" + }, + { + "image": "imagesTr/liver_80.nii.gz", + "pseudo_label": "imagesTr/liver_80.nii.gz", + "label": "labelsTr/liver_80.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_80/liver_80_seg.nii.gz" + }, + { + "image": "imagesTr/liver_11.nii.gz", + "pseudo_label": "imagesTr/liver_11.nii.gz", + "label": "labelsTr/liver_11.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_11/liver_11_seg.nii.gz" + }, + { + "image": "imagesTr/liver_62.nii.gz", + "pseudo_label": "imagesTr/liver_62.nii.gz", + "label": "labelsTr/liver_62.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_62/liver_62_seg.nii.gz" + }, + { + "image": "imagesTr/liver_73.nii.gz", + "pseudo_label": "imagesTr/liver_73.nii.gz", + "label": "labelsTr/liver_73.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_73/liver_73_seg.nii.gz" + }, + { + "image": "imagesTr/liver_119.nii.gz", + "pseudo_label": "imagesTr/liver_119.nii.gz", + "label": "labelsTr/liver_119.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_119/liver_119_seg.nii.gz" + }, + { + "image": "imagesTr/liver_55.nii.gz", + "pseudo_label": "imagesTr/liver_55.nii.gz", + "label": "labelsTr/liver_55.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_55/liver_55_seg.nii.gz" + }, + { + "image": "imagesTr/liver_103.nii.gz", + "pseudo_label": "imagesTr/liver_103.nii.gz", + "label": "labelsTr/liver_103.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_103/liver_103_seg.nii.gz" + }, + { + "image": "imagesTr/liver_39.nii.gz", + "pseudo_label": "imagesTr/liver_39.nii.gz", + "label": "labelsTr/liver_39.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_39/liver_39_seg.nii.gz" + }, + { + "image": "imagesTr/liver_74.nii.gz", + "pseudo_label": "imagesTr/liver_74.nii.gz", + "label": "labelsTr/liver_74.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_74/liver_74_seg.nii.gz" + }, + { + "image": "imagesTr/liver_57.nii.gz", + "pseudo_label": "imagesTr/liver_57.nii.gz", + "label": "labelsTr/liver_57.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_57/liver_57_seg.nii.gz" + }, + { + "image": "imagesTr/liver_81.nii.gz", + "pseudo_label": "imagesTr/liver_81.nii.gz", + "label": "labelsTr/liver_81.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_81/liver_81_seg.nii.gz" + }, + { + "image": "imagesTr/liver_105.nii.gz", + "pseudo_label": "imagesTr/liver_105.nii.gz", + "label": "labelsTr/liver_105.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_105/liver_105_seg.nii.gz" + }, + { + "image": "imagesTr/liver_9.nii.gz", + "pseudo_label": "imagesTr/liver_9.nii.gz", + "label": "labelsTr/liver_9.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_9/liver_9_seg.nii.gz" + }, + { + "image": "imagesTr/liver_8.nii.gz", + "pseudo_label": "imagesTr/liver_8.nii.gz", + "label": "labelsTr/liver_8.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_8/liver_8_seg.nii.gz" + }, + { + "image": "imagesTr/liver_97.nii.gz", + "pseudo_label": "imagesTr/liver_97.nii.gz", + "label": "labelsTr/liver_97.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_97/liver_97_seg.nii.gz" + }, + { + "image": "imagesTr/liver_42.nii.gz", + "pseudo_label": "imagesTr/liver_42.nii.gz", + "label": "labelsTr/liver_42.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_42/liver_42_seg.nii.gz" + }, + { + "image": "imagesTr/liver_111.nii.gz", + "pseudo_label": "imagesTr/liver_111.nii.gz", + "label": "labelsTr/liver_111.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_111/liver_111_seg.nii.gz" + }, + { + "image": "imagesTr/liver_116.nii.gz", + "pseudo_label": "imagesTr/liver_116.nii.gz", + "label": "labelsTr/liver_116.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_116/liver_116_seg.nii.gz" + }, + { + "image": "imagesTr/liver_130.nii.gz", + "pseudo_label": "imagesTr/liver_130.nii.gz", + "label": "labelsTr/liver_130.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_130/liver_130_seg.nii.gz" + }, + { + "image": "imagesTr/liver_52.nii.gz", + "pseudo_label": "imagesTr/liver_52.nii.gz", + "label": "labelsTr/liver_52.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_52/liver_52_seg.nii.gz" + }, + { + "image": "imagesTr/liver_47.nii.gz", + "pseudo_label": "imagesTr/liver_47.nii.gz", + "label": "labelsTr/liver_47.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_47/liver_47_seg.nii.gz" + }, + { + "image": "imagesTr/liver_61.nii.gz", + "pseudo_label": "imagesTr/liver_61.nii.gz", + "label": "labelsTr/liver_61.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_61/liver_61_seg.nii.gz" + }, + { + "image": "imagesTr/liver_109.nii.gz", + "pseudo_label": "imagesTr/liver_109.nii.gz", + "label": "labelsTr/liver_109.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_109/liver_109_seg.nii.gz" + }, + { + "image": "imagesTr/liver_108.nii.gz", + "pseudo_label": "imagesTr/liver_108.nii.gz", + "label": "labelsTr/liver_108.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_108/liver_108_seg.nii.gz" + }, + { + "image": "imagesTr/liver_102.nii.gz", + "pseudo_label": "imagesTr/liver_102.nii.gz", + "label": "labelsTr/liver_102.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_102/liver_102_seg.nii.gz" + }, + { + "image": "imagesTr/liver_101.nii.gz", + "pseudo_label": "imagesTr/liver_101.nii.gz", + "label": "labelsTr/liver_101.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_101/liver_101_seg.nii.gz" + }, + { + "image": "imagesTr/liver_4.nii.gz", + "pseudo_label": "imagesTr/liver_4.nii.gz", + "label": "labelsTr/liver_4.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_4/liver_4_seg.nii.gz" + }, + { + "image": "imagesTr/liver_29.nii.gz", + "pseudo_label": "imagesTr/liver_29.nii.gz", + "label": "labelsTr/liver_29.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_29/liver_29_seg.nii.gz" + }, + { + "image": "imagesTr/liver_28.nii.gz", + "pseudo_label": "imagesTr/liver_28.nii.gz", + "label": "labelsTr/liver_28.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_28/liver_28_seg.nii.gz" + }, + { + "image": "imagesTr/liver_41.nii.gz", + "pseudo_label": "imagesTr/liver_41.nii.gz", + "label": "labelsTr/liver_41.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_41/liver_41_seg.nii.gz" + }, + { + "image": "imagesTr/liver_58.nii.gz", + "pseudo_label": "imagesTr/liver_58.nii.gz", + "label": "labelsTr/liver_58.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_58/liver_58_seg.nii.gz" + }, + { + "image": "imagesTr/liver_36.nii.gz", + "pseudo_label": "imagesTr/liver_36.nii.gz", + "label": "labelsTr/liver_36.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_36/liver_36_seg.nii.gz" + }, + { + "image": "imagesTr/liver_69.nii.gz", + "pseudo_label": "imagesTr/liver_69.nii.gz", + "label": "labelsTr/liver_69.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_69/liver_69_seg.nii.gz" + }, + { + "image": "imagesTr/liver_0.nii.gz", + "pseudo_label": "imagesTr/liver_0.nii.gz", + "label": "labelsTr/liver_0.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_0/liver_0_seg.nii.gz" + }, + { + "image": "imagesTr/liver_1.nii.gz", + "pseudo_label": "imagesTr/liver_1.nii.gz", + "label": "labelsTr/liver_1.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_1/liver_1_seg.nii.gz" + }, + { + "image": "imagesTr/liver_40.nii.gz", + "pseudo_label": "imagesTr/liver_40.nii.gz", + "label": "labelsTr/liver_40.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_40/liver_40_seg.nii.gz" + }, + { + "image": "imagesTr/liver_17.nii.gz", + "pseudo_label": "imagesTr/liver_17.nii.gz", + "label": "labelsTr/liver_17.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_17/liver_17_seg.nii.gz" + }, + { + "image": "imagesTr/liver_128.nii.gz", + "pseudo_label": "imagesTr/liver_128.nii.gz", + "label": "labelsTr/liver_128.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_128/liver_128_seg.nii.gz" + }, + { + "image": "imagesTr/liver_107.nii.gz", + "pseudo_label": "imagesTr/liver_107.nii.gz", + "label": "labelsTr/liver_107.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_107/liver_107_seg.nii.gz" + }, + { + "image": "imagesTr/liver_104.nii.gz", + "pseudo_label": "imagesTr/liver_104.nii.gz", + "label": "labelsTr/liver_104.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_104/liver_104_seg.nii.gz" + }, + { + "image": "imagesTr/liver_56.nii.gz", + "pseudo_label": "imagesTr/liver_56.nii.gz", + "label": "labelsTr/liver_56.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_56/liver_56_seg.nii.gz" + }, + { + "image": "imagesTr/liver_115.nii.gz", + "pseudo_label": "imagesTr/liver_115.nii.gz", + "label": "labelsTr/liver_115.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_115/liver_115_seg.nii.gz" + }, + { + "image": "imagesTr/liver_2.nii.gz", + "pseudo_label": "imagesTr/liver_2.nii.gz", + "label": "labelsTr/liver_2.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_2/liver_2_seg.nii.gz" + }, + { + "image": "imagesTr/liver_93.nii.gz", + "pseudo_label": "imagesTr/liver_93.nii.gz", + "label": "labelsTr/liver_93.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_93/liver_93_seg.nii.gz" + }, + { + "image": "imagesTr/liver_30.nii.gz", + "pseudo_label": "imagesTr/liver_30.nii.gz", + "label": "labelsTr/liver_30.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_30/liver_30_seg.nii.gz" + }, + { + "image": "imagesTr/liver_10.nii.gz", + "pseudo_label": "imagesTr/liver_10.nii.gz", + "label": "labelsTr/liver_10.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_10/liver_10_seg.nii.gz" + }, + { + "image": "imagesTr/liver_65.nii.gz", + "pseudo_label": "imagesTr/liver_65.nii.gz", + "label": "labelsTr/liver_65.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_65/liver_65_seg.nii.gz" + }, + { + "image": "imagesTr/liver_112.nii.gz", + "pseudo_label": "imagesTr/liver_112.nii.gz", + "label": "labelsTr/liver_112.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_112/liver_112_seg.nii.gz" + }, + { + "image": "imagesTr/liver_5.nii.gz", + "pseudo_label": "imagesTr/liver_5.nii.gz", + "label": "labelsTr/liver_5.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_5/liver_5_seg.nii.gz" + }, + { + "image": "imagesTr/liver_78.nii.gz", + "pseudo_label": "imagesTr/liver_78.nii.gz", + "label": "labelsTr/liver_78.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_78/liver_78_seg.nii.gz" + }, + { + "image": "imagesTr/liver_82.nii.gz", + "pseudo_label": "imagesTr/liver_82.nii.gz", + "label": "labelsTr/liver_82.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_82/liver_82_seg.nii.gz" + }, + { + "image": "imagesTr/liver_43.nii.gz", + "pseudo_label": "imagesTr/liver_43.nii.gz", + "label": "labelsTr/liver_43.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_43/liver_43_seg.nii.gz" + }, + { + "image": "imagesTr/liver_79.nii.gz", + "pseudo_label": "imagesTr/liver_79.nii.gz", + "label": "labelsTr/liver_79.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_79/liver_79_seg.nii.gz" + }, + { + "image": "imagesTr/liver_60.nii.gz", + "pseudo_label": "imagesTr/liver_60.nii.gz", + "label": "labelsTr/liver_60.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_60/liver_60_seg.nii.gz" + }, + { + "image": "imagesTr/liver_88.nii.gz", + "pseudo_label": "imagesTr/liver_88.nii.gz", + "label": "labelsTr/liver_88.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_88/liver_88_seg.nii.gz" + }, + { + "image": "imagesTr/liver_6.nii.gz", + "pseudo_label": "imagesTr/liver_6.nii.gz", + "label": "labelsTr/liver_6.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_6/liver_6_seg.nii.gz" + }, + { + "image": "imagesTr/liver_34.nii.gz", + "pseudo_label": "imagesTr/liver_34.nii.gz", + "label": "labelsTr/liver_34.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_34/liver_34_seg.nii.gz" + }, + { + "image": "imagesTr/liver_106.nii.gz", + "pseudo_label": "imagesTr/liver_106.nii.gz", + "label": "labelsTr/liver_106.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_106/liver_106_seg.nii.gz" + }, + { + "image": "imagesTr/liver_127.nii.gz", + "pseudo_label": "imagesTr/liver_127.nii.gz", + "label": "labelsTr/liver_127.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_127/liver_127_seg.nii.gz" + }, + { + "image": "imagesTr/liver_118.nii.gz", + "pseudo_label": "imagesTr/liver_118.nii.gz", + "label": "labelsTr/liver_118.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_118/liver_118_seg.nii.gz" + }, + { + "image": "imagesTr/liver_63.nii.gz", + "pseudo_label": "imagesTr/liver_63.nii.gz", + "label": "labelsTr/liver_63.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_63/liver_63_seg.nii.gz" + }, + { + "image": "imagesTr/liver_96.nii.gz", + "pseudo_label": "imagesTr/liver_96.nii.gz", + "label": "labelsTr/liver_96.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_96/liver_96_seg.nii.gz" + }, + { + "image": "imagesTr/liver_91.nii.gz", + "pseudo_label": "imagesTr/liver_91.nii.gz", + "label": "labelsTr/liver_91.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task03_100/liver_91/liver_91_seg.nii.gz" + } + ], + "training_transform": [ + { + "_target_": "RandCropByLabelClassesd", + "keys": [ + "@image_key", + "@label_key", + "@pseudo_label_key", + "@label_sv_key" + ], + "label_key": "@pseudo_label_key", + "num_classes": 133, + "num_samples": "@num_patches_per_image", + "spatial_size": "@patch_size", + "ratios": "$tuple(float(i >= 0) for i in range(133))", + "warn": false, + "allow_missing_keys": true + }, + { + "_target_": "RandZoomd", + "keys": [ + "@image_key", + "@label_key", + "@pseudo_label_key", + "@label_sv_key" + ], + "min_zoom": 0.8, + "max_zoom": 1.2, + "mode": [ + "trilinear", + "nearest", + "nearest", + "nearest" + ], + "prob": 0.2, + "allow_missing_keys": true + }, + { + "_target_": "RandSimulateLowResolutiond", + "keys": [ + "@image_key" + ], + "zoom_range": [ + 0.3, + 1 + ], + "prob": 0.2, + "allow_missing_keys": true + }, + { + "_target_": "RandGaussianSmoothd", + "keys": [ + "@image_key" + ], + "prob": 0.2, + "sigma_x": [ + 0.5, + 1.0 + ], + "sigma_y": [ + 0.5, + 1.0 + ], + "sigma_z": [ + 0.5, + 1.0 + ] + }, + { + "_target_": "RandScaleIntensityd", + "keys": [ + "@image_key" + ], + "factors": 0.1, + "prob": 0.2 + }, + { + "_target_": "RandShiftIntensityd", + "keys": [ + "@image_key" + ], + "offsets": 0.1, + "prob": 0.2 + }, + { + "_target_": "RandGaussianNoised", + "keys": [ + "@image_key" + ], + "prob": 0.2, + "mean": 0.0, + "std": 0.2 + } + ], + "label_dict": { + "1": "liver", + "2": "hepatic tumor" + }, + "original_label_dict": { + "1": "liver", + "2": "cancer" + }, + "testing": [ + { + "image": "imagesTr/liver_114.nii.gz", + "label": "labelsTr/liver_114.nii.gz" + }, + { + "image": "imagesTr/liver_51.nii.gz", + "label": "labelsTr/liver_51.nii.gz" + }, + { + "image": "imagesTr/liver_129.nii.gz", + "label": "labelsTr/liver_129.nii.gz" + }, + { + "image": "imagesTr/liver_54.nii.gz", + "label": "labelsTr/liver_54.nii.gz" + }, + { + "image": "imagesTr/liver_125.nii.gz", + "label": "labelsTr/liver_125.nii.gz" + }, + { + "image": "imagesTr/liver_99.nii.gz", + "label": "labelsTr/liver_99.nii.gz" + }, + { + "image": "imagesTr/liver_33.nii.gz", + "label": "labelsTr/liver_33.nii.gz" + }, + { + "image": "imagesTr/liver_90.nii.gz", + "label": "labelsTr/liver_90.nii.gz" + }, + { + "image": "imagesTr/liver_66.nii.gz", + "label": "labelsTr/liver_66.nii.gz" + }, + { + "image": "imagesTr/liver_77.nii.gz", + "label": "labelsTr/liver_77.nii.gz" + }, + { + "image": "imagesTr/liver_72.nii.gz", + "label": "labelsTr/liver_72.nii.gz" + }, + { + "image": "imagesTr/liver_18.nii.gz", + "label": "labelsTr/liver_18.nii.gz" + }, + { + "image": "imagesTr/liver_31.nii.gz", + "label": "labelsTr/liver_31.nii.gz" + }, + { + "image": "imagesTr/liver_120.nii.gz", + "label": "labelsTr/liver_120.nii.gz" + }, + { + "image": "imagesTr/liver_70.nii.gz", + "label": "labelsTr/liver_70.nii.gz" + }, + { + "image": "imagesTr/liver_48.nii.gz", + "label": "labelsTr/liver_48.nii.gz" + }, + { + "image": "imagesTr/liver_94.nii.gz", + "label": "labelsTr/liver_94.nii.gz" + }, + { + "image": "imagesTr/liver_92.nii.gz", + "label": "labelsTr/liver_92.nii.gz" + }, + { + "image": "imagesTr/liver_113.nii.gz", + "label": "labelsTr/liver_113.nii.gz" + }, + { + "image": "imagesTr/liver_59.nii.gz", + "label": "labelsTr/liver_59.nii.gz" + }, + { + "image": "imagesTr/liver_3.nii.gz", + "label": "labelsTr/liver_3.nii.gz" + }, + { + "image": "imagesTr/liver_19.nii.gz", + "label": "labelsTr/liver_19.nii.gz" + }, + { + "image": "imagesTr/liver_122.nii.gz", + "label": "labelsTr/liver_122.nii.gz" + }, + { + "image": "imagesTr/liver_89.nii.gz", + "label": "labelsTr/liver_89.nii.gz" + }, + { + "image": "imagesTr/liver_67.nii.gz", + "label": "labelsTr/liver_67.nii.gz" + }, + { + "image": "imagesTr/liver_117.nii.gz", + "label": "labelsTr/liver_117.nii.gz" + } + ] +} diff --git a/vista3d/data/jsons/Task06_5_folds.json b/vista3d/data/jsons/Task06_5_folds.json new file mode 100644 index 0000000..5f1d4ce --- /dev/null +++ b/vista3d/data/jsons/Task06_5_folds.json @@ -0,0 +1,547 @@ +{ + "training": [ + { + "image": "imagesTr/lung_073.nii.gz", + "pseudo_label": "imagesTr/lung_073.nii.gz", + "label": "labelsTr/lung_073.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "imagesTr/lung_092.nii.gz", + "pseudo_label": "imagesTr/lung_092.nii.gz", + "label": "labelsTr/lung_092.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "imagesTr/lung_044.nii.gz", + "pseudo_label": "imagesTr/lung_044.nii.gz", + "label": "labelsTr/lung_044.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/lung_095.nii.gz", + "pseudo_label": "imagesTr/lung_095.nii.gz", + "label": "labelsTr/lung_095.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/lung_015.nii.gz", + "pseudo_label": "imagesTr/lung_015.nii.gz", + "label": "labelsTr/lung_015.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/lung_031.nii.gz", + "pseudo_label": "imagesTr/lung_031.nii.gz", + "label": "labelsTr/lung_031.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/lung_086.nii.gz", + "pseudo_label": "imagesTr/lung_086.nii.gz", + "label": "labelsTr/lung_086.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/lung_053.nii.gz", + "pseudo_label": "imagesTr/lung_053.nii.gz", + "label": "labelsTr/lung_053.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "imagesTr/lung_075.nii.gz", + "pseudo_label": "imagesTr/lung_075.nii.gz", + "label": "labelsTr/lung_075.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "imagesTr/lung_096.nii.gz", + "pseudo_label": "imagesTr/lung_096.nii.gz", + "label": "labelsTr/lung_096.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "imagesTr/lung_093.nii.gz", + "pseudo_label": "imagesTr/lung_093.nii.gz", + "label": "labelsTr/lung_093.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_093/lung_093_seg.nii.gz" + }, + { + "image": "imagesTr/lung_048.nii.gz", + "pseudo_label": "imagesTr/lung_048.nii.gz", + "label": "labelsTr/lung_048.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_048/lung_048_seg.nii.gz" + }, + { + "image": "imagesTr/lung_054.nii.gz", + "pseudo_label": "imagesTr/lung_054.nii.gz", + "label": "labelsTr/lung_054.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_054/lung_054_seg.nii.gz" + }, + { + "image": "imagesTr/lung_033.nii.gz", + "pseudo_label": "imagesTr/lung_033.nii.gz", + "label": "labelsTr/lung_033.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_033/lung_033_seg.nii.gz" + }, + { + "image": "imagesTr/lung_071.nii.gz", + "pseudo_label": "imagesTr/lung_071.nii.gz", + "label": "labelsTr/lung_071.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_071/lung_071_seg.nii.gz" + }, + { + "image": "imagesTr/lung_049.nii.gz", + "pseudo_label": "imagesTr/lung_049.nii.gz", + "label": "labelsTr/lung_049.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_049/lung_049_seg.nii.gz" + }, + { + "image": "imagesTr/lung_005.nii.gz", + "pseudo_label": "imagesTr/lung_005.nii.gz", + "label": "labelsTr/lung_005.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_005/lung_005_seg.nii.gz" + }, + { + "image": "imagesTr/lung_014.nii.gz", + "pseudo_label": "imagesTr/lung_014.nii.gz", + "label": "labelsTr/lung_014.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_014/lung_014_seg.nii.gz" + }, + { + "image": "imagesTr/lung_004.nii.gz", + "pseudo_label": "imagesTr/lung_004.nii.gz", + "label": "labelsTr/lung_004.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_004/lung_004_seg.nii.gz" + }, + { + "image": "imagesTr/lung_055.nii.gz", + "pseudo_label": "imagesTr/lung_055.nii.gz", + "label": "labelsTr/lung_055.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_055/lung_055_seg.nii.gz" + }, + { + "image": "imagesTr/lung_061.nii.gz", + "pseudo_label": "imagesTr/lung_061.nii.gz", + "label": "labelsTr/lung_061.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_061/lung_061_seg.nii.gz" + }, + { + "image": "imagesTr/lung_057.nii.gz", + "pseudo_label": "imagesTr/lung_057.nii.gz", + "label": "labelsTr/lung_057.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_057/lung_057_seg.nii.gz" + }, + { + "image": "imagesTr/lung_037.nii.gz", + "pseudo_label": "imagesTr/lung_037.nii.gz", + "label": "labelsTr/lung_037.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_037/lung_037_seg.nii.gz" + }, + { + "image": "imagesTr/lung_025.nii.gz", + "pseudo_label": "imagesTr/lung_025.nii.gz", + "label": "labelsTr/lung_025.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_025/lung_025_seg.nii.gz" + }, + { + "image": "imagesTr/lung_003.nii.gz", + "pseudo_label": "imagesTr/lung_003.nii.gz", + "label": "labelsTr/lung_003.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_003/lung_003_seg.nii.gz" + }, + { + "image": "imagesTr/lung_041.nii.gz", + "pseudo_label": "imagesTr/lung_041.nii.gz", + "label": "labelsTr/lung_041.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_041/lung_041_seg.nii.gz" + }, + { + "image": "imagesTr/lung_006.nii.gz", + "pseudo_label": "imagesTr/lung_006.nii.gz", + "label": "labelsTr/lung_006.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_006/lung_006_seg.nii.gz" + }, + { + "image": "imagesTr/lung_074.nii.gz", + "pseudo_label": "imagesTr/lung_074.nii.gz", + "label": "labelsTr/lung_074.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_074/lung_074_seg.nii.gz" + }, + { + "image": "imagesTr/lung_010.nii.gz", + "pseudo_label": "imagesTr/lung_010.nii.gz", + "label": "labelsTr/lung_010.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_010/lung_010_seg.nii.gz" + }, + { + "image": "imagesTr/lung_084.nii.gz", + "pseudo_label": "imagesTr/lung_084.nii.gz", + "label": "labelsTr/lung_084.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_084/lung_084_seg.nii.gz" + }, + { + "image": "imagesTr/lung_070.nii.gz", + "pseudo_label": "imagesTr/lung_070.nii.gz", + "label": "labelsTr/lung_070.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_070/lung_070_seg.nii.gz" + }, + { + "image": "imagesTr/lung_016.nii.gz", + "pseudo_label": "imagesTr/lung_016.nii.gz", + "label": "labelsTr/lung_016.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_016/lung_016_seg.nii.gz" + }, + { + "image": "imagesTr/lung_038.nii.gz", + "pseudo_label": "imagesTr/lung_038.nii.gz", + "label": "labelsTr/lung_038.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_038/lung_038_seg.nii.gz" + }, + { + "image": "imagesTr/lung_027.nii.gz", + "pseudo_label": "imagesTr/lung_027.nii.gz", + "label": "labelsTr/lung_027.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_027/lung_027_seg.nii.gz" + }, + { + "image": "imagesTr/lung_029.nii.gz", + "pseudo_label": "imagesTr/lung_029.nii.gz", + "label": "labelsTr/lung_029.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_029/lung_029_seg.nii.gz" + }, + { + "image": "imagesTr/lung_059.nii.gz", + "pseudo_label": "imagesTr/lung_059.nii.gz", + "label": "labelsTr/lung_059.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_059/lung_059_seg.nii.gz" + }, + { + "image": "imagesTr/lung_051.nii.gz", + "pseudo_label": "imagesTr/lung_051.nii.gz", + "label": "labelsTr/lung_051.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_051/lung_051_seg.nii.gz" + }, + { + "image": "imagesTr/lung_001.nii.gz", + "pseudo_label": "imagesTr/lung_001.nii.gz", + "label": "labelsTr/lung_001.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_001/lung_001_seg.nii.gz" + }, + { + "image": "imagesTr/lung_065.nii.gz", + "pseudo_label": "imagesTr/lung_065.nii.gz", + "label": "labelsTr/lung_065.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_065/lung_065_seg.nii.gz" + }, + { + "image": "imagesTr/lung_023.nii.gz", + "pseudo_label": "imagesTr/lung_023.nii.gz", + "label": "labelsTr/lung_023.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_023/lung_023_seg.nii.gz" + }, + { + "image": "imagesTr/lung_058.nii.gz", + "pseudo_label": "imagesTr/lung_058.nii.gz", + "label": "labelsTr/lung_058.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_058/lung_058_seg.nii.gz" + }, + { + "image": "imagesTr/lung_026.nii.gz", + "pseudo_label": "imagesTr/lung_026.nii.gz", + "label": "labelsTr/lung_026.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_026/lung_026_seg.nii.gz" + }, + { + "image": "imagesTr/lung_042.nii.gz", + "pseudo_label": "imagesTr/lung_042.nii.gz", + "label": "labelsTr/lung_042.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_042/lung_042_seg.nii.gz" + }, + { + "image": "imagesTr/lung_009.nii.gz", + "pseudo_label": "imagesTr/lung_009.nii.gz", + "label": "labelsTr/lung_009.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_009/lung_009_seg.nii.gz" + }, + { + "image": "imagesTr/lung_079.nii.gz", + "pseudo_label": "imagesTr/lung_079.nii.gz", + "label": "labelsTr/lung_079.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_079/lung_079_seg.nii.gz" + }, + { + "image": "imagesTr/lung_046.nii.gz", + "pseudo_label": "imagesTr/lung_046.nii.gz", + "label": "labelsTr/lung_046.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_046/lung_046_seg.nii.gz" + }, + { + "image": "imagesTr/lung_083.nii.gz", + "pseudo_label": "imagesTr/lung_083.nii.gz", + "label": "labelsTr/lung_083.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_083/lung_083_seg.nii.gz" + }, + { + "image": "imagesTr/lung_020.nii.gz", + "pseudo_label": "imagesTr/lung_020.nii.gz", + "label": "labelsTr/lung_020.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_020/lung_020_seg.nii.gz" + }, + { + "image": "imagesTr/lung_022.nii.gz", + "pseudo_label": "imagesTr/lung_022.nii.gz", + "label": "labelsTr/lung_022.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_022/lung_022_seg.nii.gz" + }, + { + "image": "imagesTr/lung_045.nii.gz", + "pseudo_label": "imagesTr/lung_045.nii.gz", + "label": "labelsTr/lung_045.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task06_100/lung_045/lung_045_seg.nii.gz" + } + ], + "training_transform": [ + { + "_target_": "RandCropByLabelClassesd", + "keys": [ + "@image_key", + "@label_key", + "@pseudo_label_key", + "@label_sv_key" + ], + "label_key": "@pseudo_label_key", + "num_classes": 133, + "num_samples": "@num_patches_per_image", + "spatial_size": "@patch_size", + "ratios": "$tuple(float(i >= 0) for i in range(133))", + "warn": false, + "allow_missing_keys": true + }, + { + "_target_": "RandZoomd", + "keys": [ + "@image_key", + "@label_key", + "@pseudo_label_key", + "@label_sv_key" + ], + "min_zoom": 0.8, + "max_zoom": 1.2, + "mode": [ + "trilinear", + "nearest", + "nearest", + "nearest" + ], + "prob": 0.2, + "allow_missing_keys": true + }, + { + "_target_": "RandSimulateLowResolutiond", + "keys": [ + "@image_key" + ], + "zoom_range": [ + 0.3, + 1 + ], + "prob": 0.2, + "allow_missing_keys": true + }, + { + "_target_": "RandGaussianSmoothd", + "keys": [ + "@image_key" + ], + "prob": 0.2, + "sigma_x": [ + 0.5, + 1.0 + ], + "sigma_y": [ + 0.5, + 1.0 + ], + "sigma_z": [ + 0.5, + 1.0 + ] + }, + { + "_target_": "RandScaleIntensityd", + "keys": [ + "@image_key" + ], + "factors": 0.1, + "prob": 0.2 + }, + { + "_target_": "RandShiftIntensityd", + "keys": [ + "@image_key" + ], + "offsets": 0.1, + "prob": 0.2 + }, + { + "_target_": "RandGaussianNoised", + "keys": [ + "@image_key" + ], + "prob": 0.2, + "mean": 0.0, + "std": 0.2 + } + ], + "label_dict": { + "1": "lung tumor" + }, + "original_label_dict": { + "1": "cancer" + }, + "testing": [ + { + "image": "imagesTr/lung_018.nii.gz", + "label": "labelsTr/lung_018.nii.gz" + }, + { + "image": "imagesTr/lung_078.nii.gz", + "label": "labelsTr/lung_078.nii.gz" + }, + { + "image": "imagesTr/lung_028.nii.gz", + "label": "labelsTr/lung_028.nii.gz" + }, + { + "image": "imagesTr/lung_036.nii.gz", + "label": "labelsTr/lung_036.nii.gz" + }, + { + "image": "imagesTr/lung_080.nii.gz", + "label": "labelsTr/lung_080.nii.gz" + }, + { + "image": "imagesTr/lung_062.nii.gz", + "label": "labelsTr/lung_062.nii.gz" + }, + { + "image": "imagesTr/lung_043.nii.gz", + "label": "labelsTr/lung_043.nii.gz" + }, + { + "image": "imagesTr/lung_081.nii.gz", + "label": "labelsTr/lung_081.nii.gz" + }, + { + "image": "imagesTr/lung_064.nii.gz", + "label": "labelsTr/lung_064.nii.gz" + }, + { + "image": "imagesTr/lung_069.nii.gz", + "label": "labelsTr/lung_069.nii.gz" + }, + { + "image": "imagesTr/lung_066.nii.gz", + "label": "labelsTr/lung_066.nii.gz" + }, + { + "image": "imagesTr/lung_047.nii.gz", + "label": "labelsTr/lung_047.nii.gz" + }, + { + "image": "imagesTr/lung_034.nii.gz", + "label": "labelsTr/lung_034.nii.gz" + } + ] +} diff --git a/vista3d/data/jsons/Task07_5_folds.json b/vista3d/data/jsons/Task07_5_folds.json new file mode 100644 index 0000000..83cd67e --- /dev/null +++ b/vista3d/data/jsons/Task07_5_folds.json @@ -0,0 +1,2083 @@ +{ + "training": [ + { + "image": "imagesTr/pancreas_021.nii.gz", + "pseudo_label": "imagesTr/pancreas_021.nii.gz", + "label": "labelsTr/pancreas_021.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/pancreas_321.nii.gz", + "pseudo_label": "imagesTr/pancreas_321.nii.gz", + "label": "labelsTr/pancreas_321.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/pancreas_170.nii.gz", + "pseudo_label": "imagesTr/pancreas_170.nii.gz", + "label": "labelsTr/pancreas_170.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/pancreas_347.nii.gz", + "pseudo_label": "imagesTr/pancreas_347.nii.gz", + "label": "labelsTr/pancreas_347.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "imagesTr/pancreas_358.nii.gz", + "pseudo_label": "imagesTr/pancreas_358.nii.gz", + "label": "labelsTr/pancreas_358.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/pancreas_147.nii.gz", + "pseudo_label": "imagesTr/pancreas_147.nii.gz", + "label": "labelsTr/pancreas_147.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/pancreas_308.nii.gz", + "pseudo_label": "imagesTr/pancreas_308.nii.gz", + "label": "labelsTr/pancreas_308.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/pancreas_285.nii.gz", + "pseudo_label": "imagesTr/pancreas_285.nii.gz", + "label": "labelsTr/pancreas_285.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/pancreas_067.nii.gz", + "pseudo_label": "imagesTr/pancreas_067.nii.gz", + "label": "labelsTr/pancreas_067.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/pancreas_102.nii.gz", + "pseudo_label": "imagesTr/pancreas_102.nii.gz", + "label": "labelsTr/pancreas_102.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/pancreas_320.nii.gz", + "pseudo_label": "imagesTr/pancreas_320.nii.gz", + "label": "labelsTr/pancreas_320.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/pancreas_357.nii.gz", + "pseudo_label": "imagesTr/pancreas_357.nii.gz", + "label": "labelsTr/pancreas_357.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "imagesTr/pancreas_175.nii.gz", + "pseudo_label": "imagesTr/pancreas_175.nii.gz", + "label": "labelsTr/pancreas_175.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "imagesTr/pancreas_366.nii.gz", + "pseudo_label": "imagesTr/pancreas_366.nii.gz", + "label": "labelsTr/pancreas_366.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "imagesTr/pancreas_398.nii.gz", + "pseudo_label": "imagesTr/pancreas_398.nii.gz", + "label": "labelsTr/pancreas_398.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "imagesTr/pancreas_254.nii.gz", + "pseudo_label": "imagesTr/pancreas_254.nii.gz", + "label": "labelsTr/pancreas_254.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/pancreas_367.nii.gz", + "pseudo_label": "imagesTr/pancreas_367.nii.gz", + "label": "labelsTr/pancreas_367.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/pancreas_234.nii.gz", + "pseudo_label": "imagesTr/pancreas_234.nii.gz", + "label": "labelsTr/pancreas_234.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/pancreas_186.nii.gz", + "pseudo_label": "imagesTr/pancreas_186.nii.gz", + "label": "labelsTr/pancreas_186.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/pancreas_385.nii.gz", + "pseudo_label": "imagesTr/pancreas_385.nii.gz", + "label": "labelsTr/pancreas_385.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/pancreas_093.nii.gz", + "pseudo_label": "imagesTr/pancreas_093.nii.gz", + "label": "labelsTr/pancreas_093.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/pancreas_370.nii.gz", + "pseudo_label": "imagesTr/pancreas_370.nii.gz", + "label": "labelsTr/pancreas_370.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/pancreas_376.nii.gz", + "pseudo_label": "imagesTr/pancreas_376.nii.gz", + "label": "labelsTr/pancreas_376.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/pancreas_231.nii.gz", + "pseudo_label": "imagesTr/pancreas_231.nii.gz", + "label": "labelsTr/pancreas_231.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/pancreas_280.nii.gz", + "pseudo_label": "imagesTr/pancreas_280.nii.gz", + "label": "labelsTr/pancreas_280.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/pancreas_212.nii.gz", + "pseudo_label": "imagesTr/pancreas_212.nii.gz", + "label": "labelsTr/pancreas_212.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "imagesTr/pancreas_064.nii.gz", + "pseudo_label": "imagesTr/pancreas_064.nii.gz", + "label": "labelsTr/pancreas_064.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "imagesTr/pancreas_256.nii.gz", + "pseudo_label": "imagesTr/pancreas_256.nii.gz", + "label": "labelsTr/pancreas_256.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "imagesTr/pancreas_241.nii.gz", + "pseudo_label": "imagesTr/pancreas_241.nii.gz", + "label": "labelsTr/pancreas_241.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/pancreas_327.nii.gz", + "pseudo_label": "imagesTr/pancreas_327.nii.gz", + "label": "labelsTr/pancreas_327.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/pancreas_360.nii.gz", + "pseudo_label": "imagesTr/pancreas_360.nii.gz", + "label": "labelsTr/pancreas_360.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/pancreas_041.nii.gz", + "pseudo_label": "imagesTr/pancreas_041.nii.gz", + "label": "labelsTr/pancreas_041.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "imagesTr/pancreas_283.nii.gz", + "pseudo_label": "imagesTr/pancreas_283.nii.gz", + "label": "labelsTr/pancreas_283.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/pancreas_333.nii.gz", + "pseudo_label": "imagesTr/pancreas_333.nii.gz", + "label": "labelsTr/pancreas_333.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "imagesTr/pancreas_267.nii.gz", + "pseudo_label": "imagesTr/pancreas_267.nii.gz", + "label": "labelsTr/pancreas_267.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/pancreas_126.nii.gz", + "pseudo_label": "imagesTr/pancreas_126.nii.gz", + "label": "labelsTr/pancreas_126.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "imagesTr/pancreas_145.nii.gz", + "pseudo_label": "imagesTr/pancreas_145.nii.gz", + "label": "labelsTr/pancreas_145.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/pancreas_042.nii.gz", + "pseudo_label": "imagesTr/pancreas_042.nii.gz", + "label": "labelsTr/pancreas_042.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/pancreas_096.nii.gz", + "pseudo_label": "imagesTr/pancreas_096.nii.gz", + "label": "labelsTr/pancreas_096.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/pancreas_268.nii.gz", + "pseudo_label": "imagesTr/pancreas_268.nii.gz", + "label": "labelsTr/pancreas_268.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "imagesTr/pancreas_045.nii.gz", + "pseudo_label": "imagesTr/pancreas_045.nii.gz", + "label": "labelsTr/pancreas_045.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/pancreas_130.nii.gz", + "pseudo_label": "imagesTr/pancreas_130.nii.gz", + "label": "labelsTr/pancreas_130.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/pancreas_278.nii.gz", + "pseudo_label": "imagesTr/pancreas_278.nii.gz", + "label": "labelsTr/pancreas_278.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/pancreas_325.nii.gz", + "pseudo_label": "imagesTr/pancreas_325.nii.gz", + "label": "labelsTr/pancreas_325.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/pancreas_084.nii.gz", + "pseudo_label": "imagesTr/pancreas_084.nii.gz", + "label": "labelsTr/pancreas_084.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "imagesTr/pancreas_200.nii.gz", + "pseudo_label": "imagesTr/pancreas_200.nii.gz", + "label": "labelsTr/pancreas_200.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_200/pancreas_200_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_411.nii.gz", + "pseudo_label": "imagesTr/pancreas_411.nii.gz", + "label": "labelsTr/pancreas_411.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_411/pancreas_411_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_127.nii.gz", + "pseudo_label": "imagesTr/pancreas_127.nii.gz", + "label": "labelsTr/pancreas_127.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_127/pancreas_127_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_382.nii.gz", + "pseudo_label": "imagesTr/pancreas_382.nii.gz", + "label": "labelsTr/pancreas_382.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_382/pancreas_382_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_055.nii.gz", + "pseudo_label": "imagesTr/pancreas_055.nii.gz", + "label": "labelsTr/pancreas_055.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_055/pancreas_055_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_103.nii.gz", + "pseudo_label": "imagesTr/pancreas_103.nii.gz", + "label": "labelsTr/pancreas_103.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_103/pancreas_103_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_351.nii.gz", + "pseudo_label": "imagesTr/pancreas_351.nii.gz", + "label": "labelsTr/pancreas_351.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_351/pancreas_351_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_235.nii.gz", + "pseudo_label": "imagesTr/pancreas_235.nii.gz", + "label": "labelsTr/pancreas_235.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_235/pancreas_235_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_001.nii.gz", + "pseudo_label": "imagesTr/pancreas_001.nii.gz", + "label": "labelsTr/pancreas_001.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_001/pancreas_001_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_230.nii.gz", + "pseudo_label": "imagesTr/pancreas_230.nii.gz", + "label": "labelsTr/pancreas_230.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_230/pancreas_230_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_125.nii.gz", + "pseudo_label": "imagesTr/pancreas_125.nii.gz", + "label": "labelsTr/pancreas_125.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_125/pancreas_125_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_124.nii.gz", + "pseudo_label": "imagesTr/pancreas_124.nii.gz", + "label": "labelsTr/pancreas_124.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_124/pancreas_124_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_355.nii.gz", + "pseudo_label": "imagesTr/pancreas_355.nii.gz", + "label": "labelsTr/pancreas_355.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_355/pancreas_355_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_297.nii.gz", + "pseudo_label": "imagesTr/pancreas_297.nii.gz", + "label": "labelsTr/pancreas_297.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_297/pancreas_297_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_269.nii.gz", + "pseudo_label": "imagesTr/pancreas_269.nii.gz", + "label": "labelsTr/pancreas_269.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_269/pancreas_269_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_277.nii.gz", + "pseudo_label": "imagesTr/pancreas_277.nii.gz", + "label": "labelsTr/pancreas_277.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/pancreas_226.nii.gz", + "pseudo_label": "imagesTr/pancreas_226.nii.gz", + "label": "labelsTr/pancreas_226.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_226/pancreas_226_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_178.nii.gz", + "pseudo_label": "imagesTr/pancreas_178.nii.gz", + "label": "labelsTr/pancreas_178.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_178/pancreas_178_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_418.nii.gz", + "pseudo_label": "imagesTr/pancreas_418.nii.gz", + "label": "labelsTr/pancreas_418.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_418/pancreas_418_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_378.nii.gz", + "pseudo_label": "imagesTr/pancreas_378.nii.gz", + "label": "labelsTr/pancreas_378.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_378/pancreas_378_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_025.nii.gz", + "pseudo_label": "imagesTr/pancreas_025.nii.gz", + "label": "labelsTr/pancreas_025.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_025/pancreas_025_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_046.nii.gz", + "pseudo_label": "imagesTr/pancreas_046.nii.gz", + "label": "labelsTr/pancreas_046.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_046/pancreas_046_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_114.nii.gz", + "pseudo_label": "imagesTr/pancreas_114.nii.gz", + "label": "labelsTr/pancreas_114.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0 + }, + { + "image": "imagesTr/pancreas_217.nii.gz", + "pseudo_label": "imagesTr/pancreas_217.nii.gz", + "label": "labelsTr/pancreas_217.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_217/pancreas_217_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_155.nii.gz", + "pseudo_label": "imagesTr/pancreas_155.nii.gz", + "label": "labelsTr/pancreas_155.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_155/pancreas_155_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_354.nii.gz", + "pseudo_label": "imagesTr/pancreas_354.nii.gz", + "label": "labelsTr/pancreas_354.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_354/pancreas_354_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_199.nii.gz", + "pseudo_label": "imagesTr/pancreas_199.nii.gz", + "label": "labelsTr/pancreas_199.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_199/pancreas_199_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_210.nii.gz", + "pseudo_label": "imagesTr/pancreas_210.nii.gz", + "label": "labelsTr/pancreas_210.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_210/pancreas_210_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_246.nii.gz", + "pseudo_label": "imagesTr/pancreas_246.nii.gz", + "label": "labelsTr/pancreas_246.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_246/pancreas_246_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_395.nii.gz", + "pseudo_label": "imagesTr/pancreas_395.nii.gz", + "label": "labelsTr/pancreas_395.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_395/pancreas_395_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_410.nii.gz", + "pseudo_label": "imagesTr/pancreas_410.nii.gz", + "label": "labelsTr/pancreas_410.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_410/pancreas_410_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_197.nii.gz", + "pseudo_label": "imagesTr/pancreas_197.nii.gz", + "label": "labelsTr/pancreas_197.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_197/pancreas_197_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_099.nii.gz", + "pseudo_label": "imagesTr/pancreas_099.nii.gz", + "label": "labelsTr/pancreas_099.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_099/pancreas_099_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_107.nii.gz", + "pseudo_label": "imagesTr/pancreas_107.nii.gz", + "label": "labelsTr/pancreas_107.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_107/pancreas_107_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_122.nii.gz", + "pseudo_label": "imagesTr/pancreas_122.nii.gz", + "label": "labelsTr/pancreas_122.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_122/pancreas_122_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_111.nii.gz", + "pseudo_label": "imagesTr/pancreas_111.nii.gz", + "label": "labelsTr/pancreas_111.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_111/pancreas_111_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_004.nii.gz", + "pseudo_label": "imagesTr/pancreas_004.nii.gz", + "label": "labelsTr/pancreas_004.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_004/pancreas_004_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_331.nii.gz", + "pseudo_label": "imagesTr/pancreas_331.nii.gz", + "label": "labelsTr/pancreas_331.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_331/pancreas_331_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_069.nii.gz", + "pseudo_label": "imagesTr/pancreas_069.nii.gz", + "label": "labelsTr/pancreas_069.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_069/pancreas_069_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_071.nii.gz", + "pseudo_label": "imagesTr/pancreas_071.nii.gz", + "label": "labelsTr/pancreas_071.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_071/pancreas_071_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_259.nii.gz", + "pseudo_label": "imagesTr/pancreas_259.nii.gz", + "label": "labelsTr/pancreas_259.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_259/pancreas_259_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_213.nii.gz", + "pseudo_label": "imagesTr/pancreas_213.nii.gz", + "label": "labelsTr/pancreas_213.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_213/pancreas_213_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_018.nii.gz", + "pseudo_label": "imagesTr/pancreas_018.nii.gz", + "label": "labelsTr/pancreas_018.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_018/pancreas_018_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_400.nii.gz", + "pseudo_label": "imagesTr/pancreas_400.nii.gz", + "label": "labelsTr/pancreas_400.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_400/pancreas_400_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_037.nii.gz", + "pseudo_label": "imagesTr/pancreas_037.nii.gz", + "label": "labelsTr/pancreas_037.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_037/pancreas_037_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_048.nii.gz", + "pseudo_label": "imagesTr/pancreas_048.nii.gz", + "label": "labelsTr/pancreas_048.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_048/pancreas_048_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_345.nii.gz", + "pseudo_label": "imagesTr/pancreas_345.nii.gz", + "label": "labelsTr/pancreas_345.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_345/pancreas_345_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_229.nii.gz", + "pseudo_label": "imagesTr/pancreas_229.nii.gz", + "label": "labelsTr/pancreas_229.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_229/pancreas_229_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_364.nii.gz", + "pseudo_label": "imagesTr/pancreas_364.nii.gz", + "label": "labelsTr/pancreas_364.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_364/pancreas_364_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_295.nii.gz", + "pseudo_label": "imagesTr/pancreas_295.nii.gz", + "label": "labelsTr/pancreas_295.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_295/pancreas_295_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_110.nii.gz", + "pseudo_label": "imagesTr/pancreas_110.nii.gz", + "label": "labelsTr/pancreas_110.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_110/pancreas_110_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_157.nii.gz", + "pseudo_label": "imagesTr/pancreas_157.nii.gz", + "label": "labelsTr/pancreas_157.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_157/pancreas_157_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_293.nii.gz", + "pseudo_label": "imagesTr/pancreas_293.nii.gz", + "label": "labelsTr/pancreas_293.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_293/pancreas_293_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_377.nii.gz", + "pseudo_label": "imagesTr/pancreas_377.nii.gz", + "label": "labelsTr/pancreas_377.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_377/pancreas_377_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_088.nii.gz", + "pseudo_label": "imagesTr/pancreas_088.nii.gz", + "label": "labelsTr/pancreas_088.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_088/pancreas_088_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_193.nii.gz", + "pseudo_label": "imagesTr/pancreas_193.nii.gz", + "label": "labelsTr/pancreas_193.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_193/pancreas_193_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_218.nii.gz", + "pseudo_label": "imagesTr/pancreas_218.nii.gz", + "label": "labelsTr/pancreas_218.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_218/pancreas_218_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_196.nii.gz", + "pseudo_label": "imagesTr/pancreas_196.nii.gz", + "label": "labelsTr/pancreas_196.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_196/pancreas_196_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_413.nii.gz", + "pseudo_label": "imagesTr/pancreas_413.nii.gz", + "label": "labelsTr/pancreas_413.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_413/pancreas_413_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_056.nii.gz", + "pseudo_label": "imagesTr/pancreas_056.nii.gz", + "label": "labelsTr/pancreas_056.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_056/pancreas_056_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_203.nii.gz", + "pseudo_label": "imagesTr/pancreas_203.nii.gz", + "label": "labelsTr/pancreas_203.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_203/pancreas_203_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_356.nii.gz", + "pseudo_label": "imagesTr/pancreas_356.nii.gz", + "label": "labelsTr/pancreas_356.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_356/pancreas_356_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_187.nii.gz", + "pseudo_label": "imagesTr/pancreas_187.nii.gz", + "label": "labelsTr/pancreas_187.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_187/pancreas_187_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_159.nii.gz", + "pseudo_label": "imagesTr/pancreas_159.nii.gz", + "label": "labelsTr/pancreas_159.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_159/pancreas_159_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_311.nii.gz", + "pseudo_label": "imagesTr/pancreas_311.nii.gz", + "label": "labelsTr/pancreas_311.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_311/pancreas_311_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_388.nii.gz", + "pseudo_label": "imagesTr/pancreas_388.nii.gz", + "label": "labelsTr/pancreas_388.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_388/pancreas_388_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_165.nii.gz", + "pseudo_label": "imagesTr/pancreas_165.nii.gz", + "label": "labelsTr/pancreas_165.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_165/pancreas_165_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_070.nii.gz", + "pseudo_label": "imagesTr/pancreas_070.nii.gz", + "label": "labelsTr/pancreas_070.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_070/pancreas_070_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_302.nii.gz", + "pseudo_label": "imagesTr/pancreas_302.nii.gz", + "label": "labelsTr/pancreas_302.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_302/pancreas_302_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_243.nii.gz", + "pseudo_label": "imagesTr/pancreas_243.nii.gz", + "label": "labelsTr/pancreas_243.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_243/pancreas_243_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_101.nii.gz", + "pseudo_label": "imagesTr/pancreas_101.nii.gz", + "label": "labelsTr/pancreas_101.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_101/pancreas_101_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_369.nii.gz", + "pseudo_label": "imagesTr/pancreas_369.nii.gz", + "label": "labelsTr/pancreas_369.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_369/pancreas_369_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_104.nii.gz", + "pseudo_label": "imagesTr/pancreas_104.nii.gz", + "label": "labelsTr/pancreas_104.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_104/pancreas_104_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_399.nii.gz", + "pseudo_label": "imagesTr/pancreas_399.nii.gz", + "label": "labelsTr/pancreas_399.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_399/pancreas_399_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_315.nii.gz", + "pseudo_label": "imagesTr/pancreas_315.nii.gz", + "label": "labelsTr/pancreas_315.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_315/pancreas_315_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_294.nii.gz", + "pseudo_label": "imagesTr/pancreas_294.nii.gz", + "label": "labelsTr/pancreas_294.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_294/pancreas_294_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_028.nii.gz", + "pseudo_label": "imagesTr/pancreas_028.nii.gz", + "label": "labelsTr/pancreas_028.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_028/pancreas_028_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_313.nii.gz", + "pseudo_label": "imagesTr/pancreas_313.nii.gz", + "label": "labelsTr/pancreas_313.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_313/pancreas_313_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_194.nii.gz", + "pseudo_label": "imagesTr/pancreas_194.nii.gz", + "label": "labelsTr/pancreas_194.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_194/pancreas_194_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_029.nii.gz", + "pseudo_label": "imagesTr/pancreas_029.nii.gz", + "label": "labelsTr/pancreas_029.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_029/pancreas_029_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_421.nii.gz", + "pseudo_label": "imagesTr/pancreas_421.nii.gz", + "label": "labelsTr/pancreas_421.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_421/pancreas_421_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_182.nii.gz", + "pseudo_label": "imagesTr/pancreas_182.nii.gz", + "label": "labelsTr/pancreas_182.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_182/pancreas_182_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_249.nii.gz", + "pseudo_label": "imagesTr/pancreas_249.nii.gz", + "label": "labelsTr/pancreas_249.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_249/pancreas_249_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_201.nii.gz", + "pseudo_label": "imagesTr/pancreas_201.nii.gz", + "label": "labelsTr/pancreas_201.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_201/pancreas_201_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_299.nii.gz", + "pseudo_label": "imagesTr/pancreas_299.nii.gz", + "label": "labelsTr/pancreas_299.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_299/pancreas_299_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_274.nii.gz", + "pseudo_label": "imagesTr/pancreas_274.nii.gz", + "label": "labelsTr/pancreas_274.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_274/pancreas_274_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_303.nii.gz", + "pseudo_label": "imagesTr/pancreas_303.nii.gz", + "label": "labelsTr/pancreas_303.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_303/pancreas_303_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_279.nii.gz", + "pseudo_label": "imagesTr/pancreas_279.nii.gz", + "label": "labelsTr/pancreas_279.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_279/pancreas_279_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_386.nii.gz", + "pseudo_label": "imagesTr/pancreas_386.nii.gz", + "label": "labelsTr/pancreas_386.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_386/pancreas_386_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_086.nii.gz", + "pseudo_label": "imagesTr/pancreas_086.nii.gz", + "label": "labelsTr/pancreas_086.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_086/pancreas_086_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_214.nii.gz", + "pseudo_label": "imagesTr/pancreas_214.nii.gz", + "label": "labelsTr/pancreas_214.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_214/pancreas_214_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_261.nii.gz", + "pseudo_label": "imagesTr/pancreas_261.nii.gz", + "label": "labelsTr/pancreas_261.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_261/pancreas_261_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_375.nii.gz", + "pseudo_label": "imagesTr/pancreas_375.nii.gz", + "label": "labelsTr/pancreas_375.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_375/pancreas_375_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_286.nii.gz", + "pseudo_label": "imagesTr/pancreas_286.nii.gz", + "label": "labelsTr/pancreas_286.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_286/pancreas_286_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_083.nii.gz", + "pseudo_label": "imagesTr/pancreas_083.nii.gz", + "label": "labelsTr/pancreas_083.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_083/pancreas_083_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_415.nii.gz", + "pseudo_label": "imagesTr/pancreas_415.nii.gz", + "label": "labelsTr/pancreas_415.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_415/pancreas_415_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_016.nii.gz", + "pseudo_label": "imagesTr/pancreas_016.nii.gz", + "label": "labelsTr/pancreas_016.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_016/pancreas_016_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_346.nii.gz", + "pseudo_label": "imagesTr/pancreas_346.nii.gz", + "label": "labelsTr/pancreas_346.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_346/pancreas_346_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_404.nii.gz", + "pseudo_label": "imagesTr/pancreas_404.nii.gz", + "label": "labelsTr/pancreas_404.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_404/pancreas_404_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_298.nii.gz", + "pseudo_label": "imagesTr/pancreas_298.nii.gz", + "label": "labelsTr/pancreas_298.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_298/pancreas_298_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_080.nii.gz", + "pseudo_label": "imagesTr/pancreas_080.nii.gz", + "label": "labelsTr/pancreas_080.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_080/pancreas_080_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_343.nii.gz", + "pseudo_label": "imagesTr/pancreas_343.nii.gz", + "label": "labelsTr/pancreas_343.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_343/pancreas_343_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_284.nii.gz", + "pseudo_label": "imagesTr/pancreas_284.nii.gz", + "label": "labelsTr/pancreas_284.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_284/pancreas_284_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_148.nii.gz", + "pseudo_label": "imagesTr/pancreas_148.nii.gz", + "label": "labelsTr/pancreas_148.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_148/pancreas_148_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_401.nii.gz", + "pseudo_label": "imagesTr/pancreas_401.nii.gz", + "label": "labelsTr/pancreas_401.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_401/pancreas_401_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_204.nii.gz", + "pseudo_label": "imagesTr/pancreas_204.nii.gz", + "label": "labelsTr/pancreas_204.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_204/pancreas_204_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_334.nii.gz", + "pseudo_label": "imagesTr/pancreas_334.nii.gz", + "label": "labelsTr/pancreas_334.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_334/pancreas_334_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_138.nii.gz", + "pseudo_label": "imagesTr/pancreas_138.nii.gz", + "label": "labelsTr/pancreas_138.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_138/pancreas_138_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_300.nii.gz", + "pseudo_label": "imagesTr/pancreas_300.nii.gz", + "label": "labelsTr/pancreas_300.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_300/pancreas_300_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_304.nii.gz", + "pseudo_label": "imagesTr/pancreas_304.nii.gz", + "label": "labelsTr/pancreas_304.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_304/pancreas_304_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_100.nii.gz", + "pseudo_label": "imagesTr/pancreas_100.nii.gz", + "label": "labelsTr/pancreas_100.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_100/pancreas_100_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_405.nii.gz", + "pseudo_label": "imagesTr/pancreas_405.nii.gz", + "label": "labelsTr/pancreas_405.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_405/pancreas_405_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_129.nii.gz", + "pseudo_label": "imagesTr/pancreas_129.nii.gz", + "label": "labelsTr/pancreas_129.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_129/pancreas_129_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_228.nii.gz", + "pseudo_label": "imagesTr/pancreas_228.nii.gz", + "label": "labelsTr/pancreas_228.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_228/pancreas_228_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_113.nii.gz", + "pseudo_label": "imagesTr/pancreas_113.nii.gz", + "label": "labelsTr/pancreas_113.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_113/pancreas_113_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_091.nii.gz", + "pseudo_label": "imagesTr/pancreas_091.nii.gz", + "label": "labelsTr/pancreas_091.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_091/pancreas_091_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_310.nii.gz", + "pseudo_label": "imagesTr/pancreas_310.nii.gz", + "label": "labelsTr/pancreas_310.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_310/pancreas_310_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_050.nii.gz", + "pseudo_label": "imagesTr/pancreas_050.nii.gz", + "label": "labelsTr/pancreas_050.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_050/pancreas_050_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_172.nii.gz", + "pseudo_label": "imagesTr/pancreas_172.nii.gz", + "label": "labelsTr/pancreas_172.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_172/pancreas_172_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_075.nii.gz", + "pseudo_label": "imagesTr/pancreas_075.nii.gz", + "label": "labelsTr/pancreas_075.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_075/pancreas_075_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_198.nii.gz", + "pseudo_label": "imagesTr/pancreas_198.nii.gz", + "label": "labelsTr/pancreas_198.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_198/pancreas_198_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_372.nii.gz", + "pseudo_label": "imagesTr/pancreas_372.nii.gz", + "label": "labelsTr/pancreas_372.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_372/pancreas_372_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_296.nii.gz", + "pseudo_label": "imagesTr/pancreas_296.nii.gz", + "label": "labelsTr/pancreas_296.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_296/pancreas_296_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_078.nii.gz", + "pseudo_label": "imagesTr/pancreas_078.nii.gz", + "label": "labelsTr/pancreas_078.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_078/pancreas_078_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_255.nii.gz", + "pseudo_label": "imagesTr/pancreas_255.nii.gz", + "label": "labelsTr/pancreas_255.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_255/pancreas_255_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_166.nii.gz", + "pseudo_label": "imagesTr/pancreas_166.nii.gz", + "label": "labelsTr/pancreas_166.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_166/pancreas_166_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_167.nii.gz", + "pseudo_label": "imagesTr/pancreas_167.nii.gz", + "label": "labelsTr/pancreas_167.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_167/pancreas_167_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_265.nii.gz", + "pseudo_label": "imagesTr/pancreas_265.nii.gz", + "label": "labelsTr/pancreas_265.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_265/pancreas_265_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_119.nii.gz", + "pseudo_label": "imagesTr/pancreas_119.nii.gz", + "label": "labelsTr/pancreas_119.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_119/pancreas_119_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_169.nii.gz", + "pseudo_label": "imagesTr/pancreas_169.nii.gz", + "label": "labelsTr/pancreas_169.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_169/pancreas_169_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_387.nii.gz", + "pseudo_label": "imagesTr/pancreas_387.nii.gz", + "label": "labelsTr/pancreas_387.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_387/pancreas_387_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_328.nii.gz", + "pseudo_label": "imagesTr/pancreas_328.nii.gz", + "label": "labelsTr/pancreas_328.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_328/pancreas_328_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_275.nii.gz", + "pseudo_label": "imagesTr/pancreas_275.nii.gz", + "label": "labelsTr/pancreas_275.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_275/pancreas_275_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_253.nii.gz", + "pseudo_label": "imagesTr/pancreas_253.nii.gz", + "label": "labelsTr/pancreas_253.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_253/pancreas_253_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_326.nii.gz", + "pseudo_label": "imagesTr/pancreas_326.nii.gz", + "label": "labelsTr/pancreas_326.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_326/pancreas_326_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_379.nii.gz", + "pseudo_label": "imagesTr/pancreas_379.nii.gz", + "label": "labelsTr/pancreas_379.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0 + }, + { + "image": "imagesTr/pancreas_051.nii.gz", + "pseudo_label": "imagesTr/pancreas_051.nii.gz", + "label": "labelsTr/pancreas_051.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_051/pancreas_051_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_291.nii.gz", + "pseudo_label": "imagesTr/pancreas_291.nii.gz", + "label": "labelsTr/pancreas_291.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_291/pancreas_291_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_106.nii.gz", + "pseudo_label": "imagesTr/pancreas_106.nii.gz", + "label": "labelsTr/pancreas_106.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_106/pancreas_106_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_242.nii.gz", + "pseudo_label": "imagesTr/pancreas_242.nii.gz", + "label": "labelsTr/pancreas_242.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_242/pancreas_242_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_389.nii.gz", + "pseudo_label": "imagesTr/pancreas_389.nii.gz", + "label": "labelsTr/pancreas_389.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_389/pancreas_389_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_058.nii.gz", + "pseudo_label": "imagesTr/pancreas_058.nii.gz", + "label": "labelsTr/pancreas_058.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_058/pancreas_058_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_120.nii.gz", + "pseudo_label": "imagesTr/pancreas_120.nii.gz", + "label": "labelsTr/pancreas_120.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_120/pancreas_120_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_287.nii.gz", + "pseudo_label": "imagesTr/pancreas_287.nii.gz", + "label": "labelsTr/pancreas_287.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_287/pancreas_287_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_305.nii.gz", + "pseudo_label": "imagesTr/pancreas_305.nii.gz", + "label": "labelsTr/pancreas_305.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_305/pancreas_305_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_135.nii.gz", + "pseudo_label": "imagesTr/pancreas_135.nii.gz", + "label": "labelsTr/pancreas_135.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_135/pancreas_135_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_137.nii.gz", + "pseudo_label": "imagesTr/pancreas_137.nii.gz", + "label": "labelsTr/pancreas_137.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_137/pancreas_137_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_010.nii.gz", + "pseudo_label": "imagesTr/pancreas_010.nii.gz", + "label": "labelsTr/pancreas_010.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_010/pancreas_010_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_109.nii.gz", + "pseudo_label": "imagesTr/pancreas_109.nii.gz", + "label": "labelsTr/pancreas_109.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_109/pancreas_109_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_323.nii.gz", + "pseudo_label": "imagesTr/pancreas_323.nii.gz", + "label": "labelsTr/pancreas_323.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_323/pancreas_323_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_140.nii.gz", + "pseudo_label": "imagesTr/pancreas_140.nii.gz", + "label": "labelsTr/pancreas_140.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_140/pancreas_140_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_316.nii.gz", + "pseudo_label": "imagesTr/pancreas_316.nii.gz", + "label": "labelsTr/pancreas_316.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_316/pancreas_316_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_012.nii.gz", + "pseudo_label": "imagesTr/pancreas_012.nii.gz", + "label": "labelsTr/pancreas_012.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_012/pancreas_012_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_158.nii.gz", + "pseudo_label": "imagesTr/pancreas_158.nii.gz", + "label": "labelsTr/pancreas_158.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_158/pancreas_158_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_344.nii.gz", + "pseudo_label": "imagesTr/pancreas_344.nii.gz", + "label": "labelsTr/pancreas_344.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_344/pancreas_344_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_342.nii.gz", + "pseudo_label": "imagesTr/pancreas_342.nii.gz", + "label": "labelsTr/pancreas_342.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_342/pancreas_342_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_095.nii.gz", + "pseudo_label": "imagesTr/pancreas_095.nii.gz", + "label": "labelsTr/pancreas_095.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_095/pancreas_095_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_019.nii.gz", + "pseudo_label": "imagesTr/pancreas_019.nii.gz", + "label": "labelsTr/pancreas_019.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_019/pancreas_019_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_077.nii.gz", + "pseudo_label": "imagesTr/pancreas_077.nii.gz", + "label": "labelsTr/pancreas_077.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_077/pancreas_077_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_015.nii.gz", + "pseudo_label": "imagesTr/pancreas_015.nii.gz", + "label": "labelsTr/pancreas_015.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_015/pancreas_015_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_312.nii.gz", + "pseudo_label": "imagesTr/pancreas_312.nii.gz", + "label": "labelsTr/pancreas_312.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_312/pancreas_312_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_024.nii.gz", + "pseudo_label": "imagesTr/pancreas_024.nii.gz", + "label": "labelsTr/pancreas_024.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_024/pancreas_024_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_087.nii.gz", + "pseudo_label": "imagesTr/pancreas_087.nii.gz", + "label": "labelsTr/pancreas_087.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_087/pancreas_087_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_098.nii.gz", + "pseudo_label": "imagesTr/pancreas_098.nii.gz", + "label": "labelsTr/pancreas_098.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_098/pancreas_098_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_262.nii.gz", + "pseudo_label": "imagesTr/pancreas_262.nii.gz", + "label": "labelsTr/pancreas_262.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_262/pancreas_262_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_105.nii.gz", + "pseudo_label": "imagesTr/pancreas_105.nii.gz", + "label": "labelsTr/pancreas_105.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_105/pancreas_105_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_052.nii.gz", + "pseudo_label": "imagesTr/pancreas_052.nii.gz", + "label": "labelsTr/pancreas_052.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_052/pancreas_052_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_362.nii.gz", + "pseudo_label": "imagesTr/pancreas_362.nii.gz", + "label": "labelsTr/pancreas_362.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_362/pancreas_362_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_247.nii.gz", + "pseudo_label": "imagesTr/pancreas_247.nii.gz", + "label": "labelsTr/pancreas_247.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_247/pancreas_247_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_414.nii.gz", + "pseudo_label": "imagesTr/pancreas_414.nii.gz", + "label": "labelsTr/pancreas_414.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_414/pancreas_414_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_391.nii.gz", + "pseudo_label": "imagesTr/pancreas_391.nii.gz", + "label": "labelsTr/pancreas_391.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_391/pancreas_391_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_330.nii.gz", + "pseudo_label": "imagesTr/pancreas_330.nii.gz", + "label": "labelsTr/pancreas_330.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_330/pancreas_330_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_209.nii.gz", + "pseudo_label": "imagesTr/pancreas_209.nii.gz", + "label": "labelsTr/pancreas_209.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_209/pancreas_209_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_409.nii.gz", + "pseudo_label": "imagesTr/pancreas_409.nii.gz", + "label": "labelsTr/pancreas_409.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_409/pancreas_409_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_244.nii.gz", + "pseudo_label": "imagesTr/pancreas_244.nii.gz", + "label": "labelsTr/pancreas_244.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_244/pancreas_244_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_266.nii.gz", + "pseudo_label": "imagesTr/pancreas_266.nii.gz", + "label": "labelsTr/pancreas_266.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_266/pancreas_266_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_264.nii.gz", + "pseudo_label": "imagesTr/pancreas_264.nii.gz", + "label": "labelsTr/pancreas_264.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_264/pancreas_264_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_035.nii.gz", + "pseudo_label": "imagesTr/pancreas_035.nii.gz", + "label": "labelsTr/pancreas_035.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_035/pancreas_035_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_215.nii.gz", + "pseudo_label": "imagesTr/pancreas_215.nii.gz", + "label": "labelsTr/pancreas_215.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_215/pancreas_215_seg.nii.gz" + }, + { + "image": "imagesTr/pancreas_339.nii.gz", + "pseudo_label": "imagesTr/pancreas_339.nii.gz", + "label": "labelsTr/pancreas_339.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task07_100/pancreas_339/pancreas_339_seg.nii.gz" + } + ], + "training_transform": [ + { + "_target_": "RandCropByLabelClassesd", + "keys": [ + "@image_key", + "@label_key", + "@pseudo_label_key", + "@label_sv_key" + ], + "label_key": "@pseudo_label_key", + "num_classes": 133, + "num_samples": "@num_patches_per_image", + "spatial_size": "@patch_size", + "ratios": "$tuple(float(i >= 0) for i in range(133))", + "warn": false, + "allow_missing_keys": true + }, + { + "_target_": "RandZoomd", + "keys": [ + "@image_key", + "@label_key", + "@pseudo_label_key", + "@label_sv_key" + ], + "min_zoom": 0.8, + "max_zoom": 1.2, + "mode": [ + "trilinear", + "nearest", + "nearest", + "nearest" + ], + "prob": 0.2, + "allow_missing_keys": true + }, + { + "_target_": "RandSimulateLowResolutiond", + "keys": [ + "@image_key" + ], + "zoom_range": [ + 0.3, + 1 + ], + "prob": 0.2, + "allow_missing_keys": true + }, + { + "_target_": "RandGaussianSmoothd", + "keys": [ + "@image_key" + ], + "prob": 0.2, + "sigma_x": [ + 0.5, + 1.0 + ], + "sigma_y": [ + 0.5, + 1.0 + ], + "sigma_z": [ + 0.5, + 1.0 + ] + }, + { + "_target_": "RandScaleIntensityd", + "keys": [ + "@image_key" + ], + "factors": 0.1, + "prob": 0.2 + }, + { + "_target_": "RandShiftIntensityd", + "keys": [ + "@image_key" + ], + "offsets": 0.1, + "prob": 0.2 + }, + { + "_target_": "RandGaussianNoised", + "keys": [ + "@image_key" + ], + "prob": 0.2, + "mean": 0.0, + "std": 0.2 + } + ], + "label_dict": { + "1": "pancreas", + "2": "pancreatic tumor" + }, + "original_label_dict": { + "1": "pancreas", + "2": "cancer" + }, + "testing": [ + { + "image": "imagesTr/pancreas_207.nii.gz", + "label": "labelsTr/pancreas_207.nii.gz" + }, + { + "image": "imagesTr/pancreas_040.nii.gz", + "label": "labelsTr/pancreas_040.nii.gz" + }, + { + "image": "imagesTr/pancreas_081.nii.gz", + "label": "labelsTr/pancreas_081.nii.gz" + }, + { + "image": "imagesTr/pancreas_179.nii.gz", + "label": "labelsTr/pancreas_179.nii.gz" + }, + { + "image": "imagesTr/pancreas_289.nii.gz", + "label": "labelsTr/pancreas_289.nii.gz" + }, + { + "image": "imagesTr/pancreas_402.nii.gz", + "label": "labelsTr/pancreas_402.nii.gz" + }, + { + "image": "imagesTr/pancreas_032.nii.gz", + "label": "labelsTr/pancreas_032.nii.gz" + }, + { + "image": "imagesTr/pancreas_270.nii.gz", + "label": "labelsTr/pancreas_270.nii.gz" + }, + { + "image": "imagesTr/pancreas_089.nii.gz", + "label": "labelsTr/pancreas_089.nii.gz" + }, + { + "image": "imagesTr/pancreas_191.nii.gz", + "label": "labelsTr/pancreas_191.nii.gz" + }, + { + "image": "imagesTr/pancreas_365.nii.gz", + "label": "labelsTr/pancreas_365.nii.gz" + }, + { + "image": "imagesTr/pancreas_061.nii.gz", + "label": "labelsTr/pancreas_061.nii.gz" + }, + { + "image": "imagesTr/pancreas_222.nii.gz", + "label": "labelsTr/pancreas_222.nii.gz" + }, + { + "image": "imagesTr/pancreas_393.nii.gz", + "label": "labelsTr/pancreas_393.nii.gz" + }, + { + "image": "imagesTr/pancreas_419.nii.gz", + "label": "labelsTr/pancreas_419.nii.gz" + }, + { + "image": "imagesTr/pancreas_301.nii.gz", + "label": "labelsTr/pancreas_301.nii.gz" + }, + { + "image": "imagesTr/pancreas_350.nii.gz", + "label": "labelsTr/pancreas_350.nii.gz" + }, + { + "image": "imagesTr/pancreas_074.nii.gz", + "label": "labelsTr/pancreas_074.nii.gz" + }, + { + "image": "imagesTr/pancreas_380.nii.gz", + "label": "labelsTr/pancreas_380.nii.gz" + }, + { + "image": "imagesTr/pancreas_005.nii.gz", + "label": "labelsTr/pancreas_005.nii.gz" + }, + { + "image": "imagesTr/pancreas_006.nii.gz", + "label": "labelsTr/pancreas_006.nii.gz" + }, + { + "image": "imagesTr/pancreas_219.nii.gz", + "label": "labelsTr/pancreas_219.nii.gz" + }, + { + "image": "imagesTr/pancreas_092.nii.gz", + "label": "labelsTr/pancreas_092.nii.gz" + }, + { + "image": "imagesTr/pancreas_225.nii.gz", + "label": "labelsTr/pancreas_225.nii.gz" + }, + { + "image": "imagesTr/pancreas_392.nii.gz", + "label": "labelsTr/pancreas_392.nii.gz" + }, + { + "image": "imagesTr/pancreas_211.nii.gz", + "label": "labelsTr/pancreas_211.nii.gz" + }, + { + "image": "imagesTr/pancreas_173.nii.gz", + "label": "labelsTr/pancreas_173.nii.gz" + }, + { + "image": "imagesTr/pancreas_329.nii.gz", + "label": "labelsTr/pancreas_329.nii.gz" + }, + { + "image": "imagesTr/pancreas_117.nii.gz", + "label": "labelsTr/pancreas_117.nii.gz" + }, + { + "image": "imagesTr/pancreas_227.nii.gz", + "label": "labelsTr/pancreas_227.nii.gz" + }, + { + "image": "imagesTr/pancreas_149.nii.gz", + "label": "labelsTr/pancreas_149.nii.gz" + }, + { + "image": "imagesTr/pancreas_374.nii.gz", + "label": "labelsTr/pancreas_374.nii.gz" + }, + { + "image": "imagesTr/pancreas_361.nii.gz", + "label": "labelsTr/pancreas_361.nii.gz" + }, + { + "image": "imagesTr/pancreas_309.nii.gz", + "label": "labelsTr/pancreas_309.nii.gz" + }, + { + "image": "imagesTr/pancreas_224.nii.gz", + "label": "labelsTr/pancreas_224.nii.gz" + }, + { + "image": "imagesTr/pancreas_183.nii.gz", + "label": "labelsTr/pancreas_183.nii.gz" + }, + { + "image": "imagesTr/pancreas_406.nii.gz", + "label": "labelsTr/pancreas_406.nii.gz" + }, + { + "image": "imagesTr/pancreas_181.nii.gz", + "label": "labelsTr/pancreas_181.nii.gz" + }, + { + "image": "imagesTr/pancreas_131.nii.gz", + "label": "labelsTr/pancreas_131.nii.gz" + }, + { + "image": "imagesTr/pancreas_336.nii.gz", + "label": "labelsTr/pancreas_336.nii.gz" + }, + { + "image": "imagesTr/pancreas_239.nii.gz", + "label": "labelsTr/pancreas_239.nii.gz" + }, + { + "image": "imagesTr/pancreas_318.nii.gz", + "label": "labelsTr/pancreas_318.nii.gz" + }, + { + "image": "imagesTr/pancreas_066.nii.gz", + "label": "labelsTr/pancreas_066.nii.gz" + }, + { + "image": "imagesTr/pancreas_258.nii.gz", + "label": "labelsTr/pancreas_258.nii.gz" + }, + { + "image": "imagesTr/pancreas_043.nii.gz", + "label": "labelsTr/pancreas_043.nii.gz" + }, + { + "image": "imagesTr/pancreas_094.nii.gz", + "label": "labelsTr/pancreas_094.nii.gz" + }, + { + "image": "imagesTr/pancreas_180.nii.gz", + "label": "labelsTr/pancreas_180.nii.gz" + }, + { + "image": "imagesTr/pancreas_292.nii.gz", + "label": "labelsTr/pancreas_292.nii.gz" + }, + { + "image": "imagesTr/pancreas_049.nii.gz", + "label": "labelsTr/pancreas_049.nii.gz" + }, + { + "image": "imagesTr/pancreas_348.nii.gz", + "label": "labelsTr/pancreas_348.nii.gz" + }, + { + "image": "imagesTr/pancreas_236.nii.gz", + "label": "labelsTr/pancreas_236.nii.gz" + }, + { + "image": "imagesTr/pancreas_412.nii.gz", + "label": "labelsTr/pancreas_412.nii.gz" + }, + { + "image": "imagesTr/pancreas_290.nii.gz", + "label": "labelsTr/pancreas_290.nii.gz" + }, + { + "image": "imagesTr/pancreas_276.nii.gz", + "label": "labelsTr/pancreas_276.nii.gz" + }, + { + "image": "imagesTr/pancreas_160.nii.gz", + "label": "labelsTr/pancreas_160.nii.gz" + }, + { + "image": "imagesTr/pancreas_416.nii.gz", + "label": "labelsTr/pancreas_416.nii.gz" + } + ] +} diff --git a/vista3d/data/jsons/Task08_5_folds.json b/vista3d/data/jsons/Task08_5_folds.json new file mode 100644 index 0000000..9c779eb --- /dev/null +++ b/vista3d/data/jsons/Task08_5_folds.json @@ -0,0 +1,2206 @@ +{ + "training": [ + { + "image": "imagesTr/hepaticvessel_372.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_372.nii.gz", + "label": "labelsTr/hepaticvessel_372.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "imagesTr/hepaticvessel_165.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_165.nii.gz", + "label": "labelsTr/hepaticvessel_165.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "imagesTr/hepaticvessel_145.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_145.nii.gz", + "label": "labelsTr/hepaticvessel_145.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_046.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_046.nii.gz", + "label": "labelsTr/hepaticvessel_046.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_379.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_379.nii.gz", + "label": "labelsTr/hepaticvessel_379.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "imagesTr/hepaticvessel_214.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_214.nii.gz", + "label": "labelsTr/hepaticvessel_214.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_096.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_096.nii.gz", + "label": "labelsTr/hepaticvessel_096.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_401.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_401.nii.gz", + "label": "labelsTr/hepaticvessel_401.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_350.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_350.nii.gz", + "label": "labelsTr/hepaticvessel_350.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_175.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_175.nii.gz", + "label": "labelsTr/hepaticvessel_175.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_330.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_330.nii.gz", + "label": "labelsTr/hepaticvessel_330.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_378.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_378.nii.gz", + "label": "labelsTr/hepaticvessel_378.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_280.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_280.nii.gz", + "label": "labelsTr/hepaticvessel_280.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_111.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_111.nii.gz", + "label": "labelsTr/hepaticvessel_111.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_384.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_384.nii.gz", + "label": "labelsTr/hepaticvessel_384.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "imagesTr/hepaticvessel_097.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_097.nii.gz", + "label": "labelsTr/hepaticvessel_097.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_325.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_325.nii.gz", + "label": "labelsTr/hepaticvessel_325.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_416.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_416.nii.gz", + "label": "labelsTr/hepaticvessel_416.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_215.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_215.nii.gz", + "label": "labelsTr/hepaticvessel_215.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_305.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_305.nii.gz", + "label": "labelsTr/hepaticvessel_305.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_318.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_318.nii.gz", + "label": "labelsTr/hepaticvessel_318.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_236.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_236.nii.gz", + "label": "labelsTr/hepaticvessel_236.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_195.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_195.nii.gz", + "label": "labelsTr/hepaticvessel_195.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_445.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_445.nii.gz", + "label": "labelsTr/hepaticvessel_445.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_203.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_203.nii.gz", + "label": "labelsTr/hepaticvessel_203.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_085.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_085.nii.gz", + "label": "labelsTr/hepaticvessel_085.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_129.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_129.nii.gz", + "label": "labelsTr/hepaticvessel_129.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_307.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_307.nii.gz", + "label": "labelsTr/hepaticvessel_307.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_242.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_242.nii.gz", + "label": "labelsTr/hepaticvessel_242.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_159.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_159.nii.gz", + "label": "labelsTr/hepaticvessel_159.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_263.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_263.nii.gz", + "label": "labelsTr/hepaticvessel_263.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "imagesTr/hepaticvessel_285.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_285.nii.gz", + "label": "labelsTr/hepaticvessel_285.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_079.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_079.nii.gz", + "label": "labelsTr/hepaticvessel_079.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_281.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_281.nii.gz", + "label": "labelsTr/hepaticvessel_281.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_362.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_362.nii.gz", + "label": "labelsTr/hepaticvessel_362.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "imagesTr/hepaticvessel_256.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_256.nii.gz", + "label": "labelsTr/hepaticvessel_256.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "imagesTr/hepaticvessel_164.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_164.nii.gz", + "label": "labelsTr/hepaticvessel_164.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_259.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_259.nii.gz", + "label": "labelsTr/hepaticvessel_259.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_186.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_186.nii.gz", + "label": "labelsTr/hepaticvessel_186.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_104.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_104.nii.gz", + "label": "labelsTr/hepaticvessel_104.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_404.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_404.nii.gz", + "label": "labelsTr/hepaticvessel_404.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_068.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_068.nii.gz", + "label": "labelsTr/hepaticvessel_068.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_333.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_333.nii.gz", + "label": "labelsTr/hepaticvessel_333.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_027.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_027.nii.gz", + "label": "labelsTr/hepaticvessel_027.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_192.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_192.nii.gz", + "label": "labelsTr/hepaticvessel_192.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_262.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_262.nii.gz", + "label": "labelsTr/hepaticvessel_262.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_385.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_385.nii.gz", + "label": "labelsTr/hepaticvessel_385.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_368.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_368.nii.gz", + "label": "labelsTr/hepaticvessel_368.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_112.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_112.nii.gz", + "label": "labelsTr/hepaticvessel_112.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_308.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_308.nii.gz", + "label": "labelsTr/hepaticvessel_308.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_308/hepaticvessel_308_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_433.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_433.nii.gz", + "label": "labelsTr/hepaticvessel_433.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_433/hepaticvessel_433_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_020.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_020.nii.gz", + "label": "labelsTr/hepaticvessel_020.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_020/hepaticvessel_020_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_291.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_291.nii.gz", + "label": "labelsTr/hepaticvessel_291.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_244.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_244.nii.gz", + "label": "labelsTr/hepaticvessel_244.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_244/hepaticvessel_244_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_321.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_321.nii.gz", + "label": "labelsTr/hepaticvessel_321.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_321/hepaticvessel_321_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_382.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_382.nii.gz", + "label": "labelsTr/hepaticvessel_382.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_382/hepaticvessel_382_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_007.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_007.nii.gz", + "label": "labelsTr/hepaticvessel_007.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_007/hepaticvessel_007_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_208.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_208.nii.gz", + "label": "labelsTr/hepaticvessel_208.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_208/hepaticvessel_208_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_127.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_127.nii.gz", + "label": "labelsTr/hepaticvessel_127.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_127/hepaticvessel_127_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_161.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_161.nii.gz", + "label": "labelsTr/hepaticvessel_161.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_161/hepaticvessel_161_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_397.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_397.nii.gz", + "label": "labelsTr/hepaticvessel_397.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_425.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_425.nii.gz", + "label": "labelsTr/hepaticvessel_425.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_425/hepaticvessel_425_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_039.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_039.nii.gz", + "label": "labelsTr/hepaticvessel_039.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_039/hepaticvessel_039_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_166.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_166.nii.gz", + "label": "labelsTr/hepaticvessel_166.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_078.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_078.nii.gz", + "label": "labelsTr/hepaticvessel_078.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_078/hepaticvessel_078_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_032.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_032.nii.gz", + "label": "labelsTr/hepaticvessel_032.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_032/hepaticvessel_032_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_209.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_209.nii.gz", + "label": "labelsTr/hepaticvessel_209.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_209/hepaticvessel_209_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_128.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_128.nii.gz", + "label": "labelsTr/hepaticvessel_128.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_128/hepaticvessel_128_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_299.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_299.nii.gz", + "label": "labelsTr/hepaticvessel_299.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_051.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_051.nii.gz", + "label": "labelsTr/hepaticvessel_051.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_051/hepaticvessel_051_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_438.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_438.nii.gz", + "label": "labelsTr/hepaticvessel_438.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_438/hepaticvessel_438_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_061.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_061.nii.gz", + "label": "labelsTr/hepaticvessel_061.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_061/hepaticvessel_061_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_437.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_437.nii.gz", + "label": "labelsTr/hepaticvessel_437.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_018.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_018.nii.gz", + "label": "labelsTr/hepaticvessel_018.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_018/hepaticvessel_018_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_167.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_167.nii.gz", + "label": "labelsTr/hepaticvessel_167.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_167/hepaticvessel_167_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_062.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_062.nii.gz", + "label": "labelsTr/hepaticvessel_062.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_062/hepaticvessel_062_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_144.