diff --git a/doc/jupyter/Demo/Demo_6_ENSO.ipynb b/doc/jupyter/Demo/Demo_6_ENSO.ipynb index 638ddea3f..74c4c4671 100644 --- a/doc/jupyter/Demo/Demo_6_ENSO.ipynb +++ b/doc/jupyter/Demo/Demo_6_ENSO.ipynb @@ -2,6 +2,7 @@ "cells": [ { "cell_type": "markdown", + "id": "f02518f6", "metadata": {}, "source": [ "# ENSO" @@ -9,10 +10,15 @@ }, { "cell_type": "markdown", + "id": "1bb7a1ac", "metadata": {}, "source": [ "This notebook provides an overview of running the ENSO metrics. More information can be found in the [README]( ). Example parameter files are located in the [PMP sample setups]( ). \n", "\n", + "**Reference**: Planton, Y., E. Guilyardi, A. T. Wittenberg, J. Lee, P. J. Gleckler, T. Bayr, S. McGregor, M. J. McPhaden, S. Power, R. Roehrig, A. Voldoire, 2020: Evaluating El NiƱo in climate models with the CLIVAR 2020 ENSO metrics package. Bulletin of the American Meteorological Society. [doi: 10.1175/BAMS-D-19-0337.1](https://doi.org/10.1175/BAMS-D-19-0337.1)\n", + "\n", + "Description for individual metrics can be found at https://github.com/CLIVAR-PRP/ENSO_metrics/wiki.\n", + "\n", "### Requirements\n", "\n", "The first two sections of this notebook help to set up the demo data and environment.\n", @@ -24,6 +30,7 @@ }, { "cell_type": "markdown", + "id": "7a6383bf", "metadata": {}, "source": [ "## Download demo data" @@ -31,6 +38,7 @@ }, { "cell_type": "markdown", + "id": "cdc4b9e2", "metadata": {}, "source": [ "The ENSO metric requires a different set of sample data than the rest of the PMP metrics. This section of the notebook will download that data to your chosen location and generate a basic parameter file." @@ -39,6 +47,7 @@ { "cell_type": "code", "execution_count": 1, + "id": "da5d715f", "metadata": {}, "outputs": [], "source": [ @@ -51,6 +60,7 @@ }, { "cell_type": "markdown", + "id": "ec2d5a6a", "metadata": {}, "source": [ "If you want to change the location where the demo data and output are stored, you can do so here:" @@ -59,6 +69,7 @@ { "cell_type": "code", "execution_count": 2, + "id": "8e7cc829", "metadata": {}, "outputs": [], "source": [ @@ -70,6 +81,7 @@ }, { "cell_type": "markdown", + "id": "f2386574", "metadata": {}, "source": [ "Then download the data. The total sample data size is 10.8 GB. This will take several minutes." @@ -78,6 +90,7 @@ { "cell_type": "code", "execution_count": 3, + "id": "520aa1c5", "metadata": {}, "outputs": [ { @@ -101,6 +114,7 @@ }, { "cell_type": "markdown", + "id": "11aa0d9f", "metadata": {}, "source": [ "After downloading the data, we generate the parameter file for this demo." @@ -109,6 +123,7 @@ { "cell_type": "code", "execution_count": 4, + "id": "bf31cbd1", "metadata": {}, "outputs": [ { @@ -128,6 +143,7 @@ }, { "cell_type": "markdown", + "id": "81ab1e49", "metadata": {}, "source": [ "## Environment" @@ -135,6 +151,7 @@ }, { "cell_type": "markdown", + "id": "647d09fa", "metadata": {}, "source": [ "[ENSO Metrics package](https://github.com/CLIVAR-PRP/ENSO_metrics) and [scipy](https://www.scipy.org/) installations are needed. This section will clone the ENSO Metrics repository and *install ENSO Metrics and scipy in your current conda environment*. Set the `enso_install_location` below to chose where to clone the ENSO Metrics repository." @@ -143,6 +160,7 @@ { "cell_type": "code", "execution_count": 5, + "id": "d632f1ab", "metadata": {}, "outputs": [], "source": [ @@ -151,6 +169,7 @@ }, { "cell_type": "markdown", + "id": "ed720426", "metadata": {}, "source": [ "To clone and install the ENSO Metrics package, un-comment the next cell and run it (delete quotes in lines 1 & 6)." @@ -159,6 +178,7 @@ { "cell_type": "code", "execution_count": 6, + "id": "aecd5bcc", "metadata": { "scrolled": true }, @@ -186,6 +206,7 @@ }, { "cell_type": "markdown", + "id": "137de9c7", "metadata": {}, "source": [ "To install scipy, un-comment the next cell and run it (delete quotes in lines 1 & 3)." @@ -194,6 +215,7 @@ { "cell_type": "code", "execution_count": 7, + "id": "046c7468", "metadata": {}, "outputs": [ { @@ -215,6 +237,7 @@ }, { "cell_type": "markdown", + "id": "ab7ac9e8", "metadata": {}, "source": [ "## Usage" @@ -222,6 +245,7 @@ }, { "cell_type": "markdown", + "id": "44577389", "metadata": {}, "source": [ "The ENSO driver can be run from the command line as `enso_driver.py`. In this notebook, we will use bash cell magic (cells beginning with `%%bash`) to run the ENSO driver as a subprocess." @@ -229,6 +253,7 @@ }, { "cell_type": "markdown", + "id": "b9059757", "metadata": {}, "source": [ "For help, type: \n", @@ -240,6 +265,7 @@ { "cell_type": "code", "execution_count": 8, + "id": "c113d824", "metadata": {}, "outputs": [ { @@ -324,6 +350,7 @@ }, { "cell_type": "markdown", + "id": "0701dc96", "metadata": {}, "source": [ "### Basic example" @@ -331,6 +358,7 @@ }, { "cell_type": "markdown", + "id": "46928faf", "metadata": {}, "source": [ "Parameters for the ENSO Metrics can be set on the command line or using a parameter file. This first example will use a parameter file, which is shown below." @@ -339,6 +367,7 @@ { "cell_type": "code", "execution_count": 9, + "id": "70a6b070", "metadata": {}, "outputs": [ { @@ -386,6 +415,7 @@ }, { "cell_type": "markdown", + "id": "92d0e015", "metadata": {}, "source": [ "The next cell runs the ENSO driver using the basic parameter file. This may take several minutes." @@ -394,6 +424,7 @@ { "cell_type": "code", "execution_count": 10, + "id": "5f8ef3f9", "metadata": { "scrolled": false }, @@ -642,6 +673,7 @@ }, { "cell_type": "markdown", + "id": "1da57cf2", "metadata": {}, "source": [ "This run saved metrics to two files: \n", @@ -655,6 +687,7 @@ { "cell_type": "code", "execution_count": 11, + "id": "32ffb4a4", "metadata": {}, "outputs": [ { @@ -978,6 +1011,7 @@ }, { "cell_type": "markdown", + "id": "d25a4fb7", "metadata": {}, "source": [ "### ENSO Metrics Collections\n", @@ -995,6 +1029,7 @@ { "cell_type": "code", "execution_count": 12, + "id": "931a02c5", "metadata": {}, "outputs": [ { @@ -1179,6 +1214,7 @@ }, { "cell_type": "markdown", + "id": "da0956e3", "metadata": {}, "source": [ "All of the results (netCDF and JSON) are located in the output directory, which uses the metrics collection name." @@ -1187,6 +1223,7 @@ { "cell_type": "code", "execution_count": 13, + "id": "d297d2e5", "metadata": {}, "outputs": [ { @@ -1209,6 +1246,7 @@ }, { "cell_type": "markdown", + "id": "2cd7ff92", "metadata": {}, "source": [ "Finally, this example runs the remaining metrics collection ENSO_proc:" @@ -1217,6 +1255,7 @@ { "cell_type": "code", "execution_count": 14, + "id": "4ec6cdde", "metadata": {}, "outputs": [ { @@ -1582,7 +1621,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.6" + "version": "3.8.10" } }, "nbformat": 4,