forked from AdrienBenamira/membership_inference_attack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
trainer.py
106 lines (82 loc) · 3.47 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def train_model(model, criterion, optimizer, scheduler, dataloaders, dataset_sizes, num_epochs=25):
print("DATASET SIZE", dataset_sizes)
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0
retunr_value_train = np.zeros((4,num_epochs))
for epoch in range(num_epochs):
#print('Epoch {}/{}'.format(epoch, num_epochs - 1))
#print('-' * 10)
X = []
Y = []
C = []
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
scheduler.step()
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for batch_idx, (data, target) in enumerate( dataloaders[phase]):
inputs, labels = data.to(device), target.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
if epoch == num_epochs-1:
for out in outputs.cpu().detach().numpy():
X.append(out)
if phase == "train":
Y.append(1)
else:
Y.append(0)
for cla in labels.cpu().detach().numpy():
C.append(cla)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
if phase == 'train':
retunr_value_train[0][epoch] = epoch_loss
retunr_value_train[1][epoch] = epoch_acc
else:
retunr_value_train[2][epoch] = epoch_loss
retunr_value_train[3][epoch] = epoch_acc
#print('{} Loss: {:.4f} Acc: {:.4f}'.format(
# phase, epoch_loss, epoch_acc))
# deep copy the model
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
#print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print("DONE TRAIN")
# load best model weights
# model.load_state_dict(best_model_wts)
return model, retunr_value_train, np.array(X), np.array(Y), np.array(C)