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_144.nii.gz", + "label": "labelsTr/hepaticvessel_144.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_144/hepaticvessel_144_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_183.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_183.nii.gz", + "label": "labelsTr/hepaticvessel_183.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_183/hepaticvessel_183_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_150.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_150.nii.gz", + "label": "labelsTr/hepaticvessel_150.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0 + }, + { + "image": "imagesTr/hepaticvessel_030.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_030.nii.gz", + "label": "labelsTr/hepaticvessel_030.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_030/hepaticvessel_030_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_067.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_067.nii.gz", + "label": "labelsTr/hepaticvessel_067.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_067/hepaticvessel_067_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_142.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_142.nii.gz", + "label": "labelsTr/hepaticvessel_142.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_142/hepaticvessel_142_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_332.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_332.nii.gz", + "label": "labelsTr/hepaticvessel_332.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_443.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_443.nii.gz", + "label": "labelsTr/hepaticvessel_443.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_139.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_139.nii.gz", + "label": "labelsTr/hepaticvessel_139.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_139/hepaticvessel_139_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_408.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_408.nii.gz", + "label": "labelsTr/hepaticvessel_408.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_408/hepaticvessel_408_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_132.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_132.nii.gz", + "label": "labelsTr/hepaticvessel_132.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_132/hepaticvessel_132_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_358.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_358.nii.gz", + "label": "labelsTr/hepaticvessel_358.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_335.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_335.nii.gz", + "label": "labelsTr/hepaticvessel_335.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_335/hepaticvessel_335_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_398.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_398.nii.gz", + "label": "labelsTr/hepaticvessel_398.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_398/hepaticvessel_398_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_412.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_412.nii.gz", + "label": "labelsTr/hepaticvessel_412.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_412/hepaticvessel_412_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_447.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_447.nii.gz", + "label": "labelsTr/hepaticvessel_447.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_447/hepaticvessel_447_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_409.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_409.nii.gz", + "label": "labelsTr/hepaticvessel_409.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_088.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_088.nii.gz", + "label": "labelsTr/hepaticvessel_088.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_088/hepaticvessel_088_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_026.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_026.nii.gz", + "label": "labelsTr/hepaticvessel_026.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_026/hepaticvessel_026_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_442.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_442.nii.gz", + "label": "labelsTr/hepaticvessel_442.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_442/hepaticvessel_442_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_058.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_058.nii.gz", + "label": "labelsTr/hepaticvessel_058.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_058/hepaticvessel_058_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_201.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_201.nii.gz", + "label": "labelsTr/hepaticvessel_201.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_201/hepaticvessel_201_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_434.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_434.nii.gz", + "label": "labelsTr/hepaticvessel_434.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_434/hepaticvessel_434_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_086.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_086.nii.gz", + "label": "labelsTr/hepaticvessel_086.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_086/hepaticvessel_086_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_363.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_363.nii.gz", + "label": "labelsTr/hepaticvessel_363.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_363/hepaticvessel_363_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_383.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_383.nii.gz", + "label": "labelsTr/hepaticvessel_383.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0 + }, + { + "image": "imagesTr/hepaticvessel_033.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_033.nii.gz", + "label": "labelsTr/hepaticvessel_033.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0 + }, + { + "image": "imagesTr/hepaticvessel_219.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_219.nii.gz", + "label": "labelsTr/hepaticvessel_219.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_296.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_296.nii.gz", + "label": "labelsTr/hepaticvessel_296.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_296/hepaticvessel_296_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_181.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_181.nii.gz", + "label": "labelsTr/hepaticvessel_181.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_181/hepaticvessel_181_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_269.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_269.nii.gz", + "label": "labelsTr/hepaticvessel_269.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_269/hepaticvessel_269_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_272.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_272.nii.gz", + "label": "labelsTr/hepaticvessel_272.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_272/hepaticvessel_272_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_177.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_177.nii.gz", + "label": "labelsTr/hepaticvessel_177.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_177/hepaticvessel_177_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_029.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_029.nii.gz", + "label": "labelsTr/hepaticvessel_029.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_029/hepaticvessel_029_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_218.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_218.nii.gz", + "label": "labelsTr/hepaticvessel_218.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_218/hepaticvessel_218_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_356.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_356.nii.gz", + "label": "labelsTr/hepaticvessel_356.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_356/hepaticvessel_356_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_091.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_091.nii.gz", + "label": "labelsTr/hepaticvessel_091.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_091/hepaticvessel_091_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_042.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_042.nii.gz", + "label": "labelsTr/hepaticvessel_042.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_042/hepaticvessel_042_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_289.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_289.nii.gz", + "label": "labelsTr/hepaticvessel_289.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_289/hepaticvessel_289_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_044.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_044.nii.gz", + "label": "labelsTr/hepaticvessel_044.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_044/hepaticvessel_044_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_194.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_194.nii.gz", + "label": "labelsTr/hepaticvessel_194.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_194/hepaticvessel_194_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_019.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_019.nii.gz", + "label": "labelsTr/hepaticvessel_019.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_019/hepaticvessel_019_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_444.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_444.nii.gz", + "label": "labelsTr/hepaticvessel_444.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_322.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_322.nii.gz", + "label": "labelsTr/hepaticvessel_322.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_322/hepaticvessel_322_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_222.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_222.nii.gz", + "label": "labelsTr/hepaticvessel_222.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_222/hepaticvessel_222_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_258.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_258.nii.gz", + "label": "labelsTr/hepaticvessel_258.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_258/hepaticvessel_258_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_237.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_237.nii.gz", + "label": "labelsTr/hepaticvessel_237.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_237/hepaticvessel_237_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_223.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_223.nii.gz", + "label": "labelsTr/hepaticvessel_223.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_361.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_361.nii.gz", + "label": "labelsTr/hepaticvessel_361.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_361/hepaticvessel_361_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_131.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_131.nii.gz", + "label": "labelsTr/hepaticvessel_131.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_131/hepaticvessel_131_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_455.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_455.nii.gz", + "label": "labelsTr/hepaticvessel_455.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_455/hepaticvessel_455_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_124.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_124.nii.gz", + "label": "labelsTr/hepaticvessel_124.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_124/hepaticvessel_124_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_008.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_008.nii.gz", + "label": "labelsTr/hepaticvessel_008.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_008/hepaticvessel_008_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_001.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_001.nii.gz", + "label": "labelsTr/hepaticvessel_001.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_001/hepaticvessel_001_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_293.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_293.nii.gz", + "label": "labelsTr/hepaticvessel_293.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_293/hepaticvessel_293_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_271.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_271.nii.gz", + "label": "labelsTr/hepaticvessel_271.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_059.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_059.nii.gz", + "label": "labelsTr/hepaticvessel_059.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_059/hepaticvessel_059_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_431.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_431.nii.gz", + "label": "labelsTr/hepaticvessel_431.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_431/hepaticvessel_431_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_329.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_329.nii.gz", + "label": "labelsTr/hepaticvessel_329.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_329/hepaticvessel_329_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_147.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_147.nii.gz", + "label": "labelsTr/hepaticvessel_147.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_147/hepaticvessel_147_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_121.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_121.nii.gz", + "label": "labelsTr/hepaticvessel_121.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_121/hepaticvessel_121_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_077.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_077.nii.gz", + "label": "labelsTr/hepaticvessel_077.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_077/hepaticvessel_077_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_345.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_345.nii.gz", + "label": "labelsTr/hepaticvessel_345.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_117.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_117.nii.gz", + "label": "labelsTr/hepaticvessel_117.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_117/hepaticvessel_117_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_174.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_174.nii.gz", + "label": "labelsTr/hepaticvessel_174.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_174/hepaticvessel_174_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_224.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_224.nii.gz", + "label": "labelsTr/hepaticvessel_224.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_224/hepaticvessel_224_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_199.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_199.nii.gz", + "label": "labelsTr/hepaticvessel_199.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_199/hepaticvessel_199_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_217.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_217.nii.gz", + "label": "labelsTr/hepaticvessel_217.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_217/hepaticvessel_217_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_179.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_179.nii.gz", + "label": "labelsTr/hepaticvessel_179.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_179/hepaticvessel_179_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_274.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_274.nii.gz", + "label": "labelsTr/hepaticvessel_274.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_274/hepaticvessel_274_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_148.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_148.nii.gz", + "label": "labelsTr/hepaticvessel_148.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_148/hepaticvessel_148_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_371.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_371.nii.gz", + "label": "labelsTr/hepaticvessel_371.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_371/hepaticvessel_371_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_458.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_458.nii.gz", + "label": "labelsTr/hepaticvessel_458.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_094.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_094.nii.gz", + "label": "labelsTr/hepaticvessel_094.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_094/hepaticvessel_094_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_367.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_367.nii.gz", + "label": "labelsTr/hepaticvessel_367.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_367/hepaticvessel_367_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_093.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_093.nii.gz", + "label": "labelsTr/hepaticvessel_093.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_093/hepaticvessel_093_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_116.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_116.nii.gz", + "label": "labelsTr/hepaticvessel_116.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_116/hepaticvessel_116_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_314.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_314.nii.gz", + "label": "labelsTr/hepaticvessel_314.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_314/hepaticvessel_314_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_422.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_422.nii.gz", + "label": "labelsTr/hepaticvessel_422.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_422/hepaticvessel_422_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_388.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_388.nii.gz", + "label": "labelsTr/hepaticvessel_388.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_092.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_092.nii.gz", + "label": "labelsTr/hepaticvessel_092.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_092/hepaticvessel_092_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_375.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_375.nii.gz", + "label": "labelsTr/hepaticvessel_375.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_419.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_419.nii.gz", + "label": "labelsTr/hepaticvessel_419.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_419/hepaticvessel_419_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_072.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_072.nii.gz", + "label": "labelsTr/hepaticvessel_072.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_072/hepaticvessel_072_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_400.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_400.nii.gz", + "label": "labelsTr/hepaticvessel_400.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_070.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_070.nii.gz", + "label": "labelsTr/hepaticvessel_070.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_070/hepaticvessel_070_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_303.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_303.nii.gz", + "label": "labelsTr/hepaticvessel_303.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_303/hepaticvessel_303_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_248.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_248.nii.gz", + "label": "labelsTr/hepaticvessel_248.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_248/hepaticvessel_248_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_396.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_396.nii.gz", + "label": "labelsTr/hepaticvessel_396.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_265.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_265.nii.gz", + "label": "labelsTr/hepaticvessel_265.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_265/hepaticvessel_265_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_278.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_278.nii.gz", + "label": "labelsTr/hepaticvessel_278.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_278/hepaticvessel_278_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_119.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_119.nii.gz", + "label": "labelsTr/hepaticvessel_119.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_119/hepaticvessel_119_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_103.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_103.nii.gz", + "label": "labelsTr/hepaticvessel_103.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_103/hepaticvessel_103_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_427.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_427.nii.gz", + "label": "labelsTr/hepaticvessel_427.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_427/hepaticvessel_427_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_279.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_279.nii.gz", + "label": "labelsTr/hepaticvessel_279.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_002.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_002.nii.gz", + "label": "labelsTr/hepaticvessel_002.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_002/hepaticvessel_002_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_344.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_344.nii.gz", + "label": "labelsTr/hepaticvessel_344.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0 + }, + { + "image": "imagesTr/hepaticvessel_432.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_432.nii.gz", + "label": "labelsTr/hepaticvessel_432.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_089.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_089.nii.gz", + "label": "labelsTr/hepaticvessel_089.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_089/hepaticvessel_089_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_207.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_207.nii.gz", + "label": "labelsTr/hepaticvessel_207.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_207/hepaticvessel_207_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_173.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_173.nii.gz", + "label": "labelsTr/hepaticvessel_173.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_359.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_359.nii.gz", + "label": "labelsTr/hepaticvessel_359.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_359/hepaticvessel_359_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_454.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_454.nii.gz", + "label": "labelsTr/hepaticvessel_454.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_454/hepaticvessel_454_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_087.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_087.nii.gz", + "label": "labelsTr/hepaticvessel_087.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_087/hepaticvessel_087_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_297.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_297.nii.gz", + "label": "labelsTr/hepaticvessel_297.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_297/hepaticvessel_297_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_231.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_231.nii.gz", + "label": "labelsTr/hepaticvessel_231.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_231/hepaticvessel_231_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_284.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_284.nii.gz", + "label": "labelsTr/hepaticvessel_284.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_284/hepaticvessel_284_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_386.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_386.nii.gz", + "label": "labelsTr/hepaticvessel_386.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_386/hepaticvessel_386_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_238.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_238.nii.gz", + "label": "labelsTr/hepaticvessel_238.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_221.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_221.nii.gz", + "label": "labelsTr/hepaticvessel_221.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_221/hepaticvessel_221_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_100.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_100.nii.gz", + "label": "labelsTr/hepaticvessel_100.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_100/hepaticvessel_100_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_050.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_050.nii.gz", + "label": "labelsTr/hepaticvessel_050.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_050/hepaticvessel_050_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_234.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_234.nii.gz", + "label": "labelsTr/hepaticvessel_234.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_234/hepaticvessel_234_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_320.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_320.nii.gz", + "label": "labelsTr/hepaticvessel_320.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_320/hepaticvessel_320_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_110.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_110.nii.gz", + "label": "labelsTr/hepaticvessel_110.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_110/hepaticvessel_110_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_200.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_200.nii.gz", + "label": "labelsTr/hepaticvessel_200.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_200/hepaticvessel_200_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_136.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_136.nii.gz", + "label": "labelsTr/hepaticvessel_136.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_136/hepaticvessel_136_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_028.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_028.nii.gz", + "label": "labelsTr/hepaticvessel_028.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_028/hepaticvessel_028_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_146.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_146.nii.gz", + "label": "labelsTr/hepaticvessel_146.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_146/hepaticvessel_146_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_011.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_011.nii.gz", + "label": "labelsTr/hepaticvessel_011.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_011/hepaticvessel_011_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_185.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_185.nii.gz", + "label": "labelsTr/hepaticvessel_185.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_185/hepaticvessel_185_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_225.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_225.nii.gz", + "label": "labelsTr/hepaticvessel_225.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_225/hepaticvessel_225_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_171.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_171.nii.gz", + "label": "labelsTr/hepaticvessel_171.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_189.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_189.nii.gz", + "label": "labelsTr/hepaticvessel_189.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_189/hepaticvessel_189_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_389.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_389.nii.gz", + "label": "labelsTr/hepaticvessel_389.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_389/hepaticvessel_389_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_340.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_340.nii.gz", + "label": "labelsTr/hepaticvessel_340.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_340/hepaticvessel_340_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_113.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_113.nii.gz", + "label": "labelsTr/hepaticvessel_113.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_113/hepaticvessel_113_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_013.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_013.nii.gz", + "label": "labelsTr/hepaticvessel_013.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_013/hepaticvessel_013_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_137.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_137.nii.gz", + "label": "labelsTr/hepaticvessel_137.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_137/hepaticvessel_137_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_406.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_406.nii.gz", + "label": "labelsTr/hepaticvessel_406.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_406/hepaticvessel_406_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_115.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_115.nii.gz", + "label": "labelsTr/hepaticvessel_115.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_115/hepaticvessel_115_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_282.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_282.nii.gz", + "label": "labelsTr/hepaticvessel_282.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_282/hepaticvessel_282_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_391.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_391.nii.gz", + "label": "labelsTr/hepaticvessel_391.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_391/hepaticvessel_391_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_373.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_373.nii.gz", + "label": "labelsTr/hepaticvessel_373.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_373/hepaticvessel_373_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_349.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_349.nii.gz", + "label": "labelsTr/hepaticvessel_349.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_349/hepaticvessel_349_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_374.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_374.nii.gz", + "label": "labelsTr/hepaticvessel_374.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_083.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_083.nii.gz", + "label": "labelsTr/hepaticvessel_083.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_083/hepaticvessel_083_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_082.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_082.nii.gz", + "label": "labelsTr/hepaticvessel_082.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_082/hepaticvessel_082_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_022.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_022.nii.gz", + "label": "labelsTr/hepaticvessel_022.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_022/hepaticvessel_022_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_023.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_023.nii.gz", + "label": "labelsTr/hepaticvessel_023.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_023/hepaticvessel_023_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_071.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_071.nii.gz", + "label": "labelsTr/hepaticvessel_071.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_071/hepaticvessel_071_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_010.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_010.nii.gz", + "label": "labelsTr/hepaticvessel_010.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_010/hepaticvessel_010_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_323.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_323.nii.gz", + "label": "labelsTr/hepaticvessel_323.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_323/hepaticvessel_323_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_102.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_102.nii.gz", + "label": "labelsTr/hepaticvessel_102.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_102/hepaticvessel_102_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_053.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_053.nii.gz", + "label": "labelsTr/hepaticvessel_053.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_053/hepaticvessel_053_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_141.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_141.nii.gz", + "label": "labelsTr/hepaticvessel_141.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0 + }, + { + "image": "imagesTr/hepaticvessel_154.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_154.nii.gz", + "label": "labelsTr/hepaticvessel_154.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_154/hepaticvessel_154_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_233.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_233.nii.gz", + "label": "labelsTr/hepaticvessel_233.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_233/hepaticvessel_233_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_178.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_178.nii.gz", + "label": "labelsTr/hepaticvessel_178.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_178/hepaticvessel_178_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_286.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_286.nii.gz", + "label": "labelsTr/hepaticvessel_286.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_286/hepaticvessel_286_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_172.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_172.nii.gz", + "label": "labelsTr/hepaticvessel_172.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_172/hepaticvessel_172_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_075.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_075.nii.gz", + "label": "labelsTr/hepaticvessel_075.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_075/hepaticvessel_075_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_309.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_309.nii.gz", + "label": "labelsTr/hepaticvessel_309.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_309/hepaticvessel_309_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_138.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_138.nii.gz", + "label": "labelsTr/hepaticvessel_138.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_138/hepaticvessel_138_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_446.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_446.nii.gz", + "label": "labelsTr/hepaticvessel_446.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_446/hepaticvessel_446_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_287.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_287.nii.gz", + "label": "labelsTr/hepaticvessel_287.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_108.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_108.nii.gz", + "label": "labelsTr/hepaticvessel_108.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_108/hepaticvessel_108_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_453.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_453.nii.gz", + "label": "labelsTr/hepaticvessel_453.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_453/hepaticvessel_453_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_206.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_206.nii.gz", + "label": "labelsTr/hepaticvessel_206.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_206/hepaticvessel_206_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_393.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_393.nii.gz", + "label": "labelsTr/hepaticvessel_393.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_393/hepaticvessel_393_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_229.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_229.nii.gz", + "label": "labelsTr/hepaticvessel_229.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_229/hepaticvessel_229_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_441.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_441.nii.gz", + "label": "labelsTr/hepaticvessel_441.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_441/hepaticvessel_441_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_294.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_294.nii.gz", + "label": "labelsTr/hepaticvessel_294.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_294/hepaticvessel_294_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_151.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_151.nii.gz", + "label": "labelsTr/hepaticvessel_151.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_151/hepaticvessel_151_seg.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_275.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_275.nii.gz", + "label": "labelsTr/hepaticvessel_275.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/hepaticvessel_424.nii.gz", + "pseudo_label": "imagesTr/hepaticvessel_424.nii.gz", + "label": "labelsTr/hepaticvessel_424.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task08_100/hepaticvessel_424/hepaticvessel_424_seg.nii.gz" + } + ], + "training_transform": [ + { + "_target_": "RandCropByLabelClassesd", + "keys": [ + "@image_key", + "@label_key", + "@pseudo_label_key", + "@label_sv_key" + ], + "label_key": "@pseudo_label_key", + "num_classes": 133, + "num_samples": "@num_patches_per_image", + "spatial_size": "@patch_size", + "ratios": "$tuple(float(i >= 0) for i in range(133))", + "warn": false, + "allow_missing_keys": true + }, + { + "_target_": "RandZoomd", + "keys": [ + "@image_key", + "@label_key", + "@pseudo_label_key", + "@label_sv_key" + ], + "min_zoom": 0.8, + "max_zoom": 1.2, + "mode": [ + "trilinear", + "nearest", + "nearest", + "nearest" + ], + "prob": 0.2, + "allow_missing_keys": true + }, + { + "_target_": "RandSimulateLowResolutiond", + "keys": [ + "@image_key" + ], + "zoom_range": [ + 0.3, + 1 + ], + "prob": 0.2, + "allow_missing_keys": true + }, + { + "_target_": "RandGaussianSmoothd", + "keys": [ + "@image_key" + ], + "prob": 0.2, + "sigma_x": [ + 0.5, + 1.0 + ], + "sigma_y": [ + 0.5, + 1.0 + ], + "sigma_z": [ + 0.5, + 1.0 + ] + }, + { + "_target_": "RandScaleIntensityd", + "keys": [ + "@image_key" + ], + "factors": 0.1, + "prob": 0.2 + }, + { + "_target_": "RandShiftIntensityd", + "keys": [ + "@image_key" + ], + "offsets": 0.1, + "prob": 0.2 + }, + { + "_target_": "RandGaussianNoised", + "keys": [ + "@image_key" + ], + "prob": 0.2, + "mean": 0.0, + "std": 0.2 + } + ], + "label_dict": { + "1": "hepatic vessel", + "2": "hepatic tumor" + }, + "original_label_dict": { + "1": "Vessel", + "2": "Tumour" + }, + "testing": [ + { + "image": "imagesTr/hepaticvessel_230.nii.gz", + "label": "labelsTr/hepaticvessel_230.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_066.nii.gz", + "label": "labelsTr/hepaticvessel_066.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_327.nii.gz", + "label": "labelsTr/hepaticvessel_327.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_163.nii.gz", + "label": "labelsTr/hepaticvessel_163.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_098.nii.gz", + "label": "labelsTr/hepaticvessel_098.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_125.nii.gz", + "label": "labelsTr/hepaticvessel_125.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_081.nii.gz", + "label": "labelsTr/hepaticvessel_081.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_423.nii.gz", + "label": "labelsTr/hepaticvessel_423.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_193.nii.gz", + "label": "labelsTr/hepaticvessel_193.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_341.nii.gz", + "label": "labelsTr/hepaticvessel_341.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_016.nii.gz", + "label": "labelsTr/hepaticvessel_016.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_090.nii.gz", + "label": "labelsTr/hepaticvessel_090.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_213.nii.gz", + "label": "labelsTr/hepaticvessel_213.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_255.nii.gz", + "label": "labelsTr/hepaticvessel_255.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_049.nii.gz", + "label": "labelsTr/hepaticvessel_049.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_246.nii.gz", + "label": "labelsTr/hepaticvessel_246.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_235.nii.gz", + "label": "labelsTr/hepaticvessel_235.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_266.nii.gz", + "label": "labelsTr/hepaticvessel_266.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_025.nii.gz", + "label": "labelsTr/hepaticvessel_025.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_348.nii.gz", + "label": "labelsTr/hepaticvessel_348.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_240.nii.gz", + "label": "labelsTr/hepaticvessel_240.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_080.nii.gz", + "label": "labelsTr/hepaticvessel_080.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_402.nii.gz", + "label": "labelsTr/hepaticvessel_402.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_052.nii.gz", + "label": "labelsTr/hepaticvessel_052.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_196.nii.gz", + "label": "labelsTr/hepaticvessel_196.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_456.nii.gz", + "label": "labelsTr/hepaticvessel_456.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_338.nii.gz", + "label": "labelsTr/hepaticvessel_338.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_065.nii.gz", + "label": "labelsTr/hepaticvessel_065.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_004.nii.gz", + "label": "labelsTr/hepaticvessel_004.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_005.nii.gz", + "label": "labelsTr/hepaticvessel_005.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_198.nii.gz", + "label": "labelsTr/hepaticvessel_198.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_184.nii.gz", + "label": "labelsTr/hepaticvessel_184.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_319.nii.gz", + "label": "labelsTr/hepaticvessel_319.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_133.nii.gz", + "label": "labelsTr/hepaticvessel_133.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_369.nii.gz", + "label": "labelsTr/hepaticvessel_369.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_353.nii.gz", + "label": "labelsTr/hepaticvessel_353.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_290.nii.gz", + "label": "labelsTr/hepaticvessel_290.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_197.nii.gz", + "label": "labelsTr/hepaticvessel_197.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_160.nii.gz", + "label": "labelsTr/hepaticvessel_160.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_440.nii.gz", + "label": "labelsTr/hepaticvessel_440.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_158.nii.gz", + "label": "labelsTr/hepaticvessel_158.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_123.nii.gz", + "label": "labelsTr/hepaticvessel_123.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_324.nii.gz", + "label": "labelsTr/hepaticvessel_324.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_407.nii.gz", + "label": "labelsTr/hepaticvessel_407.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_211.nii.gz", + "label": "labelsTr/hepaticvessel_211.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_300.nii.gz", + "label": "labelsTr/hepaticvessel_300.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_057.nii.gz", + "label": "labelsTr/hepaticvessel_057.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_227.nii.gz", + "label": "labelsTr/hepaticvessel_227.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_031.nii.gz", + "label": "labelsTr/hepaticvessel_031.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_084.nii.gz", + "label": "labelsTr/hepaticvessel_084.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_157.nii.gz", + "label": "labelsTr/hepaticvessel_157.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_270.nii.gz", + "label": "labelsTr/hepaticvessel_270.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_040.nii.gz", + "label": "labelsTr/hepaticvessel_040.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_336.nii.gz", + "label": "labelsTr/hepaticvessel_336.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_210.nii.gz", + "label": "labelsTr/hepaticvessel_210.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_411.nii.gz", + "label": "labelsTr/hepaticvessel_411.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_268.nii.gz", + "label": "labelsTr/hepaticvessel_268.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_429.nii.gz", + "label": "labelsTr/hepaticvessel_429.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_245.nii.gz", + "label": "labelsTr/hepaticvessel_245.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_140.nii.gz", + "label": "labelsTr/hepaticvessel_140.nii.gz" + }, + { + "image": "imagesTr/hepaticvessel_420.nii.gz", + "label": "labelsTr/hepaticvessel_420.nii.gz" + } + ] +} diff --git a/vista3d/data/jsons/Task09_5_folds.json b/vista3d/data/jsons/Task09_5_folds.json new file mode 100644 index 0000000..95d2fc0 --- /dev/null +++ b/vista3d/data/jsons/Task09_5_folds.json @@ -0,0 +1,394 @@ +{ + "training": [ + { + "image": "imagesTr/spleen_12.nii.gz", + "pseudo_label": "imagesTr/spleen_12.nii.gz", + "label": "labelsTr/spleen_12.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/spleen_63.nii.gz", + "pseudo_label": "imagesTr/spleen_63.nii.gz", + "label": "labelsTr/spleen_63.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/spleen_2.nii.gz", + "pseudo_label": "imagesTr/spleen_2.nii.gz", + "label": "labelsTr/spleen_2.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/spleen_9.nii.gz", + "pseudo_label": "imagesTr/spleen_9.nii.gz", + "label": "labelsTr/spleen_9.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/spleen_20.nii.gz", + "pseudo_label": "imagesTr/spleen_20.nii.gz", + "label": "labelsTr/spleen_20.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/spleen_59.nii.gz", + "pseudo_label": "imagesTr/spleen_59.nii.gz", + "label": "labelsTr/spleen_59.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/spleen_41.nii.gz", + "pseudo_label": "imagesTr/spleen_41.nii.gz", + "label": "labelsTr/spleen_41.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/spleen_27.nii.gz", + "pseudo_label": "imagesTr/spleen_27.nii.gz", + "label": "labelsTr/spleen_27.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task09_100/spleen_27/spleen_27_seg.nii.gz" + }, + { + "image": "imagesTr/spleen_40.nii.gz", + "pseudo_label": "imagesTr/spleen_40.nii.gz", + "label": "labelsTr/spleen_40.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task09_100/spleen_40/spleen_40_seg.nii.gz" + }, + { + "image": "imagesTr/spleen_17.nii.gz", + "pseudo_label": "imagesTr/spleen_17.nii.gz", + "label": "labelsTr/spleen_17.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task09_100/spleen_17/spleen_17_seg.nii.gz" + }, + { + "image": "imagesTr/spleen_32.nii.gz", + "pseudo_label": "imagesTr/spleen_32.nii.gz", + "label": "labelsTr/spleen_32.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task09_100/spleen_32/spleen_32_seg.nii.gz" + }, + { + "image": "imagesTr/spleen_26.nii.gz", + "pseudo_label": "imagesTr/spleen_26.nii.gz", + "label": "labelsTr/spleen_26.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task09_100/spleen_26/spleen_26_seg.nii.gz" + }, + { + "image": "imagesTr/spleen_49.nii.gz", + "pseudo_label": "imagesTr/spleen_49.nii.gz", + "label": "labelsTr/spleen_49.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task09_100/spleen_49/spleen_49_seg.nii.gz" + }, + { + "image": "imagesTr/spleen_62.nii.gz", + "pseudo_label": "imagesTr/spleen_62.nii.gz", + "label": "labelsTr/spleen_62.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task09_100/spleen_62/spleen_62_seg.nii.gz" + }, + { + "image": "imagesTr/spleen_56.nii.gz", + "pseudo_label": "imagesTr/spleen_56.nii.gz", + "label": "labelsTr/spleen_56.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task09_100/spleen_56/spleen_56_seg.nii.gz" + }, + { + "image": "imagesTr/spleen_28.nii.gz", + "pseudo_label": "imagesTr/spleen_28.nii.gz", + "label": "labelsTr/spleen_28.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task09_100/spleen_28/spleen_28_seg.nii.gz" + }, + { + "image": "imagesTr/spleen_31.nii.gz", + "pseudo_label": "imagesTr/spleen_31.nii.gz", + "label": "labelsTr/spleen_31.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task09_100/spleen_31/spleen_31_seg.nii.gz" + }, + { + "image": "imagesTr/spleen_52.nii.gz", + "pseudo_label": "imagesTr/spleen_52.nii.gz", + "label": "labelsTr/spleen_52.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task09_100/spleen_52/spleen_52_seg.nii.gz" + }, + { + "image": "imagesTr/spleen_13.nii.gz", + "pseudo_label": "imagesTr/spleen_13.nii.gz", + "label": "labelsTr/spleen_13.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task09_100/spleen_13/spleen_13_seg.nii.gz" + }, + { + "image": "imagesTr/spleen_10.nii.gz", + "pseudo_label": "imagesTr/spleen_10.nii.gz", + "label": "labelsTr/spleen_10.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task09_100/spleen_10/spleen_10_seg.nii.gz" + }, + { + "image": "imagesTr/spleen_22.nii.gz", + "pseudo_label": "imagesTr/spleen_22.nii.gz", + "label": "labelsTr/spleen_22.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task09_100/spleen_22/spleen_22_seg.nii.gz" + }, + { + "image": "imagesTr/spleen_25.nii.gz", + "pseudo_label": "imagesTr/spleen_25.nii.gz", + "label": "labelsTr/spleen_25.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task09_100/spleen_25/spleen_25_seg.nii.gz" + }, + { + "image": "imagesTr/spleen_19.nii.gz", + "pseudo_label": "imagesTr/spleen_19.nii.gz", + "label": "labelsTr/spleen_19.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task09_100/spleen_19/spleen_19_seg.nii.gz" + }, + { + "image": "imagesTr/spleen_60.nii.gz", + "pseudo_label": "imagesTr/spleen_60.nii.gz", + "label": "labelsTr/spleen_60.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task09_100/spleen_60/spleen_60_seg.nii.gz" + }, + { + "image": "imagesTr/spleen_14.nii.gz", + "pseudo_label": "imagesTr/spleen_14.nii.gz", + "label": "labelsTr/spleen_14.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task09_100/spleen_14/spleen_14_seg.nii.gz" + }, + { + "image": "imagesTr/spleen_8.nii.gz", + "pseudo_label": "imagesTr/spleen_8.nii.gz", + "label": "labelsTr/spleen_8.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task09_100/spleen_8/spleen_8_seg.nii.gz" + }, + { + "image": "imagesTr/spleen_18.nii.gz", + "pseudo_label": "imagesTr/spleen_18.nii.gz", + "label": "labelsTr/spleen_18.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task09_100/spleen_18/spleen_18_seg.nii.gz" + }, + { + "image": "imagesTr/spleen_45.nii.gz", + "pseudo_label": "imagesTr/spleen_45.nii.gz", + "label": "labelsTr/spleen_45.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task09_100/spleen_45/spleen_45_seg.nii.gz" + }, + { + "image": "imagesTr/spleen_16.nii.gz", + "pseudo_label": "imagesTr/spleen_16.nii.gz", + "label": "labelsTr/spleen_16.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task09_100/spleen_16/spleen_16_seg.nii.gz" + }, + { + "image": "imagesTr/spleen_24.nii.gz", + "pseudo_label": "imagesTr/spleen_24.nii.gz", + "label": "labelsTr/spleen_24.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task09_100/spleen_24/spleen_24_seg.nii.gz" + }, + { + "image": "imagesTr/spleen_47.nii.gz", + "pseudo_label": "imagesTr/spleen_47.nii.gz", + "label": "labelsTr/spleen_47.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task09_100/spleen_47/spleen_47_seg.nii.gz" + }, + { + "image": "imagesTr/spleen_3.nii.gz", + "pseudo_label": "imagesTr/spleen_3.nii.gz", + "label": "labelsTr/spleen_3.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task09_100/spleen_3/spleen_3_seg.nii.gz" + }, + { + "image": "imagesTr/spleen_6.nii.gz", + "pseudo_label": "imagesTr/spleen_6.nii.gz", + "label": "labelsTr/spleen_6.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task09_100/spleen_6/spleen_6_seg.nii.gz" + } + ], + "training_transform": [ + { + "_target_": "RandCropByLabelClassesd", + "keys": [ + "@image_key", + "@label_key", + "@pseudo_label_key", + "@label_sv_key" + ], + "label_key": "@pseudo_label_key", + "num_classes": 133, + "num_samples": "@num_patches_per_image", + "spatial_size": "@patch_size", + "ratios": "$tuple(float(i >= 0) for i in range(133))", + "warn": false, + "allow_missing_keys": true + }, + { + "_target_": "RandZoomd", + "keys": [ + "@image_key", + "@label_key", + "@pseudo_label_key", + "@label_sv_key" + ], + "min_zoom": 0.8, + "max_zoom": 1.2, + "mode": [ + "trilinear", + "nearest", + "nearest", + "nearest" + ], + "prob": 0.2, + "allow_missing_keys": true + }, + { + "_target_": "RandSimulateLowResolutiond", + "keys": [ + "@image_key" + ], + "zoom_range": [ + 0.3, + 1 + ], + "prob": 0.2, + "allow_missing_keys": true + }, + { + "_target_": "RandGaussianSmoothd", + "keys": [ + "@image_key" + ], + "prob": 0.2, + "sigma_x": [ + 0.5, + 1.0 + ], + "sigma_y": [ + 0.5, + 1.0 + ], + "sigma_z": [ + 0.5, + 1.0 + ] + }, + { + "_target_": "RandScaleIntensityd", + "keys": [ + "@image_key" + ], + "factors": 0.1, + "prob": 0.2 + }, + { + "_target_": "RandShiftIntensityd", + "keys": [ + "@image_key" + ], + "offsets": 0.1, + "prob": 0.2 + }, + { + "_target_": "RandGaussianNoised", + "keys": [ + "@image_key" + ], + "prob": 0.2, + "mean": 0.0, + "std": 0.2 + } + ], + "label_dict": { + "1": "spleen" + }, + "original_label_dict": { + "1": "spleen" + }, + "testing": [ + { + "image": "imagesTr/spleen_44.nii.gz", + "label": "labelsTr/spleen_44.nii.gz" + }, + { + "image": "imagesTr/spleen_21.nii.gz", + "label": "labelsTr/spleen_21.nii.gz" + }, + { + "image": "imagesTr/spleen_61.nii.gz", + "label": "labelsTr/spleen_61.nii.gz" + }, + { + "image": "imagesTr/spleen_29.nii.gz", + "label": "labelsTr/spleen_29.nii.gz" + }, + { + "image": "imagesTr/spleen_38.nii.gz", + "label": "labelsTr/spleen_38.nii.gz" + }, + { + "image": "imagesTr/spleen_46.nii.gz", + "label": "labelsTr/spleen_46.nii.gz" + }, + { + "image": "imagesTr/spleen_53.nii.gz", + "label": "labelsTr/spleen_53.nii.gz" + }, + { + "image": "imagesTr/spleen_33.nii.gz", + "label": "labelsTr/spleen_33.nii.gz" + } + ] +} diff --git a/vista3d/data/jsons/Task10_5_folds.json b/vista3d/data/jsons/Task10_5_folds.json new file mode 100644 index 0000000..0299fb2 --- /dev/null +++ b/vista3d/data/jsons/Task10_5_folds.json @@ -0,0 +1,987 @@ +{ + "training": [ + { + "image": "imagesTr/colon_045.nii.gz", + "pseudo_label": "imagesTr/colon_045.nii.gz", + "label": "labelsTr/colon_045.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/colon_007.nii.gz", + "pseudo_label": "imagesTr/colon_007.nii.gz", + "label": "labelsTr/colon_007.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/colon_028.nii.gz", + "pseudo_label": "imagesTr/colon_028.nii.gz", + "label": "labelsTr/colon_028.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/colon_117.nii.gz", + "pseudo_label": "imagesTr/colon_117.nii.gz", + "label": "labelsTr/colon_117.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/colon_009.nii.gz", + "pseudo_label": "imagesTr/colon_009.nii.gz", + "label": "labelsTr/colon_009.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/colon_214.nii.gz", + "pseudo_label": "imagesTr/colon_214.nii.gz", + "label": "labelsTr/colon_214.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/colon_108.nii.gz", + "pseudo_label": "imagesTr/colon_108.nii.gz", + "label": "labelsTr/colon_108.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/colon_157.nii.gz", + "pseudo_label": "imagesTr/colon_157.nii.gz", + "label": "labelsTr/colon_157.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/colon_217.nii.gz", + "pseudo_label": "imagesTr/colon_217.nii.gz", + "label": "labelsTr/colon_217.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/colon_006.nii.gz", + "pseudo_label": "imagesTr/colon_006.nii.gz", + "label": "labelsTr/colon_006.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/colon_129.nii.gz", + "pseudo_label": "imagesTr/colon_129.nii.gz", + "label": "labelsTr/colon_129.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/colon_137.nii.gz", + "pseudo_label": "imagesTr/colon_137.nii.gz", + "label": "labelsTr/colon_137.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/colon_092.nii.gz", + "pseudo_label": "imagesTr/colon_092.nii.gz", + "label": "labelsTr/colon_092.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/colon_192.nii.gz", + "pseudo_label": "imagesTr/colon_192.nii.gz", + "label": "labelsTr/colon_192.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/colon_207.nii.gz", + "pseudo_label": "imagesTr/colon_207.nii.gz", + "label": "labelsTr/colon_207.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/colon_011.nii.gz", + "pseudo_label": "imagesTr/colon_011.nii.gz", + "label": "labelsTr/colon_011.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/colon_139.nii.gz", + "pseudo_label": "imagesTr/colon_139.nii.gz", + "label": "labelsTr/colon_139.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "imagesTr/colon_202.nii.gz", + "pseudo_label": "imagesTr/colon_202.nii.gz", + "label": "labelsTr/colon_202.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/colon_103.nii.gz", + "pseudo_label": "imagesTr/colon_103.nii.gz", + "label": "labelsTr/colon_103.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/colon_001.nii.gz", + "pseudo_label": "imagesTr/colon_001.nii.gz", + "label": "labelsTr/colon_001.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/colon_119.nii.gz", + "pseudo_label": "imagesTr/colon_119.nii.gz", + "label": "labelsTr/colon_119.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/colon_026.nii.gz", + "pseudo_label": "imagesTr/colon_026.nii.gz", + "label": "labelsTr/colon_026.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_026/colon_026_seg.nii.gz" + }, + { + "image": "imagesTr/colon_061.nii.gz", + "pseudo_label": "imagesTr/colon_061.nii.gz", + "label": "labelsTr/colon_061.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_061/colon_061_seg.nii.gz" + }, + { + "image": "imagesTr/colon_124.nii.gz", + "pseudo_label": "imagesTr/colon_124.nii.gz", + "label": "labelsTr/colon_124.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_124/colon_124_seg.nii.gz" + }, + { + "image": "imagesTr/colon_134.nii.gz", + "pseudo_label": "imagesTr/colon_134.nii.gz", + "label": "labelsTr/colon_134.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_134/colon_134_seg.nii.gz" + }, + { + "image": "imagesTr/colon_032.nii.gz", + "pseudo_label": "imagesTr/colon_032.nii.gz", + "label": "labelsTr/colon_032.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_032/colon_032_seg.nii.gz" + }, + { + "image": "imagesTr/colon_064.nii.gz", + "pseudo_label": "imagesTr/colon_064.nii.gz", + "label": "labelsTr/colon_064.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_064/colon_064_seg.nii.gz" + }, + { + "image": "imagesTr/colon_162.nii.gz", + "pseudo_label": "imagesTr/colon_162.nii.gz", + "label": "labelsTr/colon_162.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_162/colon_162_seg.nii.gz" + }, + { + "image": "imagesTr/colon_066.nii.gz", + "pseudo_label": "imagesTr/colon_066.nii.gz", + "label": "labelsTr/colon_066.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_066/colon_066_seg.nii.gz" + }, + { + "image": "imagesTr/colon_216.nii.gz", + "pseudo_label": "imagesTr/colon_216.nii.gz", + "label": "labelsTr/colon_216.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_216/colon_216_seg.nii.gz" + }, + { + "image": "imagesTr/colon_176.nii.gz", + "pseudo_label": "imagesTr/colon_176.nii.gz", + "label": "labelsTr/colon_176.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_176/colon_176_seg.nii.gz" + }, + { + "image": "imagesTr/colon_120.nii.gz", + "pseudo_label": "imagesTr/colon_120.nii.gz", + "label": "labelsTr/colon_120.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_120/colon_120_seg.nii.gz" + }, + { + "image": "imagesTr/colon_065.nii.gz", + "pseudo_label": "imagesTr/colon_065.nii.gz", + "label": "labelsTr/colon_065.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0 + }, + { + "image": "imagesTr/colon_041.nii.gz", + "pseudo_label": "imagesTr/colon_041.nii.gz", + "label": "labelsTr/colon_041.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/colon_091.nii.gz", + "pseudo_label": "imagesTr/colon_091.nii.gz", + "label": "labelsTr/colon_091.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_091/colon_091_seg.nii.gz" + }, + { + "image": "imagesTr/colon_100.nii.gz", + "pseudo_label": "imagesTr/colon_100.nii.gz", + "label": "labelsTr/colon_100.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_100/colon_100_seg.nii.gz" + }, + { + "image": "imagesTr/colon_126.nii.gz", + "pseudo_label": "imagesTr/colon_126.nii.gz", + "label": "labelsTr/colon_126.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_126/colon_126_seg.nii.gz" + }, + { + "image": "imagesTr/colon_005.nii.gz", + "pseudo_label": "imagesTr/colon_005.nii.gz", + "label": "labelsTr/colon_005.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_005/colon_005_seg.nii.gz" + }, + { + "image": "imagesTr/colon_144.nii.gz", + "pseudo_label": "imagesTr/colon_144.nii.gz", + "label": "labelsTr/colon_144.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_144/colon_144_seg.nii.gz" + }, + { + "image": "imagesTr/colon_050.nii.gz", + "pseudo_label": "imagesTr/colon_050.nii.gz", + "label": "labelsTr/colon_050.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_050/colon_050_seg.nii.gz" + }, + { + "image": "imagesTr/colon_215.nii.gz", + "pseudo_label": "imagesTr/colon_215.nii.gz", + "label": "labelsTr/colon_215.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_215/colon_215_seg.nii.gz" + }, + { + "image": "imagesTr/colon_155.nii.gz", + "pseudo_label": "imagesTr/colon_155.nii.gz", + "label": "labelsTr/colon_155.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_155/colon_155_seg.nii.gz" + }, + { + "image": "imagesTr/colon_075.nii.gz", + "pseudo_label": "imagesTr/colon_075.nii.gz", + "label": "labelsTr/colon_075.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_075/colon_075_seg.nii.gz" + }, + { + "image": "imagesTr/colon_140.nii.gz", + "pseudo_label": "imagesTr/colon_140.nii.gz", + "label": "labelsTr/colon_140.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/colon_033.nii.gz", + "pseudo_label": "imagesTr/colon_033.nii.gz", + "label": "labelsTr/colon_033.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/colon_069.nii.gz", + "pseudo_label": "imagesTr/colon_069.nii.gz", + "label": "labelsTr/colon_069.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_069/colon_069_seg.nii.gz" + }, + { + "image": "imagesTr/colon_185.nii.gz", + "pseudo_label": "imagesTr/colon_185.nii.gz", + "label": "labelsTr/colon_185.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1 + }, + { + "image": "imagesTr/colon_127.nii.gz", + "pseudo_label": "imagesTr/colon_127.nii.gz", + "label": "labelsTr/colon_127.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_127/colon_127_seg.nii.gz" + }, + { + "image": "imagesTr/colon_059.nii.gz", + "pseudo_label": "imagesTr/colon_059.nii.gz", + "label": "labelsTr/colon_059.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_059/colon_059_seg.nii.gz" + }, + { + "image": "imagesTr/colon_051.nii.gz", + "pseudo_label": "imagesTr/colon_051.nii.gz", + "label": "labelsTr/colon_051.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_051/colon_051_seg.nii.gz" + }, + { + "image": "imagesTr/colon_030.nii.gz", + "pseudo_label": "imagesTr/colon_030.nii.gz", + "label": "labelsTr/colon_030.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_030/colon_030_seg.nii.gz" + }, + { + "image": "imagesTr/colon_131.nii.gz", + "pseudo_label": "imagesTr/colon_131.nii.gz", + "label": "labelsTr/colon_131.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_131/colon_131_seg.nii.gz" + }, + { + "image": "imagesTr/colon_138.nii.gz", + "pseudo_label": "imagesTr/colon_138.nii.gz", + "label": "labelsTr/colon_138.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_138/colon_138_seg.nii.gz" + }, + { + "image": "imagesTr/colon_194.nii.gz", + "pseudo_label": "imagesTr/colon_194.nii.gz", + "label": "labelsTr/colon_194.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_194/colon_194_seg.nii.gz" + }, + { + "image": "imagesTr/colon_161.nii.gz", + "pseudo_label": "imagesTr/colon_161.nii.gz", + "label": "labelsTr/colon_161.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_161/colon_161_seg.nii.gz" + }, + { + "image": "imagesTr/colon_025.nii.gz", + "pseudo_label": "imagesTr/colon_025.nii.gz", + "label": "labelsTr/colon_025.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_025/colon_025_seg.nii.gz" + }, + { + "image": "imagesTr/colon_111.nii.gz", + "pseudo_label": "imagesTr/colon_111.nii.gz", + "label": "labelsTr/colon_111.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_111/colon_111_seg.nii.gz" + }, + { + "image": "imagesTr/colon_141.nii.gz", + "pseudo_label": "imagesTr/colon_141.nii.gz", + "label": "labelsTr/colon_141.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_141/colon_141_seg.nii.gz" + }, + { + "image": "imagesTr/colon_201.nii.gz", + "pseudo_label": "imagesTr/colon_201.nii.gz", + "label": "labelsTr/colon_201.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_201/colon_201_seg.nii.gz" + }, + { + "image": "imagesTr/colon_024.nii.gz", + "pseudo_label": "imagesTr/colon_024.nii.gz", + "label": "labelsTr/colon_024.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_024/colon_024_seg.nii.gz" + }, + { + "image": "imagesTr/colon_165.nii.gz", + "pseudo_label": "imagesTr/colon_165.nii.gz", + "label": "labelsTr/colon_165.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_165/colon_165_seg.nii.gz" + }, + { + "image": "imagesTr/colon_175.nii.gz", + "pseudo_label": "imagesTr/colon_175.nii.gz", + "label": "labelsTr/colon_175.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_175/colon_175_seg.nii.gz" + }, + { + "image": "imagesTr/colon_122.nii.gz", + "pseudo_label": "imagesTr/colon_122.nii.gz", + "label": "labelsTr/colon_122.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_122/colon_122_seg.nii.gz" + }, + { + "image": "imagesTr/colon_022.nii.gz", + "pseudo_label": "imagesTr/colon_022.nii.gz", + "label": "labelsTr/colon_022.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_022/colon_022_seg.nii.gz" + }, + { + "image": "imagesTr/colon_095.nii.gz", + "pseudo_label": "imagesTr/colon_095.nii.gz", + "label": "labelsTr/colon_095.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_095/colon_095_seg.nii.gz" + }, + { + "image": "imagesTr/colon_145.nii.gz", + "pseudo_label": "imagesTr/colon_145.nii.gz", + "label": "labelsTr/colon_145.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_145/colon_145_seg.nii.gz" + }, + { + "image": "imagesTr/colon_106.nii.gz", + "pseudo_label": "imagesTr/colon_106.nii.gz", + "label": "labelsTr/colon_106.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_106/colon_106_seg.nii.gz" + }, + { + "image": "imagesTr/colon_114.nii.gz", + "pseudo_label": "imagesTr/colon_114.nii.gz", + "label": "labelsTr/colon_114.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_114/colon_114_seg.nii.gz" + }, + { + "image": "imagesTr/colon_115.nii.gz", + "pseudo_label": "imagesTr/colon_115.nii.gz", + "label": "labelsTr/colon_115.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_115/colon_115_seg.nii.gz" + }, + { + "image": "imagesTr/colon_112.nii.gz", + "pseudo_label": "imagesTr/colon_112.nii.gz", + "label": "labelsTr/colon_112.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_112/colon_112_seg.nii.gz" + }, + { + "image": "imagesTr/colon_118.nii.gz", + "pseudo_label": "imagesTr/colon_118.nii.gz", + "label": "labelsTr/colon_118.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_118/colon_118_seg.nii.gz" + }, + { + "image": "imagesTr/colon_171.nii.gz", + "pseudo_label": "imagesTr/colon_171.nii.gz", + "label": "labelsTr/colon_171.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_171/colon_171_seg.nii.gz" + }, + { + "image": "imagesTr/colon_008.nii.gz", + "pseudo_label": "imagesTr/colon_008.nii.gz", + "label": "labelsTr/colon_008.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_008/colon_008_seg.nii.gz" + }, + { + "image": "imagesTr/colon_027.nii.gz", + "pseudo_label": "imagesTr/colon_027.nii.gz", + "label": "labelsTr/colon_027.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_027/colon_027_seg.nii.gz" + }, + { + "image": "imagesTr/colon_029.nii.gz", + "pseudo_label": "imagesTr/colon_029.nii.gz", + "label": "labelsTr/colon_029.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_029/colon_029_seg.nii.gz" + }, + { + "image": "imagesTr/colon_099.nii.gz", + "pseudo_label": "imagesTr/colon_099.nii.gz", + "label": "labelsTr/colon_099.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_099/colon_099_seg.nii.gz" + }, + { + "image": "imagesTr/colon_205.nii.gz", + "pseudo_label": "imagesTr/colon_205.nii.gz", + "label": "labelsTr/colon_205.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_205/colon_205_seg.nii.gz" + }, + { + "image": "imagesTr/colon_072.nii.gz", + "pseudo_label": "imagesTr/colon_072.nii.gz", + "label": "labelsTr/colon_072.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_072/colon_072_seg.nii.gz" + }, + { + "image": "imagesTr/colon_096.nii.gz", + "pseudo_label": "imagesTr/colon_096.nii.gz", + "label": "labelsTr/colon_096.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_096/colon_096_seg.nii.gz" + }, + { + "image": "imagesTr/colon_036.nii.gz", + "pseudo_label": "imagesTr/colon_036.nii.gz", + "label": "labelsTr/colon_036.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_036/colon_036_seg.nii.gz" + }, + { + "image": "imagesTr/colon_136.nii.gz", + "pseudo_label": "imagesTr/colon_136.nii.gz", + "label": "labelsTr/colon_136.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_136/colon_136_seg.nii.gz" + }, + { + "image": "imagesTr/colon_218.nii.gz", + "pseudo_label": "imagesTr/colon_218.nii.gz", + "label": "labelsTr/colon_218.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_218/colon_218_seg.nii.gz" + }, + { + "image": "imagesTr/colon_143.nii.gz", + "pseudo_label": "imagesTr/colon_143.nii.gz", + "label": "labelsTr/colon_143.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_143/colon_143_seg.nii.gz" + }, + { + "image": "imagesTr/colon_154.nii.gz", + "pseudo_label": "imagesTr/colon_154.nii.gz", + "label": "labelsTr/colon_154.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_154/colon_154_seg.nii.gz" + }, + { + "image": "imagesTr/colon_168.nii.gz", + "pseudo_label": "imagesTr/colon_168.nii.gz", + "label": "labelsTr/colon_168.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_168/colon_168_seg.nii.gz" + }, + { + "image": "imagesTr/colon_166.nii.gz", + "pseudo_label": "imagesTr/colon_166.nii.gz", + "label": "labelsTr/colon_166.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_166/colon_166_seg.nii.gz" + }, + { + "image": "imagesTr/colon_181.nii.gz", + "pseudo_label": "imagesTr/colon_181.nii.gz", + "label": "labelsTr/colon_181.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_181/colon_181_seg.nii.gz" + }, + { + "image": "imagesTr/colon_039.nii.gz", + "pseudo_label": "imagesTr/colon_039.nii.gz", + "label": "labelsTr/colon_039.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_039/colon_039_seg.nii.gz" + }, + { + "image": "imagesTr/colon_086.nii.gz", + "pseudo_label": "imagesTr/colon_086.nii.gz", + "label": "labelsTr/colon_086.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_086/colon_086_seg.nii.gz" + }, + { + "image": "imagesTr/colon_149.nii.gz", + "pseudo_label": "imagesTr/colon_149.nii.gz", + "label": "labelsTr/colon_149.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_149/colon_149_seg.nii.gz" + }, + { + "image": "imagesTr/colon_193.nii.gz", + "pseudo_label": "imagesTr/colon_193.nii.gz", + "label": "labelsTr/colon_193.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_193/colon_193_seg.nii.gz" + }, + { + "image": "imagesTr/colon_015.nii.gz", + "pseudo_label": "imagesTr/colon_015.nii.gz", + "label": "labelsTr/colon_015.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_015/colon_015_seg.nii.gz" + }, + { + "image": "imagesTr/colon_040.nii.gz", + "pseudo_label": "imagesTr/colon_040.nii.gz", + "label": "labelsTr/colon_040.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_040/colon_040_seg.nii.gz" + }, + { + "image": "imagesTr/colon_196.nii.gz", + "pseudo_label": "imagesTr/colon_196.nii.gz", + "label": "labelsTr/colon_196.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_196/colon_196_seg.nii.gz" + }, + { + "image": "imagesTr/colon_054.nii.gz", + "pseudo_label": "imagesTr/colon_054.nii.gz", + "label": "labelsTr/colon_054.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_054/colon_054_seg.nii.gz" + }, + { + "image": "imagesTr/colon_098.nii.gz", + "pseudo_label": "imagesTr/colon_098.nii.gz", + "label": "labelsTr/colon_098.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_098/colon_098_seg.nii.gz" + }, + { + "image": "imagesTr/colon_074.nii.gz", + "pseudo_label": "imagesTr/colon_074.nii.gz", + "label": "labelsTr/colon_074.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_074/colon_074_seg.nii.gz" + }, + { + "image": "imagesTr/colon_012.nii.gz", + "pseudo_label": "imagesTr/colon_012.nii.gz", + "label": "labelsTr/colon_012.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_012/colon_012_seg.nii.gz" + }, + { + "image": "imagesTr/colon_142.nii.gz", + "pseudo_label": "imagesTr/colon_142.nii.gz", + "label": "labelsTr/colon_142.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_142/colon_142_seg.nii.gz" + }, + { + "image": "imagesTr/colon_212.nii.gz", + "pseudo_label": "imagesTr/colon_212.nii.gz", + "label": "labelsTr/colon_212.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_212/colon_212_seg.nii.gz" + }, + { + "image": "imagesTr/colon_159.nii.gz", + "pseudo_label": "imagesTr/colon_159.nii.gz", + "label": "labelsTr/colon_159.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/Task10_100/colon_159/colon_159_seg.nii.gz" + } + ], + "training_transform": [ + { + "_target_": "RandCropByLabelClassesd", + "keys": [ + "@image_key", + "@label_key", + "@pseudo_label_key", + "@label_sv_key" + ], + "label_key": "@pseudo_label_key", + "num_classes": 133, + "num_samples": "@num_patches_per_image", + "spatial_size": "@patch_size", + "ratios": "$tuple(float(i >= 0) for i in range(133))", + "warn": false, + "allow_missing_keys": true + }, + { + "_target_": "RandZoomd", + "keys": [ + "@image_key", + "@label_key", + "@pseudo_label_key", + "@label_sv_key" + ], + "min_zoom": 0.8, + "max_zoom": 1.2, + "mode": [ + "trilinear", + "nearest", + "nearest", + "nearest" + ], + "prob": 0.2, + "allow_missing_keys": true + }, + { + "_target_": "RandSimulateLowResolutiond", + "keys": [ + "@image_key" + ], + "zoom_range": [ + 0.3, + 1 + ], + "prob": 0.2, + "allow_missing_keys": true + }, + { + "_target_": "RandGaussianSmoothd", + "keys": [ + "@image_key" + ], + "prob": 0.2, + "sigma_x": [ + 0.5, + 1.0 + ], + "sigma_y": [ + 0.5, + 1.0 + ], + "sigma_z": [ + 0.5, + 1.0 + ] + }, + { + "_target_": "RandScaleIntensityd", + "keys": [ + "@image_key" + ], + "factors": 0.1, + "prob": 0.2 + }, + { + "_target_": "RandShiftIntensityd", + "keys": [ + "@image_key" + ], + "offsets": 0.1, + "prob": 0.2 + }, + { + "_target_": "RandGaussianNoised", + "keys": [ + "@image_key" + ], + "prob": 0.2, + "mean": 0.0, + "std": 0.2 + } + ], + "label_dict": { + "1": "colon cancer primaries" + }, + "original_label_dict": { + "1": "colon cancer primaries" + }, + "testing": [ + { + "image": "imagesTr/colon_053.nii.gz", + "label": "labelsTr/colon_053.nii.gz" + }, + { + "image": "imagesTr/colon_219.nii.gz", + "label": "labelsTr/colon_219.nii.gz" + }, + { + "image": "imagesTr/colon_107.nii.gz", + "label": "labelsTr/colon_107.nii.gz" + }, + { + "image": "imagesTr/colon_203.nii.gz", + "label": "labelsTr/colon_203.nii.gz" + }, + { + "image": "imagesTr/colon_163.nii.gz", + "label": "labelsTr/colon_163.nii.gz" + }, + { + "image": "imagesTr/colon_187.nii.gz", + "label": "labelsTr/colon_187.nii.gz" + }, + { + "image": "imagesTr/colon_172.nii.gz", + "label": "labelsTr/colon_172.nii.gz" + }, + { + "image": "imagesTr/colon_077.nii.gz", + "label": "labelsTr/colon_077.nii.gz" + }, + { + "image": "imagesTr/colon_104.nii.gz", + "label": "labelsTr/colon_104.nii.gz" + }, + { + "image": "imagesTr/colon_042.nii.gz", + "label": "labelsTr/colon_042.nii.gz" + }, + { + "image": "imagesTr/colon_169.nii.gz", + "label": "labelsTr/colon_169.nii.gz" + }, + { + "image": "imagesTr/colon_133.nii.gz", + "label": "labelsTr/colon_133.nii.gz" + }, + { + "image": "imagesTr/colon_208.nii.gz", + "label": "labelsTr/colon_208.nii.gz" + }, + { + "image": "imagesTr/colon_206.nii.gz", + "label": "labelsTr/colon_206.nii.gz" + }, + { + "image": "imagesTr/colon_031.nii.gz", + "label": "labelsTr/colon_031.nii.gz" + }, + { + "image": "imagesTr/colon_148.nii.gz", + "label": "labelsTr/colon_148.nii.gz" + }, + { + "image": "imagesTr/colon_102.nii.gz", + "label": "labelsTr/colon_102.nii.gz" + }, + { + "image": "imagesTr/colon_078.nii.gz", + "label": "labelsTr/colon_078.nii.gz" + }, + { + "image": "imagesTr/colon_046.nii.gz", + "label": "labelsTr/colon_046.nii.gz" + }, + { + "image": "imagesTr/colon_213.nii.gz", + "label": "labelsTr/colon_213.nii.gz" + }, + { + "image": "imagesTr/colon_081.nii.gz", + "label": "labelsTr/colon_081.nii.gz" + }, + { + "image": "imagesTr/colon_089.nii.gz", + "label": "labelsTr/colon_089.nii.gz" + }, + { + "image": "imagesTr/colon_088.nii.gz", + "label": "labelsTr/colon_088.nii.gz" + }, + { + "image": "imagesTr/colon_164.nii.gz", + "label": "labelsTr/colon_164.nii.gz" + }, + { + "image": "imagesTr/colon_038.nii.gz", + "label": "labelsTr/colon_038.nii.gz" + } + ] +} diff --git a/vista3d/data/jsons/TotalSegmentatorV2_5_folds.json b/vista3d/data/jsons/TotalSegmentatorV2_5_folds.json new file mode 100644 index 0000000..c359561 --- /dev/null +++ b/vista3d/data/jsons/TotalSegmentatorV2_5_folds.json @@ -0,0 +1,7991 @@ +{ + "training": [ + { + "image": "s0264/ct.nii.gz", + "pseudo_label": "s0264/ct.nii.gz", + "label": "s0264/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0812/ct.nii.gz", + "pseudo_label": "s0812/ct.nii.gz", + "label": "s0812/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0953/ct.nii.gz", + "pseudo_label": "s0953/ct.nii.gz", + "label": "s0953/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0436/ct.nii.gz", + "pseudo_label": "s0436/ct.nii.gz", + "label": "s0436/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0785/ct.nii.gz", + "pseudo_label": "s0785/ct.nii.gz", + "label": "s0785/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0316/ct.nii.gz", + "pseudo_label": "s0316/ct.nii.gz", + "label": "s0316/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1164/ct.nii.gz", + "pseudo_label": "s1164/ct.nii.gz", + "label": "s1164/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0925/ct.nii.gz", + "pseudo_label": "s0925/ct.nii.gz", + "label": "s0925/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1243/ct.nii.gz", + "pseudo_label": "s1243/ct.nii.gz", + "label": "s1243/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0406/ct.nii.gz", + "pseudo_label": "s0406/ct.nii.gz", + "label": "s0406/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0102/ct.nii.gz", + "pseudo_label": "s0102/ct.nii.gz", + "label": "s0102/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1046/ct.nii.gz", + "pseudo_label": "s1046/ct.nii.gz", + "label": "s1046/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0965/ct.nii.gz", + "pseudo_label": "s0965/ct.nii.gz", + "label": "s0965/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0862/ct.nii.gz", + "pseudo_label": "s0862/ct.nii.gz", + "label": "s0862/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1194/ct.nii.gz", + "pseudo_label": "s1194/ct.nii.gz", + "label": "s1194/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0791/ct.nii.gz", + "pseudo_label": "s0791/ct.nii.gz", + "label": "s0791/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0528/ct.nii.gz", + "pseudo_label": "s0528/ct.nii.gz", + "label": "s0528/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0667/ct.nii.gz", + "pseudo_label": "s0667/ct.nii.gz", + "label": "s0667/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0778/ct.nii.gz", + "pseudo_label": "s0778/ct.nii.gz", + "label": "s0778/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0597/ct.nii.gz", + "pseudo_label": "s0597/ct.nii.gz", + "label": "s0597/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0301/ct.nii.gz", + "pseudo_label": "s0301/ct.nii.gz", + "label": "s0301/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1261/ct.nii.gz", + "pseudo_label": "s1261/ct.nii.gz", + "label": "s1261/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0614/ct.nii.gz", + "pseudo_label": "s0614/ct.nii.gz", + "label": "s0614/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1299/ct.nii.gz", + "pseudo_label": "s1299/ct.nii.gz", + "label": "s1299/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0411/ct.nii.gz", + "pseudo_label": "s0411/ct.nii.gz", + "label": "s0411/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1331/ct.nii.gz", + "pseudo_label": "s1331/ct.nii.gz", + "label": "s1331/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0605/ct.nii.gz", + "pseudo_label": "s0605/ct.nii.gz", + "label": "s0605/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0383/ct.nii.gz", + "pseudo_label": "s0383/ct.nii.gz", + "label": "s0383/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0559/ct.nii.gz", + "pseudo_label": "s0559/ct.nii.gz", + "label": "s0559/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0921/ct.nii.gz", + "pseudo_label": "s0921/ct.nii.gz", + "label": "s0921/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0320/ct.nii.gz", + "pseudo_label": "s0320/ct.nii.gz", + "label": "s0320/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0416/ct.nii.gz", + "pseudo_label": "s0416/ct.nii.gz", + "label": "s0416/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1321/ct.nii.gz", + "pseudo_label": "s1321/ct.nii.gz", + "label": "s1321/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1323/ct.nii.gz", + "pseudo_label": "s1323/ct.nii.gz", + "label": "s1323/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0367/ct.nii.gz", + "pseudo_label": "s0367/ct.nii.gz", + "label": "s0367/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1298/ct.nii.gz", + "pseudo_label": "s1298/ct.nii.gz", + "label": "s1298/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1192/ct.nii.gz", + "pseudo_label": "s1192/ct.nii.gz", + "label": "s1192/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0123/ct.nii.gz", + "pseudo_label": "s0123/ct.nii.gz", + "label": "s0123/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0217/ct.nii.gz", + "pseudo_label": "s0217/ct.nii.gz", + "label": "s0217/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1099/ct.nii.gz", + "pseudo_label": "s1099/ct.nii.gz", + "label": "s1099/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0580/ct.nii.gz", + "pseudo_label": "s0580/ct.nii.gz", + "label": "s0580/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0119/ct.nii.gz", + "pseudo_label": "s0119/ct.nii.gz", + "label": "s0119/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0548/ct.nii.gz", + "pseudo_label": "s0548/ct.nii.gz", + "label": "s0548/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0702/ct.nii.gz", + "pseudo_label": "s0702/ct.nii.gz", + "label": "s0702/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0943/ct.nii.gz", + "pseudo_label": "s0943/ct.nii.gz", + "label": "s0943/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0940/ct.nii.gz", + "pseudo_label": "s0940/ct.nii.gz", + "label": "s0940/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0763/ct.nii.gz", + "pseudo_label": "s0763/ct.nii.gz", + "label": "s0763/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0253/ct.nii.gz", + "pseudo_label": "s0253/ct.nii.gz", + "label": "s0253/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1199/ct.nii.gz", + "pseudo_label": "s1199/ct.nii.gz", + "label": "s1199/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0896/ct.nii.gz", + "pseudo_label": "s0896/ct.nii.gz", + "label": "s0896/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0059/ct.nii.gz", + "pseudo_label": "s0059/ct.nii.gz", + "label": "s0059/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0875/ct.nii.gz", + "pseudo_label": "s0875/ct.nii.gz", + "label": "s0875/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1176/ct.nii.gz", + "pseudo_label": "s1176/ct.nii.gz", + "label": "s1176/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1115/ct.nii.gz", + "pseudo_label": "s1115/ct.nii.gz", + "label": "s1115/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0833/ct.nii.gz", + "pseudo_label": "s0833/ct.nii.gz", + "label": "s0833/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0439/ct.nii.gz", + "pseudo_label": "s0439/ct.nii.gz", + "label": "s0439/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0245/ct.nii.gz", + "pseudo_label": "s0245/ct.nii.gz", + "label": "s0245/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0716/ct.nii.gz", + "pseudo_label": "s0716/ct.nii.gz", + "label": "s0716/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1205/ct.nii.gz", + "pseudo_label": "s1205/ct.nii.gz", + "label": "s1205/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0961/ct.nii.gz", + "pseudo_label": "s0961/ct.nii.gz", + "label": "s0961/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0425/ct.nii.gz", + "pseudo_label": "s0425/ct.nii.gz", + "label": "s0425/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0960/ct.nii.gz", + "pseudo_label": "s0960/ct.nii.gz", + "label": "s0960/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0068/ct.nii.gz", + "pseudo_label": "s0068/ct.nii.gz", + "label": "s0068/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0194/ct.nii.gz", + "pseudo_label": "s0194/ct.nii.gz", + "label": "s0194/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0147/ct.nii.gz", + "pseudo_label": "s0147/ct.nii.gz", + "label": "s0147/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1152/ct.nii.gz", + "pseudo_label": "s1152/ct.nii.gz", + "label": "s1152/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1029/ct.nii.gz", + "pseudo_label": "s1029/ct.nii.gz", + "label": "s1029/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0082/ct.nii.gz", + "pseudo_label": "s0082/ct.nii.gz", + "label": "s0082/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0930/ct.nii.gz", + "pseudo_label": "s0930/ct.nii.gz", + "label": "s0930/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0993/ct.nii.gz", + "pseudo_label": "s0993/ct.nii.gz", + "label": "s0993/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0028/ct.nii.gz", + "pseudo_label": "s0028/ct.nii.gz", + "label": "s0028/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0899/ct.nii.gz", + "pseudo_label": "s0899/ct.nii.gz", + "label": "s0899/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0283/ct.nii.gz", + "pseudo_label": "s0283/ct.nii.gz", + "label": "s0283/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0099/ct.nii.gz", + "pseudo_label": "s0099/ct.nii.gz", + "label": "s0099/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0772/ct.nii.gz", + "pseudo_label": "s0772/ct.nii.gz", + "label": "s0772/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0325/ct.nii.gz", + "pseudo_label": "s0325/ct.nii.gz", + "label": "s0325/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0994/ct.nii.gz", + "pseudo_label": "s0994/ct.nii.gz", + "label": "s0994/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0816/ct.nii.gz", + "pseudo_label": "s0816/ct.nii.gz", + "label": "s0816/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0159/ct.nii.gz", + "pseudo_label": "s0159/ct.nii.gz", + "label": "s0159/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0287/ct.nii.gz", + "pseudo_label": "s0287/ct.nii.gz", + "label": "s0287/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1035/ct.nii.gz", + "pseudo_label": "s1035/ct.nii.gz", + "label": "s1035/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0530/ct.nii.gz", + "pseudo_label": "s0530/ct.nii.gz", + "label": "s0530/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1157/ct.nii.gz", + "pseudo_label": "s1157/ct.nii.gz", + "label": "s1157/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1408/ct.nii.gz", + "pseudo_label": "s1408/ct.nii.gz", + "label": "s1408/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0375/ct.nii.gz", + "pseudo_label": "s0375/ct.nii.gz", + "label": "s0375/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0279/ct.nii.gz", + "pseudo_label": "s0279/ct.nii.gz", + "label": "s0279/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0956/ct.nii.gz", + "pseudo_label": "s0956/ct.nii.gz", + "label": "s0956/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0616/ct.nii.gz", + "pseudo_label": "s0616/ct.nii.gz", + "label": "s0616/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0647/ct.nii.gz", + "pseudo_label": "s0647/ct.nii.gz", + "label": "s0647/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1269/ct.nii.gz", + "pseudo_label": "s1269/ct.nii.gz", + "label": "s1269/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1156/ct.nii.gz", + "pseudo_label": "s1156/ct.nii.gz", + "label": "s1156/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0058/ct.nii.gz", + "pseudo_label": "s0058/ct.nii.gz", + "label": "s0058/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1161/ct.nii.gz", + "pseudo_label": "s1161/ct.nii.gz", + "label": "s1161/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0622/ct.nii.gz", + "pseudo_label": "s0622/ct.nii.gz", + "label": "s0622/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0011/ct.nii.gz", + "pseudo_label": "s0011/ct.nii.gz", + "label": "s0011/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0517/ct.nii.gz", + "pseudo_label": "s0517/ct.nii.gz", + "label": "s0517/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0837/ct.nii.gz", + "pseudo_label": "s0837/ct.nii.gz", + "label": "s0837/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0067/ct.nii.gz", + "pseudo_label": "s0067/ct.nii.gz", + "label": "s0067/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0660/ct.nii.gz", + "pseudo_label": "s0660/ct.nii.gz", + "label": "s0660/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0474/ct.nii.gz", + "pseudo_label": "s0474/ct.nii.gz", + "label": "s0474/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1412/ct.nii.gz", + "pseudo_label": "s1412/ct.nii.gz", + "label": "s1412/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0607/ct.nii.gz", + "pseudo_label": "s0607/ct.nii.gz", + "label": "s0607/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0224/ct.nii.gz", + "pseudo_label": "s0224/ct.nii.gz", + "label": "s0224/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1394/ct.nii.gz", + "pseudo_label": "s1394/ct.nii.gz", + "label": "s1394/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0046/ct.nii.gz", + "pseudo_label": "s0046/ct.nii.gz", + "label": "s0046/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0620/ct.nii.gz", + "pseudo_label": "s0620/ct.nii.gz", + "label": "s0620/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1215/ct.nii.gz", + "pseudo_label": "s1215/ct.nii.gz", + "label": "s1215/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0765/ct.nii.gz", + "pseudo_label": "s0765/ct.nii.gz", + "label": "s0765/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0937/ct.nii.gz", + "pseudo_label": "s0937/ct.nii.gz", + "label": "s0937/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0852/ct.nii.gz", + "pseudo_label": "s0852/ct.nii.gz", + "label": "s0852/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1346/ct.nii.gz", + "pseudo_label": "s1346/ct.nii.gz", + "label": "s1346/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0281/ct.nii.gz", + "pseudo_label": "s0281/ct.nii.gz", + "label": "s0281/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0898/ct.nii.gz", + "pseudo_label": "s0898/ct.nii.gz", + "label": "s0898/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1358/ct.nii.gz", + "pseudo_label": "s1358/ct.nii.gz", + "label": "s1358/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0863/ct.nii.gz", + "pseudo_label": "s0863/ct.nii.gz", + "label": "s0863/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0600/ct.nii.gz", + "pseudo_label": "s0600/ct.nii.gz", + "label": "s0600/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1057/ct.nii.gz", + "pseudo_label": "s1057/ct.nii.gz", + "label": "s1057/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0707/ct.nii.gz", + "pseudo_label": "s0707/ct.nii.gz", + "label": "s0707/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0504/ct.nii.gz", + "pseudo_label": "s0504/ct.nii.gz", + "label": "s0504/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0234/ct.nii.gz", + "pseudo_label": "s0234/ct.nii.gz", + "label": "s0234/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1425/ct.nii.gz", + "pseudo_label": "s1425/ct.nii.gz", + "label": "s1425/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0233/ct.nii.gz", + "pseudo_label": "s0233/ct.nii.gz", + "label": "s0233/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0519/ct.nii.gz", + "pseudo_label": "s0519/ct.nii.gz", + "label": "s0519/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1218/ct.nii.gz", + "pseudo_label": "s1218/ct.nii.gz", + "label": "s1218/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1125/ct.nii.gz", + "pseudo_label": "s1125/ct.nii.gz", + "label": "s1125/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0438/ct.nii.gz", + "pseudo_label": "s0438/ct.nii.gz", + "label": "s0438/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1375/ct.nii.gz", + "pseudo_label": "s1375/ct.nii.gz", + "label": "s1375/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1401/ct.nii.gz", + "pseudo_label": "s1401/ct.nii.gz", + "label": "s1401/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0939/ct.nii.gz", + "pseudo_label": "s0939/ct.nii.gz", + "label": "s0939/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0484/ct.nii.gz", + "pseudo_label": "s0484/ct.nii.gz", + "label": "s0484/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0824/ct.nii.gz", + "pseudo_label": "s0824/ct.nii.gz", + "label": "s0824/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0135/ct.nii.gz", + "pseudo_label": "s0135/ct.nii.gz", + "label": "s0135/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0633/ct.nii.gz", + "pseudo_label": "s0633/ct.nii.gz", + "label": "s0633/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0354/ct.nii.gz", + "pseudo_label": "s0354/ct.nii.gz", + "label": "s0354/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0108/ct.nii.gz", + "pseudo_label": "s0108/ct.nii.gz", + "label": "s0108/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0729/ct.nii.gz", + "pseudo_label": "s0729/ct.nii.gz", + "label": "s0729/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0399/ct.nii.gz", + "pseudo_label": "s0399/ct.nii.gz", + "label": "s0399/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0151/ct.nii.gz", + "pseudo_label": "s0151/ct.nii.gz", + "label": "s0151/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0211/ct.nii.gz", + "pseudo_label": "s0211/ct.nii.gz", + "label": "s0211/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0069/ct.nii.gz", + "pseudo_label": "s0069/ct.nii.gz", + "label": "s0069/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0401/ct.nii.gz", + "pseudo_label": "s0401/ct.nii.gz", + "label": "s0401/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0098/ct.nii.gz", + "pseudo_label": "s0098/ct.nii.gz", + "label": "s0098/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0361/ct.nii.gz", + "pseudo_label": "s0361/ct.nii.gz", + "label": "s0361/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0049/ct.nii.gz", + "pseudo_label": "s0049/ct.nii.gz", + "label": "s0049/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0750/ct.nii.gz", + "pseudo_label": "s0750/ct.nii.gz", + "label": "s0750/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0853/ct.nii.gz", + "pseudo_label": "s0853/ct.nii.gz", + "label": "s0853/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0709/ct.nii.gz", + "pseudo_label": "s0709/ct.nii.gz", + "label": "s0709/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0786/ct.nii.gz", + "pseudo_label": "s0786/ct.nii.gz", + "label": "s0786/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0728/ct.nii.gz", + "pseudo_label": "s0728/ct.nii.gz", + "label": "s0728/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1159/ct.nii.gz", + "pseudo_label": "s1159/ct.nii.gz", + "label": "s1159/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0891/ct.nii.gz", + "pseudo_label": "s0891/ct.nii.gz", + "label": "s0891/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0486/ct.nii.gz", + "pseudo_label": "s0486/ct.nii.gz", + "label": "s0486/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0220/ct.nii.gz", + "pseudo_label": "s0220/ct.nii.gz", + "label": "s0220/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1260/ct.nii.gz", + "pseudo_label": "s1260/ct.nii.gz", + "label": "s1260/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0848/ct.nii.gz", + "pseudo_label": "s0848/ct.nii.gz", + "label": "s0848/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0419/ct.nii.gz", + "pseudo_label": "s0419/ct.nii.gz", + "label": "s0419/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1148/ct.nii.gz", + "pseudo_label": "s1148/ct.nii.gz", + "label": "s1148/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0258/ct.nii.gz", + "pseudo_label": "s0258/ct.nii.gz", + "label": "s0258/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0991/ct.nii.gz", + "pseudo_label": "s0991/ct.nii.gz", + "label": "s0991/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1250/ct.nii.gz", + "pseudo_label": "s1250/ct.nii.gz", + "label": "s1250/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1155/ct.nii.gz", + "pseudo_label": "s1155/ct.nii.gz", + "label": "s1155/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1236/ct.nii.gz", + "pseudo_label": "s1236/ct.nii.gz", + "label": "s1236/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1234/ct.nii.gz", + "pseudo_label": "s1234/ct.nii.gz", + "label": "s1234/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0983/ct.nii.gz", + "pseudo_label": "s0983/ct.nii.gz", + "label": "s0983/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0681/ct.nii.gz", + "pseudo_label": "s0681/ct.nii.gz", + "label": "s0681/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0172/ct.nii.gz", + "pseudo_label": "s0172/ct.nii.gz", + "label": "s0172/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1002/ct.nii.gz", + "pseudo_label": "s1002/ct.nii.gz", + "label": "s1002/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1085/ct.nii.gz", + "pseudo_label": "s1085/ct.nii.gz", + "label": "s1085/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0141/ct.nii.gz", + "pseudo_label": "s0141/ct.nii.gz", + "label": "s0141/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0688/ct.nii.gz", + "pseudo_label": "s0688/ct.nii.gz", + "label": "s0688/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1367/ct.nii.gz", + "pseudo_label": "s1367/ct.nii.gz", + "label": "s1367/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0918/ct.nii.gz", + "pseudo_label": "s0918/ct.nii.gz", + "label": "s0918/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0766/ct.nii.gz", + "pseudo_label": "s0766/ct.nii.gz", + "label": "s0766/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0472/ct.nii.gz", + "pseudo_label": "s0472/ct.nii.gz", + "label": "s0472/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1417/ct.nii.gz", + "pseudo_label": "s1417/ct.nii.gz", + "label": "s1417/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1362/ct.nii.gz", + "pseudo_label": "s1362/ct.nii.gz", + "label": "s1362/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0054/ct.nii.gz", + "pseudo_label": "s0054/ct.nii.gz", + "label": "s0054/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1146/ct.nii.gz", + "pseudo_label": "s1146/ct.nii.gz", + "label": "s1146/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0572/ct.nii.gz", + "pseudo_label": "s0572/ct.nii.gz", + "label": "s0572/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0330/ct.nii.gz", + "pseudo_label": "s0330/ct.nii.gz", + "label": "s0330/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0483/ct.nii.gz", + "pseudo_label": "s0483/ct.nii.gz", + "label": "s0483/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1121/ct.nii.gz", + "pseudo_label": "s1121/ct.nii.gz", + "label": "s1121/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0711/ct.nii.gz", + "pseudo_label": "s0711/ct.nii.gz", + "label": "s0711/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0429/ct.nii.gz", + "pseudo_label": "s0429/ct.nii.gz", + "label": "s0429/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1369/ct.nii.gz", + "pseudo_label": "s1369/ct.nii.gz", + "label": "s1369/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1347/ct.nii.gz", + "pseudo_label": "s1347/ct.nii.gz", + "label": "s1347/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0400/ct.nii.gz", + "pseudo_label": "s0400/ct.nii.gz", + "label": "s0400/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0292/ct.nii.gz", + "pseudo_label": "s0292/ct.nii.gz", + "label": "s0292/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1145/ct.nii.gz", + "pseudo_label": "s1145/ct.nii.gz", + "label": "s1145/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0105/ct.nii.gz", + "pseudo_label": "s0105/ct.nii.gz", + "label": "s0105/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1041/ct.nii.gz", + "pseudo_label": "s1041/ct.nii.gz", + "label": "s1041/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0715/ct.nii.gz", + "pseudo_label": "s0715/ct.nii.gz", + "label": "s0715/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0995/ct.nii.gz", + "pseudo_label": "s0995/ct.nii.gz", + "label": "s0995/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1413/ct.nii.gz", + "pseudo_label": "s1413/ct.nii.gz", + "label": "s1413/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1350/ct.nii.gz", + "pseudo_label": "s1350/ct.nii.gz", + "label": "s1350/seg.nii.gz", + "fold": 