-
Notifications
You must be signed in to change notification settings - Fork 3
/
train_evaluator.py
230 lines (185 loc) · 7.47 KB
/
train_evaluator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import copy
import logging
from dataclasses import dataclass, field
from typing import Dict, Optional, Sequence
import json
import numpy as np
import torch
import transformers
from utils.constants import TEMPLATE
from utils.train_utils import jload
from torch.utils.data import Dataset
from transformers import Trainer
from peft import LoraConfig, get_peft_model, prepare_model_for_int8_training
IGNORE_INDEX = -100
@dataclass
class ModelArguments:
model_name_or_path: Optional[str] = field(default="bigcode/starcoderbase")
@dataclass
class DataArguments:
data_path: str = field(default=None, metadata={"help": "Path to the training data."})
dev_data_path: str = field(default=None, metadata={"help": "Path to the dev data."})
@dataclass
class TrainingArguments(transformers.TrainingArguments):
cache_dir: Optional[str] = field(default=None)
optim: str = field(default="adamw_torch")
model_max_length: int = field(
default=1600,
metadata={"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."},
)
def smart_tokenizer_and_embedding_resize(
special_tokens_dict: Dict,
tokenizer: transformers.PreTrainedTokenizer,
model: transformers.PreTrainedModel,
):
"""Resize tokenizer and embedding.
Note: This is the unoptimized version that may make your embedding size not be divisible by 64.
"""
num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict)
model.resize_token_embeddings(len(tokenizer))
if num_new_tokens > 0:
input_embeddings = model.get_input_embeddings().weight.data
output_embeddings = model.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg
def _tokenize_fn(strings: Sequence[str], tokenizer: transformers.PreTrainedTokenizer) -> Dict:
"""Tokenize a list of strings."""
tokenized_list = [
tokenizer(
text,
return_tensors="pt",
padding="longest",
max_length=tokenizer.model_max_length,
truncation=True,
)
for text in strings
]
input_ids = labels = [tokenized.input_ids[0] for tokenized in tokenized_list]
input_ids_lens = labels_lens = [
tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item() for tokenized in tokenized_list
]
return dict(
input_ids=input_ids,
labels=labels,
input_ids_lens=input_ids_lens,
labels_lens=labels_lens,
)
def preprocess(
sources: Sequence[str],
targets: Sequence[str],
tokenizer: transformers.PreTrainedTokenizer,
) -> Dict:
"""Preprocess the data by tokenizing."""
# Tokenize
tokenized_sources_with_prompt = tokenizer(
sources,
max_length=1600 - 300,
truncation=True,
add_special_tokens=False,
)
tokenized_targets = tokenizer(
targets,
max_length=300,
truncation=True,
add_special_tokens=False,
)
# Build the input and labels for causal LM
input_ids = []
labels = []
for tokenized_source, tokenized_target in zip(
tokenized_sources_with_prompt['input_ids'],
tokenized_targets['input_ids']
):
input_ids.append(torch.tensor(tokenized_source + tokenized_target))
labels.append(
torch.tensor([IGNORE_INDEX for _ in range(len(tokenized_source))] + copy.deepcopy(tokenized_target))
)
return dict(input_ids=input_ids, labels=labels)
class SupervisedDataset(Dataset):
"""Dataset for supervised fine-tuning."""
def __init__(self, data_path: str, tokenizer: transformers.PreTrainedTokenizer):
super(SupervisedDataset, self).__init__()
logging.warning("Loading data...")
list_data_dict = jload(data_path)
logging.warning("Formatting inputs...")
sources = [
example["src"]
for example in list_data_dict
]
targets = [
f"{example['tgt']}{tokenizer.eos_token}"
for example in list_data_dict
]
logging.warning("Tokenizing inputs... This may take some time...")
data_dict = preprocess(sources, targets, tokenizer)
self.input_ids = data_dict["input_ids"]
self.labels = data_dict["labels"]
def __len__(self):
return len(self.input_ids)
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
return dict(input_ids=self.input_ids[i], labels=self.labels[i])
@dataclass
class DataCollatorForSupervisedDataset(object):
"""Collate examples for supervised fine-tuning."""
tokenizer: transformers.PreTrainedTokenizer
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
input_ids, labels = tuple([instance[key] for instance in instances] for key in ("input_ids", "labels"))
input_ids = torch.nn.utils.rnn.pad_sequence(
input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id
)
labels = torch.nn.utils.rnn.pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX)
return dict(
input_ids=input_ids,
labels=labels,
attention_mask=input_ids.ne(self.tokenizer.pad_token_id),
)
def make_supervised_data_module(tokenizer: transformers.PreTrainedTokenizer, data_args) -> Dict:
"""Make dataset and collator for supervised fine-tuning."""
train_dataset = SupervisedDataset(tokenizer=tokenizer, data_path=data_args.data_path)
dev_dataset = None
if data_args.dev_data_path:
dev_dataset = SupervisedDataset(tokenizer=tokenizer, data_path=data_args.dev_data_path)
data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer)
return dict(train_dataset=train_dataset, eval_dataset=dev_dataset, data_collator=data_collator)
def train():
parser = transformers.HfArgumentParser((ModelArguments, DataArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Suppress wandb
training_args.report_to = []
tokenizer = transformers.AutoTokenizer.from_pretrained(
model_args.model_name_or_path,
cache_dir=training_args.cache_dir,
model_max_length=training_args.model_max_length,
padding_side="right",
use_fast=False,
trust_remote_code=True
)
tokenizer.pad_token = tokenizer.eos_token
model = transformers.AutoModelForCausalLM.from_pretrained(
model_args.model_name_or_path,
cache_dir=training_args.cache_dir,
load_in_8bit=True,
)
model = prepare_model_for_int8_training(model)
target_modules = ["q_proj", "v_proj"]
if model_args.model_name_or_path.startswith("bigcode"):
target_modules = ["c_proj", "c_attn"]
config = LoraConfig(
r=8,
lora_alpha=16,
target_modules=target_modules,
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
)
model = get_peft_model(model, config)
model.print_trainable_parameters()
data_module = make_supervised_data_module(tokenizer=tokenizer, data_args=data_args)
trainer = Trainer(model=model, tokenizer=tokenizer,args=training_args, **data_module)
trainer.train()
trainer.save_state()
model.save_pretrained(training_args.output_dir)
if __name__ == "__main__":
train()