This repository has been archived by the owner on Jun 7, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 25
/
serving_rest_client_test.py
124 lines (100 loc) · 3.6 KB
/
serving_rest_client_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
from random import randint
import numpy as np
from PIL import Image as pilimage
import requests
import tensorflow as tf
import argparse
import getpass
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def try_importing_mathplotlib():
plotting = False
try:
import matplotlib
plotting = True
except ImportError:
print('Matplotlib not detected - images plotting not available')
return plotting
def get_image_from_drive(path):
# Load the image
image = pilimage.open(path)
image = image.convert('L')
image = np.resize(image, (28,28,1))
image = np.array(image)
image = image.reshape(28,28)
return image
def get_random_image_from_dataset(x_test, y_test):
image_index=randint(0, 9999)
print('target class (from random test sample): %d' % y_test[image_index])
return x_test[image_index]
def show_selected_image(image):
import matplotlib.pyplot as plt
fig = plt.figure()
plt.subplot(1, 1, 1)
plt.tight_layout()
plt.imshow(image, cmap='gray', interpolation='none')
plt.xticks([])
plt.yticks([])
plt.show()
def make_vector(image):
vector = []
for item in image.tolist():
vector.extend(item)
return vector
def make_prediction_request(image, prediction_url, auth, verify):
vector = make_vector(image)
json = {
"inputs": [vector]
}
response = requests.post(prediction_url, json=json, auth=auth, verify=verify)
print('HTTP Response %s' % response.status_code)
print(response.text)
def main():
parser = argparse.ArgumentParser(description='Test MNIST Tensorflow Server')
parser.add_argument('-u', '--url', help='Prediction HOST URL', default='http://127.0.0.1:8501/v1/models/mnist:predict')
parser.add_argument('-p', '--path', help='Example image path')
parser.add_argument('-U', '--username', help='Basic Auth username')
parser.add_argument('-P', '--password', help='Basic Auth password')
parser.add_argument('-i', '--iterations', type=int, help='Number of iterations; use -1 for forever')
parser.add_argument('-V', '--verify', type=str2bool, help='Verify host SSL/TLS certificates; defaults to True', default=True)
parser.add_argument('-S', '--show', type=str2bool, help='Show sample digit using mathplotlib; defaults to False', default=False)
args = parser.parse_args()
plotting = False
if args.show:
plotting = try_importing_mathplotlib()
i = 1
req_cnt = 0
if args.iterations:
i = args.iterations
ploting = False
auth = None
if args.username:
if args.password is None:
args.password = getpass.getpass()
auth = (args.username, args.password)
# Load image from drive if specified, if not load example image from mnist dataset
if args.path:
image = get_image_from_drive(args.path)
else:
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
image = get_random_image_from_dataset(x_test, y_test)
if plotting:
show_selected_image(image)
while i != 0:
if args.iterations:
req_cnt += 1
print('Iteration: %d' % req_cnt)
make_prediction_request(image, args.url, auth, args.verify)
if i > 0:
i -= 1
if i != 0 and args.path is None:
image = get_random_image_from_dataset(x_test, y_test)
if __name__ == '__main__':
main()