0 + }, + { + "image": "s0392/ct.nii.gz", + "pseudo_label": "s0392/ct.nii.gz", + "label": "s0392/seg.nii.gz", + "fold": 0 + }, + { + "image": "s1101/ct.nii.gz", + "pseudo_label": "s1101/ct.nii.gz", + "label": "s1101/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1101/ct/ct_seg.nii.gz" + }, + { + "image": "s1328/ct.nii.gz", + "pseudo_label": "s1328/ct.nii.gz", + "label": "s1328/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1328/ct/ct_seg.nii.gz" + }, + { + "image": "s0625/ct.nii.gz", + "pseudo_label": "s0625/ct.nii.gz", + "label": "s0625/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0625/ct/ct_seg.nii.gz" + }, + { + "image": "s0915/ct.nii.gz", + "pseudo_label": "s0915/ct.nii.gz", + "label": "s0915/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0915/ct/ct_seg.nii.gz" + }, + { + "image": "s0521/ct.nii.gz", + "pseudo_label": "s0521/ct.nii.gz", + "label": "s0521/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0521/ct/ct_seg.nii.gz" + }, + { + "image": "s1378/ct.nii.gz", + "pseudo_label": "s1378/ct.nii.gz", + "label": "s1378/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1378/ct/ct_seg.nii.gz" + }, + { + "image": "s0669/ct.nii.gz", + "pseudo_label": "s0669/ct.nii.gz", + "label": "s0669/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0669/ct/ct_seg.nii.gz" + }, + { + "image": "s1326/ct.nii.gz", + "pseudo_label": "s1326/ct.nii.gz", + "label": "s1326/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1326/ct/ct_seg.nii.gz" + }, + { + "image": "s0461/ct.nii.gz", + "pseudo_label": "s0461/ct.nii.gz", + "label": "s0461/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0461/ct/ct_seg.nii.gz" + }, + { + "image": "s0613/ct.nii.gz", + "pseudo_label": "s0613/ct.nii.gz", + "label": "s0613/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0613/ct/ct_seg.nii.gz" + }, + { + "image": "s1024/ct.nii.gz", + "pseudo_label": "s1024/ct.nii.gz", + "label": "s1024/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1024/ct/ct_seg.nii.gz" + }, + { + "image": "s0196/ct.nii.gz", + "pseudo_label": "s0196/ct.nii.gz", + "label": "s0196/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0196/ct/ct_seg.nii.gz" + }, + { + "image": "s0642/ct.nii.gz", + "pseudo_label": "s0642/ct.nii.gz", + "label": "s0642/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0642/ct/ct_seg.nii.gz" + }, + { + "image": "s0708/ct.nii.gz", + "pseudo_label": "s0708/ct.nii.gz", + "label": "s0708/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0708/ct/ct_seg.nii.gz" + }, + { + "image": "s0986/ct.nii.gz", + "pseudo_label": "s0986/ct.nii.gz", + "label": "s0986/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0986/ct/ct_seg.nii.gz" + }, + { + "image": "s0578/ct.nii.gz", + "pseudo_label": "s0578/ct.nii.gz", + "label": "s0578/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0578/ct/ct_seg.nii.gz" + }, + { + "image": "s0467/ct.nii.gz", + "pseudo_label": "s0467/ct.nii.gz", + "label": "s0467/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0467/ct/ct_seg.nii.gz" + }, + { + "image": "s0001/ct.nii.gz", + "pseudo_label": "s0001/ct.nii.gz", + "label": "s0001/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0001/ct/ct_seg.nii.gz" + }, + { + "image": "s0372/ct.nii.gz", + "pseudo_label": "s0372/ct.nii.gz", + "label": "s0372/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0372/ct/ct_seg.nii.gz" + }, + { + "image": "s0424/ct.nii.gz", + "pseudo_label": "s0424/ct.nii.gz", + "label": "s0424/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0424/ct/ct_seg.nii.gz" + }, + { + "image": "s0826/ct.nii.gz", + "pseudo_label": "s0826/ct.nii.gz", + "label": "s0826/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0826/ct/ct_seg.nii.gz" + }, + { + "image": "s1289/ct.nii.gz", + "pseudo_label": "s1289/ct.nii.gz", + "label": "s1289/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1289/ct/ct_seg.nii.gz" + }, + { + "image": "s0955/ct.nii.gz", + "pseudo_label": "s0955/ct.nii.gz", + "label": "s0955/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0955/ct/ct_seg.nii.gz" + }, + { + "image": "s0235/ct.nii.gz", + "pseudo_label": "s0235/ct.nii.gz", + "label": "s0235/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0235/ct/ct_seg.nii.gz" + }, + { + "image": "s0610/ct.nii.gz", + "pseudo_label": "s0610/ct.nii.gz", + "label": "s0610/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0610/ct/ct_seg.nii.gz" + }, + { + "image": "s0686/ct.nii.gz", + "pseudo_label": "s0686/ct.nii.gz", + "label": "s0686/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0686/ct/ct_seg.nii.gz" + }, + { + "image": "s0668/ct.nii.gz", + "pseudo_label": "s0668/ct.nii.gz", + "label": "s0668/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0668/ct/ct_seg.nii.gz" + }, + { + "image": "s0074/ct.nii.gz", + "pseudo_label": "s0074/ct.nii.gz", + "label": "s0074/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0074/ct/ct_seg.nii.gz" + }, + { + "image": "s1426/ct.nii.gz", + "pseudo_label": "s1426/ct.nii.gz", + "label": "s1426/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1426/ct/ct_seg.nii.gz" + }, + { + "image": "s1334/ct.nii.gz", + "pseudo_label": "s1334/ct.nii.gz", + "label": "s1334/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1334/ct/ct_seg.nii.gz" + }, + { + "image": "s0428/ct.nii.gz", + "pseudo_label": "s0428/ct.nii.gz", + "label": "s0428/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0428/ct/ct_seg.nii.gz" + }, + { + "image": "s0457/ct.nii.gz", + "pseudo_label": "s0457/ct.nii.gz", + "label": "s0457/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0457/ct/ct_seg.nii.gz" + }, + { + "image": "s1084/ct.nii.gz", + "pseudo_label": "s1084/ct.nii.gz", + "label": "s1084/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1084/ct/ct_seg.nii.gz" + }, + { + "image": "s0341/ct.nii.gz", + "pseudo_label": "s0341/ct.nii.gz", + "label": "s0341/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0341/ct/ct_seg.nii.gz" + }, + { + "image": "s0753/ct.nii.gz", + "pseudo_label": "s0753/ct.nii.gz", + "label": "s0753/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0753/ct/ct_seg.nii.gz" + }, + { + "image": "s0635/ct.nii.gz", + "pseudo_label": "s0635/ct.nii.gz", + "label": "s0635/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0635/ct/ct_seg.nii.gz" + }, + { + "image": "s1283/ct.nii.gz", + "pseudo_label": "s1283/ct.nii.gz", + "label": "s1283/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1283/ct/ct_seg.nii.gz" + }, + { + "image": "s0679/ct.nii.gz", + "pseudo_label": "s0679/ct.nii.gz", + "label": "s0679/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0679/ct/ct_seg.nii.gz" + }, + { + "image": "s0218/ct.nii.gz", + "pseudo_label": "s0218/ct.nii.gz", + "label": "s0218/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0218/ct/ct_seg.nii.gz" + }, + { + "image": "s0445/ct.nii.gz", + "pseudo_label": "s0445/ct.nii.gz", + "label": "s0445/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0445/ct/ct_seg.nii.gz" + }, + { + "image": "s1102/ct.nii.gz", + "pseudo_label": "s1102/ct.nii.gz", + "label": "s1102/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1102/ct/ct_seg.nii.gz" + }, + { + "image": "s0458/ct.nii.gz", + "pseudo_label": "s0458/ct.nii.gz", + "label": "s0458/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0458/ct/ct_seg.nii.gz" + }, + { + "image": "s0386/ct.nii.gz", + "pseudo_label": "s0386/ct.nii.gz", + "label": "s0386/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0386/ct/ct_seg.nii.gz" + }, + { + "image": "s0864/ct.nii.gz", + "pseudo_label": "s0864/ct.nii.gz", + "label": "s0864/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0864/ct/ct_seg.nii.gz" + }, + { + "image": "s0706/ct.nii.gz", + "pseudo_label": "s0706/ct.nii.gz", + "label": "s0706/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0706/ct/ct_seg.nii.gz" + }, + { + "image": "s1366/ct.nii.gz", + "pseudo_label": "s1366/ct.nii.gz", + "label": "s1366/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1366/ct/ct_seg.nii.gz" + }, + { + "image": "s0315/ct.nii.gz", + "pseudo_label": "s0315/ct.nii.gz", + "label": "s0315/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0315/ct/ct_seg.nii.gz" + }, + { + "image": "s0088/ct.nii.gz", + "pseudo_label": "s0088/ct.nii.gz", + "label": "s0088/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0088/ct/ct_seg.nii.gz" + }, + { + "image": "s0449/ct.nii.gz", + "pseudo_label": "s0449/ct.nii.gz", + "label": "s0449/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0449/ct/ct_seg.nii.gz" + }, + { + "image": "s1131/ct.nii.gz", + "pseudo_label": "s1131/ct.nii.gz", + "label": "s1131/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1131/ct/ct_seg.nii.gz" + }, + { + "image": "s0042/ct.nii.gz", + "pseudo_label": "s0042/ct.nii.gz", + "label": "s0042/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0042/ct/ct_seg.nii.gz" + }, + { + "image": "s0897/ct.nii.gz", + "pseudo_label": "s0897/ct.nii.gz", + "label": "s0897/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0897/ct/ct_seg.nii.gz" + }, + { + "image": "s0085/ct.nii.gz", + "pseudo_label": "s0085/ct.nii.gz", + "label": "s0085/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0085/ct/ct_seg.nii.gz" + }, + { + "image": "s0764/ct.nii.gz", + "pseudo_label": "s0764/ct.nii.gz", + "label": "s0764/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0764/ct/ct_seg.nii.gz" + }, + { + "image": "s0104/ct.nii.gz", + "pseudo_label": "s0104/ct.nii.gz", + "label": "s0104/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0104/ct/ct_seg.nii.gz" + }, + { + "image": "s0022/ct.nii.gz", + "pseudo_label": "s0022/ct.nii.gz", + "label": "s0022/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0022/ct/ct_seg.nii.gz" + }, + { + "image": "s0254/ct.nii.gz", + "pseudo_label": "s0254/ct.nii.gz", + "label": "s0254/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0254/ct/ct_seg.nii.gz" + }, + { + "image": "s0395/ct.nii.gz", + "pseudo_label": "s0395/ct.nii.gz", + "label": "s0395/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0395/ct/ct_seg.nii.gz" + }, + { + "image": "s1048/ct.nii.gz", + "pseudo_label": "s1048/ct.nii.gz", + "label": "s1048/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1048/ct/ct_seg.nii.gz" + }, + { + "image": "s0871/ct.nii.gz", + "pseudo_label": "s0871/ct.nii.gz", + "label": "s0871/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0871/ct/ct_seg.nii.gz" + }, + { + "image": "s1301/ct.nii.gz", + "pseudo_label": "s1301/ct.nii.gz", + "label": "s1301/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1301/ct/ct_seg.nii.gz" + }, + { + "image": "s0266/ct.nii.gz", + "pseudo_label": "s0266/ct.nii.gz", + "label": "s0266/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0266/ct/ct_seg.nii.gz" + }, + { + "image": "s1044/ct.nii.gz", + "pseudo_label": "s1044/ct.nii.gz", + "label": "s1044/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1044/ct/ct_seg.nii.gz" + }, + { + "image": "s1395/ct.nii.gz", + "pseudo_label": "s1395/ct.nii.gz", + "label": "s1395/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1395/ct/ct_seg.nii.gz" + }, + { + "image": "s0360/ct.nii.gz", + "pseudo_label": "s0360/ct.nii.gz", + "label": "s0360/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0360/ct/ct_seg.nii.gz" + }, + { + "image": "s1070/ct.nii.gz", + "pseudo_label": "s1070/ct.nii.gz", + "label": "s1070/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1070/ct/ct_seg.nii.gz" + }, + { + "image": "s1257/ct.nii.gz", + "pseudo_label": "s1257/ct.nii.gz", + "label": "s1257/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1257/ct/ct_seg.nii.gz" + }, + { + "image": "s0299/ct.nii.gz", + "pseudo_label": "s0299/ct.nii.gz", + "label": "s0299/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0299/ct/ct_seg.nii.gz" + }, + { + "image": "s0114/ct.nii.gz", + "pseudo_label": "s0114/ct.nii.gz", + "label": "s0114/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0114/ct/ct_seg.nii.gz" + }, + { + "image": "s0293/ct.nii.gz", + "pseudo_label": "s0293/ct.nii.gz", + "label": "s0293/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0293/ct/ct_seg.nii.gz" + }, + { + "image": "s0469/ct.nii.gz", + "pseudo_label": "s0469/ct.nii.gz", + "label": "s0469/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0469/ct/ct_seg.nii.gz" + }, + { + "image": "s1264/ct.nii.gz", + "pseudo_label": "s1264/ct.nii.gz", + "label": "s1264/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1264/ct/ct_seg.nii.gz" + }, + { + "image": "s0958/ct.nii.gz", + "pseudo_label": "s0958/ct.nii.gz", + "label": "s0958/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0958/ct/ct_seg.nii.gz" + }, + { + "image": "s0657/ct.nii.gz", + "pseudo_label": "s0657/ct.nii.gz", + "label": "s0657/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0657/ct/ct_seg.nii.gz" + }, + { + "image": "s0216/ct.nii.gz", + "pseudo_label": "s0216/ct.nii.gz", + "label": "s0216/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0216/ct/ct_seg.nii.gz" + }, + { + "image": "s0034/ct.nii.gz", + "pseudo_label": "s0034/ct.nii.gz", + "label": "s0034/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0034/ct/ct_seg.nii.gz" + }, + { + "image": "s0988/ct.nii.gz", + "pseudo_label": "s0988/ct.nii.gz", + "label": "s0988/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0988/ct/ct_seg.nii.gz" + }, + { + "image": "s0734/ct.nii.gz", + "pseudo_label": "s0734/ct.nii.gz", + "label": "s0734/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0734/ct/ct_seg.nii.gz" + }, + { + "image": "s1212/ct.nii.gz", + "pseudo_label": "s1212/ct.nii.gz", + "label": "s1212/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1212/ct/ct_seg.nii.gz" + }, + { + "image": "s0478/ct.nii.gz", + "pseudo_label": "s0478/ct.nii.gz", + "label": "s0478/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0478/ct/ct_seg.nii.gz" + }, + { + "image": "s1149/ct.nii.gz", + "pseudo_label": "s1149/ct.nii.gz", + "label": "s1149/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1149/ct/ct_seg.nii.gz" + }, + { + "image": "s1177/ct.nii.gz", + "pseudo_label": "s1177/ct.nii.gz", + "label": "s1177/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1177/ct/ct_seg.nii.gz" + }, + { + "image": "s1021/ct.nii.gz", + "pseudo_label": "s1021/ct.nii.gz", + "label": "s1021/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1021/ct/ct_seg.nii.gz" + }, + { + "image": "s0430/ct.nii.gz", + "pseudo_label": "s0430/ct.nii.gz", + "label": "s0430/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0430/ct/ct_seg.nii.gz" + }, + { + "image": "s1038/ct.nii.gz", + "pseudo_label": "s1038/ct.nii.gz", + "label": "s1038/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1038/ct/ct_seg.nii.gz" + }, + { + "image": "s1000/ct.nii.gz", + "pseudo_label": "s1000/ct.nii.gz", + "label": "s1000/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1000/ct/ct_seg.nii.gz" + }, + { + "image": "s0809/ct.nii.gz", + "pseudo_label": "s0809/ct.nii.gz", + "label": "s0809/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0809/ct/ct_seg.nii.gz" + }, + { + "image": "s0733/ct.nii.gz", + "pseudo_label": "s0733/ct.nii.gz", + "label": "s0733/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0733/ct/ct_seg.nii.gz" + }, + { + "image": "s0718/ct.nii.gz", + "pseudo_label": "s0718/ct.nii.gz", + "label": "s0718/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0718/ct/ct_seg.nii.gz" + }, + { + "image": "s0685/ct.nii.gz", + "pseudo_label": "s0685/ct.nii.gz", + "label": "s0685/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0685/ct/ct_seg.nii.gz" + }, + { + "image": "s0405/ct.nii.gz", + "pseudo_label": "s0405/ct.nii.gz", + "label": "s0405/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0405/ct/ct_seg.nii.gz" + }, + { + "image": "s1288/ct.nii.gz", + "pseudo_label": "s1288/ct.nii.gz", + "label": "s1288/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1288/ct/ct_seg.nii.gz" + }, + { + "image": "s0057/ct.nii.gz", + "pseudo_label": "s0057/ct.nii.gz", + "label": "s0057/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0057/ct/ct_seg.nii.gz" + }, + { + "image": "s1128/ct.nii.gz", + "pseudo_label": "s1128/ct.nii.gz", + "label": "s1128/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1128/ct/ct_seg.nii.gz" + }, + { + "image": "s1252/ct.nii.gz", + "pseudo_label": "s1252/ct.nii.gz", + "label": "s1252/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1252/ct/ct_seg.nii.gz" + }, + { + "image": "s0989/ct.nii.gz", + "pseudo_label": "s0989/ct.nii.gz", + "label": "s0989/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0989/ct/ct_seg.nii.gz" + }, + { + "image": "s1305/ct.nii.gz", + "pseudo_label": "s1305/ct.nii.gz", + "label": "s1305/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1305/ct/ct_seg.nii.gz" + }, + { + "image": "s0564/ct.nii.gz", + "pseudo_label": "s0564/ct.nii.gz", + "label": "s0564/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0564/ct/ct_seg.nii.gz" + }, + { + "image": "s0013/ct.nii.gz", + "pseudo_label": "s0013/ct.nii.gz", + "label": "s0013/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0013/ct/ct_seg.nii.gz" + }, + { + "image": "s1184/ct.nii.gz", + "pseudo_label": "s1184/ct.nii.gz", + "label": "s1184/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1184/ct/ct_seg.nii.gz" + }, + { + "image": "s1379/ct.nii.gz", + "pseudo_label": "s1379/ct.nii.gz", + "label": "s1379/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1379/ct/ct_seg.nii.gz" + }, + { + "image": "s0543/ct.nii.gz", + "pseudo_label": "s0543/ct.nii.gz", + "label": "s0543/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0543/ct/ct_seg.nii.gz" + }, + { + "image": "s0575/ct.nii.gz", + "pseudo_label": "s0575/ct.nii.gz", + "label": "s0575/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0575/ct/ct_seg.nii.gz" + }, + { + "image": "s1025/ct.nii.gz", + "pseudo_label": "s1025/ct.nii.gz", + "label": "s1025/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1025/ct/ct_seg.nii.gz" + }, + { + "image": "s0304/ct.nii.gz", + "pseudo_label": "s0304/ct.nii.gz", + "label": "s0304/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0304/ct/ct_seg.nii.gz" + }, + { + "image": "s0314/ct.nii.gz", + "pseudo_label": "s0314/ct.nii.gz", + "label": "s0314/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0314/ct/ct_seg.nii.gz" + }, + { + "image": "s1372/ct.nii.gz", + "pseudo_label": "s1372/ct.nii.gz", + "label": "s1372/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1372/ct/ct_seg.nii.gz" + }, + { + "image": "s0319/ct.nii.gz", + "pseudo_label": "s0319/ct.nii.gz", + "label": "s0319/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0319/ct/ct_seg.nii.gz" + }, + { + "image": "s0741/ct.nii.gz", + "pseudo_label": "s0741/ct.nii.gz", + "label": "s0741/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0741/ct/ct_seg.nii.gz" + }, + { + "image": "s1133/ct.nii.gz", + "pseudo_label": "s1133/ct.nii.gz", + "label": "s1133/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1133/ct/ct_seg.nii.gz" + }, + { + "image": "s0491/ct.nii.gz", + "pseudo_label": "s0491/ct.nii.gz", + "label": "s0491/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0491/ct/ct_seg.nii.gz" + }, + { + "image": "s0815/ct.nii.gz", + "pseudo_label": "s0815/ct.nii.gz", + "label": "s0815/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0815/ct/ct_seg.nii.gz" + }, + { + "image": "s0421/ct.nii.gz", + "pseudo_label": "s0421/ct.nii.gz", + "label": "s0421/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0421/ct/ct_seg.nii.gz" + }, + { + "image": "s0122/ct.nii.gz", + "pseudo_label": "s0122/ct.nii.gz", + "label": "s0122/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0122/ct/ct_seg.nii.gz" + }, + { + "image": "s0079/ct.nii.gz", + "pseudo_label": "s0079/ct.nii.gz", + "label": "s0079/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0079/ct/ct_seg.nii.gz" + }, + { + "image": "s1270/ct.nii.gz", + "pseudo_label": "s1270/ct.nii.gz", + "label": "s1270/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1270/ct/ct_seg.nii.gz" + }, + { + "image": "s0437/ct.nii.gz", + "pseudo_label": "s0437/ct.nii.gz", + "label": "s0437/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0437/ct/ct_seg.nii.gz" + }, + { + "image": "s0132/ct.nii.gz", + "pseudo_label": "s0132/ct.nii.gz", + "label": "s0132/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0132/ct/ct_seg.nii.gz" + }, + { + "image": "s1384/ct.nii.gz", + "pseudo_label": "s1384/ct.nii.gz", + "label": "s1384/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1384/ct/ct_seg.nii.gz" + }, + { + "image": "s1001/ct.nii.gz", + "pseudo_label": "s1001/ct.nii.gz", + "label": "s1001/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1001/ct/ct_seg.nii.gz" + }, + { + "image": "s0231/ct.nii.gz", + "pseudo_label": "s0231/ct.nii.gz", + "label": "s0231/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0231/ct/ct_seg.nii.gz" + }, + { + "image": "s1098/ct.nii.gz", + "pseudo_label": "s1098/ct.nii.gz", + "label": "s1098/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1098/ct/ct_seg.nii.gz" + }, + { + "image": "s1422/ct.nii.gz", + "pseudo_label": "s1422/ct.nii.gz", + "label": "s1422/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1422/ct/ct_seg.nii.gz" + }, + { + "image": "s1332/ct.nii.gz", + "pseudo_label": "s1332/ct.nii.gz", + "label": "s1332/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1332/ct/ct_seg.nii.gz" + }, + { + "image": "s0308/ct.nii.gz", + "pseudo_label": "s0308/ct.nii.gz", + "label": "s0308/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0308/ct/ct_seg.nii.gz" + }, + { + "image": "s1359/ct.nii.gz", + "pseudo_label": "s1359/ct.nii.gz", + "label": "s1359/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1359/ct/ct_seg.nii.gz" + }, + { + "image": "s0169/ct.nii.gz", + "pseudo_label": "s0169/ct.nii.gz", + "label": "s0169/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0169/ct/ct_seg.nii.gz" + }, + { + "image": "s1013/ct.nii.gz", + "pseudo_label": "s1013/ct.nii.gz", + "label": "s1013/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1013/ct/ct_seg.nii.gz" + }, + { + "image": "s1007/ct.nii.gz", + "pseudo_label": "s1007/ct.nii.gz", + "label": "s1007/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1007/ct/ct_seg.nii.gz" + }, + { + "image": "s0628/ct.nii.gz", + "pseudo_label": "s0628/ct.nii.gz", + "label": "s0628/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0628/ct/ct_seg.nii.gz" + }, + { + "image": "s0398/ct.nii.gz", + "pseudo_label": "s0398/ct.nii.gz", + "label": "s0398/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0398/ct/ct_seg.nii.gz" + }, + { + "image": "s0373/ct.nii.gz", + "pseudo_label": "s0373/ct.nii.gz", + "label": "s0373/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0373/ct/ct_seg.nii.gz" + }, + { + "image": "s0903/ct.nii.gz", + "pseudo_label": "s0903/ct.nii.gz", + "label": "s0903/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0903/ct/ct_seg.nii.gz" + }, + { + "image": "s0166/ct.nii.gz", + "pseudo_label": "s0166/ct.nii.gz", + "label": "s0166/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0166/ct/ct_seg.nii.gz" + }, + { + "image": "s0179/ct.nii.gz", + "pseudo_label": "s0179/ct.nii.gz", + "label": "s0179/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0179/ct/ct_seg.nii.gz" + }, + { + "image": "s0550/ct.nii.gz", + "pseudo_label": "s0550/ct.nii.gz", + "label": "s0550/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0550/ct/ct_seg.nii.gz" + }, + { + "image": "s0847/ct.nii.gz", + "pseudo_label": "s0847/ct.nii.gz", + "label": "s0847/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0847/ct/ct_seg.nii.gz" + }, + { + "image": "s0487/ct.nii.gz", + "pseudo_label": "s0487/ct.nii.gz", + "label": "s0487/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0487/ct/ct_seg.nii.gz" + }, + { + "image": "s1348/ct.nii.gz", + "pseudo_label": "s1348/ct.nii.gz", + "label": "s1348/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1348/ct/ct_seg.nii.gz" + }, + { + "image": "s0498/ct.nii.gz", + "pseudo_label": "s0498/ct.nii.gz", + "label": "s0498/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0498/ct/ct_seg.nii.gz" + }, + { + "image": "s0380/ct.nii.gz", + "pseudo_label": "s0380/ct.nii.gz", + "label": "s0380/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0380/ct/ct_seg.nii.gz" + }, + { + "image": "s0210/ct.nii.gz", + "pseudo_label": "s0210/ct.nii.gz", + "label": "s0210/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0210/ct/ct_seg.nii.gz" + }, + { + "image": "s1068/ct.nii.gz", + "pseudo_label": "s1068/ct.nii.gz", + "label": "s1068/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1068/ct/ct_seg.nii.gz" + }, + { + "image": "s0229/ct.nii.gz", + "pseudo_label": "s0229/ct.nii.gz", + "label": "s0229/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0229/ct/ct_seg.nii.gz" + }, + { + "image": "s0128/ct.nii.gz", + "pseudo_label": "s0128/ct.nii.gz", + "label": "s0128/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0128/ct/ct_seg.nii.gz" + }, + { + "image": "s0000/ct.nii.gz", + "pseudo_label": "s0000/ct.nii.gz", + "label": "s0000/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0000/ct/ct_seg.nii.gz" + }, + { + "image": "s0732/ct.nii.gz", + "pseudo_label": "s0732/ct.nii.gz", + "label": "s0732/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0732/ct/ct_seg.nii.gz" + }, + { + "image": "s1183/ct.nii.gz", + "pseudo_label": "s1183/ct.nii.gz", + "label": "s1183/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1183/ct/ct_seg.nii.gz" + }, + { + "image": "s0290/ct.nii.gz", + "pseudo_label": "s0290/ct.nii.gz", + "label": "s0290/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0290/ct/ct_seg.nii.gz" + }, + { + "image": "s0671/ct.nii.gz", + "pseudo_label": "s0671/ct.nii.gz", + "label": "s0671/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0671/ct/ct_seg.nii.gz" + }, + { + "image": "s0695/ct.nii.gz", + "pseudo_label": "s0695/ct.nii.gz", + "label": "s0695/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0695/ct/ct_seg.nii.gz" + }, + { + "image": "s1147/ct.nii.gz", + "pseudo_label": "s1147/ct.nii.gz", + "label": "s1147/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1147/ct/ct_seg.nii.gz" + }, + { + "image": "s1032/ct.nii.gz", + "pseudo_label": "s1032/ct.nii.gz", + "label": "s1032/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1032/ct/ct_seg.nii.gz" + }, + { + "image": "s0627/ct.nii.gz", + "pseudo_label": "s0627/ct.nii.gz", + "label": "s0627/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0627/ct/ct_seg.nii.gz" + }, + { + "image": "s1158/ct.nii.gz", + "pseudo_label": "s1158/ct.nii.gz", + "label": "s1158/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1158/ct/ct_seg.nii.gz" + }, + { + "image": "s0780/ct.nii.gz", + "pseudo_label": "s0780/ct.nii.gz", + "label": "s0780/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0780/ct/ct_seg.nii.gz" + }, + { + "image": "s1240/ct.nii.gz", + "pseudo_label": "s1240/ct.nii.gz", + "label": "s1240/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1240/ct/ct_seg.nii.gz" + }, + { + "image": "s1201/ct.nii.gz", + "pseudo_label": "s1201/ct.nii.gz", + "label": "s1201/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1201/ct/ct_seg.nii.gz" + }, + { + "image": "s0063/ct.nii.gz", + "pseudo_label": "s0063/ct.nii.gz", + "label": "s0063/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0063/ct/ct_seg.nii.gz" + }, + { + "image": "s0500/ct.nii.gz", + "pseudo_label": "s0500/ct.nii.gz", + "label": "s0500/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0500/ct/ct_seg.nii.gz" + }, + { + "image": "s0913/ct.nii.gz", + "pseudo_label": "s0913/ct.nii.gz", + "label": "s0913/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0913/ct/ct_seg.nii.gz" + }, + { + "image": "s0774/ct.nii.gz", + "pseudo_label": "s0774/ct.nii.gz", + "label": "s0774/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0774/ct/ct_seg.nii.gz" + }, + { + "image": "s1179/ct.nii.gz", + "pseudo_label": "s1179/ct.nii.gz", + "label": "s1179/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1179/ct/ct_seg.nii.gz" + }, + { + "image": "s0275/ct.nii.gz", + "pseudo_label": "s0275/ct.nii.gz", + "label": "s0275/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0275/ct/ct_seg.nii.gz" + }, + { + "image": "s0482/ct.nii.gz", + "pseudo_label": "s0482/ct.nii.gz", + "label": "s0482/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0482/ct/ct_seg.nii.gz" + }, + { + "image": "s0454/ct.nii.gz", + "pseudo_label": "s0454/ct.nii.gz", + "label": "s0454/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0454/ct/ct_seg.nii.gz" + }, + { + "image": "s0048/ct.nii.gz", + "pseudo_label": "s0048/ct.nii.gz", + "label": "s0048/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0048/ct/ct_seg.nii.gz" + }, + { + "image": "s0870/ct.nii.gz", + "pseudo_label": "s0870/ct.nii.gz", + "label": "s0870/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0870/ct/ct_seg.nii.gz" + }, + { + "image": "s0585/ct.nii.gz", + "pseudo_label": "s0585/ct.nii.gz", + "label": "s0585/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0585/ct/ct_seg.nii.gz" + }, + { + "image": "s1397/ct.nii.gz", + "pseudo_label": "s1397/ct.nii.gz", + "label": "s1397/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1397/ct/ct_seg.nii.gz" + }, + { + "image": "s1190/ct.nii.gz", + "pseudo_label": "s1190/ct.nii.gz", + "label": "s1190/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1190/ct/ct_seg.nii.gz" + }, + { + "image": "s0676/ct.nii.gz", + "pseudo_label": "s0676/ct.nii.gz", + "label": "s0676/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0676/ct/ct_seg.nii.gz" + }, + { + "image": "s0305/ct.nii.gz", + "pseudo_label": "s0305/ct.nii.gz", + "label": "s0305/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0305/ct/ct_seg.nii.gz" + }, + { + "image": "s0731/ct.nii.gz", + "pseudo_label": "s0731/ct.nii.gz", + "label": "s0731/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0731/ct/ct_seg.nii.gz" + }, + { + "image": "s0138/ct.nii.gz", + "pseudo_label": "s0138/ct.nii.gz", + "label": "s0138/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0138/ct/ct_seg.nii.gz" + }, + { + "image": "s0928/ct.nii.gz", + "pseudo_label": "s0928/ct.nii.gz", + "label": "s0928/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0928/ct/ct_seg.nii.gz" + }, + { + "image": "s0846/ct.nii.gz", + "pseudo_label": "s0846/ct.nii.gz", + "label": "s0846/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0846/ct/ct_seg.nii.gz" + }, + { + "image": "s0895/ct.nii.gz", + "pseudo_label": "s0895/ct.nii.gz", + "label": "s0895/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0895/ct/ct_seg.nii.gz" + }, + { + "image": "s1291/ct.nii.gz", + "pseudo_label": "s1291/ct.nii.gz", + "label": "s1291/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1291/ct/ct_seg.nii.gz" + }, + { + "image": "s0811/ct.nii.gz", + "pseudo_label": "s0811/ct.nii.gz", + "label": "s0811/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0811/ct/ct_seg.nii.gz" + }, + { + "image": "s0349/ct.nii.gz", + "pseudo_label": "s0349/ct.nii.gz", + "label": "s0349/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0349/ct/ct_seg.nii.gz" + }, + { + "image": "s1103/ct.nii.gz", + "pseudo_label": "s1103/ct.nii.gz", + "label": "s1103/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1103/ct/ct_seg.nii.gz" + }, + { + "image": "s0506/ct.nii.gz", + "pseudo_label": "s0506/ct.nii.gz", + "label": "s0506/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0506/ct/ct_seg.nii.gz" + }, + { + "image": "s0389/ct.nii.gz", + "pseudo_label": "s0389/ct.nii.gz", + "label": "s0389/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0389/ct/ct_seg.nii.gz" + }, + { + "image": "s0615/ct.nii.gz", + "pseudo_label": "s0615/ct.nii.gz", + "label": "s0615/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0615/ct/ct_seg.nii.gz" + }, + { + "image": "s0470/ct.nii.gz", + "pseudo_label": "s0470/ct.nii.gz", + "label": "s0470/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0470/ct/ct_seg.nii.gz" + }, + { + "image": "s0187/ct.nii.gz", + "pseudo_label": "s0187/ct.nii.gz", + "label": "s0187/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0187/ct/ct_seg.nii.gz" + }, + { + "image": "s0912/ct.nii.gz", + "pseudo_label": "s0912/ct.nii.gz", + "label": "s0912/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0912/ct/ct_seg.nii.gz" + }, + { + "image": "s0573/ct.nii.gz", + "pseudo_label": "s0573/ct.nii.gz", + "label": "s0573/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0573/ct/ct_seg.nii.gz" + }, + { + "image": "s1175/ct.nii.gz", + "pseudo_label": "s1175/ct.nii.gz", + "label": "s1175/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1175/ct/ct_seg.nii.gz" + }, + { + "image": "s0044/ct.nii.gz", + "pseudo_label": "s0044/ct.nii.gz", + "label": "s0044/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0044/ct/ct_seg.nii.gz" + }, + { + "image": "s0515/ct.nii.gz", + "pseudo_label": "s0515/ct.nii.gz", + "label": "s0515/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0515/ct/ct_seg.nii.gz" + }, + { + "image": "s0363/ct.nii.gz", + "pseudo_label": "s0363/ct.nii.gz", + "label": "s0363/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0363/ct/ct_seg.nii.gz" + }, + { + "image": "s0350/ct.nii.gz", + "pseudo_label": "s0350/ct.nii.gz", + "label": "s0350/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0350/ct/ct_seg.nii.gz" + }, + { + "image": "s0029/ct.nii.gz", + "pseudo_label": "s0029/ct.nii.gz", + "label": "s0029/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0029/ct/ct_seg.nii.gz" + }, + { + "image": "s1285/ct.nii.gz", + "pseudo_label": "s1285/ct.nii.gz", + "label": "s1285/seg.nii.gz", + "fold": 1, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1285/ct/ct_seg.nii.gz" + }, + { + "image": "s0954/ct.nii.gz", + "pseudo_label": "s0954/ct.nii.gz", + "label": "s0954/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0954/ct/ct_seg.nii.gz" + }, + { + "image": "s1399/ct.nii.gz", + "pseudo_label": "s1399/ct.nii.gz", + "label": "s1399/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1399/ct/ct_seg.nii.gz" + }, + { + "image": "s0820/ct.nii.gz", + "pseudo_label": "s0820/ct.nii.gz", + "label": "s0820/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0820/ct/ct_seg.nii.gz" + }, + { + "image": "s1276/ct.nii.gz", + "pseudo_label": "s1276/ct.nii.gz", + "label": "s1276/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1276/ct/ct_seg.nii.gz" + }, + { + "image": "s0636/ct.nii.gz", + "pseudo_label": "s0636/ct.nii.gz", + "label": "s0636/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0636/ct/ct_seg.nii.gz" + }, + { + "image": "s0475/ct.nii.gz", + "pseudo_label": "s0475/ct.nii.gz", + "label": "s0475/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0475/ct/ct_seg.nii.gz" + }, + { + "image": "s1008/ct.nii.gz", + "pseudo_label": "s1008/ct.nii.gz", + "label": "s1008/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1008/ct/ct_seg.nii.gz" + }, + { + "image": "s0851/ct.nii.gz", + "pseudo_label": "s0851/ct.nii.gz", + "label": "s0851/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0851/ct/ct_seg.nii.gz" + }, + { + "image": "s1216/ct.nii.gz", + "pseudo_label": "s1216/ct.nii.gz", + "label": "s1216/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1216/ct/ct_seg.nii.gz" + }, + { + "image": "s0735/ct.nii.gz", + "pseudo_label": "s0735/ct.nii.gz", + "label": "s0735/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0735/ct/ct_seg.nii.gz" + }, + { + "image": "s0947/ct.nii.gz", + "pseudo_label": "s0947/ct.nii.gz", + "label": "s0947/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0947/ct/ct_seg.nii.gz" + }, + { + "image": "s1338/ct.nii.gz", + "pseudo_label": "s1338/ct.nii.gz", + "label": "s1338/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1338/ct/ct_seg.nii.gz" + }, + { + "image": "s1339/ct.nii.gz", + "pseudo_label": "s1339/ct.nii.gz", + "label": "s1339/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1339/ct/ct_seg.nii.gz" + }, + { + "image": "s0536/ct.nii.gz", + "pseudo_label": "s0536/ct.nii.gz", + "label": "s0536/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0536/ct/ct_seg.nii.gz" + }, + { + "image": "s0934/ct.nii.gz", + "pseudo_label": "s0934/ct.nii.gz", + "label": "s0934/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0934/ct/ct_seg.nii.gz" + }, + { + "image": "s0408/ct.nii.gz", + "pseudo_label": "s0408/ct.nii.gz", + "label": "s0408/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0408/ct/ct_seg.nii.gz" + }, + { + "image": "s0860/ct.nii.gz", + "pseudo_label": "s0860/ct.nii.gz", + "label": "s0860/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0860/ct/ct_seg.nii.gz" + }, + { + "image": "s0831/ct.nii.gz", + "pseudo_label": "s0831/ct.nii.gz", + "label": "s0831/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0831/ct/ct_seg.nii.gz" + }, + { + "image": "s0935/ct.nii.gz", + "pseudo_label": "s0935/ct.nii.gz", + "label": "s0935/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0935/ct/ct_seg.nii.gz" + }, + { + "image": "s1310/ct.nii.gz", + "pseudo_label": "s1310/ct.nii.gz", + "label": "s1310/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1310/ct/ct_seg.nii.gz" + }, + { + "image": "s0418/ct.nii.gz", + "pseudo_label": "s0418/ct.nii.gz", + "label": "s0418/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0418/ct/ct_seg.nii.gz" + }, + { + "image": "s1018/ct.nii.gz", + "pseudo_label": "s1018/ct.nii.gz", + "label": "s1018/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1018/ct/ct_seg.nii.gz" + }, + { + "image": "s1370/ct.nii.gz", + "pseudo_label": "s1370/ct.nii.gz", + "label": "s1370/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1370/ct/ct_seg.nii.gz" + }, + { + "image": "s0654/ct.nii.gz", + "pseudo_label": "s0654/ct.nii.gz", + "label": "s0654/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0654/ct/ct_seg.nii.gz" + }, + { + "image": "s0452/ct.nii.gz", + "pseudo_label": "s0452/ct.nii.gz", + "label": "s0452/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0452/ct/ct_seg.nii.gz" + }, + { + "image": "s0222/ct.nii.gz", + "pseudo_label": "s0222/ct.nii.gz", + "label": "s0222/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0222/ct/ct_seg.nii.gz" + }, + { + "image": "s1246/ct.nii.gz", + "pseudo_label": "s1246/ct.nii.gz", + "label": "s1246/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1246/ct/ct_seg.nii.gz" + }, + { + "image": "s0800/ct.nii.gz", + "pseudo_label": "s0800/ct.nii.gz", + "label": "s0800/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0800/ct/ct_seg.nii.gz" + }, + { + "image": "s1173/ct.nii.gz", + "pseudo_label": "s1173/ct.nii.gz", + "label": "s1173/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1173/ct/ct_seg.nii.gz" + }, + { + "image": "s0776/ct.nii.gz", + "pseudo_label": "s0776/ct.nii.gz", + "label": "s0776/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0776/ct/ct_seg.nii.gz" + }, + { + "image": "s0655/ct.nii.gz", + "pseudo_label": "s0655/ct.nii.gz", + "label": "s0655/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0655/ct/ct_seg.nii.gz" + }, + { + "image": "s0924/ct.nii.gz", + "pseudo_label": "s0924/ct.nii.gz", + "label": "s0924/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0924/ct/ct_seg.nii.gz" + }, + { + "image": "s0083/ct.nii.gz", + "pseudo_label": "s0083/ct.nii.gz", + "label": "s0083/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0083/ct/ct_seg.nii.gz" + }, + { + "image": "s0775/ct.nii.gz", + "pseudo_label": "s0775/ct.nii.gz", + "label": "s0775/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0775/ct/ct_seg.nii.gz" + }, + { + "image": "s1249/ct.nii.gz", + "pseudo_label": "s1249/ct.nii.gz", + "label": "s1249/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1249/ct/ct_seg.nii.gz" + }, + { + "image": "s0124/ct.nii.gz", + "pseudo_label": "s0124/ct.nii.gz", + "label": "s0124/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0124/ct/ct_seg.nii.gz" + }, + { + "image": "s1004/ct.nii.gz", + "pseudo_label": "s1004/ct.nii.gz", + "label": "s1004/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1004/ct/ct_seg.nii.gz" + }, + { + "image": "s0748/ct.nii.gz", + "pseudo_label": "s0748/ct.nii.gz", + "label": "s0748/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0748/ct/ct_seg.nii.gz" + }, + { + "image": "s1416/ct.nii.gz", + "pseudo_label": "s1416/ct.nii.gz", + "label": "s1416/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1416/ct/ct_seg.nii.gz" + }, + { + "image": "s0183/ct.nii.gz", + "pseudo_label": "s0183/ct.nii.gz", + "label": "s0183/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0183/ct/ct_seg.nii.gz" + }, + { + "image": "s0586/ct.nii.gz", + "pseudo_label": "s0586/ct.nii.gz", + "label": "s0586/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0586/ct/ct_seg.nii.gz" + }, + { + "image": "s1206/ct.nii.gz", + "pseudo_label": "s1206/ct.nii.gz", + "label": "s1206/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1206/ct/ct_seg.nii.gz" + }, + { + "image": "s1389/ct.nii.gz", + "pseudo_label": "s1389/ct.nii.gz", + "label": "s1389/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1389/ct/ct_seg.nii.gz" + }, + { + "image": "s0271/ct.nii.gz", + "pseudo_label": "s0271/ct.nii.gz", + "label": "s0271/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0271/ct/ct_seg.nii.gz" + }, + { + "image": "s0583/ct.nii.gz", + "pseudo_label": "s0583/ct.nii.gz", + "label": "s0583/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0583/ct/ct_seg.nii.gz" + }, + { + "image": "s0877/ct.nii.gz", + "pseudo_label": "s0877/ct.nii.gz", + "label": "s0877/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0877/ct/ct_seg.nii.gz" + }, + { + "image": "s1010/ct.nii.gz", + "pseudo_label": "s1010/ct.nii.gz", + "label": "s1010/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1010/ct/ct_seg.nii.gz" + }, + { + "image": "s1135/ct.nii.gz", + "pseudo_label": "s1135/ct.nii.gz", + "label": "s1135/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1135/ct/ct_seg.nii.gz" + }, + { + "image": "s0091/ct.nii.gz", + "pseudo_label": "s0091/ct.nii.gz", + "label": "s0091/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0091/ct/ct_seg.nii.gz" + }, + { + "image": "s0037/ct.nii.gz", + "pseudo_label": "s0037/ct.nii.gz", + "label": "s0037/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0037/ct/ct_seg.nii.gz" + }, + { + "image": "s0832/ct.nii.gz", + "pseudo_label": "s0832/ct.nii.gz", + "label": "s0832/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0832/ct/ct_seg.nii.gz" + }, + { + "image": "s0736/ct.nii.gz", + "pseudo_label": "s0736/ct.nii.gz", + "label": "s0736/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0736/ct/ct_seg.nii.gz" + }, + { + "image": "s0584/ct.nii.gz", + "pseudo_label": "s0584/ct.nii.gz", + "label": "s0584/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0584/ct/ct_seg.nii.gz" + }, + { + "image": "s0109/ct.nii.gz", + "pseudo_label": "s0109/ct.nii.gz", + "label": "s0109/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0109/ct/ct_seg.nii.gz" + }, + { + "image": "s1031/ct.nii.gz", + "pseudo_label": "s1031/ct.nii.gz", + "label": "s1031/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1031/ct/ct_seg.nii.gz" + }, + { + "image": "s1223/ct.nii.gz", + "pseudo_label": "s1223/ct.nii.gz", + "label": "s1223/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1223/ct/ct_seg.nii.gz" + }, + { + "image": "s1050/ct.nii.gz", + "pseudo_label": "s1050/ct.nii.gz", + "label": "s1050/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1050/ct/ct_seg.nii.gz" + }, + { + "image": "s1110/ct.nii.gz", + "pseudo_label": "s1110/ct.nii.gz", + "label": "s1110/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1110/ct/ct_seg.nii.gz" + }, + { + "image": "s1167/ct.nii.gz", + "pseudo_label": "s1167/ct.nii.gz", + "label": "s1167/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1167/ct/ct_seg.nii.gz" + }, + { + "image": "s0227/ct.nii.gz", + "pseudo_label": "s0227/ct.nii.gz", + "label": "s0227/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0227/ct/ct_seg.nii.gz" + }, + { + "image": "s0985/ct.nii.gz", + "pseudo_label": "s0985/ct.nii.gz", + "label": "s0985/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0985/ct/ct_seg.nii.gz" + }, + { + "image": "s1377/ct.nii.gz", + "pseudo_label": "s1377/ct.nii.gz", + "label": "s1377/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1377/ct/ct_seg.nii.gz" + }, + { + "image": "s0250/ct.nii.gz", + "pseudo_label": "s0250/ct.nii.gz", + "label": "s0250/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0250/ct/ct_seg.nii.gz" + }, + { + "image": "s1003/ct.nii.gz", + "pseudo_label": "s1003/ct.nii.gz", + "label": "s1003/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1003/ct/ct_seg.nii.gz" + }, + { + "image": "s0677/ct.nii.gz", + "pseudo_label": "s0677/ct.nii.gz", + "label": "s0677/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0677/ct/ct_seg.nii.gz" + }, + { + "image": "s0286/ct.nii.gz", + "pseudo_label": "s0286/ct.nii.gz", + "label": "s0286/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0286/ct/ct_seg.nii.gz" + }, + { + "image": "s0185/ct.nii.gz", + "pseudo_label": "s0185/ct.nii.gz", + "label": "s0185/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0185/ct/ct_seg.nii.gz" + }, + { + "image": "s0075/ct.nii.gz", + "pseudo_label": "s0075/ct.nii.gz", + "label": "s0075/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0075/ct/ct_seg.nii.gz" + }, + { + "image": "s1107/ct.nii.gz", + "pseudo_label": "s1107/ct.nii.gz", + "label": "s1107/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1107/ct/ct_seg.nii.gz" + }, + { + "image": "s0746/ct.nii.gz", + "pseudo_label": "s0746/ct.nii.gz", + "label": "s0746/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0746/ct/ct_seg.nii.gz" + }, + { + "image": "s1391/ct.nii.gz", + "pseudo_label": "s1391/ct.nii.gz", + "label": "s1391/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1391/ct/ct_seg.nii.gz" + }, + { + "image": "s0950/ct.nii.gz", + "pseudo_label": "s0950/ct.nii.gz", + "label": "s0950/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0950/ct/ct_seg.nii.gz" + }, + { + "image": "s1275/ct.nii.gz", + "pseudo_label": "s1275/ct.nii.gz", + "label": "s1275/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1275/ct/ct_seg.nii.gz" + }, + { + "image": "s1267/ct.nii.gz", + "pseudo_label": "s1267/ct.nii.gz", + "label": "s1267/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1267/ct/ct_seg.nii.gz" + }, + { + "image": "s0834/ct.nii.gz", + "pseudo_label": "s0834/ct.nii.gz", + "label": "s0834/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0834/ct/ct_seg.nii.gz" + }, + { + "image": "s1015/ct.nii.gz", + "pseudo_label": "s1015/ct.nii.gz", + "label": "s1015/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1015/ct/ct_seg.nii.gz" + }, + { + "image": "s0673/ct.nii.gz", + "pseudo_label": "s0673/ct.nii.gz", + "label": "s0673/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0673/ct/ct_seg.nii.gz" + }, + { + "image": "s1075/ct.nii.gz", + "pseudo_label": "s1075/ct.nii.gz", + "label": "s1075/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1075/ct/ct_seg.nii.gz" + }, + { + "image": "s1005/ct.nii.gz", + "pseudo_label": "s1005/ct.nii.gz", + "label": "s1005/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1005/ct/ct_seg.nii.gz" + }, + { + "image": "s0342/ct.nii.gz", + "pseudo_label": "s0342/ct.nii.gz", + "label": "s0342/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0342/ct/ct_seg.nii.gz" + }, + { + "image": "s1329/ct.nii.gz", + "pseudo_label": "s1329/ct.nii.gz", + "label": "s1329/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1329/ct/ct_seg.nii.gz" + }, + { + "image": "s1182/ct.nii.gz", + "pseudo_label": "s1182/ct.nii.gz", + "label": "s1182/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1182/ct/ct_seg.nii.gz" + }, + { + "image": "s1140/ct.nii.gz", + "pseudo_label": "s1140/ct.nii.gz", + "label": "s1140/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1140/ct/ct_seg.nii.gz" + }, + { + "image": "s0443/ct.nii.gz", + "pseudo_label": "s0443/ct.nii.gz", + "label": "s0443/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0443/ct/ct_seg.nii.gz" + }, + { + "image": "s0788/ct.nii.gz", + "pseudo_label": "s0788/ct.nii.gz", + "label": "s0788/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0788/ct/ct_seg.nii.gz" + }, + { + "image": "s1006/ct.nii.gz", + "pseudo_label": "s1006/ct.nii.gz", + "label": "s1006/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1006/ct/ct_seg.nii.gz" + }, + { + "image": "s1421/ct.nii.gz", + "pseudo_label": "s1421/ct.nii.gz", + "label": "s1421/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1421/ct/ct_seg.nii.gz" + }, + { + "image": "s1065/ct.nii.gz", + "pseudo_label": "s1065/ct.nii.gz", + "label": "s1065/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1065/ct/ct_seg.nii.gz" + }, + { + "image": "s0376/ct.nii.gz", + "pseudo_label": "s0376/ct.nii.gz", + "label": "s0376/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0376/ct/ct_seg.nii.gz" + }, + { + "image": "s1268/ct.nii.gz", + "pseudo_label": "s1268/ct.nii.gz", + "label": "s1268/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1268/ct/ct_seg.nii.gz" + }, + { + "image": "s0374/ct.nii.gz", + "pseudo_label": "s0374/ct.nii.gz", + "label": "s0374/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0374/ct/ct_seg.nii.gz" + }, + { + "image": "s0880/ct.nii.gz", + "pseudo_label": "s0880/ct.nii.gz", + "label": "s0880/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0880/ct/ct_seg.nii.gz" + }, + { + "image": "s0061/ct.nii.gz", + "pseudo_label": "s0061/ct.nii.gz", + "label": "s0061/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0061/ct/ct_seg.nii.gz" + }, + { + "image": "s0149/ct.nii.gz", + "pseudo_label": "s0149/ct.nii.gz", + "label": "s0149/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0149/ct/ct_seg.nii.gz" + }, + { + "image": "s0103/ct.nii.gz", + "pseudo_label": "s0103/ct.nii.gz", + "label": "s0103/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0103/ct/ct_seg.nii.gz" + }, + { + "image": "s1242/ct.nii.gz", + "pseudo_label": "s1242/ct.nii.gz", + "label": "s1242/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1242/ct/ct_seg.nii.gz" + }, + { + "image": "s0653/ct.nii.gz", + "pseudo_label": "s0653/ct.nii.gz", + "label": "s0653/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0653/ct/ct_seg.nii.gz" + }, + { + "image": "s0984/ct.nii.gz", + "pseudo_label": "s0984/ct.nii.gz", + "label": "s0984/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0984/ct/ct_seg.nii.gz" + }, + { + "image": "s0911/ct.nii.gz", + "pseudo_label": "s0911/ct.nii.gz", + "label": "s0911/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0911/ct/ct_seg.nii.gz" + }, + { + "image": "s0009/ct.nii.gz", + "pseudo_label": "s0009/ct.nii.gz", + "label": "s0009/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0009/ct/ct_seg.nii.gz" + }, + { + "image": "s0157/ct.nii.gz", + "pseudo_label": "s0157/ct.nii.gz", + "label": "s0157/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0157/ct/ct_seg.nii.gz" + }, + { + "image": "s1222/ct.nii.gz", + "pseudo_label": "s1222/ct.nii.gz", + "label": "s1222/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1222/ct/ct_seg.nii.gz" + }, + { + "image": "s0391/ct.nii.gz", + "pseudo_label": "s0391/ct.nii.gz", + "label": "s0391/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0391/ct/ct_seg.nii.gz" + }, + { + "image": "s1256/ct.nii.gz", + "pseudo_label": "s1256/ct.nii.gz", + "label": "s1256/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1256/ct/ct_seg.nii.gz" + }, + { + "image": "s0643/ct.nii.gz", + "pseudo_label": "s0643/ct.nii.gz", + "label": "s0643/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0643/ct/ct_seg.nii.gz" + }, + { + "image": "s0243/ct.nii.gz", + "pseudo_label": "s0243/ct.nii.gz", + "label": "s0243/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0243/ct/ct_seg.nii.gz" + }, + { + "image": "s1365/ct.nii.gz", + "pseudo_label": "s1365/ct.nii.gz", + "label": "s1365/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1365/ct/ct_seg.nii.gz" + }, + { + "image": "s0213/ct.nii.gz", + "pseudo_label": "s0213/ct.nii.gz", + "label": "s0213/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0213/ct/ct_seg.nii.gz" + }, + { + "image": "s0130/ct.nii.gz", + "pseudo_label": "s0130/ct.nii.gz", + "label": "s0130/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0130/ct/ct_seg.nii.gz" + }, + { + "image": "s1142/ct.nii.gz", + "pseudo_label": "s1142/ct.nii.gz", + "label": "s1142/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1142/ct/ct_seg.nii.gz" + }, + { + "image": "s0997/ct.nii.gz", + "pseudo_label": "s0997/ct.nii.gz", + "label": "s0997/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0997/ct/ct_seg.nii.gz" + }, + { + "image": "s0938/ct.nii.gz", + "pseudo_label": "s0938/ct.nii.gz", + "label": "s0938/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0938/ct/ct_seg.nii.gz" + }, + { + "image": "s1318/ct.nii.gz", + "pseudo_label": "s1318/ct.nii.gz", + "label": "s1318/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1318/ct/ct_seg.nii.gz" + }, + { + "image": "s0481/ct.nii.gz", + "pseudo_label": "s0481/ct.nii.gz", + "label": "s0481/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0481/ct/ct_seg.nii.gz" + }, + { + "image": "s0197/ct.nii.gz", + "pseudo_label": "s0197/ct.nii.gz", + "label": "s0197/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0197/ct/ct_seg.nii.gz" + }, + { + "image": "s0024/ct.nii.gz", + "pseudo_label": "s0024/ct.nii.gz", + "label": "s0024/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0024/ct/ct_seg.nii.gz" + }, + { + "image": "s1314/ct.nii.gz", + "pseudo_label": "s1314/ct.nii.gz", + "label": "s1314/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1314/ct/ct_seg.nii.gz" + }, + { + "image": "s0819/ct.nii.gz", + "pseudo_label": "s0819/ct.nii.gz", + "label": "s0819/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0819/ct/ct_seg.nii.gz" + }, + { + "image": "s1203/ct.nii.gz", + "pseudo_label": "s1203/ct.nii.gz", + "label": "s1203/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1203/ct/ct_seg.nii.gz" + }, + { + "image": "s0426/ct.nii.gz", + "pseudo_label": "s0426/ct.nii.gz", + "label": "s0426/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0426/ct/ct_seg.nii.gz" + }, + { + "image": "s0693/ct.nii.gz", + "pseudo_label": "s0693/ct.nii.gz", + "label": "s0693/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0693/ct/ct_seg.nii.gz" + }, + { + "image": "s0546/ct.nii.gz", + "pseudo_label": "s0546/ct.nii.gz", + "label": "s0546/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0546/ct/ct_seg.nii.gz" + }, + { + "image": "s0652/ct.nii.gz", + "pseudo_label": "s0652/ct.nii.gz", + "label": "s0652/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0652/ct/ct_seg.nii.gz" + }, + { + "image": "s1255/ct.nii.gz", + "pseudo_label": "s1255/ct.nii.gz", + "label": "s1255/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1255/ct/ct_seg.nii.gz" + }, + { + "image": "s0324/ct.nii.gz", + "pseudo_label": "s0324/ct.nii.gz", + "label": "s0324/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0324/ct/ct_seg.nii.gz" + }, + { + "image": "s0518/ct.nii.gz", + "pseudo_label": "s0518/ct.nii.gz", + "label": "s0518/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0518/ct/ct_seg.nii.gz" + }, + { + "image": "s0345/ct.nii.gz", + "pseudo_label": "s0345/ct.nii.gz", + "label": "s0345/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0345/ct/ct_seg.nii.gz" + }, + { + "image": "s0769/ct.nii.gz", + "pseudo_label": "s0769/ct.nii.gz", + "label": "s0769/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0769/ct/ct_seg.nii.gz" + }, + { + "image": "s1322/ct.nii.gz", + "pseudo_label": "s1322/ct.nii.gz", + "label": "s1322/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1322/ct/ct_seg.nii.gz" + }, + { + "image": "s0032/ct.nii.gz", + "pseudo_label": "s0032/ct.nii.gz", + "label": "s0032/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0032/ct/ct_seg.nii.gz" + }, + { + "image": "s0890/ct.nii.gz", + "pseudo_label": "s0890/ct.nii.gz", + "label": "s0890/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0890/ct/ct_seg.nii.gz" + }, + { + "image": "s1134/ct.nii.gz", + "pseudo_label": "s1134/ct.nii.gz", + "label": "s1134/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1134/ct/ct_seg.nii.gz" + }, + { + "image": "s0313/ct.nii.gz", + "pseudo_label": "s0313/ct.nii.gz", + "label": "s0313/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0313/ct/ct_seg.nii.gz" + }, + { + "image": "s0140/ct.nii.gz", + "pseudo_label": "s0140/ct.nii.gz", + "label": "s0140/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0140/ct/ct_seg.nii.gz" + }, + { + "image": "s1086/ct.nii.gz", + "pseudo_label": "s1086/ct.nii.gz", + "label": "s1086/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1086/ct/ct_seg.nii.gz" + }, + { + "image": "s0658/ct.nii.gz", + "pseudo_label": "s0658/ct.nii.gz", + "label": "s0658/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0658/ct/ct_seg.nii.gz" + }, + { + "image": "s0767/ct.nii.gz", + "pseudo_label": "s0767/ct.nii.gz", + "label": "s0767/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0767/ct/ct_seg.nii.gz" + }, + { + "image": "s0480/ct.nii.gz", + "pseudo_label": "s0480/ct.nii.gz", + "label": "s0480/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0480/ct/ct_seg.nii.gz" + }, + { + "image": "s0078/ct.nii.gz", + "pseudo_label": "s0078/ct.nii.gz", + "label": "s0078/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0078/ct/ct_seg.nii.gz" + }, + { + "image": "s0945/ct.nii.gz", + "pseudo_label": "s0945/ct.nii.gz", + "label": "s0945/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0945/ct/ct_seg.nii.gz" + }, + { + "image": "s1028/ct.nii.gz", + "pseudo_label": "s1028/ct.nii.gz", + "label": "s1028/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1028/ct/ct_seg.nii.gz" + }, + { + "image": "s0565/ct.nii.gz", + "pseudo_label": "s0565/ct.nii.gz", + "label": "s0565/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0565/ct/ct_seg.nii.gz" + }, + { + "image": "s0466/ct.nii.gz", + "pseudo_label": "s0466/ct.nii.gz", + "label": "s0466/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0466/ct/ct_seg.nii.gz" + }, + { + "image": "s0842/ct.nii.gz", + "pseudo_label": "s0842/ct.nii.gz", + "label": "s0842/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0842/ct/ct_seg.nii.gz" + }, + { + "image": "s0549/ct.nii.gz", + "pseudo_label": "s0549/ct.nii.gz", + "label": "s0549/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0549/ct/ct_seg.nii.gz" + }, + { + "image": "s0307/ct.nii.gz", + "pseudo_label": "s0307/ct.nii.gz", + "label": "s0307/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0307/ct/ct_seg.nii.gz" + }, + { + "image": "s0612/ct.nii.gz", + "pseudo_label": "s0612/ct.nii.gz", + "label": "s0612/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0612/ct/ct_seg.nii.gz" + }, + { + "image": "s0016/ct.nii.gz", + "pseudo_label": "s0016/ct.nii.gz", + "label": "s0016/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0016/ct/ct_seg.nii.gz" + }, + { + "image": "s0557/ct.nii.gz", + "pseudo_label": "s0557/ct.nii.gz", + "label": "s0557/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0557/ct/ct_seg.nii.gz" + }, + { + "image": "s1111/ct.nii.gz", + "pseudo_label": "s1111/ct.nii.gz", + "label": "s1111/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1111/ct/ct_seg.nii.gz" + }, + { + "image": "s1077/ct.nii.gz", + "pseudo_label": "s1077/ct.nii.gz", + "label": "s1077/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1077/ct/ct_seg.nii.gz" + }, + { + "image": "s0204/ct.nii.gz", + "pseudo_label": "s0204/ct.nii.gz", + "label": "s0204/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0204/ct/ct_seg.nii.gz" + }, + { + "image": "s1333/ct.nii.gz", + "pseudo_label": "s1333/ct.nii.gz", + "label": "s1333/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1333/ct/ct_seg.nii.gz" + }, + { + "image": "s0829/ct.nii.gz", + "pseudo_label": "s0829/ct.nii.gz", + "label": "s0829/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0829/ct/ct_seg.nii.gz" + }, + { + "image": "s0291/ct.nii.gz", + "pseudo_label": "s0291/ct.nii.gz", + "label": "s0291/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0291/ct/ct_seg.nii.gz" + }, + { + "image": "s1079/ct.nii.gz", + "pseudo_label": "s1079/ct.nii.gz", + "label": "s1079/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1079/ct/ct_seg.nii.gz" + }, + { + "image": "s0977/ct.nii.gz", + "pseudo_label": "s0977/ct.nii.gz", + "label": "s0977/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0977/ct/ct_seg.nii.gz" + }, + { + "image": "s0587/ct.nii.gz", + "pseudo_label": "s0587/ct.nii.gz", + "label": "s0587/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0587/ct/ct_seg.nii.gz" + }, + { + "image": "s0737/ct.nii.gz", + "pseudo_label": "s0737/ct.nii.gz", + "label": "s0737/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0737/ct/ct_seg.nii.gz" + }, + { + "image": "s1089/ct.nii.gz", + "pseudo_label": "s1089/ct.nii.gz", + "label": "s1089/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1089/ct/ct_seg.nii.gz" + }, + { + "image": "s1228/ct.nii.gz", + "pseudo_label": "s1228/ct.nii.gz", + "label": "s1228/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1228/ct/ct_seg.nii.gz" + }, + { + "image": "s0574/ct.nii.gz", + "pseudo_label": "s0574/ct.nii.gz", + "label": "s0574/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0574/ct/ct_seg.nii.gz" + }, + { + "image": "s1023/ct.nii.gz", + "pseudo_label": "s1023/ct.nii.gz", + "label": "s1023/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1023/ct/ct_seg.nii.gz" + }, + { + "image": "s0545/ct.nii.gz", + "pseudo_label": "s0545/ct.nii.gz", + "label": "s0545/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0545/ct/ct_seg.nii.gz" + }, + { + "image": "s1026/ct.nii.gz", + "pseudo_label": "s1026/ct.nii.gz", + "label": "s1026/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1026/ct/ct_seg.nii.gz" + }, + { + "image": "s0086/ct.nii.gz", + "pseudo_label": "s0086/ct.nii.gz", + "label": "s0086/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0086/ct/ct_seg.nii.gz" + }, + { + "image": "s0889/ct.nii.gz", + "pseudo_label": "s0889/ct.nii.gz", + "label": "s0889/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0889/ct/ct_seg.nii.gz" + }, + { + "image": "s1221/ct.nii.gz", + "pseudo_label": "s1221/ct.nii.gz", + "label": "s1221/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1221/ct/ct_seg.nii.gz" + }, + { + "image": "s0252/ct.nii.gz", + "pseudo_label": "s0252/ct.nii.gz", + "label": "s0252/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0252/ct/ct_seg.nii.gz" + }, + { + "image": "s0181/ct.nii.gz", + "pseudo_label": "s0181/ct.nii.gz", + "label": "s0181/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0181/ct/ct_seg.nii.gz" + }, + { + "image": "s0493/ct.nii.gz", + "pseudo_label": "s0493/ct.nii.gz", + "label": "s0493/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0493/ct/ct_seg.nii.gz" + }, + { + "image": "s1258/ct.nii.gz", + "pseudo_label": "s1258/ct.nii.gz", + "label": "s1258/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1258/ct/ct_seg.nii.gz" + }, + { + "image": "s0777/ct.nii.gz", + "pseudo_label": "s0777/ct.nii.gz", + "label": "s0777/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0777/ct/ct_seg.nii.gz" + }, + { + "image": "s0843/ct.nii.gz", + "pseudo_label": "s0843/ct.nii.gz", + "label": "s0843/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0843/ct/ct_seg.nii.gz" + }, + { + "image": "s1325/ct.nii.gz", + "pseudo_label": "s1325/ct.nii.gz", + "label": "s1325/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1325/ct/ct_seg.nii.gz" + }, + { + "image": "s0645/ct.nii.gz", + "pseudo_label": "s0645/ct.nii.gz", + "label": "s0645/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0645/ct/ct_seg.nii.gz" + }, + { + "image": "s1279/ct.nii.gz", + "pseudo_label": "s1279/ct.nii.gz", + "label": "s1279/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1279/ct/ct_seg.nii.gz" + }, + { + "image": "s0987/ct.nii.gz", + "pseudo_label": "s0987/ct.nii.gz", + "label": "s0987/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0987/ct/ct_seg.nii.gz" + }, + { + "image": "s0189/ct.nii.gz", + "pseudo_label": "s0189/ct.nii.gz", + "label": "s0189/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0189/ct/ct_seg.nii.gz" + }, + { + "image": "s0698/ct.nii.gz", + "pseudo_label": "s0698/ct.nii.gz", + "label": "s0698/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0698/ct/ct_seg.nii.gz" + }, + { + "image": "s0505/ct.nii.gz", + "pseudo_label": "s0505/ct.nii.gz", + "label": "s0505/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0505/ct/ct_seg.nii.gz" + }, + { + "image": "s0146/ct.nii.gz", + "pseudo_label": "s0146/ct.nii.gz", + "label": "s0146/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0146/ct/ct_seg.nii.gz" + }, + { + "image": "s1271/ct.nii.gz", + "pseudo_label": "s1271/ct.nii.gz", + "label": "s1271/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1271/ct/ct_seg.nii.gz" + }, + { + "image": "s1119/ct.nii.gz", + "pseudo_label": "s1119/ct.nii.gz", + "label": "s1119/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1119/ct/ct_seg.nii.gz" + }, + { + "image": "s0490/ct.nii.gz", + "pseudo_label": "s0490/ct.nii.gz", + "label": "s0490/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0490/ct/ct_seg.nii.gz" + }, + { + "image": "s0050/ct.nii.gz", + "pseudo_label": "s0050/ct.nii.gz", + "label": "s0050/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0050/ct/ct_seg.nii.gz" + }, + { + "image": "s0462/ct.nii.gz", + "pseudo_label": "s0462/ct.nii.gz", + "label": "s0462/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0462/ct/ct_seg.nii.gz" + }, + { + "image": "s1020/ct.nii.gz", + "pseudo_label": "s1020/ct.nii.gz", + "label": "s1020/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1020/ct/ct_seg.nii.gz" + }, + { + "image": "s0980/ct.nii.gz", + "pseudo_label": "s0980/ct.nii.gz", + "label": "s0980/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0980/ct/ct_seg.nii.gz" + }, + { + "image": "s0869/ct.nii.gz", + "pseudo_label": "s0869/ct.nii.gz", + "label": "s0869/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0869/ct/ct_seg.nii.gz" + }, + { + "image": "s0488/ct.nii.gz", + "pseudo_label": "s0488/ct.nii.gz", + "label": "s0488/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0488/ct/ct_seg.nii.gz" + }, + { + "image": "s0752/ct.nii.gz", + "pseudo_label": "s0752/ct.nii.gz", + "label": "s0752/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0752/ct/ct_seg.nii.gz" + }, + { + "image": "s0288/ct.nii.gz", + "pseudo_label": "s0288/ct.nii.gz", + "label": "s0288/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0288/ct/ct_seg.nii.gz" + }, + { + "image": "s1082/ct.nii.gz", + "pseudo_label": "s1082/ct.nii.gz", + "label": "s1082/seg.nii.gz", + "fold": 2 + }, + { + "image": "s0256/ct.nii.gz", + "pseudo_label": "s0256/ct.nii.gz", + "label": "s0256/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0256/ct/ct_seg.nii.gz" + }, + { + "image": "s0962/ct.nii.gz", + "pseudo_label": "s0962/ct.nii.gz", + "label": "s0962/seg.nii.gz", + "fold": 2, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0962/ct/ct_seg.nii.gz" + }, + { + "image": "s0133/ct.nii.gz", + "pseudo_label": "s0133/ct.nii.gz", + "label": "s0133/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0133/ct/ct_seg.nii.gz" + }, + { + "image": "s1060/ct.nii.gz", + "pseudo_label": "s1060/ct.nii.gz", + "label": "s1060/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1060/ct/ct_seg.nii.gz" + }, + { + "image": "s0261/ct.nii.gz", + "pseudo_label": "s0261/ct.nii.gz", + "label": "s0261/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0261/ct/ct_seg.nii.gz" + }, + { + "image": "s0602/ct.nii.gz", + "pseudo_label": "s0602/ct.nii.gz", + "label": "s0602/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0602/ct/ct_seg.nii.gz" + }, + { + "image": "s0359/ct.nii.gz", + "pseudo_label": "s0359/ct.nii.gz", + "label": "s0359/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0359/ct/ct_seg.nii.gz" + }, + { + "image": "s0814/ct.nii.gz", + "pseudo_label": "s0814/ct.nii.gz", + "label": "s0814/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0814/ct/ct_seg.nii.gz" + }, + { + "image": "s1034/ct.nii.gz", + "pseudo_label": "s1034/ct.nii.gz", + "label": "s1034/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1034/ct/ct_seg.nii.gz" + }, + { + "image": "s0410/ct.nii.gz", + "pseudo_label": "s0410/ct.nii.gz", + "label": "s0410/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0410/ct/ct_seg.nii.gz" + }, + { + "image": "s1357/ct.nii.gz", + "pseudo_label": "s1357/ct.nii.gz", + "label": "s1357/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1357/ct/ct_seg.nii.gz" + }, + { + "image": "s1063/ct.nii.gz", + "pseudo_label": "s1063/ct.nii.gz", + "label": "s1063/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1063/ct/ct_seg.nii.gz" + }, + { + "image": "s0201/ct.nii.gz", + "pseudo_label": "s0201/ct.nii.gz", + "label": "s0201/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0201/ct/ct_seg.nii.gz" + }, + { + "image": "s0672/ct.nii.gz", + "pseudo_label": "s0672/ct.nii.gz", + "label": "s0672/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0672/ct/ct_seg.nii.gz" + }, + { + "image": "s1296/ct.nii.gz", + "pseudo_label": "s1296/ct.nii.gz", + "label": "s1296/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1296/ct/ct_seg.nii.gz" + }, + { + "image": "s1052/ct.nii.gz", + "pseudo_label": "s1052/ct.nii.gz", + "label": "s1052/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1052/ct/ct_seg.nii.gz" + }, + { + "image": "s0038/ct.nii.gz", + "pseudo_label": "s0038/ct.nii.gz", + "label": "s0038/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0038/ct/ct_seg.nii.gz" + }, + { + "image": "s0036/ct.nii.gz", + "pseudo_label": "s0036/ct.nii.gz", + "label": "s0036/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0036/ct/ct_seg.nii.gz" + }, + { + "image": "s0525/ct.nii.gz", + "pseudo_label": "s0525/ct.nii.gz", + "label": "s0525/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0525/ct/ct_seg.nii.gz" + }, + { + "image": "s1262/ct.nii.gz", + "pseudo_label": "s1262/ct.nii.gz", + "label": "s1262/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1262/ct/ct_seg.nii.gz" + }, + { + "image": "s1290/ct.nii.gz", + "pseudo_label": "s1290/ct.nii.gz", + "label": "s1290/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1290/ct/ct_seg.nii.gz" + }, + { + "image": "s1045/ct.nii.gz", + "pseudo_label": "s1045/ct.nii.gz", + "label": "s1045/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1045/ct/ct_seg.nii.gz" + }, + { + "image": "s1153/ct.nii.gz", + "pseudo_label": "s1153/ct.nii.gz", + "label": "s1153/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1153/ct/ct_seg.nii.gz" + }, + { + "image": "s0719/ct.nii.gz", + "pseudo_label": "s0719/ct.nii.gz", + "label": "s0719/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0719/ct/ct_seg.nii.gz" + }, + { + "image": "s1105/ct.nii.gz", + "pseudo_label": "s1105/ct.nii.gz", + "label": "s1105/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1105/ct/ct_seg.nii.gz" + }, + { + "image": "s1340/ct.nii.gz", + "pseudo_label": "s1340/ct.nii.gz", + "label": "s1340/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1340/ct/ct_seg.nii.gz" + }, + { + "image": "s0927/ct.nii.gz", + "pseudo_label": "s0927/ct.nii.gz", + "label": "s0927/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0927/ct/ct_seg.nii.gz" + }, + { + "image": "s0463/ct.nii.gz", + "pseudo_label": "s0463/ct.nii.gz", + "label": "s0463/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0463/ct/ct_seg.nii.gz" + }, + { + "image": "s0021/ct.nii.gz", + "pseudo_label": "s0021/ct.nii.gz", + "label": "s0021/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0021/ct/ct_seg.nii.gz" + }, + { + "image": "s0056/ct.nii.gz", + "pseudo_label": "s0056/ct.nii.gz", + "label": "s0056/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0056/ct/ct_seg.nii.gz" + }, + { + "image": "s0659/ct.nii.gz", + "pseudo_label": "s0659/ct.nii.gz", + "label": "s0659/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0659/ct/ct_seg.nii.gz" + }, + { + "image": "s0904/ct.nii.gz", + "pseudo_label": "s0904/ct.nii.gz", + "label": "s0904/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0904/ct/ct_seg.nii.gz" + }, + { + "image": "s1170/ct.nii.gz", + "pseudo_label": "s1170/ct.nii.gz", + "label": "s1170/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1170/ct/ct_seg.nii.gz" + }, + { + "image": "s1226/ct.nii.gz", + "pseudo_label": "s1226/ct.nii.gz", + "label": "s1226/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1226/ct/ct_seg.nii.gz" + }, + { + "image": "s1220/ct.nii.gz", + "pseudo_label": "s1220/ct.nii.gz", + "label": "s1220/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1220/ct/ct_seg.nii.gz" + }, + { + "image": "s1419/ct.nii.gz", + "pseudo_label": "s1419/ct.nii.gz", + "label": "s1419/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1419/ct/ct_seg.nii.gz" + }, + { + "image": "s1172/ct.nii.gz", + "pseudo_label": "s1172/ct.nii.gz", + "label": "s1172/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1172/ct/ct_seg.nii.gz" + }, + { + "image": "s1309/ct.nii.gz", + "pseudo_label": "s1309/ct.nii.gz", + "label": "s1309/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1309/ct/ct_seg.nii.gz" + }, + { + "image": "s1273/ct.nii.gz", + "pseudo_label": "s1273/ct.nii.gz", + "label": "s1273/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1273/ct/ct_seg.nii.gz" + }, + { + "image": "s1294/ct.nii.gz", + "pseudo_label": "s1294/ct.nii.gz", + "label": "s1294/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1294/ct/ct_seg.nii.gz" + }, + { + "image": "s0139/ct.nii.gz", + "pseudo_label": "s0139/ct.nii.gz", + "label": "s0139/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0139/ct/ct_seg.nii.gz" + }, + { + "image": "s0661/ct.nii.gz", + "pseudo_label": "s0661/ct.nii.gz", + "label": "s0661/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0661/ct/ct_seg.nii.gz" + }, + { + "image": "s0040/ct.nii.gz", + "pseudo_label": "s0040/ct.nii.gz", + "label": "s0040/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0040/ct/ct_seg.nii.gz" + }, + { + "image": "s1239/ct.nii.gz", + "pseudo_label": "s1239/ct.nii.gz", + "label": "s1239/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1239/ct/ct_seg.nii.gz" + }, + { + "image": "s0152/ct.nii.gz", + "pseudo_label": "s0152/ct.nii.gz", + "label": "s0152/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0152/ct/ct_seg.nii.gz" + }, + { + "image": "s0370/ct.nii.gz", + "pseudo_label": "s0370/ct.nii.gz", + "label": "s0370/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0370/ct/ct_seg.nii.gz" + }, + { + "image": "s0883/ct.nii.gz", + "pseudo_label": "s0883/ct.nii.gz", + "label": "s0883/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0883/ct/ct_seg.nii.gz" + }, + { + "image": "s0670/ct.nii.gz", + "pseudo_label": "s0670/ct.nii.gz", + "label": "s0670/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0670/ct/ct_seg.nii.gz" + }, + { + "image": "s0294/ct.nii.gz", + "pseudo_label": "s0294/ct.nii.gz", + "label": "s0294/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0294/ct/ct_seg.nii.gz" + }, + { + "image": "s0081/ct.nii.gz", + "pseudo_label": "s0081/ct.nii.gz", + "label": "s0081/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0081/ct/ct_seg.nii.gz" + }, + { + "image": "s0551/ct.nii.gz", + "pseudo_label": "s0551/ct.nii.gz", + "label": "s0551/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0551/ct/ct_seg.nii.gz" + }, + { + "image": "s0089/ct.nii.gz", + "pseudo_label": "s0089/ct.nii.gz", + "label": "s0089/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0089/ct/ct_seg.nii.gz" + }, + { + "image": "s0393/ct.nii.gz", + "pseudo_label": "s0393/ct.nii.gz", + "label": "s0393/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0393/ct/ct_seg.nii.gz" + }, + { + "image": "s0566/ct.nii.gz", + "pseudo_label": "s0566/ct.nii.gz", + "label": "s0566/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0566/ct/ct_seg.nii.gz" + }, + { + "image": "s1178/ct.nii.gz", + "pseudo_label": "s1178/ct.nii.gz", + "label": "s1178/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1178/ct/ct_seg.nii.gz" + }, + { + "image": "s0456/ct.nii.gz", + "pseudo_label": "s0456/ct.nii.gz", + "label": "s0456/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0456/ct/ct_seg.nii.gz" + }, + { + "image": "s0240/ct.nii.gz", + "pseudo_label": "s0240/ct.nii.gz", + "label": "s0240/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0240/ct/ct_seg.nii.gz" + }, + { + "image": "s0300/ct.nii.gz", + "pseudo_label": "s0300/ct.nii.gz", + "label": "s0300/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0300/ct/ct_seg.nii.gz" + }, + { + "image": "s0306/ct.nii.gz", + "pseudo_label": "s0306/ct.nii.gz", + "label": "s0306/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0306/ct/ct_seg.nii.gz" + }, + { + "image": "s1047/ct.nii.gz", + "pseudo_label": "s1047/ct.nii.gz", + "label": "s1047/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1047/ct/ct_seg.nii.gz" + }, + { + "image": "s0813/ct.nii.gz", + "pseudo_label": "s0813/ct.nii.gz", + "label": "s0813/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0813/ct/ct_seg.nii.gz" + }, + { + "image": "s0111/ct.nii.gz", + "pseudo_label": "s0111/ct.nii.gz", + "label": "s0111/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0111/ct/ct_seg.nii.gz" + }, + { + "image": "s0358/ct.nii.gz", + "pseudo_label": "s0358/ct.nii.gz", + "label": "s0358/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0358/ct/ct_seg.nii.gz" + }, + { + "image": "s0590/ct.nii.gz", + "pseudo_label": "s0590/ct.nii.gz", + "label": "s0590/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0590/ct/ct_seg.nii.gz" + }, + { + "image": "s0096/ct.nii.gz", + "pseudo_label": "s0096/ct.nii.gz", + "label": "s0096/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0096/ct/ct_seg.nii.gz" + }, + { + "image": "s1017/ct.nii.gz", + "pseudo_label": "s1017/ct.nii.gz", + "label": "s1017/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1017/ct/ct_seg.nii.gz" + }, + { + "image": "s0617/ct.nii.gz", + "pseudo_label": "s0617/ct.nii.gz", + "label": "s0617/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0617/ct/ct_seg.nii.gz" + }, + { + "image": "s0690/ct.nii.gz", + "pseudo_label": "s0690/ct.nii.gz", + "label": "s0690/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0690/ct/ct_seg.nii.gz" + }, + { + "image": "s0542/ct.nii.gz", + "pseudo_label": "s0542/ct.nii.gz", + "label": "s0542/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0542/ct/ct_seg.nii.gz" + }, + { + "image": "s0502/ct.nii.gz", + "pseudo_label": "s0502/ct.nii.gz", + "label": "s0502/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0502/ct/ct_seg.nii.gz" + }, + { + "image": "s0012/ct.nii.gz", + "pseudo_label": "s0012/ct.nii.gz", + "label": "s0012/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0012/ct/ct_seg.nii.gz" + }, + { + "image": "s0331/ct.nii.gz", + "pseudo_label": "s0331/ct.nii.gz", + "label": "s0331/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0331/ct/ct_seg.nii.gz" + }, + { + "image": "s0312/ct.nii.gz", + "pseudo_label": "s0312/ct.nii.gz", + "label": "s0312/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0312/ct/ct_seg.nii.gz" + }, + { + "image": "s1123/ct.nii.gz", + "pseudo_label": "s1123/ct.nii.gz", + "label": "s1123/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1123/ct/ct_seg.nii.gz" + }, + { + "image": "s1127/ct.nii.gz", + "pseudo_label": "s1127/ct.nii.gz", + "label": "s1127/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1127/ct/ct_seg.nii.gz" + }, + { + "image": "s0413/ct.nii.gz", + "pseudo_label": "s0413/ct.nii.gz", + "label": "s0413/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0413/ct/ct_seg.nii.gz" + }, + { + "image": "s0236/ct.nii.gz", + "pseudo_label": "s0236/ct.nii.gz", + "label": "s0236/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0236/ct/ct_seg.nii.gz" + }, + { + "image": "s0112/ct.nii.gz", + "pseudo_label": "s0112/ct.nii.gz", + "label": "s0112/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0112/ct/ct_seg.nii.gz" + }, + { + "image": "s0588/ct.nii.gz", + "pseudo_label": "s0588/ct.nii.gz", + "label": "s0588/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0588/ct/ct_seg.nii.gz" + }, + { + "image": "s0073/ct.nii.gz", + "pseudo_label": "s0073/ct.nii.gz", + "label": "s0073/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0073/ct/ct_seg.nii.gz" + }, + { + "image": "s0336/ct.nii.gz", + "pseudo_label": "s0336/ct.nii.gz", + "label": "s0336/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0336/ct/ct_seg.nii.gz" + }, + { + "image": "s0946/ct.nii.gz", + "pseudo_label": "s0946/ct.nii.gz", + "label": "s0946/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0946/ct/ct_seg.nii.gz" + }, + { + "image": "s1352/ct.nii.gz", + "pseudo_label": "s1352/ct.nii.gz", + "label": "s1352/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1352/ct/ct_seg.nii.gz" + }, + { + "image": "s0747/ct.nii.gz", + "pseudo_label": "s0747/ct.nii.gz", + "label": "s0747/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0747/ct/ct_seg.nii.gz" + }, + { + "image": "s1112/ct.nii.gz", + "pseudo_label": "s1112/ct.nii.gz", + "label": "s1112/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1112/ct/ct_seg.nii.gz" + }, + { + "image": "s0165/ct.nii.gz", + "pseudo_label": "s0165/ct.nii.gz", + "label": "s0165/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0165/ct/ct_seg.nii.gz" + }, + { + "image": "s0699/ct.nii.gz", + "pseudo_label": "s0699/ct.nii.gz", + "label": "s0699/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0699/ct/ct_seg.nii.gz" + }, + { + "image": "s0335/ct.nii.gz", + "pseudo_label": "s0335/ct.nii.gz", + "label": "s0335/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0335/ct/ct_seg.nii.gz" + }, + { + "image": "s1319/ct.nii.gz", + "pseudo_label": "s1319/ct.nii.gz", + "label": "s1319/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1319/ct/ct_seg.nii.gz" + }, + { + "image": "s1300/ct.nii.gz", + "pseudo_label": "s1300/ct.nii.gz", + "label": "s1300/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1300/ct/ct_seg.nii.gz" + }, + { + "image": "s0592/ct.nii.gz", + "pseudo_label": "s0592/ct.nii.gz", + "label": "s0592/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0592/ct/ct_seg.nii.gz" + }, + { + "image": "s0781/ct.nii.gz", + "pseudo_label": "s0781/ct.nii.gz", + "label": "s0781/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0781/ct/ct_seg.nii.gz" + }, + { + "image": "s0561/ct.nii.gz", + "pseudo_label": "s0561/ct.nii.gz", + "label": "s0561/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0561/ct/ct_seg.nii.gz" + }, + { + "image": "s0076/ct.nii.gz", + "pseudo_label": "s0076/ct.nii.gz", + "label": "s0076/seg.nii.gz", + "fold": 3 + }, + { + "image": "s0531/ct.nii.gz", + "pseudo_label": "s0531/ct.nii.gz", + "label": "s0531/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0531/ct/ct_seg.nii.gz" + }, + { + "image": "s0396/ct.nii.gz", + "pseudo_label": "s0396/ct.nii.gz", + "label": "s0396/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0396/ct/ct_seg.nii.gz" + }, + { + "image": "s0221/ct.nii.gz", + "pseudo_label": "s0221/ct.nii.gz", + "label": "s0221/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0221/ct/ct_seg.nii.gz" + }, + { + "image": "s0043/ct.nii.gz", + "pseudo_label": "s0043/ct.nii.gz", + "label": "s0043/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0043/ct/ct_seg.nii.gz" + }, + { + "image": "s1363/ct.nii.gz", + "pseudo_label": "s1363/ct.nii.gz", + "label": "s1363/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1363/ct/ct_seg.nii.gz" + }, + { + "image": "s1387/ct.nii.gz", + "pseudo_label": "s1387/ct.nii.gz", + "label": "s1387/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1387/ct/ct_seg.nii.gz" + }, + { + "image": "s0154/ct.nii.gz", + "pseudo_label": "s0154/ct.nii.gz", + "label": "s0154/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0154/ct/ct_seg.nii.gz" + }, + { + "image": "s1143/ct.nii.gz", + "pseudo_label": "s1143/ct.nii.gz", + "label": "s1143/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1143/ct/ct_seg.nii.gz" + }, + { + "image": "s0787/ct.nii.gz", + "pseudo_label": "s0787/ct.nii.gz", + "label": "s0787/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0787/ct/ct_seg.nii.gz" + }, + { + "image": "s0394/ct.nii.gz", + "pseudo_label": "s0394/ct.nii.gz", + "label": "s0394/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0394/ct/ct_seg.nii.gz" + }, + { + "image": "s0666/ct.nii.gz", + "pseudo_label": "s0666/ct.nii.gz", + "label": "s0666/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0666/ct/ct_seg.nii.gz" + }, + { + "image": "s0712/ct.nii.gz", + "pseudo_label": "s0712/ct.nii.gz", + "label": "s0712/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0712/ct/ct_seg.nii.gz" + }, + { + "image": "s0120/ct.nii.gz", + "pseudo_label": "s0120/ct.nii.gz", + "label": "s0120/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0120/ct/ct_seg.nii.gz" + }, + { + "image": "s0972/ct.nii.gz", + "pseudo_label": "s0972/ct.nii.gz", + "label": "s0972/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0972/ct/ct_seg.nii.gz" + }, + { + "image": "s0595/ct.nii.gz", + "pseudo_label": "s0595/ct.nii.gz", + "label": "s0595/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0595/ct/ct_seg.nii.gz" + }, + { + "image": "s1014/ct.nii.gz", + "pseudo_label": "s1014/ct.nii.gz", + "label": "s1014/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1014/ct/ct_seg.nii.gz" + }, + { + "image": "s1371/ct.nii.gz", + "pseudo_label": "s1371/ct.nii.gz", + "label": "s1371/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1371/ct/ct_seg.nii.gz" + }, + { + "image": "s0981/ct.nii.gz", + "pseudo_label": "s0981/ct.nii.gz", + "label": "s0981/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0981/ct/ct_seg.nii.gz" + }, + { + "image": "s0885/ct.nii.gz", + "pseudo_label": "s0885/ct.nii.gz", + "label": "s0885/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0885/ct/ct_seg.nii.gz" + }, + { + "image": "s0740/ct.nii.gz", + "pseudo_label": "s0740/ct.nii.gz", + "label": "s0740/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0740/ct/ct_seg.nii.gz" + }, + { + "image": "s0364/ct.nii.gz", + "pseudo_label": "s0364/ct.nii.gz", + "label": "s0364/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0364/ct/ct_seg.nii.gz" + }, + { + "image": "s0901/ct.nii.gz", + "pseudo_label": "s0901/ct.nii.gz", + "label": "s0901/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0901/ct/ct_seg.nii.gz" + }, + { + "image": "s0328/ct.nii.gz", + "pseudo_label": "s0328/ct.nii.gz", + "label": "s0328/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0328/ct/ct_seg.nii.gz" + }, + { + "image": "s1343/ct.nii.gz", + "pseudo_label": "s1343/ct.nii.gz", + "label": "s1343/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1343/ct/ct_seg.nii.gz" + }, + { + "image": "s0910/ct.nii.gz", + "pseudo_label": "s0910/ct.nii.gz", + "label": "s0910/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0910/ct/ct_seg.nii.gz" + }, + { + "image": "s0514/ct.nii.gz", + "pseudo_label": "s0514/ct.nii.gz", + "label": "s0514/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0514/ct/ct_seg.nii.gz" + }, + { + "image": "s0447/ct.nii.gz", + "pseudo_label": "s0447/ct.nii.gz", + "label": "s0447/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0447/ct/ct_seg.nii.gz" + }, + { + "image": "s1297/ct.nii.gz", + "pseudo_label": "s1297/ct.nii.gz", + "label": "s1297/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1297/ct/ct_seg.nii.gz" + }, + { + "image": "s0909/ct.nii.gz", + "pseudo_label": "s0909/ct.nii.gz", + "label": "s0909/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0909/ct/ct_seg.nii.gz" + }, + { + "image": "s0420/ct.nii.gz", + "pseudo_label": "s0420/ct.nii.gz", + "label": "s0420/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0420/ct/ct_seg.nii.gz" + }, + { + "image": "s1088/ct.nii.gz", + "pseudo_label": "s1088/ct.nii.gz", + "label": "s1088/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1088/ct/ct_seg.nii.gz" + }, + { + "image": "s0509/ct.nii.gz", + "pseudo_label": "s0509/ct.nii.gz", + "label": "s0509/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0509/ct/ct_seg.nii.gz" + }, + { + "image": "s0806/ct.nii.gz", + "pseudo_label": "s0806/ct.nii.gz", + "label": "s0806/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0806/ct/ct_seg.nii.gz" + }, + { + "image": "s0440/ct.nii.gz", + "pseudo_label": "s0440/ct.nii.gz", + "label": "s0440/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0440/ct/ct_seg.nii.gz" + }, + { + "image": "s0771/ct.nii.gz", + "pseudo_label": "s0771/ct.nii.gz", + "label": "s0771/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0771/ct/ct_seg.nii.gz" + }, + { + "image": "s0390/ct.nii.gz", + "pseudo_label": "s0390/ct.nii.gz", + "label": "s0390/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0390/ct/ct_seg.nii.gz" + }, + { + "image": "s0807/ct.nii.gz", + "pseudo_label": "s0807/ct.nii.gz", + "label": "s0807/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0807/ct/ct_seg.nii.gz" + }, + { + "image": "s0242/ct.nii.gz", + "pseudo_label": "s0242/ct.nii.gz", + "label": "s0242/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0242/ct/ct_seg.nii.gz" + }, + { + "image": "s1315/ct.nii.gz", + "pseudo_label": "s1315/ct.nii.gz", + "label": "s1315/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1315/ct/ct_seg.nii.gz" + }, + { + "image": "s0544/ct.nii.gz", + "pseudo_label": "s0544/ct.nii.gz", + "label": "s0544/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0544/ct/ct_seg.nii.gz" + }, + { + "image": "s0106/ct.nii.gz", + "pseudo_label": "s0106/ct.nii.gz", + "label": "s0106/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0106/ct/ct_seg.nii.gz" + }, + { + "image": "s0516/ct.nii.gz", + "pseudo_label": "s0516/ct.nii.gz", + "label": "s0516/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0516/ct/ct_seg.nii.gz" + }, + { + "image": "s0403/ct.nii.gz", + "pseudo_label": "s0403/ct.nii.gz", + "label": "s0403/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0403/ct/ct_seg.nii.gz" + }, + { + "image": "s0497/ct.nii.gz", + "pseudo_label": "s0497/ct.nii.gz", + "label": "s0497/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0497/ct/ct_seg.nii.gz" + }, + { + "image": "s0662/ct.nii.gz", + "pseudo_label": "s0662/ct.nii.gz", + "label": "s0662/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0662/ct/ct_seg.nii.gz" + }, + { + "image": "s1312/ct.nii.gz", + "pseudo_label": "s1312/ct.nii.gz", + "label": "s1312/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1312/ct/ct_seg.nii.gz" + }, + { + "image": "s0646/ct.nii.gz", + "pseudo_label": "s0646/ct.nii.gz", + "label": "s0646/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0646/ct/ct_seg.nii.gz" + }, + { + "image": "s0295/ct.nii.gz", + "pseudo_label": "s0295/ct.nii.gz", + "label": "s0295/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0295/ct/ct_seg.nii.gz" + }, + { + "image": "s1400/ct.nii.gz", + "pseudo_label": "s1400/ct.nii.gz", + "label": "s1400/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1400/ct/ct_seg.nii.gz" + }, + { + "image": "s1235/ct.nii.gz", + "pseudo_label": "s1235/ct.nii.gz", + "label": "s1235/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1235/ct/ct_seg.nii.gz" + }, + { + "image": "s0963/ct.nii.gz", + "pseudo_label": "s0963/ct.nii.gz", + "label": "s0963/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0963/ct/ct_seg.nii.gz" + }, + { + "image": "s1238/ct.nii.gz", + "pseudo_label": "s1238/ct.nii.gz", + "label": "s1238/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1238/ct/ct_seg.nii.gz" + }, + { + "image": "s0238/ct.nii.gz", + "pseudo_label": "s0238/ct.nii.gz", + "label": "s0238/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0238/ct/ct_seg.nii.gz" + }, + { + "image": "s0006/ct.nii.gz", + "pseudo_label": "s0006/ct.nii.gz", + "label": "s0006/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0006/ct/ct_seg.nii.gz" + }, + { + "image": "s0327/ct.nii.gz", + "pseudo_label": "s0327/ct.nii.gz", + "label": "s0327/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0327/ct/ct_seg.nii.gz" + }, + { + "image": "s0539/ct.nii.gz", + "pseudo_label": "s0539/ct.nii.gz", + "label": "s0539/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0539/ct/ct_seg.nii.gz" + }, + { + "image": "s0855/ct.nii.gz", + "pseudo_label": "s0855/ct.nii.gz", + "label": "s0855/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0855/ct/ct_seg.nii.gz" + }, + { + "image": "s1174/ct.nii.gz", + "pseudo_label": "s1174/ct.nii.gz", + "label": "s1174/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1174/ct/ct_seg.nii.gz" + }, + { + "image": "s1130/ct.nii.gz", + "pseudo_label": "s1130/ct.nii.gz", + "label": "s1130/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1130/ct/ct_seg.nii.gz" + }, + { + "image": "s0878/ct.nii.gz", + "pseudo_label": "s0878/ct.nii.gz", + "label": "s0878/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0878/ct/ct_seg.nii.gz" + }, + { + "image": "s1185/ct.nii.gz", + "pseudo_label": "s1185/ct.nii.gz", + "label": "s1185/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1185/ct/ct_seg.nii.gz" + }, + { + "image": "s0830/ct.nii.gz", + "pseudo_label": "s0830/ct.nii.gz", + "label": "s0830/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0830/ct/ct_seg.nii.gz" + }, + { + "image": "s0720/ct.nii.gz", + "pseudo_label": "s0720/ct.nii.gz", + "label": "s0720/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0720/ct/ct_seg.nii.gz" + }, + { + "image": "s0092/ct.nii.gz", + "pseudo_label": "s0092/ct.nii.gz", + "label": "s0092/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0092/ct/ct_seg.nii.gz" + }, + { + "image": "s1058/ct.nii.gz", + "pseudo_label": "s1058/ct.nii.gz", + "label": "s1058/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1058/ct/ct_seg.nii.gz" + }, + { + "image": "s1083/ct.nii.gz", + "pseudo_label": "s1083/ct.nii.gz", + "label": "s1083/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1083/ct/ct_seg.nii.gz" + }, + { + "image": "s1109/ct.nii.gz", + "pseudo_label": "s1109/ct.nii.gz", + "label": "s1109/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1109/ct/ct_seg.nii.gz" + }, + { + "image": "s0510/ct.nii.gz", + "pseudo_label": "s0510/ct.nii.gz", + "label": "s0510/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0510/ct/ct_seg.nii.gz" + }, + { + "image": "s0931/ct.nii.gz", + "pseudo_label": "s0931/ct.nii.gz", + "label": "s0931/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0931/ct/ct_seg.nii.gz" + }, + { + "image": "s0951/ct.nii.gz", + "pseudo_label": "s0951/ct.nii.gz", + "label": "s0951/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0951/ct/ct_seg.nii.gz" + }, + { + "image": "s1096/ct.nii.gz", + "pseudo_label": "s1096/ct.nii.gz", + "label": "s1096/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1096/ct/ct_seg.nii.gz" + }, + { + "image": "s1251/ct.nii.gz", + "pseudo_label": "s1251/ct.nii.gz", + "label": "s1251/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1251/ct/ct_seg.nii.gz" + }, + { + "image": "s1055/ct.nii.gz", + "pseudo_label": "s1055/ct.nii.gz", + "label": "s1055/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1055/ct/ct_seg.nii.gz" + }, + { + "image": "s0223/ct.nii.gz", + "pseudo_label": "s0223/ct.nii.gz", + "label": "s0223/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0223/ct/ct_seg.nii.gz" + }, + { + "image": "s0077/ct.nii.gz", + "pseudo_label": "s0077/ct.nii.gz", + "label": "s0077/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0077/ct/ct_seg.nii.gz" + }, + { + "image": "s0145/ct.nii.gz", + "pseudo_label": "s0145/ct.nii.gz", + "label": "s0145/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0145/ct/ct_seg.nii.gz" + }, + { + "image": "s0520/ct.nii.gz", + "pseudo_label": "s0520/ct.nii.gz", + "label": "s0520/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0520/ct/ct_seg.nii.gz" + }, + { + "image": "s1208/ct.nii.gz", + "pseudo_label": "s1208/ct.nii.gz", + "label": "s1208/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1208/ct/ct_seg.nii.gz" + }, + { + "image": "s0808/ct.nii.gz", + "pseudo_label": "s0808/ct.nii.gz", + "label": "s0808/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0808/ct/ct_seg.nii.gz" + }, + { + "image": "s0471/ct.nii.gz", + "pseudo_label": "s0471/ct.nii.gz", + "label": "s0471/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0471/ct/ct_seg.nii.gz" + }, + { + "image": "s0626/ct.nii.gz", + "pseudo_label": "s0626/ct.nii.gz", + "label": "s0626/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0626/ct/ct_seg.nii.gz" + }, + { + "image": "s0460/ct.nii.gz", + "pseudo_label": "s0460/ct.nii.gz", + "label": "s0460/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0460/ct/ct_seg.nii.gz" + }, + { + "image": "s1277/ct.nii.gz", + "pseudo_label": "s1277/ct.nii.gz", + "label": "s1277/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1277/ct/ct_seg.nii.gz" + }, + { + "image": "s0378/ct.nii.gz", + "pseudo_label": "s0378/ct.nii.gz", + "label": "s0378/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0378/ct/ct_seg.nii.gz" + }, + { + "image": "s0665/ct.nii.gz", + "pseudo_label": "s0665/ct.nii.gz", + "label": "s0665/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0665/ct/ct_seg.nii.gz" + }, + { + "image": "s1385/ct.nii.gz", + "pseudo_label": "s1385/ct.nii.gz", + "label": "s1385/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1385/ct/ct_seg.nii.gz" + }, + { + "image": "s0604/ct.nii.gz", + "pseudo_label": "s0604/ct.nii.gz", + "label": "s0604/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0604/ct/ct_seg.nii.gz" + }, + { + "image": "s0523/ct.nii.gz", + "pseudo_label": "s0523/ct.nii.gz", + "label": "s0523/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0523/ct/ct_seg.nii.gz" + }, + { + "image": "s0730/ct.nii.gz", + "pseudo_label": "s0730/ct.nii.gz", + "label": "s0730/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0730/ct/ct_seg.nii.gz" + }, + { + "image": "s0356/ct.nii.gz", + "pseudo_label": "s0356/ct.nii.gz", + "label": "s0356/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0356/ct/ct_seg.nii.gz" + }, + { + "image": "s0101/ct.nii.gz", + "pseudo_label": "s0101/ct.nii.gz", + "label": "s0101/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0101/ct/ct_seg.nii.gz" + }, + { + "image": "s0501/ct.nii.gz", + "pseudo_label": "s0501/ct.nii.gz", + "label": "s0501/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0501/ct/ct_seg.nii.gz" + }, + { + "image": "s1418/ct.nii.gz", + "pseudo_label": "s1418/ct.nii.gz", + "label": "s1418/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1418/ct/ct_seg.nii.gz" + }, + { + "image": "s0783/ct.nii.gz", + "pseudo_label": "s0783/ct.nii.gz", + "label": "s0783/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0783/ct/ct_seg.nii.gz" + }, + { + "image": "s0648/ct.nii.gz", + "pseudo_label": "s0648/ct.nii.gz", + "label": "s0648/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0648/ct/ct_seg.nii.gz" + }, + { + "image": "s0072/ct.nii.gz", + "pseudo_label": "s0072/ct.nii.gz", + "label": "s0072/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0072/ct/ct_seg.nii.gz" + }, + { + "image": "s0782/ct.nii.gz", + "pseudo_label": "s0782/ct.nii.gz", + "label": "s0782/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0782/ct/ct_seg.nii.gz" + }, + { + "image": "s1230/ct.nii.gz", + "pseudo_label": "s1230/ct.nii.gz", + "label": "s1230/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1230/ct/ct_seg.nii.gz" + }, + { + "image": "s0161/ct.nii.gz", + "pseudo_label": "s0161/ct.nii.gz", + "label": "s0161/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0161/ct/ct_seg.nii.gz" + }, + { + "image": "s0957/ct.nii.gz", + "pseudo_label": "s0957/ct.nii.gz", + "label": "s0957/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0957/ct/ct_seg.nii.gz" + }, + { + "image": "s0640/ct.nii.gz", + "pseudo_label": "s0640/ct.nii.gz", + "label": "s0640/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0640/ct/ct_seg.nii.gz" + }, + { + "image": "s1066/ct.nii.gz", + "pseudo_label": "s1066/ct.nii.gz", + "label": "s1066/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1066/ct/ct_seg.nii.gz" + }, + { + "image": "s0581/ct.nii.gz", + "pseudo_label": "s0581/ct.nii.gz", + "label": "s0581/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0581/ct/ct_seg.nii.gz" + }, + { + "image": "s0876/ct.nii.gz", + "pseudo_label": "s0876/ct.nii.gz", + "label": "s0876/seg.nii.gz", + "fold": 3, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0876/ct/ct_seg.nii.gz" + }, + { + "image": "s1353/ct.nii.gz", + "pseudo_label": "s1353/ct.nii.gz", + "label": "s1353/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1353/ct/ct_seg.nii.gz" + }, + { + "image": "s0215/ct.nii.gz", + "pseudo_label": "s0215/ct.nii.gz", + "label": "s0215/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0215/ct/ct_seg.nii.gz" + }, + { + "image": "s0260/ct.nii.gz", + "pseudo_label": "s0260/ct.nii.gz", + "label": "s0260/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0260/ct/ct_seg.nii.gz" + }, + { + "image": "s1355/ct.nii.gz", + "pseudo_label": "s1355/ct.nii.gz", + "label": "s1355/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1355/ct/ct_seg.nii.gz" + }, + { + "image": "s0178/ct.nii.gz", + "pseudo_label": "s0178/ct.nii.gz", + "label": "s0178/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0178/ct/ct_seg.nii.gz" + }, + { + "image": "s1062/ct.nii.gz", + "pseudo_label": "s1062/ct.nii.gz", + "label": "s1062/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1062/ct/ct_seg.nii.gz" + }, + { + "image": "s0894/ct.nii.gz", + "pseudo_label": "s0894/ct.nii.gz", + "label": "s0894/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0894/ct/ct_seg.nii.gz" + }, + { + "image": "s1337/ct.nii.gz", + "pseudo_label": "s1337/ct.nii.gz", + "label": "s1337/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1337/ct/ct_seg.nii.gz" + }, + { + "image": "s0465/ct.nii.gz", + "pseudo_label": "s0465/ct.nii.gz", + "label": "s0465/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0465/ct/ct_seg.nii.gz" + }, + { + "image": "s1137/ct.nii.gz", + "pseudo_label": "s1137/ct.nii.gz", + "label": "s1137/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1137/ct/ct_seg.nii.gz" + }, + { + "image": "s1374/ct.nii.gz", + "pseudo_label": "s1374/ct.nii.gz", + "label": "s1374/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1374/ct/ct_seg.nii.gz" + }, + { + "image": "s1429/ct.nii.gz", + "pseudo_label": "s1429/ct.nii.gz", + "label": "s1429/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1429/ct/ct_seg.nii.gz" + }, + { + "image": "s1336/ct.nii.gz", + "pseudo_label": "s1336/ct.nii.gz", + "label": "s1336/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1336/ct/ct_seg.nii.gz" + }, + { + "image": "s0158/ct.nii.gz", + "pseudo_label": "s0158/ct.nii.gz", + "label": "s0158/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0158/ct/ct_seg.nii.gz" + }, + { + "image": "s0560/ct.nii.gz", + "pseudo_label": "s0560/ct.nii.gz", + "label": "s0560/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0560/ct/ct_seg.nii.gz" + }, + { + "image": "s1415/ct.nii.gz", + "pseudo_label": "s1415/ct.nii.gz", + "label": "s1415/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1415/ct/ct_seg.nii.gz" + }, + { + "image": "s0477/ct.nii.gz", + "pseudo_label": "s0477/ct.nii.gz", + "label": "s0477/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0477/ct/ct_seg.nii.gz" + }, + { + "image": "s0567/ct.nii.gz", + "pseudo_label": "s0567/ct.nii.gz", + "label": "s0567/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0567/ct/ct_seg.nii.gz" + }, + { + "image": "s0192/ct.nii.gz", + "pseudo_label": "s0192/ct.nii.gz", + "label": "s0192/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0192/ct/ct_seg.nii.gz" + }, + { + "image": "s0697/ct.nii.gz", + "pseudo_label": "s0697/ct.nii.gz", + "label": "s0697/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0697/ct/ct_seg.nii.gz" + }, + { + "image": "s0511/ct.nii.gz", + "pseudo_label": "s0511/ct.nii.gz", + "label": "s0511/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0511/ct/ct_seg.nii.gz" + }, + { + "image": "s0674/ct.nii.gz", + "pseudo_label": "s0674/ct.nii.gz", + "label": "s0674/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0674/ct/ct_seg.nii.gz" + }, + { + "image": "s0329/ct.nii.gz", + "pseudo_label": "s0329/ct.nii.gz", + "label": "s0329/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0329/ct/ct_seg.nii.gz" + }, + { + "image": "s0031/ct.nii.gz", + "pseudo_label": "s0031/ct.nii.gz", + "label": "s0031/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0031/ct/ct_seg.nii.gz" + }, + { + "image": "s0743/ct.nii.gz", + "pseudo_label": "s0743/ct.nii.gz", + "label": "s0743/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0743/ct/ct_seg.nii.gz" + }, + { + "image": "s0594/ct.nii.gz", + "pseudo_label": "s0594/ct.nii.gz", + "label": "s0594/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0594/ct/ct_seg.nii.gz" + }, + { + "image": "s1427/ct.nii.gz", + "pseudo_label": "s1427/ct.nii.gz", + "label": "s1427/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1427/ct/ct_seg.nii.gz" + }, + { + "image": "s1071/ct.nii.gz", + "pseudo_label": "s1071/ct.nii.gz", + "label": "s1071/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1071/ct/ct_seg.nii.gz" + }, + { + "image": "s0650/ct.nii.gz", + "pseudo_label": "s0650/ct.nii.gz", + "label": "s0650/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0650/ct/ct_seg.nii.gz" + }, + { + "image": "s0228/ct.nii.gz", + "pseudo_label": "s0228/ct.nii.gz", + "label": "s0228/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0228/ct/ct_seg.nii.gz" + }, + { + "image": "s1292/ct.nii.gz", + "pseudo_label": "s1292/ct.nii.gz", + "label": "s1292/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1292/ct/ct_seg.nii.gz" + }, + { + "image": "s0407/ct.nii.gz", + "pseudo_label": "s0407/ct.nii.gz", + "label": "s0407/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0407/ct/ct_seg.nii.gz" + }, + { + "image": "s1114/ct.nii.gz", + "pseudo_label": "s1114/ct.nii.gz", + "label": "s1114/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1114/ct/ct_seg.nii.gz" + }, + { + "image": "s0970/ct.nii.gz", + "pseudo_label": "s0970/ct.nii.gz", + "label": "s0970/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0970/ct/ct_seg.nii.gz" + }, + { + "image": "s0333/ct.nii.gz", + "pseudo_label": "s0333/ct.nii.gz", + "label": "s0333/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0333/ct/ct_seg.nii.gz" + }, + { + "image": "s0632/ct.nii.gz", + "pseudo_label": "s0632/ct.nii.gz", + "label": "s0632/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0632/ct/ct_seg.nii.gz" + }, + { + "image": "s0949/ct.nii.gz", + "pseudo_label": "s0949/ct.nii.gz", + "label": "s0949/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0949/ct/ct_seg.nii.gz" + }, + { + "image": "s0344/ct.nii.gz", + "pseudo_label": "s0344/ct.nii.gz", + "label": "s0344/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0344/ct/ct_seg.nii.gz" + }, + { + "image": "s1287/ct.nii.gz", + "pseudo_label": "s1287/ct.nii.gz", + "label": "s1287/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1287/ct/ct_seg.nii.gz" + }, + { + "image": "s0343/ct.nii.gz", + "pseudo_label": "s0343/ct.nii.gz", + "label": "s0343/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0343/ct/ct_seg.nii.gz" + }, + { + "image": "s0874/ct.nii.gz", + "pseudo_label": "s0874/ct.nii.gz", + "label": "s0874/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0874/ct/ct_seg.nii.gz" + }, + { + "image": "s1138/ct.nii.gz", + "pseudo_label": "s1138/ct.nii.gz", + "label": "s1138/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1138/ct/ct_seg.nii.gz" + }, + { + "image": "s0923/ct.nii.gz", + "pseudo_label": "s0923/ct.nii.gz", + "label": "s0923/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0923/ct/ct_seg.nii.gz" + }, + { + "image": "s1043/ct.nii.gz", + "pseudo_label": "s1043/ct.nii.gz", + "label": "s1043/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1043/ct/ct_seg.nii.gz" + }, + { + "image": "s0936/ct.nii.gz", + "pseudo_label": "s0936/ct.nii.gz", + "label": "s0936/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0936/ct/ct_seg.nii.gz" + }, + { + "image": "s1335/ct.nii.gz", + "pseudo_label": "s1335/ct.nii.gz", + "label": "s1335/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1335/ct/ct_seg.nii.gz" + }, + { + "image": "s0303/ct.nii.gz", + "pseudo_label": "s0303/ct.nii.gz", + "label": "s0303/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0303/ct/ct_seg.nii.gz" + }, + { + "image": "s0285/ct.nii.gz", + "pseudo_label": "s0285/ct.nii.gz", + "label": "s0285/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0285/ct/ct_seg.nii.gz" + }, + { + "image": "s1049/ct.nii.gz", + "pseudo_label": "s1049/ct.nii.gz", + "label": "s1049/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1049/ct/ct_seg.nii.gz" + }, + { + "image": "s0739/ct.nii.gz", + "pseudo_label": "s0739/ct.nii.gz", + "label": "s0739/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0739/ct/ct_seg.nii.gz" + }, + { + "image": "s1327/ct.nii.gz", + "pseudo_label": "s1327/ct.nii.gz", + "label": "s1327/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1327/ct/ct_seg.nii.gz" + }, + { + "image": "s1409/ct.nii.gz", + "pseudo_label": "s1409/ct.nii.gz", + "label": "s1409/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1409/ct/ct_seg.nii.gz" + }, + { + "image": "s0579/ct.nii.gz", + "pseudo_label": "s0579/ct.nii.gz", + "label": "s0579/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0579/ct/ct_seg.nii.gz" + }, + { + "image": "s1295/ct.nii.gz", + "pseudo_label": "s1295/ct.nii.gz", + "label": "s1295/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1295/ct/ct_seg.nii.gz" + }, + { + "image": "s0664/ct.nii.gz", + "pseudo_label": "s0664/ct.nii.gz", + "label": "s0664/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0664/ct/ct_seg.nii.gz" + }, + { + "image": "s0385/ct.nii.gz", + "pseudo_label": "s0385/ct.nii.gz", + "label": "s0385/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0385/ct/ct_seg.nii.gz" + }, + { + "image": "s1428/ct.nii.gz", + "pseudo_label": "s1428/ct.nii.gz", + "label": "s1428/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1428/ct/ct_seg.nii.gz" + }, + { + "image": "s0355/ct.nii.gz", + "pseudo_label": "s0355/ct.nii.gz", + "label": "s0355/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0355/ct/ct_seg.nii.gz" + }, + { + "image": "s1424/ct.nii.gz", + "pseudo_label": "s1424/ct.nii.gz", + "label": "s1424/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1424/ct/ct_seg.nii.gz" + }, + { + "image": "s0713/ct.nii.gz", + "pseudo_label": "s0713/ct.nii.gz", + "label": "s0713/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0713/ct/ct_seg.nii.gz" + }, + { + "image": "s0591/ct.nii.gz", + "pseudo_label": "s0591/ct.nii.gz", + "label": "s0591/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0591/ct/ct_seg.nii.gz" + }, + { + "image": "s0790/ct.nii.gz", + "pseudo_label": "s0790/ct.nii.gz", + "label": "s0790/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0790/ct/ct_seg.nii.gz" + }, + { + "image": "s0529/ct.nii.gz", + "pseudo_label": "s0529/ct.nii.gz", + "label": "s0529/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0529/ct/ct_seg.nii.gz" + }, + { + "image": "s0976/ct.nii.gz", + "pseudo_label": "s0976/ct.nii.gz", + "label": "s0976/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0976/ct/ct_seg.nii.gz" + }, + { + "image": "s1245/ct.nii.gz", + "pseudo_label": "s1245/ct.nii.gz", + "label": "s1245/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1245/ct/ct_seg.nii.gz" + }, + { + "image": "s0873/ct.nii.gz", + "pseudo_label": "s0873/ct.nii.gz", + "label": "s0873/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0873/ct/ct_seg.nii.gz" + }, + { + "image": "s0014/ct.nii.gz", + "pseudo_label": "s0014/ct.nii.gz", + "label": "s0014/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0014/ct/ct_seg.nii.gz" + }, + { + "image": "s0805/ct.nii.gz", + "pseudo_label": "s0805/ct.nii.gz", + "label": "s0805/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0805/ct/ct_seg.nii.gz" + }, + { + "image": "s1094/ct.nii.gz", + "pseudo_label": "s1094/ct.nii.gz", + "label": "s1094/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1094/ct/ct_seg.nii.gz" + }, + { + "image": "s1274/ct.nii.gz", + "pseudo_label": "s1274/ct.nii.gz", + "label": "s1274/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1274/ct/ct_seg.nii.gz" + }, + { + "image": "s0442/ct.nii.gz", + "pseudo_label": "s0442/ct.nii.gz", + "label": "s0442/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0442/ct/ct_seg.nii.gz" + }, + { + "image": "s0499/ct.nii.gz", + "pseudo_label": "s0499/ct.nii.gz", + "label": "s0499/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0499/ct/ct_seg.nii.gz" + }, + { + "image": "s1224/ct.nii.gz", + "pseudo_label": "s1224/ct.nii.gz", + "label": "s1224/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1224/ct/ct_seg.nii.gz" + }, + { + "image": "s0071/ct.nii.gz", + "pseudo_label": "s0071/ct.nii.gz", + "label": "s0071/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0071/ct/ct_seg.nii.gz" + }, + { + "image": "s0941/ct.nii.gz", + "pseudo_label": "s0941/ct.nii.gz", + "label": "s0941/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0941/ct/ct_seg.nii.gz" + }, + { + "image": "s0080/ct.nii.gz", + "pseudo_label": "s0080/ct.nii.gz", + "label": "s0080/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0080/ct/ct_seg.nii.gz" + }, + { + "image": "s0310/ct.nii.gz", + "pseudo_label": "s0310/ct.nii.gz", + "label": "s0310/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0310/ct/ct_seg.nii.gz" + }, + { + "image": "s1410/ct.nii.gz", + "pseudo_label": "s1410/ct.nii.gz", + "label": "s1410/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1410/ct/ct_seg.nii.gz" + }, + { + "image": "s0107/ct.nii.gz", + "pseudo_label": "s0107/ct.nii.gz", + "label": "s0107/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0107/ct/ct_seg.nii.gz" + }, + { + "image": "s0065/ct.nii.gz", + "pseudo_label": "s0065/ct.nii.gz", + "label": "s0065/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0065/ct/ct_seg.nii.gz" + }, + { + "image": "s0446/ct.nii.gz", + "pseudo_label": "s0446/ct.nii.gz", + "label": "s0446/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0446/ct/ct_seg.nii.gz" + }, + { + "image": "s0959/ct.nii.gz", + "pseudo_label": "s0959/ct.nii.gz", + "label": "s0959/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0959/ct/ct_seg.nii.gz" + }, + { + "image": "s0835/ct.nii.gz", + "pseudo_label": "s0835/ct.nii.gz", + "label": "s0835/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0835/ct/ct_seg.nii.gz" + }, + { + "image": "s0270/ct.nii.gz", + "pseudo_label": "s0270/ct.nii.gz", + "label": "s0270/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0270/ct/ct_seg.nii.gz" + }, + { + "image": "s1022/ct.nii.gz", + "pseudo_label": "s1022/ct.nii.gz", + "label": "s1022/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1022/ct/ct_seg.nii.gz" + }, + { + "image": "s1361/ct.nii.gz", + "pseudo_label": "s1361/ct.nii.gz", + "label": "s1361/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1361/ct/ct_seg.nii.gz" + }, + { + "image": "s0298/ct.nii.gz", + "pseudo_label": "s0298/ct.nii.gz", + "label": "s0298/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0298/ct/ct_seg.nii.gz" + }, + { + "image": "s0684/ct.nii.gz", + "pseudo_label": "s0684/ct.nii.gz", + "label": "s0684/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0684/ct/ct_seg.nii.gz" + }, + { + "image": "s0858/ct.nii.gz", + "pseudo_label": "s0858/ct.nii.gz", + "label": "s0858/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0858/ct/ct_seg.nii.gz" + }, + { + "image": "s1129/ct.nii.gz", + "pseudo_label": "s1129/ct.nii.gz", + "label": "s1129/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1129/ct/ct_seg.nii.gz" + }, + { + "image": "s0247/ct.nii.gz", + "pseudo_label": "s0247/ct.nii.gz", + "label": "s0247/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0247/ct/ct_seg.nii.gz" + }, + { + "image": "s0346/ct.nii.gz", + "pseudo_label": "s0346/ct.nii.gz", + "label": "s0346/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0346/ct/ct_seg.nii.gz" + }, + { + "image": "s0084/ct.nii.gz", + "pseudo_label": "s0084/ct.nii.gz", + "label": "s0084/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0084/ct/ct_seg.nii.gz" + }, + { + "image": "s0762/ct.nii.gz", + "pseudo_label": "s0762/ct.nii.gz", + "label": "s0762/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0762/ct/ct_seg.nii.gz" + }, + { + "image": "s1225/ct.nii.gz", + "pseudo_label": "s1225/ct.nii.gz", + "label": "s1225/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1225/ct/ct_seg.nii.gz" + }, + { + "image": "s0417/ct.nii.gz", + "pseudo_label": "s0417/ct.nii.gz", + "label": "s0417/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0417/ct/ct_seg.nii.gz" + }, + { + "image": "s1420/ct.nii.gz", + "pseudo_label": "s1420/ct.nii.gz", + "label": "s1420/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1420/ct/ct_seg.nii.gz" + }, + { + "image": "s1106/ct.nii.gz", + "pseudo_label": "s1106/ct.nii.gz", + "label": "s1106/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1106/ct/ct_seg.nii.gz" + }, + { + "image": "s0070/ct.nii.gz", + "pseudo_label": "s0070/ct.nii.gz", + "label": "s0070/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0070/ct/ct_seg.nii.gz" + }, + { + "image": "s0289/ct.nii.gz", + "pseudo_label": "s0289/ct.nii.gz", + "label": "s0289/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0289/ct/ct_seg.nii.gz" + }, + { + "image": "s0859/ct.nii.gz", + "pseudo_label": "s0859/ct.nii.gz", + "label": "s0859/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0859/ct/ct_seg.nii.gz" + }, + { + "image": "s1280/ct.nii.gz", + "pseudo_label": "s1280/ct.nii.gz", + "label": "s1280/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1280/ct/ct_seg.nii.gz" + }, + { + "image": "s1122/ct.nii.gz", + "pseudo_label": "s1122/ct.nii.gz", + "label": "s1122/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1122/ct/ct_seg.nii.gz" + }, + { + "image": "s0749/ct.nii.gz", + "pseudo_label": "s0749/ct.nii.gz", + "label": "s0749/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0749/ct/ct_seg.nii.gz" + }, + { + "image": "s0576/ct.nii.gz", + "pseudo_label": "s0576/ct.nii.gz", + "label": "s0576/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0576/ct/ct_seg.nii.gz" + }, + { + "image": "s0710/ct.nii.gz", + "pseudo_label": "s0710/ct.nii.gz", + "label": "s0710/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0710/ct/ct_seg.nii.gz" + }, + { + "image": "s0840/ct.nii.gz", + "pseudo_label": "s0840/ct.nii.gz", + "label": "s0840/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0840/ct/ct_seg.nii.gz" + }, + { + "image": "s0191/ct.nii.gz", + "pseudo_label": "s0191/ct.nii.gz", + "label": "s0191/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0191/ct/ct_seg.nii.gz" + }, + { + "image": "s0727/ct.nii.gz", + "pseudo_label": "s0727/ct.nii.gz", + "label": "s0727/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0727/ct/ct_seg.nii.gz" + }, + { + "image": "s1380/ct.nii.gz", + "pseudo_label": "s1380/ct.nii.gz", + "label": "s1380/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1380/ct/ct_seg.nii.gz" + }, + { + "image": "s1059/ct.nii.gz", + "pseudo_label": "s1059/ct.nii.gz", + "label": "s1059/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1059/ct/ct_seg.nii.gz" + }, + { + "image": "s1073/ct.nii.gz", + "pseudo_label": "s1073/ct.nii.gz", + "label": "s1073/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1073/ct/ct_seg.nii.gz" + }, + { + "image": "s0618/ct.nii.gz", + "pseudo_label": "s0618/ct.nii.gz", + "label": "s0618/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0618/ct/ct_seg.nii.gz" + }, + { + "image": "s0804/ct.nii.gz", + "pseudo_label": "s0804/ct.nii.gz", + "label": "s0804/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0804/ct/ct_seg.nii.gz" + }, + { + "image": "s0692/ct.nii.gz", + "pseudo_label": "s0692/ct.nii.gz", + "label": "s0692/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0692/ct/ct_seg.nii.gz" + }, + { + "image": "s0476/ct.nii.gz", + "pseudo_label": "s0476/ct.nii.gz", + "label": "s0476/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0476/ct/ct_seg.nii.gz" + }, + { + "image": "s0163/ct.nii.gz", + "pseudo_label": "s0163/ct.nii.gz", + "label": "s0163/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0163/ct/ct_seg.nii.gz" + }, + { + "image": "s0347/ct.nii.gz", + "pseudo_label": "s0347/ct.nii.gz", + "label": "s0347/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0347/ct/ct_seg.nii.gz" + }, + { + "image": "s0278/ct.nii.gz", + "pseudo_label": "s0278/ct.nii.gz", + "label": "s0278/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0278/ct/ct_seg.nii.gz" + }, + { + "image": "s0190/ct.nii.gz", + "pseudo_label": "s0190/ct.nii.gz", + "label": "s0190/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0190/ct/ct_seg.nii.gz" + }, + { + "image": "s1316/ct.nii.gz", + "pseudo_label": "s1316/ct.nii.gz", + "label": "s1316/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1316/ct/ct_seg.nii.gz" + }, + { + "image": "s1406/ct.nii.gz", + "pseudo_label": "s1406/ct.nii.gz", + "label": "s1406/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1406/ct/ct_seg.nii.gz" + }, + { + "image": "s0296/ct.nii.gz", + "pseudo_label": "s0296/ct.nii.gz", + "label": "s0296/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0296/ct/ct_seg.nii.gz" + }, + { + "image": "s1390/ct.nii.gz", + "pseudo_label": "s1390/ct.nii.gz", + "label": "s1390/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1390/ct/ct_seg.nii.gz" + }, + { + "image": "s1169/ct.nii.gz", + "pseudo_label": "s1169/ct.nii.gz", + "label": "s1169/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1169/ct/ct_seg.nii.gz" + }, + { + "image": "s0371/ct.nii.gz", + "pseudo_label": "s0371/ct.nii.gz", + "label": "s0371/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0371/ct/ct_seg.nii.gz" + }, + { + "image": "s0526/ct.nii.gz", + "pseudo_label": "s0526/ct.nii.gz", + "label": "s0526/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0526/ct/ct_seg.nii.gz" + }, + { + "image": "s1344/ct.nii.gz", + "pseudo_label": "s1344/ct.nii.gz", + "label": "s1344/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1344/ct/ct_seg.nii.gz" + }, + { + "image": "s1189/ct.nii.gz", + "pseudo_label": "s1189/ct.nii.gz", + "label": "s1189/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1189/ct/ct_seg.nii.gz" + }, + { + "image": "s1349/ct.nii.gz", + "pseudo_label": "s1349/ct.nii.gz", + "label": "s1349/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1349/ct/ct_seg.nii.gz" + }, + { + "image": "s0340/ct.nii.gz", + "pseudo_label": "s0340/ct.nii.gz", + "label": "s0340/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0340/ct/ct_seg.nii.gz" + }, + { + "image": "s0914/ct.nii.gz", + "pseudo_label": "s0914/ct.nii.gz", + "label": "s0914/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0914/ct/ct_seg.nii.gz" + }, + { + "image": "s0892/ct.nii.gz", + "pseudo_label": "s0892/ct.nii.gz", + "label": "s0892/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0892/ct/ct_seg.nii.gz" + }, + { + "image": "s0455/ct.nii.gz", + "pseudo_label": "s0455/ct.nii.gz", + "label": "s0455/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0455/ct/ct_seg.nii.gz" + }, + { + "image": "s0129/ct.nii.gz", + "pseudo_label": "s0129/ct.nii.gz", + "label": "s0129/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0129/ct/ct_seg.nii.gz" + }, + { + "image": "s0656/ct.nii.gz", + "pseudo_label": "s0656/ct.nii.gz", + "label": "s0656/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0656/ct/ct_seg.nii.gz" + }, + { + "image": "s0321/ct.nii.gz", + "pseudo_label": "s0321/ct.nii.gz", + "label": "s0321/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0321/ct/ct_seg.nii.gz" + }, + { + "image": "s0822/ct.nii.gz", + "pseudo_label": "s0822/ct.nii.gz", + "label": "s0822/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0822/ct/ct_seg.nii.gz" + }, + { + "image": "s1197/ct.nii.gz", + "pseudo_label": "s1197/ct.nii.gz", + "label": "s1197/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1197/ct/ct_seg.nii.gz" + }, + { + "image": "s0682/ct.nii.gz", + "pseudo_label": "s0682/ct.nii.gz", + "label": "s0682/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0682/ct/ct_seg.nii.gz" + }, + { + "image": "s1209/ct.nii.gz", + "pseudo_label": "s1209/ct.nii.gz", + "label": "s1209/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1209/ct/ct_seg.nii.gz" + }, + { + "image": "s0623/ct.nii.gz", + "pseudo_label": "s0623/ct.nii.gz", + "label": "s0623/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0623/ct/ct_seg.nii.gz" + }, + { + "image": "s0975/ct.nii.gz", + "pseudo_label": "s0975/ct.nii.gz", + "label": "s0975/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0975/ct/ct_seg.nii.gz" + }, + { + "image": "s0839/ct.nii.gz", + "pseudo_label": "s0839/ct.nii.gz", + "label": "s0839/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0839/ct/ct_seg.nii.gz" + }, + { + "image": "s1364/ct.nii.gz", + "pseudo_label": "s1364/ct.nii.gz", + "label": "s1364/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1364/ct/ct_seg.nii.gz" + }, + { + "image": "s0015/ct.nii.gz", + "pseudo_label": "s0015/ct.nii.gz", + "label": "s0015/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0015/ct/ct_seg.nii.gz" + }, + { + "image": "s0131/ct.nii.gz", + "pseudo_label": "s0131/ct.nii.gz", + "label": "s0131/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0131/ct/ct_seg.nii.gz" + }, + { + "image": "s0239/ct.nii.gz", + "pseudo_label": "s0239/ct.nii.gz", + "label": "s0239/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0239/ct/ct_seg.nii.gz" + }, + { + "image": "s0230/ct.nii.gz", + "pseudo_label": "s0230/ct.nii.gz", + "label": "s0230/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0230/ct/ct_seg.nii.gz" + }, + { + "image": "s0603/ct.nii.gz", + "pseudo_label": "s0603/ct.nii.gz", + "label": "s0603/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0603/ct/ct_seg.nii.gz" + }, + { + "image": "s0973/ct.nii.gz", + "pseudo_label": "s0973/ct.nii.gz", + "label": "s0973/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0973/ct/ct_seg.nii.gz" + }, + { + "image": "s1308/ct.nii.gz", + "pseudo_label": "s1308/ct.nii.gz", + "label": "s1308/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1308/ct/ct_seg.nii.gz" + }, + { + "image": "s1281/ct.nii.gz", + "pseudo_label": "s1281/ct.nii.gz", + "label": "s1281/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1281/ct/ct_seg.nii.gz" + }, + { + "image": "s0868/ct.nii.gz", + "pseudo_label": "s0868/ct.nii.gz", + "label": "s0868/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0868/ct/ct_seg.nii.gz" + }, + { + "image": "s0649/ct.nii.gz", + "pseudo_label": "s0649/ct.nii.gz", + "label": "s0649/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0649/ct/ct_seg.nii.gz" + }, + { + "image": "s1233/ct.nii.gz", + "pseudo_label": "s1233/ct.nii.gz", + "label": "s1233/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1233/ct/ct_seg.nii.gz" + }, + { + "image": "s0010/ct.nii.gz", + "pseudo_label": "s0010/ct.nii.gz", + "label": "s0010/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0010/ct/ct_seg.nii.gz" + }, + { + "image": "s0691/ct.nii.gz", + "pseudo_label": "s0691/ct.nii.gz", + "label": "s0691/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0691/ct/ct_seg.nii.gz" + }, + { + "image": "s0751/ct.nii.gz", + "pseudo_label": "s0751/ct.nii.gz", + "label": "s0751/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0751/ct/ct_seg.nii.gz" + }, + { + "image": "s0879/ct.nii.gz", + "pseudo_label": "s0879/ct.nii.gz", + "label": "s0879/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0879/ct/ct_seg.nii.gz" + }, + { + "image": "s1423/ct.nii.gz", + "pseudo_label": "s1423/ct.nii.gz", + "label": "s1423/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1423/ct/ct_seg.nii.gz" + }, + { + "image": "s0053/ct.nii.gz", + "pseudo_label": "s0053/ct.nii.gz", + "label": "s0053/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0053/ct/ct_seg.nii.gz" + }, + { + "image": "s0485/ct.nii.gz", + "pseudo_label": "s0485/ct.nii.gz", + "label": "s0485/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0485/ct/ct_seg.nii.gz" + }, + { + "image": "s0744/ct.nii.gz", + "pseudo_label": "s0744/ct.nii.gz", + "label": "s0744/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0744/ct/ct_seg.nii.gz" + }, + { + "image": "s0052/ct.nii.gz", + "pseudo_label": "s0052/ct.nii.gz", + "label": "s0052/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0052/ct/ct_seg.nii.gz" + }, + { + "image": "s0508/ct.nii.gz", + "pseudo_label": "s0508/ct.nii.gz", + "label": "s0508/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0508/ct/ct_seg.nii.gz" + }, + { + "image": "s0381/ct.nii.gz", + "pseudo_label": "s0381/ct.nii.gz", + "label": "s0381/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0381/ct/ct_seg.nii.gz" + }, + { + "image": "s0322/ct.nii.gz", + "pseudo_label": "s0322/ct.nii.gz", + "label": "s0322/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0322/ct/ct_seg.nii.gz" + }, + { + "image": "s1151/ct.nii.gz", + "pseudo_label": "s1151/ct.nii.gz", + "label": "s1151/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1151/ct/ct_seg.nii.gz" + }, + { + "image": "s0821/ct.nii.gz", + "pseudo_label": "s0821/ct.nii.gz", + "label": "s0821/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0821/ct/ct_seg.nii.gz" + }, + { + "image": "s1386/ct.nii.gz", + "pseudo_label": "s1386/ct.nii.gz", + "label": "s1386/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1386/ct/ct_seg.nii.gz" + }, + { + "image": "s0844/ct.nii.gz", + "pseudo_label": "s0844/ct.nii.gz", + "label": "s0844/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0844/ct/ct_seg.nii.gz" + }, + { + "image": "s0368/ct.nii.gz", + "pseudo_label": "s0368/ct.nii.gz", + "label": "s0368/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0368/ct/ct_seg.nii.gz" + }, + { + "image": "s0553/ct.nii.gz", + "pseudo_label": "s0553/ct.nii.gz", + "label": "s0553/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0553/ct/ct_seg.nii.gz" + }, + { + "image": "s0450/ct.nii.gz", + "pseudo_label": "s0450/ct.nii.gz", + "label": "s0450/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0450/ct/ct_seg.nii.gz" + }, + { + "image": "s1286/ct.nii.gz", + "pseudo_label": "s1286/ct.nii.gz", + "label": "s1286/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1286/ct/ct_seg.nii.gz" + }, + { + "image": "s1009/ct.nii.gz", + "pseudo_label": "s1009/ct.nii.gz", + "label": "s1009/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1009/ct/ct_seg.nii.gz" + }, + { + "image": "s0004/ct.nii.gz", + "pseudo_label": "s0004/ct.nii.gz", + "label": "s0004/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0004/ct/ct_seg.nii.gz" + }, + { + "image": "s0944/ct.nii.gz", + "pseudo_label": "s0944/ct.nii.gz", + "label": "s0944/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0944/ct/ct_seg.nii.gz" + }, + { + "image": "s0362/ct.nii.gz", + "pseudo_label": "s0362/ct.nii.gz", + "label": "s0362/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0362/ct/ct_seg.nii.gz" + }, + { + "image": "s0793/ct.nii.gz", + "pseudo_label": "s0793/ct.nii.gz", + "label": "s0793/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0793/ct/ct_seg.nii.gz" + }, + { + "image": "s0865/ct.nii.gz", + "pseudo_label": "s0865/ct.nii.gz", + "label": "s0865/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0865/ct/ct_seg.nii.gz" + }, + { + "image": "s1136/ct.nii.gz", + "pseudo_label": "s1136/ct.nii.gz", + "label": "s1136/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1136/ct/ct_seg.nii.gz" + }, + { + "image": "s0311/ct.nii.gz", + "pseudo_label": "s0311/ct.nii.gz", + "label": "s0311/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0311/ct/ct_seg.nii.gz" + }, + { + "image": "s1403/ct.nii.gz", + "pseudo_label": "s1403/ct.nii.gz", + "label": "s1403/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1403/ct/ct_seg.nii.gz" + }, + { + "image": "s1303/ct.nii.gz", + "pseudo_label": "s1303/ct.nii.gz", + "label": "s1303/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1303/ct/ct_seg.nii.gz" + }, + { + "image": "s1067/ct.nii.gz", + "pseudo_label": "s1067/ct.nii.gz", + "label": "s1067/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1067/ct/ct_seg.nii.gz" + }, + { + "image": "s0601/ct.nii.gz", + "pseudo_label": "s0601/ct.nii.gz", + "label": "s0601/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0601/ct/ct_seg.nii.gz" + }, + { + "image": "s0422/ct.nii.gz", + "pseudo_label": "s0422/ct.nii.gz", + "label": "s0422/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0422/ct/ct_seg.nii.gz" + }, + { + "image": "s1037/ct.nii.gz", + "pseudo_label": "s1037/ct.nii.gz", + "label": "s1037/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1037/ct/ct_seg.nii.gz" + }, + { + "image": "s0770/ct.nii.gz", + "pseudo_label": "s0770/ct.nii.gz", + "label": "s0770/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0770/ct/ct_seg.nii.gz" + }, + { + "image": "s1227/ct.nii.gz", + "pseudo_label": "s1227/ct.nii.gz", + "label": "s1227/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s1227/ct/ct_seg.nii.gz" + }, + { + "image": "s0726/ct.nii.gz", + "pseudo_label": "s0726/ct.nii.gz", + "label": "s0726/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0726/ct/ct_seg.nii.gz" + }, + { + "image": "s0143/ct.nii.gz", + "pseudo_label": "s0143/ct.nii.gz", + "label": "s0143/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0143/ct/ct_seg.nii.gz" + }, + { + "image": "s0714/ct.nii.gz", + "pseudo_label": "s0714/ct.nii.gz", + "label": "s0714/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0714/ct/ct_seg.nii.gz" + }, + { + "image": "s0608/ct.nii.gz", + "pseudo_label": "s0608/ct.nii.gz", + "label": "s0608/seg.nii.gz", + "fold": 4, + "label_sv": "/workspace_infer/supervoxel_sam/TotalSegmentatorV2_100/s0608/ct/ct_seg.nii.gz" + } + ], + "training_transform": [ + { + "_target_": "RandCropByLabelClassesd", + "keys": [ + "@image_key", + "@label_key", + "@pseudo_label_key", + "@label_sv_key" + ], + "label_key": "@pseudo_label_key", + "num_classes": 133, + "num_samples": "@num_patches_per_image", + "spatial_size": "@patch_size", + "ratios": "$tuple(float(i >= 0) for i in range(133))", + "warn": false, + "allow_missing_keys": true + }, + { + "_target_": "RandZoomd", + "keys": [ + "@image_key", + "@label_key", + "@pseudo_label_key", + "@label_sv_key" + ], + "min_zoom": 0.8, + "max_zoom": 1.2, + "mode": [ + "trilinear", + "nearest", + "nearest", + "nearest" + ], + "prob": 0.2, + "allow_missing_keys": true + }, + { + "_target_": "RandSimulateLowResolutiond", + "keys": [ + "@image_key" + ], + "zoom_range": [ + 0.3, + 1 + ], + "prob": 0.2, + "allow_missing_keys": true + }, + { + "_target_": "RandGaussianSmoothd", + "keys": [ + "@image_key" + ], + "prob": 0.2, + "sigma_x": [ + 0.5, + 1.0 + ], + "sigma_y": [ + 0.5, + 1.0 + ], + "sigma_z": [ + 0.5, + 1.0 + ] + }, + { + "_target_": "RandScaleIntensityd", + "keys": [ + "@image_key" + ], + "factors": 0.1, + "prob": 0.2 + }, + { + "_target_": "RandShiftIntensityd", + "keys": [ + "@image_key" + ], + "offsets": 0.1, + "prob": 0.2 + }, + { + "_target_": "RandGaussianNoised", + "keys": [ + "@image_key" + ], + "prob": 0.2, + "mean": 0.0, + "std": 0.2 + } + ], + "label_dict": { + "1": "spleen", + "2": "right kidney", + "3": "left kidney", + "4": "gallbladder", + "5": "liver", + "6": "stomach", + "7": "aorta", + "8": "inferior vena cava", + "9": "portal vein and splenic vein", + "10": "pancreas", + "11": "right adrenal gland", + "12": "left adrenal gland", + "13": "left lung upper lobe", + "14": "left lung lower lobe", + "15": "right lung upper lobe", + "16": "right lung middle lobe", + "17": "right lung lower lobe", + "18": "vertebrae L5", + "19": "vertebrae L4", + "20": "vertebrae L3", + "21": "vertebrae L2", + "22": "vertebrae L1", + "23": "vertebrae T12", + "24": "vertebrae T11", + "25": "vertebrae T10", + "26": "vertebrae T9", + "27": "vertebrae T8", + "28": "vertebrae T7", + "29": "vertebrae T6", + "30": "vertebrae T5", + "31": "vertebrae T4", + "32": "vertebrae T3", + "33": "vertebrae T2", + "34": "vertebrae T1", + "35": "vertebrae C7", + "36": "vertebrae C6", + "37": "vertebrae C5", + "38": "vertebrae C4", + "39": "vertebrae C3", + "40": "vertebrae C2", + "41": "vertebrae C1", + "42": "esophagus", + "43": "trachea", + "44": "brain", + "45": "left iliac artery", + "46": "right iliac artery", + "47": "left iliac vena", + "48": "right iliac vena", + "49": "small bowel", + "50": "duodenum", + "51": "colon", + "52": "left rib 1", + "53": "left rib 2", + "54": "left rib 3", + "55": "left rib 4", + "56": "left rib 5", + "57": "left rib 6", + "58": "left rib 7", + "59": "left rib 8", + "60": "left rib 9", + "61": "left rib 10", + "62": "left rib 11", + "63": "left rib 12", + "64": "right rib 1", + "65": "right rib 2", + "66": "right rib 3", + "67": "right rib 4", + "68": "right rib 5", + "69": "right rib 6", + "70": "right rib 7", + "71": "right rib 8", + "72": "right rib 9", + "73": "right rib 10", + "74": "right rib 11", + "75": "right rib 12", + "76": "left humerus", + "77": "right humerus", + "78": "left scapula", + "79": "right scapula", + "80": "left clavicula", + "81": "right clavicula", + "82": "left femur", + "83": "right femur", + "84": "left hip", + "85": "right hip", + "86": "sacrum", + "87": "left gluteus maximus", + "88": "right gluteus maximus", + "89": "left gluteus medius", + "90": "right gluteus medius", + "91": "left gluteus minimus", + "92": "right gluteus minimus", + "93": "left autochthon", + "94": "right autochthon", + "95": "left iliopsoas", + "96": "right iliopsoas", + "97": "bladder", + "98": "left atrial appendage", + "99": "brachiocephalic trunk", + "100": "left brachiocephalic vein", + "101": "right brachiocephalic vein", + "102": "left common carotid artery", + "103": "right common carotid artery", + "104": "costal cartilages", + "105": "heart", + "106": "left kidney cyst", + "107": "right kidney cyst", + "108": "prostate", + "109": "pulmonary vein", + "110": "skull", + "111": "spinal cord", + "112": "sternum", + "113": "left subclavian artery", + "114": "right subclavian artery", + "115": "superior vena cava", + "116": "thyroid gland", + "117": "vertebrae S1" + }, + "original_label_dict": { + "1": "spleen", + "2": "kidney_right", + "3": "kidney_left", + "4": "gallbladder", + "5": "liver", + "6": "stomach", + "7": "aorta", + "8": "inferior_vena_cava", + "9": "portal_vein_and_splenic_vein", + "10": "pancreas", + "11": "adrenal_gland_right", + "12": "adrenal_gland_left", + "13": "lung_upper_lobe_left", + "14": "lung_lower_lobe_left", + "15": "lung_upper_lobe_right", + "16": "lung_middle_lobe_right", + "17": "lung_lower_lobe_right", + "18": "vertebrae_L5", + "19": "vertebrae_L4", + "20": "vertebrae_L3", + "21": "vertebrae_L2", + "22": "vertebrae_L1", + "23": "vertebrae_T12", + "24": "vertebrae_T11", + "25": "vertebrae_T10", + "26": "vertebrae_T9", + "27": "vertebrae_T8", + "28": "vertebrae_T7", + "29": "vertebrae_T6", + "30": "vertebrae_T5", + "31": "vertebrae_T4", + "32": "vertebrae_T3", + "33": "vertebrae_T2", + "34": "vertebrae_T1", + "35": "vertebrae_C7", + "36": "vertebrae_C6", + "37": "vertebrae_C5", + "38": "vertebrae_C4", + "39": "vertebrae_C3", + "40": "vertebrae_C2", + "41": "vertebrae_C1", + "42": "esophagus", + "43": "trachea", + "44": "brain", + "45": "iliac_artery_left", + "46": "iliac_artery_right", + "47": "iliac_vena_left", + "48": "iliac_vena_right", + "49": "small_bowel", + "50": "duodenum", + "51": "colon", + "52": "rib_left_1", + "53": "rib_left_2", + "54": "rib_left_3", + "55": "rib_left_4", + "56": "rib_left_5", + "57": "rib_left_6", + "58": "rib_left_7", + "59": "rib_left_8", + "60": "rib_left_9", + "61": "rib_left_10", + "62": "rib_left_11", + "63": "rib_left_12", + "64": "rib_right_1", + "65": "rib_right_2", + "66": "rib_right_3", + "67": "rib_right_4", + "68": "rib_right_5", + "69": "rib_right_6", + "70": "rib_right_7", + "71": "rib_right_8", + "72": "rib_right_9", + "73": "rib_right_10", + "74": "rib_right_11", + "75": "rib_right_12", + "76": "humerus_left", + "77": "humerus_right", + "78": "scapula_left", + "79": "scapula_right", + "80": "clavicula_left", + "81": "clavicula_right", + "82": "femur_left", + "83": "femur_right", + "84": "hip_left", + "85": "hip_right", + "86": "sacrum", + "87": "gluteus_maximus_left", + "88": "gluteus_maximus_right", + "89": "gluteus_medius_left", + "90": "gluteus_medius_right", + "91": "gluteus_minimus_left", + "92": "gluteus_minimus_right", + "93": "autochthon_left", + "94": "autochthon_right", + "95": "iliopsoas_left", + "96": "iliopsoas_right", + "97": "urinary_bladder", + "98": "atrial_appendage_left", + "99": "brachiocephalic_trunk", + "100": "brachiocephalic_vein_left", + "101": "brachiocephalic_vein_right", + "102": "common_carotid_artery_left", + "103": "common_carotid_artery_right", + "104": "costal_cartilages", + "105": "heart", + "106": "kidney_cyst_left", + "107": "kidney_cyst_right", + "108": "prostate", + "109": "pulmonary_vein", + "110": "skull", + "111": "spinal_cord", + "112": "sternum", + "113": "subclavian_artery_left", + "114": "subclavian_artery_right", + "115": "superior_vena_cava", + "116": "thyroid_gland", + "117": "vertebrae_S1" + }, + "testing": [ + { + "image": "s0754/ct.nii.gz", + "label": "s0754/seg.nii.gz" + }, + { + "image": "s0459/ct.nii.gz", + "label": "s0459/seg.nii.gz" + }, + { + "image": "s1196/ct.nii.gz", + "label": "s1196/seg.nii.gz" + }, + { + "image": "s0249/ct.nii.gz", + "label": "s0249/seg.nii.gz" + }, + { + "image": "s0150/ct.nii.gz", + "label": "s0150/seg.nii.gz" + }, + { + "image": "s0784/ct.nii.gz", + "label": "s0784/seg.nii.gz" + }, + { + "image": "s1210/ct.nii.gz", + "label": "s1210/seg.nii.gz" + }, + { + "image": "s0568/ct.nii.gz", + "label": "s0568/seg.nii.gz" + }, + { + "image": "s1382/ct.nii.gz", + "label": "s1382/seg.nii.gz" + }, + { + "image": "s0535/ct.nii.gz", + "label": "s0535/seg.nii.gz" + }, + { + "image": "s1317/ct.nii.gz", + "label": "s1317/seg.nii.gz" + }, + { + "image": "s1097/ct.nii.gz", + "label": "s1097/seg.nii.gz" + }, + { + "image": "s0170/ct.nii.gz", + "label": "s0170/seg.nii.gz" + }, + { + "image": "s0675/ct.nii.gz", + "label": "s0675/seg.nii.gz" + }, + { + "image": "s0838/ct.nii.gz", + "label": "s0838/seg.nii.gz" + }, + { + "image": "s0968/ct.nii.gz", + "label": "s0968/seg.nii.gz" + }, + { + "image": "s0326/ct.nii.gz", + "label": "s0326/seg.nii.gz" + }, + { + "image": "s0982/ct.nii.gz", + "label": "s0982/seg.nii.gz" + }, + { + "image": "s1051/ct.nii.gz", + "label": "s1051/seg.nii.gz" + }, + { + "image": "s0414/ct.nii.gz", + "label": "s0414/seg.nii.gz" + }, + { + "image": "s0849/ct.nii.gz", + "label": "s0849/seg.nii.gz" + }, + { + "image": "s0206/ct.nii.gz", + "label": "s0206/seg.nii.gz" + }, + { + "image": "s0798/ct.nii.gz", + "label": "s0798/seg.nii.gz" + }, + { + "image": "s1016/ct.nii.gz", + "label": "s1016/seg.nii.gz" + }, + { + "image": "s1168/ct.nii.gz", + "label": "s1168/seg.nii.gz" + }, + { + "image": "s0334/ct.nii.gz", + "label": "s0334/seg.nii.gz" + }, + { + "image": "s0473/ct.nii.gz", + "label": "s0473/seg.nii.gz" + }, + { + "image": "s1307/ct.nii.gz", + "label": "s1307/seg.nii.gz" + }, + { + "image": "s0338/ct.nii.gz", + "label": "s0338/seg.nii.gz" + }, + { + "image": "s0571/ct.nii.gz", + "label": "s0571/seg.nii.gz" + }, + { + "image": "s0996/ct.nii.gz", + "label": "s0996/seg.nii.gz" + }, + { + "image": "s0703/ct.nii.gz", + "label": "s0703/seg.nii.gz" + }, + { + "image": "s0468/ct.nii.gz", + "label": "s0468/seg.nii.gz" + }, + { + "image": "s0282/ct.nii.gz", + "label": "s0282/seg.nii.gz" + }, + { + "image": "s0352/ct.nii.gz", + "label": "s0352/seg.nii.gz" + }, + { + "image": "s0339/ct.nii.gz", + "label": "s0339/seg.nii.gz" + }, + { + "image": "s0494/ct.nii.gz", + "label": "s0494/seg.nii.gz" + }, + { + "image": "s0377/ct.nii.gz", + "label": "s0377/seg.nii.gz" + }, + { + "image": "s0619/ct.nii.gz", + "label": "s0619/seg.nii.gz" + }, + { + "image": "s0556/ct.nii.gz", + "label": "s0556/seg.nii.gz" + }, + { + "image": "s0760/ct.nii.gz", + "label": "s0760/seg.nii.gz" + }, + { + "image": "s0789/ct.nii.gz", + "label": "s0789/seg.nii.gz" + }, + { + "image": "s0110/ct.nii.gz", + "label": "s0110/seg.nii.gz" + }, + { + "image": "s0513/ct.nii.gz", + "label": "s0513/seg.nii.gz" + }, + { + "image": "s0857/ct.nii.gz", + "label": "s0857/seg.nii.gz" + }, + { + "image": "s0637/ct.nii.gz", + "label": "s0637/seg.nii.gz" + }, + { + "image": "s0248/ct.nii.gz", + "label": "s0248/seg.nii.gz" + }, + { + "image": "s0651/ct.nii.gz", + "label": "s0651/seg.nii.gz" + }, + { + "image": "s0193/ct.nii.gz", + "label": "s0193/seg.nii.gz" + }, + { + "image": "s0723/ct.nii.gz", + "label": "s0723/seg.nii.gz" + }, + { + "image": "s0796/ct.nii.gz", + "label": "s0796/seg.nii.gz" + }, + { + "image": "s0423/ct.nii.gz", + "label": "s0423/seg.nii.gz" + }, + { + "image": "s0262/ct.nii.gz", + "label": "s0262/seg.nii.gz" + }, + { + "image": "s0621/ct.nii.gz", + "label": "s0621/seg.nii.gz" + }, + { + "image": "s0606/ct.nii.gz", + "label": "s0606/seg.nii.gz" + }, + { + "image": "s0431/ct.nii.gz", + "label": "s0431/seg.nii.gz" + }, + { + "image": "s1247/ct.nii.gz", + "label": "s1247/seg.nii.gz" + }, + { + "image": "s0366/ct.nii.gz", + "label": "s0366/seg.nii.gz" + }, + { + "image": "s0137/ct.nii.gz", + "label": "s0137/seg.nii.gz" + }, + { + "image": "s0919/ct.nii.gz", + "label": "s0919/seg.nii.gz" + }, + { + "image": "s0435/ct.nii.gz", + "label": "s0435/seg.nii.gz" + }, + { + "image": "s0593/ct.nii.gz", + "label": "s0593/seg.nii.gz" + }, + { + "image": "s0768/ct.nii.gz", + "label": "s0768/seg.nii.gz" + }, + { + "image": "s0641/ct.nii.gz", + "label": "s0641/seg.nii.gz" + }, + { + "image": "s0724/ct.nii.gz", + "label": "s0724/seg.nii.gz" + }, + { + "image": "s1033/ct.nii.gz", + "label": "s1033/seg.nii.gz" + }, + { + "image": "s1272/ct.nii.gz", + "label": "s1272/seg.nii.gz" + }, + { + "image": "s0219/ct.nii.gz", + "label": "s0219/seg.nii.gz" + }, + { + "image": "s0818/ct.nii.gz", + "label": "s0818/seg.nii.gz" + }, + { + "image": "s0644/ct.nii.gz", + "label": "s0644/seg.nii.gz" + }, + { + "image": "s0999/ct.nii.gz", + "label": "s0999/seg.nii.gz" + }, + { + "image": "s0241/ct.nii.gz", + "label": "s0241/seg.nii.gz" + }, + { + "image": "s0884/ct.nii.gz", + "label": "s0884/seg.nii.gz" + }, + { + "image": "s1072/ct.nii.gz", + "label": "s1072/seg.nii.gz" + }, + { + "image": "s0117/ct.nii.gz", + "label": "s0117/seg.nii.gz" + }, + { + "image": "s0700/ct.nii.gz", + "label": "s0700/seg.nii.gz" + }, + { + "image": "s0066/ct.nii.gz", + "label": "s0066/seg.nii.gz" + }, + { + "image": "s1373/ct.nii.gz", + "label": "s1373/seg.nii.gz" + }, + { + "image": "s0552/ct.nii.gz", + "label": "s0552/seg.nii.gz" + }, + { + "image": "s1304/ct.nii.gz", + "label": "s1304/seg.nii.gz" + }, + { + "image": "s0582/ct.nii.gz", + "label": "s0582/seg.nii.gz" + }, + { + "image": "s0922/ct.nii.gz", + "label": "s0922/seg.nii.gz" + }, + { + "image": "s0136/ct.nii.gz", + "label": "s0136/seg.nii.gz" + }, + { + "image": "s0441/ct.nii.gz", + "label": "s0441/seg.nii.gz" + }, + { + "image": "s0555/ct.nii.gz", + "label": "s0555/seg.nii.gz" + }, + { + "image": "s0522/ct.nii.gz", + "label": "s0522/seg.nii.gz" + }, + { + "image": "s0095/ct.nii.gz", + "label": "s0095/seg.nii.gz" + }, + { + "image": "s0412/ct.nii.gz", + "label": "s0412/seg.nii.gz" + }, + { + "image": "s0704/ct.nii.gz", + "label": "s0704/seg.nii.gz" + }, + { + "image": "s0801/ct.nii.gz", + "label": "s0801/seg.nii.gz" + }, + { + "image": "s0246/ct.nii.gz", + "label": "s0246/seg.nii.gz" + }, + { + "image": "s0908/ct.nii.gz", + "label": "s0908/seg.nii.gz" + }, + { + "image": "s1069/ct.nii.gz", + "label": "s1069/seg.nii.gz" + }, + { + "image": "s1414/ct.nii.gz", + "label": "s1414/seg.nii.gz" + }, + { + "image": "s0495/ct.nii.gz", + "label": "s0495/seg.nii.gz" + }, + { + "image": "s1113/ct.nii.gz", + "label": "s1113/seg.nii.gz" + }, + { + "image": "s0453/ct.nii.gz", + "label": "s0453/seg.nii.gz" + }, + { + "image": "s0199/ct.nii.gz", + "label": "s0199/seg.nii.gz" + }, + { + "image": "s1407/ct.nii.gz", + "label": "s1407/seg.nii.gz" + }, + { + "image": "s0795/ct.nii.gz", + "label": "s0795/seg.nii.gz" + }, + { + "image": "s0721/ct.nii.gz", + "label": "s0721/seg.nii.gz" + }, + { + "image": "s1207/ct.nii.gz", + "label": "s1207/seg.nii.gz" + }, + { + "image": "s0162/ct.nii.gz", + "label": "s0162/seg.nii.gz" + }, + { + "image": "s0680/ct.nii.gz", + "label": "s0680/seg.nii.gz" + }, + { + "image": "s0332/ct.nii.gz", + "label": "s0332/seg.nii.gz" + }, + { + "image": "s0802/ct.nii.gz", + "label": "s0802/seg.nii.gz" + }, + { + "image": "s0933/ct.nii.gz", + "label": "s0933/seg.nii.gz" + }, + { + "image": "s0797/ct.nii.gz", + "label": "s0797/seg.nii.gz" + }, + { + "image": "s1342/ct.nii.gz", + "label": "s1342/seg.nii.gz" + }, + { + "image": "s0168/ct.nii.gz", + "label": "s0168/seg.nii.gz" + }, + { + "image": "s0866/ct.nii.gz", + "label": "s0866/seg.nii.gz" + }, + { + "image": "s0039/ct.nii.gz", + "label": "s0039/seg.nii.gz" + }, + { + "image": "s1383/ct.nii.gz", + "label": "s1383/seg.nii.gz" + }, + { + "image": "s1330/ct.nii.gz", + "label": "s1330/seg.nii.gz" + }, + { + "image": "s1056/ct.nii.gz", + "label": "s1056/seg.nii.gz" + }, + { + "image": "s0019/ct.nii.gz", + "label": "s0019/seg.nii.gz" + }, + { + "image": "s0577/ct.nii.gz", + "label": "s0577/seg.nii.gz" + }, + { + "image": "s1195/ct.nii.gz", + "label": "s1195/seg.nii.gz" + }, + { + "image": "s1187/ct.nii.gz", + "label": "s1187/seg.nii.gz" + }, + { + "image": "s0030/ct.nii.gz", + "label": "s0030/seg.nii.gz" + }, + { + "image": "s1042/ct.nii.gz", + "label": "s1042/seg.nii.gz" + }, + { + "image": "s0182/ct.nii.gz", + "label": "s0182/seg.nii.gz" + }, + { + "image": "s1248/ct.nii.gz", + "label": "s1248/seg.nii.gz" + }, + { + "image": "s0174/ct.nii.gz", + "label": "s0174/seg.nii.gz" + }, + { + "image": "s0663/ct.nii.gz", + "label": "s0663/seg.nii.gz" + }, + { + "image": "s0867/ct.nii.gz", + "label": "s0867/seg.nii.gz" + }, + { + "image": "s0379/ct.nii.gz", + "label": "s0379/seg.nii.gz" + }, + { + "image": "s0257/ct.nii.gz", + "label": "s0257/seg.nii.gz" + }, + { + "image": "s0492/ct.nii.gz", + "label": "s0492/seg.nii.gz" + }, + { + "image": "s1241/ct.nii.gz", + "label": "s1241/seg.nii.gz" + }, + { + "image": "s0232/ct.nii.gz", + "label": "s0232/seg.nii.gz" + }, + { + "image": "s0992/ct.nii.gz", + "label": "s0992/seg.nii.gz" + }, + { + "image": "s0160/ct.nii.gz", + "label": "s0160/seg.nii.gz" + }, + { + "image": "s0167/ct.nii.gz", + "label": "s0167/seg.nii.gz" + }, + { + "image": "s1341/ct.nii.gz", + "label": "s1341/seg.nii.gz" + }, + { + "image": "s0209/ct.nii.gz", + "label": "s0209/seg.nii.gz" + }, + { + "image": "s0025/ct.nii.gz", + "label": "s0025/seg.nii.gz" + }, + { + "image": "s0100/ct.nii.gz", + "label": "s0100/seg.nii.gz" + }, + { + "image": "s1311/ct.nii.gz", + "label": "s1311/seg.nii.gz" + }, + { + "image": "s0759/ct.nii.gz", + "label": "s0759/seg.nii.gz" + }, + { + "image": "s1120/ct.nii.gz", + "label": "s1120/seg.nii.gz" + }, + { + "image": "s0090/ct.nii.gz", + "label": "s0090/seg.nii.gz" + }, + { + "image": "s0850/ct.nii.gz", + "label": "s0850/seg.nii.gz" + }, + { + "image": "s0916/ct.nii.gz", + "label": "s0916/seg.nii.gz" + }, + { + "image": "s1354/ct.nii.gz", + "label": "s1354/seg.nii.gz" + }, + { + "image": "s0003/ct.nii.gz", + "label": "s0003/seg.nii.gz" + }, + { + "image": "s1163/ct.nii.gz", + "label": "s1163/seg.nii.gz" + }, + { + "image": "s0705/ct.nii.gz", + "label": "s0705/seg.nii.gz" + }, + { + "image": "s0244/ct.nii.gz", + "label": "s0244/seg.nii.gz" + }, + { + "image": "s0563/ct.nii.gz", + "label": "s0563/seg.nii.gz" + }, + { + "image": "s0503/ct.nii.gz", + "label": "s0503/seg.nii.gz" + }, + { + "image": "s0810/ct.nii.gz", + "label": "s0810/seg.nii.gz" + }, + { + "image": "s0738/ct.nii.gz", + "label": "s0738/seg.nii.gz" + }, + { + "image": "s1011/ct.nii.gz", + "label": "s1011/seg.nii.gz" + }, + { + "image": "s1104/ct.nii.gz", + "label": "s1104/seg.nii.gz" + }, + { + "image": "s1171/ct.nii.gz", + "label": "s1171/seg.nii.gz" + }, + { + "image": "s1191/ct.nii.gz", + "label": "s1191/seg.nii.gz" + }, + { + "image": "s0527/ct.nii.gz", + "label": "s0527/seg.nii.gz" + }, + { + "image": "s0952/ct.nii.gz", + "label": "s0952/seg.nii.gz" + }, + { + "image": "s0971/ct.nii.gz", + "label": "s0971/seg.nii.gz" + }, + { + "image": "s1231/ct.nii.gz", + "label": "s1231/seg.nii.gz" + }, + { + "image": "s1012/ct.nii.gz", + "label": "s1012/seg.nii.gz" + }, + { + "image": "s0756/ct.nii.gz", + "label": "s0756/seg.nii.gz" + }, + { + "image": "s0045/ct.nii.gz", + "label": "s0045/seg.nii.gz" + }, + { + "image": "s1100/ct.nii.gz", + "label": "s1100/seg.nii.gz" + }, + { + "image": "s0188/ct.nii.gz", + "label": "s0188/seg.nii.gz" + }, + { + "image": "s0353/ct.nii.gz", + "label": "s0353/seg.nii.gz" + }, + { + "image": "s0184/ct.nii.gz", + "label": "s0184/seg.nii.gz" + }, + { + "image": "s1124/ct.nii.gz", + "label": "s1124/seg.nii.gz" + }, + { + "image": "s0382/ct.nii.gz", + "label": "s0382/seg.nii.gz" + }, + { + "image": "s0836/ct.nii.gz", + "label": "s0836/seg.nii.gz" + }, + { + "image": "s0226/ct.nii.gz", + "label": "s0226/seg.nii.gz" + }, + { + "image": "s0845/ct.nii.gz", + "label": "s0845/seg.nii.gz" + }, + { + "image": "s1259/ct.nii.gz", + "label": "s1259/seg.nii.gz" + }, + { + "image": "s0687/ct.nii.gz", + "label": "s0687/seg.nii.gz" + }, + { + "image": "s1141/ct.nii.gz", + "label": "s1141/seg.nii.gz" + }, + { + "image": "s0357/ct.nii.gz", + "label": "s0357/seg.nii.gz" + }, + { + "image": "s0683/ct.nii.gz", + "label": "s0683/seg.nii.gz" + }, + { + "image": "s0433/ct.nii.gz", + "label": "s0433/seg.nii.gz" + }, + { + "image": "s0532/ct.nii.gz", + "label": "s0532/seg.nii.gz" + }, + { + "image": "s1411/ct.nii.gz", + "label": "s1411/seg.nii.gz" + }, + { + "image": "s0265/ct.nii.gz", + "label": "s0265/seg.nii.gz" + }, + { + "image": "s0255/ct.nii.gz", + "label": "s0255/seg.nii.gz" + }, + { + "image": "s1154/ct.nii.gz", + "label": "s1154/seg.nii.gz" + }, + { + "image": "s0598/ct.nii.gz", + "label": "s0598/seg.nii.gz" + }, + { + "image": "s1061/ct.nii.gz", + "label": "s1061/seg.nii.gz" + }, + { + "image": "s1254/ct.nii.gz", + "label": "s1254/seg.nii.gz" + }, + { + "image": "s0212/ct.nii.gz", + "label": "s0212/seg.nii.gz" + }, + { + "image": "s0537/ct.nii.gz", + "label": "s0537/seg.nii.gz" + }, + { + "image": "s1039/ct.nii.gz", + "label": "s1039/seg.nii.gz" + }, + { + "image": "s0825/ct.nii.gz", + "label": "s0825/seg.nii.gz" + }, + { + "image": "s0861/ct.nii.gz", + "label": "s0861/seg.nii.gz" + }, + { + "image": "s0444/ct.nii.gz", + "label": "s0444/seg.nii.gz" + }, + { + "image": "s0611/ct.nii.gz", + "label": "s0611/seg.nii.gz" + }, + { + "image": "s1036/ct.nii.gz", + "label": "s1036/seg.nii.gz" + }, + { + "image": "s0624/ct.nii.gz", + "label": "s0624/seg.nii.gz" + }, + { + "image": "s0062/ct.nii.gz", + "label": "s0062/seg.nii.gz" + }, + { + "image": "s1293/ct.nii.gz", + "label": "s1293/seg.nii.gz" + }, + { + "image": "s0541/ct.nii.gz", + "label": "s0541/seg.nii.gz" + }, + { + "image": "s0171/ct.nii.gz", + "label": "s0171/seg.nii.gz" + }, + { + "image": "s1405/ct.nii.gz", + "label": "s1405/seg.nii.gz" + }, + { + "image": "s0978/ct.nii.gz", + "label": "s0978/seg.nii.gz" + }, + { + "image": "s0638/ct.nii.gz", + "label": "s0638/seg.nii.gz" + }, + { + "image": "s0907/ct.nii.gz", + "label": "s0907/seg.nii.gz" + }, + { + "image": "s0388/ct.nii.gz", + "label": "s0388/seg.nii.gz" + }, + { + "image": "s0002/ct.nii.gz", + "label": "s0002/seg.nii.gz" + }, + { + "image": "s0773/ct.nii.gz", + "label": "s0773/seg.nii.gz" + }, + { + "image": "s0589/ct.nii.gz", + "label": "s0589/seg.nii.gz" + }, + { + "image": "s0696/ct.nii.gz", + "label": "s0696/seg.nii.gz" + }, + { + "image": "s0237/ct.nii.gz", + "label": "s0237/seg.nii.gz" + }, + { + "image": "s0175/ct.nii.gz", + "label": "s0175/seg.nii.gz" + }, + { + "image": "s0794/ct.nii.gz", + "label": "s0794/seg.nii.gz" + }, + { + "image": "s0979/ct.nii.gz", + "label": "s0979/seg.nii.gz" + }, + { + "image": "s1368/ct.nii.gz", + "label": "s1368/seg.nii.gz" + }, + { + "image": "s0369/ct.nii.gz", + "label": "s0369/seg.nii.gz" + }, + { + "image": "s0792/ct.nii.gz", + "label": "s0792/seg.nii.gz" + }, + { + "image": "s1132/ct.nii.gz", + "label": "s1132/seg.nii.gz" + }, + { + "image": "s0035/ct.nii.gz", + "label": "s0035/seg.nii.gz" + }, + { + "image": "s0402/ct.nii.gz", + "label": "s0402/seg.nii.gz" + }, + { + "image": "s1345/ct.nii.gz", + "label": "s1345/seg.nii.gz" + }, + { + "image": "s0156/ct.nii.gz", + "label": "s0156/seg.nii.gz" + }, + { + "image": "s0694/ct.nii.gz", + "label": "s0694/seg.nii.gz" + }, + { + "image": "s0365/ct.nii.gz", + "label": "s0365/seg.nii.gz" + }, + { + "image": "s0153/ct.nii.gz", + "label": "s0153/seg.nii.gz" + }, + { + "image": "s1090/ct.nii.gz", + "label": "s1090/seg.nii.gz" + }, + { + "image": "s1150/ct.nii.gz", + "label": "s1150/seg.nii.gz" + }, + { + "image": "s0881/ct.nii.gz", + "label": "s0881/seg.nii.gz" + }, + { + "image": "s0259/ct.nii.gz", + "label": "s0259/seg.nii.gz" + }, + { + "image": "s0974/ct.nii.gz", + "label": "s0974/seg.nii.gz" + }, + { + "image": "s0263/ct.nii.gz", + "label": "s0263/seg.nii.gz" + }, + { + "image": "s1388/ct.nii.gz", + "label": "s1388/seg.nii.gz" + }, + { + "image": "s0208/ct.nii.gz", + "label": "s0208/seg.nii.gz" + }, + { + "image": "s1093/ct.nii.gz", + "label": "s1093/seg.nii.gz" + }, + { + "image": "s0639/ct.nii.gz", + "label": "s0639/seg.nii.gz" + }, + { + "image": "s0629/ct.nii.gz", + "label": "s0629/seg.nii.gz" + }, + { + "image": "s1162/ct.nii.gz", + "label": "s1162/seg.nii.gz" + }, + { + "image": "s1404/ct.nii.gz", + "label": "s1404/seg.nii.gz" + }, + { + "image": "s0115/ct.nii.gz", + "label": "s0115/seg.nii.gz" + }, + { + "image": "s1278/ct.nii.gz", + "label": "s1278/seg.nii.gz" + }, + { + "image": "s1144/ct.nii.gz", + "label": "s1144/seg.nii.gz" + }, + { + "image": "s1165/ct.nii.gz", + "label": "s1165/seg.nii.gz" + }, + { + "image": "s0507/ct.nii.gz", + "label": "s0507/seg.nii.gz" + }, + { + "image": "s1053/ct.nii.gz", + "label": "s1053/seg.nii.gz" + }, + { + "image": "s0717/ct.nii.gz", + "label": "s0717/seg.nii.gz" + }, + { + "image": "s1244/ct.nii.gz", + "label": "s1244/seg.nii.gz" + }, + { + "image": "s1040/ct.nii.gz", + "label": "s1040/seg.nii.gz" + }, + { + "image": "s0277/ct.nii.gz", + "label": "s0277/seg.nii.gz" + }, + { + "image": "s1237/ct.nii.gz", + "label": "s1237/seg.nii.gz" + } + ] +} diff --git a/vista3d/data/jsons/VerSe_5_folds.json b/vista3d/data/jsons/VerSe_5_folds.json new file mode 100644 index 0000000..cf1fe75 --- /dev/null +++ b/vista3d/data/jsons/VerSe_5_folds.json @@ -0,0 +1,2785 @@ +{ + "training": [ + { + "image": "dataset-verse19test/rawdata/sub-verse054/sub-verse054_ct.nii.gz", + "pseudo_label": "dataset-verse19test/rawdata/sub-verse054/sub-verse054_ct.nii.gz", + "label": "dataset-verse19test/derivatives/sub-verse054/sub-verse054_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "dataset-02validation/rawdata/sub-verse701/sub-verse701_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse701/sub-verse701_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse701/sub-verse701_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "dataset-02validation/rawdata/sub-verse585/sub-verse585_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse585/sub-verse585_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse585/sub-verse585_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "dataset-verse19test/rawdata/sub-verse101/sub-verse101_ct.nii.gz", + "pseudo_label": "dataset-verse19test/rawdata/sub-verse101/sub-verse101_ct.nii.gz", + "label": "dataset-verse19test/derivatives/sub-verse101/sub-verse101_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "dataset-02validation/rawdata/sub-verse769/sub-verse769_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse769/sub-verse769_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse769/sub-verse769_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "dataset-01training/rawdata/sub-verse605/sub-verse605_dir-sag_ct.nii.gz", + "pseudo_label": "dataset-01training/rawdata/sub-verse605/sub-verse605_dir-sag_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-verse605/sub-verse605_dir-sag_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "dataset-01training/rawdata/sub-gl453/sub-gl453_dir-ax_ct.nii.gz", + "pseudo_label": "dataset-01training/rawdata/sub-gl453/sub-gl453_dir-ax_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-gl453/sub-gl453_dir-ax_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "dataset-03test/rawdata/sub-verse706/sub-verse706_dir-sag_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-verse706/sub-verse706_dir-sag_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse706/sub-verse706_dir-sag_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "dataset-verse19training/rawdata/sub-verse014/sub-verse014_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse014/sub-verse014_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse014/sub-verse014_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "dataset-verse19validation/rawdata/sub-verse116/sub-verse116_ct.nii.gz", + "pseudo_label": "dataset-verse19validation/rawdata/sub-verse116/sub-verse116_ct.nii.gz", + "label": "dataset-verse19validation/derivatives/sub-verse116/sub-verse116_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "dataset-02validation/rawdata/sub-verse761/sub-verse761_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse761/sub-verse761_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse761/sub-verse761_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "dataset-02validation/rawdata/sub-verse757/sub-verse757_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse757/sub-verse757_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse757/sub-verse757_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "dataset-verse19training/rawdata/sub-verse100/sub-verse100_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse100/sub-verse100_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse100/sub-verse100_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "dataset-verse19test/rawdata/sub-verse085/sub-verse085_ct.nii.gz", + "pseudo_label": "dataset-verse19test/rawdata/sub-verse085/sub-verse085_ct.nii.gz", + "label": "dataset-verse19test/derivatives/sub-verse085/sub-verse085_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "dataset-verse19training/rawdata/sub-verse105/sub-verse105_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse105/sub-verse105_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse105/sub-verse105_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "dataset-02validation/rawdata/sub-verse621/sub-verse621_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse621/sub-verse621_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse621/sub-verse621_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "dataset-03test/rawdata/sub-gl428/sub-gl428_dir-ax_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-gl428/sub-gl428_dir-ax_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-gl428/sub-gl428_dir-ax_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "dataset-03test/rawdata/sub-verse502/sub-verse502_dir-iso_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-verse502/sub-verse502_dir-iso_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse502/sub-verse502_dir-iso_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "dataset-03test/rawdata/sub-gl216/sub-gl216_dir-ax_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-gl216/sub-gl216_dir-ax_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-gl216/sub-gl216_dir-ax_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "dataset-03test/rawdata/sub-gl108/sub-gl108_dir-ax_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-gl108/sub-gl108_dir-ax_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-gl108/sub-gl108_dir-ax_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "dataset-01training/rawdata/sub-verse514/sub-verse514_dir-ax_ct.nii.gz", + "pseudo_label": "dataset-01training/rawdata/sub-verse514/sub-verse514_dir-ax_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-verse514/sub-verse514_dir-ax_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "dataset-verse19training/rawdata/sub-verse076/sub-verse076_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse076/sub-verse076_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse076/sub-verse076_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "dataset-02validation/rawdata/sub-verse554/sub-verse554_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse554/sub-verse554_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse554/sub-verse554_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "dataset-03test/rawdata/sub-verse813/sub-verse813_dir-sag_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-verse813/sub-verse813_dir-sag_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse813/sub-verse813_dir-sag_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "dataset-01training/rawdata/sub-verse536/sub-verse536_dir-ax_ct.nii.gz", + "pseudo_label": "dataset-01training/rawdata/sub-verse536/sub-verse536_dir-ax_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-verse536/sub-verse536_dir-ax_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "dataset-02validation/rawdata/sub-verse513/sub-verse513_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse513/sub-verse513_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse513/sub-verse513_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "dataset-verse19training/rawdata/sub-verse112/sub-verse112_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse112/sub-verse112_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse112/sub-verse112_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "dataset-02validation/rawdata/sub-verse627/sub-verse627_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse627/sub-verse627_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse627/sub-verse627_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "dataset-verse19validation/rawdata/sub-verse018/sub-verse018_ct.nii.gz", + "pseudo_label": "dataset-verse19validation/rawdata/sub-verse018/sub-verse018_ct.nii.gz", + "label": "dataset-verse19validation/derivatives/sub-verse018/sub-verse018_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "dataset-01training/rawdata/sub-verse503/sub-verse503_dir-ax_ct.nii.gz", + "pseudo_label": "dataset-01training/rawdata/sub-verse503/sub-verse503_dir-ax_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-verse503/sub-verse503_dir-ax_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "dataset-verse19training/rawdata/sub-verse152/sub-verse152_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse152/sub-verse152_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse152/sub-verse152_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "dataset-verse19training/rawdata/sub-verse135/sub-verse135_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse135/sub-verse135_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse135/sub-verse135_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "dataset-verse19training/rawdata/sub-verse137/sub-verse137_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse137/sub-verse137_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse137/sub-verse137_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "dataset-verse19test/rawdata/sub-verse271/sub-verse271_ct.nii.gz", + "pseudo_label": "dataset-verse19test/rawdata/sub-verse271/sub-verse271_ct.nii.gz", + "label": "dataset-verse19test/derivatives/sub-verse271/sub-verse271_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "dataset-verse19training/rawdata/sub-verse082/sub-verse082_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse082/sub-verse082_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse082/sub-verse082_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "dataset-verse19validation/rawdata/sub-verse022/sub-verse022_ct.nii.gz", + "pseudo_label": "dataset-verse19validation/rawdata/sub-verse022/sub-verse022_ct.nii.gz", + "label": "dataset-verse19validation/derivatives/sub-verse022/sub-verse022_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "dataset-verse19training/rawdata/sub-verse408/sub-verse408_split-verse265_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse408/sub-verse408_split-verse265_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse408/sub-verse408_split-verse265_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "dataset-02validation/rawdata/sub-verse559/sub-verse559_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse559/sub-verse559_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse559/sub-verse559_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "dataset-03test/rawdata/sub-verse651/sub-verse651_dir-iso_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-verse651/sub-verse651_dir-iso_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse651/sub-verse651_dir-iso_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "dataset-01training/rawdata/sub-verse537/sub-verse537_dir-iso_ct.nii.gz", + "pseudo_label": "dataset-01training/rawdata/sub-verse537/sub-verse537_dir-iso_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-verse537/sub-verse537_dir-iso_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "dataset-verse19training/rawdata/sub-verse088/sub-verse088_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse088/sub-verse088_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse088/sub-verse088_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "dataset-02validation/rawdata/sub-verse530/sub-verse530_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse530/sub-verse530_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse530/sub-verse530_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "dataset-02validation/rawdata/sub-verse615/sub-verse615_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse615/sub-verse615_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse615/sub-verse615_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "dataset-verse19training/rawdata/sub-verse145/sub-verse145_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse145/sub-verse145_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse145/sub-verse145_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "dataset-02validation/rawdata/sub-gl099/sub-gl099_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-gl099/sub-gl099_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-gl099/sub-gl099_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "dataset-verse19test/rawdata/sub-verse092/sub-verse092_ct.nii.gz", + "pseudo_label": "dataset-verse19test/rawdata/sub-verse092/sub-verse092_ct.nii.gz", + "label": "dataset-verse19test/derivatives/sub-verse092/sub-verse092_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "dataset-verse19training/rawdata/sub-verse141/sub-verse141_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse141/sub-verse141_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse141/sub-verse141_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "dataset-verse19validation/rawdata/sub-verse242/sub-verse242_ct.nii.gz", + "pseudo_label": "dataset-verse19validation/rawdata/sub-verse242/sub-verse242_ct.nii.gz", + "label": "dataset-verse19validation/derivatives/sub-verse242/sub-verse242_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "dataset-verse19test/rawdata/sub-verse414/sub-verse414_split-verse241_ct.nii.gz", + "pseudo_label": "dataset-verse19test/rawdata/sub-verse414/sub-verse414_split-verse241_ct.nii.gz", + "label": "dataset-verse19test/derivatives/sub-verse414/sub-verse414_split-verse241_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "dataset-03test/rawdata/sub-verse647/sub-verse647_dir-sag_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-verse647/sub-verse647_dir-sag_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse647/sub-verse647_dir-sag_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "dataset-03test/rawdata/sub-verse650/sub-verse650_dir-iso_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-verse650/sub-verse650_dir-iso_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse650/sub-verse650_dir-iso_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "dataset-02validation/rawdata/sub-verse545/sub-verse545_dir-ax_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse545/sub-verse545_dir-ax_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse545/sub-verse545_dir-ax_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "dataset-02validation/rawdata/sub-gl059/sub-gl059_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-gl059/sub-gl059_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-gl059/sub-gl059_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "dataset-02validation/rawdata/sub-verse709/sub-verse709_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse709/sub-verse709_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse709/sub-verse709_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "dataset-01training/rawdata/sub-verse507/sub-verse507_dir-ax_ct.nii.gz", + "pseudo_label": "dataset-01training/rawdata/sub-verse507/sub-verse507_dir-ax_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-verse507/sub-verse507_dir-ax_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "dataset-02validation/rawdata/sub-verse719/sub-verse719_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse719/sub-verse719_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse719/sub-verse719_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 1 + }, + { + "image": "dataset-01training/rawdata/sub-gl003/sub-gl003_dir-ax_ct.nii.gz", + "pseudo_label": "dataset-01training/rawdata/sub-gl003/sub-gl003_dir-ax_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-gl003/sub-gl003_dir-ax_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "dataset-01training/rawdata/sub-verse629/sub-verse629_dir-ax_ct.nii.gz", + "pseudo_label": "dataset-01training/rawdata/sub-verse629/sub-verse629_dir-ax_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-verse629/sub-verse629_dir-ax_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "dataset-verse19training/rawdata/sub-verse097/sub-verse097_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse097/sub-verse097_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse097/sub-verse097_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "dataset-verse19validation/rawdata/sub-verse276/sub-verse276_ct.nii.gz", + "pseudo_label": "dataset-verse19validation/rawdata/sub-verse276/sub-verse276_ct.nii.gz", + "label": "dataset-verse19validation/derivatives/sub-verse276/sub-verse276_seg-vert_msk.nii.gz", + "fold": 0, + "pseudo_label_reliability": 0 + }, + { + "image": "dataset-03test/rawdata/sub-verse700/sub-verse700_dir-sag_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-verse700/sub-verse700_dir-sag_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse700/sub-verse700_dir-sag_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse700_dir-sag_ct/sub-verse700_dir-sag_ct_seg.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-gl352/sub-gl352_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-gl352/sub-gl352_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-gl352/sub-gl352_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-gl352_ct/sub-gl352_ct_seg.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse616/sub-verse616_dir-iso_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-verse616/sub-verse616_dir-iso_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse616/sub-verse616_dir-iso_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse616_dir-iso_ct/sub-verse616_dir-iso_ct_seg.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse758/sub-verse758_dir-sag_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-verse758/sub-verse758_dir-sag_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse758/sub-verse758_dir-sag_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse758_dir-sag_ct/sub-verse758_dir-sag_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19test/rawdata/sub-verse149/sub-verse149_ct.nii.gz", + "pseudo_label": "dataset-verse19test/rawdata/sub-verse149/sub-verse149_ct.nii.gz", + "label": "dataset-verse19test/derivatives/sub-verse149/sub-verse149_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse149_ct/sub-verse149_ct_seg.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse509/sub-verse509_dir-iso_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-verse509/sub-verse509_dir-iso_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse509/sub-verse509_dir-iso_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse509_dir-iso_ct/sub-verse509_dir-iso_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19validation/rawdata/sub-verse047/sub-verse047_ct.nii.gz", + "pseudo_label": "dataset-verse19validation/rawdata/sub-verse047/sub-verse047_ct.nii.gz", + "label": "dataset-verse19validation/derivatives/sub-verse047/sub-verse047_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse047_ct/sub-verse047_ct_seg.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse713/sub-verse713_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse713/sub-verse713_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse713/sub-verse713_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse713_ct/sub-verse713_ct_seg.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse582/sub-verse582_dir-iso_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-verse582/sub-verse582_dir-iso_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse582/sub-verse582_dir-iso_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse582_dir-iso_ct/sub-verse582_dir-iso_ct_seg.nii.gz" + }, + { + "image": "dataset-01training/rawdata/sub-verse581/sub-verse581_dir-ax_ct.nii.gz", + "pseudo_label": "dataset-01training/rawdata/sub-verse581/sub-verse581_dir-ax_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-verse581/sub-verse581_dir-ax_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse581_dir-ax_ct/sub-verse581_dir-ax_ct_seg.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse550/sub-verse550_dir-iso_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-verse550/sub-verse550_dir-iso_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse550/sub-verse550_dir-iso_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse550_dir-iso_ct/sub-verse550_dir-iso_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse113/sub-verse113_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse113/sub-verse113_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse113/sub-verse113_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse113_ct/sub-verse113_ct_seg.nii.gz" + }, + { + "image": "dataset-01training/rawdata/sub-verse811/sub-verse811_dir-ax_ct.nii.gz", + "pseudo_label": "dataset-01training/rawdata/sub-verse811/sub-verse811_dir-ax_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-verse811/sub-verse811_dir-ax_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse811_dir-ax_ct/sub-verse811_dir-ax_ct_seg.nii.gz" + }, + { + "image": "dataset-01training/rawdata/sub-verse500/sub-verse500_dir-ax_ct.nii.gz", + "pseudo_label": "dataset-01training/rawdata/sub-verse500/sub-verse500_dir-ax_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-verse500/sub-verse500_dir-ax_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse500_dir-ax_ct/sub-verse500_dir-ax_ct_seg.nii.gz" + }, + { + "image": "dataset-01training/rawdata/sub-verse518/sub-verse518_dir-ax_ct.nii.gz", + "pseudo_label": "dataset-01training/rawdata/sub-verse518/sub-verse518_dir-ax_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-verse518/sub-verse518_dir-ax_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse518_dir-ax_ct/sub-verse518_dir-ax_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19validation/rawdata/sub-verse264/sub-verse264_ct.nii.gz", + "pseudo_label": "dataset-verse19validation/rawdata/sub-verse264/sub-verse264_ct.nii.gz", + "label": "dataset-verse19validation/derivatives/sub-verse264/sub-verse264_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse264_ct/sub-verse264_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse406/sub-verse406_split-verse261_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse406/sub-verse406_split-verse261_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse406/sub-verse406_split-verse261_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse406_split-verse261_ct/sub-verse406_split-verse261_ct_seg.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse802/sub-verse802_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse802/sub-verse802_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse802/sub-verse802_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse802_ct/sub-verse802_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse408/sub-verse408_split-verse223_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse408/sub-verse408_split-verse223_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse408/sub-verse408_split-verse223_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse408_split-verse223_ct/sub-verse408_split-verse223_ct_seg.nii.gz" + }, + { + "image": "dataset-01training/rawdata/sub-gl364/sub-gl364_dir-ax_ct.nii.gz", + "pseudo_label": "dataset-01training/rawdata/sub-gl364/sub-gl364_dir-ax_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-gl364/sub-gl364_dir-ax_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-gl364_dir-ax_ct/sub-gl364_dir-ax_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse401/sub-verse401_split-verse201_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse401/sub-verse401_split-verse201_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse401/sub-verse401_split-verse201_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse401_split-verse201_ct/sub-verse401_split-verse201_ct_seg.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-gl419/sub-gl419_dir-ax_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-gl419/sub-gl419_dir-ax_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-gl419/sub-gl419_dir-ax_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-gl419_dir-ax_ct/sub-gl419_dir-ax_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse134/sub-verse134_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse134/sub-verse134_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse134/sub-verse134_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse134_ct/sub-verse134_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19validation/rawdata/sub-verse030/sub-verse030_ct.nii.gz", + "pseudo_label": "dataset-verse19validation/rawdata/sub-verse030/sub-verse030_ct.nii.gz", + "label": "dataset-verse19validation/derivatives/sub-verse030/sub-verse030_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse030_ct/sub-verse030_ct_seg.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse609/sub-verse609_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse609/sub-verse609_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse609/sub-verse609_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse609_ct/sub-verse609_ct_seg.nii.gz" + }, + { + "image": "dataset-01training/rawdata/sub-verse539/sub-verse539_dir-ax_ct.nii.gz", + "pseudo_label": "dataset-01training/rawdata/sub-verse539/sub-verse539_dir-ax_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-verse539/sub-verse539_dir-ax_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse539_dir-ax_ct/sub-verse539_dir-ax_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19validation/rawdata/sub-verse073/sub-verse073_ct.nii.gz", + "pseudo_label": "dataset-verse19validation/rawdata/sub-verse073/sub-verse073_ct.nii.gz", + "label": "dataset-verse19validation/derivatives/sub-verse073/sub-verse073_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse073_ct/sub-verse073_ct_seg.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse556/sub-verse556_dir-ax_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse556/sub-verse556_dir-ax_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse556/sub-verse556_dir-ax_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse556_dir-ax_ct/sub-verse556_dir-ax_ct_seg.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse572/sub-verse572_dir-sag_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-verse572/sub-verse572_dir-sag_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse572/sub-verse572_dir-sag_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse572_dir-sag_ct/sub-verse572_dir-sag_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse402/sub-verse402_split-verse251_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse402/sub-verse402_split-verse251_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse402/sub-verse402_split-verse251_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse402_split-verse251_ct/sub-verse402_split-verse251_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19validation/rawdata/sub-verse125/sub-verse125_ct.nii.gz", + "pseudo_label": "dataset-verse19validation/rawdata/sub-verse125/sub-verse125_ct.nii.gz", + "label": "dataset-verse19validation/derivatives/sub-verse125/sub-verse125_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse125_ct/sub-verse125_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19test/rawdata/sub-verse236/sub-verse236_ct.nii.gz", + "pseudo_label": "dataset-verse19test/rawdata/sub-verse236/sub-verse236_ct.nii.gz", + "label": "dataset-verse19test/derivatives/sub-verse236/sub-verse236_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse236_ct/sub-verse236_ct_seg.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse716/sub-verse716_dir-iso_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-verse716/sub-verse716_dir-iso_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse716/sub-verse716_dir-iso_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse716_dir-iso_ct/sub-verse716_dir-iso_ct_seg.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse754/sub-verse754_dir-sag_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-verse754/sub-verse754_dir-sag_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse754/sub-verse754_dir-sag_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse754_dir-sag_ct/sub-verse754_dir-sag_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19validation/rawdata/sub-verse078/sub-verse078_ct.nii.gz", + "pseudo_label": "dataset-verse19validation/rawdata/sub-verse078/sub-verse078_ct.nii.gz", + "label": "dataset-verse19validation/derivatives/sub-verse078/sub-verse078_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse078_ct/sub-verse078_ct_seg.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-gl017/sub-gl017_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-gl017/sub-gl017_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-gl017/sub-gl017_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-gl017_ct/sub-gl017_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19validation/rawdata/sub-verse412/sub-verse412_split-verse290_ct.nii.gz", + "pseudo_label": "dataset-verse19validation/rawdata/sub-verse412/sub-verse412_split-verse290_ct.nii.gz", + "label": "dataset-verse19validation/derivatives/sub-verse412/sub-verse412_split-verse290_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse412_split-verse290_ct/sub-verse412_split-verse290_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19validation/rawdata/sub-verse221/sub-verse221_ct.nii.gz", + "pseudo_label": "dataset-verse19validation/rawdata/sub-verse221/sub-verse221_ct.nii.gz", + "label": "dataset-verse19validation/derivatives/sub-verse221/sub-verse221_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse221_ct/sub-verse221_ct_seg.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse768/sub-verse768_dir-ax_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-verse768/sub-verse768_dir-ax_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse768/sub-verse768_dir-ax_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse768_dir-ax_ct/sub-verse768_dir-ax_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse107/sub-verse107_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse107/sub-verse107_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse107/sub-verse107_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse107_ct/sub-verse107_ct_seg.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse512/sub-verse512_dir-iso_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-verse512/sub-verse512_dir-iso_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse512/sub-verse512_dir-iso_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse512_dir-iso_ct/sub-verse512_dir-iso_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse407/sub-verse407_split-verse215_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse407/sub-verse407_split-verse215_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse407/sub-verse407_split-verse215_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse407_split-verse215_ct/sub-verse407_split-verse215_ct_seg.nii.gz" + }, + { + "image": "dataset-01training/rawdata/sub-gl016/sub-gl016_dir-ax_ct.nii.gz", + "pseudo_label": "dataset-01training/rawdata/sub-gl016/sub-gl016_dir-ax_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-gl016/sub-gl016_dir-ax_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-gl016_dir-ax_ct/sub-gl016_dir-ax_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19test/rawdata/sub-verse416/sub-verse416_split-verse279_ct.nii.gz", + "pseudo_label": "dataset-verse19test/rawdata/sub-verse416/sub-verse416_split-verse279_ct.nii.gz", + "label": "dataset-verse19test/derivatives/sub-verse416/sub-verse416_split-verse279_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse416_split-verse279_ct/sub-verse416_split-verse279_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse151/sub-verse151_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse151/sub-verse151_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse151/sub-verse151_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse151_ct/sub-verse151_ct_seg.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse826/sub-verse826_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse826/sub-verse826_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse826/sub-verse826_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse826_ct/sub-verse826_ct_seg.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse598/sub-verse598_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse598/sub-verse598_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse598/sub-verse598_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse598_ct/sub-verse598_ct_seg.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse576/sub-verse576_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse576/sub-verse576_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse576/sub-verse576_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse576_ct/sub-verse576_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19test/rawdata/sub-verse055/sub-verse055_ct.nii.gz", + "pseudo_label": "dataset-verse19test/rawdata/sub-verse055/sub-verse055_ct.nii.gz", + "label": "dataset-verse19test/derivatives/sub-verse055/sub-verse055_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse055_ct/sub-verse055_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19validation/rawdata/sub-verse400/sub-verse400_split-verse155_ct.nii.gz", + "pseudo_label": "dataset-verse19validation/rawdata/sub-verse400/sub-verse400_split-verse155_ct.nii.gz", + "label": "dataset-verse19validation/derivatives/sub-verse400/sub-verse400_split-verse155_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse400_split-verse155_ct/sub-verse400_split-verse155_ct_seg.nii.gz" + }, + { + "image": "dataset-01training/rawdata/sub-verse642/sub-verse642_dir-sag_ct.nii.gz", + "pseudo_label": "dataset-01training/rawdata/sub-verse642/sub-verse642_dir-sag_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-verse642/sub-verse642_dir-sag_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse642_dir-sag_ct/sub-verse642_dir-sag_ct_seg.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse522/sub-verse522_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse522/sub-verse522_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse522/sub-verse522_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse522_ct/sub-verse522_ct_seg.nii.gz" + }, + { + "image": "dataset-01training/rawdata/sub-verse593/sub-verse593_dir-sag_ct.nii.gz", + "pseudo_label": "dataset-01training/rawdata/sub-verse593/sub-verse593_dir-sag_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-verse593/sub-verse593_dir-sag_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse593_dir-sag_ct/sub-verse593_dir-sag_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse411/sub-verse411_split-verse270_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse411/sub-verse411_split-verse270_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse411/sub-verse411_split-verse270_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse411_split-verse270_ct/sub-verse411_split-verse270_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19test/rawdata/sub-verse417/sub-verse417_split-verse277_ct.nii.gz", + "pseudo_label": "dataset-verse19test/rawdata/sub-verse417/sub-verse417_split-verse277_ct.nii.gz", + "label": "dataset-verse19test/derivatives/sub-verse417/sub-verse417_split-verse277_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse417_split-verse277_ct/sub-verse417_split-verse277_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse402/sub-verse402_split-verse202_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse402/sub-verse402_split-verse202_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse402/sub-verse402_split-verse202_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse402_split-verse202_ct/sub-verse402_split-verse202_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19validation/rawdata/sub-verse041/sub-verse041_ct.nii.gz", + "pseudo_label": "dataset-verse19validation/rawdata/sub-verse041/sub-verse041_ct.nii.gz", + "label": "dataset-verse19validation/derivatives/sub-verse041/sub-verse041_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse041_ct/sub-verse041_ct_seg.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse707/sub-verse707_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse707/sub-verse707_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse707/sub-verse707_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse707_ct/sub-verse707_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19test/rawdata/sub-verse416/sub-verse416_split-verse247_ct.nii.gz", + "pseudo_label": "dataset-verse19test/rawdata/sub-verse416/sub-verse416_split-verse247_ct.nii.gz", + "label": "dataset-verse19test/derivatives/sub-verse416/sub-verse416_split-verse247_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse416_split-verse247_ct/sub-verse416_split-verse247_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19test/rawdata/sub-verse260/sub-verse260_ct.nii.gz", + "pseudo_label": "dataset-verse19test/rawdata/sub-verse260/sub-verse260_ct.nii.gz", + "label": "dataset-verse19test/derivatives/sub-verse260/sub-verse260_seg-vert_msk.nii.gz", + "fold": 1, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse260_ct/sub-verse260_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19validation/rawdata/sub-verse150/sub-verse150_ct.nii.gz", + "pseudo_label": "dataset-verse19validation/rawdata/sub-verse150/sub-verse150_ct.nii.gz", + "label": "dataset-verse19validation/derivatives/sub-verse150/sub-verse150_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse150_ct/sub-verse150_ct_seg.nii.gz" + }, + { + "image": "dataset-01training/rawdata/sub-verse533/sub-verse533_dir-ax_ct.nii.gz", + "pseudo_label": "dataset-01training/rawdata/sub-verse533/sub-verse533_dir-ax_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-verse533/sub-verse533_dir-ax_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse533_dir-ax_ct/sub-verse533_dir-ax_ct_seg.nii.gz" + }, + { + "image": "dataset-01training/rawdata/sub-verse584/sub-verse584_dir-ax_ct.nii.gz", + "pseudo_label": "dataset-01training/rawdata/sub-verse584/sub-verse584_dir-ax_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-verse584/sub-verse584_dir-ax_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse584_dir-ax_ct/sub-verse584_dir-ax_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse075/sub-verse075_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse075/sub-verse075_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse075/sub-verse075_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse075_ct/sub-verse075_ct_seg.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse816/sub-verse816_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse816/sub-verse816_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse816/sub-verse816_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse816_ct/sub-verse816_ct_seg.nii.gz" + }, + { + "image": "dataset-01training/rawdata/sub-verse820/sub-verse820_dir-ax_ct.nii.gz", + "pseudo_label": "dataset-01training/rawdata/sub-verse820/sub-verse820_dir-ax_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-verse820/sub-verse820_dir-ax_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse820_dir-ax_ct/sub-verse820_dir-ax_ct_seg.nii.gz" + }, + { + "image": "dataset-01training/rawdata/sub-verse808/sub-verse808_dir-iso_ct.nii.gz", + "pseudo_label": "dataset-01training/rawdata/sub-verse808/sub-verse808_dir-iso_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-verse808/sub-verse808_dir-iso_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse808_dir-iso_ct/sub-verse808_dir-iso_ct_seg.nii.gz" + }, + { + "image": "dataset-01training/rawdata/sub-verse825/sub-verse825_dir-ax_ct.nii.gz", + "pseudo_label": "dataset-01training/rawdata/sub-verse825/sub-verse825_dir-ax_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-verse825/sub-verse825_dir-ax_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse825_dir-ax_ct/sub-verse825_dir-ax_ct_seg.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse547/sub-verse547_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse547/sub-verse547_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse547/sub-verse547_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse547_ct/sub-verse547_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19test/rawdata/sub-verse032/sub-verse032_ct.nii.gz", + "pseudo_label": "dataset-verse19test/rawdata/sub-verse032/sub-verse032_ct.nii.gz", + "label": "dataset-verse19test/derivatives/sub-verse032/sub-verse032_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse032_ct/sub-verse032_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse407/sub-verse407_split-verse262_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse407/sub-verse407_split-verse262_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse407/sub-verse407_split-verse262_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse407_split-verse262_ct/sub-verse407_split-verse262_ct_seg.nii.gz" + }, + { + "image": "dataset-01training/rawdata/sub-verse833/sub-verse833_dir-ax_ct.nii.gz", + "pseudo_label": "dataset-01training/rawdata/sub-verse833/sub-verse833_dir-ax_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-verse833/sub-verse833_dir-ax_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse833_dir-ax_ct/sub-verse833_dir-ax_ct_seg.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse763/sub-verse763_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse763/sub-verse763_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse763/sub-verse763_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse763_ct/sub-verse763_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse015/sub-verse015_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse015/sub-verse015_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse015/sub-verse015_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse015_ct/sub-verse015_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19test/rawdata/sub-verse217/sub-verse217_ct.nii.gz", + "pseudo_label": "dataset-verse19test/rawdata/sub-verse217/sub-verse217_ct.nii.gz", + "label": "dataset-verse19test/derivatives/sub-verse217/sub-verse217_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse217_ct/sub-verse217_ct_seg.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse765/sub-verse765_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse765/sub-verse765_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse765/sub-verse765_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse765_ct/sub-verse765_ct_seg.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-gl479/sub-gl479_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-gl479/sub-gl479_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-gl479/sub-gl479_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-gl479_ct/sub-gl479_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse415/sub-verse415_split-verse243_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse415/sub-verse415_split-verse243_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse415/sub-verse415_split-verse243_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse415_split-verse243_ct/sub-verse415_split-verse243_ct_seg.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse755/sub-verse755_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse755/sub-verse755_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse755/sub-verse755_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse755_ct/sub-verse755_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse401/sub-verse401_split-verse253_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse401/sub-verse401_split-verse253_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse401/sub-verse401_split-verse253_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse401_split-verse253_ct/sub-verse401_split-verse253_ct_seg.nii.gz" + }, + { + "image": "dataset-01training/rawdata/sub-gl295/sub-gl295_dir-ax_ct.nii.gz", + "pseudo_label": "dataset-01training/rawdata/sub-gl295/sub-gl295_dir-ax_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-gl295/sub-gl295_dir-ax_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-gl295_dir-ax_ct/sub-gl295_dir-ax_ct_seg.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse640/sub-verse640_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse640/sub-verse640_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse640/sub-verse640_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse640_ct/sub-verse640_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse009/sub-verse009_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse009/sub-verse009_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse009/sub-verse009_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse009_ct/sub-verse009_ct_seg.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse573/sub-verse573_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse573/sub-verse573_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse573/sub-verse573_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse573_ct/sub-verse573_ct_seg.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse511/sub-verse511_dir-ax_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse511/sub-verse511_dir-ax_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse511/sub-verse511_dir-ax_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse511_dir-ax_ct/sub-verse511_dir-ax_ct_seg.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse549/sub-verse549_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse549/sub-verse549_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse549/sub-verse549_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse549_ct/sub-verse549_ct_seg.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse810/sub-verse810_dir-iso_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-verse810/sub-verse810_dir-iso_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse810/sub-verse810_dir-iso_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse810_dir-iso_ct/sub-verse810_dir-iso_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19validation/rawdata/sub-verse067/sub-verse067_ct.nii.gz", + "pseudo_label": "dataset-verse19validation/rawdata/sub-verse067/sub-verse067_ct.nii.gz", + "label": "dataset-verse19validation/derivatives/sub-verse067/sub-verse067_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse067_ct/sub-verse067_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19validation/rawdata/sub-verse404/sub-verse404_split-verse209_ct.nii.gz", + "pseudo_label": "dataset-verse19validation/rawdata/sub-verse404/sub-verse404_split-verse209_ct.nii.gz", + "label": "dataset-verse19validation/derivatives/sub-verse404/sub-verse404_split-verse209_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse404_split-verse209_ct/sub-verse404_split-verse209_ct_seg.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse750/sub-verse750_dir-ax_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse750/sub-verse750_dir-ax_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse750/sub-verse750_dir-ax_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse750_dir-ax_ct/sub-verse750_dir-ax_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse405/sub-verse405_split-verse258_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse405/sub-verse405_split-verse258_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse405/sub-verse405_split-verse258_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse405_split-verse258_ct/sub-verse405_split-verse258_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse061/sub-verse061_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse061/sub-verse061_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse061/sub-verse061_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse061_ct/sub-verse061_ct_seg.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse753/sub-verse753_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse753/sub-verse753_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse753/sub-verse753_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse753_ct/sub-verse753_ct_seg.nii.gz" + }, + { + "image": "dataset-01training/rawdata/sub-verse619/sub-verse619_dir-ax_ct.nii.gz", + "pseudo_label": "dataset-01training/rawdata/sub-verse619/sub-verse619_dir-ax_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-verse619/sub-verse619_dir-ax_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse619_dir-ax_ct/sub-verse619_dir-ax_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse006/sub-verse006_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse006/sub-verse006_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse006/sub-verse006_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse006_ct/sub-verse006_ct_seg.nii.gz" + }, + { + "image": "dataset-01training/rawdata/sub-verse565/sub-verse565_dir-ax_ct.nii.gz", + "pseudo_label": "dataset-01training/rawdata/sub-verse565/sub-verse565_dir-ax_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-verse565/sub-verse565_dir-ax_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse565_dir-ax_ct/sub-verse565_dir-ax_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse065/sub-verse065_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse065/sub-verse065_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse065/sub-verse065_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse065_ct/sub-verse065_ct_seg.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse711/sub-verse711_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse711/sub-verse711_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse711/sub-verse711_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse711_ct/sub-verse711_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19test/rawdata/sub-verse144/sub-verse144_ct.nii.gz", + "pseudo_label": "dataset-verse19test/rawdata/sub-verse144/sub-verse144_ct.nii.gz", + "label": "dataset-verse19test/derivatives/sub-verse144/sub-verse144_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse144_ct/sub-verse144_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19test/rawdata/sub-verse038/sub-verse038_ct.nii.gz", + "pseudo_label": "dataset-verse19test/rawdata/sub-verse038/sub-verse038_ct.nii.gz", + "label": "dataset-verse19test/derivatives/sub-verse038/sub-verse038_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse038_ct/sub-verse038_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19validation/rawdata/sub-verse011/sub-verse011_ct.nii.gz", + "pseudo_label": "dataset-verse19validation/rawdata/sub-verse011/sub-verse011_ct.nii.gz", + "label": "dataset-verse19validation/derivatives/sub-verse011/sub-verse011_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse011_ct/sub-verse011_ct_seg.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse552/sub-verse552_dir-ax_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-verse552/sub-verse552_dir-ax_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse552/sub-verse552_dir-ax_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse552_dir-ax_ct/sub-verse552_dir-ax_ct_seg.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse600/sub-verse600_dir-ax_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse600/sub-verse600_dir-ax_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse600/sub-verse600_dir-ax_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse600_dir-ax_ct/sub-verse600_dir-ax_ct_seg.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse607/sub-verse607_dir-sag_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-verse607/sub-verse607_dir-sag_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse607/sub-verse607_dir-sag_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse607_dir-sag_ct/sub-verse607_dir-sag_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19test/rawdata/sub-verse130/sub-verse130_ct.nii.gz", + "pseudo_label": "dataset-verse19test/rawdata/sub-verse130/sub-verse130_ct.nii.gz", + "label": "dataset-verse19test/derivatives/sub-verse130/sub-verse130_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse130_ct/sub-verse130_ct_seg.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse623/sub-verse623_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse623/sub-verse623_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse623/sub-verse623_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse623_ct/sub-verse623_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse104/sub-verse104_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse104/sub-verse104_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse104/sub-verse104_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse104_ct/sub-verse104_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19validation/rawdata/sub-verse080/sub-verse080_ct.nii.gz", + "pseudo_label": "dataset-verse19validation/rawdata/sub-verse080/sub-verse080_ct.nii.gz", + "label": "dataset-verse19validation/derivatives/sub-verse080/sub-verse080_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse080_ct/sub-verse080_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse409/sub-verse409_split-verse226_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse409/sub-verse409_split-verse226_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse409/sub-verse409_split-verse226_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse409_split-verse226_ct/sub-verse409_split-verse226_ct_seg.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse603/sub-verse603_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse603/sub-verse603_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse603/sub-verse603_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse603_ct/sub-verse603_ct_seg.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse614/sub-verse614_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse614/sub-verse614_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse614/sub-verse614_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse614_ct/sub-verse614_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse005/sub-verse005_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse005/sub-verse005_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse005/sub-verse005_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse005_ct/sub-verse005_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse146/sub-verse146_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse146/sub-verse146_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse146/sub-verse146_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse146_ct/sub-verse146_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19validation/rawdata/sub-verse023/sub-verse023_ct.nii.gz", + "pseudo_label": "dataset-verse19validation/rawdata/sub-verse023/sub-verse023_ct.nii.gz", + "label": "dataset-verse19validation/derivatives/sub-verse023/sub-verse023_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse023_ct/sub-verse023_ct_seg.nii.gz" + }, + { + "image": "dataset-01training/rawdata/sub-verse544/sub-verse544_dir-ax_ct.nii.gz", + "pseudo_label": "dataset-01training/rawdata/sub-verse544/sub-verse544_dir-ax_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-verse544/sub-verse544_dir-ax_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse544_dir-ax_ct/sub-verse544_dir-ax_ct_seg.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse801/sub-verse801_dir-iso_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-verse801/sub-verse801_dir-iso_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse801/sub-verse801_dir-iso_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse801_dir-iso_ct/sub-verse801_dir-iso_ct_seg.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse764/sub-verse764_dir-iso_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-verse764/sub-verse764_dir-iso_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse764/sub-verse764_dir-iso_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse764_dir-iso_ct/sub-verse764_dir-iso_ct_seg.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse526/sub-verse526_dir-iso_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-verse526/sub-verse526_dir-iso_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse526/sub-verse526_dir-iso_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse526_dir-iso_ct/sub-verse526_dir-iso_ct_seg.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse708/sub-verse708_dir-iso_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-verse708/sub-verse708_dir-iso_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse708/sub-verse708_dir-iso_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse708_dir-iso_ct/sub-verse708_dir-iso_ct_seg.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse604/sub-verse604_dir-iso_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-verse604/sub-verse604_dir-iso_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse604/sub-verse604_dir-iso_seg-vert_msk.nii.gz", + "fold": 2, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse604_dir-iso_ct/sub-verse604_dir-iso_ct_seg.nii.gz" + }, + { + "image": "dataset-01training/rawdata/sub-verse594/sub-verse594_dir-ax_ct.nii.gz", + "pseudo_label": "dataset-01training/rawdata/sub-verse594/sub-verse594_dir-ax_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-verse594/sub-verse594_dir-ax_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse594_dir-ax_ct/sub-verse594_dir-ax_ct_seg.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse617/sub-verse617_dir-iso_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-verse617/sub-verse617_dir-iso_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse617/sub-verse617_dir-iso_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse617_dir-iso_ct/sub-verse617_dir-iso_ct_seg.nii.gz" + }, + { + "image": "dataset-01training/rawdata/sub-verse542/sub-verse542_dir-iso_ct.nii.gz", + "pseudo_label": "dataset-01training/rawdata/sub-verse542/sub-verse542_dir-iso_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-verse542/sub-verse542_dir-iso_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse542_dir-iso_ct/sub-verse542_dir-iso_ct_seg.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-gl195/sub-gl195_dir-ax_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-gl195/sub-gl195_dir-ax_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-gl195/sub-gl195_dir-ax_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-gl195_dir-ax_ct/sub-gl195_dir-ax_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19validation/rawdata/sub-verse024/sub-verse024_ct.nii.gz", + "pseudo_label": "dataset-verse19validation/rawdata/sub-verse024/sub-verse024_ct.nii.gz", + "label": "dataset-verse19validation/derivatives/sub-verse024/sub-verse024_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse024_ct/sub-verse024_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse254/sub-verse254_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse254/sub-verse254_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse254/sub-verse254_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse254_ct/sub-verse254_ct_seg.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse702/sub-verse702_dir-sag_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-verse702/sub-verse702_dir-sag_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse702/sub-verse702_dir-sag_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse702_dir-sag_ct/sub-verse702_dir-sag_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse004/sub-verse004_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse004/sub-verse004_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse004/sub-verse004_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse004_ct/sub-verse004_ct_seg.nii.gz" + }, + { + "image": "dataset-01training/rawdata/sub-verse504/sub-verse504_dir-iso_ct.nii.gz", + "pseudo_label": "dataset-01training/rawdata/sub-verse504/sub-verse504_dir-iso_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-verse504/sub-verse504_dir-iso_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse504_dir-iso_ct/sub-verse504_dir-iso_ct_seg.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse710/sub-verse710_dir-iso_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-verse710/sub-verse710_dir-iso_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse710/sub-verse710_dir-iso_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse710_dir-iso_ct/sub-verse710_dir-iso_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19test/rawdata/sub-verse070/sub-verse070_ct.nii.gz", + "pseudo_label": "dataset-verse19test/rawdata/sub-verse070/sub-verse070_ct.nii.gz", + "label": "dataset-verse19test/derivatives/sub-verse070/sub-verse070_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse070_ct/sub-verse070_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19test/rawdata/sub-verse417/sub-verse417_split-verse278_ct.nii.gz", + "pseudo_label": "dataset-verse19test/rawdata/sub-verse417/sub-verse417_split-verse278_ct.nii.gz", + "label": "dataset-verse19test/derivatives/sub-verse417/sub-verse417_split-verse278_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse417_split-verse278_ct/sub-verse417_split-verse278_ct_seg.nii.gz" + }, + { + "image": "dataset-01training/rawdata/sub-verse519/sub-verse519_dir-iso_ct.nii.gz", + "pseudo_label": "dataset-01training/rawdata/sub-verse519/sub-verse519_dir-iso_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-verse519/sub-verse519_dir-iso_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse519_dir-iso_ct/sub-verse519_dir-iso_ct_seg.nii.gz" + }, + { + "image": "dataset-01training/rawdata/sub-verse641/sub-verse641_dir-ax_ct.nii.gz", + "pseudo_label": "dataset-01training/rawdata/sub-verse641/sub-verse641_dir-ax_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-verse641/sub-verse641_dir-ax_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse641_dir-ax_ct/sub-verse641_dir-ax_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19test/rawdata/sub-verse020/sub-verse020_ct.nii.gz", + "pseudo_label": "dataset-verse19test/rawdata/sub-verse020/sub-verse020_ct.nii.gz", + "label": "dataset-verse19test/derivatives/sub-verse020/sub-verse020_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse020_ct/sub-verse020_ct_seg.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse817/sub-verse817_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse817/sub-verse817_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse817/sub-verse817_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse817_ct/sub-verse817_ct_seg.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse571/sub-verse571_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse571/sub-verse571_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse571/sub-verse571_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse571_ct/sub-verse571_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19validation/rawdata/sub-verse095/sub-verse095_ct.nii.gz", + "pseudo_label": "dataset-verse19validation/rawdata/sub-verse095/sub-verse095_ct.nii.gz", + "label": "dataset-verse19validation/derivatives/sub-verse095/sub-verse095_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse095_ct/sub-verse095_ct_seg.nii.gz" + }, + { + "image": "dataset-01training/rawdata/sub-verse596/sub-verse596_dir-ax_ct.nii.gz", + "pseudo_label": "dataset-01training/rawdata/sub-verse596/sub-verse596_dir-ax_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-verse596/sub-verse596_dir-ax_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse596_dir-ax_ct/sub-verse596_dir-ax_ct_seg.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-gl045/sub-gl045_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-gl045/sub-gl045_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-gl045/sub-gl045_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-gl045_ct/sub-gl045_ct_seg.nii.gz" + }, + { + "image": "dataset-01training/rawdata/sub-verse521/sub-verse521_dir-ax_ct.nii.gz", + "pseudo_label": "dataset-01training/rawdata/sub-verse521/sub-verse521_dir-ax_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-verse521/sub-verse521_dir-ax_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse521_dir-ax_ct/sub-verse521_dir-ax_ct_seg.nii.gz" + }, + { + "image": "dataset-01training/rawdata/sub-verse631/sub-verse631_ct.nii.gz", + "pseudo_label": "dataset-01training/rawdata/sub-verse631/sub-verse631_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-verse631/sub-verse631_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse631_ct/sub-verse631_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse413/sub-verse413_split-verse239_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse413/sub-verse413_split-verse239_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse413/sub-verse413_split-verse239_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse413_split-verse239_ct/sub-verse413_split-verse239_ct_seg.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse767/sub-verse767_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse767/sub-verse767_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse767/sub-verse767_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse767_ct/sub-verse767_ct_seg.nii.gz" + }, + { + "image": "dataset-01training/rawdata/sub-verse561/sub-verse561_dir-sag_ct.nii.gz", + "pseudo_label": "dataset-01training/rawdata/sub-verse561/sub-verse561_dir-sag_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-verse561/sub-verse561_dir-sag_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse561_dir-sag_ct/sub-verse561_dir-sag_ct_seg.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse602/sub-verse602_dir-iso_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-verse602/sub-verse602_dir-iso_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse602/sub-verse602_dir-iso_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse602_dir-iso_ct/sub-verse602_dir-iso_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse007/sub-verse007_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse007/sub-verse007_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse007/sub-verse007_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse007_ct/sub-verse007_ct_seg.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse804/sub-verse804_dir-iso_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-verse804/sub-verse804_dir-iso_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse804/sub-verse804_dir-iso_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse804_dir-iso_ct/sub-verse804_dir-iso_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse111/sub-verse111_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse111/sub-verse111_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse111/sub-verse111_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse111_ct/sub-verse111_ct_seg.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse803/sub-verse803_dir-iso_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-verse803/sub-verse803_dir-iso_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse803/sub-verse803_dir-iso_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse803_dir-iso_ct/sub-verse803_dir-iso_ct_seg.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse821/sub-verse821_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse821/sub-verse821_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse821/sub-verse821_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse821_ct/sub-verse821_ct_seg.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse618/sub-verse618_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse618/sub-verse618_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse618/sub-verse618_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse618_ct/sub-verse618_ct_seg.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse524/sub-verse524_dir-iso_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-verse524/sub-verse524_dir-iso_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse524/sub-verse524_dir-iso_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse524_dir-iso_ct/sub-verse524_dir-iso_ct_seg.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse555/sub-verse555_dir-iso_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-verse555/sub-verse555_dir-iso_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse555/sub-verse555_dir-iso_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse555_dir-iso_ct/sub-verse555_dir-iso_ct_seg.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-gl144/sub-gl144_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-gl144/sub-gl144_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-gl144/sub-gl144_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-gl144_ct/sub-gl144_ct_seg.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-gl146/sub-gl146_dir-ax_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-gl146/sub-gl146_dir-ax_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-gl146/sub-gl146_dir-ax_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-gl146_dir-ax_ct/sub-gl146_dir-ax_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19validation/rawdata/sub-verse093/sub-verse093_ct.nii.gz", + "pseudo_label": "dataset-verse19validation/rawdata/sub-verse093/sub-verse093_ct.nii.gz", + "label": "dataset-verse19validation/derivatives/sub-verse093/sub-verse093_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse093_ct/sub-verse093_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse074/sub-verse074_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse074/sub-verse074_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse074/sub-verse074_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse074_ct/sub-verse074_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19test/rawdata/sub-verse138/sub-verse138_ct.nii.gz", + "pseudo_label": "dataset-verse19test/rawdata/sub-verse138/sub-verse138_ct.nii.gz", + "label": "dataset-verse19test/derivatives/sub-verse138/sub-verse138_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse138_ct/sub-verse138_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19validation/rawdata/sub-verse153/sub-verse153_ct.nii.gz", + "pseudo_label": "dataset-verse19validation/rawdata/sub-verse153/sub-verse153_ct.nii.gz", + "label": "dataset-verse19validation/derivatives/sub-verse153/sub-verse153_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse153_ct/sub-verse153_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse415/sub-verse415_split-verse275_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse415/sub-verse415_split-verse275_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse415/sub-verse415_split-verse275_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse415_split-verse275_ct/sub-verse415_split-verse275_ct_seg.nii.gz" + }, + { + "image": "dataset-01training/rawdata/sub-verse823/sub-verse823_dir-iso_ct.nii.gz", + "pseudo_label": "dataset-01training/rawdata/sub-verse823/sub-verse823_dir-iso_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-verse823/sub-verse823_dir-iso_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse823_dir-iso_ct/sub-verse823_dir-iso_ct_seg.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse760/sub-verse760_dir-iso_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-verse760/sub-verse760_dir-iso_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse760/sub-verse760_dir-iso_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse760_dir-iso_ct/sub-verse760_dir-iso_ct_seg.nii.gz" + }, + { + "image": "dataset-01training/rawdata/sub-verse824/sub-verse824_dir-ax_ct.nii.gz", + "pseudo_label": "dataset-01training/rawdata/sub-verse824/sub-verse824_dir-ax_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-verse824/sub-verse824_dir-ax_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse824_dir-ax_ct/sub-verse824_dir-ax_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19validation/rawdata/sub-verse230/sub-verse230_ct.nii.gz", + "pseudo_label": "dataset-verse19validation/rawdata/sub-verse230/sub-verse230_ct.nii.gz", + "label": "dataset-verse19validation/derivatives/sub-verse230/sub-verse230_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse230_ct/sub-verse230_ct_seg.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse805/sub-verse805_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse805/sub-verse805_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse805/sub-verse805_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse805_ct/sub-verse805_ct_seg.nii.gz" + }, + { + "image": "dataset-01training/rawdata/sub-gl124/sub-gl124_dir-ax_ct.nii.gz", + "pseudo_label": "dataset-01training/rawdata/sub-gl124/sub-gl124_dir-ax_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-gl124/sub-gl124_dir-ax_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-gl124_dir-ax_ct/sub-gl124_dir-ax_ct_seg.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse644/sub-verse644_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse644/sub-verse644_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse644/sub-verse644_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse644_ct/sub-verse644_ct_seg.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse597/sub-verse597_dir-iso_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-verse597/sub-verse597_dir-iso_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse597/sub-verse597_dir-iso_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse597_dir-iso_ct/sub-verse597_dir-iso_ct_seg.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-gl068/sub-gl068_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-gl068/sub-gl068_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-gl068/sub-gl068_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-gl068_ct/sub-gl068_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse096/sub-verse096_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse096/sub-verse096_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse096/sub-verse096_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse096_ct/sub-verse096_ct_seg.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse712/sub-verse712_dir-iso_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-verse712/sub-verse712_dir-iso_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse712/sub-verse712_dir-iso_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse712_dir-iso_ct/sub-verse712_dir-iso_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19test/rawdata/sub-verse066/sub-verse066_ct.nii.gz", + "pseudo_label": "dataset-verse19test/rawdata/sub-verse066/sub-verse066_ct.nii.gz", + "label": "dataset-verse19test/derivatives/sub-verse066/sub-verse066_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse066_ct/sub-verse066_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse051/sub-verse051_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse051/sub-verse051_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse051/sub-verse051_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse051_ct/sub-verse051_ct_seg.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse717/sub-verse717_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse717/sub-verse717_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse717/sub-verse717_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse717_ct/sub-verse717_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse060/sub-verse060_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse060/sub-verse060_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse060/sub-verse060_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse060_ct/sub-verse060_ct_seg.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse508/sub-verse508_dir-ax_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse508/sub-verse508_dir-ax_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse508/sub-verse508_dir-ax_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse508_dir-ax_ct/sub-verse508_dir-ax_ct_seg.nii.gz" + }, + { + "image": "dataset-01training/rawdata/sub-verse506/sub-verse506_dir-iso_ct.nii.gz", + "pseudo_label": "dataset-01training/rawdata/sub-verse506/sub-verse506_dir-iso_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-verse506/sub-verse506_dir-iso_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse506_dir-iso_ct/sub-verse506_dir-iso_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse409/sub-verse409_split-verse266_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse409/sub-verse409_split-verse266_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse409/sub-verse409_split-verse266_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse409_split-verse266_ct/sub-verse409_split-verse266_ct_seg.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse715/sub-verse715_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse715/sub-verse715_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse715/sub-verse715_seg-vert_msk.nii.gz", + "fold": 3, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse715_ct/sub-verse715_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19test/rawdata/sub-verse029/sub-verse029_ct.nii.gz", + "pseudo_label": "dataset-verse19test/rawdata/sub-verse029/sub-verse029_ct.nii.gz", + "label": "dataset-verse19test/derivatives/sub-verse029/sub-verse029_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse029_ct/sub-verse029_ct_seg.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse570/sub-verse570_dir-iso_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-verse570/sub-verse570_dir-iso_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse570/sub-verse570_dir-iso_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse570_dir-iso_ct/sub-verse570_dir-iso_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse068/sub-verse068_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse068/sub-verse068_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse068/sub-verse068_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse068_ct/sub-verse068_ct_seg.nii.gz" + }, + { + "image": "dataset-01training/rawdata/sub-verse532/sub-verse532_dir-ax_ct.nii.gz", + "pseudo_label": "dataset-01training/rawdata/sub-verse532/sub-verse532_dir-ax_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-verse532/sub-verse532_dir-ax_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse532_dir-ax_ct/sub-verse532_dir-ax_ct_seg.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse809/sub-verse809_dir-iso_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-verse809/sub-verse809_dir-iso_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse809/sub-verse809_dir-iso_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse809_dir-iso_ct/sub-verse809_dir-iso_ct_seg.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse703/sub-verse703_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse703/sub-verse703_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse703/sub-verse703_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse703_ct/sub-verse703_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19test/rawdata/sub-verse059/sub-verse059_ct.nii.gz", + "pseudo_label": "dataset-verse19test/rawdata/sub-verse059/sub-verse059_ct.nii.gz", + "label": "dataset-verse19test/derivatives/sub-verse059/sub-verse059_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse059_ct/sub-verse059_ct_seg.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse714/sub-verse714_dir-iso_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-verse714/sub-verse714_dir-iso_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse714/sub-verse714_dir-iso_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse714_dir-iso_ct/sub-verse714_dir-iso_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19test/rawdata/sub-verse414/sub-verse414_split-verse273_ct.nii.gz", + "pseudo_label": "dataset-verse19test/rawdata/sub-verse414/sub-verse414_split-verse273_ct.nii.gz", + "label": "dataset-verse19test/derivatives/sub-verse414/sub-verse414_split-verse273_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse414_split-verse273_ct/sub-verse414_split-verse273_ct_seg.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse531/sub-verse531_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse531/sub-verse531_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse531/sub-verse531_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse531_ct/sub-verse531_ct_seg.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse558/sub-verse558_dir-sag_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-verse558/sub-verse558_dir-sag_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse558/sub-verse558_dir-sag_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse558_dir-sag_ct/sub-verse558_dir-sag_ct_seg.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse529/sub-verse529_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse529/sub-verse529_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse529/sub-verse529_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse529_ct/sub-verse529_ct_seg.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse613/sub-verse613_dir-iso_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-verse613/sub-verse613_dir-iso_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse613/sub-verse613_dir-iso_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse613_dir-iso_ct/sub-verse613_dir-iso_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse133/sub-verse133_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse133/sub-verse133_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse133/sub-verse133_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse133_ct/sub-verse133_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse207/sub-verse207_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse207/sub-verse207_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse207/sub-verse207_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse207_ct/sub-verse207_ct_seg.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse592/sub-verse592_dir-ax_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse592/sub-verse592_dir-ax_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse592/sub-verse592_dir-ax_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse592_dir-ax_ct/sub-verse592_dir-ax_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19validation/rawdata/sub-verse225/sub-verse225_ct.nii.gz", + "pseudo_label": "dataset-verse19validation/rawdata/sub-verse225/sub-verse225_ct.nii.gz", + "label": "dataset-verse19validation/derivatives/sub-verse225/sub-verse225_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse225_ct/sub-verse225_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19validation/rawdata/sub-verse269/sub-verse269_ct.nii.gz", + "pseudo_label": "dataset-verse19validation/rawdata/sub-verse269/sub-verse269_ct.nii.gz", + "label": "dataset-verse19validation/derivatives/sub-verse269/sub-verse269_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse269_ct/sub-verse269_ct_seg.nii.gz" + }, + { + "image": "dataset-01training/rawdata/sub-verse534/sub-verse534_dir-iso_ct.nii.gz", + "pseudo_label": "dataset-01training/rawdata/sub-verse534/sub-verse534_dir-iso_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-verse534/sub-verse534_dir-iso_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse534_dir-iso_ct/sub-verse534_dir-iso_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse033/sub-verse033_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse033/sub-verse033_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse033/sub-verse033_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse033_ct/sub-verse033_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19validation/rawdata/sub-verse124/sub-verse124_ct.nii.gz", + "pseudo_label": "dataset-verse19validation/rawdata/sub-verse124/sub-verse124_ct.nii.gz", + "label": "dataset-verse19validation/derivatives/sub-verse124/sub-verse124_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse124_ct/sub-verse124_ct_seg.nii.gz" + }, + { + "image": "dataset-01training/rawdata/sub-verse577/sub-verse577_dir-ax_ct.nii.gz", + "pseudo_label": "dataset-01training/rawdata/sub-verse577/sub-verse577_dir-ax_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-verse577/sub-verse577_dir-ax_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse577_dir-ax_ct/sub-verse577_dir-ax_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse046/sub-verse046_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse046/sub-verse046_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse046/sub-verse046_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse046_ct/sub-verse046_ct_seg.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse756/sub-verse756_dir-iso_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-verse756/sub-verse756_dir-iso_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse756/sub-verse756_dir-iso_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse756_dir-iso_ct/sub-verse756_dir-iso_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19validation/rawdata/sub-verse404/sub-verse404_split-verse256_ct.nii.gz", + "pseudo_label": "dataset-verse19validation/rawdata/sub-verse404/sub-verse404_split-verse256_ct.nii.gz", + "label": "dataset-verse19validation/derivatives/sub-verse404/sub-verse404_split-verse256_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse404_split-verse256_ct/sub-verse404_split-verse256_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse413/sub-verse413_split-verse272_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse413/sub-verse413_split-verse272_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse413/sub-verse413_split-verse272_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse413_split-verse272_ct/sub-verse413_split-verse272_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse102/sub-verse102_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse102/sub-verse102_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse102/sub-verse102_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse102_ct/sub-verse102_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse406/sub-verse406_split-verse214_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse406/sub-verse406_split-verse214_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse406/sub-verse406_split-verse214_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse406_split-verse214_ct/sub-verse406_split-verse214_ct_seg.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse563/sub-verse563_dir-iso_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-verse563/sub-verse563_dir-iso_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse563/sub-verse563_dir-iso_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse563_dir-iso_ct/sub-verse563_dir-iso_ct_seg.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse505/sub-verse505_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse505/sub-verse505_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse505/sub-verse505_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse505_ct/sub-verse505_ct_seg.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse751/sub-verse751_dir-sag_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-verse751/sub-verse751_dir-sag_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse751/sub-verse751_dir-sag_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse751_dir-sag_ct/sub-verse751_dir-sag_ct_seg.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse762/sub-verse762_dir-iso_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-verse762/sub-verse762_dir-iso_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse762/sub-verse762_dir-iso_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse762_dir-iso_ct/sub-verse762_dir-iso_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse031/sub-verse031_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse031/sub-verse031_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse031/sub-verse031_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse031_ct/sub-verse031_ct_seg.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse649/sub-verse649_dir-sag_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-verse649/sub-verse649_dir-sag_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse649/sub-verse649_dir-sag_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse649_dir-sag_ct/sub-verse649_dir-sag_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19test/rawdata/sub-verse050/sub-verse050_ct.nii.gz", + "pseudo_label": "dataset-verse19test/rawdata/sub-verse050/sub-verse050_ct.nii.gz", + "label": "dataset-verse19test/derivatives/sub-verse050/sub-verse050_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse050_ct/sub-verse050_ct_seg.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse705/sub-verse705_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse705/sub-verse705_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse705/sub-verse705_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse705_ct/sub-verse705_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19validation/rawdata/sub-verse013/sub-verse013_ct.nii.gz", + "pseudo_label": "dataset-verse19validation/rawdata/sub-verse013/sub-verse013_ct.nii.gz", + "label": "dataset-verse19validation/derivatives/sub-verse013/sub-verse013_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse013_ct/sub-verse013_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse008/sub-verse008_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse008/sub-verse008_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse008/sub-verse008_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse008_ct/sub-verse008_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse405/sub-verse405_split-verse259_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse405/sub-verse405_split-verse259_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse405/sub-verse405_split-verse259_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse405_split-verse259_ct/sub-verse405_split-verse259_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19test/rawdata/sub-verse089/sub-verse089_ct.nii.gz", + "pseudo_label": "dataset-verse19test/rawdata/sub-verse089/sub-verse089_ct.nii.gz", + "label": "dataset-verse19test/derivatives/sub-verse089/sub-verse089_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse089_ct/sub-verse089_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19test/rawdata/sub-verse147/sub-verse147_ct.nii.gz", + "pseudo_label": "dataset-verse19test/rawdata/sub-verse147/sub-verse147_ct.nii.gz", + "label": "dataset-verse19test/derivatives/sub-verse147/sub-verse147_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse147_ct/sub-verse147_ct_seg.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse612/sub-verse612_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse612/sub-verse612_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse612/sub-verse612_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse612_ct/sub-verse612_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19validation/rawdata/sub-verse058/sub-verse058_ct.nii.gz", + "pseudo_label": "dataset-verse19validation/rawdata/sub-verse058/sub-verse058_ct.nii.gz", + "label": "dataset-verse19validation/derivatives/sub-verse058/sub-verse058_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse058_ct/sub-verse058_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse403/sub-verse403_split-verse208_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse403/sub-verse403_split-verse208_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse403/sub-verse403_split-verse208_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse403_split-verse208_ct/sub-verse403_split-verse208_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19validation/rawdata/sub-verse252/sub-verse252_ct.nii.gz", + "pseudo_label": "dataset-verse19validation/rawdata/sub-verse252/sub-verse252_ct.nii.gz", + "label": "dataset-verse19validation/derivatives/sub-verse252/sub-verse252_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse252_ct/sub-verse252_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse043/sub-verse043_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse043/sub-verse043_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse043/sub-verse043_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse043_ct/sub-verse043_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19validation/rawdata/sub-verse400/sub-verse400_split-verse090_ct.nii.gz", + "pseudo_label": "dataset-verse19validation/rawdata/sub-verse400/sub-verse400_split-verse090_ct.nii.gz", + "label": "dataset-verse19validation/derivatives/sub-verse400/sub-verse400_split-verse090_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse400_split-verse090_ct/sub-verse400_split-verse090_ct_seg.nii.gz" + }, + { + "image": "dataset-01training/rawdata/sub-gl240/sub-gl240_dir-ax_ct.nii.gz", + "pseudo_label": "dataset-01training/rawdata/sub-gl240/sub-gl240_dir-ax_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-gl240/sub-gl240_dir-ax_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-gl240_dir-ax_ct/sub-gl240_dir-ax_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19test/rawdata/sub-verse154/sub-verse154_ct.nii.gz", + "pseudo_label": "dataset-verse19test/rawdata/sub-verse154/sub-verse154_ct.nii.gz", + "label": "dataset-verse19test/derivatives/sub-verse154/sub-verse154_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse154_ct/sub-verse154_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse048/sub-verse048_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse048/sub-verse048_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse048/sub-verse048_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse048_ct/sub-verse048_ct_seg.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse606/sub-verse606_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-verse606/sub-verse606_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse606/sub-verse606_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse606_ct/sub-verse606_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19test/rawdata/sub-verse143/sub-verse143_ct.nii.gz", + "pseudo_label": "dataset-verse19test/rawdata/sub-verse143/sub-verse143_ct.nii.gz", + "label": "dataset-verse19test/derivatives/sub-verse143/sub-verse143_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse143_ct/sub-verse143_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse410/sub-verse410_split-verse267_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse410/sub-verse410_split-verse267_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse410/sub-verse410_split-verse267_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse410_split-verse267_ct/sub-verse410_split-verse267_ct_seg.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse704/sub-verse704_dir-iso_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-verse704/sub-verse704_dir-iso_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse704/sub-verse704_dir-iso_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse704_dir-iso_ct/sub-verse704_dir-iso_ct_seg.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse517/sub-verse517_dir-iso_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-verse517/sub-verse517_dir-iso_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse517/sub-verse517_dir-iso_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse517_dir-iso_ct/sub-verse517_dir-iso_ct_seg.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-gl380/sub-gl380_ct.nii.gz", + "pseudo_label": "dataset-02validation/rawdata/sub-gl380/sub-gl380_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-gl380/sub-gl380_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-gl380_ct/sub-gl380_ct_seg.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse410/sub-verse410_split-verse227_ct.nii.gz", + "pseudo_label": "dataset-verse19training/rawdata/sub-verse410/sub-verse410_split-verse227_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse410/sub-verse410_split-verse227_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 1, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse410_split-verse227_ct/sub-verse410_split-verse227_ct_seg.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse587/sub-verse587_dir-iso_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-verse587/sub-verse587_dir-iso_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse587/sub-verse587_dir-iso_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse587_dir-iso_ct/sub-verse587_dir-iso_ct_seg.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse540/sub-verse540_dir-iso_ct.nii.gz", + "pseudo_label": "dataset-03test/rawdata/sub-verse540/sub-verse540_dir-iso_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse540/sub-verse540_dir-iso_seg-vert_msk.nii.gz", + "fold": 4, + "pseudo_label_reliability": 0, + "label_sv": "/workspace_infer/supervoxel_sam/VerSe_100/sub-verse540_dir-iso_ct/sub-verse540_dir-iso_ct_seg.nii.gz" + } + ], + "training_transform": [ + { + "_target_": "RandCropByLabelClassesd", + "keys": [ + "@image_key", + "@label_key", + "@pseudo_label_key", + "@label_sv_key" + ], + "label_key": "@pseudo_label_key", + "num_classes": 133, + "num_samples": "@num_patches_per_image", + "spatial_size": "@patch_size", + "ratios": "$tuple(float(i >= 0) for i in range(133))", + "warn": false, + "allow_missing_keys": true + }, + { + "_target_": "RandZoomd", + "keys": [ + "@image_key", + "@label_key", + "@pseudo_label_key", + "@label_sv_key" + ], + "min_zoom": 0.8, + "max_zoom": 1.2, + "mode": [ + "trilinear", + "nearest", + "nearest", + "nearest" + ], + "prob": 0.2, + "allow_missing_keys": true + }, + { + "_target_": "RandSimulateLowResolutiond", + "keys": [ + "@image_key" + ], + "zoom_range": [ + 0.3, + 1 + ], + "prob": 0.2, + "allow_missing_keys": true + }, + { + "_target_": "RandGaussianSmoothd", + "keys": [ + "@image_key" + ], + "prob": 0.2, + "sigma_x": [ + 0.5, + 1.0 + ], + "sigma_y": [ + 0.5, + 1.0 + ], + "sigma_z": [ + 0.5, + 1.0 + ] + }, + { + "_target_": "RandScaleIntensityd", + "keys": [ + "@image_key" + ], + "factors": 0.1, + "prob": 0.2 + }, + { + "_target_": "RandShiftIntensityd", + "keys": [ + "@image_key" + ], + "offsets": 0.1, + "prob": 0.2 + }, + { + "_target_": "RandGaussianNoised", + "keys": [ + "@image_key" + ], + "prob": 0.2, + "mean": 0.0, + "std": 0.2 + } + ], + "label_dict": { + "1": "vertebrae C1", + "2": "vertebrae C2", + "3": "vertebrae C3", + "4": "vertebrae C4", + "5": "vertebrae C5", + "6": "vertebrae C6", + "7": "vertebrae C7", + "8": "vertebrae T1", + "9": "vertebrae T2", + "10": "vertebrae T3", + "11": "vertebrae T4", + "12": "vertebrae T5", + "13": "vertebrae T6", + "14": "vertebrae T7", + "15": "vertebrae T8", + "16": "vertebrae T9", + "17": "vertebrae T10", + "18": "vertebrae T11", + "19": "vertebrae T12", + "20": "vertebrae L1", + "21": "vertebrae L2", + "22": "vertebrae L3", + "23": "vertebrae L4", + "24": "vertebrae L5", + "25": "vertebrae L6" + }, + "original_label_dict": { + "1": "vertebrae C1", + "2": "vertebrae C2", + "3": "vertebrae C3", + "4": "vertebrae C4", + "5": "vertebrae C5", + "6": "vertebrae C6", + "7": "vertebrae C7", + "8": "vertebrae T1", + "9": "vertebrae T2", + "10": "vertebrae T3", + "11": "vertebrae T4", + "12": "vertebrae T5", + "13": "vertebrae T6", + "14": "vertebrae T7", + "15": "vertebrae T8", + "16": "vertebrae T9", + "17": "vertebrae T10", + "18": "vertebrae T11", + "19": "vertebrae T12", + "20": "vertebrae L1", + "21": "vertebrae L2", + "22": "vertebrae L3", + "23": "vertebrae L4", + "24": "vertebrae L5", + "25": "vertebrae L6" + }, + "testing": [ + { + "image": "dataset-verse19validation/rawdata/sub-verse016/sub-verse016_ct.nii.gz", + "label": "dataset-verse19validation/derivatives/sub-verse016/sub-verse016_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-gl492/sub-gl492_dir-ax_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-gl492/sub-gl492_dir-ax_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse569/sub-verse569_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse569/sub-verse569_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-01training/rawdata/sub-verse525/sub-verse525_dir-sag_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-verse525/sub-verse525_dir-sag_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-verse19test/rawdata/sub-verse119/sub-verse119_ct.nii.gz", + "label": "dataset-verse19test/derivatives/sub-verse119/sub-verse119_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse122/sub-verse122_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse122/sub-verse122_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-01training/rawdata/sub-gl247/sub-gl247_dir-ax_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-gl247/sub-gl247_dir-ax_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse034/sub-verse034_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse034/sub-verse034_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse718/sub-verse718_dir-iso_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse718/sub-verse718_dir-iso_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse551/sub-verse551_dir-iso_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse551/sub-verse551_dir-iso_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-01training/rawdata/sub-verse588/sub-verse588_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-verse588/sub-verse588_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-verse19test/rawdata/sub-verse053/sub-verse053_ct.nii.gz", + "label": "dataset-verse19test/derivatives/sub-verse053/sub-verse053_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse645/sub-verse645_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse645/sub-verse645_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-gl153/sub-gl153_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-gl153/sub-gl153_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-01training/rawdata/sub-verse807/sub-verse807_dir-ax_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-verse807/sub-verse807_dir-ax_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-verse19validation/rawdata/sub-verse071/sub-verse071_ct.nii.gz", + "label": "dataset-verse19validation/derivatives/sub-verse071/sub-verse071_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse036/sub-verse036_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse036/sub-verse036_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-01training/rawdata/sub-verse835/sub-verse835_dir-iso_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-verse835/sub-verse835_dir-iso_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-gl348/sub-gl348_dir-ax_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-gl348/sub-gl348_dir-ax_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse599/sub-verse599_dir-iso_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse599/sub-verse599_dir-iso_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-01training/rawdata/sub-verse541/sub-verse541_dir-ax_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-verse541/sub-verse541_dir-ax_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse127/sub-verse127_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse127/sub-verse127_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse591/sub-verse591_dir-iso_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse591/sub-verse591_dir-iso_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse405/sub-verse405_split-verse212_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse405/sub-verse405_split-verse212_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse560/sub-verse560_dir-iso_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse560/sub-verse560_dir-iso_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse064/sub-verse064_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse064/sub-verse064_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse139/sub-verse139_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse139/sub-verse139_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse620/sub-verse620_dir-iso_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse620/sub-verse620_dir-iso_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-01training/rawdata/sub-verse510/sub-verse510_dir-ax_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-verse510/sub-verse510_dir-ax_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-verse19test/rawdata/sub-verse108/sub-verse108_ct.nii.gz", + "label": "dataset-verse19test/derivatives/sub-verse108/sub-verse108_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse578/sub-verse578_dir-iso_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse578/sub-verse578_dir-iso_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-01training/rawdata/sub-verse646/sub-verse646_dir-iso_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-verse646/sub-verse646_dir-iso_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-verse19validation/rawdata/sub-verse010/sub-verse010_ct.nii.gz", + "label": "dataset-verse19validation/derivatives/sub-verse010/sub-verse010_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-01training/rawdata/sub-verse557/sub-verse557_dir-ax_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-verse557/sub-verse557_dir-ax_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse806/sub-verse806_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse806/sub-verse806_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-verse19validation/rawdata/sub-verse412/sub-verse412_split-verse235_ct.nii.gz", + "label": "dataset-verse19validation/derivatives/sub-verse412/sub-verse412_split-verse235_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-verse19test/rawdata/sub-verse083/sub-verse083_ct.nii.gz", + "label": "dataset-verse19test/derivatives/sub-verse083/sub-verse083_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-01training/rawdata/sub-verse586/sub-verse586_dir-iso_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-verse586/sub-verse586_dir-iso_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-01training/rawdata/sub-gl047/sub-gl047_dir-ax_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-gl047/sub-gl047_dir-ax_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-01training/rawdata/sub-gl090/sub-gl090_dir-ax_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-gl090/sub-gl090_dir-ax_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse257/sub-verse257_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse257/sub-verse257_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse815/sub-verse815_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse815/sub-verse815_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse759/sub-verse759_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse759/sub-verse759_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-verse19test/rawdata/sub-verse012/sub-verse012_ct.nii.gz", + "label": "dataset-verse19test/derivatives/sub-verse012/sub-verse012_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse411/sub-verse411_split-verse232_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse411/sub-verse411_split-verse232_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse580/sub-verse580_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse580/sub-verse580_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-verse19test/rawdata/sub-verse250/sub-verse250_ct.nii.gz", + "label": "dataset-verse19test/derivatives/sub-verse250/sub-verse250_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-verse19test/rawdata/sub-verse131/sub-verse131_ct.nii.gz", + "label": "dataset-verse19test/derivatives/sub-verse131/sub-verse131_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse752/sub-verse752_dir-ax_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse752/sub-verse752_dir-ax_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse814/sub-verse814_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse814/sub-verse814_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse643/sub-verse643_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse643/sub-verse643_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-verse19validation/rawdata/sub-verse205/sub-verse205_ct.nii.gz", + "label": "dataset-verse19validation/derivatives/sub-verse205/sub-verse205_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse636/sub-verse636_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse636/sub-verse636_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse553/sub-verse553_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse553/sub-verse553_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-verse19test/rawdata/sub-verse040/sub-verse040_ct.nii.gz", + "label": "dataset-verse19test/derivatives/sub-verse040/sub-verse040_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse056/sub-verse056_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse056/sub-verse056_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-gl279/sub-gl279_dir-ax_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-gl279/sub-gl279_dir-ax_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse766/sub-verse766_dir-ax_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse766/sub-verse766_dir-ax_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-01training/rawdata/sub-verse564/sub-verse564_dir-iso_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-verse564/sub-verse564_dir-iso_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse546/sub-verse546_dir-ax_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse546/sub-verse546_dir-ax_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-01training/rawdata/sub-verse527/sub-verse527_dir-ax_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-verse527/sub-verse527_dir-ax_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse403/sub-verse403_split-verse255_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse403/sub-verse403_split-verse255_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-01training/rawdata/sub-verse818/sub-verse818_dir-ax_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-verse818/sub-verse818_dir-ax_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse635/sub-verse635_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse635/sub-verse635_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse648/sub-verse648_dir-iso_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse648/sub-verse648_dir-iso_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-01training/rawdata/sub-verse535/sub-verse535_dir-iso_ct.nii.gz", + "label": "dataset-01training/derivatives/sub-verse535/sub-verse535_dir-iso_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-verse19test/rawdata/sub-verse081/sub-verse081_ct.nii.gz", + "label": "dataset-verse19test/derivatives/sub-verse081/sub-verse081_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-gl217/sub-gl217_dir-ax_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-gl217/sub-gl217_dir-ax_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse063/sub-verse063_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse063/sub-verse063_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-verse19validation/rawdata/sub-verse026/sub-verse026_ct.nii.gz", + "label": "dataset-verse19validation/derivatives/sub-verse026/sub-verse026_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse626/sub-verse626_dir-iso_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse626/sub-verse626_dir-iso_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse091/sub-verse091_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse091/sub-verse091_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-03test/rawdata/sub-verse590/sub-verse590_dir-iso_ct.nii.gz", + "label": "dataset-03test/derivatives/sub-verse590/sub-verse590_dir-iso_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-02validation/rawdata/sub-verse601/sub-verse601_ct.nii.gz", + "label": "dataset-02validation/derivatives/sub-verse601/sub-verse601_seg-vert_msk.nii.gz" + }, + { + "image": "dataset-verse19training/rawdata/sub-verse072/sub-verse072_ct.nii.gz", + "label": "dataset-verse19training/derivatives/sub-verse072/sub-verse072_seg-vert_msk.nii.gz" + } + ] +} diff --git a/vista3d/data/jsons/label_dict.json b/vista3d/data/jsons/label_dict.json new file mode 100644 index 0000000..6fb98b5 --- /dev/null +++ b/vista3d/data/jsons/label_dict.json @@ -0,0 +1,129 @@ +{ + "liver": 1, + "kidney": 2, + "spleen": 3, + "pancreas": 4, + "right kidney": 5, + "aorta": 6, + "inferior vena cava": 7, + "right adrenal gland": 8, + "left adrenal gland": 9, + "gallbladder": 10, + "esophagus": 11, + "stomach": 12, + "duodenum": 13, + "left kidney": 14, + "bladder": 15, + "portal vein and splenic vein": 17, + "small bowel": 19, + "lung": 20, + "bone": 21, + "brain": 22, + "lung tumor": 23, + "pancreatic tumor": 24, + "hepatic vessel": 25, + "hepatic tumor": 26, + "colon cancer primaries": 27, + "left lung upper lobe": 28, + "left lung lower lobe": 29, + "right lung upper lobe": 30, + "right lung middle lobe": 31, + "right lung lower lobe": 32, + "vertebrae L5": 33, + "vertebrae L4": 34, + "vertebrae L3": 35, + "vertebrae L2": 36, + "vertebrae L1": 37, + "vertebrae T12": 38, + "vertebrae T11": 39, + "vertebrae T10": 40, + "vertebrae T9": 41, + "vertebrae T8": 42, + "vertebrae T7": 43, + "vertebrae T6": 44, + "vertebrae T5": 45, + "vertebrae T4": 46, + "vertebrae T3": 47, + "vertebrae T2": 48, + "vertebrae T1": 49, + "vertebrae C7": 50, + "vertebrae C6": 51, + "vertebrae C5": 52, + "vertebrae C4": 53, + "vertebrae C3": 54, + "vertebrae C2": 55, + "vertebrae C1": 56, + "trachea": 57, + "left iliac artery": 58, + "right iliac artery": 59, + "left iliac vena": 60, + "right iliac vena": 61, + "colon": 62, + "left rib 1": 63, + "left rib 2": 64, + "left rib 3": 65, + "left rib 4": 66, + "left rib 5": 67, + "left rib 6": 68, + "left rib 7": 69, + "left rib 8": 70, + "left rib 9": 71, + "left rib 10": 72, + "left rib 11": 73, + "left rib 12": 74, + "right rib 1": 75, + "right rib 2": 76, + "right rib 3": 77, + "right rib 4": 78, + "right rib 5": 79, + "right rib 6": 80, + "right rib 7": 81, + "right rib 8": 82, + "right rib 9": 83, + "right rib 10": 84, + "right rib 11": 85, + "right rib 12": 86, + "left humerus": 87, + "right humerus": 88, + "left scapula": 89, + "right scapula": 90, + "left clavicula": 91, + "right clavicula": 92, + "left femur": 93, + "right femur": 94, + "left hip": 95, + "right hip": 96, + "sacrum": 97, + "left gluteus maximus": 98, + "right gluteus maximus": 99, + "left gluteus medius": 100, + "right gluteus medius": 101, + "left gluteus minimus": 102, + "right gluteus minimus": 103, + "left autochthon": 104, + "right autochthon": 105, + "left iliopsoas": 106, + "right iliopsoas": 107, + "left atrial appendage": 108, + "brachiocephalic trunk": 109, + "left brachiocephalic vein": 110, + "right brachiocephalic vein": 111, + "left common carotid artery": 112, + "right common carotid artery": 113, + "costal cartilages": 114, + "heart": 115, + "left kidney cyst": 116, + "right kidney cyst": 117, + "prostate": 118, + "pulmonary vein": 119, + "skull": 120, + "spinal cord": 121, + "sternum": 122, + "left subclavian artery": 123, + "right subclavian artery": 124, + "superior vena cava": 125, + "thyroid gland": 126, + "vertebrae S1": 127, + "bone lesion": 128, + "airway": 132 +} diff --git a/vista3d/data/jsons/label_mappings.json b/vista3d/data/jsons/label_mappings.json new file mode 100644 index 0000000..50b5d0d --- /dev/null +++ b/vista3d/data/jsons/label_mappings.json @@ -0,0 +1,1006 @@ +{ + "AbdomenCT-1K": [ + [ + 1, + 1 + ], + [ + 3, + 3 + ], + [ + 4, + 4 + ] + ], + "FLARE22": [ + [ + 1, + 1 + ], + [ + 2, + 5 + ], + [ + 3, + 3 + ], + [ + 4, + 4 + ], + [ + 5, + 6 + ], + [ + 6, + 7 + ], + [ + 7, + 8 + ], + [ + 8, + 9 + ], + [ + 9, + 10 + ], + [ + 10, + 11 + ], + [ + 11, + 12 + ], + [ + 12, + 13 + ], + [ + 13, + 14 + ] + ], + "AMOS22": [ + [ + 1, + 3 + ], + [ + 2, + 5 + ], + [ + 3, + 14 + ], + [ + 4, + 10 + ], + [ + 5, + 11 + ], + [ + 6, + 1 + ], + [ + 7, + 12 + ], + [ + 8, + 6 + ], + [ + 9, + 7 + ], + [ + 10, + 4 + ], + [ + 11, + 8 + ], + [ + 12, + 9 + ], + [ + 13, + 13 + ], + [ + 14, + 15 + ], + [ + 15, + 118 + ] + ], + "BTCV-Abdomen": [ + [ + 1, + 3 + ], + [ + 2, + 5 + ], + [ + 3, + 14 + ], + [ + 4, + 10 + ], + [ + 5, + 11 + ], + [ + 6, + 1 + ], + [ + 7, + 12 + ], + [ + 8, + 6 + ], + [ + 9, + 7 + ], + [ + 10, + 17 + ], + [ + 11, + 4 + ], + [ + 12, + 8 + ], + [ + 13, + 9 + ] + ], + "BTCV-Cervix": [ + [ + 1, + 15 + ], + [ + 2, + 118 + ], + [ + 4, + 19 + ] + ], + "CT-ORG": [ + [ + 1, + 1 + ], + [ + 2, + 15 + ], + [ + 6, + 22 + ] + ], + "Multi-organ-Abdominal-CT-btcv": [ + [ + 1, + 3 + ], + [ + 2, + 5 + ], + [ + 3, + 14 + ], + [ + 4, + 10 + ], + [ + 5, + 11 + ], + [ + 6, + 1 + ], + [ + 7, + 12 + ], + [ + 8, + 6 + ], + [ + 9, + 7 + ], + [ + 10, + 17 + ], + [ + 11, + 4 + ], + [ + 12, + 8 + ], + [ + 13, + 9 + ], + [ + 14, + 13 + ] + ], + "Multi-organ-Abdominal-CT-tcia": [ + [ + 1, + 3 + ], + [ + 2, + 5 + ], + [ + 3, + 14 + ], + [ + 4, + 10 + ], + [ + 5, + 11 + ], + [ + 6, + 1 + ], + [ + 7, + 12 + ], + [ + 8, + 4 + ], + [ + 9, + 13 + ] + ], + "Pancreas-CT": [ + [ + 1, + 4 + ] + ], + "Task06": [ + [ + 1, + 23 + ] + ], + "Task07": [ + [ + 1, + 4 + ], + [ + 2, + 24 + ] + ], + "Task08": [ + [ + 1, + 25 + ], + [ + 2, + 26 + ] + ], + "Task09": [ + [ + 1, + 3 + ] + ], + "Task10": [ + [ + 1, + 27 + ] + ], + "TotalSegmentatorV2": [ + [ + 1, + 3 + ], + [ + 2, + 5 + ], + [ + 3, + 14 + ], + [ + 4, + 10 + ], + [ + 5, + 1 + ], + [ + 6, + 12 + ], + [ + 7, + 6 + ], + [ + 8, + 7 + ], + [ + 9, + 17 + ], + [ + 10, + 4 + ], + [ + 11, + 8 + ], + [ + 12, + 9 + ], + [ + 13, + 28 + ], + [ + 14, + 29 + ], + [ + 15, + 30 + ], + [ + 16, + 31 + ], + [ + 17, + 32 + ], + [ + 18, + 33 + ], + [ + 19, + 34 + ], + [ + 20, + 35 + ], + [ + 21, + 36 + ], + [ + 22, + 37 + ], + [ + 23, + 38 + ], + [ + 24, + 39 + ], + [ + 25, + 40 + ], + [ + 26, + 41 + ], + [ + 27, + 42 + ], + [ + 28, + 43 + ], + [ + 29, + 44 + ], + [ + 30, + 45 + ], + [ + 31, + 46 + ], + [ + 32, + 47 + ], + [ + 33, + 48 + ], + [ + 34, + 49 + ], + [ + 35, + 50 + ], + [ + 36, + 51 + ], + [ + 37, + 52 + ], + [ + 38, + 53 + ], + [ + 39, + 54 + ], + [ + 40, + 55 + ], + [ + 41, + 56 + ], + [ + 42, + 11 + ], + [ + 43, + 57 + ], + [ + 44, + 22 + ], + [ + 45, + 58 + ], + [ + 46, + 59 + ], + [ + 47, + 60 + ], + [ + 48, + 61 + ], + [ + 49, + 19 + ], + [ + 50, + 13 + ], + [ + 51, + 62 + ], + [ + 52, + 63 + ], + [ + 53, + 64 + ], + [ + 54, + 65 + ], + [ + 55, + 66 + ], + [ + 56, + 67 + ], + [ + 57, + 68 + ], + [ + 58, + 69 + ], + [ + 59, + 70 + ], + [ + 60, + 71 + ], + [ + 61, + 72 + ], + [ + 62, + 73 + ], + [ + 63, + 74 + ], + [ + 64, + 75 + ], + [ + 65, + 76 + ], + [ + 66, + 77 + ], + [ + 67, + 78 + ], + [ + 68, + 79 + ], + [ + 69, + 80 + ], + [ + 70, + 81 + ], + [ + 71, + 82 + ], + [ + 72, + 83 + ], + [ + 73, + 84 + ], + [ + 74, + 85 + ], + [ + 75, + 86 + ], + [ + 76, + 87 + ], + [ + 77, + 88 + ], + [ + 78, + 89 + ], + [ + 79, + 90 + ], + [ + 80, + 91 + ], + [ + 81, + 92 + ], + [ + 82, + 93 + ], + [ + 83, + 94 + ], + [ + 84, + 95 + ], + [ + 85, + 96 + ], + [ + 86, + 97 + ], + [ + 87, + 98 + ], + [ + 88, + 99 + ], + [ + 89, + 100 + ], + [ + 90, + 101 + ], + [ + 91, + 102 + ], + [ + 92, + 103 + ], + [ + 93, + 104 + ], + [ + 94, + 105 + ], + [ + 95, + 106 + ], + [ + 96, + 107 + ], + [ + 97, + 15 + ], + [ + 98, + 108 + ], + [ + 99, + 109 + ], + [ + 100, + 110 + ], + [ + 101, + 111 + ], + [ + 102, + 112 + ], + [ + 103, + 113 + ], + [ + 104, + 114 + ], + [ + 105, + 115 + ], + [ + 106, + 116 + ], + [ + 107, + 117 + ], + [ + 108, + 118 + ], + [ + 109, + 119 + ], + [ + 110, + 120 + ], + [ + 111, + 121 + ], + [ + 112, + 122 + ], + [ + 113, + 123 + ], + [ + 114, + 124 + ], + [ + 115, + 125 + ], + [ + 116, + 126 + ], + [ + 117, + 127 + ] + ], + "Task03": [ + [ + 1, + 1 + ], + [ + 2, + 26 + ] + ], + "Bone-NIH": [ + [ + 1, + 128 + ], + [ + 2, + 128 + ] + ], + "CRLM-CT": [ + [ + 3, + 25 + ], + [ + 4, + 17 + ], + [ + 5, + 26 + ] + ], + "VerSe": [ + [ + 1, + 56 + ], + [ + 2, + 55 + ], + [ + 3, + 54 + ], + [ + 4, + 53 + ], + [ + 5, + 52 + ], + [ + 6, + 51 + ], + [ + 7, + 50 + ], + [ + 8, + 49 + ], + [ + 9, + 48 + ], + [ + 10, + 47 + ], + [ + 11, + 46 + ], + [ + 12, + 45 + ], + [ + 13, + 44 + ], + [ + 14, + 43 + ], + [ + 15, + 42 + ], + [ + 16, + 41 + ], + [ + 17, + 40 + ], + [ + 18, + 39 + ], + [ + 19, + 38 + ], + [ + 20, + 37 + ], + [ + 21, + 36 + ], + [ + 22, + 35 + ], + [ + 23, + 34 + ], + [ + 24, + 33 + ] + ], + "AeroPath": [ + [ + 2, + 132 + ] + ], + "Autopet23": [ + [ + 1, + 133 + ] + ], + "LIDC-IDRI": [ + [ + 1, + 134 + ] + ], + "CTPelvic1K-CLINIC": [ + [ + 1, + 97 + ], + [ + 2, + 95 + ], + [ + 3, + 96 + ] + ], + "COLON_ACRIN6664": [ + [ + 1, + 97 + ], + [ + 2, + 95 + ], + [ + 3, + 96 + ], + [ + 4, + 135 + ] + ] +} diff --git a/vista3d/data/make_datalists.py b/vista3d/data/make_datalists.py new file mode 100644 index 0000000..80469c5 --- /dev/null +++ b/vista3d/data/make_datalists.py @@ -0,0 +1,2286 @@ +# Copyright (c) MONAI Consortium +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# http://www.apache.org/licenses/LICENSE-2.0 +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +# Step 1. +# reading image and label folders, listing all the nii.gz files, +# creating a data_list.json for training and validation +# the data_list.json format is like ('testing' labels are optional): +# { +# "training": [ +# {"image": "img0001.nii.gz", "label": "label0001.nii.gz", "fold": 0}, +# {"image": "img0002.nii.gz", "label": "label0002.nii.gz", "fold": 2}, +# ... +# ], +# "testing": [ +# {"image": "img0003.nii.gz", "label": "label0003.nii.gz"}, +# {"image": "img0004.nii.gz", "label": "label0004.nii.gz"}, +# ... +# ] +# } + +import os +import re +from glob import glob +from pprint import pprint + +from monai.apps import get_logger +from monai.bundle import ConfigParser +from monai.data.utils import partition_dataset + +logger = get_logger(__name__) +test_ratio = 0.2 # test split +n_folds = 5 # training and validation split +seed = 20230808 # random seed for data partition_dataset reproducibility +output_json_dir = os.path.join(os.path.dirname(__file__), "jsons") + + +def register_make(func): + """ + register the function to make the data list + """ + global _make_funcs + if "_make_funcs" not in globals(): + _make_funcs = {} + if func.__name__ in _make_funcs: + raise ValueError(f"{func.__name__} already exists.") + _make_funcs[func.__name__] = func + return func + + +def search_image_files(base_dir, ext, regex=None): + """returns a list of relative filenames with given extension in `base_dir`""" + print(f"searching ext={ext} from base_dir={base_dir}") + images = [] + for root, _, files in os.walk(base_dir): + images.extend( + os.path.join(root, filename) for filename in files if filename.endswith(ext) + ) + if regex is not None: + images = [x for x in images if re.compile(regex).search(x) is not None] + print(f"found {len(images)} *.{ext} files") + return sorted(images) + + +def create_splits_and_write_json( + images, + labels, + ratio, + num_folds, + json_name, + rng_seed, + label_dict, + original_label_dict=None, +): + """ + first generate training/test split, then from the training part, + generate training/validation num_folds + """ + items = [{"image": img, "label": lab} for img, lab in zip(images, labels)] + train_test = partition_dataset( + items, ratios=[1 - ratio, ratio], shuffle=True, seed=rng_seed + ) + print(f"training: {len(train_test[0])}, testing: {len(train_test[1])}") + train_val = partition_dataset( + train_test[0], num_partitions=num_folds, shuffle=True, seed=rng_seed + ) + print(f"training validation folds sizes: {[len(x) for x in train_val]}") + training = [] + for f, x in enumerate(train_val): + for item in x: + item["fold"] = f + training.append(item) + + # write json + parser = ConfigParser({}) + parser["training"] = training + parser["testing"] = train_test[1] + + parser["label_dict"] = label_dict + parser["original_label_dict"] = original_label_dict or label_dict + + print(f"writing {json_name}\n\n") + if os.path.exists(json_name): + logger.warning(f"rewrite existing datalist file: {json_name}") + ConfigParser.export_config_file(parser.config, json_name, indent=4) + + +def filtering_files(base_url, image_names, label_names, idx=-1): + """ + check the idx-th item in the lists of image and label filenames, remove: + + - image files without corresponding label files + + """ + _tmp_img = os.path.join(base_url, image_names[idx]) + _tmp_lab = os.path.join(base_url, label_names[idx]) + if not (os.path.exists(_tmp_img) and os.path.exists(_tmp_lab)): + if not os.path.exists(_tmp_img): + logger.warning(f"image file {_tmp_img} pair does not exist") + if not os.path.exists(_tmp_lab): + logger.warning(f"label file {_tmp_lab} pair does not exist") + image_names.pop(idx) + label_names.pop(idx) + + +#### +@register_make +def make_abdomenct_1k(): + base_url = "/data/AbdomenCT-1K" + dataset_name = "AbdomenCT-1K" + json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json") + masks = search_image_files(os.path.join(base_url, "Mask"), ".nii.gz") + images, labels = [], [] + for mask in masks: + rel_mask = os.path.relpath(mask, base_url) + labels.append(rel_mask) + idx = re.compile(r"Case_(\d+).nii.gz").search(rel_mask)[1] + img_name = f"Case_{idx}_0000.nii.gz" + for f in [ + "AbdomenCT-1K-ImagePart1", + "AbdomenCT-1K-ImagePart2", + "AbdomenCT-1K-ImagePart3", + ]: + if os.path.exists(os.path.join(base_url, f, img_name)): + images.append(os.path.join(f, img_name)) + break + # print(f"image: {images[-1]}, label: {labels[-1]}") + filtering_files(base_url, images, labels) + label_dict = {1: "liver", 2: "kidney", 3: "spleen", 4: "pancreas"} + create_splits_and_write_json( + images, labels, test_ratio, n_folds, json_name, seed, label_dict + ) + + +#### +@register_make +def make_flare22(): + base_url = "/data/AbdomenCT-1K/FLARE22Train" + dataset_name = "FLARE22" + json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json") + masks = search_image_files(os.path.join(base_url, "labels"), ".nii.gz") + images, labels = [], [] + for mask in masks: + rel_mask = os.path.relpath(mask, base_url) + labels.append(rel_mask) + idx = re.compile(r"FLARE22_Tr_(\d+).nii.gz").search(rel_mask)[1] + img_name = f"FLARE22_Tr_{idx}_0000.nii.gz" + images.append(os.path.join("images", img_name)) + filtering_files(base_url, images, labels) + label_dict = { + 1: "liver", + 2: "right kidney", + 3: "spleen", + 4: "pancreas", + 5: "aorta", + 6: "inferior vena cava", + 7: "right adrenal gland", + 8: "left adrenal gland", + 9: "gallbladder", + 10: "esophagus", + 11: "stomach", + 12: "duodenum", + 13: "left kidney", + } + create_splits_and_write_json( + images, labels, test_ratio, n_folds, json_name, seed, label_dict + ) + + +#### +@register_make +def make_amos22(): + base_url = "/data/AMOS22" + dataset_name = "AMOS22" + json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json") + masks = search_image_files(os.path.join(base_url, "labelsTr"), ".nii.gz") + masks += search_image_files(os.path.join(base_url, "labelsVa"), ".nii.gz") + images, labels = [], [] + for mask in masks: + rel_mask = os.path.relpath(mask, base_url) + labels.append(rel_mask) + idx = re.compile(r"amos_(\d+).nii.gz").search(rel_mask)[1] + if int(idx) >= 500: # skip the MRI cases + labels.pop() + continue + img_name = f"amos_{idx}.nii.gz" + for f in ["imagesTr", "imagesVa"]: + if os.path.exists(os.path.join(base_url, f, img_name)): + images.append(os.path.join(f, img_name)) + break + # print(f"image: {images[-1]}, label: {labels[-1]}") + filtering_files(base_url, images, labels) + original_label_dict = { + 1: "spleen", + 2: "right kidney", + 3: "left kidney", + 4: "gallbladder", + 5: "esophagus", + 6: "liver", + 7: "stomach", + 8: "aorta", + 9: "postcava", + 10: "pancreas", + 11: "right adrenal gland", + 12: "left adrenal gland", + 13: "duodenum", + 14: "bladder", + 15: "prostate or uterus", + } + label_dict = { + 1: "spleen", + 2: "right kidney", + 3: "left kidney", + 4: "gallbladder", + 5: "esophagus", + 6: "liver", + 7: "stomach", + 8: "aorta", + 9: "inferior vena cava", + 10: "pancreas", + 11: "right adrenal gland", + 12: "left adrenal gland", + 13: "duodenum", + 14: "bladder", + 15: "prostate or uterus", + } + create_splits_and_write_json( + images, + labels, + test_ratio, + n_folds, + json_name, + seed, + label_dict, + original_label_dict, + ) + + +#### +@register_make +def make_btcv_abdomen(): + base_url = "/data/BTCV/Abdomen" + dataset_name = "BTCV-Abdomen" + json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json") + masks = search_image_files( + os.path.join(base_url, "RawData", "Training", "label"), ".nii.gz" + ) + images, labels = [], [] + for mask in masks: + rel_mask = os.path.relpath(mask, base_url) + labels.append(rel_mask) + idx = re.compile(r"label(\d+).nii.gz").search(rel_mask)[1] + img_name = f"img{idx}.nii.gz" + images.append(os.path.join("RawData", "Training", "img", img_name)) + filtering_files(base_url, images, labels) + label_dict = { + 1: "spleen", + 2: "right kidney", + 3: "left kidney", + 4: "gallbladder", + 5: "esophagus", + 6: "liver", + 7: "stomach", + 8: "aorta", + 9: "inferior vena cava", + 10: "portal vein and splenic vein", + 11: "pancreas", + 12: "right adrenal gland", + 13: "left adrenal gland", + } + create_splits_and_write_json( + images, labels, test_ratio, n_folds, json_name, seed, label_dict + ) + + +#### +@register_make +def make_btcv_cervix(): + base_url = "/data/BTCV/Cervix" + dataset_name = "BTCV-Cervix" + json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json") + masks = search_image_files( + os.path.join(base_url, "FixedDataV2", "Training", "label"), ".nii.gz" + ) + images, labels = [], [] + for mask in masks: + rel_mask = os.path.relpath(mask, base_url) + labels.append(rel_mask) + idx = re.compile(r"(\d+)-Mask.nii.gz").search(rel_mask)[1] + img_name = f"{idx}-Image.nii.gz" + images.append(os.path.join("FixedData", "Training", "img", img_name)) + filtering_files(base_url, images, labels) + original_label_dict = {1: "bladder", 2: "uterus", 3: "rectum", 4: "small bowel"} + label_dict = {1: "bladder", 2: "prostate or uterus", 3: "rectum", 4: "small bowel"} + create_splits_and_write_json( + images, + labels, + test_ratio, + n_folds, + json_name, + seed, + label_dict, + original_label_dict, + ) + + +#### +@register_make +def make_chaos(): + base_url = "/data/CHAOS" + dataset_name = "CHAOS" + json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json") + masks = search_image_files( + os.path.join(base_url, "Train_Sets_nifti_ct"), "segmentation.nii.gz" + ) + images, labels = [], [] + for mask in masks: + rel_mask = os.path.relpath(mask, base_url) + labels.append(rel_mask) + idx = re.compile(r"(\d+)_segmentation.nii.gz").search(rel_mask)[1] + img_name = f"{idx}_image.nii.gz" + images.append(os.path.join("Train_Sets_nifti_ct", img_name)) + filtering_files(base_url, images, labels) + label_dict = {1: "liver"} + create_splits_and_write_json( + images, labels, test_ratio, n_folds, json_name, seed, label_dict + ) + + +#### +@register_make +def make_ct_org(): + base_url = "/data/CT-ORG" + dataset_name = "CT-ORG" + json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json") + masks = search_image_files( + os.path.join(base_url, "OrganSegmentations"), ".nii.gz", regex=r"labels" + ) + images, labels = [], [] + for mask in masks: + idx = re.compile(r"labels-(\d+).nii.gz").search(mask)[1] + if idx in {"19", "70", "74", "76"}: + continue # these are problematic cases + _fixed_mask = os.path.join(base_url, "fixed_affine", f"labels-{idx}.nii.gz") + img_name = f"volume-{idx}.nii.gz" + mask_name = f"labels-{idx}.nii.gz" + if os.path.exists(_fixed_mask): # there are newer fixed files + images.append(os.path.join("fixed_affine", img_name)) + labels.append(os.path.join("fixed_affine", mask_name)) + else: + images.append(os.path.join("OrganSegmentations", img_name)) + labels.append(os.path.join("OrganSegmentations", mask_name)) + filtering_files(base_url, images, labels) + original_label_dict = { + 1: "liver", + 2: "bladder", + 3: "lungs", + 4: "kidneys", + 5: "bone", + 6: "brain", + } + label_dict = { + 1: "liver", + 2: "bladder", + 3: "lung", + 4: "kidney", + 5: "bone", + 6: "brain", + } + create_splits_and_write_json( + images, + labels, + test_ratio, + n_folds, + json_name, + seed, + label_dict, + original_label_dict, + ) + + +#### +@register_make +def make_kits23(): + base_url = "/data/KiTS23/dataset" + dataset_name = "KiTS23" + json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json") + masks = search_image_files(base_url, "segmentation.nii.gz") + images, labels = [], [] + for mask in masks: + rel_mask = os.path.relpath(mask, base_url) + labels.append(rel_mask) + idx = re.compile(r"case_(\d+)").search(rel_mask)[1] + img_name = f"case_{idx}" + images.append(os.path.join(img_name, "imaging.nii.gz")) + filtering_files(base_url, images, labels) + original_label_dict = {1: "kidney", 2: "tumor", 3: "cyst"} + label_dict = {1: "kidney", 2: "kidney tumor", 3: "kidney cyst"} + create_splits_and_write_json( + images, + labels, + test_ratio, + n_folds, + json_name, + seed, + label_dict, + original_label_dict, + ) + + +#### +@register_make +def make_lits23(): + base_url = "/data/LiTS/Training_Batch" + dataset_name = "LiTS" + json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json") + masks = search_image_files(base_url, ".nii", regex=r"segmentation") + images, labels = [], [] + for mask in masks: + rel_mask = os.path.relpath(mask, base_url) + labels.append(rel_mask) + idx = re.compile(r"segmentation-(\d+).nii").search(rel_mask)[1] + img_name = f"volume-{idx}.nii" + images.append(img_name) + filtering_files(base_url, images, labels) + original_label_dict = {1: "liver", 2: "tumor"} + label_dict = {1: "liver", 2: "liver tumor"} + create_splits_and_write_json( + images, + labels, + test_ratio, + n_folds, + json_name, + seed, + label_dict, + original_label_dict, + ) + + +#### +@register_make +def make_multi_organ_btcv(): + base_url = "/data/Multi-organ-Abdominal-CT/res_1.0mm_relabeled2" + dataset_name = "Multi-organ-Abdominal-CT-btcv" + json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json") + masks = search_image_files(os.path.join(base_url, "label_btcv_multiorgan"), ".nii") + images, labels = [], [] + for mask in masks: + rel_mask = os.path.relpath(mask, base_url) + labels.append(rel_mask) + idx = re.compile(r"label(\d+).nii").search(rel_mask)[1] + img_name = f"img{idx}.nii" + images.append(os.path.join("images_btcv", img_name)) + filtering_files(base_url, images, labels) + label_dict = { + 1: "spleen", + 2: "right kidney", + 3: "left kidney", + 4: "gallbladder", + 5: "esophagus", + 6: "liver", + 7: "stomach", + 8: "aorta", + 9: "inferior vena cava", + 10: "portal vein and splenic vein", + 11: "pancreas", + 12: "right adrenal gland", + 13: "left adrenal gland", + 14: "duodenum", + } + create_splits_and_write_json( + images, labels, test_ratio, n_folds, json_name, seed, label_dict + ) + + +#### +@register_make +def make_multi_organ_tcia(): + base_url = "/data/Multi-organ-Abdominal-CT/res_1.0mm_relabeled2" + dataset_name = "Multi-organ-Abdominal-CT-tcia" + json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json") + masks = search_image_files( + os.path.join(base_url, "label_tcia_multiorgan+rkidney"), ".nii" + ) + images, labels = [], [] + for mask in masks: + rel_mask = os.path.relpath(mask, base_url) + labels.append(rel_mask) + idx = re.compile(r"label(\d+).nii").search(rel_mask)[1] + img_name = f"PANCREAS_{idx}.nii" + images.append(os.path.join("images_tcia", img_name)) + filtering_files(base_url, images, labels) + label_dict = { + 1: "spleen", + 2: "right kidney", + 3: "left kidney", + 4: "gallbladder", + 5: "esophagus", + 6: "liver", + 7: "stomach", + 8: "pancreas", + 9: "duodenum", + } + create_splits_and_write_json( + images, labels, test_ratio, n_folds, json_name, seed, label_dict + ) + + +#### +@register_make +def make_pancreas_ct(): + base_url = "/data/Pancreas-CT" + dataset_name = "Pancreas-CT" + json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json") + masks = search_image_files( + os.path.join(base_url, "TCIA_pancreas_labels-02-05-2017"), ".nii.gz" + ) + images, labels = [], [] + for mask in masks: + rel_mask = os.path.relpath(mask, base_url) + labels.append(rel_mask) + idx = re.compile(r"label(\d+).nii.gz").search(rel_mask)[1] + img_name = f"PANCREAS_{idx}.nii.gz" + images.append(os.path.join("manifest-1599750808610", "nifti", img_name)) + filtering_files(base_url, images, labels) + label_dict = {1: "pancreas"} + create_splits_and_write_json( + images, labels, test_ratio, n_folds, json_name, seed, label_dict + ) + + +#### +@register_make +def make_task06(): + base_url = "/data/Task06" + dataset_name = "Task06" + json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json") + masks = search_image_files(os.path.join(base_url, "labelsTr"), ".nii.gz") + images, labels = [], [] + for mask in masks: + rel_mask = os.path.relpath(mask, base_url) + labels.append(rel_mask) + idx = re.compile(r"lung_(\d+).nii.gz").search(rel_mask)[1] + img_name = f"lung_{idx}.nii.gz" + images.append(os.path.join("imagesTr", img_name)) + filtering_files(base_url, images, labels) + original_label_dict = {1: "cancer"} + label_dict = {1: "lung tumor"} + create_splits_and_write_json( + images, + labels, + test_ratio, + n_folds, + json_name, + seed, + label_dict, + original_label_dict, + ) + + +#### +@register_make +def make_task07(): + base_url = "/data/Task07" + dataset_name = "Task07" + json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json") + masks = search_image_files(os.path.join(base_url, "labelsTr"), ".nii.gz") + images, labels = [], [] + for mask in masks: + rel_mask = os.path.relpath(mask, base_url) + labels.append(rel_mask) + idx = re.compile(r"pancreas_(\d+).nii.gz").search(rel_mask)[1] + img_name = f"pancreas_{idx}.nii.gz" + images.append(os.path.join("imagesTr", img_name)) + filtering_files(base_url, images, labels) + original_label_dict = {1: "pancreas", 2: "cancer"} + label_dict = {1: "pancreas", 2: "pancreatic tumor"} + create_splits_and_write_json( + images, + labels, + test_ratio, + n_folds, + json_name, + seed, + label_dict, + original_label_dict, + ) + + +#### +@register_make +def make_task08(): + base_url = "/data/Task08" + dataset_name = "Task08" + json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json") + masks = search_image_files(os.path.join(base_url, "labelsTr"), ".nii.gz") + images, labels = [], [] + for mask in masks: + rel_mask = os.path.relpath(mask, base_url) + labels.append(rel_mask) + idx = re.compile(r"hepaticvessel_(\d+).nii.gz").search(rel_mask)[1] + img_name = f"hepaticvessel_{idx}.nii.gz" + images.append(os.path.join("imagesTr", img_name)) + filtering_files(base_url, images, labels) + original_label_dict = {1: "Vessel", 2: "Tumour"} + label_dict = {1: "hepatic vessel", 2: "hepatic tumor"} + create_splits_and_write_json( + images, + labels, + test_ratio, + n_folds, + json_name, + seed, + label_dict, + original_label_dict, + ) + + +#### +@register_make +def make_task09(): + base_url = "/data/Task09" + dataset_name = "Task09" + json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json") + masks = search_image_files(os.path.join(base_url, "labelsTr"), ".nii.gz") + images, labels = [], [] + for mask in masks: + rel_mask = os.path.relpath(mask, base_url) + labels.append(rel_mask) + idx = re.compile(r"spleen_(\d+).nii.gz").search(rel_mask)[1] + img_name = f"spleen_{idx}.nii.gz" + images.append(os.path.join("imagesTr", img_name)) + filtering_files(base_url, images, labels) + label_dict = {1: "spleen"} + create_splits_and_write_json( + images, labels, test_ratio, n_folds, json_name, seed, label_dict + ) + + +#### +@register_make +def make_task10(): + base_url = "/data/Task10" + dataset_name = "Task10" + json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json") + masks = search_image_files(os.path.join(base_url, "labelsTr"), ".nii.gz") + images, labels = [], [] + for mask in masks: + rel_mask = os.path.relpath(mask, base_url) + labels.append(rel_mask) + idx = re.compile(r"colon_(\d+).nii.gz").search(rel_mask)[1] + img_name = f"colon_{idx}.nii.gz" + images.append(os.path.join("imagesTr", img_name)) + filtering_files(base_url, images, labels) + label_dict = {1: "colon cancer primaries"} + create_splits_and_write_json( + images, labels, test_ratio, n_folds, json_name, seed, label_dict + ) + + +#### +@register_make +def make_total_segmentator(): + base_url = "/data/TotalSegmentator" + dataset_name = "TotalSegmentator" + json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json") + masks = search_image_files(os.path.join(base_url, "labels"), ".nii.gz") + images, labels = [], [] + for mask in masks: + rel_mask = os.path.relpath(mask, base_url) + labels.append(rel_mask) + idx = re.compile(r"s(\d+).nii.gz").search(rel_mask)[1] + img_name = f"s{idx}.nii.gz" + images.append(os.path.join("images", img_name)) + filtering_files(base_url, images, labels) + original_label_dict = { # https://github.com/wasserth/TotalSegmentator/blob/master/totalsegmentator/map_to_binary.py + 1: "spleen", + 2: "kidney_right", + 3: "kidney_left", + 4: "gallbladder", + 5: "liver", + 6: "stomach", + 7: "aorta", + 8: "inferior_vena_cava", + 9: "portal_vein_and_splenic_vein", + 10: "pancreas", + 11: "adrenal_gland_right", + 12: "adrenal_gland_left", + 13: "lung_upper_lobe_left", + 14: "lung_lower_lobe_left", + 15: "lung_upper_lobe_right", + 16: "lung_middle_lobe_right", + 17: "lung_lower_lobe_right", + 18: "vertebrae_L5", + 19: "vertebrae_L4", + 20: "vertebrae_L3", + 21: "vertebrae_L2", + 22: "vertebrae_L1", + 23: "vertebrae_T12", + 24: "vertebrae_T11", + 25: "vertebrae_T10", + 26: "vertebrae_T9", + 27: "vertebrae_T8", + 28: "vertebrae_T7", + 29: "vertebrae_T6", + 30: "vertebrae_T5", + 31: "vertebrae_T4", + 32: "vertebrae_T3", + 33: "vertebrae_T2", + 34: "vertebrae_T1", + 35: "vertebrae_C7", + 36: "vertebrae_C6", + 37: "vertebrae_C5", + 38: "vertebrae_C4", + 39: "vertebrae_C3", + 40: "vertebrae_C2", + 41: "vertebrae_C1", + 42: "esophagus", + 43: "trachea", + 44: "heart_myocardium", + 45: "heart_atrium_left", + 46: "heart_ventricle_left", + 47: "heart_atrium_right", + 48: "heart_ventricle_right", + 49: "pulmonary_artery", + 50: "brain", + 51: "iliac_artery_left", + 52: "iliac_artery_right", + 53: "iliac_vena_left", + 54: "iliac_vena_right", + 55: "small_bowel", + 56: "duodenum", + 57: "colon", + 58: "rib_left_1", + 59: "rib_left_2", + 60: "rib_left_3", + 61: "rib_left_4", + 62: "rib_left_5", + 63: "rib_left_6", + 64: "rib_left_7", + 65: "rib_left_8", + 66: "rib_left_9", + 67: "rib_left_10", + 68: "rib_left_11", + 69: "rib_left_12", + 70: "rib_right_1", + 71: "rib_right_2", + 72: "rib_right_3", + 73: "rib_right_4", + 74: "rib_right_5", + 75: "rib_right_6", + 76: "rib_right_7", + 77: "rib_right_8", + 78: "rib_right_9", + 79: "rib_right_10", + 80: "rib_right_11", + 81: "rib_right_12", + 82: "humerus_left", + 83: "humerus_right", + 84: "scapula_left", + 85: "scapula_right", + 86: "clavicula_left", + 87: "clavicula_right", + 88: "femur_left", + 89: "femur_right", + 90: "hip_left", + 91: "hip_right", + 92: "sacrum", + 93: "face", + 94: "gluteus_maximus_left", + 95: "gluteus_maximus_right", + 96: "gluteus_medius_left", + 97: "gluteus_medius_right", + 98: "gluteus_minimus_left", + 99: "gluteus_minimus_right", + 100: "autochthon_left", + 101: "autochthon_right", + 102: "iliopsoas_left", + 103: "iliopsoas_right", + 104: "urinary_bladder", + } + label_dict = { + 1: "spleen", + 2: "right kidney", + 3: "left kidney", + 4: "gallbladder", + 5: "liver", + 6: "stomach", + 7: "aorta", + 8: "inferior vena cava", + 9: "portal vein and splenic vein", + 10: "pancreas", + 11: "right adrenal gland", + 12: "left adrenal gland", + 13: "left lung upper lobe", + 14: "left lung lower lobe", + 15: "right lung upper lobe", + 16: "right lung middle lobe", + 17: "right lung lower lobe", + 18: "vertebrae L5", + 19: "vertebrae L4", + 20: "vertebrae L3", + 21: "vertebrae L2", + 22: "vertebrae L1", + 23: "vertebrae T12", + 24: "vertebrae T11", + 25: "vertebrae T10", + 26: "vertebrae T9", + 27: "vertebrae T8", + 28: "vertebrae T7", + 29: "vertebrae T6", + 30: "vertebrae T5", + 31: "vertebrae T4", + 32: "vertebrae T3", + 33: "vertebrae T2", + 34: "vertebrae T1", + 35: "vertebrae C7", + 36: "vertebrae C6", + 37: "vertebrae C5", + 38: "vertebrae C4", + 39: "vertebrae C3", + 40: "vertebrae C2", + 41: "vertebrae C1", + 42: "esophagus", + 43: "trachea", + 44: "heart myocardium", + 45: "left heart atrium", + 46: "left heart ventricle", + 47: "right heart atrium", + 48: "right heart ventricle", + 49: "pulmonary artery", + 50: "brain", + 51: "left iliac artery", + 52: "right iliac artery", + 53: "left iliac vena", + 54: "right iliac vena", + 55: "small bowel", + 56: "duodenum", + 57: "colon", + 58: "left rib 1", + 59: "left rib 2", + 60: "left rib 3", + 61: "left rib 4", + 62: "left rib 5", + 63: "left rib 6", + 64: "left rib 7", + 65: "left rib 8", + 66: "left rib 9", + 67: "left rib 10", + 68: "left rib 11", + 69: "left rib 12", + 70: "right rib 1", + 71: "right rib 2", + 72: "right rib 3", + 73: "right rib 4", + 74: "right rib 5", + 75: "right rib 6", + 76: "right rib 7", + 77: "right rib 8", + 78: "right rib 9", + 79: "right rib 10", + 80: "right rib 11", + 81: "right rib 12", + 82: "left humerus", + 83: "right humerus", + 84: "left scapula", + 85: "right scapula", + 86: "left clavicula", + 87: "right clavicula", + 88: "left femur", + 89: "right femur", + 90: "left hip", + 91: "right hip", + 92: "sacrum", + 93: "face", + 94: "left gluteus maximus", + 95: "right gluteus maximus", + 96: "left gluteus medius", + 97: "right gluteus medius", + 98: "left gluteus minimus", + 99: "right gluteus minimus", + 100: "left autochthon", + 101: "right autochthon", + 102: "left iliopsoas", + 103: "right iliopsoas", + 104: "bladder", + } + create_splits_and_write_json( + images, + labels, + test_ratio, + n_folds, + json_name, + seed, + label_dict, + original_label_dict, + ) + + +#### +@register_make +def make_word(): + base_url = "/data/WORD" + dataset_name = "WORD" + json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json") + masks = search_image_files(os.path.join(base_url, "labelsTr"), ".nii.gz") + masks += search_image_files(os.path.join(base_url, "labelsTs"), ".nii.gz") + masks += search_image_files(os.path.join(base_url, "labelsVal"), ".nii.gz") + images, labels = [], [] + for mask in masks: + rel_mask = os.path.relpath(mask, base_url) + labels.append(rel_mask) + idx = re.compile(r"word_(\d+).nii.gz").search(rel_mask)[1] + img_name = f"word_{idx}.nii.gz" + for f in ["imagesTr", "imagesTs", "imagesVal"]: + if os.path.exists(os.path.join(base_url, f, img_name)): + images.append(os.path.join(f, img_name)) + break + filtering_files(base_url, images, labels) + original_label_dict = { + 1: "liver", + 2: "spleen", + 3: "left_kidney", + 4: "right_kidney", + 5: "stomach", + 6: "gallbladder", + 7: "esophagus", + 8: "pancreas", + 9: "duodenum", + 10: "colon", + 11: "intestine", + 12: "adrenal", + 13: "rectum", + 14: "bladder", + 15: "Head_of_femur_L", + 16: "Head_of_femur_R", + } + label_dict = { + 1: "liver", + 2: "spleen", + 3: "left kidney", + 4: "right kidney", + 5: "stomach", + 6: "gallbladder", + 7: "esophagus", + 8: "pancreas", + 9: "duodenum", + 10: "colon", + 11: "intestine", + 12: "adrenal gland", + 13: "rectum", + 14: "bladder", + 15: "left head of femur", + 16: "right head of femur", + } + create_splits_and_write_json( + images, + labels, + test_ratio, + n_folds, + json_name, + seed, + label_dict, + original_label_dict, + ) + + +#### +@register_make +def make_task03(): + base_url = "/data/Task03" + dataset_name = "Task03" + json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json") + masks = search_image_files(os.path.join(base_url, "labelsTr"), ".nii.gz") + images, labels = [], [] + for mask in masks: + rel_mask = os.path.relpath(mask, base_url) + labels.append(rel_mask) + idx = re.compile(r"liver_(\d+).nii.gz").search(rel_mask)[1] + img_name = f"liver_{idx}.nii.gz" + images.append(os.path.join("imagesTr", img_name)) + filtering_files(base_url, images, labels) + original_label_dict = {1: "liver", 2: "cancer"} + label_dict = {1: "liver", 2: "hepatic tumor"} + create_splits_and_write_json( + images, + labels, + test_ratio, + n_folds, + json_name, + seed, + label_dict, + original_label_dict, + ) + + +#### +@register_make +def make_bone(): + base_url = "/data/Bone-NIH" + dataset_name = "Bone-NIH" + json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json") + masks = search_image_files(base_url, "enriched_3-class.nii.gz") + full_ct = search_image_files(base_url, "CT.nii.gz") + for x in full_ct: + if x.endswith(os.path.join("anon_data", "BONE-017", "CT.nii.gz")): + full_ct.remove(x) + images, labels = [], [] + for mask in masks: + rel_mask = os.path.relpath(mask, base_url) + idx = re.compile(r"BONE-(\d+)").search(rel_mask)[1] + if idx in {"066"}: + continue + img_name = os.path.join(f"BONE-{idx}", "CT.nii.gz") + for x in full_ct: + if x.endswith(img_name): + images.append(os.path.relpath(x, base_url)) + full_ct.remove(x) + break + labels.append(rel_mask) + filtering_files(base_url, images, labels) + if len(full_ct) > 1: + raise ValueError("Remaining items in the full ct set.") + original_label_dict = {1: "lesion 1", 2: "lesion 2"} + label_dict = {1: "bone lesion", 2: "bone lesion"} # merging 1 and 2 + create_splits_and_write_json( + images, + labels, + test_ratio, + n_folds, + json_name, + seed, + label_dict, + original_label_dict, + ) + + +#### +@register_make +def make_total_segmentator_v2(): + base_url = "/data/TotalSegmentatorV2" + dataset_name = "TotalSegmentatorV2" + json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json") + masks = search_image_files(base_url, "seg.nii.gz") + images, labels = [], [] + for mask in masks: + rel_mask = os.path.relpath(mask, base_url) + if "s1104" in rel_mask or "s0992" in rel_mask or "s0248" in rel_mask: + # using totalseg v2.0.0 list, although in v2.0.1 this has been fixed + continue + labels.append(rel_mask) + img_name = os.path.join(os.path.dirname(rel_mask), "ct.nii.gz") + images.append(img_name) + filtering_files(base_url, images, labels) + original_label_dict = { + 1: "spleen", + 2: "kidney_right", + 3: "kidney_left", + 4: "gallbladder", + 5: "liver", + 6: "stomach", + 7: "aorta", + 8: "inferior_vena_cava", + 9: "portal_vein_and_splenic_vein", + 10: "pancreas", + 11: "adrenal_gland_right", + 12: "adrenal_gland_left", + 13: "lung_upper_lobe_left", + 14: "lung_lower_lobe_left", + 15: "lung_upper_lobe_right", + 16: "lung_middle_lobe_right", + 17: "lung_lower_lobe_right", + 18: "vertebrae_L5", + 19: "vertebrae_L4", + 20: "vertebrae_L3", + 21: "vertebrae_L2", + 22: "vertebrae_L1", + 23: "vertebrae_T12", + 24: "vertebrae_T11", + 25: "vertebrae_T10", + 26: "vertebrae_T9", + 27: "vertebrae_T8", + 28: "vertebrae_T7", + 29: "vertebrae_T6", + 30: "vertebrae_T5", + 31: "vertebrae_T4", + 32: "vertebrae_T3", + 33: "vertebrae_T2", + 34: "vertebrae_T1", + 35: "vertebrae_C7", + 36: "vertebrae_C6", + 37: "vertebrae_C5", + 38: "vertebrae_C4", + 39: "vertebrae_C3", + 40: "vertebrae_C2", + 41: "vertebrae_C1", + 42: "esophagus", + 43: "trachea", + 44: "brain", + 45: "iliac_artery_left", + 46: "iliac_artery_right", + 47: "iliac_vena_left", + 48: "iliac_vena_right", + 49: "small_bowel", + 50: "duodenum", + 51: "colon", + 52: "rib_left_1", + 53: "rib_left_2", + 54: "rib_left_3", + 55: "rib_left_4", + 56: "rib_left_5", + 57: "rib_left_6", + 58: "rib_left_7", + 59: "rib_left_8", + 60: "rib_left_9", + 61: "rib_left_10", + 62: "rib_left_11", + 63: "rib_left_12", + 64: "rib_right_1", + 65: "rib_right_2", + 66: "rib_right_3", + 67: "rib_right_4", + 68: "rib_right_5", + 69: "rib_right_6", + 70: "rib_right_7", + 71: "rib_right_8", + 72: "rib_right_9", + 73: "rib_right_10", + 74: "rib_right_11", + 75: "rib_right_12", + 76: "humerus_left", + 77: "humerus_right", + 78: "scapula_left", + 79: "scapula_right", + 80: "clavicula_left", + 81: "clavicula_right", + 82: "femur_left", + 83: "femur_right", + 84: "hip_left", + 85: "hip_right", + 86: "sacrum", + 87: "gluteus_maximus_left", + 88: "gluteus_maximus_right", + 89: "gluteus_medius_left", + 90: "gluteus_medius_right", + 91: "gluteus_minimus_left", + 92: "gluteus_minimus_right", + 93: "autochthon_left", + 94: "autochthon_right", + 95: "iliopsoas_left", + 96: "iliopsoas_right", + 97: "urinary_bladder", + 98: "atrial_appendage_left", + 99: "brachiocephalic_trunk", + 100: "brachiocephalic_vein_left", + 101: "brachiocephalic_vein_right", + 102: "common_carotid_artery_left", + 103: "common_carotid_artery_right", + 104: "costal_cartilages", + 105: "heart", + 106: "kidney_cyst_left", + 107: "kidney_cyst_right", + 108: "prostate", + 109: "pulmonary_vein", + 110: "skull", + 111: "spinal_cord", + 112: "sternum", + 113: "subclavian_artery_left", + 114: "subclavian_artery_right", + 115: "superior_vena_cava", + 116: "thyroid_gland", + 117: "vertebrae_S1", + } + label_dict = { + 1: "spleen", + 2: "right kidney", + 3: "left kidney", + 4: "gallbladder", + 5: "liver", + 6: "stomach", + 7: "aorta", + 8: "inferior vena cava", + 9: "portal vein and splenic vein", + 10: "pancreas", + 11: "right adrenal gland", + 12: "left adrenal gland", + 13: "left lung upper lobe", + 14: "left lung lower lobe", + 15: "right lung upper lobe", + 16: "right lung middle lobe", + 17: "right lung lower lobe", + 18: "vertebrae L5", + 19: "vertebrae L4", + 20: "vertebrae L3", + 21: "vertebrae L2", + 22: "vertebrae L1", + 23: "vertebrae T12", + 24: "vertebrae T11", + 25: "vertebrae T10", + 26: "vertebrae T9", + 27: "vertebrae T8", + 28: "vertebrae T7", + 29: "vertebrae T6", + 30: "vertebrae T5", + 31: "vertebrae T4", + 32: "vertebrae T3", + 33: "vertebrae T2", + 34: "vertebrae T1", + 35: "vertebrae C7", + 36: "vertebrae C6", + 37: "vertebrae C5", + 38: "vertebrae C4", + 39: "vertebrae C3", + 40: "vertebrae C2", + 41: "vertebrae C1", + 42: "esophagus", + 43: "trachea", + 44: "brain", + 45: "left iliac artery", + 46: "right iliac artery", + 47: "left iliac vena", + 48: "right iliac vena", + 49: "small bowel", + 50: "duodenum", + 51: "colon", + 52: "left rib 1", + 53: "left rib 2", + 54: "left rib 3", + 55: "left rib 4", + 56: "left rib 5", + 57: "left rib 6", + 58: "left rib 7", + 59: "left rib 8", + 60: "left rib 9", + 61: "left rib 10", + 62: "left rib 11", + 63: "left rib 12", + 64: "right rib 1", + 65: "right rib 2", + 66: "right rib 3", + 67: "right rib 4", + 68: "right rib 5", + 69: "right rib 6", + 70: "right rib 7", + 71: "right rib 8", + 72: "right rib 9", + 73: "right rib 10", + 74: "right rib 11", + 75: "right rib 12", + 76: "left humerus", + 77: "right humerus", + 78: "left scapula", + 79: "right scapula", + 80: "left clavicula", + 81: "right clavicula", + 82: "left femur", + 83: "right femur", + 84: "left hip", + 85: "right hip", + 86: "sacrum", + 87: "left gluteus maximus", + 88: "right gluteus maximus", + 89: "left gluteus medius", + 90: "right gluteus medius", + 91: "left gluteus minimus", + 92: "right gluteus minimus", + 93: "left autochthon", + 94: "right autochthon", + 95: "left iliopsoas", + 96: "right iliopsoas", + 97: "bladder", + 98: "left atrial appendage", + 99: "brachiocephalic trunk", + 100: "left brachiocephalic vein", + 101: "right brachiocephalic vein", + 102: "left common carotid artery", + 103: "right common carotid artery", + 104: "costal cartilages", + 105: "heart", + 106: "left kidney cyst", + 107: "right kidney cyst", + 108: "prostate", + 109: "pulmonary vein", + 110: "skull", + 111: "spinal cord", + 112: "sternum", + 113: "left subclavian artery", + 114: "right subclavian artery", + 115: "superior vena cava", + 116: "thyroid gland", + 117: "vertebrae S1", + } + create_splits_and_write_json( + images, + labels, + test_ratio, + n_folds, + json_name, + seed, + label_dict, + original_label_dict, + ) + + +#### +@register_make +def make_c4kc_kits(): + base_url = "/data/C4KC-KiTS/nifti" + dataset_name = "C4KC-KiTS" + json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json") + masks = search_image_files(base_url, "mask.nii.gz") + images, labels = [], [] + for mask in masks: + rel_mask = os.path.relpath(mask, base_url) + img_folder = os.path.dirname(mask) + img_name = [ + s + for s in sorted(glob(os.path.join(img_folder, "*.nii.gz"))) + if not ("seg" in os.path.basename(s) or "mask" in os.path.basename(s)) + ][0] + rel_img = os.path.relpath(img_name, base_url) + images.append(rel_img) + labels.append(rel_mask) + filtering_files(base_url, images, labels) + original_label_dict = {1: "Kidney", 2: "Mass"} + label_dict = {1: "kidney", 2: "kidney mass"} + create_splits_and_write_json( + images, + labels, + test_ratio, + n_folds, + json_name, + seed, + label_dict, + original_label_dict, + ) + + +#### +@register_make +def make_crlm_ct(): + base_url = "/data/CRLM-CT/nifti" + dataset_name = "CRLM-CT" + json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json") + masks = search_image_files(base_url, "mask.nii.gz") + images, labels = [], [] + for mask in masks: + rel_mask = os.path.relpath(mask, base_url) + img_folder = os.path.dirname(mask) + img_name = [ + s + for s in sorted(glob(os.path.join(img_folder, "*.nii.gz"))) + if not ("seg" in os.path.basename(s) or "mask" in os.path.basename(s)) + ][0] + rel_img = os.path.relpath(img_name, base_url) + images.append(rel_img) + labels.append(rel_mask) + filtering_files(base_url, images, labels) + original_label_dict = { + 1: "Liver", + 2: "Liver Remnant", + 3: "Hepatic Vein", + 4: "Portal Vein", + 5: "Tumor", + } + label_dict = { + 3: "hepatic vessel", + 4: "portal vein and splenic vein", + 5: "liver tumor", + } + create_splits_and_write_json( + images, + labels, + test_ratio, + n_folds, + json_name, + seed, + label_dict, + original_label_dict, + ) + + +#### +@register_make +def make_verse(): + base_url = "/data/VerSe/" + dataset_name = "VerSe" + json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json") + masks = search_image_files( + os.path.join(base_url, "dataset-01training"), "_msk.nii.gz" + ) + masks += search_image_files( + os.path.join(base_url, "dataset-02validation"), "_msk.nii.gz" + ) + masks += search_image_files(os.path.join(base_url, "dataset-03test"), "_msk.nii.gz") + masks += search_image_files( + os.path.join(base_url, "dataset-verse19test"), "_msk.nii.gz" + ) + masks += search_image_files( + os.path.join(base_url, "dataset-verse19training"), "_msk.nii.gz" + ) + masks += search_image_files( + os.path.join(base_url, "dataset-verse19validation"), "_msk.nii.gz" + ) + masks = sorted(masks) + images, labels = [], [] + for mask in masks: + rel_mask = os.path.relpath(mask, base_url) + img_name = f"{mask}".replace("derivatives", "rawdata").replace( + "_seg-vert_msk", "_ct" + ) + rel_img = os.path.relpath(img_name, base_url) + images.append(rel_img) + labels.append(rel_mask) + filtering_files(base_url, images, labels) + label_dict = { + 1: "vertebrae C1", + 2: "vertebrae C2", + 3: "vertebrae C3", + 4: "vertebrae C4", + 5: "vertebrae C5", + 6: "vertebrae C6", + 7: "vertebrae C7", + 8: "vertebrae T1", + 9: "vertebrae T2", + 10: "vertebrae T3", + 11: "vertebrae T4", + 12: "vertebrae T5", + 13: "vertebrae T6", + 14: "vertebrae T7", + 15: "vertebrae T8", + 16: "vertebrae T9", + 17: "vertebrae T10", + 18: "vertebrae T11", + 19: "vertebrae T12", + 20: "vertebrae L1", + 21: "vertebrae L2", + 22: "vertebrae L3", + 23: "vertebrae L4", + 24: "vertebrae L5", + 25: "vertebrae L6", + } + create_splits_and_write_json( + images, labels, test_ratio, n_folds, json_name, seed, label_dict + ) + + +#### +@register_make +def make_aeropath(): + base_url = "/data/AeroPath/" + dataset_name = "AeroPath" + json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json") + masks = search_image_files(base_url, "_label.nii.gz") + images, labels = [], [] + for mask in masks: + rel_mask = os.path.relpath(mask, base_url) + img_folder = os.path.dirname(mask) + img_name = [ + s + for s in sorted(glob(os.path.join(img_folder, "*.nii.gz"))) + if "label" not in os.path.basename(s) + ][0] + rel_img = os.path.relpath(img_name, base_url) + images.append(rel_img) + labels.append(rel_mask) + filtering_files(base_url, images, labels) + original_label_dict = {1: "lung", 2: "airway"} + label_dict = {2: "airway"} + create_splits_and_write_json( + images, + labels, + test_ratio, + n_folds, + json_name, + seed, + label_dict, + original_label_dict, + ) + + +#### +@register_make +def make_autopet23(): + base_url = "/data/Autopet23/" + dataset_name = "Autopet23" + json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json") + masks = search_image_files(base_url, "SEG.nii.gz") + images, labels = [], [] + for mask in masks: + rel_mask = os.path.relpath(mask, base_url) + img_folder = os.path.dirname(mask) + img_name = os.path.join(img_folder, "CTres.nii.gz") + rel_img = os.path.relpath(img_name, base_url) + images.append(rel_img) + labels.append(rel_mask) + filtering_files(base_url, images, labels) + label_dict = {1: "FDG-avid lesion"} + create_splits_and_write_json( + images, labels, test_ratio, n_folds, json_name, seed, label_dict + ) + + +#### +@register_make +def make_LIDC_IDRI(): + base_url = "/data/LIDC-IDRI/" + dataset_name = "LIDC-IDRI" + json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json") + masks = search_image_files(os.path.join(base_url, "Mask"), ".nii.gz") + images, labels = [], [] + for mask in masks: + if "0985" in mask: + continue + rel_mask = os.path.relpath(mask, base_url) + rel_img = rel_mask.replace("Mask", "Image") + images.append(rel_img) + labels.append(rel_mask) + filtering_files(base_url, images, labels) + label_dict = {1: "lung nodule"} + create_splits_and_write_json( + images, labels, test_ratio, n_folds, json_name, seed, label_dict + ) + + +#### +@register_make +def make_ctpelvic1k_clinic(): + base_url = "/data/CTPelvic1K-CLINIC" + dataset_name = "CTPelvic1K-CLINIC" + json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json") + masks = search_image_files( + os.path.join(base_url, "ipcai2021_dataset6_Anonymized"), ".nii.gz" + ) + masks += search_image_files( + os.path.join(base_url, "CTPelvic1K_dataset7_mask"), ".nii.gz" + ) + images, labels = [], [] + for mask in masks: + mask = os.path.relpath(mask, base_url) + labels.append(mask) + if "dataset7" in mask: + img = ( + mask.replace("mask", "data") + .replace("CLINIC_metal", "dataset7_CLINIC_metal") + .replace("_4label", "") + ) + if "dataset6" in mask: + img = ( + mask.replace("ipcai2021", "CTPelvic1K") + .replace("_Anonymized", "_data") + .replace("mask_4label", "data") + ) + images.append(img) + label_dict = {1: "sacrum", 2: "left hip", 3: "right hip", 4: "lumbar spine"} + create_splits_and_write_json( + images, labels, test_ratio, n_folds, json_name, seed, label_dict + ) + + +#### +@register_make +def make_colon_acrin6664(): + base_url = "/data/COLON_ACRIN6664" + dataset_name = "COLON_ACRIN6664" + json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json") + masks = search_image_files(os.path.join(base_url, "mask"), ".nii.gz") + images, labels = [], [] + for mask in masks: + mask = os.path.relpath(mask, base_url) + labels.append(mask) + img = "_".join(mask.split("_")[1:3]) + ".nii.gz" + img = os.path.join("nifti", img) + images.append(img) + label_dict = {1: "sacrum", 2: "left hip", 3: "right hip", 4: "lumbar spine"} + create_splits_and_write_json( + images, labels, test_ratio, n_folds, json_name, seed, label_dict + ) + + +#### +@register_make +def make_adrenal_ki67(): + base_url = "/data/Adrenal_Ki67" + dataset_name = "Adrenal_Ki67" + json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json") + masks = search_image_files(base_url, "seg-1__fix.nii.gz") + images, labels = [], [] + for mask in masks: + mask = os.path.relpath(mask, base_url) + labels.append(mask) + img_folder = os.path.join(base_url, os.path.dirname(mask)) + img_name = [ + s + for s in sorted(glob(os.path.join(img_folder, "*.nii.gz"))) + if "seg" not in os.path.basename(s) + ][0] + img_name = os.path.relpath(img_name, base_url) + if "Ki67_Seg_049" in img_name: + img_name = os.path.join( + "Adrenal_Ki67_Seg_049-Adrenal_Ki67_Seg_049", + "3-CAP_W_O_5.0_I30f_3_3.nii.gz", + ) + if "Ki67_Seg_053" in img_name: + img_name = os.path.join( + "Adrenal_Ki67_Seg_053-Adrenal_Ki67_Seg_053", "7-ABD_AX_3_PV_7.nii.gz" + ) + images.append(img_name) + label_dict = {1: "adrenocortical tumor"} + create_splits_and_write_json( + images, labels, test_ratio, n_folds, json_name, seed, label_dict + ) + + +#### +@register_make +def make_hcc_tace(): + base_url = "/data/HCC-TACE-Seg" + dataset_name = "HCC-TACE-Seg" + json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json") + masks = search_image_files(base_url, "seg__fix.nii.gz") + images, labels = [], [] + for mask in masks: + mask = os.path.relpath(mask, base_url) + if "089" in mask: + mask = mask.replace("seg__fix.nii.gz", "seg_ori__fix_2.nii.gz", 1) + labels.append(mask) + img_folder = os.path.join(base_url, os.path.dirname(mask)) + img_name = [ + s + for s in sorted(glob(os.path.join(img_folder, "*.nii.gz"))) + if "seg" not in os.path.basename(s) + ][0] + img_name = os.path.relpath(img_name, base_url) + images.append(img_name) + label_dict = {2: "hepatic tumor"} + create_splits_and_write_json( + images, labels, test_ratio, n_folds, json_name, seed, label_dict + ) + + +#### +@register_make +def make_micro_ct_murine_native(): + base_url = "/data/micro-ct-murine/1_nativeCTdata_nifti" + dataset_name = "micro-ct-murine-native" + json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json") + masks = search_image_files(base_url, "seg.nii.gz") + images, labels = [], [] + for mask in masks: + mask = os.path.relpath(mask, base_url) + labels.append(mask) + img_name = mask.replace("seg.nii.gz", "CT140.nii.gz") + images.append(img_name) + label_dict = {1: "heart", 2: "spinal cord", 3: "right lung", 4: "left lung"} + create_splits_and_write_json( + images, labels, test_ratio, n_folds, json_name, seed, label_dict + ) + + +#### +@register_make +def make_micro_ct_murine_contrast(): + base_url = "/data/micro-ct-murine/2_contrast-enhancedCTdata_nifti" + dataset_name = "micro-ct-murine-contrast" + json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json") + masks = search_image_files(base_url, "seg.nii.gz") + images, labels = [], [] + for mask in masks: + mask = os.path.relpath(mask, base_url) + labels.append(mask) + img_name = mask.replace("seg.nii.gz", "CT140.nii.gz") + images.append(img_name) + label_dict = {1: "heart", 2: "spinal cord", 3: "right lung", 4: "left lung"} + create_splits_and_write_json( + images, labels, test_ratio, n_folds, json_name, seed, label_dict + ) + + +#### +@register_make +def make_segrap2023_task1(): + base_url = "/data/segrap23/" + dataset_name = "segrap23-task1" + json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json") + masks = search_image_files( + os.path.join( + base_url, "SegRap2023_Training_Set_120cases_OneHot_Labels", "Task001" + ), + ".nii.gz", + ) + images, labels = [], [] + for mask in masks: + mask = os.path.relpath(mask, base_url) + labels.append(mask) + s_id = os.path.basename(mask)[: -len(".nii.gz")] + img_name = os.path.join( + "SegRap2023_Training_Set_120cases", f"{s_id}", "image.nii.gz" + ) + images.append(img_name) + original_label_dict = { + "1": "Brain", + "2": "BrainStem", + "3": "Chiasm", + "4": "TemporalLobe_L", + "5": "TemporalLobe_R", + "6": "TemporalLobe_Hippocampus_OverLap_L", + "7": "TemporalLobe_Hippocampus_OverLap_R", + "8": "Hippocampus_L", + "9": "Hippocampus_R", + "10": "Eye_L", + "11": "Eye_R", + "12": "Lens_L", + "13": "Lens_R", + "14": "OpticNerve_L", + "15": "OpticNerve_R", + "16": "MiddleEar_L", + "17": "MiddleEar_R", + "18": "IAC_L", + "19": "IAC_R", + "20": "MiddleEar_TympanicCavity_OverLap_L", + "21": "MiddleEar_TympanicCavity_OverLap_R", + "22": "TympanicCavity_L", + "23": "TympanicCavity_R", + "24": "MiddleEar_VestibulSemi_OverLap_L", + "25": "MiddleEar_VestibulSemi_OverLap_R", + "26": "VestibulSemi_L", + "27": "VestibulSemi_R", + "28": "Cochlea_L", + "29": "Cochlea_R", + "30": "MiddleEar_ETbone_OverLap_L", + "31": "MiddleEar_ETbone_OverLap_R", + "32": "ETbone_L", + "33": "ETbone_R", + "34": "Pituitary", + "35": "OralCavity", + "36": "Mandible_L", + "37": "Mandible_R", + "38": "Submandibular_L", + "39": "Submandibular_R", + "40": "Parotid_L", + "41": "Parotid_R", + "42": "Mastoid_L", + "43": "Mastoid_R", + "44": "TMjoint_L", + "45": "TMjoint_R", + "46": "SpinalCord", + "47": "Esophagus", + "48": "Larynx", + "49": "Larynx_Glottic", + "50": "Larynx_Supraglot", + "51": "Larynx_PharynxConst_OverLap", + "52": "PharynxConst", + "53": "Thyroid", + "54": "Trachea", + } + label_dict = { + "1": "brain", + "2": "brain stem", + "3": "optic chiasm", + "4": "left temporal lobe", + "5": "right temporal lobe", + "6": "left temporal lobe hippocampus overlap", + "7": "right temporal lobe hippocampus overlap", + "8": "left hippocampus", + "9": "right hippocampus", + "10": "left eye", + "11": "right eye", + "12": "left lens", + "13": "right lens", + "14": "left optic nerve", + "15": "right optic nerve", + "16": "left middle ear", + "17": "right middle ear", + "18": "left internal auditory canal", + "19": "right internal auditory canal", + "20": "left middle ear tympanic cavity overlap", + "21": "right middle ear tympanic cavity overlap", + "22": "left tympanic cavity", + "23": "right tympanic cavity", + "24": "left middle ear vestibular semicircular canal overlap", + "25": "right middle ear vestibular semicircular canal overlap", + "26": "left vestibular semicircular canal", + "27": "right vestibular semicircular canal", + "28": "left cochlea", + "29": "right cochlea", + "30": "left middle ear eustachian tube bone overlap", + "31": "right middle ear eustachian tube bone overlap", + "32": "left eustachian tube bone", + "33": "right eustachian tube bone", + "34": "pituitary", + "35": "oral cavity", + "36": "left mandible", + "37": "right mandible", + "38": "left submandibular", + "39": "right submandibular", + "40": "left parotid", + "41": "right parotid", + "42": "left mastoid", + "43": "right mastoid", + "44": "left temporomandibular joint", + "45": "right temporomandibular joint", + "46": "spinal cord", + "47": "esophagus", + "48": "larynx", + "49": "larynx glottic", + "50": "larynx supraglottic", + "51": "larynx pharynx const overlap", + "52": "pharynx const", + "53": "thyroid", + "54": "trachea", + } + create_splits_and_write_json( + images, + labels, + test_ratio, + n_folds, + json_name, + seed, + label_dict, + original_label_dict, + ) + + +#### +@register_make +def make_pediatric_ct_seg(): + base_url = "/data/Pediatric-CT-SEG/" + dataset_name = "Pediatric-CT-SEG" + json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json") + masks = search_image_files(base_url, "seg.nii.gz") + images, labels = [], [] + for mask in masks: + mask = os.path.relpath(mask, base_url) + labels.append(mask) + img_name = mask.replace("seg.nii.gz", "image.nii.gz") + images.append(img_name) + original_label_dict = { + 1: "bladder", + 2: "rectum", + 3: "gonads", + 4: "prostate", + 5: "uterocervix", + 6: "femoral-head-lef", + 7: "femoral-head-rig", + 8: "small-intestine", + 9: "large-intestine", + 10: "spinal-canal", + 11: "gall-bladder", + 12: "kidney-left", + 13: "kidney-right", + 14: "spleen", + 15: "liver", + 16: "stomach", + 17: "pancreas", + 18: "duodenum", + 19: "adrenal-left", + 20: "adrenal-right", + 21: "heart", + 22: "esophagus", + 23: "lung_l", + 24: "lung_r", + 25: "breast-left", + 26: "breast-right", + 27: "thymus", + 28: "skin", + 29: "bones", + } + + label_dict = { + 1: "bladder", + 2: "rectum", + 3: "gonads", + 4: "prostate", + 5: "uterocervix", + 6: "left femoral head", + 7: "right femoral head", + 8: "small intestine", + 9: "large intestine", + 10: "spinal canal", + 11: "gallbladder", + 12: "left kidney", + 13: "right kidney", + 14: "spleen", + 15: "liver", + 16: "stomach", + 17: "pancreas", + 18: "duodenum", + 19: "left adrenal", + 20: "right adrenal", + 21: "heart", + 22: "esophagus", + 23: "left lung", + 24: "right lung", + 25: "left breast", + 26: "right breast", + 27: "thymus", + 28: "skin", + 29: "bones", + } + create_splits_and_write_json( + images, + labels, + test_ratio, + n_folds, + json_name, + seed, + label_dict, + original_label_dict, + ) + + +#### +@register_make +def make_autopet_atlas(): + base_url = "/data/" + dataset_name = "AutoPET-Atlas" + json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json") + masks = search_image_files(os.path.join(base_url, "AutoPET-Atlas"), ".nii.gz") + images, labels = [], [] + for mask in masks: + mask = os.path.relpath(mask, base_url) + labels.append(mask) + pat_id = mask.split("_")[1] + img_folder = os.path.join( + base_url, "Autopet23", "FDG-PET-CT-Lesions", f"PETCT_{pat_id}" + ) + image_nii = search_image_files(img_folder, "CT.nii.gz")[0] + img_name = os.path.relpath(image_nii, base_url) + images.append(img_name) + label_dict = { + 2: "muscles", + 3: "fat", + 4: "abdominal tissue", + 5: "mediastinal tissue", + 6: "esophagus", + 7: "stomach", + 8: "small bowel", + 9: "duodenum", + 10: "colon", + 11: "rectum", + 12: "gallbladder", + 13: "liver", + 14: "pancreas", + 15: "left kidney", + 16: "right kidney", + 17: "bladder", + 18: "gonads", + 19: "prostate", + 20: "uterocervix", + 21: "uterus", + 22: "left breast", + 23: "right breast", + 24: "spinal canal", + 25: "brain", + 26: "spleen", + 27: "left adrenal gland", + 28: "right adrenal gland", + 29: "left thyroid", + 30: "right thyroid", + 31: "thymus", + 32: "left gluteus maximus", + 33: "right gluteus maximus", + 34: "left gluteus medius", + 35: "right gluteus medius", + 36: "left gluteus minimus", + 37: "right gluteus minimus", + 38: "left iliopsoas", + 39: "right iliopsoas", + 40: "left autochthon", + 41: "right autochthon", + 42: "skin", + 43: "vertebrae C1", + 44: "vertebrae C2", + 45: "vertebrae C3", + 46: "vertebrae C4", + 47: "vertebrae C5", + 48: "vertebrae C6", + 49: "vertebrae C7", + 50: "vertebrae T1", + 51: "vertebrae T2", + 52: "vertebrae T3", + 53: "vertebrae T4", + 54: "vertebrae T5", + 55: "vertebrae T6", + 56: "vertebrae T7", + 57: "vertebrae T8", + 58: "vertebrae T9", + 59: "vertebrae T10", + 60: "vertebrae T11", + 61: "vertebrae T12", + 62: "vertebrae L1", + 63: "vertebrae L2", + 64: "vertebrae L3", + 65: "vertebrae L4", + 66: "vertebrae L5", + 67: "left costa 1", + 68: "right costa 1", + 69: "left costa 2", + 70: "right costa 2", + 71: "left costa 3", + 72: "right costa 3", + 73: "left costa 4", + 74: "right costa 4", + 75: "left costa 5", + 76: "right costa 5", + 77: "left costa 6", + 78: "right costa 6", + 79: "left costa 7", + 80: "right costa 7", + 81: "left costa 8", + 82: "right costa 8", + 83: "left costa 9", + 84: "right costa 9", + 85: "left costa 10", + 86: "right costa 10", + 87: "left costa 11", + 88: "right costa 11", + 89: "left costa 12", + 90: "right costa 12", + 91: "rib_cartilage", + 92: "sternum", + 93: "left clavicle", + 94: "right clavicle", + 95: "left scapula", + 96: "right scapula", + 97: "left humerus", + 98: "right humerus", + 99: "skull", + 100: "left hip", + 101: "right hip", + 102: "sacrum", + 103: "left femur", + 104: "right femur", + 105: "heart ", + 106: "left heart atrium", + 107: "heart tissue", + 108: "right heart atrium", + 109: "heart myocardium", + 110: "left heart ventricle", + 111: "right heart ventricle", + 112: "left iliac artery", + 113: "right iliac artery", + 114: "aorta", + 115: "left iliac vena", + 116: "right iliac vena", + 117: "inferior vena cava", + 118: "portal vein and splenic vein", + 119: "celiac trunk", + 120: "left lung lower lobe", + 121: "left lung upper lobe", + 122: "right lung lower lobe", + 123: "right lung middle lobe", + 124: "right lung upper lobe", + 125: "bronchie", + 126: "trachea", + 127: "pulmonary artery", + 128: "left cheek", + 129: "right cheek", + 130: "left eyeball", + 131: "right eyeball", + } + create_splits_and_write_json( + images, labels, test_ratio, n_folds, json_name, seed, label_dict + ) + + +#### +@register_make +def make_uls23(): + base_url = "/data/ULS23" + dataset_name = "ULS23_DeepLesion" + json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json") + # data/ULS23/ULS23_annotations/processed_data/partially_annotated/DeepLesion/labels_grabcut + seg_folder = [ + base_url, + "ULS23_annotations", + "processed_data", + "partially_annotated", + "DeepLesion", + "labels_grabcut", + ] + masks = search_image_files(os.path.join(*seg_folder), ".nii.gz") + images, labels = [], [] + for mask in masks: + mask = os.path.relpath(mask, base_url) + labels.append(mask) + img_name = mask.replace("ULS23_annotations", "ULS23").replace( + "labels_grabcut", "images" + ) + images.append(img_name) + label_dict = {1: "lesion"} + create_splits_and_write_json( + images, labels, test_ratio, n_folds, json_name, seed, label_dict + ) + + +#### +@register_make +def make_uls23_deeplesion3d(): + base_url = "/data/ULS23" + dataset_name = "ULS23_DeepLesion3D" + json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json") + # /data/ULS23/ULS23_annotations/novel_data/ULS23_DeepLesion3D/labels + seg_folder = [ + base_url, + "ULS23_annotations", + "novel_data", + "ULS23_DeepLesion3D", + "labels", + ] + masks = search_image_files(os.path.join(*seg_folder), ".nii.gz") + images, labels = [], [] + for mask in masks: + mask = os.path.relpath(mask, base_url) + labels.append(mask) + img_name = mask.replace("ULS23_annotations", "ULS23").replace( + "labels", "images" + ) + images.append(img_name) + label_dict = {1: "lesion"} + create_splits_and_write_json( + images, labels, test_ratio, n_folds, json_name, seed, label_dict + ) + + +#### +@register_make +def make_uls23_bone(): + base_url = "/data/ULS23" + dataset_name = "ULS23_Bone" + json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json") + # /data/ULS23/ULS23_annotations/novel_data/ULS23_Radboudumc_Bone/labels + seg_folder = [ + base_url, + "ULS23_annotations", + "novel_data", + "ULS23_Radboudumc_Bone", + "labels", + ] + masks = search_image_files(os.path.join(*seg_folder), ".nii.gz") + images, labels = [], [] + for mask in masks: + mask = os.path.relpath(mask, base_url) + labels.append(mask) + img_name = mask.replace("ULS23_annotations", "ULS23").replace( + "labels", "images" + ) + images.append(img_name) + label_dict = {1: "lesion"} + create_splits_and_write_json( + images, labels, test_ratio, n_folds, json_name, seed, label_dict + ) + + +#### +@register_make +def make_uls23_pancreas(): + base_url = "/data/ULS23" + dataset_name = "ULS23_Pancreas" + json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json") + # /data/ULS23/ULS23_annotations/novel_data/ULS23_Radboudumc_Pancreas/labels + seg_folder = [ + base_url, + "ULS23_annotations", + "novel_data", + "ULS23_Radboudumc_Pancreas", + "labels", + ] + masks = search_image_files(os.path.join(*seg_folder), ".nii.gz") + images, labels = [], [] + for mask in masks: + mask = os.path.relpath(mask, base_url) + labels.append(mask) + img_name = mask.replace("ULS23_annotations", "ULS23").replace( + "labels", "images" + ) + images.append(img_name) + label_dict = {1: "lesion"} + create_splits_and_write_json( + images, labels, test_ratio, n_folds, json_name, seed, label_dict + ) + + +#### +@register_make +def make_mr_amos22(): + base_url = "/data/AMOS22" + dataset_name = "MR_AMOS22" + json_name = os.path.join(output_json_dir, f"{dataset_name}_{n_folds}_folds.json") + masks = search_image_files(os.path.join(base_url, "labelsTr"), ".nii.gz") + masks += search_image_files(os.path.join(base_url, "labelsVa"), ".nii.gz") + images, labels = [], [] + for mask in masks: + rel_mask = os.path.relpath(mask, base_url) + labels.append(rel_mask) + idx = re.compile(r"amos_(\d+).nii.gz").search(rel_mask)[1] + if int(idx) < 500: # skip the CT cases + labels.pop() + continue + img_name = f"amos_{idx}.nii.gz" + for f in ["imagesTr", "imagesVa"]: + if os.path.exists(os.path.join(base_url, f, img_name)): + images.append(os.path.join(f, img_name)) + break + # print(f"image: {images[-1]}, label: {labels[-1]}") + filtering_files(base_url, images, labels) + original_label_dict = { + 1: "spleen", + 2: "right kidney", + 3: "left kidney", + 4: "gallbladder", + 5: "esophagus", + 6: "liver", + 7: "stomach", + 8: "aorta", + 9: "postcava", + 10: "pancreas", + 11: "right adrenal gland", + 12: "left adrenal gland", + 13: "duodenum", + 14: "bladder", + 15: "prostate or uterus", + } + label_dict = { + 1: "spleen", + 2: "right kidney", + 3: "left kidney", + 4: "gallbladder", + 5: "esophagus", + 6: "liver", + 7: "stomach", + 8: "aorta", + 9: "inferior vena cava", + 10: "pancreas", + 11: "right adrenal gland", + 12: "left adrenal gland", + 13: "duodenum", + 14: "bladder", + 15: "prostate or uterus", + } + create_splits_and_write_json( + images, + labels, + test_ratio, + n_folds, + json_name, + seed, + label_dict, + original_label_dict, + ) + + +if __name__ == "__main__": + pprint(_make_funcs) + for func_name, f in _make_funcs.items(): + print(f"running {func_name}") + f() diff --git a/monailabel/monaivista/lib/__init__.py b/vista3d/scripts/__init__.py similarity index 100% rename from monailabel/monaivista/lib/__init__.py rename to vista3d/scripts/__init__.py diff --git a/vista3d/scripts/debugger.py b/vista3d/scripts/debugger.py new file mode 100644 index 0000000..b2568f4 --- /dev/null +++ b/vista3d/scripts/debugger.py @@ -0,0 +1,240 @@ +import copy +from tkinter import Tk, filedialog, messagebox + +import fire +import matplotlib.pyplot as plt +import nibabel as nib +import numpy as np +from matplotlib.widgets import Button, TextBox + +from .infer import InferClass +from .utils.workflow_utils import get_point_label + +inferer = InferClass(config_file=["./configs/infer.yaml"]) + + +class samm_visualizer: + def __init__(self): + self.clicked_points = [] + self.data = None + self.mask_plot = None + self.mask = None + self.data_path = None + self.circle_artists = [] + self.class_label = None + + def select_data_file(self): + root = Tk() + root.withdraw() + file_path = filedialog.askopenfilename( + title="Select Data File", initialfile=self.data_path + ) + if not file_path: + print("No file selected.") + exit() + # Load data from NIfTI file + try: + nifti_img = nib.load(file_path) + data = nifti_img.get_fdata() + if len(data.shape) == 4: + data = data[..., 0] # Extract last element along the 4th dimension + except FileNotFoundError: + print("File not found.") + exit() + except nib.filebasedimages.ImageFileError: + print("Invalid NIfTI file.") + exit() + self.data = data + self.data_path = file_path + + def generate_mask(self): + point = [] + point_label = [] + self.class_label = self.text_box.text + if len(self.class_label) == 0: + messagebox.showwarning( + "Warning", + "Label prompt is not specified. Assuming the point is for supported class. \ + For zero-shot, input random number > 132", + ) + label_prompt = None + prompt_class = None + neg_id, pos_id = get_point_label(1) + else: + if self.class_label in [2, 20, 21]: + messagebox.showwarning( + "Warning", + "Current debugger skip kidney (2), lung (20), and bone (21). Use their subclasses.", + ) + return + label_prompt = int(self.class_label) + neg_id, pos_id = get_point_label(label_prompt) + label_prompt = np.array([label_prompt])[np.newaxis, ...] + prompt_class = copy.deepcopy(label_prompt) + # if zero-shot + if label_prompt is not None and label_prompt[0] > 132: + label_prompt = None + for p in self.clicked_points: + point.append([p[1], p[0], p[2]]) + point_label.append(pos_id if p[3] == 1 else neg_id) + if len(point) == 0: + point = None + point_label = None + else: + point = np.array(point)[np.newaxis, ...] + point_label = np.array(point_label)[np.newaxis, ...] + mask = inferer.infer( + {"image": self.data_path}, + point, + point_label, + label_prompt, + prompt_class, + save_mask=True, + point_start=self.point_start, + )[0] + nan_mask = np.isnan(mask) + mask = mask.data.cpu().numpy() > 0.5 + mask = mask.astype(np.float32) + mask[mask == 0] = np.nan + if self.mask is None: + self.mask = mask + else: + self.mask[~nan_mask] = mask[~nan_mask] + + def display_3d_slices(self): + fig, ax = plt.subplots() + assert self.data is not None, "Load data first." + ax.volume = self.data + ax.index = self.data.shape[2] // 2 + ax.imshow(self.data[:, :, ax.index], cmap="gray") + ax.set_title(f"Slice {ax.index}") + self.update_slice(ax) + fig.canvas.mpl_connect("scroll_event", self.process_scroll) + fig.canvas.mpl_connect("button_press_event", self.process_click) + # Add numerical input box for slice index + text_ax = plt.axes([0.45, 0.01, 0.2, 0.05]) # Position of the text box + self.text_box = TextBox(text_ax, "Class prompt", initial=self.class_label) + # Add a button + button_ax = plt.axes([0.05, 0.01, 0.2, 0.05]) # Position of the button + button = Button(button_ax, "Run") + + def on_button_click(event, ax=ax): + # Define what happens when the button is clicked + print("-- segmenting ---") + self.generate_mask() + print("-- done ---") + print( + "-- Note: Point only prompts will only do 128 cubic segmentation, a cropping artefact will be observed. ---" + ) + print( + "-- Note: Point without class will be treated as supported class, which has worse zero-shot ability. Try class > 132 to perform better zeroshot. ---" + ) + print("-- Note: CTRL + Right Click will be adding negative points. ---") + print( + "-- Note: Click points on different foreground class will cause segmentation conflicts. Clear first. ---" + ) + print( + "-- Note: Click points not matching class prompts will also cause confusion. ---" + ) + + self.update_slice(ax) + # self.point_start = len(self.clicked_points) + + button.on_clicked(on_button_click) + + button_ax_clear = plt.axes([0.75, 0.01, 0.2, 0.05]) # Position of the button + button_clear = Button(button_ax_clear, "Clear") + + def on_button_click_clear(event, ax=ax): + # Define what happens when the button is clicked + inferer.clear_cache() + # clear points + self.clicked_points = [] + self.point_start = 0 + self.mask = None + self.mask_plot.remove() + self.mask_plot = None + self.update_slice(ax) + + button_clear.on_clicked(on_button_click_clear) + + plt.show() + + def process_scroll(self, event): + ax = event.inaxes + try: + if event.button == "up": + self.previous_slice(ax) + elif event.button == "down": + self.next_slice(ax) + except BaseException: + pass + + def previous_slice(self, ax): + if ax is None: + return + ax.index = (ax.index - 1) % ax.volume.shape[2] + self.update_slice(ax) + + def next_slice(self, ax): + if ax is None: + return + ax.index = (ax.index + 1) % ax.volume.shape[2] + self.update_slice(ax) + + def update_slice(self, ax): + # remove circles + while len(self.circle_artists) > 0: + ca = self.circle_artists.pop() + ca.remove() + # plot circles + for x, y, z, label in self.clicked_points: + if z == ax.index: + color = "red" if (label == 1 or label == 3) else "blue" + circle_artist = plt.Circle((x, y), 1, color=color, fill=False) + self.circle_artists.append(circle_artist) + ax.add_artist(circle_artist) + ax.images[0].set_array(ax.volume[:, :, ax.index]) + if self.mask is not None and self.mask_plot is None: + self.mask_plot = ax.imshow( + np.zeros_like(self.mask[:, :, ax.index]) * np.nan, + cmap="viridis", + alpha=0.5, + ) + if self.mask is not None and self.mask_plot is not None: + self.mask_plot.set_data(self.mask[:, :, ax.index]) + self.mask_plot.set_visible(True) + ax.set_title(f"Slice {ax.index}") + ax.figure.canvas.draw() + + def process_click(self, event): + try: + ax = event.inaxes + if ax is not None: + x = int(event.xdata) + y = int(event.ydata) + z = ax.index + print(f"Clicked coordinates: x={x}, y={y}, z={z}") + if event.key == "control": + point_label = 0 + else: + point_label = 1 + self.clicked_points.append((x, y, z, point_label)) + self.update_slice(ax) + except BaseException: + pass + + def run(self): + # File selection + self.select_data_file() + inferer.clear_cache() + self.point_start = 0 + self.display_3d_slices() + + +if __name__ == "__main__": + from monai.utils import optional_import + + fire, _ = optional_import("fire") + # using python -m interactive run + fire.Fire(samm_visualizer) diff --git a/vista3d/scripts/infer.py b/vista3d/scripts/infer.py new file mode 100644 index 0000000..924a5ab --- /dev/null +++ b/vista3d/scripts/infer.py @@ -0,0 +1,328 @@ +# Copyright (c) MONAI Consortium +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# http://www.apache.org/licenses/LICENSE-2.0 +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import logging +import os +import sys +from functools import partial + +import monai +import numpy as np +import torch +import torch.distributed as dist +from monai import transforms +from monai.apps.auto3dseg.auto_runner import logger +from monai.auto3dseg.utils import datafold_read +from monai.bundle import ConfigParser +from monai.bundle.scripts import _pop_args, _update_args +from monai.data import decollate_batch, list_data_collate, partition_dataset +from monai.utils import optional_import + +from vista3d import vista_model_registry + +from .sliding_window import point_based_window_inferer, sliding_window_inference +from .train import CONFIG +from .utils.trans_utils import VistaPostTransform, get_largest_connected_component_point + +rearrange, _ = optional_import("einops", name="rearrange") +sys.path.insert(0, os.path.abspath(os.path.dirname(__file__))) +IGNORE_PROMPT = set( + [ + 2, # kidney + 16, # prostate or uterus + 18, # rectum + 20, # lung + 21, # bone + 23, # lung tumor + 24, # pancreatic tumor + 25, # hepatic vessel + 26, # hepatic tumor + 27, # colon cancer primaries + 128, # bone lesion + 129, # kidney mass + 130, # liver tumor + 131, # vertebrae L6 + 132, + ] +) # airway +EVERYTHING_PROMPT = list(set([i + 1 for i in range(133)]) - IGNORE_PROMPT) + + +def infer_wrapper(inputs, model, **kwargs): + outputs = model(input_images=inputs, **kwargs) + return outputs.transpose(1, 0) + + +class InferClass: + def __init__(self, config_file="./configs/infer.yaml", **override): + logging.basicConfig(stream=sys.stdout, level=logging.INFO) + + _args = _update_args(config_file=config_file, **override) + config_file_ = _pop_args(_args, "config_file")[0] + + parser = ConfigParser() + parser.read_config(config_file_) + parser.update(pairs=_args) + + self.amp = parser.get_parsed_content("amp") + input_channels = parser.get_parsed_content("input_channels") + patch_size = parser.get_parsed_content("patch_size") + self.patch_size = patch_size + + ckpt_name = parser.get_parsed_content("infer")["ckpt_name"] + output_path = parser.get_parsed_content("infer")["output_path"] + if not os.path.exists(output_path): + os.makedirs(output_path, exist_ok=True) + + CONFIG["handlers"]["file"]["filename"] = parser.get_parsed_content("infer")[ + "log_output_file" + ] + logging.config.dictConfig(CONFIG) + self.infer_transforms = parser.get_parsed_content("transforms_infer") + + self.device = torch.device("cuda:0") + model_registry = parser.get_parsed_content("model") + model = vista_model_registry[model_registry]( + in_channels=input_channels, image_size=patch_size + ) + self.model = model.to(self.device) + + pretrained_ckpt = torch.load(ckpt_name, map_location=self.device) + self.model.load_state_dict(pretrained_ckpt, strict=False) + logger.debug(f"[debug] checkpoint {ckpt_name:s} loaded") + post_transforms = [ + VistaPostTransform(keys="pred"), + transforms.Invertd( + keys="pred", + transform=self.infer_transforms, + orig_keys="image", + meta_keys="pred_meta_dict", + orig_meta_keys="image_meta_dict", + meta_key_postfix="meta_dict", + nearest_interp=True, + to_tensor=True, + ), + ] + + # For Vista3d, sigmoid is always used, but for visualization, argmax is needed + save_transforms = [ + transforms.SaveImaged( + keys="pred", + meta_keys="pred_meta_dict", + output_dir=output_path, + output_postfix="seg", + resample=False, + data_root_dir=None, + print_log=False, + ) + ] + self.post_transforms = transforms.Compose(post_transforms) + self.save_transforms = transforms.Compose(save_transforms) + self.prev_mask = None + self.batch_data = None + return + + def clear_cache(self): + self.prev_mask = None + self.batch_data = None + + def transform_points(self, point, affine): + """transform point to the coordinates of the transformed image + point: numpy array [bs, N, 3] + """ + bs, N = point.shape[:2] + point = np.concatenate((point, np.ones((bs, N, 1))), axis=-1) + point = rearrange(point, "b n d -> d (b n)") + point = affine @ point + point = rearrange(point, "d (b n)-> b n d", b=bs)[:, :, :3] + return point + + @torch.no_grad() + def infer( + self, + image_file, + point=None, + point_label=None, + label_prompt=None, + prompt_class=None, + save_mask=False, + point_start=0, + ): + """Infer a single image_file. If save_mask is true, save the argmax prediction to disk. If false, + do not save and return the probability maps (usually used by autorunner emsembler). point_start is + used together with prev_mask. If prev_mask is generated by N points, point_start should be N+1 to save + time and avoid repeated inference. This is by default disabled. + """ + self.model.eval() + if not isinstance(image_file, dict): + image_file = {"image": image_file} + if self.batch_data is not None: + batch_data = self.batch_data + else: + batch_data = self.infer_transforms(image_file) + if label_prompt is not None: + batch_data["label_prompt"] = label_prompt + batch_data = list_data_collate([batch_data]) + self.batch_data = batch_data + if point is not None: + if type(point) is list: + point = np.array(point)[np.newaxis, ...] + point_label = np.array(point_label)[np.newaxis, ...] + point = self.transform_points( + point, + np.linalg.inv(batch_data["image"].affine[0]) + @ batch_data["image"].meta["original_affine"][0].numpy(), + ) + self.sliding_window_inferer = partial( + point_based_window_inferer, point_start=point_start + ) + else: + self.sliding_window_inferer = sliding_window_inference + device_list_input = [self.device, self.device, "cpu"] + device_list_output = [self.device, "cpu", "cpu"] + for _device_in, _device_out in zip(device_list_input, device_list_output): + try: + with torch.cuda.amp.autocast(enabled=self.amp): + batch_data["pred"] = self.sliding_window_inferer( + inputs=batch_data["image"].to(_device_in), + roi_size=self.patch_size, + sw_batch_size=1, + predictor=partial(infer_wrapper, model=self.model), + mode="gaussian", + overlap=0.625, + progress=True, + sw_device=self.device, + device=_device_out, + point_coords=( + torch.tensor(point).to(_device_in) + if point is not None + else None + ), + point_labels=( + torch.tensor(point_label).to(_device_in) + if point_label is not None + else None + ), + class_vector=( + torch.tensor(label_prompt).to(_device_in) + if label_prompt is not None + else None + ), + prompt_class=( + torch.tensor(prompt_class).to(_device_in) + if prompt_class is not None + else None + ), + prev_mask=( + torch.tensor(self.prev_mask).to(_device_in) + if self.prev_mask is not None + else None + ), + ) + + if not hasattr(batch_data["pred"], "meta"): + batch_data["pred"] = monai.data.MetaTensor( + batch_data["pred"], + affine=batch_data["image"].meta["affine"], + meta=batch_data["image"].meta, + ) + self.prev_mask = batch_data["pred"] + if label_prompt is None and point is not None: + batch_data["pred"] = get_largest_connected_component_point( + batch_data["pred"], point_coords=point, point_labels=point_label + ) + batch_data["image"] = batch_data["image"].to("cpu") + batch_data["pred"] = batch_data["pred"].to("cpu") + torch.cuda.empty_cache() + batch_data = [ + self.post_transforms(i) for i in decollate_batch(batch_data) + ] + if save_mask: + batch_data = [self.save_transforms(i) for i in batch_data] + + finished = True + except RuntimeError as e: + if not any(x in str(e).lower() for x in ("memory", "cuda", "cudnn")): + raise e + finished = False + if finished: + break + if not finished: + raise RuntimeError("Infer not finished due to OOM.") + return batch_data[0]["pred"] + + @torch.no_grad() + def infer_everything(self, image_file, label_prompt=EVERYTHING_PROMPT, rank=0): + self.model.eval() + device = f"cuda:{rank}" + if not isinstance(image_file, dict): + image_file = {"image": image_file} + batch_data = self.infer_transforms(image_file) + batch_data["label_prompt"] = label_prompt + batch_data = list_data_collate([batch_data]) + device_list_input = [device, device, "cpu"] + device_list_output = [device, "cpu", "cpu"] + for _device_in, _device_out in zip(device_list_input, device_list_output): + try: + with torch.cuda.amp.autocast(enabled=self.amp): + batch_data["pred"] = sliding_window_inference( + inputs=batch_data["image"].to(_device_in), + roi_size=self.patch_size, + sw_batch_size=1, + predictor=partial(infer_wrapper, model=self.model), + mode="gaussian", + overlap=0.625, + sw_device=device, + device=_device_out, + class_vector=torch.tensor(label_prompt).to(_device_in), + ) + if not hasattr(batch_data["pred"], "meta"): + batch_data["pred"] = monai.data.MetaTensor( + batch_data["pred"], + affine=batch_data["image"].meta["affine"], + meta=batch_data["image"].meta, + ) + torch.cuda.empty_cache() + batch_data = [ + self.post_transforms(i) for i in decollate_batch(batch_data) + ] + batch_data = [self.save_transforms(i) for i in batch_data] + finished = True + except RuntimeError as e: + if not any(x in str(e).lower() for x in ("memory", "cuda", "cudnn")): + raise e + finished = False + if finished: + break + if not finished: + raise RuntimeError("Infer not finished due to OOM.") + + @torch.no_grad() + def batch_infer_everything(self, datalist=str, basedir=str): + train_files, _ = datafold_read(datalist=datalist, basedir=basedir, fold=0) + train_files = [_["image"] for _ in train_files] + dist.init_process_group(backend="nccl", init_method="env://") + world_size = dist.get_world_size() + rank = dist.get_rank() + # no need to wrap model with DistributedDataParallel + self.model = self.model.to(f"cuda:{rank}") + infer_files = partition_dataset( + data=train_files, + shuffle=False, + num_partitions=world_size, + even_divisible=False, + )[rank] + self.infer(infer_files, label_prompt=EVERYTHING_PROMPT, rank=rank) + + +if __name__ == "__main__": + fire, _ = optional_import("fire") + fire.Fire(InferClass) diff --git a/vista3d/scripts/slic_process_sam.py b/vista3d/scripts/slic_process_sam.py new file mode 100644 index 0000000..c73b69c --- /dev/null +++ b/vista3d/scripts/slic_process_sam.py @@ -0,0 +1,219 @@ +# Copyright (c) MONAI Consortium +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# http://www.apache.org/licenses/LICENSE-2.0 +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import logging +import os +import sys +import time + +import monai +import numpy as np +import torch +import torch.distributed as dist +from monai import transforms +from monai.auto3dseg.utils import datafold_read +from monai.data import partition_dataset +from monai.utils import optional_import +from segment_anything import SamPredictor, sam_model_registry +from skimage.segmentation import slic +from tqdm import tqdm + +from .train import CONFIG +from .utils.trans_utils import dilate3d, erode3d + +rearrange, _ = optional_import("einops", name="rearrange") +sys.path.insert(0, os.path.abspath(os.path.dirname(__file__))) + + +def pad_to_divisible_by_16(image): + # Get the dimensions of the input image + depth, height, width = image.shape[-3:] + + # Calculate the padding required to make the dimensions divisible by 16 + pad_depth = (16 - (depth % 16)) % 16 + pad_height = (16 - (height % 16)) % 16 + pad_width = (16 - (width % 16)) % 16 + + # Create a tuple with the padding values for each dimension + padding = (0, pad_width, 0, pad_height, 0, pad_depth) + + # Pad the image + padded_image = torch.nn.functional.pad(image, padding) + + return padded_image, padding + + +class InferClass: + def __init__(self): + logging.basicConfig(stream=sys.stdout, level=logging.INFO) + output_path = "./supervoxel_sam" + if not os.path.exists(output_path): + os.makedirs(output_path, exist_ok=True) + self.amp = True + CONFIG["handlers"]["file"]["filename"] = f"{output_path}/log.log" + logging.config.dictConfig(CONFIG) + self.device = torch.device("cuda:0") + self.sam = sam_model_registry["vit_h"](checkpoint="sam_vit_h_4b8939.pth").to( + self.device + ) + self.model = SamPredictor(self.sam) + return + + @torch.no_grad() + @torch.cuda.amp.autocast() + def infer( + self, + image_file="example/s1238.nii.gz", + rank=0, + output_dir="./supervoxel_sam/", + data_root_dir=None, + n_segments=400, + ): + """Infer a single image_file. If save_mask is true, save the argmax prediction to disk. If false, + do not save and return the probability maps (usually used by autorunner emsembler). + """ + pixel_mean = torch.Tensor([123.675, 116.28, 103.53]).view(1, 3, 1, 1) + pixel_std = torch.Tensor([58.395, 57.12, 57.375]).view(1, 3, 1, 1) + if not isinstance(image_file, list): + image_file = [image_file] + + permute_pairs = [ + [(2, 0, 1), None], + [(1, 0, 2), (0, 1, 3, 2)], + [(0, 1, 2), (0, 3, 1, 2)], + ] + for file in image_file: + if data_root_dir is not None: + savefolder = os.path.join( + output_dir, + file.replace(data_root_dir, "").split("/")[0], + file.replace(data_root_dir, "") + .split("/")[1] + .replace(".nii.gz", ""), + ) + else: + savefolder = os.path.join( + output_dir, file.split("/")[-1].replace(".nii.gz", "") + ) + if os.path.isdir(savefolder): + print(f"{file} already exist. Skipped") + continue + try: + batch_data = None + batch_data = transforms.LoadImage(image_only=True)(file) + orig_data = batch_data.clone() + batch_data = transforms.ScaleIntensityRange( + a_max=1000, a_min=-1000, b_max=255, b_min=0, clip=True + )(batch_data) + print(f"[{rank}] working on {file}") + outputs = None + torch.cuda.empty_cache() + features_ = 0 + for views in permute_pairs: + data = batch_data.permute(*views[0]) + features = [] + max_slice = 8 + for i in tqdm(range(int(np.ceil(data.shape[0] / max_slice)))): + idx = (i * max_slice, min((i + 1) * max_slice, data.shape[0])) + image = data[idx[0] : idx[1]] + d, h, w = image.shape + pad_h = 0 if h > w else w - h + pad_w = 0 if w > h else h - w + image = torch.nn.functional.pad( + image, (0, pad_w, 0, pad_h, 0, 0) + ) + image = monai.transforms.Resize( + [d, 1024, 1024], mode="bilinear" + )(image.unsqueeze(0)).squeeze(0) + image = ( + torch.stack([image, image, image], -1) + .permute(0, 3, 1, 2) + .contiguous() + ) + image = (image - pixel_mean) / pixel_std + feature = self.model.get_feature_upsampled( + image.to(f"cuda:{rank}") + ) + feature = monai.transforms.Resize( + [h + pad_h, w + pad_w, d], mode="bilinear" + )(feature.permute(1, 2, 3, 0))[:, :h, :w] + features.append(feature.cpu()) + features = torch.cat(features, -1) + if views[1] is not None: + features = features.permute(*views[1]) + features_ += features + features = None + start = time.time() + outputs = slic( + features_.numpy(), + channel_axis=0, + compactness=0.01, + n_segments=n_segments, + sigma=3, + ) + features_ = None + outputs = torch.from_numpy(outputs).cuda() + print("slic took", time.time() - start) + mask = monai.transforms.utils.get_largest_connected_component_mask( + orig_data < -800, connectivity=None, num_components=1 + ).cuda() + mask = dilate3d(mask, erosion=3) + mask = erode3d(mask, erosion=3) + outputs[mask.to(torch.bool)] = 0 + outputs = monai.data.MetaTensor( + outputs, affine=batch_data.affine, meta=batch_data.meta + ) + monai.transforms.SaveImage( + output_dir=output_dir, + output_postfix="seg", + data_root_dir=data_root_dir, + )(outputs.unsqueeze(0).cpu().to(torch.int16)) + except BaseException: + print(f"{file} failed. Skipped.") + + @torch.no_grad() + @torch.cuda.amp.autocast() + def batch_infer( + self, + datalist=str, + basedir=str, + output_dir="./supervoxel_sam/", + data_root_dir=None, + n_segments=400, + ): + train_files, _ = datafold_read(datalist=datalist, basedir=basedir, fold=0) + train_files = [_["image"] for _ in train_files] + dist.init_process_group(backend="nccl", init_method="env://") + world_size = dist.get_world_size() + rank = dist.get_rank() + # no need to wrap model with DistributedDataParallel + self.model = SamPredictor(self.sam.to(f"cuda:{rank}")) + infer_files = partition_dataset( + data=train_files, + shuffle=False, + num_partitions=world_size, + even_divisible=False, + )[rank] + self.infer( + infer_files, + rank=rank, + output_dir=output_dir, + data_root_dir=data_root_dir, + n_segments=n_segments, + ) + + +if __name__ == "__main__": + from monai.utils import optional_import + + inferer = InferClass() + fire, _ = optional_import("fire") + fire.Fire(inferer) diff --git a/vista3d/scripts/sliding_window.py b/vista3d/scripts/sliding_window.py new file mode 100644 index 0000000..67b2061 --- /dev/null +++ b/vista3d/scripts/sliding_window.py @@ -0,0 +1,666 @@ +# Copyright (c) MONAI Consortium +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# http://www.apache.org/licenses/LICENSE-2.0 +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import annotations + +import copy +import itertools +from collections.abc import Callable, Mapping, Sequence +from typing import Any, Iterable + +import monai +import numpy as np +import torch +import torch.nn.functional as F +from monai.data.meta_tensor import MetaTensor +from monai.data.utils import ( + compute_importance_map, + dense_patch_slices, + get_valid_patch_size, +) +from monai.utils import ( + BlendMode, + PytorchPadMode, + convert_data_type, + convert_to_dst_type, + ensure_tuple, + ensure_tuple_rep, + fall_back_tuple, + look_up_option, + optional_import, + pytorch_after, +) + +tqdm, _ = optional_import("tqdm", name="tqdm") +_nearest_mode = "nearest-exact" if pytorch_after(1, 11) else "nearest" + +__all__ = ["sliding_window_inference", "point_based_window_inferer"] + + +def get_window_idx_c(p, roi, s): + if p - roi // 2 < 0: + left, right = 0, roi + elif p + roi // 2 > s: + left, right = s - roi, s + else: + left, right = int(p) - roi // 2, int(p) + roi // 2 + return left, right + + +def get_window_idx(p, roi, s, center_only=True, margin=5): + left, right = get_window_idx_c(p, roi, s) + if center_only: + return [left], [right] + left_most = max(0, p - roi + margin) + right_most = min(s, p + roi - margin) + left = [left_most, right_most - roi, left] + right = [left_most + roi, right_most, right] + return left, right + + +def pad_previous_mask(inputs, roi_size, padvalue=0): + pad_size = [] + for k in range(len(inputs.shape) - 1, 1, -1): + diff = max(roi_size[k - 2] - inputs.shape[k], 0) + half = diff // 2 + pad_size.extend([half, diff - half]) + if any(pad_size): + inputs = torch.nn.functional.pad( + inputs, pad=pad_size, mode="constant", value=padvalue + ) + return inputs, pad_size + + +def point_based_window_inferer( + inputs, + roi_size, + sw_batch_size, + predictor, + mode, + overlap, + sw_device, + device, + point_coords, + point_labels, + class_vector, + prompt_class, + prev_mask, + point_mask=None, + point_start=0, + **kwargs, +): + """Point based window inferer, crop a patch centered at the point, and perform inference. Different patches are combined with gaussian weighted weights. + Args: + predictor: partial(infer_wrapper, model). infer_wrapper transpose the model output. The model output is [B, 1, H, W, D] which needs to be transposed to [1, B, H, W, D] + point_coords: [B, N, 3] + point_labels: [B, N] + class_vector: [B] + prev_mask: [1, B, H, W, D], THE VALUE IS BEFORE SIGMOID! + Returns: + stitched_output: [1, B, H, W, D]. The value is before sigmoid. + Notice: The function currently only supports SINGLE OBJECT INFERENCE with B=1. + """ + assert point_coords.shape[0] == 1, "Only supports single object point click" + image, pad = pad_previous_mask(copy.deepcopy(inputs), roi_size) + point_coords = point_coords + torch.tensor([pad[-2], pad[-4], pad[-6]]).to( + point_coords.device + ) + prev_mask = ( + pad_previous_mask(copy.deepcopy(prev_mask), roi_size)[0] + if prev_mask is not None + else None + ) + stitched_output = None + center_only = True + for p in point_coords[0][point_start:]: + lx_, rx_ = get_window_idx( + p[0], roi_size[0], image.shape[-3], center_only=center_only, margin=5 + ) + ly_, ry_ = get_window_idx( + p[1], roi_size[1], image.shape[-2], center_only=center_only, margin=5 + ) + lz_, rz_ = get_window_idx( + p[2], roi_size[2], image.shape[-1], center_only=center_only, margin=5 + ) + for i in range(len(lx_)): + for j in range(len(ly_)): + for k in range(len(lz_)): + lx, rx, ly, ry, lz, rz = ( + lx_[i], + rx_[i], + ly_[j], + ry_[j], + lz_[k], + rz_[k], + ) + unravel_slice = [ + slice(None), + slice(None), + slice(int(lx), int(rx)), + slice(int(ly), int(ry)), + slice(int(lz), int(rz)), + ] + batch_image = image[unravel_slice] + # ball = get_gaussian_ball(batch_image.shape[-3:]) + output = predictor( + batch_image, + point_coords=point_coords, + point_labels=point_labels, + class_vector=class_vector, + prompt_class=prompt_class, + patch_coords=unravel_slice, + prev_mask=prev_mask, + **kwargs, + ) + if stitched_output is None: + stitched_output = torch.zeros( + [ + 1, + output.shape[1], + image.shape[-3], + image.shape[-2], + image.shape[-1], + ], + device="cpu", + ) + stitched_mask = torch.zeros( + [ + 1, + output.shape[1], + image.shape[-3], + image.shape[-2], + image.shape[-1], + ], + device="cpu", + ) + stitched_output[unravel_slice] += output.to("cpu") + stitched_mask[unravel_slice] = 1 + # if stitched_mask is 0, then NaN value + stitched_output = stitched_output / stitched_mask + # revert padding + stitched_output = stitched_output[ + :, + :, + pad[4] : image.shape[-3] - pad[5], + pad[2] : image.shape[-2] - pad[3], + pad[0] : image.shape[-1] - pad[1], + ] + stitched_mask = stitched_mask[ + :, + :, + pad[4] : image.shape[-3] - pad[5], + pad[2] : image.shape[-2] - pad[3], + pad[0] : image.shape[-1] - pad[1], + ] + if prev_mask is not None: + prev_mask = prev_mask[ + :, + :, + pad[4] : image.shape[-3] - pad[5], + pad[2] : image.shape[-2] - pad[3], + pad[0] : image.shape[-1] - pad[1], + ] + prev_mask = prev_mask.to("cpu") + # for un-calculated place, use previous mask + stitched_output[stitched_mask < 1] = prev_mask[stitched_mask < 1] + if not hasattr(stitched_output, "meta"): + stitched_output = monai.data.MetaTensor( + stitched_output, affine=inputs.meta["affine"], meta=inputs.meta + ) + return stitched_output + + +def sliding_window_inference( + inputs: torch.Tensor | MetaTensor, + roi_size: Sequence[int] | int, + sw_batch_size: int, + predictor: Callable[ + ..., torch.Tensor | Sequence[torch.Tensor] | dict[Any, torch.Tensor] + ], + overlap: Sequence[float] | float = 0.25, + mode: BlendMode | str = BlendMode.CONSTANT, + sigma_scale: Sequence[float] | float = 0.125, + padding_mode: PytorchPadMode | str = PytorchPadMode.CONSTANT, + cval: float = 0.0, + sw_device: torch.device | str | None = None, + device: torch.device | str | None = None, + progress: bool = False, + roi_weight_map: torch.Tensor | None = None, + process_fn: Callable | None = None, + buffer_steps: int | None = None, + buffer_dim: int = -1, + *args: Any, + **kwargs: Any, +) -> torch.Tensor | tuple[torch.Tensor, ...] | dict[Any, torch.Tensor]: + """ + Sliding window inference on `inputs` with `predictor`. + + The outputs of `predictor` could be a tensor, a tuple, or a dictionary of tensors. + Each output in the tuple or dict value is allowed to have different resolutions with respect to the input. + e.g., the input patch spatial size is [128,128,128], the output (a tuple of two patches) patch sizes + could be ([128,64,256], [64,32,128]). + In this case, the parameter `overlap` and `roi_size` need to be carefully chosen to ensure the output ROI is still + an integer. If the predictor's input and output spatial sizes are not equal, we recommend choosing the parameters + so that `overlap*roi_size*output_size/input_size` is an integer (for each spatial dimension). + + When roi_size is larger than the inputs' spatial size, the input image are padded during inference. + To maintain the same spatial sizes, the output image will be cropped to the original input size. + + Args: + inputs: input image to be processed (assuming NCHW[D]) + roi_size: the spatial window size for inferences. + When its components have None or non-positives, the corresponding inputs dimension will be used. + if the components of the `roi_size` are non-positive values, the transform will use the + corresponding components of img size. For example, `roi_size=(32, -1)` will be adapted + to `(32, 64)` if the second spatial dimension size of img is `64`. + sw_batch_size: the batch size to run window slices. + predictor: given input tensor ``patch_data`` in shape NCHW[D], + The outputs of the function call ``predictor(patch_data)`` should be a tensor, a tuple, or a dictionary + with Tensor values. Each output in the tuple or dict value should have the same batch_size, i.e. NM'H'W'[D']; + where H'W'[D'] represents the output patch's spatial size, M is the number of output channels, + N is `sw_batch_size`, e.g., the input shape is (7, 1, 128,128,128), + the output could be a tuple of two tensors, with shapes: ((7, 5, 128, 64, 256), (7, 4, 64, 32, 128)). + In this case, the parameter `overlap` and `roi_size` need to be carefully chosen + to ensure the scaled output ROI sizes are still integers. + If the `predictor`'s input and output spatial sizes are different, + we recommend choosing the parameters so that ``overlap*roi_size*zoom_scale`` is an integer for each dimension. + overlap: Amount of overlap between scans along each spatial dimension, defaults to ``0.25``. + mode: {``"constant"``, ``"gaussian"``} + How to blend output of overlapping windows. Defaults to ``"constant"``. + + - ``"constant``": gives equal weight to all predictions. + - ``"gaussian``": gives less weight to predictions on edges of windows. + + sigma_scale: the standard deviation coefficient of the Gaussian window when `mode` is ``"gaussian"``. + Default: 0.125. Actual window sigma is ``sigma_scale`` * ``dim_size``. + When sigma_scale is a sequence of floats, the values denote sigma_scale at the corresponding + spatial dimensions. + padding_mode: {``"constant"``, ``"reflect"``, ``"replicate"``, ``"circular"``} + Padding mode for ``inputs``, when ``roi_size`` is larger than inputs. Defaults to ``"constant"`` + See also: https://pytorch.org/docs/stable/generated/torch.nn.functional.pad.html + cval: fill value for 'constant' padding mode. Default: 0 + sw_device: device for the window data. + By default the device (and accordingly the memory) of the `inputs` is used. + Normally `sw_device` should be consistent with the device where `predictor` is defined. + device: device for the stitched output prediction. + By default the device (and accordingly the memory) of the `inputs` is used. If for example + set to device=torch.device('cpu') the gpu memory consumption is less and independent of the + `inputs` and `roi_size`. Output is on the `device`. + progress: whether to print a `tqdm` progress bar. + roi_weight_map: pre-computed (non-negative) weight map for each ROI. + If not given, and ``mode`` is not `constant`, this map will be computed on the fly. + process_fn: process inference output and adjust the importance map per window + buffer_steps: the number of sliding window iterations along the ``buffer_dim`` + to be buffered on ``sw_device`` before writing to ``device``. + (Typically, ``sw_device`` is ``cuda`` and ``device`` is ``cpu``.) + default is None, no buffering. For the buffer dim, when spatial size is divisible by buffer_steps*roi_size, + (i.e. no overlapping among the buffers) non_blocking copy may be automatically enabled for efficiency. + buffer_dim: the spatial dimension along which the buffers are created. + 0 indicates the first spatial dimension. Default is -1, the last spatial dimension. + args: optional args to be passed to ``predictor``. + kwargs: optional keyword args to be passed to ``predictor``. + + Note: + - input must be channel-first and have a batch dim, supports N-D sliding window. + + """ + buffered = buffer_steps is not None and buffer_steps > 0 + num_spatial_dims = len(inputs.shape) - 2 + if buffered: + if buffer_dim < -num_spatial_dims or buffer_dim > num_spatial_dims: + raise ValueError( + f"buffer_dim must be in [{-num_spatial_dims}, {num_spatial_dims}], got {buffer_dim}." + ) + if buffer_dim < 0: + buffer_dim += num_spatial_dims + overlap = ensure_tuple_rep(overlap, num_spatial_dims) + for o in overlap: + if o < 0 or o >= 1: + raise ValueError(f"overlap must be >= 0 and < 1, got {overlap}.") + compute_dtype = inputs.dtype + + # determine image spatial size and batch size + # Note: all input images must have the same image size and batch size + batch_size, _, *image_size_ = inputs.shape + device = device or inputs.device + sw_device = sw_device or inputs.device + + temp_meta = None + if isinstance(inputs, MetaTensor): + temp_meta = MetaTensor([]).copy_meta_from(inputs, copy_attr=False) + inputs = convert_data_type(inputs, torch.Tensor, wrap_sequence=True)[0] + roi_size = fall_back_tuple(roi_size, image_size_) + + # in case that image size is smaller than roi size + image_size = tuple( + max(image_size_[i], roi_size[i]) for i in range(num_spatial_dims) + ) + pad_size = [] + for k in range(len(inputs.shape) - 1, 1, -1): + diff = max(roi_size[k - 2] - inputs.shape[k], 0) + half = diff // 2 + pad_size.extend([half, diff - half]) + if any(pad_size): + inputs = F.pad( + inputs, + pad=pad_size, + mode=look_up_option(padding_mode, PytorchPadMode), + value=cval, + ) + if "labels" in kwargs.keys() and kwargs["labels"] is not None: + kwargs["labels"] = F.pad( + kwargs["labels"], + pad=pad_size, + mode=look_up_option(padding_mode, PytorchPadMode), + value=cval, + ) + if "prev_mask" in kwargs.keys() and kwargs["prev_mask"] is not None: + kwargs["prev_mask"] = F.pad( + kwargs["prev_mask"], + pad=pad_size, + mode=look_up_option(padding_mode, PytorchPadMode), + value=cval, + ) + if "point_coords" in kwargs.keys() and kwargs["point_coords"] is not None: + kwargs["point_coords"] = kwargs["point_coords"] + torch.tensor( + [pad_size[-2], pad_size[-4], pad_size[-6]] + ).to(kwargs["point_coords"].device) + + # Store all slices + scan_interval = _get_scan_interval(image_size, roi_size, num_spatial_dims, overlap) + slices = dense_patch_slices( + image_size, roi_size, scan_interval, return_slice=not buffered + ) + + num_win = len(slices) # number of windows per image + total_slices = num_win * batch_size # total number of windows + windows_range: Iterable + if not buffered: + non_blocking = False + windows_range = range(0, total_slices, sw_batch_size) + else: + slices, n_per_batch, b_slices, windows_range = _create_buffered_slices( + slices, batch_size, sw_batch_size, buffer_dim, buffer_steps + ) + non_blocking, _ss = torch.cuda.is_available(), -1 + for x in b_slices[:n_per_batch]: + if x[1] < _ss: # detect overlapping slices + non_blocking = False + break + _ss = x[2] + + # Create window-level importance map + valid_patch_size = get_valid_patch_size(image_size, roi_size) + if valid_patch_size == roi_size and (roi_weight_map is not None): + importance_map_ = roi_weight_map + else: + try: + valid_p_size = ensure_tuple(valid_patch_size) + importance_map_ = compute_importance_map( + valid_p_size, + mode=mode, + sigma_scale=sigma_scale, + device=sw_device, + dtype=compute_dtype, + ) + if len(importance_map_.shape) == num_spatial_dims and not process_fn: + importance_map_ = importance_map_[ + None, None + ] # adds batch, channel dimensions + except Exception as e: + raise RuntimeError( + f"patch size {valid_p_size}, mode={mode}, sigma_scale={sigma_scale}, device={device}\n" + "Seems to be OOM. Please try smaller patch size or mode='constant' instead of mode='gaussian'." + ) from e + importance_map_ = convert_data_type( + importance_map_, torch.Tensor, device=sw_device, dtype=compute_dtype + )[0] + + # stores output and count map + output_image_list, count_map_list, sw_device_buffer, b_s, b_i = [], [], [], 0, 0 # type: ignore + # for each patch + for slice_g in tqdm(windows_range) if progress else windows_range: + slice_range = range( + slice_g, + min( + slice_g + sw_batch_size, b_slices[b_s][0] if buffered else total_slices + ), + ) + unravel_slice = [ + [slice(idx // num_win, idx // num_win + 1), slice(None)] + + list(slices[idx % num_win]) + for idx in slice_range + ] + if sw_batch_size > 1: + win_data = torch.cat([inputs[win_slice] for win_slice in unravel_slice]).to( + sw_device + ) + else: + win_data = inputs[unravel_slice[0]].to(sw_device) + + seg_prob_out = predictor( + win_data, patch_coords=unravel_slice[0], *args, **kwargs + ) # batched patch + + # convert seg_prob_out to tuple seg_tuple, this does not allocate new memory. + dict_keys, seg_tuple = _flatten_struct(seg_prob_out) + if process_fn: + seg_tuple, w_t = process_fn(seg_tuple, win_data, importance_map_) + else: + w_t = importance_map_ + if len(w_t.shape) == num_spatial_dims: + w_t = w_t[None, None] + w_t = w_t.to(dtype=compute_dtype, device=sw_device) + if buffered: + c_start, c_end = b_slices[b_s][1:] + if not sw_device_buffer: + k = seg_tuple[0].shape[1] # len(seg_tuple) > 1 is currently ignored + sp_size = list(image_size) + sp_size[buffer_dim] = c_end - c_start + sw_device_buffer = [ + torch.zeros( + size=[1, k, *sp_size], dtype=compute_dtype, device=sw_device + ) + ] + for p, s in zip(seg_tuple[0], unravel_slice): + offset = s[buffer_dim + 2].start - c_start + s[buffer_dim + 2] = slice(offset, offset + roi_size[buffer_dim]) + s[0] = slice(0, 1) + sw_device_buffer[0][s] += p * w_t + b_i += len(unravel_slice) + if b_i < b_slices[b_s][0]: + continue + else: + sw_device_buffer = list(seg_tuple) + + for ss in range(len(sw_device_buffer)): + b_shape = sw_device_buffer[ss].shape + seg_chns, seg_shape = b_shape[1], b_shape[2:] + z_scale = None + if not buffered and seg_shape != roi_size: + z_scale = [ + out_w_i / float(in_w_i) + for out_w_i, in_w_i in zip(seg_shape, roi_size) + ] + w_t = F.interpolate(w_t, seg_shape, mode=_nearest_mode) + if len(output_image_list) <= ss: + output_shape = [batch_size, seg_chns] + output_shape += ( + [int(_i * _z) for _i, _z in zip(image_size, z_scale)] + if z_scale + else list(image_size) + ) + # allocate memory to store the full output and the count for overlapping parts + new_tensor: Callable = torch.empty if non_blocking else torch.zeros # type: ignore + output_image_list.append( + new_tensor(output_shape, dtype=compute_dtype, device=device) + ) + count_map_list.append( + torch.zeros( + [1, 1] + output_shape[2:], dtype=compute_dtype, device=device + ) + ) + w_t_ = w_t.to(device) + for __s in slices: + if z_scale is not None: + __s = tuple( + slice(int(_si.start * z_s), int(_si.stop * z_s)) + for _si, z_s in zip(__s, z_scale) + ) + count_map_list[-1][(slice(None), slice(None), *__s)] += w_t_ + if buffered: + o_slice = [slice(None)] * len(inputs.shape) + o_slice[buffer_dim + 2] = slice(c_start, c_end) + img_b = b_s // n_per_batch # image batch index + o_slice[0] = slice(img_b, img_b + 1) + if non_blocking: + output_image_list[0][o_slice].copy_( + sw_device_buffer[0], non_blocking=non_blocking + ) + else: + output_image_list[0][o_slice] += sw_device_buffer[0].to( + device=device + ) + else: + sw_device_buffer[ss] *= w_t + sw_device_buffer[ss] = sw_device_buffer[ss].to(device) + _compute_coords( + unravel_slice, z_scale, output_image_list[ss], sw_device_buffer[ss] + ) + sw_device_buffer = [] + if buffered: + b_s += 1 + + if non_blocking: + torch.cuda.current_stream().synchronize() + + # account for any overlapping sections + for ss in range(len(output_image_list)): + output_image_list[ss] /= count_map_list.pop(0) + + # remove padding if image_size smaller than roi_size + if any(pad_size): + for ss, output_i in enumerate(output_image_list): + zoom_scale = [ + _shape_d / _roi_size_d + for _shape_d, _roi_size_d in zip(output_i.shape[2:], roi_size) + ] + final_slicing: list[slice] = [] + for sp in range(num_spatial_dims): + si = num_spatial_dims - sp - 1 + slice_dim = slice( + int(round(pad_size[sp * 2] * zoom_scale[si])), + int(round((pad_size[sp * 2] + image_size_[si]) * zoom_scale[si])), + ) + final_slicing.insert(0, slice_dim) + output_image_list[ss] = output_i[(slice(None), slice(None), *final_slicing)] + + final_output = _pack_struct(output_image_list, dict_keys) + if temp_meta is not None: + final_output = convert_to_dst_type(final_output, temp_meta, device=device)[0] + else: + final_output = convert_to_dst_type(final_output, inputs, device=device)[0] + + return final_output # type: ignore + + +def _create_buffered_slices( + slices, batch_size, sw_batch_size, buffer_dim, buffer_steps +): + """rearrange slices for buffering""" + slices_np = np.asarray(slices) + slices_np = slices_np[np.argsort(slices_np[:, buffer_dim, 0], kind="mergesort")] + slices = [tuple(slice(c[0], c[1]) for c in i) for i in slices_np] + slices_np = slices_np[:, buffer_dim] + + _, _, _b_lens = np.unique(slices_np[:, 0], return_counts=True, return_index=True) + b_ends = np.cumsum(_b_lens).tolist() # possible buffer flush boundaries + x = [0, *b_ends][:: min(len(b_ends), int(buffer_steps))] + if x[-1] < b_ends[-1]: + x.append(b_ends[-1]) + n_per_batch = len(x) - 1 + windows_range = [ + range(b * x[-1] + x[i], b * x[-1] + x[i + 1], sw_batch_size) + for b in range(batch_size) + for i in range(n_per_batch) + ] + b_slices = [] + for _s, _r in enumerate(windows_range): + s_s = slices_np[windows_range[_s - 1].stop % len(slices) if _s > 0 else 0, 0] + s_e = slices_np[(_r.stop - 1) % len(slices), 1] + b_slices.append((_r.stop, s_s, s_e)) # buffer index, slice start, slice end + windows_range = itertools.chain(*windows_range) # type: ignore + return slices, n_per_batch, b_slices, windows_range + + +def _compute_coords(coords, z_scale, out, patch): + """sliding window batch spatial scaling indexing for multi-resolution outputs.""" + for original_idx, p in zip(coords, patch): + idx_zm = list(original_idx) # 4D for 2D image, 5D for 3D image + if z_scale: + for axis in range(2, len(idx_zm)): + idx_zm[axis] = slice( + int(original_idx[axis].start * z_scale[axis - 2]), + int(original_idx[axis].stop * z_scale[axis - 2]), + ) + out[idx_zm] += p + + +def _get_scan_interval( + image_size: Sequence[int], + roi_size: Sequence[int], + num_spatial_dims: int, + overlap: Sequence[float], +) -> tuple[int, ...]: + """ + Compute scan interval according to the image size, roi size and overlap. + Scan interval will be `int((1 - overlap) * roi_size)`, if interval is 0, + use 1 instead to make sure sliding window works. + + """ + if len(image_size) != num_spatial_dims: + raise ValueError( + f"len(image_size) {len(image_size)} different from spatial dims {num_spatial_dims}." + ) + if len(roi_size) != num_spatial_dims: + raise ValueError( + f"len(roi_size) {len(roi_size)} different from spatial dims {num_spatial_dims}." + ) + + scan_interval = [] + for i, o in zip(range(num_spatial_dims), overlap): + if roi_size[i] == image_size[i]: + scan_interval.append(int(roi_size[i])) + else: + interval = int(roi_size[i] * (1 - o)) + scan_interval.append(interval if interval > 0 else 1) + return tuple(scan_interval) + + +def _flatten_struct(seg_out): + dict_keys = None + seg_probs: tuple[torch.Tensor, ...] + if isinstance(seg_out, torch.Tensor): + seg_probs = (seg_out,) + elif isinstance(seg_out, Mapping): + dict_keys = sorted(seg_out.keys()) # track predictor's output keys + seg_probs = tuple(seg_out[k] for k in dict_keys) + else: + seg_probs = ensure_tuple(seg_out) + return dict_keys, seg_probs + + +def _pack_struct(seg_out, dict_keys=None): + if dict_keys is not None: + return dict(zip(dict_keys, seg_out)) + if isinstance(seg_out, (list, tuple)) and len(seg_out) == 1: + return seg_out[0] + return ensure_tuple(seg_out) diff --git a/vista3d/scripts/train.py b/vista3d/scripts/train.py new file mode 100644 index 0000000..e9beb8e --- /dev/null +++ b/vista3d/scripts/train.py @@ -0,0 +1,1028 @@ +# Copyright (c) MONAI Consortium +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# http://www.apache.org/licenses/LICENSE-2.0 +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import annotations + +import logging +import math +import os +import sys +import time +import warnings +from datetime import timedelta +from functools import partial +from typing import Optional, Sequence, Union + +import monai +import nibabel as nib +import numpy as np +import torch +import torch.distributed as dist +import yaml +from data.datasets import ( + compute_dataset_weights, + get_class_names, + get_datalist_with_dataset_name, + get_datalist_with_dataset_name_and_transform, +) +from monai import transforms +from monai.apps.auto3dseg.auto_runner import logger +from monai.apps.utils import DEFAULT_FMT +from monai.bundle import ConfigParser +from monai.bundle.scripts import _pop_args, _update_args +from monai.data import DataLoader, DistributedSampler, DistributedWeightedRandomSampler +from monai.metrics import compute_dice +from monai.networks.utils import copy_model_state +from monai.utils import optional_import, set_determinism +from torch.nn.parallel import DistributedDataParallel +from torch.utils.data.sampler import RandomSampler, WeightedRandomSampler +from torch.utils.tensorboard import SummaryWriter +from tqdm import tqdm + +from vista3d import vista_model_registry + +from .sliding_window import sliding_window_inference +from .utils.sample_utils import Point_sampler +from .utils.trans_utils import DatasetSelectTansformd, RelabelD +from .utils.workflow_utils import ( + MERGE_LIST, + USE_SV_GT_LIST, + generate_prompt_pairs, + get_next_points, + none_cat, + sample_points_patch_val, +) + +nib.imageglobals.logger.setLevel(40) +RankFilter, _ = optional_import("monai.utils", name="RankFilter") +CONFIG = { + "version": 1, + "disable_existing_loggers": False, + "formatters": {"monai_default": {"format": DEFAULT_FMT}}, + "loggers": { + "monai.apps.auto3dseg.auto_runner": { + "handlers": ["file", "console"], + "level": "DEBUG", + "propagate": False, + }, + "data.analyzer": { + "handlers": ["file", "console"], + "level": "INFO", + "propagate": False, + }, + "data.datasets": { + "handlers": ["file", "console"], + "level": "INFO", + "propagate": False, + }, + }, + "filters": {"rank_filter": {"()": RankFilter}}, + "handlers": { + "file": { + "class": "logging.FileHandler", + "filename": "runner.log", + "mode": "a", # append or overwrite + "level": "DEBUG", + "formatter": "monai_default", + "filters": ["rank_filter"], + }, + "console": { + "class": "logging.StreamHandler", + "level": "INFO", + "formatter": "monai_default", + "filters": ["rank_filter"], + }, + }, +} + + +def infer_wrapper(inputs, model, **kwargs): + """VISTA3D output is [B, 1, H, W, D], which segment B foregrounds and stacked at the batch dimension. + Sliding-window inferer requires [1, B, H, W, D]. The function is used only for sliding-window inference. + """ + outputs = model(input_images=inputs, **kwargs) + return outputs.transpose(1, 0) + + +def loss_wrapper(pred, label, loss_function): + return loss_function(pred, label) + + +def run(config_file: Optional[Union[str, Sequence[str]]] = None, **override): + # Initialize distributed and scale parameters based on GPU memory + if torch.cuda.device_count() > 1: + dist.init_process_group( + backend="nccl", init_method="env://", timeout=timedelta(seconds=3600) + ) + world_size = dist.get_world_size() + dist.barrier() + else: + world_size = 1 + logging.basicConfig(stream=sys.stdout, level=logging.INFO) + if isinstance(config_file, str) and "," in config_file: + config_file = config_file.split(",") + _args = _update_args(config_file=config_file, **override) + config_file_ = _pop_args(_args, "config_file")[0] + + parser = ConfigParser() + parser.read_config(config_file_) + parser.update(pairs=_args) + + # loggings and experiment pathes + start_time = time.time() + bundle_root = parser.get_parsed_content("bundle_root") + ckpt_path = parser.get_parsed_content("ckpt_path") + os.makedirs(ckpt_path, exist_ok=True) + if world_size == 1 or dist.get_rank() == 0: + writer = SummaryWriter(log_dir=os.path.join(ckpt_path, "Events")) + with open(os.path.join(ckpt_path, "accuracy_history.csv"), "a") as f: + f.write("epoch\tmetric\tloss\tlr\ttime\titer\n") + metric_dim = ( + parser.get_parsed_content("output_classes") - 1 + ) # only affect dice calculation + random_seed = parser.get_parsed_content("random_seed") + save_last = parser.get_parsed_content( + "save_last", default=False + ) # save the last checkpoint + save_all = parser.get_parsed_content( + "save_all", default=False + ) # save all val-checkpoint + if world_size == 1 or dist.get_rank() == 0: + config_yaml = os.path.join(bundle_root, "configs.yaml") + ConfigParser.export_config_file( + parser.get(), config_yaml, fmt="yaml", default_flow_style=None + ) + if random_seed is not None and ( + isinstance(random_seed, int) or isinstance(random_seed, float) + ): + set_determinism(seed=random_seed) + CONFIG["handlers"]["file"]["filename"] = parser.get_parsed_content( + "log_output_file" + ) + logging.config.dictConfig(CONFIG) + logging.getLogger("torch.distributed.distributed_c10d").setLevel(logging.WARNING) + + # training hyperparameters - workflow + device = ( + torch.device(f"cuda:{os.environ['LOCAL_RANK']}") + if world_size > 1 + else torch.device("cuda:0") + ) + amp = parser.get_parsed_content("amp") + if amp: + from torch.cuda.amp import GradScaler, autocast + + scaler = GradScaler() + logger.debug("Amp enabled") + finetune = parser.get_parsed_content("finetune") + num_epochs = parser.get_parsed_content("num_epochs") + num_epochs_per_validation = parser.get_parsed_content("num_epochs_per_validation") + weighted_sampling = parser.get_parsed_content( + "weighted_sampling" + ) # perform dataset weighted sample using dataset_weights.yaml + skip_iter_prob = parser.get_parsed_content( + "skip_iter_prob" + ) # prob. to skip iterative point sampling, 1 for auto-training + iter_num = parser.get_parsed_content( + "iter_num" + ) # total iter number in point branch training + freeze_epoch = parser.get_parsed_content( + "freeze_epoch", default=-1 + ) # freeze the whole branch epoch + freeze_head = parser.get_parsed_content( + "freeze_head", default="auto" + ) # freeze which branch, "auto" or "point". We freeze point for auto-training. + logger.debug(f"World_size: {world_size}") + logger.debug(f"num_epochs: {num_epochs}") + logger.debug(f"num_epochs_per_validation: {num_epochs_per_validation}") + + # training hyperparameters - model and optimizer + input_channels = parser.get_parsed_content("input_channels") + model_registry = parser.get_parsed_content("model") + patch_size = parser.get_parsed_content("patch_size") + model = vista_model_registry[model_registry]( + in_channels=input_channels, image_size=patch_size + ) + model = model.to(device) + optimizer_part = parser.get_parsed_content("optimizer", instantiate=False) + optimizer = optimizer_part.instantiate(params=model.parameters()) + lr_scheduler_part = parser.get_parsed_content("lr_scheduler", instantiate=False) + lr_scheduler = lr_scheduler_part.instantiate(optimizer=optimizer) + if world_size > 1: + model = DistributedDataParallel( + model, device_ids=[device], find_unused_parameters=True + ) + if finetune["activate"] and os.path.isfile(finetune["pretrained_ckpt_name"]): + logger.debug( + "Fine-tuning pre-trained checkpoint {:s}".format( + finetune["pretrained_ckpt_name"] + ) + ) + pretrained_ckpt = torch.load( + finetune["pretrained_ckpt_name"], map_location=device + ) + copy_model_state( + model, pretrained_ckpt, exclude_vars=finetune.get("exclude_vars") + ) + del pretrained_ckpt + else: + logger.debug("Training from scratch") + + # training hyperparameters - sample + num_images_per_batch = parser.get_parsed_content("num_images_per_batch") + num_patches_per_iter = parser.get_parsed_content("num_patches_per_iter") + overlap_ratio = parser.get_parsed_content("overlap_ratio") # sliding window overlap + max_prompt = parser.get_parsed_content("max_prompt", default=96) + max_backprompt = parser.get_parsed_content("max_backprompt", default=96) + max_foreprompt = parser.get_parsed_content("max_foreprompt", default=96) + drop_label_prob = parser.get_parsed_content("drop_label_prob") + drop_point_prob = parser.get_parsed_content("drop_point_prob") + max_point = parser.get_parsed_content("max_point") + balance_gt = parser.get_parsed_content("balance_gt", default=False) + + # training hyperparameters - data and transforms + fold = parser.get_parsed_content("fold") + json_dir = parser.get_parsed_content( + "json_dir", default="./data/jsons" + ) # path to json datalists + train_datasets = parser.get_parsed_content("train_datasets", default=None) + val_datasets = parser.get_parsed_content("val_datasets", default=None) + train_transforms = parser.get_parsed_content( + "transforms_train#transforms", default=None + ) + val_transforms = parser.get_parsed_content( + "transforms_validate#transforms", default=None + ) + post_pred = transforms.Compose( + [ + transforms.EnsureType(), + transforms.AsDiscrete(threshold=0.0, dtype=torch.uint8), + ] + ) + class_names = get_class_names(json_dir=json_dir) + label_mappings = dict( + ConfigParser.load_config_file(os.path.join(json_dir, "label_mappings.json")) + ) + image_key, label_key, label_sv_key, pseudo_label_key = ( + parser.get_parsed_content("image_key", default="image"), + parser.get_parsed_content("label_key", default="label"), + parser.get_parsed_content("label_sv_key", default="label_sv"), + parser.get_parsed_content("pseudo_label_key", default="pseudo_label"), + ) + train_files, _, dataset_specific_transforms, dataset_specific_transforms_val = ( + get_datalist_with_dataset_name_and_transform( + datasets=train_datasets, + fold_idx=fold, + image_key=image_key, + label_key=label_key, + label_sv_key=label_sv_key, + pseudo_label_key=pseudo_label_key, + num_patches_per_image=parser.get_parsed_content("num_patches_per_image"), + patch_size=parser.get_parsed_content("patch_size"), + json_dir=json_dir, + ) + ) + + _, val_files = get_datalist_with_dataset_name( + datasets=val_datasets, fold_idx=fold, json_dir=json_dir + ) + if world_size > 1: + if len(val_files) < world_size: + val_files = list(val_files) * math.ceil( + float(world_size) / float(len(val_files)) + ) + logger.debug(f"Train_files: {len(train_files)}") + logger.debug(f"Val_files: {len(val_files)}") + + if train_transforms is not None: + # Add dataset-specific transforms to over-sample certain labels + dataset_select_transform = DatasetSelectTansformd( + [image_key, label_key], dataset_specific_transforms + ) + train_transforms[ + train_transforms.index("Placeholder for dataset-specific transform") + ] = dataset_select_transform + logger.debug("using dataset-specific transforms") + for k, v in dataset_specific_transforms.items(): + logger.debug(k) + logger.debug(v.transforms) + train_transforms.append( + RelabelD(label_key, label_mappings=label_mappings, dtype=torch.int32) + ) + train_transforms = transforms.Compose(train_transforms) + + if val_transforms is not None: + dataset_select_transform_val = DatasetSelectTansformd( + [image_key, label_key], dataset_specific_transforms_val + ) + val_transforms[ + val_transforms.index("Placeholder for dataset-specific transform") + ] = dataset_select_transform_val + logger.debug("using dataset-specific transforms for validation") + for k, v in dataset_specific_transforms_val.items(): + logger.debug(k) + try: + logger.debug(v.transforms) + except BaseException: + logger.debug(v) + val_transforms = transforms.Compose(val_transforms) + + with warnings.catch_warnings(): + warnings.simplefilter(action="ignore", category=FutureWarning) + warnings.simplefilter(action="ignore", category=Warning) + train_ds, val_ds = None, None + train_ds = monai.data.Dataset( + data=train_files * num_epochs_per_validation, transform=train_transforms + ) + val_ds = monai.data.Dataset(data=val_files, transform=val_transforms) + + train_sampler, val_sampler = None, None + train_w = None + if weighted_sampling: + train_w = ( + compute_dataset_weights( + train_files, weight_path="./data/dataset_weights.yaml" + ) + * num_epochs_per_validation + ) + logger.debug("using uniform sample") + if world_size > 1: + train_sampler = DistributedWeightedRandomSampler(train_ds, train_w) + val_sampler = DistributedSampler( + val_ds, shuffle=False, even_divisible=False + ) + else: + train_sampler = WeightedRandomSampler(train_w, len(train_files)) + else: + if world_size > 1: + train_sampler = DistributedSampler(train_ds, shuffle=True) + val_sampler = DistributedSampler( + val_ds, shuffle=False, even_divisible=False + ) + else: + train_sampler = RandomSampler(train_ds) + train_loader = DataLoader( + train_ds, + num_workers=4, + batch_size=num_images_per_batch, + shuffle=(train_sampler is None), + persistent_workers=True, + pin_memory=True, + sampler=train_sampler, + prefetch_factor=1, + ) + val_loader = DataLoader( + val_ds, + num_workers=4, + batch_size=1, + shuffle=False, + sampler=val_sampler, + prefetch_factor=1, + persistent_workers=False, + ) + + # --------- Start training --------- + """ Notes: The training script is directly modified from auto3dseg. + To increase speed, the training script is not based on epoch, but based on validation rounds. + In each batch, num_images_per_batch=2 whole 3D images are loaded into CPU for data transformation + num_patches_per_image=2*num_patches_per_iter is extracted from each 3D image, in each iteration, + num_patches_per_iter patches is used for training (real batch size on each GPU). + """ + num_rounds = int(np.ceil(float(num_epochs) // float(num_epochs_per_validation))) + best_metric = -1 + best_metric_epoch = -1 + idx_iter = 0 + if num_rounds == 0: + raise RuntimeError( + "num_epochs_per_validation > num_epochs, modify hyper_parameters.yaml" + ) + + if world_size == 1 or dist.get_rank() == 0: + progress_bar = tqdm( + range(num_rounds), + desc=f"{os.path.basename(bundle_root)} - training ...", + unit="round", + ) + for _round in ( + range(num_rounds) if world_size > 1 and dist.get_rank() != 0 else progress_bar + ): + model.train() + epoch_loss = 0 + loss_torch = torch.zeros(2, dtype=torch.float, device=device) + 1e-5 + step = 0 + e_time = time.time() + if world_size > 1: + train_loader.sampler.set_epoch(_round) + for batch_data in train_loader: + # for batch_data in cycle_k(train_loader): + s_time = time.time() + # if step % (len(train_loader)) == 0: + if step % (len(train_loader) // num_epochs_per_validation) == 0: + epoch = _round * num_epochs_per_validation + step // ( + len(train_loader) // num_epochs_per_validation + ) + lr_scheduler.step() + lr = lr_scheduler.get_last_lr()[0] + if freeze_epoch > epoch: + # if automatic branch is frozen, drop label prompts + if freeze_head == "auto": + drop_label_prob_train = 1 + drop_point_prob_train = 0 + auto_freeze = True + point_freeze = False + elif freeze_head == "point": + drop_label_prob_train = 0 + drop_point_prob_train = 1 + auto_freeze = False + point_freeze = True + try: + model.module.set_auto_grad( + auto_freeze=auto_freeze, point_freeze=point_freeze + ) + except BaseException: + model.set_auto_grad( + auto_freeze=auto_freeze, point_freeze=point_freeze + ) + if world_size == 1 or dist.get_rank() == 0: + logger.debug( + f"Auto freeze {auto_freeze}, point freeze {point_freeze} at epoch {epoch}!" + ) + else: + drop_label_prob_train = drop_label_prob + drop_point_prob_train = drop_point_prob + try: + model.module.set_auto_grad( + auto_freeze=False, point_freeze=False + ) + except BaseException: + model.set_auto_grad(auto_freeze=False, point_freeze=False) + if world_size == 1 or dist.get_rank() == 0: + logger.debug( + f"Auto freeze {False}, point freeze {False} at epoch {epoch}!" + ) + + if world_size == 1 or dist.get_rank() == 0: + logger.debug("----------") + logger.debug(f"epoch {epoch}/{num_epochs}") + logger.debug(f"Learning rate is set to {lr}") + step += 1 + inputs_l = batch_data["image"].as_subclass(torch.Tensor) + if "label" not in batch_data: + # this will only happen for unlabeled dataset, converting pseudo-label to manual label + batch_data["label"] = batch_data.pop("pseudo_label") + labels_l = batch_data["label"].as_subclass(torch.Tensor) + labels_sv_l = ( + batch_data["label_sv"].as_subclass(torch.Tensor) + if "label_sv" in batch_data + else None + ) + labels_p_l = ( + batch_data["pseudo_label"].as_subclass(torch.Tensor) + if "pseudo_label" in batch_data + else None + ) + + # if pseudo_label_reliability does not exist, treat as reliable + if labels_p_l is not None: + pl_reliability_l = batch_data.get( + "pseudo_label_reliability", torch.ones(labels_p_l.shape[0], 1) + ) + else: + pl_reliability_l = None + ds_l = batch_data["dataset_name"] + + if len(inputs_l) > 1: + _idx = torch.randperm(inputs_l.shape[0]) + inputs_l = inputs_l[_idx] + labels_l = labels_l[_idx] + labels_sv_l = labels_sv_l[_idx] if labels_sv_l is not None else None + labels_p_l = labels_p_l[_idx] if labels_p_l is not None else None + pl_reliability_l = ( + pl_reliability_l[_idx] if pl_reliability_l is not None else None + ) + ds_l = [ds_l[int(_d_i)] for _d_i in _idx] + + for _k in range(inputs_l.shape[0] // num_patches_per_iter): + inputs = inputs_l[ + _k * num_patches_per_iter : (_k + 1) * num_patches_per_iter, ... + ] + labels = labels_l[ + _k * num_patches_per_iter : (_k + 1) * num_patches_per_iter, ... + ] + labels_sv = ( + labels_sv_l[ + _k * num_patches_per_iter : (_k + 1) * num_patches_per_iter, ... + ] + if labels_sv_l is not None + else None + ) + + inputs = inputs.to(device) + labels = labels.to(device) + labels_sv = labels_sv.to(device) if labels_sv is not None else None + + ds_name = ds_l[_k] + # label_mapping does not contain unlabeled dataset, use totalsegv2's labelmapping for unlabeled datasets. + try: + train_label_set = {_xx[1] for _xx in label_mappings[ds_name]} + except BaseException: + train_label_set = { + _xx[1] for _xx in label_mappings["TotalSegmentatorV2"] + } + # hepatic vessel and airway are generated in pseudolabel generation + train_label_set_pseudo = { + _xx[1] for _xx in label_mappings["TotalSegmentatorV2"] + } | {25, 132} + + pl_reliability = ( + pl_reliability_l[ + _k * num_patches_per_iter : (_k + 1) * num_patches_per_iter, ... + ] + if pl_reliability_l is not None + else None + ) + labels_p = None + if pl_reliability is not None and pl_reliability > 0: + labels_p = ( + labels_p_l[ + _k * num_patches_per_iter : (_k + 1) * num_patches_per_iter, + ..., + ] + if labels_p_l is not None + else None + ) + labels_p = labels_p.to(device) if labels_p is not None else None + # decide if use iterative training and sync across all ranks + if world_size > 1: + if dist.get_rank() == 0: + skip_iter = (torch.rand(1) < skip_iter_prob).to( + dtype=torch.float, device=device + ) + else: + skip_iter = torch.empty(1).to(dtype=torch.float, device=device) + dist.broadcast(skip_iter, src=0) + else: + skip_iter = (torch.rand(1) < skip_iter_prob).float() + if skip_iter > 0: + # if not using iterative + num_iters = 1 + else: + # if use iterative training + num_iters = max(iter_num, 1) + + point_sampler = None + point_sampler_pseudo = None + # for dataset other than totalseg, use pseudolabel for zero-shot. for totalseg, if labels_p exist, use labels_p for zero-shot, + # gt for regular sample. If labels_p does not exist, use gt for zero-shot. + if labels_sv is not None: + if labels_p is not None: + point_sampler_pseudo = Point_sampler( + label=labels_p[0, 0], + label_sv=labels_sv[0, 0], + map_shift=512, + ) + elif ds_name in USE_SV_GT_LIST: + point_sampler = Point_sampler( + label=labels[0, 0], label_sv=labels_sv[0, 0], map_shift=512 + ) + + label_prompt, point, point_label, prompt_class = generate_prompt_pairs( + labels, + train_label_set, + max_point=max_point, + max_prompt=max_prompt, + max_backprompt=max_backprompt, + max_foreprompt=max_foreprompt, + drop_label_prob=drop_label_prob_train, + drop_point_prob=drop_point_prob_train, + point_sampler=point_sampler, + ) + ( + label_prompt_pseudo, + point_pseudo, + point_label_pseudo, + prompt_class_pseudo, + ) = (None, None, None, None) + + if labels_p is not None: + ( + label_prompt_pseudo, + point_pseudo, + point_label_pseudo, + prompt_class_pseudo, + ) = generate_prompt_pairs( + labels_p, + train_label_set_pseudo, + max_point=max_point, + max_prompt=max_prompt, + max_backprompt=max_backprompt, + max_foreprompt=max_foreprompt, + drop_label_prob=drop_label_prob_train, + drop_point_prob=drop_point_prob_train, + point_sampler=point_sampler_pseudo, + ) + # point sampler updates the labels internally. + if point_sampler is not None and prompt_class is not None: + # update the labels. The shifted prompt index means zero-shot index. + labels = point_sampler.label.unsqueeze(0).unsqueeze(0) + shifted = point_sampler.shifted + for i, p in enumerate(prompt_class): + if p in list(shifted.keys()): + prompt_class[i] = shifted[p.item()] + del point_sampler + if point_sampler_pseudo is not None and prompt_class_pseudo is not None: + # update the labels. The shifted prompt index means zero-shot index. + labels_p = point_sampler_pseudo.label.unsqueeze(0).unsqueeze(0) + shifted = point_sampler_pseudo.shifted + for i, p in enumerate(prompt_class_pseudo): + if p in list(shifted.keys()): + prompt_class_pseudo[i] = shifted[p.item()] + del point_sampler_pseudo + torch.cuda.empty_cache() + # Skip the training if prompts are both None + skip_update = torch.zeros(1, device=device) + if ( + label_prompt is None + and point is None + and label_prompt_pseudo is None + and point_pseudo is None + ): + logger.debug(f"Iteration skipped due to None prompts at {ds_name}") + skip_update = torch.ones(1, device=device) + if world_size > 1: + dist.all_reduce(skip_update, op=dist.ReduceOp.SUM) + if skip_update[0] > 0: + continue # some rank has no foreground, skip this batch + # clear image_embedding + try: + model.module.clear_cache() + except BaseException: + model.clear_cache() + for click_indx in range(num_iters): + outputs = None + inputs = inputs.to(device) + labels = labels.to(device) + labels_p = labels_p.to(device) if labels_p is not None else None + # only sinlge point prompt case activate multi-mask output + loss_function = partial( + loss_wrapper, loss_function=parser.get_parsed_content("loss") + ) + with autocast(): + outputs = model( + input_images=inputs, + point_coords=none_cat(point, point_pseudo), + point_labels=none_cat(point_label, point_label_pseudo), + class_vector=none_cat(label_prompt, label_prompt_pseudo), + prompt_class=none_cat(prompt_class, prompt_class_pseudo), + ) + # cumulate loss + loss, loss_n = torch.tensor(0.0, device=device), torch.tensor( + 0.0, device=device + ) + ps_start = len(prompt_class) if prompt_class is not None else 0 + if prompt_class is not None: + for idx in range(len(prompt_class)): + if prompt_class[idx] == 0: + continue # skip background class + loss_n += 1.0 + gt = labels == prompt_class[idx] + if prompt_class[idx].item() in MERGE_LIST.keys(): + for m in MERGE_LIST[prompt_class[idx].item()]: + gt = torch.logical_or(gt, labels == m) + loss += loss_function(outputs[[idx]].float(), gt) + + if prompt_class_pseudo is not None: + if balance_gt: + multiplier = len(prompt_class_pseudo) / len(prompt_class) + loss *= multiplier + for idx in range(len(prompt_class_pseudo)): + if prompt_class_pseudo[idx] == 0: + continue # skip background class + loss_n += 1.0 + gt = labels_p == prompt_class_pseudo[idx] + if prompt_class_pseudo[idx].item() in MERGE_LIST.keys(): + for m in MERGE_LIST[prompt_class_pseudo[idx].item()]: + gt = torch.logical_or(gt, labels_p == m) + loss += loss_function(outputs[[idx + ps_start]].float(), gt) + + loss /= max(loss_n, 1.0) + print(loss, ds_name) + if num_iters > 1: + if click_indx != num_iters - 1: # do not sample at last iter + outputs.sigmoid_() + if prompt_class is not None: + point, point_label = get_next_points( + outputs[: len(prompt_class)], + labels, + prompt_class, + point, + point_label, + ) + if prompt_class_pseudo is not None: + point_pseudo, point_label_pseudo = get_next_points( + outputs[ps_start:], + labels_p, + prompt_class_pseudo, + point_pseudo, + point_label_pseudo, + ) + # stop iterative if no new points are added. + skip_this_iter = torch.tensor(False, device=device) + if prompt_class is not None: + if torch.all(point_label[:, -1] == -1) and torch.all( + point_label[:, -2] == -1 + ): + skip_this_iter = torch.tensor(True, device=device) + if prompt_class_pseudo is not None: + if torch.all( + point_label_pseudo[:, -1] == -1 + ) and torch.all(point_label_pseudo[:, -2] == -1): + skip_this_iter = torch.tensor(True, device=device) + + if world_size > 1: + dist.all_reduce( + skip_this_iter, op=dist.ReduceOp.PRODUCT + ) + skip_this_iter = bool(skip_this_iter.item()) + if skip_this_iter: + print(f"iteration end at {click_indx}") + logger.info(f"iteration end at {click_indx}") + break + del outputs + torch.cuda.empty_cache() + + for param in model.parameters(): + param.grad = None + inputs = inputs.to("cpu") + labels = labels.to("cpu") + labels_p = labels_p.to("cpu") if labels_p is not None else None + scaler.scale(loss).backward() + scaler.unscale_(optimizer) + scaler.step(optimizer) + scaler.update() + + epoch_loss += loss.item() + loss_torch[0] += loss.item() + loss_torch[1] += 1.0 + epoch_len = len(train_loader) + idx_iter += 1 + if world_size == 1 or dist.get_rank() == 0: + logger.debug( + f"{time.time() - s_time:.4f} {step}/{epoch_len}, train_loss: {loss.item():.4f}" + ) + writer.add_scalar( + "train/loss", loss.item(), epoch_len * _round + step + ) + + if world_size > 1: + dist.all_reduce(loss_torch, op=torch.distributed.ReduceOp.SUM) + + loss_torch = loss_torch.tolist() + if world_size == 1 or dist.get_rank() == 0: + loss_torch_epoch = loss_torch[0] / loss_torch[1] + logger.debug( + f"{time.time() - e_time:.4f} Epoch {epoch} average loss: {loss_torch_epoch:.4f}, " + f"best mean dice: {best_metric:.4f} at epoch {best_metric_epoch}" + ) + try: + del inputs, labels, inputs_l, labels_l, batch_data, labels_sv_l + except BaseException: + pass + torch.cuda.empty_cache() + + # --------- Start Validation --------- + """ Note: + In training transform, labels are mapped to global index with Relabel transform. However, there could be local index that are not used since it can excluded + from label_mapping definition. In training sample generation, training pairs will only be sampled from label_set. In validation, the label_prompt + will use global mapping, but the val label is not mapped to global index, so we need the val_orig_set. Notice the compute_dice assume gt label starts + from 0,1,2,3,4,.... If some are index are not used (not defined in label_mapping.json thus label_set does not include them), compute_dice directly will give wrong + number. We calculate dice for each class with a for loop. + """ + model.eval() + model_inferer = partial(infer_wrapper, model=model) + with torch.no_grad(): + # for metric, index 2*c is the dice for class c, and 2*c + 1 is the not-nan counts for class c + metric = torch.zeros(metric_dim * 2, dtype=torch.float, device=device) + for _index, val_data in enumerate(val_loader): + val_filename = val_data["image"].meta["filename_or_obj"][0] + val_data["label"] = val_data["label"].as_subclass(torch.Tensor) + val_data["image"] = val_data["image"].as_subclass(torch.Tensor) + ds_l = val_data["dataset_name"][0] # assume batch_size=1 + val_label_set = [0] + [_xx[1] for _xx in label_mappings[ds_l]] + val_orig_set = [0] + [_xx[0] for _xx in label_mappings[ds_l]] + # special handling of Bone lesion dataset + if ds_l == "Bone-NIH": + val_label_set = val_label_set[:-1] + val_orig_set = val_orig_set[:-1] + # merge bone lesion 1 and 2 + val_data["label"][val_data["label"] == 2] = 1 + + for _device_in, _device_out in zip( + [device, device, "cpu"], [device, "cpu", "cpu"] + ): + try: + label_prompt = ( + torch.tensor(val_label_set).to(device).unsqueeze(0) + ) + prompt_class = torch.ones(len(val_orig_set), 1).to( + device + ) # supported class + if drop_point_prob_train > 0.99 or ( + freeze_head == "point" and freeze_epoch > 0 + ): + point = None + point_label = None + if drop_label_prob_train > 0.99 or ( + freeze_head == "auto" and freeze_epoch > 0 + ): + label_prompt = None + with autocast(enabled=amp): + val_outputs = None + torch.cuda.empty_cache() + val_outputs = sliding_window_inference( + inputs=val_data["image"].to(_device_in), + roi_size=patch_size, + sw_batch_size=1, + predictor=model_inferer, + mode="gaussian", + overlap=overlap_ratio, + sw_device=device, + device=_device_out, + point_coords=None, + point_labels=None, + class_vector=label_prompt, + prompt_class=prompt_class, + labels=val_data["label"].to(_device_in), + label_set=val_orig_set, + val_point_sampler=partial( + sample_points_patch_val, + mapped_label_set=val_label_set, + max_ppoint=1, + use_center=True, + ), + ) + try: + val_outputs = post_pred(val_outputs[0, ...]) + except BaseException: + val_outputs = post_pred(val_outputs[0, ...].to("cpu")) + finished = True + + except RuntimeError as e: + if not any( + x in str(e).lower() for x in ("memory", "cuda", "cudnn") + ): + raise e + logger.warning(e) + finished = False + + if finished: + break + + if finished: + del val_data["image"] + value = torch.full((1, metric_dim), float("nan")).to(device) + val_outputs = val_outputs[None, ...] + value_l = [] + for i in range(1, len(val_orig_set)): + gt = val_data["label"].to(val_outputs.device) == val_orig_set[i] + value_l.append( + compute_dice( + y_pred=val_outputs[:, [i]], + y=gt, + include_background=False, + ) + ) + value_l = torch.hstack(value_l).to(device) + for _v_i, _v_c in enumerate(value_l[0]): + value[0, val_label_set[_v_i + 1] - 1] = _v_c + else: + # During training, allow validation OOM for some big data to avoid crush. + logger.debug( + f"{val_filename} is skipped due to OOM, using NaN dice values" + ) + value = torch.full((1, metric_dim), float("nan")).to(device) + + # remove temp variables to save memory. + val_outputs, val_data = None, None + torch.cuda.empty_cache() + + logger.debug( + f"{_index + 1} / {len(val_loader)} / {val_filename}: {value}" + ) + + for _c in range(metric_dim): + val0 = torch.nan_to_num(value[0, _c], nan=0.0) + val1 = 1.0 - torch.isnan(value[0, _c]).float() + metric[2 * _c] += val0 + metric[2 * _c + 1] += val1 + + if world_size > 1: + dist.all_reduce(metric, op=torch.distributed.ReduceOp.SUM) + + metric = metric.tolist() + metric_class = np.zeros(metric_dim) + if world_size == 1 or dist.get_rank() == 0: + avg_metric = 0 + valid = 0 + for _c in range(metric_dim): + if metric[2 * _c + 1] > 0: + v = metric[2 * _c] / metric[2 * _c + 1] + avg_metric += v + valid += 1 + else: + v = torch.nan + metric_class[_c] = v + try: + writer.add_scalar( + f"val_class/acc_{class_names[_c + 1]}", v, epoch + ) + logger.debug( + f"Evaluation metric - class {_c + 1} {class_names[_c + 1]}: {v:.4f}" + ) + except BaseException: + writer.add_scalar(f"val_class/acc_{_c}", v, epoch) + logger.debug(f"Evaluation metric - class {_c + 1} : {v:.4f}") + + avg_metric = avg_metric / valid + logger.debug(f"Avg_metric: {avg_metric}") + + writer.add_scalar("val/acc", avg_metric, epoch) + if avg_metric > best_metric or save_last: + best_metric = avg_metric + best_metric_epoch = epoch + if save_all: + ckpt_name = f"best_metric_model_{epoch}.pt" + else: + ckpt_name = "best_metric_model.pt" + if world_size > 1: + torch.save( + model.module.state_dict(), + os.path.join(ckpt_path, ckpt_name), + ) + else: + torch.save( + model.state_dict(), os.path.join(ckpt_path, ckpt_name) + ) + logger.debug("Saved new best metric model") + + dict_file = {} + dict_file["best_avg_dice_score"] = float(best_metric) + dict_file["best_avg_dice_score_epoch"] = int(best_metric_epoch) + dict_file["best_avg_dice_score_iteration"] = int(idx_iter) + with open( + os.path.join(ckpt_path, "progress.yaml"), "a" + ) as out_file: + yaml.dump([dict_file], stream=out_file) + + logger.debug( + "Current epoch: {} current mean dice: {:.4f} best mean dice: {:.4f} at epoch {}".format( + epoch, avg_metric, best_metric, best_metric_epoch + ) + ) + + current_time = time.time() + elapsed_time = (current_time - start_time) / 60.0 + with open(os.path.join(ckpt_path, "accuracy_history.csv"), "a") as f: + f.write( + "{:d}\t{:.5f}\t{:.5f}\t{:.5f}\t{:.1f}\t{:d}\n".format( + epoch, + avg_metric, + loss_torch_epoch, + lr, + elapsed_time, + idx_iter, + ) + ) + + if world_size > 1: + dist.barrier() + + torch.cuda.empty_cache() + + if world_size == 1 or dist.get_rank() == 0: + logger.debug( + f"Training completed, best_metric: {best_metric:.4f} at epoch: {best_metric_epoch}." + ) + + writer.flush() + writer.close() + + logger.warning(f"{os.path.basename(bundle_root)} - training: finished") + + if world_size > 1: + dist.destroy_process_group() + + return + + +if __name__ == "__main__": + fire, _ = optional_import("fire") + fire.Fire() diff --git a/vista3d/scripts/train_finetune.py b/vista3d/scripts/train_finetune.py new file mode 100644 index 0000000..bb945ee --- /dev/null +++ b/vista3d/scripts/train_finetune.py @@ -0,0 +1,817 @@ +# Copyright (c) MONAI Consortium +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# http://www.apache.org/licenses/LICENSE-2.0 +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import annotations + +import copy +import logging +import math +import os +import sys +import time +import warnings +from datetime import timedelta +from functools import partial +from typing import Optional, Sequence, Union + +import monai +import nibabel as nib +import numpy as np +import torch +import torch.distributed as dist +import yaml +from monai import transforms +from monai.apps.auto3dseg.auto_runner import logger +from monai.auto3dseg.utils import datafold_read +from monai.bundle import ConfigParser +from monai.bundle.scripts import _pop_args, _update_args +from monai.data import DataLoader, DistributedSampler +from monai.metrics import compute_dice +from monai.networks.utils import copy_model_state +from monai.utils import set_determinism +from torch.nn.parallel import DistributedDataParallel +from torch.utils.tensorboard import SummaryWriter +from tqdm import tqdm + +from vista3d import vista_model_registry + +from .sliding_window import sliding_window_inference +from .train import CONFIG, infer_wrapper, loss_wrapper +from .utils.workflow_utils import ( + MERGE_LIST, + generate_prompt_pairs, + get_next_points, + sample_points_patch_val, +) + +nib.imageglobals.logger.setLevel(40) + + +def run(config_file: Optional[Union[str, Sequence[str]]] = None, **override): + # Initialize distributed and scale parameters based on GPU memory + if torch.cuda.device_count() > 1: + dist.init_process_group( + backend="nccl", init_method="env://", timeout=timedelta(seconds=3600) + ) + world_size = dist.get_world_size() + dist.barrier() + else: + world_size = 1 + logging.basicConfig(stream=sys.stdout, level=logging.INFO) + if isinstance(config_file, str) and "," in config_file: + config_file = config_file.split(",") + _args = _update_args(config_file=config_file, **override) + config_file_ = _pop_args(_args, "config_file")[0] + + parser = ConfigParser() + parser.read_config(config_file_) + parser.update(pairs=_args) + + # loggings and experiment pathes + start_time = time.time() + bundle_root = parser.get_parsed_content("bundle_root") + ckpt_path = parser.get_parsed_content("ckpt_path") + os.makedirs(ckpt_path, exist_ok=True) + if world_size == 1 or dist.get_rank() == 0: + writer = SummaryWriter(log_dir=os.path.join(ckpt_path, "Events")) + with open(os.path.join(ckpt_path, "accuracy_history.csv"), "a") as f: + f.write("epoch\tmetric\tloss\tlr\ttime\titer\n") + random_seed = parser.get_parsed_content("random_seed") + save_last = parser.get_parsed_content( + "save_last", default=False + ) # save the last checkpoint + save_all = parser.get_parsed_content( + "save_all", default=False + ) # save all val-checkpoint + if world_size == 1 or dist.get_rank() == 0: + config_yaml = os.path.join(bundle_root, "configs.yaml") + ConfigParser.export_config_file( + parser.get(), config_yaml, fmt="yaml", default_flow_style=None + ) + if random_seed is not None and ( + isinstance(random_seed, int) or isinstance(random_seed, float) + ): + set_determinism(seed=random_seed) + CONFIG["handlers"]["file"]["filename"] = parser.get_parsed_content( + "log_output_file" + ) + logging.config.dictConfig(CONFIG) + logging.getLogger("torch.distributed.distributed_c10d").setLevel(logging.WARNING) + + # training hyperparameters - workflow + device = ( + torch.device(f"cuda:{os.environ['LOCAL_RANK']}") + if world_size > 1 + else torch.device("cuda:0") + ) + amp = parser.get_parsed_content("amp") + if amp: + from torch.cuda.amp import GradScaler, autocast + + scaler = GradScaler() + logger.debug("Amp enabled") + finetune = parser.get_parsed_content("finetune") + num_epochs = parser.get_parsed_content("num_epochs") + num_epochs_per_validation = parser.get_parsed_content("num_epochs_per_validation") + skip_iter_prob = parser.get_parsed_content( + "skip_iter_prob" + ) # prob. to skip iterative point sampling, 1 for auto-training + iter_num = parser.get_parsed_content( + "iter_num" + ) # total iter number in point branch training + freeze_epoch = parser.get_parsed_content( + "freeze_epoch", default=-1 + ) # freeze the whole branch epoch + freeze_head = parser.get_parsed_content( + "freeze_head", default="auto" + ) # freeze which branch, "auto" or "point". We freeze point for auto-training. + logger.debug(f"World_size: {world_size}") + logger.debug(f"num_epochs: {num_epochs}") + logger.debug(f"num_epochs_per_validation: {num_epochs_per_validation}") + + # training hyperparameters - model and optimizer + input_channels = parser.get_parsed_content("input_channels") + model_registry = parser.get_parsed_content("model") + patch_size = parser.get_parsed_content("patch_size") + model = vista_model_registry[model_registry]( + in_channels=input_channels, image_size=patch_size + ) + model = model.to(device) + optimizer_part = parser.get_parsed_content("optimizer", instantiate=False) + optimizer = optimizer_part.instantiate(params=model.parameters()) + lr_scheduler_part = parser.get_parsed_content("lr_scheduler", instantiate=False) + lr_scheduler = lr_scheduler_part.instantiate(optimizer=optimizer) + if world_size > 1: + model = DistributedDataParallel( + model, device_ids=[device], find_unused_parameters=True + ) + if finetune["activate"] and os.path.isfile(finetune["pretrained_ckpt_name"]): + logger.debug( + "Fine-tuning pre-trained checkpoint {:s}".format( + finetune["pretrained_ckpt_name"] + ) + ) + pretrained_ckpt = torch.load( + finetune["pretrained_ckpt_name"], map_location=device + ) + copy_model_state( + model, pretrained_ckpt, exclude_vars=finetune.get("exclude_vars") + ) + del pretrained_ckpt + else: + logger.debug("Training from scratch") + + # training hyperparameters - sample + num_images_per_batch = parser.get_parsed_content("num_images_per_batch") + num_patches_per_iter = parser.get_parsed_content("num_patches_per_iter") + overlap_ratio = parser.get_parsed_content("overlap_ratio") # sliding window overlap + max_prompt = parser.get_parsed_content("max_prompt", default=96) + max_backprompt = parser.get_parsed_content("max_backprompt", default=96) + max_foreprompt = parser.get_parsed_content("max_foreprompt", default=96) + drop_label_prob = parser.get_parsed_content("drop_label_prob") + drop_point_prob = parser.get_parsed_content("drop_point_prob") + max_point = parser.get_parsed_content("max_point") + + # training hyperparameters - data and transforms + label_set = parser.get_parsed_content("label_set", default=None) + mapped_label_set = parser.get_parsed_content( + "mapped_label_set", default=copy.deepcopy(label_set) + ) + # user can define class names in the json config + class_names = parser.get_parsed_content("class_names", default=None) + label_mapping = {label_set[i]: mapped_label_set[i] for i in range(len(label_set))} + metric_dim = len(label_set) - 1 # only affect dice calculation + fold = parser.get_parsed_content("fold") + use_folds = parser.get_parsed_content("use_folds", default=False) + post_pred = transforms.Compose( + [ + transforms.EnsureType(), + transforms.AsDiscrete(threshold=0.0, dtype=torch.uint8), + ] + ) + data_file_base_dir = parser.get_parsed_content("data_file_base_dir") + data_list_file_path = parser.get_parsed_content("data_list_file_path") + train_number = parser.get_parsed_content("train_number", default=-1) + train_transforms, val_transforms = None, None + train_transforms = parser.get_parsed_content("transforms_train", default=None) + val_transforms = parser.get_parsed_content("transforms_validate", default=None) + post_transform = transforms.Invertd( + keys="pred", + transform=val_transforms, + orig_keys="image", + meta_keys="pred_meta_dict", + orig_meta_keys="image_meta_dict", + meta_key_postfix="meta_dict", + nearest_interp=False, + to_tensor=True, + ) + if use_folds: + train_files, val_files = datafold_read( + datalist=data_list_file_path, + basedir=data_file_base_dir, + fold=fold, + key="training", + ) + test_files, _ = datafold_read( + datalist=data_list_file_path, + basedir=data_file_base_dir, + fold=-1, + key="testing", + ) + else: + train_files, _ = datafold_read( + datalist=data_list_file_path, + basedir=data_file_base_dir, + fold=-1, + key="training", + ) + val_files, _ = datafold_read( + datalist=data_list_file_path, + basedir=data_file_base_dir, + fold=-1, + key="validation", + ) + test_files, _ = datafold_read( + datalist=data_list_file_path, + basedir=data_file_base_dir, + fold=-1, + key="testing", + ) + train_files = train_files[:train_number] + if world_size > 1: + if len(val_files) < world_size: + val_files = list(val_files) * math.ceil( + float(world_size) / float(len(val_files)) + ) + logger.debug(f"Train_files: {len(train_files)}") + logger.debug(f"Val_files: {len(val_files)}") + with warnings.catch_warnings(): + warnings.simplefilter(action="ignore", category=FutureWarning) + warnings.simplefilter(action="ignore", category=Warning) + train_ds, val_ds, test_ds = None, None, None + # for pact 118 use normal dataset to avoid crash. + train_ds = monai.data.Dataset( + data=train_files * num_epochs_per_validation, transform=train_transforms + ) + val_ds = monai.data.Dataset(data=val_files, transform=val_transforms) + test_ds = monai.data.Dataset(data=test_files, transform=val_transforms) + train_sampler, val_sampler, test_sampler = None, None, None + if world_size > 1: + if train_ds is not None: + train_sampler = DistributedSampler(train_ds, shuffle=True) + if val_ds is not None: + val_sampler = DistributedSampler( + val_ds, shuffle=False, even_divisible=False + ) + if test_ds is not None: + test_sampler = DistributedSampler( + test_ds, shuffle=False, even_divisible=False + ) + train_loader = DataLoader( + train_ds, + num_workers=4, + batch_size=num_images_per_batch, + shuffle=(train_sampler is None), + persistent_workers=True, + pin_memory=True, + sampler=train_sampler, + prefetch_factor=1, + ) + val_loader = DataLoader( + val_ds, + num_workers=4, + batch_size=1, + shuffle=False, + sampler=val_sampler, + prefetch_factor=1, + persistent_workers=False, + ) + test_loader = DataLoader( + test_ds, + num_workers=4, + batch_size=1, + shuffle=False, + sampler=test_sampler, + prefetch_factor=1, + persistent_workers=False, + ) + + # --------- Start training --------- + """ Notes: The training script is directly modified from auto3dseg. + To increase speed, the training script is not based on epoch, but based on validation rounds. + In each batch, num_images_per_batch=2 whole 3D images are loaded into CPU for data transformation + num_patches_per_image=2*num_patches_per_iter is extracted from each 3D image, in each iteration, + num_patches_per_iter patches is used for training (real batch size on each GPU). + """ + num_rounds = int(np.ceil(float(num_epochs) // float(num_epochs_per_validation))) + best_metric = -1 + best_metric_epoch = -1 + idx_iter = 0 + if num_rounds == 0: + raise RuntimeError( + "num_epochs_per_validation > num_epochs, modify hyper_parameters.yaml" + ) + + if world_size == 1 or dist.get_rank() == 0: + progress_bar = tqdm( + range(num_rounds), + desc=f"{os.path.basename(bundle_root)} - training ...", + unit="round", + ) + for _round in ( + range(num_rounds) if world_size > 1 and dist.get_rank() != 0 else progress_bar + ): + model.train() + epoch_loss = 0 + loss_torch_epoch = 0 + epoch = 0 + loss_torch = torch.zeros(2, dtype=torch.float, device=device) + 1e-5 + step = 0 + e_time = time.time() + if world_size > 1: + train_loader.sampler.set_epoch(_round) + for batch_data in train_loader: + # for batch_data in cycle_k(train_loader): + s_time = time.time() + # if step % (len(train_loader)) == 0: + if step % (len(train_loader) // num_epochs_per_validation) == 0: + epoch = _round * num_epochs_per_validation + step // ( + len(train_loader) // num_epochs_per_validation + ) + lr_scheduler.step() + lr = lr_scheduler.get_last_lr()[0] + if freeze_epoch > epoch: + # if automatic branch is frozen, drop label prompts + if freeze_head == "auto": + drop_label_prob_train = 1 + drop_point_prob_train = 0 + auto_freeze = True + point_freeze = False + elif freeze_head == "point": + drop_label_prob_train = 0 + drop_point_prob_train = 1 + auto_freeze = False + point_freeze = True + try: + model.module.set_auto_grad( + auto_freeze=auto_freeze, point_freeze=point_freeze + ) + except BaseException: + model.set_auto_grad( + auto_freeze=auto_freeze, point_freeze=point_freeze + ) + if world_size == 1 or dist.get_rank() == 0: + logger.debug( + f"Auto freeze {auto_freeze}, point freeze {point_freeze} at epoch {epoch}!" + ) + else: + drop_label_prob_train = drop_label_prob + drop_point_prob_train = drop_point_prob + try: + model.module.set_auto_grad( + auto_freeze=False, point_freeze=False + ) + except BaseException: + model.set_auto_grad(auto_freeze=False, point_freeze=False) + if world_size == 1 or dist.get_rank() == 0: + logger.debug( + f"Auto freeze {False}, point freeze {False} at epoch {epoch}!" + ) + + if world_size == 1 or dist.get_rank() == 0: + logger.debug("----------") + logger.debug(f"epoch {epoch}/{num_epochs}") + logger.debug(f"Learning rate is set to {lr}") + step += 1 + inputs_l = batch_data["image"].as_subclass(torch.Tensor) + if "label" not in batch_data: + # this will only happen for unlabeled dataset + batch_data["label"] = batch_data.pop("pseudo_label") + labels_l = batch_data["label"].as_subclass(torch.Tensor) + + if len(inputs_l) > 1: + _idx = torch.randperm(inputs_l.shape[0]) + inputs_l = inputs_l[_idx] + labels_l = labels_l[_idx] + + for _k in range(inputs_l.shape[0] // num_patches_per_iter): + inputs = inputs_l[ + _k * num_patches_per_iter : (_k + 1) * num_patches_per_iter, ... + ] + labels = labels_l[ + _k * num_patches_per_iter : (_k + 1) * num_patches_per_iter, ... + ] + inputs = inputs.to(device) + labels = labels.to(device) + train_label_set = label_set + if world_size > 1: + if dist.get_rank() == 0: + skip_iter = (torch.rand(1) < skip_iter_prob).to( + dtype=torch.float, device=device + ) + else: + skip_iter = torch.empty(1).to(dtype=torch.float, device=device) + dist.broadcast(skip_iter, src=0) + else: + skip_iter = (torch.rand(1) < skip_iter_prob).float() + if skip_iter > 0: + # if not using iterative + num_iters = 1 + else: + # if use iterative training + num_iters = max(iter_num, 1) + + # for dataset other than totalseg, use pseudolabel for zero-shot. for totalseg, if labels_p exist, use labels_p for zero-shot, + # gt for regular sample. If labels_p does not exist, use gt for zero-shot. + label_prompt, point, point_label, prompt_class = generate_prompt_pairs( + labels, + train_label_set, + max_point=max_point, + max_prompt=max_prompt, + max_backprompt=max_backprompt, + max_foreprompt=max_foreprompt, + drop_label_prob=drop_label_prob_train, + drop_point_prob=drop_point_prob_train, + ) + # Skip the training if prompts are both None + skip_update = torch.zeros(1, device=device) + if label_prompt is None and point is None: + logger.debug("Iteration skipped due to None prompts") + skip_update = torch.ones(1, device=device) + if world_size > 1: + dist.all_reduce(skip_update, op=dist.ReduceOp.SUM) + if skip_update[0] > 0: + continue # some rank has no foreground, skip this batch + # clear image_embedding + try: + model.module.clear_cache() + except BaseException: + model.clear_cache() + for click_indx in range(num_iters): + outputs = None + inputs = inputs.to(device) + labels = labels.to(device) + # only sinlge point prompt case activate multi-mask output + loss_function = partial( + loss_wrapper, loss_function=parser.get_parsed_content("loss") + ) + + # need to convert label_prompt to global index + label_prompt_global = [] + for i in label_prompt[:, 0].cpu().tolist(): + label_prompt_global.append(label_mapping[i]) + with autocast(): + outputs = model( + input_images=inputs, + point_coords=point, + point_labels=point_label, + class_vector=torch.tensor(label_prompt_global) + .to(device) + .unsqueeze(1), + prompt_class=prompt_class, + ) + # cumulate loss + loss, loss_n = torch.tensor(0.0, device=device), torch.tensor( + 0.0, device=device + ) + for idx in range(len(prompt_class)): + if prompt_class[idx] == 0: + continue # skip background class + loss_n += 1.0 + gt = labels == prompt_class[idx] + if prompt_class[idx].item() in MERGE_LIST.keys(): + for m in MERGE_LIST[prompt_class[idx].item()]: + gt = torch.logical_or(gt, labels == m) + loss += loss_function(outputs[[idx]].float(), gt) + + loss /= max(loss_n, 1.0) + + if num_iters > 1: + if click_indx != num_iters - 1: # do not sample at last iter + outputs.sigmoid_() + if prompt_class is not None: + point, point_label = get_next_points( + outputs[: len(prompt_class)], + labels, + prompt_class, + point, + point_label, + ) + # stop iterative if no new points are added. + skip_this_iter = torch.tensor(False, device=device) + if prompt_class is not None: + if torch.all(point_label[:, -1] == -1) and torch.all( + point_label[:, -2] == -1 + ): + skip_this_iter = torch.tensor(True, device=device) + if world_size > 1: + dist.all_reduce( + skip_this_iter, op=dist.ReduceOp.PRODUCT + ) + skip_this_iter = bool(skip_this_iter.item()) + if skip_this_iter: + print(f"iteration end at {click_indx}") + logger.info(f"iteration end at {click_indx}") + break + del outputs + torch.cuda.empty_cache() + + for param in model.parameters(): + param.grad = None + inputs = inputs.to("cpu") + labels = labels.to("cpu") + scaler.scale(loss).backward() + scaler.unscale_(optimizer) + # clip_grad_norm_(model.parameters(), 0.5) + scaler.step(optimizer) + scaler.update() + + epoch_loss += loss.item() + loss_torch[0] += loss.item() + loss_torch[1] += 1.0 + epoch_len = len(train_loader) # * num_epochs_per_validation + idx_iter += 1 + if world_size == 1 or dist.get_rank() == 0: + logger.debug( + f"{time.time() - s_time:.4f} {step}/{epoch_len}, train_loss: {loss.item():.4f}" + ) + writer.add_scalar( + "train/loss", loss.item(), epoch_len * _round + step + ) + + if world_size > 1: + dist.all_reduce(loss_torch, op=torch.distributed.ReduceOp.SUM) + + loss_torch = loss_torch.tolist() + if world_size == 1 or dist.get_rank() == 0: + loss_torch_epoch = loss_torch[0] / loss_torch[1] + logger.debug( + f"{time.time() - e_time:.4f} Epoch {epoch} average loss: {loss_torch_epoch:.4f}, " + f"best mean dice: {best_metric:.4f} at epoch {best_metric_epoch}" + ) + try: + del inputs, labels, inputs_l, labels_l, batch_data + except BaseException: + pass + torch.cuda.empty_cache() + + # --------- Start Validation --------- + """ Note: + In training transform, labels are mapped to global index with Relabel transform. However, there could be local index that are not used since it can excluded + from label_mapping definition. In training sample generation, training pairs will only be sampled from label_set. In validation, the label_prompt + will use global mapping, but the val label is not mapped to global index, so we need the val_orig_set. Notice the compute_dice assume gt label starts + from 0,1,2,3,4,.... If some are index are not used (not defined in label_mapping.json thus label_set does not include them), compute_dice directly will give wrong + number. We calculate dice for each class with a for loop. + """ + model.eval() + model_inferer = partial(infer_wrapper, model=model) + data_loader = [val_loader, test_loader] + log_info = ["Validation", "Testing"] + for val_times in [0]: + with torch.no_grad(): + # for metric, index 2*c is the dice for class c, and 2*c + 1 is the not-nan counts for class c + metric = torch.zeros(metric_dim * 2, dtype=torch.float, device=device) + val_data = None + torch.cuda.empty_cache() + for _index, val_data in enumerate(data_loader[val_times]): + val_filename = val_data["image"].meta["filename_or_obj"][0] + # one difference is that label_set in train.py does not include 0 but here we require user add 0 in + # the json config. + val_label_set = mapped_label_set + val_orig_set = label_set + + for _device_in, _device_out in zip( + [device, device, "cpu"], [device, "cpu", "cpu"] + ): + try: + label_prompt = ( + torch.tensor(val_label_set).to(device).unsqueeze(0) + ) + promot_class = torch.ones(len(label_set), 1).to( + device + ) # supported class + if drop_label_prob > 0.99: + label_prompt = None + with autocast(enabled=amp): + val_outputs = None + torch.cuda.empty_cache() + val_outputs = sliding_window_inference( + inputs=val_data["image"].to(_device_in), + roi_size=patch_size, + sw_batch_size=1, + predictor=model_inferer, + mode="gaussian", + overlap=overlap_ratio, + sw_device=device, + device=_device_out, + point_coords=None, + point_labels=None, + class_vector=label_prompt, + prompt_class=promot_class, + labels=val_data["label"].to(_device_in), + label_set=val_orig_set, + val_point_sampler=partial( + sample_points_patch_val, + mapped_label_set=val_label_set, + max_ppoint=1, + use_center=True, + ), + ) + try: + val_outputs = post_pred(val_outputs[0, ...]) + except BaseException: + val_outputs = post_pred(val_outputs[0, ...].to("cpu")) + finished = True + + except RuntimeError as e: + if not any( + x in str(e).lower() for x in ("memory", "cuda", "cudnn") + ): + raise e + logger.warning(e) + finished = False + + if finished: + break + + if finished: + value = torch.full((1, metric_dim), float("nan")).to(device) + val_outputs = val_outputs[None, ...] + if val_times > 0: + try: + val_outputs = post_transform( + { + "image": val_data["image"][0], + "pred": val_outputs[0], + } + )["pred"][None, ...] + except BaseException: + print(val_filename, "OOM", val_data["label_gt"].shape) + val_data["image"] = val_data["image"].cpu() + val_outputs = val_outputs.cpu() + val_outputs = post_transform( + { + "image": val_data["image"][0], + "pred": val_outputs[0], + } + )["pred"][None, ...] + print("finished OOM") + del val_data["image"] + value_l = [] + for i in range(1, len(val_orig_set)): + if val_times == 0: + gt = ( + val_data["label"].to(val_outputs.device) + == val_orig_set[i] + ) + else: + gt = ( + val_data["label_gt"].to(val_outputs.device) + == val_orig_set[i] + ) + value_l.append( + compute_dice( + y_pred=val_outputs[:, [i]], + y=gt, + include_background=False, + ) + ) + value = torch.hstack(value_l).to(device) + else: + # During training, allow validation OOM for some big data to avoid crush. + logger.debug( + f"{val_filename} is skipped due to OOM, using NaN dice values" + ) + value = torch.full((1, metric_dim), float("nan")).to(device) + + # remove temp variables to save memory. + val_outputs, val_data = None, None + torch.cuda.empty_cache() + + logger.debug( + f"{_index + 1} / {len(val_loader)} / {val_filename}: {value}" + ) + + for _c in range(metric_dim): + val0 = torch.nan_to_num(value[0, _c], nan=0.0) + val1 = 1.0 - torch.isnan(value[0, _c]).float() + metric[2 * _c] += val0 + metric[2 * _c + 1] += val1 + + if world_size > 1: + dist.all_reduce(metric, op=torch.distributed.ReduceOp.SUM) + + metric = metric.tolist() + metric_class = np.zeros(metric_dim) + if world_size == 1 or dist.get_rank() == 0: + avg_metric = 0 + valid = 0 + for _c in range(metric_dim): + if metric[2 * _c + 1] > 0: + v = metric[2 * _c] / metric[2 * _c + 1] + avg_metric += v + valid += 1 + else: + v = torch.nan + metric_class[_c] = v + try: + writer.add_scalar( + f"val_class/acc_{class_names[_c + 1]}", v, epoch + ) + logger.debug( + f"Evaluation metric - class {_c + 1} {class_names[_c + 1]}: {v:.4f}" + ) + except BaseException: + writer.add_scalar(f"val_class/acc_{_c}", v, epoch) + logger.debug( + f"Evaluation metric - class {_c + 1} : {v:.4f}" + ) + + avg_metric = avg_metric / valid + logger.debug(f"{log_info[val_times]} Avg_metric: {avg_metric}") + if val_times > 0: + continue + writer.add_scalar("val/acc", avg_metric, epoch) + if avg_metric > best_metric or save_last: + best_metric = avg_metric + best_metric_epoch = epoch + if save_all: + ckpt_name = f"best_metric_model_{epoch}.pt" + else: + ckpt_name = "best_metric_model.pt" + if world_size > 1: + torch.save( + model.module.state_dict(), + os.path.join(ckpt_path, ckpt_name), + ) + else: + torch.save( + model.state_dict(), os.path.join(ckpt_path, ckpt_name) + ) + logger.debug("Saved new best metric model") + + dict_file = {} + dict_file["best_avg_dice_score"] = float(best_metric) + dict_file["best_avg_dice_score_epoch"] = int(best_metric_epoch) + dict_file["best_avg_dice_score_iteration"] = int(idx_iter) + with open( + os.path.join(ckpt_path, "progress.yaml"), "a" + ) as out_file: + yaml.dump([dict_file], stream=out_file) + + logger.debug( + "Current epoch: {} current mean dice: {:.4f} best mean dice: {:.4f} at epoch {}".format( + epoch, avg_metric, best_metric, best_metric_epoch + ) + ) + + current_time = time.time() + elapsed_time = (current_time - start_time) / 60.0 + with open( + os.path.join(ckpt_path, "accuracy_history.csv"), "a" + ) as f: + f.write( + "{:d}\t{:.5f}\t{:.5f}\t{:.5f}\t{:.1f}\t{:d}\n".format( + epoch, + avg_metric, + loss_torch_epoch, + lr, + elapsed_time, + idx_iter, + ) + ) + + if world_size > 1: + dist.barrier() + + torch.cuda.empty_cache() + + if world_size == 1 or dist.get_rank() == 0: + logger.debug( + f"Training completed, best_metric: {best_metric:.4f} at epoch: {best_metric_epoch}." + ) + + writer.flush() + writer.close() + + logger.warning(f"{os.path.basename(bundle_root)} - training: finished") + + if world_size > 1: + dist.destroy_process_group() + + return + + +if __name__ == "__main__": + from monai.utils import optional_import + + fire, _ = optional_import("fire") + fire.Fire() diff --git a/vista3d/scripts/utils/sample_utils.py b/vista3d/scripts/utils/sample_utils.py new file mode 100644 index 0000000..24973f0 --- /dev/null +++ b/vista3d/scripts/utils/sample_utils.py @@ -0,0 +1,348 @@ +import copy +import random + +import monai +import numpy as np +import torch +from skimage import measure + +from .trans_utils import dilate3d, erode3d +from .workflow_utils import ENABLE_SPECIAL, SPECIAL_INDEX, get_point_label + + +def open_lcc(plabels): + plabels_org = plabels.clone() + plabels = erode3d(plabels, erosion=3) + plabels = monai.transforms.utils.get_largest_connected_component_mask(plabels) + return dilate3d(plabels, erosion=3).to(torch.bool) * plabels_org + + +def find_lcc_label(plabels, region): + plabels_org = plabels.clone() + plabels = erode3d(plabels, erosion=3) + label = measure.label + features, num_features = label( + plabels.cpu().numpy(), connectivity=3, return_num=True + ) + features = torch.from_numpy(features).to(region.device) + max_cc = torch.zeros_like(region) + max_cc_count = 0 + region = dilate3d(region, erosion=5).to(torch.bool) + for i in range(1, num_features): + cc = features == i + if torch.logical_and(cc, region).any(): + cc_sum = cc.sum() + if cc_sum > max_cc_count: + max_cc = cc + max_cc_count = cc_sum + return dilate3d(max_cc, erosion=5).to(torch.bool) * plabels_org + + +class Point_sampler: + """Point sampler will take original manual label and supervoxel to perform augmentation. + Args: + label: manual label + label_sv: supervoxel + map_shift: this value must be larger than the last_supported value in vista3d.point_head. When a + mask is given a shift of id + map_shift, it will be identified as zero-shot. + offset: remove patch boundary samples + vrange: the probability range for different augmentations. + """ + + def __init__( + self, + label, + label_sv, + map_shift=512, + offset=10, + vrange=[0.6, 0.7, 0.8, 0.9], + ): + self.label = label + self.label_sv = label_sv + self.map_shift = map_shift + self.shifted = {} + self.device = self.label.device + self.label_ = label.clone() + self.window = torch.ones_like(label, dtype=torch.bool) + self.window[offset:-offset, offset:-offset, offset:-offset] = False + self.vrange = vrange + self.zshot_rate = 0.5 + + def reset(self): + self.label = self.label_.clone() + + def skip_aug(self, id): + if id in SPECIAL_INDEX and ENABLE_SPECIAL: + return True + return False + + def __call__(self, unique_labels, Np=1, Nn=0): + _point = [] + _point_label = [] + vrange = self.vrange + self.read_only_id = copy.deepcopy(unique_labels) + for id in unique_labels: + if self.skip_aug(id): + v = 0 + print(f"{id} will use regular") + else: + v = np.random.rand() + if v < vrange[0] or self.label_sv is None: + _p, _pl = self.regular(id, Np, Nn) + if v >= vrange[0] and v < vrange[1]: + _p, _pl = self.organ_sub(id, Np, Nn) + if v >= vrange[1] and v < vrange[2]: + _p, _pl = self.organ_add(id, Np, Nn) + if v >= vrange[2] and v < vrange[3]: + _p, _pl = self.zeroshot_unseen(id, Np, Nn) + if v >= vrange[3]: + _p, _pl = self.zeroshot_random(id, Np, Nn) + _point.append(_p) + _point_label.append(_pl) + return self._padding(_point, _point_label) + + def _padding(self, point, point_label): + if len(point) > 0: + max_len = max([len(_) for _ in point]) + point = [ + torch.stack( + _ + [torch.tensor([0, 0, 0]).to(self.device)] * (max_len - len(_)) + ) + for _ in point + ] + point_label = [ + torch.tensor(_ + [-1] * (max_len - len(_))).to(self.device) + for _ in point_label + ] + # print(point, point_label) + return point, point_label + + def regular(self, id, Np=1, Nn=0): + print("regular") + plabels = self.label == int(id) + _plabels = erode3d(plabels) + _plabels[self.window] = 0 + plabelpoints = torch.nonzero(_plabels) + kp = min(len(plabelpoints), Np) + if kp == 0: + plabelpoints = torch.nonzero(plabels) + kp = min(len(plabelpoints), Np) + _point = random.choices(plabelpoints, k=kp) + neg_id, pos_id = get_point_label(id) + _point_label = [pos_id] * kp + if Nn > 0: + nlabels = ~plabels + nlabels = erode3d(nlabels) + nlabelpoints = torch.nonzero(nlabels) + kn = min(len(nlabelpoints), Nn) + if kn > 0: + _point += random.choices(nlabelpoints, k=kn) + _point_label += [neg_id] * kn + return _point, _point_label + + def zeroshot_random(self, id, Np=1, Nn=0): + min_size = 20 * 20 * 20 + region = self.label == 0 + sregion = self.label_sv[region] + sid = torch.unique(sregion).cpu().numpy() + random.shuffle(sid) + for sid_p in sid: + plabels = self.label_sv == sid_p + plabels = open_lcc(plabels) + ids = self.label[plabels].unique().cpu().numpy() + if np.array([i in ids for i in self.read_only_id]).any(): + continue + if plabels.sum() < min_size: + continue + _point = [] + _point_label = [] + random.shuffle(ids) + count = 0 + max_merge = len(ids) + for i in ids: + if i == 0: + continue + if count >= max_merge: + break + fg = self.label == i + overlap = torch.logical_and(plabels, fg) + if 0.1 * fg.sum() < overlap.sum(): + plabels = torch.logical_or(plabels, fg) + _plabels = erode3d(overlap) + _plabels[self.window] = 0 + plabelpoints = torch.nonzero(_plabels) + kp = min(len(plabelpoints), 1) + if kp == 0: + continue + _point += random.choices(plabelpoints, k=kp) + _point_label += [1] * kp + count += 1 + _plabels = torch.logical_and(plabels, region) + _plabels = erode3d(_plabels) + _plabels[self.window] = 0 + plabelpoints = torch.nonzero(_plabels) + kp = min(len(plabelpoints), Np) + if kp == 0: + continue + _point += random.choices(plabelpoints, k=kp) + _point_label += [1] * kp + self.label[plabels.to(torch.bool)] = id + self.map_shift + self.shifted[id] = id + self.map_shift + self.read_only_id.append(id + self.map_shift) + print("zeroshot_random") + return _point, _point_label + return self.regular(id, Np, Nn) + + def zeroshot_unseen(self, id, Np=1, Nn=0): + # PASSED + min_size = 20 * 20 * 20 + region = self.label == 0 + sregion = self.label_sv[region] + sid = torch.unique(sregion).cpu().numpy() + random.shuffle(sid) + npoint = None + for sid_p in sid: + plabels = torch.logical_and(self.label_sv == sid_p, region) + plabels = open_lcc(plabels) + if plabels.sum() < min_size: + continue + ids = self.label[plabels].unique().cpu().numpy().tolist() + if np.array([i in ids for i in self.read_only_id]).any(): + continue + _plabels = erode3d(plabels) + _plabels[self.window] = 0 + plabelpoints = torch.nonzero(_plabels) + kp = min(len(plabelpoints), Np) + if kp == 0: + continue + _point = random.choices(plabelpoints, k=kp) + _point_label = [1] * kp + if Nn > 0: + nlabels = torch.logical_and(~plabels, region) + nlabels = erode3d(nlabels) + nlabelpoints = torch.nonzero(nlabels) + kn = min(len(nlabelpoints), Nn) + if kn > 0: + _point += random.choices(nlabelpoints, k=kn) + _point_label += [0] * kn + if npoint is not None: + _point += npoint + _point_label += [0] + self.label[plabels.to(torch.bool)] = id + self.map_shift + self.shifted[id] = id + self.map_shift + self.read_only_id.append(id + self.map_shift) + print("zeroshot_unseen") + return _point, _point_label + return self.regular(id, Np, Nn) + + def remove_outside(self, plabels, region): + """Remove the points that does not lay within region slices (3 views). Avoid sample far away points""" + ps = torch.stack(torch.nonzero(region, as_tuple=True)).transpose(1, 0) + index = torch.ones_like(plabels).to(torch.bool) + index[ + ps[:, 0].min() : ps[:, 0].max(), + ps[:, 1].min() : ps[:, 1].max(), + ps[:, 2].min() : ps[:, 2].max(), + ] = False + plabels[index] = 0 + return plabels + + def organ_add(self, id, Np=1, Nn=0): + """For class id, find a supvervoxel index sid that mostly inside id.""" + lower_size = 0.1 # times + region = self.label == id + region_size = region.sum() + all_region = self.label == 0 + sid = torch.unique(self.label_sv[region]).cpu().numpy() + random.shuffle(sid) + for sid_p in sid: + plabels = torch.logical_and(self.label_sv == int(sid_p), all_region) + if not plabels.any(): + continue + plabels = find_lcc_label(plabels, region) + ids = self.label[plabels].unique().cpu().numpy().tolist() + if np.array([i in ids for i in self.read_only_id]).any(): + continue + psize = plabels.sum() + if psize < lower_size * region_size: + continue + _plabels = erode3d(plabels) + _plabels[self.window] = 0 + _plabels = self.remove_outside(_plabels, region) + # only pick points at the slice with the organ + plabelpoints = torch.nonzero(_plabels) + kp = min(len(plabelpoints), Np) + if kp == 0: + continue + _point = random.choices(plabelpoints, k=kp) + plabels_ = erode3d(region) + plabels_[self.window] = 0 + plabelpoints = torch.nonzero(plabels_) + kp2 = min(len(plabelpoints), Np) + if kp2 == 0: + plabelpoints = torch.nonzero(region) + kp2 = min(len(plabelpoints), Np) + _point += random.choices(plabelpoints, k=kp2) + self.label[plabels] = id + _point_label = [1] * (kp + kp2) + if np.random.rand() < self.zshot_rate: + self.label[self.label == id] = id + self.map_shift + self.shifted[id] = id + self.map_shift + self.read_only_id.append(id + self.map_shift) + print("organ add") + return _point, _point_label + return self.regular(id, Np, Nn) + + def organ_sub(self, id, Np=1, Nn=0): + """Substract a sid that is not too big or too small. 10%-50% of the id area size. At least 1 pos in remaining region in id and 1 neg + in subtracted region. + """ + upper_size = 0.9 # times + lower_size = 0.1 # times + region = self.label == id + region_size = region.sum() + sregion = self.label_sv[region] + sid = torch.unique(sregion).cpu().numpy() + random.shuffle(sid) + use_zs = np.random.rand() < 0.5 + for sid_p in sid: + # must contain 2 points within id and 1 point within sid_p + if use_zs: + plabels = torch.logical_and(self.label_sv == int(sid_p), region) + plabels = open_lcc(plabels) + psize = plabels.sum() + if psize < lower_size * region_size or psize > upper_size * region_size: + continue + nlabels = torch.logical_and(~plabels, region) + else: + nlabels = torch.logical_and(self.label_sv == int(sid_p), region) + nlabels = open_lcc(nlabels) + nsize = nlabels.sum() + if nsize < lower_size * region_size or nsize > upper_size * region_size: + continue + plabels = torch.logical_and(~nlabels, region) + + _plabels = erode3d(plabels) + _plabels[self.window] = 0 + plabelpoints = torch.nonzero(_plabels) + _nlabels = erode3d(nlabels) + _nlabels[self.window] = 0 + nlabelpoints = torch.nonzero(_nlabels) + kp = min(len(plabelpoints), Np) + kn = min(len(nlabelpoints), max(1, Nn)) + if kp == 0 or kn == 0: + continue + _point = random.choices(plabelpoints, k=kp) + random.choices( + nlabelpoints, k=kn + ) + _point_label = [1] * kp + [0] * kn + if use_zs or np.random.rand() < self.zshot_rate: + self.label[plabels.to(torch.bool)] = id + self.map_shift + self.shifted[id] = id + self.map_shift + self.read_only_id.append(id + self.map_shift) + else: + self.label[nlabels.to(torch.bool)] = 0 + print("organ_sub") + return _point, _point_label + _point, _point_label = self.regular(id, Np, Nn) + return _point, _point_label diff --git a/vista3d/scripts/utils/trans_utils.py b/vista3d/scripts/utils/trans_utils.py new file mode 100644 index 0000000..ec3ac4d --- /dev/null +++ b/vista3d/scripts/utils/trans_utils.py @@ -0,0 +1,497 @@ +# Copyright (c) MONAI Consortium +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# http://www.apache.org/licenses/LICENSE-2.0 +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import annotations + +from collections.abc import Hashable, Mapping + +import numpy as np +import torch +import torch.nn.functional as F +from monai.config import DtypeLike, KeysCollection +from monai.config.type_definitions import NdarrayOrTensor, NdarrayTensor +from monai.data.meta_obj import get_track_meta +from monai.data.meta_tensor import MetaTensor +from monai.transforms import ( + MapLabelValue, + MapTransform, + RandCropByLabelClasses, + RandCropByLabelClassesd, + SpatialCrop, +) +from monai.utils import ImageMetaKey as Key +from monai.utils import ( + convert_data_type, + ensure_tuple_rep, + fall_back_tuple, + look_up_option, + min_version, + optional_import, +) +from monai.utils.type_conversion import convert_to_dst_type + +measure, has_measure = optional_import("skimage.measure", "0.14.2", min_version) +morphology, has_morphology = optional_import("skimage.morphology") +ndimage, _ = optional_import("scipy.ndimage") +cp, has_cp = optional_import("cupy") +cp_ndarray, _ = optional_import("cupy", name="ndarray") +exposure, has_skimage = optional_import("skimage.exposure") + +__all__ = [ + "get_largest_connected_component_mask", + "RandCropByLabelClassesShiftd", + "erode3d", + "erode2d", + "dilate3d", + "VistaPostTransform", + "convert_points_to_disc", +] + + +def convert_points_to_disc(image_size, point, point_label, radius=2, disc=False): + # [b, N, 3], [b, N] + # generate masks [b,2,h,w,d] + if not torch.is_tensor(point): + point = torch.from_numpy(point) + masks = torch.zeros( + [point.shape[0], 2, image_size[0], image_size[1], image_size[2]], + device=point.device, + ) + row_array = torch.arange( + start=0, end=image_size[0], step=1, dtype=torch.float32, device=point.device + ) + col_array = torch.arange( + start=0, end=image_size[1], step=1, dtype=torch.float32, device=point.device + ) + z_array = torch.arange( + start=0, end=image_size[2], step=1, dtype=torch.float32, device=point.device + ) + coord_rows, coord_cols, coord_z = torch.meshgrid(z_array, col_array, row_array) + # [1,3,h,w,d] -> [b, 2, 3, h,w,d] + coords = ( + torch.stack((coord_rows, coord_cols, coord_z), dim=0) + .unsqueeze(0) + .unsqueeze(0) + .repeat(point.shape[0], 2, 1, 1, 1, 1) + ) + for b in range(point.shape[0]): + for n in range(point.shape[1]): + if point_label[b, n] > -1: + channel = 0 if (point_label[b, n] == 0 or point_label[b, n] == 2) else 1 + if disc: + masks[b, channel] += ( + torch.pow( + coords[b, channel] + - point[b, n].unsqueeze(-1).unsqueeze(-1).unsqueeze(-1), + 2, + ).sum(0) + < radius**2 + ) + else: + masks[b, channel] += torch.exp( + -torch.pow( + coords[b, channel] + - point[b, n].unsqueeze(-1).unsqueeze(-1).unsqueeze(-1), + 2, + ).sum(0) + / (2 * radius**2) + ) + # masks[masks>1] = 1 + return masks + + +def erode3d(input_tensor, erosion=3): + # Define the structuring element + erosion = ensure_tuple_rep(erosion, 3) + structuring_element = torch.ones(1, 1, erosion[0], erosion[1], erosion[2]).to( + input_tensor.device + ) + + # Pad the input tensor to handle border pixels + input_padded = F.pad( + input_tensor.float().unsqueeze(0).unsqueeze(0), + ( + erosion[2] // 2, + erosion[2] // 2, + erosion[1] // 2, + erosion[1] // 2, + erosion[0] // 2, + erosion[0] // 2, + ), + mode="constant", + value=1.0, + ) + + # Apply erosion operation + output = F.conv3d(input_padded, structuring_element, padding=0) + + # Set output values based on the minimum value within the structuring element + output = torch.where(output == torch.sum(structuring_element), 1.0, 0.0) + + return output.squeeze(0).squeeze(0) + + +def erode2d(input_tensor, erosion=3): + # Define the structuring element + erosion = ensure_tuple_rep(erosion, 2) + structuring_element = torch.ones(1, 1, erosion[0], erosion[1]).to( + input_tensor.device + ) + + # Pad the input tensor to handle border pixels + input_padded = F.pad( + input_tensor.float().unsqueeze(0).unsqueeze(0), + (erosion[1] // 2, erosion[1] // 2, erosion[0] // 2, erosion[0] // 2), + mode="constant", + value=1.0, + ) + + # Apply erosion operation + output = F.conv2d(input_padded, structuring_element, padding=0) + + # Set output values based on the minimum value within the structuring element + output = torch.where(output == torch.sum(structuring_element), 1.0, 0.0) + + return output.squeeze(0).squeeze(0) + + +def dilate3d(input_tensor, erosion=3): + # Define the structuring element + erosion = ensure_tuple_rep(erosion, 3) + structuring_element = torch.ones(1, 1, erosion[0], erosion[1], erosion[2]).to( + input_tensor.device + ) + + # Pad the input tensor to handle border pixels + input_padded = F.pad( + input_tensor.float().unsqueeze(0).unsqueeze(0), + ( + erosion[2] // 2, + erosion[2] // 2, + erosion[1] // 2, + erosion[1] // 2, + erosion[0] // 2, + erosion[0] // 2, + ), + mode="constant", + value=0.0, + ) + + # Apply erosion operation + output = F.conv3d(input_padded, structuring_element, padding=0) + + # Set output values based on the minimum value within the structuring element + output = torch.where(output > 0, 1.0, 0.0) + + return output.squeeze(0).squeeze(0) + + +def get_largest_connected_component_point( + img: NdarrayTensor, point_coords=None, point_labels=None +) -> NdarrayTensor: + """ + Gets the largest connected component mask of an image. img is before post process! And will include NaN values. + Args: + img: [1, B, H, W, D] + point_coords [B, N, 3] + point_labels [B, N] + """ + outs = torch.zeros_like(img) + for c in range(len(point_coords)): + if not ((point_labels[c] == 3).any() or (point_labels[c] == 1).any()): + continue + coords = ( + point_coords[c, point_labels[c] == 3].tolist() + + point_coords[c, point_labels[c] == 1].tolist() + ) + not_nan_mask = ~torch.isnan(img[0, c]) + img_ = torch.nan_to_num(img[0, c] > 0, 0) + img_, *_ = convert_data_type(img_, np.ndarray) + label = measure.label + features = label(img_, connectivity=3) + pos_mask = torch.from_numpy(img_).to(img.device) > 0 + # if num features less than max desired, nothing to do. + features = torch.from_numpy(features).to(img.device) + # generate a map with all pos points + idx = [] + for p in coords: + idx.append(features[round(p[0]), round(p[1]), round(p[2])].item()) + idx = list(set(idx)) + for i in idx: + if i == 0: + continue + outs[0, c] += features == i + outs = outs > 0 + # find negative mean value + fill_in = img[0, c][torch.logical_and(~outs[0, c], not_nan_mask)].mean() + img[0, c][torch.logical_and(pos_mask, ~outs[0, c])] = fill_in + return img + + +def get_largest_connected_component_mask( + img_pos: NdarrayTensor, + img_neg: NdarrayTensor, + connectivity: int | None = None, + num_components: int = 1, + point_coords=None, + point_labels=None, + margins=3, +) -> NdarrayTensor: + """ + Gets the largest connected component mask of an image that include the point_coords. + Args: + img_pos: [1, B, H, W, D] + point_coords [B, N, 3] + point_labels [B, N] + """ + # use skimage/cucim.skimage and np/cp depending on whether packages are + # available and input is non-cpu torch.tensor + # cucim, has_cucim = optional_import("cucim") + + # use_cp = has_cp and has_cucim and isinstance(img_pos, torch.Tensor) and img_pos.device != torch.device("cpu") + # if use_cp: + # img_pos_ = convert_to_cupy(img_pos.short()) # type: ignore + # img_neg_ = convert_to_cupy(img_neg.short()) # type: ignore + # label = cucim.skimage.measure.label + # lib = cp + # else: + # if not has_measure: + # raise RuntimeError("Skimage.measure required.") + # img_pos_, *_ = convert_data_type(img_pos, np.ndarray) + # img_neg_, *_ = convert_data_type(img_neg, np.ndarray) + # label = measure.label + # lib = np + img_pos_, *_ = convert_data_type(img_pos, np.ndarray) + img_neg_, *_ = convert_data_type(img_neg, np.ndarray) + label = measure.label + lib = np + # features will be an image -- 0 for background and then each different + # feature will have its own index. + # features, num_features = label(img_, connectivity=connectivity, return_num=True) + + features_pos, num_features = label(img_pos_, connectivity=3, return_num=True) + features_neg, num_features = label(img_neg_, connectivity=3, return_num=True) + # if num features less than max desired, nothing to do. + outs = np.zeros_like(img_pos_) + for bs in range(point_coords.shape[0]): + for i, p in enumerate(point_coords[bs]): + if point_labels[bs, i] == 1 or point_labels[bs, i] == 3: + features = features_pos + elif point_labels[bs, i] == 0 or point_labels[bs, i] == 2: + features = features_neg + else: + # if -1 padding point, skip + continue + for margin in range(margins): + left, right = max(p[0].round().int().item() - margin, 0), min( + p[0].round().int().item() + margin + 1, features.shape[-3] + ) + t, d = max(p[1].round().int().item() - margin, 0), min( + p[1].round().int().item() + margin + 1, features.shape[-2] + ) + f, b = max(p[2].round().int().item() - margin, 0), min( + p[2].round().int().item() + margin + 1, features.shape[-1] + ) + if (features[bs, 0, left:right, t:d, f:b] > 0).any(): + index = features[bs, 0, left:right, t:d, f:b].max() + outs[[bs]] += lib.isin(features[[bs]], index) + break + outs[outs > 1] = 1 + outs = convert_to_dst_type(outs, dst=img_pos, dtype=outs.dtype)[0] + return outs + + +class VistaPostTransform(MapTransform): + def __init__( + self, + keys: KeysCollection, + allow_missing_keys: bool = False, + ) -> None: + """ + Args: + keys: keys of the corresponding items to be transformed. + dataset_transforms: a dictionary specifies the transform for corresponding dataset: + key: dataset name, value: list of data transforms. + dataset_key: key to get the dataset name from the data dictionary, default to "dataset_name". + allow_missing_keys: don't raise exception if key is missing. + + """ + super().__init__(keys, allow_missing_keys) + + def __call__( + self, data: Mapping[Hashable, NdarrayOrTensor] + ) -> dict[Hashable, NdarrayOrTensor]: + for keys in self.keys: + if keys in data: + pred = data[keys] + object_num = pred.shape[0] + # device = pred.device + pred[pred < 0] = 0.0 + # if it's multichannel, perform argmax + if object_num > 1: + # concate background channel. Make sure user did not provide 0 as prompt. + is_bk = torch.all(pred <= 0, dim=0, keepdim=True) + pred = pred.argmax(0).unsqueeze(0).float() + 1.0 + pred[is_bk] = 0.0 + else: + # AsDiscrete will remove NaN + # pred = monai.transforms.AsDiscrete(threshold=0.5)(pred) + pred[pred > 0] = 1.0 + if "label_prompt" in data and data["label_prompt"] is not None: + pred += 0.5 # inplace mapping to avoid cloning pred + for i in range(1, object_num + 1): + frac = i + 0.5 + pred[pred == frac] = torch.tensor( + data["label_prompt"][i - 1] + ).to(pred.dtype) + pred[pred == 0.5] = 0.0 + data[keys] = pred + return data + + +class RandCropByLabelClassesShift(RandCropByLabelClasses): + def __call__( + self, + img: torch.Tensor, + label: torch.Tensor | None = None, + image: torch.Tensor | None = None, + indices: list[NdarrayOrTensor] | None = None, + randomize: bool = True, + lazy: bool | None = None, + ) -> list[torch.Tensor]: + """ + Args: + img: input data to crop samples from based on the ratios of every class, assumes `img` is a + channel-first array. + label: the label image that is used for finding indices of every class, if None, use `self.label`. + image: optional image data to help select valid area, can be same as `img` or another image array. + use ``image > image_threshold`` to select the centers only in valid region. if None, use `self.image`. + indices: list of indices for every class in the image, used to randomly select crop centers. + randomize: whether to execute the random operations, default to `True`. + lazy: a flag to override the lazy behaviour for this call, if set. Defaults to None. + """ + if image is None: + image = self.image + if randomize: + if label is None: + label = self.label + self.randomize(label, indices, image) + results: list[torch.Tensor] = [] + if self.centers is not None: + img_shape = ( + img.peek_pending_shape() + if isinstance(img, MetaTensor) + else img.shape[1:] + ) + roi_size = fall_back_tuple(self.spatial_size, default=img_shape) + lazy_ = self.lazy if lazy is None else lazy + for i, center in enumerate(self.centers): + for i in range(3): + center[i] = min( + img_shape[i], + max( + 0, + np.random.randint(-roi_size[i] // 3, roi_size[i] // 3) + + center[i], + ), + ) + cropper = SpatialCrop( + roi_center=tuple(center), roi_size=roi_size, lazy=lazy_ + ) + cropped = cropper(img) + if get_track_meta(): + ret_: MetaTensor = cropped # type: ignore + ret_.meta[Key.PATCH_INDEX] = i + ret_.meta["crop_center"] = center + self.push_transform(ret_, replace=True, lazy=lazy_) + results.append(cropped) + + return results + + +class RandCropByLabelClassesShiftd(RandCropByLabelClassesd): + backend = RandCropByLabelClassesShift.backend + + +class RelabelD(MapTransform): + def __init__( + self, + keys: KeysCollection, + label_mappings: dict[str, list[tuple[int, int]]], + dtype: DtypeLike = np.int16, + dataset_key: str = "dataset_name", + allow_missing_keys: bool = False, + ) -> None: + """ + Args: + keys: keys of the corresponding items to be transformed. + label_mappings: a dictionary specifies how local dataset class indices are mapped to the + global class indices, format: + key: dataset name, value: list of (local label, global label) pairs + set this argument to "{}" to disable relabeling. + dtype: convert the output data to dtype, default to float32. + dataset_key: key to get the dataset name from the data dictionary, default to "dataset_name". + allow_missing_keys: don't raise exception if key is missing. + + """ + super().__init__(keys, allow_missing_keys) + self.mappers = {} + self.dataset_key = dataset_key + for name, mapping in label_mappings.items(): + self.mappers[name] = MapLabelValue( + orig_labels=[pair[0] for pair in mapping], + target_labels=[pair[1] for pair in mapping], + dtype=dtype, + ) + + def __call__( + self, data: Mapping[Hashable, NdarrayOrTensor] + ) -> dict[Hashable, NdarrayOrTensor]: + d = dict(data) + dataset_name = d.get(self.dataset_key, "default") + _m = look_up_option(dataset_name, self.mappers, default=None) + if not _m: + return d + for key in self.key_iterator(d): + d[key] = _m(d[key]) + return d + + +class DatasetSelectTansformd(MapTransform): + def __init__( + self, + keys: KeysCollection, + dataset_transforms, + dataset_key: str = "dataset_name", + allow_missing_keys: bool = False, + ) -> None: + """ + Args: + keys: keys of the corresponding items to be transformed. + dataset_transforms: a dictionary specifies the transform for corresponding dataset: + key: dataset name, value: list of data transforms. + dataset_key: key to get the dataset name from the data dictionary, default to "dataset_name". + allow_missing_keys: don't raise exception if key is missing. + + """ + super().__init__(keys, allow_missing_keys) + self.dataset_transforms = dataset_transforms + self.dataset_key = dataset_key + + def __call__( + self, data: Mapping[Hashable, NdarrayOrTensor] + ) -> dict[Hashable, NdarrayOrTensor]: + d = dict(data) + dataset_name = d[self.dataset_key] + _m = self.dataset_transforms[dataset_name] + if _m is None: + return d + return _m(d) diff --git a/vista3d/scripts/utils/workflow_utils.py b/vista3d/scripts/utils/workflow_utils.py new file mode 100644 index 0000000..49692f9 --- /dev/null +++ b/vista3d/scripts/utils/workflow_utils.py @@ -0,0 +1,609 @@ +import copy +import random + +import monai +import numpy as np +import torch +import torch.nn.functional as F + +from .trans_utils import erode3d + +ENABLE_SPECIAL = True +SPECIAL_INDEX = [23, 24, 25, 26, 27, 57, 128] +MERGE_LIST = { + 1: [25, 26], # hepatic tumor and vessel merge into liver + 4: [24], # pancreatic tumor merge into pancreas + 132: [57], # overlap with trachea merge into airway +} +USE_SV_GT_LIST = [ + "TotalSegmentatorV2", + "Covid19", + "NLST", + "LIDC", + "StonyBrook-CT", + "TCIA_Colon", +] + + +def get_point_label(id): + """Get point label from class index""" + # [B, N] + if id in SPECIAL_INDEX and ENABLE_SPECIAL: + return 2, 3 + else: + return 0, 1 + + +def convert_point_label(point_label, label_set=None): + if label_set is None or not ENABLE_SPECIAL: + return point_label + assert point_label.shape[0] == len(label_set) + for i in range(len(label_set)): + if label_set[i] in SPECIAL_INDEX: + for j in range(len(point_label[i])): + point_label[i, j] = ( + point_label[i, j] + 2 + if point_label[i, j] > -1 + else point_label[i, j] + ) + return point_label + + +def none_cat(point, point_pseudo): + """Concatenate point and point_pseudo and allow None input and padding.""" + _point = None + if point is not None: + if point_pseudo is not None: + if len(point.shape) == 3: + pad_n = max(point.shape[1], point_pseudo.shape[1]) + point = F.pad(point, (0, 0, 0, pad_n - point.shape[1], 0, 0)) + point_pseudo = F.pad( + point_pseudo, (0, 0, 0, pad_n - point_pseudo.shape[1], 0, 0) + ) + elif len(point.shape) == 2: + pad_n = max(point.shape[1], point_pseudo.shape[1]) + point = F.pad(point, (0, pad_n - point.shape[1], 0, 0), value=-1) + point_pseudo = F.pad( + point_pseudo, (0, pad_n - point_pseudo.shape[1], 0, 0), value=-1 + ) + elif len(point.shape) == 1: + pad_n = max(point.shape[0], point_pseudo.shape[0]) + point = F.pad(point, (0, pad_n - point.shape[1]), value=-1) + point_pseudo = F.pad( + point_pseudo, (0, pad_n - point_pseudo.shape[1]), value=-1 + ) + _point = torch.cat([point, point_pseudo], dim=0) + else: + _point = point + elif point_pseudo is not None: + _point = point_pseudo + return _point + + +def sample_points_patch_val( + labels, + patch_coords, + label_set, + use_center=True, + mapped_label_set=None, + max_ppoint=1, + max_npoint=0, + **kwargs +): + """Sample points for patch during sliding window validation. Only used for point only validation. + Args: + labels: [1, 1, H, W, D] + patch_coords: sliding window slice object + label_set: local index, must match values in labels + use_center: sample points from the center + mapped_label_set: global index, it is used to identify special classes. + max_ppoint/max_npoint: positive points and negative points to sample. + """ + point_coords, point_labels = generate_prompt_pairs_val( + labels[patch_coords], + label_set, + max_ppoint=max_ppoint, + max_npoint=max_npoint, + device=labels.device, + use_center=use_center, + ) + point_labels = convert_point_label(point_labels, mapped_label_set) + return ( + point_coords, + point_labels, + torch.tensor(mapped_label_set).to(point_coords.device).unsqueeze(-1), + ) + + +def generate_prompt_pairs_val( + labels, label_set=None, max_ppoint=1, max_npoint=0, device="cpu", use_center=False +): + """Sample points from labels. This function is only used for validation and did not map point label to 2, 3. + For zero-shot point evaluation, this function will be called directly. Otherwise see sample_points_patch_val. + Args: + labels: [1, 1, H, W, D] + label_set: local index, must match values in labels + Returns: + point: [B, N, 3] + point_label: [B, N] + """ + assert labels.shape[0] == 1, "only support batch size 1" + labels = labels[0, 0] + unique_labels = labels.unique().cpu().numpy().tolist() + _point = [] + _point_label = [] + Nn = max_npoint + Np = max_ppoint + for id in label_set: + if id in unique_labels: + plabels = labels == int(id) + nlabels = ~plabels + _plabels = erode3d(plabels) + _plabels = monai.transforms.utils.get_largest_connected_component_mask( + _plabels + ) + plabelpoints = torch.nonzero(_plabels).to(device) + if len(plabelpoints) == 0: + plabelpoints = torch.nonzero(plabels).to(device) + nlabelpoints = torch.nonzero(nlabels).to(device) + if use_center: + pmean = plabelpoints.float().mean(0) + pdis = ((plabelpoints - pmean) ** 2).sum(-1) + _, sorted_indices = torch.sort(pdis) + _point.append( + torch.stack( + [ + plabelpoints[sorted_indices[i]] + for i in range(min(len(plabelpoints), Np)) + ] + + random.choices(nlabelpoints, k=min(len(nlabelpoints), Nn)) + + [torch.tensor([0, 0, 0], device=device)] + * ( + Np + + Nn + - min(len(plabelpoints), Np) + - min(len(nlabelpoints), Nn) + ) + ) + ) + _point_label.append( + torch.tensor( + [1] * min(len(plabelpoints), Np) + + [0.0] * min(len(nlabelpoints), Nn) + + [-1] + * ( + Np + + Nn + - min(len(plabelpoints), Np) + - min(len(nlabelpoints), Nn) + ) + ).to(device) + ) + + else: + _point.append( + torch.stack( + random.choices(plabelpoints, k=min(len(plabelpoints), Np)) + + random.choices(nlabelpoints, k=min(len(nlabelpoints), Nn)) + + [torch.tensor([0, 0, 0], device=device)] + * ( + Np + + Nn + - min(len(plabelpoints), Np) + - min(len(nlabelpoints), Nn) + ) + ) + ) + _point_label.append( + torch.tensor( + [1] * min(len(plabelpoints), Np) + + [0.0] * min(len(nlabelpoints), Nn) + + [-1] + * ( + Np + + Nn + - min(len(plabelpoints), Np) + - min(len(nlabelpoints), Nn) + ) + ).to(device) + ) + else: + # pad the background labels + _point.append(torch.zeros(Np + Nn, 3).to(device)) # all 0 + _point_label.append(torch.zeros(Np + Nn).to(device) - 1) # -1 not a point + point = torch.stack(_point) + point_label = torch.stack(_point_label) + return point, point_label + + +def generate_prompt_pairs( + labels, + label_set=None, + max_prompt=None, + max_foreprompt=None, + max_backprompt=1, + max_point=20, + include_background=False, + drop_label_prob=0.2, + drop_point_prob=0.2, + point_sampler=None, +): + """This is the main function sampling training pairs for point branch. Only used in training. + Args: + labels: [1, 1, H, W, D] + label_set: the label list for the specific dataset. + max_prompt: int, max number of total prompt, including foreground and background. + max_foreprompt: int, max number of prompt from foreground. + max_backprompt: int, max number of prompt from background. + max_point: maximum number of points for each object + include_background: if include label=0 into training prompt. May casue issue in partial label + trainig. + drop_label_prob: probablity to drop label prompt + drop_point_prob: probablity to drop point prompt + point_sampler: sampler to augment masks with supervoxel. + Returns: + label_prompt: [b, 1] + point: [b, N, 3] + point_label: [b, N] + prompt_class: [b, 1], exactly the same with label_prompt for label indexing for training loss. + + """ + # class label number + assert labels.shape[0] == 1, "only support batch size 1" + labels = labels[0, 0] + device = labels.device + unique_labels = labels.unique().cpu().numpy().tolist() + if include_background: + unique_labels = list(set(unique_labels) - (set(unique_labels) - set(label_set))) + else: + unique_labels = list( + set(unique_labels) - (set(unique_labels) - set(label_set)) - set([0]) + ) + background_labels = list(set(label_set) - set(unique_labels)) + # during training, balance background and foreground prompts + if max_backprompt is not None: + if len(background_labels) > max_backprompt: + random.shuffle(background_labels) + background_labels = background_labels[:max_backprompt] + + if max_foreprompt is not None: + if len(unique_labels) > max_foreprompt: + random.shuffle(unique_labels) + unique_labels = unique_labels[:max_foreprompt] + + if max_prompt is not None: + if len(unique_labels) + len(background_labels) > max_prompt: + if len(unique_labels) > max_prompt: + unique_labels = random.sample(unique_labels, max_prompt) + background_labels = [] + else: + background_labels = random.sample( + background_labels, max_prompt - len(unique_labels) + ) + _point = [] + _point_label = [] + # if use regular sampling + if point_sampler is None: + Np = min(max_point, int(np.abs(random.gauss(mu=0, sigma=max_point // 2))) + 1) + Nn = min(max_point, int(np.abs(random.gauss(mu=0, sigma=max_point // 2)))) + for id in unique_labels: + neg_id, pos_id = get_point_label(id) + plabels = labels == int(id) + nlabels = ~plabels + plabelpoints = torch.nonzero(plabels) + nlabelpoints = torch.nonzero(nlabels) + _point.append( + torch.stack( + random.choices(plabelpoints, k=min(len(plabelpoints), Np)) + + random.choices(nlabelpoints, k=min(len(nlabelpoints), Nn)) + + [torch.tensor([0, 0, 0], device=device)] + * ( + Np + + Nn + - min(len(plabelpoints), Np) + - min(len(nlabelpoints), Nn) + ) + ) + ) + _point_label.append( + torch.tensor( + [pos_id] * min(len(plabelpoints), Np) + + [neg_id] * min(len(nlabelpoints), Nn) + + [-1] + * ( + Np + + Nn + - min(len(plabelpoints), Np) + - min(len(nlabelpoints), Nn) + ) + ).to(device) + ) + for id in background_labels: + # pad the background labels + _point.append(torch.zeros(Np + Nn, 3).to(device)) # all 0 + _point_label.append(torch.zeros(Np + Nn).to(device) - 1) # -1 not a point + else: + Np = max_point + Nn = 0 + _point, _point_label = point_sampler(unique_labels, Np=Np, Nn=Nn) + for id in background_labels: + # pad the background labels + _point.append(torch.zeros(len(_point_label[0]), 3).to(device)) # all 0 + _point_label.append( + torch.zeros(len(_point_label[0])).to(device) - 1 + ) # -1 not a point + if len(unique_labels) == 0 and len(background_labels) == 0: + # the iteration should be skipped + label_prompt, point, point_label, prompt_class = None, None, None, None + else: + label_prompt = ( + torch.tensor(unique_labels + background_labels) + .unsqueeze(-1) + .to(device) + .long() + ) + point = torch.stack(_point) + point_label = torch.stack(_point_label) + prompt_class = copy.deepcopy(label_prompt) + if random.uniform(0, 1) < drop_label_prob and len(unique_labels) > 0: + label_prompt = None + # If label prompt is dropped, there is no need to pad with points with label -1. + pad = len(background_labels) + point = point[: len(point) - pad] + point_label = point_label[: len(point_label) - pad] + prompt_class = prompt_class[: len(prompt_class) - pad] + else: + if random.uniform(0, 1) < drop_point_prob: + point = None + point_label = None + return label_prompt, point, point_label, prompt_class + + +def get_next_points_val( + pred, + gt, + prompt_class, + point, + point_label, + pred_thresh=0.5, + mapped=True, + include_background=False, + use_center=False, + erosion2d=False, + **kwargs +): + """This function is used to sample points for iterative point evaluation. Each time only 1 point + is sampled. background index will be ignored. + mapped: If the input prompt_class are mapped to the global index, we will use special index. If not mapped (zero-shot), + the special index will not be enabled. + """ + new_points = [] + new_points_label = [] + for id in range(len(prompt_class)): + if prompt_class[id] == 0 and not include_background: + new_points.append(torch.tensor([0, 0, 0], device=pred.device)) + new_points_label.append(torch.tensor(-1, device=pred.device)) + continue + neg_id, pos_id = get_point_label(-1) + _gt = (gt == prompt_class[id])[0, 0] + if mapped: + # if in the global index, some supported classes need modification. + neg_id, pos_id = get_point_label(prompt_class[id]) + if prompt_class[id].item() in MERGE_LIST.keys(): + for m in MERGE_LIST[prompt_class[id].item()]: + _gt = torch.logical_or(_gt, (gt == m)[0, 0]) + fn_mask = torch.logical_and(_gt, pred[id][0] < pred_thresh) + if erosion2d: + fn_mask = erode3d(fn_mask, erosion=(3, 3, 1)) + else: + fn_mask = erode3d(fn_mask, erosion=(3, 3, 3)) + fn_mask = monai.transforms.utils.get_largest_connected_component_mask(fn_mask) + fp_mask = torch.logical_and(torch.logical_not(_gt), pred[id][0] > pred_thresh) + if erosion2d: + fp_mask = erode3d(fp_mask, erosion=(3, 3, 1)) + else: + fp_mask = erode3d(fp_mask, erosion=(3, 3, 3)) + fp_mask = monai.transforms.utils.get_largest_connected_component_mask(fp_mask) + if fn_mask.sum() >= fp_mask.sum(): + plabelpoints = torch.nonzero(fn_mask) + if len(plabelpoints) > 0: + if use_center: + pdis = ((plabelpoints - plabelpoints.float().mean(0)) ** 2).sum(-1) + _, sorted_indices = torch.sort(pdis) + new_points.append(plabelpoints[sorted_indices[0]]) + new_points_label.append(torch.tensor(pos_id, device=pred.device)) + else: + new_points.append(random.choices(plabelpoints, k=1)[0]) + new_points_label.append(torch.tensor(pos_id, device=pred.device)) + print("sampled pos") + else: + new_points.append(torch.tensor([0, 0, 0], device=pred.device)) + new_points_label.append(torch.tensor(-1, device=pred.device)) + else: + plabelpoints = torch.nonzero(fp_mask) + if len(plabelpoints) > 0: + if use_center: + pdis = ((plabelpoints - plabelpoints.float().mean(0)) ** 2).sum(-1) + _, sorted_indices = torch.sort(pdis) + new_points.append(plabelpoints[sorted_indices[0]]) + new_points_label.append(torch.tensor(neg_id, device=pred.device)) + else: + new_points.append(random.choices(plabelpoints, k=1)[0]) + new_points_label.append(torch.tensor(neg_id, device=pred.device)) + print("sampled neg") + else: + new_points.append(torch.tensor([0, 0, 0], device=pred.device)) + new_points_label.append(torch.tensor(-1, device=pred.device)) + new_points = torch.stack(new_points).unsqueeze(1) + new_points_label = torch.stack(new_points_label).unsqueeze(1) + point = torch.cat([point, new_points], dim=1) + point_label = torch.cat([point_label, new_points_label], dim=1) + return point, point_label + + +def get_next_points_auto_point( + pred, + gt, + prompt_class, + class_vector=None, + pred_thresh=0.5, + mapped=True, + include_background=False, + use_fg=False, + **kwargs +): + """sample points from foreground or error region. This function is only used during patch based auto + point evaluation. mapped is always true if + evaluate dataset with automatic, which requires global index. + """ + new_points = [] + new_points_label = [] + for id in range(len(prompt_class)): + neg_id, pos_id = get_point_label(-1) + _gt = (gt == prompt_class[id])[0, 0] + if mapped: + # if in the global index, some supported classes need modification. prompt_class is the local index + if class_vector is not None: + neg_id, pos_id = get_point_label(class_vector[id]) + if class_vector[id].item() in MERGE_LIST.keys(): + for m in MERGE_LIST[class_vector[id].item()]: + _gt = torch.logical_or(_gt, (gt == m)[0, 0]) + else: + neg_id, pos_id = get_point_label(prompt_class[id]) + if prompt_class[id].item() in MERGE_LIST.keys(): + for m in MERGE_LIST[prompt_class[id].item()]: + _gt = torch.logical_or(_gt, (gt == m)[0, 0]) + if (prompt_class[id] == 0 and not include_background) or _gt.sum() == 0: + # if background or no foreground and no false positive + if _gt.sum() == 0 and (pred[id][0] > pred_thresh).sum() > 0: + fp_mask = pred[id][0] > pred_thresh + new_points.append(random.choices(torch.nonzero(fp_mask), k=1)) + new_points_label.append([torch.tensor(neg_id, device=pred.device)]) + else: + new_points.append([torch.tensor([0, 0, 0], device=pred.device)]) + new_points_label.append([torch.tensor(-1, device=pred.device)]) + continue + + # DO NOT MERGE HERE. The merge classs evaluation will not perform merge. + if use_fg: + plabelpoints = torch.nonzero(_gt) + new_points.append(random.choices(plabelpoints, k=1)) + new_points_label.append([torch.tensor(pos_id, device=pred.device)]) + continue + _new_points, _new_points_label = [], [] + fn_mask = torch.logical_and(_gt, pred[id][0] < pred_thresh) + fn_mask = erode3d(fn_mask) + fn_mask = monai.transforms.utils.get_largest_connected_component_mask(fn_mask) + fp_mask = torch.logical_and(torch.logical_not(_gt), pred[id][0] > pred_thresh) + fp_mask = erode3d(fp_mask) + fp_mask = monai.transforms.utils.get_largest_connected_component_mask(fp_mask) + if fn_mask.sum() <= fp_mask.sum(): + # if false positive is larger than false negative, we will sample a negative point and one from foreground. + # if all of them are 0, will sample a foreground + plabelpoints = torch.nonzero(_gt) + _new_points.extend(random.choices(plabelpoints, k=1)) + _new_points_label.extend([torch.tensor(pos_id, device=pred.device)]) + plabelpoints = torch.nonzero(fp_mask) + if len(plabelpoints) > 0: + _new_points.extend(random.choices(plabelpoints, k=1)) + _new_points_label.extend([torch.tensor(neg_id, device=pred.device)]) + else: + _new_points.extend([torch.tensor([0, 0, 0], device=pred.device)]) + _new_points_label.extend([torch.tensor(-1, device=pred.device)]) + else: + plabelpoints = torch.nonzero(fn_mask) + if len(plabelpoints) > 0: + _new_points.extend(random.choices(plabelpoints, k=1)) + _new_points_label.extend([torch.tensor(pos_id, device=pred.device)]) + else: + _new_points.extend([torch.tensor([0, 0, 0], device=pred.device)]) + _new_points_label.extend([torch.tensor(-1, device=pred.device)]) + new_points.append(_new_points) + new_points_label.append(_new_points_label) + + max_len = max([len(_) for _ in new_points]) + x = [] + for _ in new_points: + x.append(_ + [torch.tensor([0, 0, 0]).to(pred.device)] * (max_len - len(_))) + new_points = torch.stack([torch.stack(_) for _ in x]) + # new_points = torch.stack([torch.stack(_) for _ in [x + [torch.tensor([0,0,0]).to(pred.device)] * (max_len - len(x)) for x in new_points]]) + x = [] + for _ in new_points_label: + x.append(_ + [torch.tensor(-1).to(pred.device)] * (max_len - len(_))) + new_points_label = torch.vstack([torch.stack(_) for _ in x]) + + return new_points, new_points_label + + +def get_next_points( + pred, + gt, + prompt_class, + point, + point_label, + pred_thresh=0.5, + mapped=True, + include_background=False, + **kwargs +): + """Iterative training. Sample points from false positve or false negative. This is used in training. + pred [bs, 1, h, w, d] + gt [1,1,h,w,d] + point [bs, n, 3] + Args: + mapped: If the input prompt_class are mapped to the global index, we will use special index. If not mapped (zero-shot), + the special index will not be enabled. + """ + new_points = [] + new_points_label = [] + offset = 10 + window = torch.ones_like(pred[0, 0], dtype=torch.bool) + window[offset:-offset, offset:-offset, :] = False + for id in range(len(prompt_class)): + if prompt_class[id] == 0 and not include_background: + new_points.append(torch.tensor([0, 0, 0], device=pred.device)) + new_points_label.append(torch.tensor(-1, device=pred.device)) + continue + neg_id, pos_id = get_point_label(-1) + _gt = (gt == prompt_class[id])[0, 0] + if mapped: + # if in the global index, some supported classes need modification. + neg_id, pos_id = get_point_label(prompt_class[id]) + if prompt_class[id].item() in MERGE_LIST.keys(): + for m in MERGE_LIST[prompt_class[id].item()]: + _gt = torch.logical_or(_gt, (gt == m)[0, 0]) + fn_mask = torch.logical_and(_gt, pred[id][0] < pred_thresh) + fn_mask = erode3d(fn_mask) + fn_mask[window] = 0 + fp_mask = torch.logical_and(torch.logical_not(_gt), pred[id][0] > pred_thresh) + fp_mask = erode3d(fp_mask) + fp_mask[window] = 0 + # random select a false negative + fnlabelpoints = torch.nonzero(fn_mask) + fplabelpoints = torch.nonzero(fp_mask) + _new_points = [] + _new_points_label = [] + if len(fnlabelpoints) > 0: + _new_points.append(random.choices(fnlabelpoints, k=1)[0]) + _new_points_label.append(torch.tensor(pos_id, device=pred.device)) + else: + _new_points.append(torch.tensor([0, 0, 0], device=pred.device)) + _new_points_label.append(torch.tensor(-1, device=pred.device)) + if len(fplabelpoints) > 0: + _new_points.append(random.choices(fplabelpoints, k=1)[0]) + _new_points_label.append(torch.tensor(neg_id, device=pred.device)) + else: + _new_points.append(torch.tensor([0, 0, 0], device=pred.device)) + _new_points_label.append(torch.tensor(-1, device=pred.device)) + new_points.append(torch.stack(_new_points)) + new_points_label.append(torch.stack(_new_points_label)) + if len(new_points) > 0: + new_points = torch.stack(new_points) + new_points_label = torch.stack(new_points_label) + if point is not None: + point = torch.cat([point, new_points], dim=1) + point_label = torch.cat([point_label, new_points_label], dim=1) + else: + point = new_points + point_label = new_points_label + + return point, point_label diff --git a/vista3d/scripts/validation/build_vista3d_eval_only.py b/vista3d/scripts/validation/build_vista3d_eval_only.py new file mode 100644 index 0000000..b5e016a --- /dev/null +++ b/vista3d/scripts/validation/build_vista3d_eval_only.py @@ -0,0 +1,174 @@ +# Copyright (c) MONAI Consortium +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# http://www.apache.org/licenses/LICENSE-2.0 +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import annotations + +import copy + +import numpy as np +import torch +from monai.metrics import compute_dice +from vista3d.modeling import ( + VISTA3D2, + Class_Mapping_Classify, + Point_Mapping_SAM, + SegResNetDS2, +) + +from ..utils.workflow_utils import get_next_points_auto_point + + +class VISTA3D2_eval_only(VISTA3D2): + @torch.no_grad() + def point_head_iterative_trial( + self, + logits, + labels, + out, + point_coords, + point_labels, + class_vector, + prompt_class, + n_trials=3, + ): + """The prompt class is the local label set while class vector is the mapped global label set""" + logits_update = logits.detach().clone() + for trial_idx in range(n_trials): + if trial_idx == 0: + point_coords, point_labels = get_next_points_auto_point( + logits > 0, labels, prompt_class, class_vector, use_fg=True + ) + else: + point_coords, point_labels = get_next_points_auto_point( + logits > 0, labels, prompt_class, class_vector, use_fg=False + ) + mapping_index = ((point_labels != -1).sum(1) > 0).to(torch.bool) + point_coords = point_coords[mapping_index] + point_labels = point_labels[mapping_index] + if (torch.sum(mapping_index) == 1 and mapping_index[0]) or torch.sum( + mapping_index + ) == 0: + return logits + if trial_idx == 0: + best_dice = [] + for i in range(len(prompt_class)): + dice = compute_dice( + y_pred=(logits[[i]] > 0).to(labels.device), + y=labels == prompt_class[i], + ).item() + if np.isnan(dice): + best_dice.append(-(logits[[i]] > 0).sum()) + else: + best_dice.append(dice) + + point_logits = self.point_head( + out, + point_coords, + point_labels, + class_vector=class_vector[mapping_index], + ) + + target_logits = self.connected_components_combine( + logits, point_logits, point_coords, point_labels, mapping_index + ) + combine_dice = [] + for i in range(len(prompt_class)): + if mapping_index[i]: + dice = compute_dice( + y_pred=(target_logits[[i]] > 0).to(labels.device), + y=(labels == prompt_class[i]), + ).item() + if np.isnan(dice): + combine_dice.append(-(target_logits[[i]] > 0).sum()) + else: + combine_dice.append(dice) + else: + combine_dice.append(-1) + # check the dice for each label + for i in range(len(prompt_class)): + if prompt_class[i] == 0: + continue + if combine_dice[i] > best_dice[i]: + # print(trial_idx, prompt_class[i], combine_dice[i], best_dice[i]) + logits_update[i] = copy.deepcopy(target_logits[i]) + best_dice[i] = copy.deepcopy(combine_dice[i]) + + labels, target_logits, logits, best_dice, combine_dice = ( + None, + None, + None, + None, + None, + ) + # force releasing memories that set to None + torch.cuda.empty_cache() + return logits_update + + def forward( + self, + input_images, + point_coords=None, + point_labels=None, + class_vector=None, + prompt_class=None, + patch_coords=None, + labels=None, + label_set=None, + prev_mask=None, + radius=None, + val_point_sampler=None, + **kwargs, + ): + out, out_auto = self.image_encoder( + input_images, with_point=True, with_label=True + ) + input_images = None + # force releasing memories that set to None + torch.cuda.empty_cache() + logits, _ = self.class_head(out_auto, class_vector) + logits = self.point_head_iterative_trial( + logits, + labels[patch_coords], + out, + point_coords, + point_labels, + class_vector[0], + prompt_class[0], + n_trials=3, + ) + return logits + + +def build_vista3d_segresnet_decoder( + encoder_embed_dim=48, in_channels=1, image_size=(96, 96, 96) +): + segresnet = SegResNetDS2( + in_channels=in_channels, + blocks_down=(1, 2, 2, 4, 4), + norm="instance", + out_channels=encoder_embed_dim, + init_filters=encoder_embed_dim, + dsdepth=1, + ) + point_head = Point_Mapping_SAM(feature_size=encoder_embed_dim, last_supported=132) + class_head = Class_Mapping_Classify( + n_classes=512, feature_size=encoder_embed_dim, use_mlp=True + ) + vista = VISTA3D2_eval_only( + image_encoder=segresnet, + class_head=class_head, + point_head=point_head, + feature_size=encoder_embed_dim, + ) + return vista + + +vista_model_registry = {"vista3d_segresnet_d": build_vista3d_segresnet_decoder} diff --git a/vista3d/scripts/validation/val_multigpu_autopoint_patch.py b/vista3d/scripts/validation/val_multigpu_autopoint_patch.py new file mode 100644 index 0000000..61065e3 --- /dev/null +++ b/vista3d/scripts/validation/val_multigpu_autopoint_patch.py @@ -0,0 +1,442 @@ +# Copyright (c) MONAI Consortium +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# http://www.apache.org/licenses/LICENSE-2.0 +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import annotations + +import copy +import glob +import json +import logging +import os +import sys +from datetime import timedelta +from functools import partial +from typing import Optional, Sequence, Union + +import monai +import numpy as np +import torch +import torch.distributed as dist +from monai import transforms +from monai.apps.auto3dseg.auto_runner import logger +from monai.auto3dseg.utils import datafold_read +from monai.bundle import ConfigParser +from monai.bundle.scripts import _pop_args, _update_args +from monai.data import DataLoader, partition_dataset +from monai.metrics import compute_dice +from monai.utils import set_determinism +from torch.cuda.amp import autocast +from torch.nn.parallel import DistributedDataParallel + +from ..sliding_window import sliding_window_inference +from ..train import CONFIG, infer_wrapper +from ..utils.trans_utils import VistaPostTransform +from .build_vista3d_eval_only import vista_model_registry + + +def run(config_file: Optional[Union[str, Sequence[str]]] = None, **override): + # Initialize distributed and scale parameters based on GPU memory + if torch.cuda.device_count() > 1: + dist.init_process_group( + backend="nccl", init_method="env://", timeout=timedelta(seconds=3600) + ) + world_size = dist.get_world_size() + dist.barrier() + else: + world_size = 1 + + logging.basicConfig(stream=sys.stdout, level=logging.INFO) + + if isinstance(config_file, str) and "," in config_file: + config_file = config_file.split(",") + + _args = _update_args(config_file=config_file, **override) + config_file_ = _pop_args(_args, "config_file")[0] + + parser = ConfigParser() + parser.read_config(config_file_) + parser.update(pairs=_args) + + amp = parser.get_parsed_content("amp") + data_file_base_dir = parser.get_parsed_content("data_file_base_dir") + data_list_file_path = parser.get_parsed_content("data_list_file_path") + ckpt = parser.get_parsed_content("ckpt") + fold = parser.get_parsed_content("fold") + patch_size = parser.get_parsed_content("patch_size") + model_registry = parser.get_parsed_content("model") + input_channels = parser.get_parsed_content("input_channels") + label_set = parser.get_parsed_content("label_set", default=None) + val_auto = parser.get_parsed_content("val_auto", default=False) + argmax_first = parser.get_parsed_content("argmax_first", default=True) + five_fold = parser.get_parsed_content("five_fold", default=True) + mapped_label_set = parser.get_parsed_content( + "mapped_label_set", default=copy.deepcopy(label_set) + ) + transforms_infer = parser.get_parsed_content("transforms_infer") + list_key = parser.get_parsed_content("list_key", default="testing") + """ start_prompt and end_prompt are used to save memory. For 117 class prompts, it will go oom. Use these two to limit + the prompt number and run the scripts multiple times to cover 117 classes. + """ + start_prompt = parser.get_parsed_content("start_prompt", default=None) + end_prompt = parser.get_parsed_content("end_prompt", default=None) + dataset_name = parser.get_parsed_content("dataset_name", default=None) + if label_set is None: + label_mapping = parser.get_parsed_content( + "label_mapping", default="./data/jsons/label_mappings.json" + ) + + with open(label_mapping, "r") as f: + label_mapping = json.load(f) + label_set = [_xx[0] for _xx in label_mapping[dataset_name]] + mapped_label_set = [_xx[1] for _xx in label_mapping[dataset_name]] + if start_prompt is not None: + # this is used for dataset like totalseg with large number of prompts. + label_set = label_set[start_prompt:end_prompt] + mapped_label_set = mapped_label_set[start_prompt:end_prompt] + + label_set = [0] + label_set + mapped_label_set = [0] + mapped_label_set + if dataset_name == "Task07" or dataset_name == "Task03": + # disable argmax if there is overlap. + argmax_first = False + if dataset_name == "Bone-NIH": + mapped_label_set = mapped_label_set[:-1] + label_set = label_set[:-1] + + random_seed = parser.get_parsed_content("random_seed", default=0) + if random_seed is not None and ( + isinstance(random_seed, int) or isinstance(random_seed, float) + ): + set_determinism(seed=random_seed) + + CONFIG["handlers"]["file"]["filename"] = parser.get_parsed_content( + "log_output_file" + ) + logging.config.dictConfig(CONFIG) + logging.getLogger("torch.distributed.distributed_c10d").setLevel(logging.WARNING) + logger.debug(f"Number of GPUs: {torch.cuda.device_count()}") + logger.debug(f"World_size: {world_size}") + logger.debug(f"Validation using auto: {val_auto}") + if five_fold: + train_files, val_files = datafold_read( + datalist=data_list_file_path, + basedir=data_file_base_dir, + fold=fold, + key="training", + ) + test_files, _ = datafold_read( + datalist=data_list_file_path, + basedir=data_file_base_dir, + fold=-1, + key="testing", + ) + else: + train_files, _ = datafold_read( + datalist=data_list_file_path, + basedir=data_file_base_dir, + fold=-1, + key="training", + ) + val_files, _ = datafold_read( + datalist=data_list_file_path, + basedir=data_file_base_dir, + fold=-1, + key="validation", + ) + test_files, _ = datafold_read( + datalist=data_list_file_path, + basedir=data_file_base_dir, + fold=-1, + key="testing", + ) + process_dict = { + "training": train_files, + "validation": val_files, + "testing": test_files, + "all": train_files + val_files + test_files, + } + process_files = process_dict[list_key] + + save_metric = parser.get_parsed_content("save_metric", default=False) + if save_metric: + output_dirs = os.path.join( + os.path.dirname(parser.get_parsed_content("log_output_file")), dataset_name + ) + os.makedirs(output_dirs, exist_ok=True) + generated_files = glob.glob(os.path.join(output_dirs, "*.json")) + _process_files = [] + for i in process_files: + not_finished = True + for j in generated_files: + if j.split(".json")[0].split("/")[-1] in i["image"]: + not_finished = False + break + if not_finished: + _process_files.append(i) + logger.info(f"{len(_process_files)} is remained out from {len(process_files)}") + print(f"{len(_process_files)} is remained out from {len(process_files)}") + process_files = _process_files + + for i in range(len(process_files)): + if ( + isinstance(process_files[i]["image"], list) + and len(process_files[i]["image"]) > 1 + ): + process_files[i]["image"] = process_files[i]["image"][0] + if torch.cuda.device_count() == 1 or dist.get_rank() == 0: + print(f"Total files {len(process_files)}") + print(process_files) + overlap = parser.get_parsed_content("overlap", default=0.0) + if torch.cuda.device_count() > 1: + process_files = partition_dataset( + data=process_files, + shuffle=False, + num_partitions=world_size, + even_divisible=False, + )[dist.get_rank()] + logger.debug(f"Val_files: {len(process_files)}") + val_ds = monai.data.Dataset(data=process_files, transform=transforms_infer) + val_loader = DataLoader( + val_ds, + num_workers=parser.get_parsed_content("num_workers_validation", default=2), + batch_size=1, + shuffle=False, + ) + + device = ( + torch.device(f"cuda:{os.environ['LOCAL_RANK']}") + if world_size > 1 + else torch.device("cuda:0") + ) + + model = vista_model_registry[model_registry]( + in_channels=input_channels, image_size=patch_size + ) + + model = model.to(device) + + if torch.cuda.device_count() > 1: + model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model) + + post_transform = transforms.Invertd( + keys="pred", + transform=transforms_infer, + orig_keys="image", + meta_keys="pred_meta_dict", + orig_meta_keys="image_meta_dict", + meta_key_postfix="meta_dict", + nearest_interp=True, + to_tensor=True, + ) + + post_pred = transforms.AsDiscrete(threshold=0.0, dtype=torch.uint8) + + if torch.cuda.device_count() > 1: + model = DistributedDataParallel( + model, device_ids=[device], find_unused_parameters=True + ) + + if torch.cuda.device_count() > 1: + model.module.load_state_dict( + torch.load(ckpt, map_location=device), strict=False + ) + else: + model.load_state_dict(torch.load(ckpt, map_location=device), strict=False) + + model.eval() + metric_dim = len(label_set) - 1 + model_inferer = partial(infer_wrapper, model=model) + with torch.no_grad(): + metric = torch.zeros(metric_dim * 2, dtype=torch.float, device=device) + _index = 0 + _final_count = 0 + for val_data in val_loader: + if dataset_name == "Bone-NIH": + val_data["label_gt"][val_data["label_gt"] == 2] = 1 + val_data["label"][val_data["label"] == 2] = 1 + val_filename = val_data["image"].meta["filename_or_obj"][0] + _index += 1 + with autocast(enabled=amp): + val_outputs = None + torch.cuda.empty_cache() + for _device_in, _device_out in zip( + [device, device, "cpu"], [device, "cpu", "cpu"] + ): + try: + with autocast(enabled=amp): + val_outputs = None + torch.cuda.empty_cache() + val_outputs = sliding_window_inference( + inputs=val_data["image"].to(_device_in), + roi_size=patch_size, + sw_batch_size=1, + predictor=model_inferer, + mode="gaussian", + overlap=overlap, + sw_device=device, + device=_device_out, + point_coords=None, + point_labels=None, + class_vector=torch.tensor(mapped_label_set) + .to(device) + .unsqueeze(0), + prompt_class=torch.tensor(label_set) + .to(device) + .unsqueeze(0), + labels=val_data["label"].to(_device_in), + label_set=label_set, + merge_with_trial=True, + ) + finished = True + skipped = False + except RuntimeError as e: + if not any( + x in str(e).lower() for x in ("memory", "cuda", "cudnn") + ): + raise e + logger.warning(e) + finished = False + skipped = True + + if finished: + break + if skipped: + logger.debug( + f"{_index} / {len(val_loader)} / {val_filename}: skipped due to OOM with size {val_data['image'].shape}" + ) + continue + value = torch.full((1, metric_dim), float("nan")).to(device) + if not skipped: + if argmax_first: + try: + try: + val_outputs = VistaPostTransform(keys="pred")( + { + "image": val_data["image"][0], + "pred": val_outputs[0], + "label_prompt": label_set, + } + ) + val_outputs = post_transform(val_outputs)["pred"][None, ...] + except BaseException: + val_outputs = VistaPostTransform(keys="pred")( + { + "image": val_data["image"][0].cpu(), + "pred": val_outputs[0].cpu(), + "label_prompt": label_set, + } + ) + val_outputs = post_transform(val_outputs)["pred"][None, ...] + for i in range(1, len(label_set)): + gt = ( + val_data["label_gt"].to(val_outputs.device) + == label_set[i] + ) + ypred = val_outputs == label_set[i] + value[0, i - 1] = compute_dice( + y_pred=ypred, y=gt, include_background=False + ) + _final_count += 1 + except BaseException: + logger.debug( + f"{_index} / {len(val_loader)} / {val_filename}: Shape mismatch or OOM in postransform" + ) + value = torch.full((1, metric_dim), float("nan")).to(device) + else: + try: + val_outputs = post_pred(val_outputs[0])[None, ...] + try: + val_outputs = post_transform( + {"image": val_data["image"][0], "pred": val_outputs[0]} + )["pred"][None, ...] + except BaseException: + val_outputs = post_transform( + { + "image": val_data["image"][0].cpu(), + "pred": val_outputs[0].cpu(), + } + )["pred"][None, ...] + for i in range(1, len(label_set)): + gt = ( + val_data["label_gt"].to(val_outputs.device) + == label_set[i] + ) + y_pred = val_outputs[:, [i]] + if i == 1 and ( + dataset_name == "Task07" or dataset_name == "Task03" + ): + y_pred = torch.logical_and( + y_pred > 0.5, val_outputs[:, [i + 1]] < 0.5 + ) + value[0, i - 1] = compute_dice( + y_pred, y=gt, include_background=False + ) + _final_count += 1 + if save_metric: + output_json_path = os.path.join( + output_dirs, + os.path.dirname(val_filename).split("/")[-1] + ".json", + ) + with open(output_json_path, "w") as f: + json.dump(value[0].cpu().numpy().tolist(), f) + except BaseException: + logger.debug( + f"{_index} / {len(val_loader)} / {val_filename}: Shape mismatch or OOM in postransform" + ) + value = torch.full((1, metric_dim), float("nan")).to(device) + val_outputs, val_data = None, None + torch.cuda.empty_cache() + print(f"{_index} / {len(val_loader)} / {val_filename}: {value}") + logger.debug(f"{_index} / {len(val_loader)} / {val_filename}: {value}") + for _c in range(metric_dim): + val0 = torch.nan_to_num(value[0, _c], nan=0.0) + val1 = 1.0 - torch.isnan(value[0, _c]).float() + metric[2 * _c] += val0 + metric[2 * _c + 1] += val1 + + if torch.cuda.device_count() > 1: + dist.all_reduce(metric, op=torch.distributed.ReduceOp.SUM) + + metric = metric.tolist() + metric_class = np.zeros(metric_dim) + if torch.cuda.device_count() == 1 or dist.get_rank() == 0: + avg_metric = 0 + valid = 0 + for _c in range(metric_dim): + if metric[2 * _c + 1] > 0: + v = metric[2 * _c] / metric[2 * _c + 1] + avg_metric += v + valid += 1 + else: + v = torch.nan + metric_class[_c] = v + try: + logger.debug(f"Evaluation metric - class {_c + 1} : {v:.4f}") + except BaseException: + logger.debug(f"Evaluation metric - class {_c + 1} : {v:.4f}") + avg_metric = avg_metric / valid + print(f"Avg_metric: {avg_metric}") + logger.debug(f"Avg_metric: {avg_metric}") + + torch.cuda.empty_cache() + if torch.cuda.device_count() > 1: + dist.barrier() + logger.debug(f"Final Evaluated Cases {_final_count}") + dist.destroy_process_group() + + return + + +if __name__ == "__main__": + from monai.utils import optional_import + + fire, _ = optional_import("fire") + fire.Fire() diff --git a/vista3d/scripts/validation/val_multigpu_point_iterative.py b/vista3d/scripts/validation/val_multigpu_point_iterative.py new file mode 100644 index 0000000..2ac19f2 --- /dev/null +++ b/vista3d/scripts/validation/val_multigpu_point_iterative.py @@ -0,0 +1,392 @@ +# Copyright (c) MONAI Consortium +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# http://www.apache.org/licenses/LICENSE-2.0 +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import annotations + +import json +import logging +import os +import sys +from datetime import timedelta +from functools import partial +from typing import Optional, Sequence, Union + +import monai +import torch +import torch.distributed as dist +from monai import transforms +from monai.apps.auto3dseg.auto_runner import logger +from monai.auto3dseg.utils import datafold_read +from monai.bundle import ConfigParser +from monai.bundle.scripts import _pop_args, _update_args +from monai.data import DataLoader, partition_dataset +from monai.metrics import compute_dice +from monai.utils import set_determinism +from torch.cuda.amp import autocast +from torch.nn.parallel import DistributedDataParallel + +from vista3d import vista_model_registry + +from ..sliding_window import sliding_window_inference +from ..train import CONFIG, infer_wrapper +from ..utils.workflow_utils import generate_prompt_pairs_val, get_next_points_val + + +def run(config_file: Optional[Union[str, Sequence[str]]] = None, **override): + # Initialize distributed and scale parameters based on GPU memory + if torch.cuda.device_count() > 1: + dist.init_process_group( + backend="nccl", init_method="env://", timeout=timedelta(seconds=10000) + ) + world_size = dist.get_world_size() + dist.barrier() + else: + world_size = 1 + + logging.basicConfig(stream=sys.stdout, level=logging.INFO) + + if isinstance(config_file, str) and "," in config_file: + config_file = config_file.split(",") + + _args = _update_args(config_file=config_file, **override) + config_file_ = _pop_args(_args, "config_file")[0] + + parser = ConfigParser() + parser.read_config(config_file_) + parser.update(pairs=_args) + + amp = parser.get_parsed_content("amp") + data_file_base_dir = parser.get_parsed_content("data_file_base_dir") + data_list_file_path = parser.get_parsed_content("data_list_file_path") + ckpt = parser.get_parsed_content("ckpt") + fold = parser.get_parsed_content("fold") + patch_size = parser.get_parsed_content("patch_size") + model_registry = parser.get_parsed_content("model") + input_channels = parser.get_parsed_content("input_channels") + label_set = parser.get_parsed_content("label_set", default=None) + transforms_infer = parser.get_parsed_content("transforms_infer") + list_key = parser.get_parsed_content("list_key", default="testing") + five_fold = parser.get_parsed_content("five_fold", default=True) + remove_out = parser.get_parsed_content("remove_out", default=True) + use_center = parser.get_parsed_content("use_center", default=True) + MAX_ITER = parser.get_parsed_content("max_iter", default=10) + + if label_set is None: + label_mapping = parser.get_parsed_content( + "label_mapping", default="./data/jsons_final_update/label_mappings.json" + ) + dataset_name = parser.get_parsed_content("dataset_name", default=None) + with open(label_mapping, "r") as f: + label_mapping = json.load(f) + label_set = [0] + [_xx[0] for _xx in label_mapping[dataset_name]] + + random_seed = parser.get_parsed_content("random_seed", default=0) + if random_seed is not None and ( + isinstance(random_seed, int) or isinstance(random_seed, float) + ): + set_determinism(seed=random_seed) + + CONFIG["handlers"]["file"]["filename"] = parser.get_parsed_content( + "log_output_file" + ) + logging.config.dictConfig(CONFIG) + logging.getLogger("torch.distributed.distributed_c10d").setLevel(logging.WARNING) + logger.debug(f"Number of GPUs: {torch.cuda.device_count()}") + logger.debug(f"World_size: {world_size}") + if five_fold: + train_files, val_files = datafold_read( + datalist=data_list_file_path, + basedir=data_file_base_dir, + fold=fold, + key="training", + ) + test_files, _ = datafold_read( + datalist=data_list_file_path, + basedir=data_file_base_dir, + fold=-1, + key="testing", + ) + else: + train_files, _ = datafold_read( + datalist=data_list_file_path, + basedir=data_file_base_dir, + fold=-1, + key="training", + ) + val_files, _ = datafold_read( + datalist=data_list_file_path, + basedir=data_file_base_dir, + fold=-1, + key="validation", + ) + test_files, _ = datafold_read( + datalist=data_list_file_path, + basedir=data_file_base_dir, + fold=-1, + key="testing", + ) + process_dict = { + "training": train_files, + "validation": val_files, + "testing": test_files, + "all": train_files + val_files + test_files, + } + process_files = process_dict[list_key] + for i in range(len(process_files)): + if ( + isinstance(process_files[i]["image"], list) + and len(process_files[i]["image"]) > 1 + ): + process_files[i]["image"] = process_files[i]["image"][0] + if torch.cuda.device_count() == 1 or dist.get_rank() == 0: + print(f"Total files {len(process_files)}") + print(process_files) + overlap = parser.get_parsed_content("overlap", default=0.0) + if torch.cuda.device_count() > 1: + process_files = partition_dataset( + data=process_files, + shuffle=False, + num_partitions=world_size, + even_divisible=False, + )[dist.get_rank()] + logger.debug(f"Val_files: {len(process_files)}") + val_ds = monai.data.Dataset(data=process_files, transform=transforms_infer) + val_loader = DataLoader( + val_ds, + num_workers=parser.get_parsed_content("num_workers_validation", default=2), + batch_size=1, + shuffle=False, + ) + + device = ( + torch.device(f"cuda:{os.environ['LOCAL_RANK']}") + if world_size > 1 + else torch.device("cuda:0") + ) + + model = vista_model_registry[model_registry]( + in_channels=input_channels, image_size=patch_size + ) + + model = model.to(device) + + if torch.cuda.device_count() > 1: + model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model) + + post_transform = transforms.Invertd( + keys="pred", + transform=transforms_infer, + orig_keys="image", + meta_keys="pred_meta_dict", + orig_meta_keys="image_meta_dict", + meta_key_postfix="meta_dict", + nearest_interp=False, + to_tensor=True, + ) + + post_pred = transforms.AsDiscrete(threshold=0.0, dtype=torch.uint8) + + if torch.cuda.device_count() > 1: + model = DistributedDataParallel( + model, device_ids=[device], find_unused_parameters=True + ) + + if torch.cuda.device_count() > 1: + model.module.load_state_dict( + torch.load(ckpt, map_location=device), strict=False + ) + else: + model.load_state_dict(torch.load(ckpt, map_location=device), strict=False) + + model.eval() + max_iters = MAX_ITER + metric_dim = len(label_set) - 1 + model_inferer = partial(infer_wrapper, model=model) + log_string = [] + with torch.no_grad(): + obj_num = len(val_loader) + if torch.cuda.device_count() > 1: + size_tensor = torch.tensor(obj_num, device=device) + output_tensor = [torch.zeros_like(size_tensor) for _ in range(world_size)] + dist.barrier() + dist.all_gather(output_tensor, size_tensor) + # total_size_tensor = sum(output_tensor) + obj_num = max(output_tensor) + metric = ( + torch.zeros( + obj_num, metric_dim, max_iters, dtype=torch.float, device=device + ) + + torch.nan + ) + point_num = ( + torch.zeros(obj_num, metric_dim, dtype=torch.float, device=device) + + torch.nan + ) + _index = 0 + for val_data in val_loader: + val_filename = val_data["image"].meta["filename_or_obj"][0] + _index += 1 + + val_outputs = None + for idx in range(max_iters): + if idx == 0: + point, point_label = generate_prompt_pairs_val( + val_data["label"].to(device), + label_set, + max_ppoint=1, + use_center=use_center, + ) + point = point.to(device) + point_label = point_label.to(device) + else: + # val_outputs is from model_inferer which moved the batch_dim to 0. + _point, _point_label = get_next_points_val( + val_outputs.transpose(1, 0), + val_data["label"].to(device), + torch.tensor(label_set).to(device), + point, + point_label, + use_center=False, + ) + # if labels other than 0 didn't get new points, skip + skip_this_iter = torch.all(_point_label[1:, -1] == -1) + if skip_this_iter: + if idx < 10: + _point, _point_label = get_next_points_val( + val_outputs.transpose(1, 0), + val_data["label"].to(device), + torch.tensor(label_set).to(device), + point, + point_label, + use_center=False, + erosion2d=True, + ) + skip_this_iter = torch.all(_point_label[1:, -1] == -1) + if skip_this_iter: + print(f"iteration end at {idx}") + break + point, point_label = _point, _point_label + + with autocast(enabled=amp): + val_outputs = None + val_outputs = sliding_window_inference( + inputs=val_data["image"].to(device), + roi_size=patch_size, + sw_batch_size=1, + predictor=model_inferer, + mode="gaussian", + overlap=overlap, + sw_device=device, + device=device, + point_coords=point, # not None + point_labels=point_label, + class_vector=None, + prompt_class=torch.ones(len(label_set), 1).to(device) + * 600, # will not be used when val_point_sampler is not None + labels=None, + label_set=None, + use_cfp=True, + brush_radius=None, + prev_mask=None, + val_point_sampler=None, + ) # making sure zero-shot + # val_outputs = get_largest_connected_component_point(val_outputs, point_coords=point, point_labels=point_label, post_idx=post_idx) + val_pred = post_transform( + {"image": val_data["image"][0], "pred": val_outputs[0]} + )["pred"] + val_pred = post_pred(val_pred)[None, ...] + val_outputs = post_pred(val_outputs[0, ...]) + val_outputs = val_outputs[None, ...] + if remove_out: + # remove false positive in slices with no gt + for i in range(1, len(label_set)): + gt = val_data["label"].to(val_outputs.device) == label_set[i] + remove_slice = gt[0, 0].sum(0).sum(0) == 0 + val_outputs[:, i, :, :, remove_slice] = 0 + for i in range(1, len(label_set)): + gt = val_data["label_gt"].to(val_outputs.device) == label_set[i] + y_pred = val_pred[:, [i]] + remove_slice = gt[0, 0].sum(0).sum(0) == 0 + y_pred[:, :, :, :, remove_slice] = 0 + + metric[_index - 1, i - 1, idx] = compute_dice( + y_pred=y_pred, y=gt, include_background=False + ) + point_num[_index - 1, i - 1] = idx + 1 + string = f"Validation Dice score : {idx} / {_index} / {len(val_loader)}/ {val_filename}: {metric[_index-1,:,idx]}" + print(string) + log_string.append(string) + # move all to cpu to avoid potential out memory in invert transform + torch.cuda.empty_cache() + log_string = sorted(log_string) + for _ in log_string: + logger.debug(_) + + if torch.cuda.device_count() > 1: + dist.barrier() + global_combined_tensor = [ + torch.zeros_like(metric) for _ in range(world_size) + ] + dist.all_gather(tensor_list=global_combined_tensor, tensor=metric) + metric = torch.vstack(global_combined_tensor) + dist.barrier() + global_combined_tensor = [ + torch.zeros_like(point_num) for _ in range(world_size) + ] + dist.all_gather(tensor_list=global_combined_tensor, tensor=point_num) + point_num = torch.vstack(global_combined_tensor) + + if torch.cuda.device_count() == 1 or dist.get_rank() == 0: + # remove metric that's all NaN + keep_index = ~torch.isnan(metric).all(1).all(1) + metric = metric[keep_index] + point_num = point_num[keep_index] + if max_iters > 1: + metric_best = torch.nan_to_num(metric, 0).max(2)[0] + else: + metric_best = metric[:, :, 0] + for i in range(metric.shape[0]): + logger.debug(f"object {i}: {metric[i].tolist()}") + logger.debug(f"object {i}: {metric_best[i].tolist()}") + print("point_number", point_num, point_num.nanmean(0)) + torch.save( + {"metric": metric.cpu(), "point": point_num.cpu()}, + parser.get_parsed_content("log_output_file").replace("log", "pt"), + ) + logger.debug( + f"Best metric {metric_best.nanmean(0).tolist()}, best avg {metric_best.nanmean(0).nanmean().tolist()}" + ) + logger.debug( + f"point needed, {point_num.tolist()}, mean is {point_num.nanmean(0).tolist()}" + ) + """ Note: the zero-shot plots in the paper is using the saved pt file. For the j-th point, the results might be worse due to random point selection. We chose + the best dice from point 1 to j, e.g. point i and treat i as the point click number. + data = torch.load(path_to_pt_file)['metric'] + for j in range(1, max_iters): + data_notnan = torch.nan_to_num(data_[:,:j],0) + data_notnan = data_notnan.max(1)[0] + y.append(data_notnan.mean()) + x.append((~torch.isnan(data_[:,:j])).sum()/data_.shape[0]) + plot(x, y) + """ + torch.cuda.empty_cache() + if torch.cuda.device_count() > 1: + dist.barrier() + dist.destroy_process_group() + + return + + +if __name__ == "__main__": + from monai.utils import optional_import + + fire, _ = optional_import("fire") + fire.Fire() diff --git a/vista3d/scripts/validation/val_multigpu_point_patch.py b/vista3d/scripts/validation/val_multigpu_point_patch.py new file mode 100644 index 0000000..b02daf2 --- /dev/null +++ b/vista3d/scripts/validation/val_multigpu_point_patch.py @@ -0,0 +1,470 @@ +# Copyright (c) MONAI Consortium +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# http://www.apache.org/licenses/LICENSE-2.0 +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import annotations + +import copy +import glob +import json +import logging +import os +import sys +from datetime import timedelta +from functools import partial +from typing import Optional, Sequence, Union + +import monai +import numpy as np +import torch +import torch.distributed as dist +from monai import transforms +from monai.apps.auto3dseg.auto_runner import logger +from monai.auto3dseg.utils import datafold_read +from monai.bundle import ConfigParser +from monai.bundle.scripts import _pop_args, _update_args +from monai.data import DataLoader, partition_dataset + +# from .monai_trans_utils import get_largest_connected_component_point +from monai.metrics import compute_dice +from monai.utils import set_determinism +from torch.cuda.amp import autocast +from torch.nn.parallel import DistributedDataParallel + +from vista3d import vista_model_registry + +from ..sliding_window import sliding_window_inference +from ..train import CONFIG, infer_wrapper +from ..utils.trans_utils import VistaPostTransform +from ..utils.workflow_utils import sample_points_patch_val + + +def run(config_file: Optional[Union[str, Sequence[str]]] = None, **override): + # Initialize distributed and scale parameters based on GPU memory + if torch.cuda.device_count() > 1: + dist.init_process_group( + backend="nccl", init_method="env://", timeout=timedelta(seconds=3600) + ) + world_size = dist.get_world_size() + dist.barrier() + else: + world_size = 1 + + logging.basicConfig(stream=sys.stdout, level=logging.INFO) + + if isinstance(config_file, str) and "," in config_file: + config_file = config_file.split(",") + + _args = _update_args(config_file=config_file, **override) + config_file_ = _pop_args(_args, "config_file")[0] + + parser = ConfigParser() + parser.read_config(config_file_) + parser.update(pairs=_args) + + amp = parser.get_parsed_content("amp") + data_file_base_dir = parser.get_parsed_content("data_file_base_dir") + data_list_file_path = parser.get_parsed_content("data_list_file_path") + ckpt = parser.get_parsed_content("ckpt") + fold = parser.get_parsed_content("fold") + patch_size = parser.get_parsed_content("patch_size") + model_registry = parser.get_parsed_content("model") + input_channels = parser.get_parsed_content("input_channels") + label_set = parser.get_parsed_content("label_set", default=None) + val_auto = parser.get_parsed_content("val_auto", default=False) + argmax_first = parser.get_parsed_content("argmax_first", default=True) + five_fold = parser.get_parsed_content("five_fold", default=True) + mapped_label_set = parser.get_parsed_content( + "mapped_label_set", default=copy.deepcopy(label_set) + ) + transforms_infer = parser.get_parsed_content("transforms_infer") + list_key = parser.get_parsed_content("list_key", default="testing") + + dataset_name = parser.get_parsed_content("dataset_name", default=None) + if label_set is None: + label_mapping = parser.get_parsed_content( + "label_mapping", default="./data/jsons/label_mappings.json" + ) + + with open(label_mapping, "r") as f: + label_mapping = json.load(f) + label_set = [0] + [_xx[0] for _xx in label_mapping[dataset_name]] + mapped_label_set = [0] + [_xx[1] for _xx in label_mapping[dataset_name]] + if dataset_name == "Task07" or dataset_name == "Task03": + # disable argmax if there is overlap. + argmax_first = False + if dataset_name == "Bone-NIH": + mapped_label_set = mapped_label_set[:-1] + label_set = label_set[:-1] + + random_seed = parser.get_parsed_content("random_seed", default=0) + if random_seed is not None and ( + isinstance(random_seed, int) or isinstance(random_seed, float) + ): + set_determinism(seed=random_seed) + + CONFIG["handlers"]["file"]["filename"] = parser.get_parsed_content( + "log_output_file" + ) + logging.config.dictConfig(CONFIG) + logging.getLogger("torch.distributed.distributed_c10d").setLevel(logging.WARNING) + logger.debug(f"Number of GPUs: {torch.cuda.device_count()}") + logger.debug(f"World_size: {world_size}") + logger.debug(f"Validation using auto: {val_auto}") + if five_fold: + train_files, val_files = datafold_read( + datalist=data_list_file_path, + basedir=data_file_base_dir, + fold=fold, + key="training", + ) + test_files, _ = datafold_read( + datalist=data_list_file_path, + basedir=data_file_base_dir, + fold=-1, + key="testing", + ) + else: + train_files, _ = datafold_read( + datalist=data_list_file_path, + basedir=data_file_base_dir, + fold=-1, + key="training", + ) + val_files, _ = datafold_read( + datalist=data_list_file_path, + basedir=data_file_base_dir, + fold=-1, + key="validation", + ) + test_files, _ = datafold_read( + datalist=data_list_file_path, + basedir=data_file_base_dir, + fold=-1, + key="testing", + ) + process_dict = { + "training": train_files, + "validation": val_files, + "testing": test_files, + "all": train_files + val_files + test_files, + } + process_files = process_dict[list_key] + + save_metric = parser.get_parsed_content("save_metric", default=False) + if save_metric: + output_dirs = os.path.join( + os.path.dirname(parser.get_parsed_content("log_output_file")), dataset_name + ) + os.makedirs(output_dirs, exist_ok=True) + generated_files = glob.glob(os.path.join(output_dirs, "*.json")) + _process_files = [] + for i in process_files: + not_finished = True + for j in generated_files: + if j.split(".json")[0].split("/")[-1] in i["image"]: + not_finished = False + break + if not_finished: + _process_files.append(i) + logger.info(f"{len(_process_files)} is remained out from {len(process_files)}") + print(f"{len(_process_files)} is remained out from {len(process_files)}") + process_files = _process_files + + for i in range(len(process_files)): + if ( + isinstance(process_files[i]["image"], list) + and len(process_files[i]["image"]) > 1 + ): + process_files[i]["image"] = process_files[i]["image"][0] + if torch.cuda.device_count() == 1 or dist.get_rank() == 0: + print(f"Total files {len(process_files)}") + print(process_files) + overlap = parser.get_parsed_content("overlap", default=0.5) + if torch.cuda.device_count() > 1: + process_files = partition_dataset( + data=process_files, + shuffle=False, + num_partitions=world_size, + even_divisible=False, + )[dist.get_rank()] + logger.debug(f"Val_files: {len(process_files)}") + val_ds = monai.data.Dataset(data=process_files, transform=transforms_infer) + val_loader = DataLoader( + val_ds, + num_workers=parser.get_parsed_content("num_workers_validation", default=2), + batch_size=1, + shuffle=False, + ) + + device = ( + torch.device(f"cuda:{os.environ['LOCAL_RANK']}") + if world_size > 1 + else torch.device("cuda:0") + ) + + model = vista_model_registry[model_registry]( + in_channels=input_channels, image_size=patch_size + ) + + model = model.to(device) + + if torch.cuda.device_count() > 1: + model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model) + + post_transform = transforms.Invertd( + keys="pred", + transform=transforms_infer, + orig_keys="image", + meta_keys="pred_meta_dict", + orig_meta_keys="image_meta_dict", + meta_key_postfix="meta_dict", + nearest_interp=True, + to_tensor=True, + ) + + post_pred = transforms.AsDiscrete(threshold=0.0, dtype=torch.uint8) + + if torch.cuda.device_count() > 1: + model = DistributedDataParallel( + model, device_ids=[device], find_unused_parameters=True + ) + + if torch.cuda.device_count() > 1: + model.module.load_state_dict( + torch.load(ckpt, map_location=device), strict=False + ) + else: + model.load_state_dict(torch.load(ckpt, map_location=device), strict=False) + + model.eval() + metric_dim = len(label_set) - 1 + model_inferer = partial(infer_wrapper, model=model) + with torch.no_grad(): + metric = torch.zeros(metric_dim * 2, dtype=torch.float, device=device) + _index = 0 + _final_count = 0 + for val_data in val_loader: + if dataset_name == "Bone-NIH": + val_data["label_gt"][val_data["label_gt"] == 2] = 1 + val_data["label"][val_data["label"] == 2] = 1 + val_filename = val_data["image"].meta["filename_or_obj"][0] + _index += 1 + with autocast(enabled=amp): + val_outputs = None + torch.cuda.empty_cache() + if val_auto: + try: + with autocast(enabled=True): + val_outputs = sliding_window_inference( + inputs=val_data["image"].to(device), + roi_size=patch_size, + sw_batch_size=1, + predictor=model_inferer, + mode="gaussian", + overlap=overlap, + sw_device=device, + device=device, + point_coords=None, + point_labels=None, + class_vector=torch.tensor(mapped_label_set) + .to(device) + .unsqueeze(0), + prompt_class=None, + labels=None, + label_set=None, + use_cfp=True, + brush_radius=None, + val_point_sampler=None, + ) + skipped = False + except BaseException: + skipped = True + logger.debug( + f"{_index} / {len(val_loader)} / {val_filename}: skipped due to OOM" + ) + continue + else: + for _device_in, _device_out in zip( + [device, device, "cpu"], [device, "cpu", "cpu"] + ): + try: + with autocast(enabled=amp): + val_outputs = None + torch.cuda.empty_cache() + val_outputs = sliding_window_inference( + inputs=val_data["image"].to(_device_in), + roi_size=patch_size, + sw_batch_size=1, + predictor=model_inferer, + mode="gaussian", + overlap=overlap, + sw_device=device, + device=_device_out, + point_coords=torch.zeros(len(label_set), 1), + point_labels=not None, + class_vector=None, + prompt_class=None, + labels=val_data["label"].to(_device_in), + label_set=label_set, + use_cfp=True, + brush_radius=None, + val_point_sampler=partial( + sample_points_patch_val, + mapped_label_set=mapped_label_set, + max_ppoint=1, + use_center=True, + ), + ) + finished = True + skipped = False + except RuntimeError as e: + if not any( + x in str(e).lower() for x in ("memory", "cuda", "cudnn") + ): + raise e + logger.warning(e) + finished = False + skipped = True + + if finished: + break + if skipped: + logger.debug( + f"{_index} / {len(val_loader)} / {val_filename}: skipped due to OOM with size {val_data['image'].shape}" + ) + continue + value = torch.full((1, metric_dim), float("nan")).to(device) + if not skipped: + if argmax_first: + try: + try: + val_outputs = VistaPostTransform(keys="pred")( + { + "image": val_data["image"][0], + "pred": val_outputs[0], + "label_prompt": label_set, + } + ) + val_outputs = post_transform(val_outputs)["pred"][None, ...] + except BaseException: + val_outputs = VistaPostTransform(keys="pred")( + { + "image": val_data["image"][0].cpu(), + "pred": val_outputs[0].cpu(), + "label_prompt": label_set, + } + ) + val_outputs = post_transform(val_outputs)["pred"][None, ...] + for i in range(1, len(label_set)): + gt = ( + val_data["label_gt"].to(val_outputs.device) + == label_set[i] + ) + ypred = val_outputs == label_set[i] + value[0, i - 1] = compute_dice( + y_pred=ypred, y=gt, include_background=False + ) + _final_count += 1 + except BaseException: + logger.debug( + f"{_index} / {len(val_loader)} / {val_filename}: Shape mismatch or OOM in postransform" + ) + value = torch.full((1, metric_dim), float("nan")).to(device) + else: + try: + val_outputs = post_pred(val_outputs[0])[None, ...] + try: + val_outputs = post_transform( + {"image": val_data["image"][0], "pred": val_outputs[0]} + )["pred"][None, ...] + except BaseException: + val_outputs = post_transform( + { + "image": val_data["image"][0].cpu(), + "pred": val_outputs[0].cpu(), + } + )["pred"][None, ...] + for i in range(1, len(label_set)): + gt = ( + val_data["label_gt"].to(val_outputs.device) + == label_set[i] + ) + y_pred = val_outputs[:, [i]] + if i == 1 and ( + dataset_name == "Task07" or dataset_name == "Task03" + ): + y_pred = torch.logical_and( + y_pred > 0.5, val_outputs[:, [i + 1]] < 0.5 + ) + value[0, i - 1] = compute_dice( + y_pred, y=gt, include_background=False + ) + _final_count += 1 + if save_metric: + output_json_path = os.path.join( + output_dirs, + os.path.dirname(val_filename).split("/")[-1] + ".json", + ) + with open(output_json_path, "w") as f: + json.dump(value[0].cpu().numpy().tolist(), f) + except BaseException: + logger.debug( + f"{_index} / {len(val_loader)} / {val_filename}: Shape mismatch or OOM in postransform" + ) + value = torch.full((1, metric_dim), float("nan")).to(device) + val_outputs, val_data = None, None + torch.cuda.empty_cache() + print(f"{_index} / {len(val_loader)} / {val_filename}: {value}") + logger.debug(f"{_index} / {len(val_loader)} / {val_filename}: {value}") + for _c in range(metric_dim): + val0 = torch.nan_to_num(value[0, _c], nan=0.0) + val1 = 1.0 - torch.isnan(value[0, _c]).float() + metric[2 * _c] += val0 + metric[2 * _c + 1] += val1 + + if torch.cuda.device_count() > 1: + dist.all_reduce(metric, op=torch.distributed.ReduceOp.SUM) + + metric = metric.tolist() + metric_class = np.zeros(metric_dim) + if torch.cuda.device_count() == 1 or dist.get_rank() == 0: + avg_metric = 0 + valid = 0 + for _c in range(metric_dim): + if metric[2 * _c + 1] > 0: + v = metric[2 * _c] / metric[2 * _c + 1] + avg_metric += v + valid += 1 + else: + v = torch.nan + metric_class[_c] = v + try: + logger.debug(f"Evaluation metric - class {_c + 1} : {v:.4f}") + except BaseException: + logger.debug(f"Evaluation metric - class {_c + 1} : {v:.4f}") + avg_metric = avg_metric / valid + print(f"Avg_metric: {avg_metric}") + logger.debug(f"Avg_metric: {avg_metric}") + + torch.cuda.empty_cache() + if torch.cuda.device_count() > 1: + dist.barrier() + logger.debug(f"Final Evaluated Cases {_final_count}") + dist.destroy_process_group() + + return + + +if __name__ == "__main__": + from monai.utils import optional_import + + fire, _ = optional_import("fire") + fire.Fire() diff --git a/monailabel/monaivista/lib/configs/__init__.py b/vista3d/tests/__init__.py similarity index 100% rename from monailabel/monaivista/lib/configs/__init__.py rename to vista3d/tests/__init__.py diff --git a/vista3d/tests/test_config.py b/vista3d/tests/test_config.py new file mode 100644 index 0000000..0a4fc38 --- /dev/null +++ b/vista3d/tests/test_config.py @@ -0,0 +1,39 @@ +# Copyright (c) MONAI Consortium +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# http://www.apache.org/licenses/LICENSE-2.0 +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import glob +import os +import unittest + +from monai.apps.utils import get_logger +from monai.bundle import ConfigParser + + +class TestConfig(unittest.TestCase): + def test_vista3d_configs_parsing(self): + config_dir = os.path.join( + os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "configs" + ) + get_logger("TestConfig").info(config_dir) + + configs = glob.glob(os.path.join(config_dir, "**", "*.yaml"), recursive=True) + for x in configs: + parser = ConfigParser() + parser.read_config(x) + keys = sorted(parser.config.keys()) + # verify parser key fetching + get_logger("TestConfig").info( + f"{parser[keys[0]]}, {keys[0]}, {parser[keys[-1]]}, {keys[-1]}" + ) + + +if __name__ == "__main__": + unittest.main() diff --git a/monailabel/plugins/slicer/MONAILabel/Testing/Python/CMakeLists.txt b/vista3d/tests/test_logger.py similarity index 62% rename from monailabel/plugins/slicer/MONAILabel/Testing/Python/CMakeLists.txt rename to vista3d/tests/test_logger.py index d7649ab..748abd3 100644 --- a/monailabel/plugins/slicer/MONAILabel/Testing/Python/CMakeLists.txt +++ b/vista3d/tests/test_logger.py @@ -9,5 +9,19 @@ # See the License for the specific language governing permissions and # limitations under the License. +import logging +import unittest -#slicer_add_python_unittest(SCRIPT ${MODULE_NAME}ModuleTest.py) +from monai.apps.auto3dseg.auto_runner import logger + + +class TestLogger(unittest.TestCase): + def test_vista3d_logger(self): + from scripts.train import CONFIG + + logging.config.dictConfig(CONFIG) + logger.warning("check train logging format") + + +if __name__ == "__main__": + unittest.main() diff --git a/vista3d/vista3d/__init__.py b/vista3d/vista3d/__init__.py new file mode 100644 index 0000000..6bc956f --- /dev/null +++ b/vista3d/vista3d/__init__.py @@ -0,0 +1 @@ +from .build_vista3d import vista_model_registry # noqa: F401 diff --git a/vista3d/vista3d/build_vista3d.py b/vista3d/vista3d/build_vista3d.py new file mode 100644 index 0000000..b19b239 --- /dev/null +++ b/vista3d/vista3d/build_vista3d.py @@ -0,0 +1,40 @@ +# Copyright (c) MONAI Consortium +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# http://www.apache.org/licenses/LICENSE-2.0 +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +from .modeling import VISTA3D2, Class_Mapping_Classify, Point_Mapping_SAM, SegResNetDS2 + + +def build_vista3d_segresnet_decoder( + encoder_embed_dim=48, in_channels=1, image_size=(96, 96, 96) +): + segresnet = SegResNetDS2( + in_channels=in_channels, + blocks_down=(1, 2, 2, 4, 4), + norm="instance", + out_channels=encoder_embed_dim, + init_filters=encoder_embed_dim, + dsdepth=1, + ) + point_head = Point_Mapping_SAM(feature_size=encoder_embed_dim, last_supported=132) + class_head = Class_Mapping_Classify( + n_classes=512, feature_size=encoder_embed_dim, use_mlp=True + ) + vista = VISTA3D2( + image_encoder=segresnet, + class_head=class_head, + point_head=point_head, + feature_size=encoder_embed_dim, + ) + return vista + + +vista_model_registry = {"vista3d_segresnet_d": build_vista3d_segresnet_decoder} diff --git a/vista3d/vista3d/modeling/__init__.py b/vista3d/vista3d/modeling/__init__.py new file mode 100644 index 0000000..38ddfb7 --- /dev/null +++ b/vista3d/vista3d/modeling/__init__.py @@ -0,0 +1,4 @@ +from .class_head import Class_Mapping_Classify # noqa: F401 +from .point_head import Point_Mapping_SAM # noqa: F401 +from .segresnetds import SegResNetDS2 # noqa: F401 +from .vista3d import VISTA3D2 # noqa: F401 diff --git a/vista3d/vista3d/modeling/class_head.py b/vista3d/vista3d/modeling/class_head.py new file mode 100644 index 0000000..a55de51 --- /dev/null +++ b/vista3d/vista3d/modeling/class_head.py @@ -0,0 +1,53 @@ +import monai +import torch +import torch.nn as nn + + +class Class_Mapping_Classify(nn.Module): + def __init__(self, n_classes, feature_size, use_mlp=False): + super().__init__() + self.use_mlp = use_mlp + if use_mlp: + self.mlp = nn.Sequential( + nn.Linear(feature_size, feature_size), + nn.InstanceNorm1d(1), + nn.GELU(), + nn.Linear(feature_size, feature_size), + ) + self.class_embeddings = nn.Embedding(n_classes, feature_size) + self.image_post_mapping = nn.Sequential( + monai.networks.blocks.UnetrBasicBlock( + spatial_dims=3, + in_channels=feature_size, + out_channels=feature_size, + kernel_size=3, + stride=1, + norm_name="instance", + res_block=True, + ), + monai.networks.blocks.UnetrBasicBlock( + spatial_dims=3, + in_channels=feature_size, + out_channels=feature_size, + kernel_size=3, + stride=1, + norm_name="instance", + res_block=True, + ), + ) + + def forward(self, src, class_vector): + b, c, h, w, d = src.shape + src = self.image_post_mapping(src) + class_embedding = self.class_embeddings(class_vector) + if self.use_mlp: + class_embedding = self.mlp(class_embedding) + # [b,1,feat] @ [1,feat,dim], batch dimension become class_embedding batch dimension. + masks = [] + for i in range(b): + mask = (class_embedding @ src[[i]].view(1, c, h * w * d)).view( + -1, 1, h, w, d + ) + masks.append(mask) + masks = torch.cat(masks, 1) + return masks, class_embedding diff --git a/vista3d/vista3d/modeling/point_head.py b/vista3d/vista3d/modeling/point_head.py new file mode 100644 index 0000000..d8e6463 --- /dev/null +++ b/vista3d/vista3d/modeling/point_head.py @@ -0,0 +1,171 @@ +from __future__ import annotations + +import numpy as np +import torch +import torch.nn as nn +from monai.utils import optional_import + +from .sam_blocks import MLP, PositionEmbeddingRandom, TwoWayTransformer + +rearrange, _ = optional_import("einops", name="rearrange") + + +class Point_Mapping_SAM(nn.Module): + def __init__( + self, + feature_size, + max_prompt=32, + num_add_mask_tokens=2, + n_classes=512, + last_supported=132, + ): + super().__init__() + transformer_dim = feature_size + self.max_prompt = max_prompt + self.feat_downsample = nn.Sequential( + nn.Conv3d( + in_channels=feature_size, + out_channels=feature_size, + kernel_size=3, + stride=2, + padding=1, + ), + nn.InstanceNorm3d(feature_size), + nn.GELU(), + nn.Conv3d( + in_channels=feature_size, + out_channels=transformer_dim, + kernel_size=3, + stride=1, + padding=1, + ), + nn.InstanceNorm3d(feature_size), + ) + + self.mask_downsample = nn.Conv3d( + in_channels=2, out_channels=2, kernel_size=3, stride=2, padding=1 + ) + + self.transformer = TwoWayTransformer( + depth=2, + embedding_dim=transformer_dim, + mlp_dim=512, + num_heads=4, + ) + self.pe_layer = PositionEmbeddingRandom(transformer_dim // 2) + self.point_embeddings = nn.ModuleList( + [nn.Embedding(1, transformer_dim), nn.Embedding(1, transformer_dim)] + ) + self.not_a_point_embed = nn.Embedding(1, transformer_dim) + self.special_class_embed = nn.Embedding(1, transformer_dim) + self.mask_tokens = nn.Embedding(1, transformer_dim) + + self.output_upscaling = nn.Sequential( + nn.ConvTranspose3d( + transformer_dim, + transformer_dim, + kernel_size=3, + stride=2, + padding=1, + output_padding=1, + ), + nn.InstanceNorm3d(transformer_dim), + nn.GELU(), + nn.Conv3d( + transformer_dim, transformer_dim, kernel_size=3, stride=1, padding=1 + ), + ) + + self.output_hypernetworks_mlps = MLP( + transformer_dim, transformer_dim, transformer_dim, 3 + ) + + ## MultiMask output + self.num_add_mask_tokens = num_add_mask_tokens + self.output_add_hypernetworks_mlps = nn.ModuleList( + [ + MLP(transformer_dim, transformer_dim, transformer_dim, 3) + for i in range(self.num_add_mask_tokens) + ] + ) + # class embedding + self.n_classes = n_classes + self.last_supported = last_supported + self.class_embeddings = nn.Embedding(n_classes, feature_size) + self.zeroshot_embed = nn.Embedding(1, transformer_dim) + self.supported_embed = nn.Embedding(1, transformer_dim) + + def forward(self, out, point_coords, point_labels, class_vector=None): + # downsample out + out_low = self.feat_downsample(out) + out_shape = out.shape[-3:] + out = None + torch.cuda.empty_cache() + # embed points + points = point_coords + 0.5 # Shift to center of pixel + point_embedding = self.pe_layer.forward_with_coords(points, out_shape) + point_embedding[point_labels == -1] = 0.0 + point_embedding[point_labels == -1] += self.not_a_point_embed.weight + point_embedding[point_labels == 0] += self.point_embeddings[0].weight + point_embedding[point_labels == 1] += self.point_embeddings[1].weight + point_embedding[point_labels == 2] += ( + self.point_embeddings[0].weight + self.special_class_embed.weight + ) + point_embedding[point_labels == 3] += ( + self.point_embeddings[1].weight + self.special_class_embed.weight + ) + output_tokens = self.mask_tokens.weight + + output_tokens = output_tokens.unsqueeze(0).expand( + point_embedding.size(0), -1, -1 + ) + if class_vector is None: + tokens_all = torch.cat( + ( + output_tokens, + point_embedding, + self.supported_embed.weight.unsqueeze(0).expand( + point_embedding.size(0), -1, -1 + ), + ), + dim=1, + ) + # tokens_all = torch.cat((output_tokens, point_embedding), dim=1) + else: + class_embeddings = [] + for i in class_vector: + if i > self.last_supported: + class_embeddings.append(self.zeroshot_embed.weight) + else: + class_embeddings.append(self.supported_embed.weight) + class_embeddings = torch.stack(class_embeddings) + tokens_all = torch.cat( + (output_tokens, point_embedding, class_embeddings), dim=1 + ) + # cross attention + masks = [] + max_prompt = self.max_prompt + for i in range(int(np.ceil(tokens_all.shape[0] / max_prompt))): + # remove variables in previous for loops to save peak memory for self.transformer + src, upscaled_embedding, hyper_in = None, None, None + torch.cuda.empty_cache() + idx = (i * max_prompt, min((i + 1) * max_prompt, tokens_all.shape[0])) + tokens = tokens_all[idx[0] : idx[1]] + src = torch.repeat_interleave(out_low, tokens.shape[0], dim=0) + pos_src = torch.repeat_interleave( + self.pe_layer(out_low.shape[-3:]).unsqueeze(0), tokens.shape[0], dim=0 + ) + b, c, h, w, d = src.shape + hs, src = self.transformer(src, pos_src, tokens) + mask_tokens_out = hs[:, :1, :] + hyper_in = self.output_hypernetworks_mlps(mask_tokens_out) + src = src.transpose(1, 2).view(b, c, h, w, d) + upscaled_embedding = self.output_upscaling(src) + b, c, h, w, d = upscaled_embedding.shape + masks.append( + (hyper_in @ upscaled_embedding.view(b, c, h * w * d)).view( + b, -1, h, w, d + ) + ) + masks = torch.vstack(masks) + return masks diff --git a/training/segment_anything/modeling/transformer.py b/vista3d/vista3d/modeling/sam_blocks.py similarity index 61% rename from training/segment_anything/modeling/transformer.py rename to vista3d/vista3d/modeling/sam_blocks.py index 5bdd753..d7bc413 100644 --- a/training/segment_anything/modeling/transformer.py +++ b/vista3d/vista3d/modeling/sam_blocks.py @@ -1,3 +1,15 @@ +# Copyright (c) MONAI Consortium +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# http://www.apache.org/licenses/LICENSE-2.0 +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# Adapted from https://github.com/facebookresearch/segment-anything # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. @@ -5,13 +17,13 @@ # LICENSE file in the root directory of this source tree. import math -from typing import Tuple, Type +from typing import Any, Optional, Tuple, Type +import numpy as np import torch +import torch.nn.functional as F from torch import Tensor, nn -from .common import MLPBlock - class TwoWayTransformer(nn.Module): def __init__( @@ -54,7 +66,9 @@ def __init__( ) ) - self.final_attn_token_to_image = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate) + self.final_attn_token_to_image = Attention( + embedding_dim, num_heads, downsample_rate=attention_downsample_rate + ) self.norm_final_attn = nn.LayerNorm(embedding_dim) def forward( @@ -77,7 +91,7 @@ def forward( torch.Tensor: the processed image_embedding """ # BxCxHxW -> BxHWxC == B x N_image_tokens x C - bs, c, h, w = image_embedding.shape + bs, c, h, w, d = image_embedding.shape image_embedding = image_embedding.flatten(2).permute(0, 2, 1) image_pe = image_pe.flatten(2).permute(0, 2, 1) @@ -94,7 +108,7 @@ def forward( key_pe=image_pe, ) - # Apply the final attenion layer from the points to the image + # Apply the final attention layer from the points to the image q = queries + point_embedding k = keys + image_pe attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys) @@ -131,18 +145,24 @@ def __init__( self.self_attn = Attention(embedding_dim, num_heads) self.norm1 = nn.LayerNorm(embedding_dim) - self.cross_attn_token_to_image = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate) + self.cross_attn_token_to_image = Attention( + embedding_dim, num_heads, downsample_rate=attention_downsample_rate + ) self.norm2 = nn.LayerNorm(embedding_dim) self.mlp = MLPBlock(embedding_dim, mlp_dim, activation) self.norm3 = nn.LayerNorm(embedding_dim) self.norm4 = nn.LayerNorm(embedding_dim) - self.cross_attn_image_to_token = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate) + self.cross_attn_image_to_token = Attention( + embedding_dim, num_heads, downsample_rate=attention_downsample_rate + ) self.skip_first_layer_pe = skip_first_layer_pe - def forward(self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor) -> Tuple[Tensor, Tensor]: + def forward( + self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor + ) -> Tuple[Tensor, Tensor]: # Self attention block if self.skip_first_layer_pe: queries = self.self_attn(q=queries, k=queries, v=queries) @@ -190,7 +210,9 @@ def __init__( self.embedding_dim = embedding_dim self.internal_dim = embedding_dim // downsample_rate self.num_heads = num_heads - assert self.internal_dim % num_heads == 0, "num_heads must divide embedding_dim." + assert ( + self.internal_dim % num_heads == 0 + ), "num_heads must divide embedding_dim." self.q_proj = nn.Linear(embedding_dim, self.internal_dim) self.k_proj = nn.Linear(embedding_dim, self.internal_dim) @@ -230,3 +252,95 @@ def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor: out = self.out_proj(out) return out + + +class PositionEmbeddingRandom(nn.Module): + """ + Positional encoding using random spatial frequencies. + """ + + def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None: + super().__init__() + if scale is None or scale <= 0.0: + scale = 1.0 + self.register_buffer( + "positional_encoding_gaussian_matrix", + scale * torch.randn((3, num_pos_feats)), + ) + + def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor: + """Positionally encode points that are normalized to [0,1].""" + # assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape + coords = 2 * coords - 1 + # [bs=1,N=2,2] @ [2,128] + # [bs=1, N=2, 128] + coords = coords @ self.positional_encoding_gaussian_matrix + coords = 2 * np.pi * coords + # outputs d_1 x ... x d_n x C shape + # [bs=1, N=2, 128+128=256] + return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1) + + def forward(self, size: Tuple[int, int, int]) -> torch.Tensor: + """Generate positional encoding for a grid of the specified size.""" + h, w, d = size + device: Any = self.positional_encoding_gaussian_matrix.device + grid = torch.ones((h, w, d), device=device, dtype=torch.float32) + x_embed = grid.cumsum(dim=0) - 0.5 + y_embed = grid.cumsum(dim=1) - 0.5 + z_embed = grid.cumsum(dim=2) - 0.5 + x_embed = x_embed / h + y_embed = y_embed / w + z_embed = z_embed / d + pe = self._pe_encoding(torch.stack([x_embed, y_embed, z_embed], dim=-1)) + return pe.permute(3, 0, 1, 2) # C x H x W + + def forward_with_coords( + self, coords_input: torch.Tensor, image_size: Tuple[int, int] + ) -> torch.Tensor: + """Positionally encode points that are not normalized to [0,1].""" + coords = coords_input.clone() + coords[:, :, 0] = coords[:, :, 0] / image_size[0] + coords[:, :, 1] = coords[:, :, 1] / image_size[1] + coords[:, :, 2] = coords[:, :, 2] / image_size[2] + return self._pe_encoding(coords.to(torch.float)) # B x N x C + + +class MLPBlock(nn.Module): + def __init__( + self, + embedding_dim: int, + mlp_dim: int, + act: Type[nn.Module] = nn.GELU, + ) -> None: + super().__init__() + self.lin1 = nn.Linear(embedding_dim, mlp_dim) + self.lin2 = nn.Linear(mlp_dim, embedding_dim) + self.act = act() + + def forward(self, x: torch.Tensor) -> torch.Tensor: + return self.lin2(self.act(self.lin1(x))) + + +class MLP(nn.Module): + def __init__( + self, + input_dim: int, + hidden_dim: int, + output_dim: int, + num_layers: int, + sigmoid_output: bool = False, + ) -> None: + super().__init__() + self.num_layers = num_layers + h = [hidden_dim] * (num_layers - 1) + self.layers = nn.ModuleList( + nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]) + ) + self.sigmoid_output = sigmoid_output + + def forward(self, x): + for i, layer in enumerate(self.layers): + x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) + if self.sigmoid_output: + x = F.sigmoid(x) + return x diff --git a/vista3d/vista3d/modeling/segresnetds.py b/vista3d/vista3d/modeling/segresnetds.py new file mode 100644 index 0000000..e8c96d5 --- /dev/null +++ b/vista3d/vista3d/modeling/segresnetds.py @@ -0,0 +1,536 @@ +# Copyright (c) MONAI Consortium +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# http://www.apache.org/licenses/LICENSE-2.0 +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import annotations + +from collections.abc import Callable +from typing import Union + +import numpy as np +import torch +import torch.nn as nn +from monai.networks.blocks.upsample import UpSample +from monai.networks.layers.factories import Act, Conv, Norm, split_args +from monai.networks.layers.utils import get_act_layer, get_norm_layer +from monai.utils import UpsampleMode, has_option + +__all__ = ["SegResNetDS2"] + + +def scales_for_resolution(resolution: tuple | list, n_stages: int | None = None): + """ + A helper function to compute a schedule of scale at different downsampling levels, + given the input resolution. + + .. code-block:: python + + scales_for_resolution(resolution=[1,1,5], n_stages=5) + + Args: + resolution: input image resolution (in mm) + n_stages: optionally the number of stages of the network + """ + + ndim = len(resolution) + res = np.array(resolution) + if not all(res > 0): + raise ValueError("Resolution must be positive") + + nl = np.floor(np.log2(np.max(res) / res)).astype(np.int32) + scales = [tuple(np.where(2**i >= 2**nl, 1, 2)) for i in range(max(nl))] + if n_stages and n_stages > max(nl): + scales = scales + [(2,) * ndim] * (n_stages - max(nl)) + else: + scales = scales[:n_stages] + return scales + + +def aniso_kernel(scale: tuple | list): + """ + A helper function to compute kernel_size, padding and stride for the given scale + + Args: + scale: scale from a current scale level + """ + kernel_size = [3 if scale[k] > 1 else 1 for k in range(len(scale))] + padding = [k // 2 for k in kernel_size] + return kernel_size, padding, scale + + +class SegResBlock(nn.Module): + """ + Residual network block used SegResNet based on `3D MRI brain tumor segmentation using autoencoder regularization + `_. + """ + + def __init__( + self, + spatial_dims: int, + in_channels: int, + norm: tuple | str, + kernel_size: tuple | int = 3, + act: tuple | str = "relu", + ) -> None: + """ + Args: + spatial_dims: number of spatial dimensions, could be 1, 2 or 3. + in_channels: number of input channels. + norm: feature normalization type and arguments. + kernel_size: convolution kernel size. Defaults to 3. + act: activation type and arguments. Defaults to ``RELU``. + """ + super().__init__() + + if isinstance(kernel_size, (tuple, list)): + padding = tuple(k // 2 for k in kernel_size) + else: + padding = kernel_size // 2 # type: ignore + + self.norm1 = get_norm_layer( + name=norm, spatial_dims=spatial_dims, channels=in_channels + ) + self.act1 = get_act_layer(act) + self.conv1 = Conv[Conv.CONV, spatial_dims]( + in_channels=in_channels, + out_channels=in_channels, + kernel_size=kernel_size, + stride=1, + padding=padding, + bias=False, + ) + + self.norm2 = get_norm_layer( + name=norm, spatial_dims=spatial_dims, channels=in_channels + ) + self.act2 = get_act_layer(act) + self.conv2 = Conv[Conv.CONV, spatial_dims]( + in_channels=in_channels, + out_channels=in_channels, + kernel_size=kernel_size, + stride=1, + padding=padding, + bias=False, + ) + + def forward(self, x): + identity = x + x = self.conv1(self.act1(self.norm1(x))) + x = self.conv2(self.act2(self.norm2(x))) + x += identity + return x + + +class SegResEncoder(nn.Module): + """ + SegResEncoder based on the econder structure in `3D MRI brain tumor segmentation using autoencoder regularization + `_. + + Args: + spatial_dims: spatial dimension of the input data. Defaults to 3. + init_filters: number of output channels for initial convolution layer. Defaults to 32. + in_channels: number of input channels for the network. Defaults to 1. + out_channels: number of output channels for the network. Defaults to 2. + act: activation type and arguments. Defaults to ``RELU``. + norm: feature normalization type and arguments. Defaults to ``BATCH``. + blocks_down: number of downsample blocks in each layer. Defaults to ``[1,2,2,4]``. + head_module: optional callable module to apply to the final features. + anisotropic_scales: optional list of scale for each scale level. + """ + + def __init__( + self, + spatial_dims: int = 3, + init_filters: int = 32, + in_channels: int = 1, + act: tuple | str = "relu", + norm: tuple | str = "batch", + blocks_down: tuple = (1, 2, 2, 4), + head_module: nn.Module | None = None, + anisotropic_scales: tuple | None = None, + ): + super().__init__() + + if spatial_dims not in (1, 2, 3): + raise ValueError("`spatial_dims` can only be 1, 2 or 3.") + + # ensure normalization has affine trainable parameters (if not specified) + norm = split_args(norm) + if has_option(Norm[norm[0], spatial_dims], "affine"): + norm[1].setdefault("affine", True) # type: ignore + + # ensure activation is inplace (if not specified) + act = split_args(act) + if has_option(Act[act[0]], "inplace"): + act[1].setdefault("inplace", True) # type: ignore + + filters = init_filters # base number of features + + kernel_size, padding, _ = ( + aniso_kernel(anisotropic_scales[0]) if anisotropic_scales else (3, 1, 1) + ) + self.conv_init = Conv[Conv.CONV, spatial_dims]( + in_channels=in_channels, + out_channels=filters, + kernel_size=kernel_size, + padding=padding, + stride=1, + bias=False, + ) + self.layers = nn.ModuleList() + + for i in range(len(blocks_down)): + level = nn.ModuleDict() + + kernel_size, padding, stride = ( + aniso_kernel(anisotropic_scales[i]) if anisotropic_scales else (3, 1, 2) + ) + blocks = [ + SegResBlock( + spatial_dims=spatial_dims, + in_channels=filters, + kernel_size=kernel_size, + norm=norm, + act=act, + ) + for _ in range(blocks_down[i]) + ] + level["blocks"] = nn.Sequential(*blocks) + + if i < len(blocks_down) - 1: + level["downsample"] = Conv[Conv.CONV, spatial_dims]( + in_channels=filters, + out_channels=2 * filters, + bias=False, + kernel_size=kernel_size, + stride=stride, + padding=padding, + ) + else: + level["downsample"] = nn.Identity() + + self.layers.append(level) + filters *= 2 + + self.head_module = head_module + self.in_channels = in_channels + self.blocks_down = blocks_down + self.init_filters = init_filters + self.norm = norm + self.act = act + self.spatial_dims = spatial_dims + + def _forward(self, x: torch.Tensor) -> list[torch.Tensor]: + outputs = [] + x = self.conv_init(x) + + for level in self.layers: + x = level["blocks"](x) + outputs.append(x) + x = level["downsample"](x) + + if self.head_module is not None: + outputs = self.head_module(outputs) + + return outputs + + def forward(self, x: torch.Tensor) -> list[torch.Tensor]: + return self._forward(x) + + +class SegResNetDS2(nn.Module): + """ + SegResNetDS based on `3D MRI brain tumor segmentation using autoencoder regularization + `_. + It is similar to https://docs.monai.io/en/stable/networks.html#segresnet, with several + improvements including deep supervision and non-isotropic kernel support. + + Args: + spatial_dims: spatial dimension of the input data. Defaults to 3. + init_filters: number of output channels for initial convolution layer. Defaults to 32. + in_channels: number of input channels for the network. Defaults to 1. + out_channels: number of output channels for the network. Defaults to 2. + act: activation type and arguments. Defaults to ``RELU``. + norm: feature normalization type and arguments. Defaults to ``BATCH``. + blocks_down: number of downsample blocks in each layer. Defaults to ``[1,2,2,4]``. + blocks_up: number of upsample blocks (optional). + dsdepth: number of levels for deep supervision. This will be the length of the list of outputs at each scale level. + At dsdepth==1,only a single output is returned. + preprocess: optional callable function to apply before the model's forward pass + resolution: optional input image resolution. When provided, the network will first use non-isotropic kernels to bring + image spacing into an approximately isotropic space. + Otherwise, by default, the kernel size and downsampling is always isotropic. + + """ + + def __init__( + self, + spatial_dims: int = 3, + init_filters: int = 32, + in_channels: int = 1, + out_channels: int = 2, + act: tuple | str = "relu", + norm: tuple | str = "batch", + blocks_down: tuple = (1, 2, 2, 4), + blocks_up: tuple | None = None, + dsdepth: int = 1, + preprocess: nn.Module | Callable | None = None, + upsample_mode: UpsampleMode | str = "deconv", + resolution: tuple | None = None, + ): + super().__init__() + + if spatial_dims not in (1, 2, 3): + raise ValueError("`spatial_dims` can only be 1, 2 or 3.") + + self.spatial_dims = spatial_dims + self.init_filters = init_filters + self.in_channels = in_channels + self.out_channels = out_channels + self.act = act + self.norm = norm + self.blocks_down = blocks_down + self.dsdepth = max(dsdepth, 1) + self.resolution = resolution + self.preprocess = preprocess + + if resolution is not None: + if not isinstance(resolution, (list, tuple)): + raise TypeError("resolution must be a tuple") + elif not all(r > 0 for r in resolution): + raise ValueError("resolution must be positive") + + # ensure normalization had affine trainable parameters (if not specified) + norm = split_args(norm) + if has_option(Norm[norm[0], spatial_dims], "affine"): + norm[1].setdefault("affine", True) # type: ignore + + # ensure activation is inplace (if not specified) + act = split_args(act) + if has_option(Act[act[0]], "inplace"): + act[1].setdefault("inplace", True) # type: ignore + + anisotropic_scales = None + if resolution: + anisotropic_scales = scales_for_resolution( + resolution, n_stages=len(blocks_down) + ) + self.anisotropic_scales = anisotropic_scales + + self.encoder = SegResEncoder( + spatial_dims=spatial_dims, + init_filters=init_filters, + in_channels=in_channels, + act=act, + norm=norm, + blocks_down=blocks_down, + anisotropic_scales=anisotropic_scales, + ) + + n_up = len(blocks_down) - 1 + if blocks_up is None: + blocks_up = (1,) * n_up # assume 1 upsample block per level + self.blocks_up = blocks_up + + filters = init_filters * 2**n_up + self.up_layers = nn.ModuleList() + self.up_layers_auto = nn.ModuleList() + + for i in range(n_up): + filters = filters // 2 + kernel_size, _, stride = ( + aniso_kernel(anisotropic_scales[len(blocks_up) - i - 1]) + if anisotropic_scales + else (3, 1, 2) + ) + + level = nn.ModuleDict() + level_auto = nn.ModuleDict() + level["upsample"] = UpSample( + mode=upsample_mode, + spatial_dims=spatial_dims, + in_channels=2 * filters, + out_channels=filters, + kernel_size=kernel_size, + scale_factor=stride, + bias=False, + align_corners=False, + ) + level_auto["upsample"] = UpSample( + mode=upsample_mode, + spatial_dims=spatial_dims, + in_channels=2 * filters, + out_channels=filters, + kernel_size=kernel_size, + scale_factor=stride, + bias=False, + align_corners=False, + ) + blocks = [ + SegResBlock( + spatial_dims=spatial_dims, + in_channels=filters, + kernel_size=kernel_size, + norm=norm, + act=act, + ) + for _ in range(blocks_up[i]) + ] + level["blocks"] = nn.Sequential(*blocks) + blocks = [ + SegResBlock( + spatial_dims=spatial_dims, + in_channels=filters, + kernel_size=kernel_size, + norm=norm, + act=act, + ) + for _ in range(blocks_up[i]) + ] + level_auto["blocks"] = nn.Sequential(*blocks) + if len(blocks_up) - i <= dsdepth: # deep supervision heads + level["head"] = Conv[Conv.CONV, spatial_dims]( + in_channels=filters, + out_channels=out_channels, + kernel_size=1, + bias=True, + ) + level_auto["head"] = Conv[Conv.CONV, spatial_dims]( + in_channels=filters, + out_channels=out_channels, + kernel_size=1, + bias=True, + ) + else: + level["head"] = nn.Identity() + level_auto["head"] = nn.Identity() + + self.up_layers.append(level) + self.up_layers_auto.append(level_auto) + + if ( + n_up == 0 + ): # in a corner case of flat structure (no downsampling), attache a single head + level = nn.ModuleDict( + { + "upsample": nn.Identity(), + "blocks": nn.Identity(), + "head": Conv[Conv.CONV, spatial_dims]( + in_channels=filters, + out_channels=out_channels, + kernel_size=1, + bias=True, + ), + } + ) + level_auto = nn.ModuleDict( + { + "upsample": nn.Identity(), + "blocks": nn.Identity(), + "head": Conv[Conv.CONV, spatial_dims]( + in_channels=filters, + out_channels=out_channels, + kernel_size=1, + bias=True, + ), + } + ) + self.up_layers.append(level) + self.up_layers_auto.append(level_auto) + + def shape_factor(self): + """ + Calculate the factors (divisors) that the input image shape must be divisible by + """ + if self.anisotropic_scales is None: + d = [2 ** (len(self.blocks_down) - 1)] * self.spatial_dims + else: + d = list(np.prod(np.array(self.anisotropic_scales[:-1]), axis=0)) + return d + + def is_valid_shape(self, x): + """ + Calculate if the input shape is divisible by the minimum factors for the current network configuration + """ + a = [i % j == 0 for i, j in zip(x.shape[2:], self.shape_factor())] + return all(a) + + def _forward( + self, x: torch.Tensor, with_point, with_label + ) -> Union[None, torch.Tensor, list[torch.Tensor]]: + if self.preprocess is not None: + x = self.preprocess(x) + + if not self.is_valid_shape(x): + raise ValueError( + f"Input spatial dims {x.shape} must be divisible by {self.shape_factor()}" + ) + + x_down = self.encoder(x) + + x_down.reverse() + x = x_down.pop(0) + + if len(x_down) == 0: + x_down = [torch.zeros(1, device=x.device, dtype=x.dtype)] + + outputs: list[torch.Tensor] = [] + outputs_auto: list[torch.Tensor] = [] + x_ = x.clone() + if with_point: + i = 0 + for level in self.up_layers: + x = level["upsample"](x) + x = x + x_down[i] + x = level["blocks"](x) + + if len(self.up_layers) - i <= self.dsdepth: + outputs.append(level["head"](x)) + i = i + 1 + + outputs.reverse() + x = x_ + if with_label: + i = 0 + for level in self.up_layers_auto: + x = level["upsample"](x) + x = x + x_down[i] + x = level["blocks"](x) + + if len(self.up_layers) - i <= self.dsdepth: + outputs_auto.append(level["head"](x)) + i = i + 1 + + outputs_auto.reverse() + + # in eval() mode, always return a single final output + if not self.training or len(outputs) == 1: + outputs = outputs[0] if len(outputs) == 1 else outputs + + if not self.training or len(outputs_auto) == 1: + outputs_auto = outputs_auto[0] if len(outputs_auto) == 1 else outputs_auto + + # return a list of DS outputs + return outputs, outputs_auto + + def forward( + self, x: torch.Tensor, with_point=True, with_label=True, **kwargs + ) -> Union[None, torch.Tensor, list[torch.Tensor]]: + return self._forward(x, with_point, with_label) + + def set_auto_grad(self, auto_freeze=False, point_freeze=False): + for param in self.encoder.parameters(): + param.requires_grad = (not auto_freeze) and (not point_freeze) + + for param in self.up_layers_auto.parameters(): + param.requires_grad = not auto_freeze + + for param in self.up_layers.parameters(): + param.requires_grad = not point_freeze diff --git a/vista3d/vista3d/modeling/vista3d.py b/vista3d/vista3d/modeling/vista3d.py new file mode 100644 index 0000000..a67b660 --- /dev/null +++ b/vista3d/vista3d/modeling/vista3d.py @@ -0,0 +1,345 @@ +# Copyright (c) MONAI Consortium +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# http://www.apache.org/licenses/LICENSE-2.0 +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import annotations + +import monai +import numpy as np +import torch +import torch.nn as nn +from monai.utils import optional_import +from scripts.utils.trans_utils import convert_points_to_disc +from scripts.utils.trans_utils import get_largest_connected_component_mask as lcc +from scripts.utils.workflow_utils import sample_points_patch_val + +rearrange, _ = optional_import("einops", name="rearrange") +NINF_VALUE = -9999 +PINF_VALUE = 9999 + + +class VISTA3D2(nn.Module): + def __init__(self, image_encoder, class_head, point_head, feature_size): + super().__init__() + self.image_encoder = image_encoder + self.class_head = class_head + self.point_head = point_head + self.image_embeddings = None + self.weight_mapper = nn.Sequential( + nn.Linear(feature_size, 4 * feature_size), + nn.GELU(), + nn.InstanceNorm1d(4 * feature_size), + nn.Linear(4 * feature_size, 1), + ) + self.auto_freeze = False + self.point_freeze = False + + def precompute_embedding(self, input_images): + """precompute image embedding, require sliding window inference""" + raise NotImplementedError + + def clear_cache(self): + self.image_embeddings = None + + def get_bs(self, class_vector, point_coords): + if class_vector is None: + assert point_coords is not None, "prompt is required" + return point_coords.shape[0] + else: + return class_vector.shape[0] + + def update_point_to_patch(self, patch_coords, point_coords, point_labels): + """Update point_coords with respect to patch coords. + If point is outside of the patch, remove the coordinates and set label to -1 + """ + patch_ends = [ + patch_coords[-3].stop, + patch_coords[-2].stop, + patch_coords[-1].stop, + ] + patch_starts = [ + patch_coords[-3].start, + patch_coords[-2].start, + patch_coords[-1].start, + ] + # update point coords + patch_starts = ( + torch.tensor(patch_starts, device=point_coords.device) + .unsqueeze(0) + .unsqueeze(0) + ) + patch_ends = ( + torch.tensor(patch_ends, device=point_coords.device) + .unsqueeze(0) + .unsqueeze(0) + ) + # [1 N 1] + indices = torch.logical_and( + ((point_coords - patch_starts) > 0).all(2), + ((patch_ends - point_coords) > 0).all(2), + ) + # check if it's within patch coords + point_coords = point_coords.clone() - patch_starts + point_labels = point_labels.clone() + if indices.any(): + point_labels[~indices] = -1 + point_coords[~indices] = 0 + # also remove padded points, mainly used for inference. + not_pad_indices = (point_labels != -1).any(0) + point_coords = point_coords[:, not_pad_indices] + point_labels = point_labels[:, not_pad_indices] + else: + point_coords = None + point_labels = None + return point_coords, point_labels + + def connected_components_combine( + self, logits, point_logits, point_coords, point_labels, mapping_index, thred=0.5 + ): + """Combine auto results with point click response, or combine previous mask with point click response. + For mapping_index with point clicks, NaN values in logits will be replaced with point_logits. Meanwhile, the added/removed + region in point clicks must be updated by the lcc function. Notice, if a positive point is within logits/prev_mask, the components containing the positive point + will be added. + """ + logits = ( + logits.as_tensor() if isinstance(logits, monai.data.MetaTensor) else logits + ) + _logits = logits[mapping_index] + inside = [] + for i in range(_logits.shape[0]): + inside.append( + np.any( + [ + _logits[ + i, + 0, + round(p[0].item()), + round(p[1].item()), + round(p[2].item()), + ].item() + > 0 + for p in point_coords[i] + ] + ) + ) + inside = torch.tensor(inside).to(logits.device) + nan_mask = torch.isnan(_logits) + _logits = torch.nan_to_num(_logits, nan=NINF_VALUE).sigmoid() + pos_region = point_logits.sigmoid() > thred + diff_pos = torch.logical_and( + torch.logical_or( + (_logits <= thred), + inside.unsqueeze(-1).unsqueeze(-1).unsqueeze(-1).unsqueeze(-1), + ), + pos_region, + ) + diff_neg = torch.logical_and((_logits > thred), ~pos_region) + cc = lcc( + diff_pos, diff_neg, point_coords=point_coords, point_labels=point_labels + ) + # cc is the region that can be updated by point_logits. + cc = cc.to(logits.device) + # Need to replace NaN with point_logits. diff_neg will never lie in nan_mask, only remove unconnected positive region. + uc_pos_region = torch.logical_and(pos_region, ~cc) + fill_mask = torch.logical_and(nan_mask, uc_pos_region) + if fill_mask.any(): + # fill in the mean negative value + point_logits[fill_mask] = -1 + # replace logits nan value and cc with point_logits + cc = torch.logical_or(nan_mask, cc).to(logits.dtype) + logits[mapping_index] *= 1 - cc + logits[mapping_index] += cc * point_logits + # debug_ccp(_logits, point_logits.sigmoid(), point_coords, point_labels, diff, cc, logits[mapping_index], np.random.randint(10000)) + return logits + + def gaussian_combine( + self, logits, point_logits, point_coords, point_labels, mapping_index, radius + ): + """Combine point results with auto results using gaussian.""" + if radius is None: + radius = min(point_logits.shape[-3:]) // 5 # empirical value 5 + weight = 1 - convert_points_to_disc( + point_logits.shape[-3:], point_coords, point_labels, radius=radius + ).sum(1, keepdims=True) + weight[weight < 0] = 0 + logits = ( + logits.as_tensor() if isinstance(logits, monai.data.MetaTensor) else logits + ) + logits[mapping_index] *= weight + logits[mapping_index] += (1 - weight) * point_logits + return logits + + def set_auto_grad(self, auto_freeze=False, point_freeze=False): + """Freeze auto-branch or point-branch""" + if auto_freeze != self.auto_freeze: + if hasattr(self.image_encoder, "set_auto_grad"): + self.image_encoder.set_auto_grad( + auto_freeze=auto_freeze, point_freeze=point_freeze + ) + else: + for param in self.image_encoder.parameters(): + param.requires_grad = (not auto_freeze) and (not point_freeze) + for param in self.class_head.parameters(): + param.requires_grad = not auto_freeze + self.auto_freeze = auto_freeze + + if point_freeze != self.point_freeze: + if hasattr(self.image_encoder, "set_auto_grad"): + self.image_encoder.set_auto_grad( + auto_freeze=auto_freeze, point_freeze=point_freeze + ) + else: + for param in self.image_encoder.parameters(): + param.requires_grad = (not auto_freeze) and (not point_freeze) + for param in self.point_head.parameters(): + param.requires_grad = not point_freeze + self.point_freeze = point_freeze + + def forward( + self, + input_images, + point_coords=None, + point_labels=None, + class_vector=None, + prompt_class=None, + patch_coords=None, + labels=None, + label_set=None, + prev_mask=None, + radius=None, + val_point_sampler=None, + **kwargs, + ): + """ + The forward function for VISTA3D. We only support single patch in training and inference. + One exception is allowing sliding window batch size > 1 for automatic segmentation only case. + B represents number of objects, N represents number of points for each objects. + Args: + input_images: [1, 1, H, W, D] + point_coords: [B, N, 3] + point_labels: [B, N], -1 represents padding. 0/1 means negative/positive points for regular class. + 2/3 means negative/postive ponits for special supported class like tumor. + class_vector: [B, 1], the global class index + prompt_class: [B, 1], the global class index. This value is associated with point_coords to identify if + the points are for zero-shot or supported class. When class_vector and point_coords are both + provided, prompt_class is the same as class_vector. For prompt_class[b] > 512, point_coords[b] + will be considered novel class. + patch_coords: the python slice object representing the patch coordinates during sliding window inference. This value is + passed from monai_utils.sliding_window_inferer. This is an indicator for training phase or validation phase. + labels: [1, 1, H, W, D], the groundtruth label tensor, only used for point-only evaluation + label_set: the label index matching the indexes in labels. If labels are mapped to global index using RelabelID, + this label_set should be global mapped index. If labels are not mapped to global index, e.g. in zero-shot + evaluation, this label_set should be the original index. + prev_mask: [B, N, H_fullsize, W_fullsize, D_fullsize]. This is the transposed raw output from sliding_window_inferer before + any postprocessing. When user click points to perform auto-results correction, this can be the auto-results. + radius: single float value controling the gaussian blur when combining point and auto results. The gaussian combine is not used + in VISTA3D training but might be useful for finetuning purposes. + val_point_sampler: function used to sample points from labels. This is only used for point-only evaluation. + + """ + image_size = input_images.shape[-3:] + device = input_images.device + if point_coords is None and class_vector is None: + return NINF_VALUE + torch.zeros([1, 1, *image_size], device=device) + + bs = self.get_bs(class_vector, point_coords) + if patch_coords is not None: + # if during validation and perform enable based point-validation. + if labels is not None and label_set is not None: + # if labels is not None, sample from labels for each patch. + if val_point_sampler is None: + val_point_sampler = sample_points_patch_val + point_coords, point_labels, prompt_class = val_point_sampler( + labels, patch_coords, label_set + ) + if prompt_class[0].item() == 0: + point_labels[0] = -1 + labels, prev_mask = None, None + elif point_coords is not None: + # If not performing patch-based point only validation, use user provided click points for inference. + # the point clicks is in original image space, convert it to current patch-coordinate space. + point_coords, point_labels = self.update_point_to_patch( + patch_coords, point_coords, point_labels + ) + + if point_coords is not None and point_labels is not None: + # remove points that used for padding purposes (point_label = -1) + mapping_index = ((point_labels != -1).sum(1) > 0).to(torch.bool) + if mapping_index.any(): + point_coords = point_coords[mapping_index] + point_labels = point_labels[mapping_index] + if prompt_class is not None: + prompt_class = prompt_class[mapping_index] + else: + if self.auto_freeze or (class_vector is None and patch_coords is None): + # if auto_freeze, point prompt must exist to allow loss backward + # in training, class_vector and point cannot both be None due to loss.backward() + mapping_index.fill_(True) + else: + point_coords, point_labels = None, None + + if point_coords is None and class_vector is None: + return NINF_VALUE + torch.zeros([bs, 1, *image_size], device=device) + + if ( + self.image_embeddings is not None + and kwargs.get("keep_cache", False) + and class_vector is None + ): + out, out_auto = self.image_embeddings, None + else: + out, out_auto = self.image_encoder( + input_images, + with_point=point_coords is not None, + with_label=class_vector is not None, + ) + input_images = None + + # force releasing memories that set to None + torch.cuda.empty_cache() + if class_vector is not None: + logits, _ = self.class_head(out_auto, class_vector) + if point_coords is not None: + point_logits = self.point_head( + out, point_coords, point_labels, class_vector=prompt_class + ) + if patch_coords is None: + logits = self.gaussian_combine( + logits, + point_logits, + point_coords, + point_labels, + mapping_index, + radius, + ) + else: + # during validation use largest component + logits = self.connected_components_combine( + logits, point_logits, point_coords, point_labels, mapping_index + ) + else: + logits = NINF_VALUE + torch.zeros( + [bs, 1, *image_size], device=device, dtype=out.dtype + ) + logits[mapping_index] = self.point_head( + out, point_coords, point_labels, class_vector=prompt_class + ) + if prev_mask is not None and patch_coords is not None: + logits = self.connected_components_combine( + prev_mask[patch_coords].transpose(1, 0).to(logits.device), + logits[mapping_index], + point_coords, + point_labels, + mapping_index, + ) + + if kwargs.get("keep_cache", False) and class_vector is None: + self.image_embeddings = out.detach() + return logits