-
Notifications
You must be signed in to change notification settings - Fork 355
/
pmatmul.cu
443 lines (365 loc) · 14.6 KB
/
pmatmul.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
/*
* Copyright 2024 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#include <assert.h>
#include <cuda_fp8.h>
#include <math.h>
#include <mpi.h>
#include <omp.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <vector>
#ifdef USE_CAL_MPI
#include <cal_mpi.h>
#endif
#include <cublasmp.h>
#include <nvshmem.h>
#include "helpers.h"
#include "matrix_generator.hxx"
int main(int argc, char* argv[])
{
using input_t = __half;
using output_t = __half;
using compute_t = float;
const cudaDataType_t cuda_input_type = CUDA_R_16F;
const cudaDataType_t cuda_output_type = CUDA_R_16F;
const cublasComputeType_t cublas_compute_type = CUBLAS_COMPUTE_32F;
const cublasOperation_t transA = CUBLAS_OP_T;
const cublasOperation_t transB = CUBLAS_OP_N;
MPI_Init(nullptr, nullptr);
int rank, nranks;
MPI_Comm_size(MPI_COMM_WORLD, &nranks);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
const int local_device = getLocalDevice();
CUDA_CHECK(cudaSetDevice(local_device));
CUDA_CHECK(cudaFree(nullptr));
cal_comm_t cal_comm = nullptr;
#ifdef USE_CAL_MPI
CAL_CHECK(cal_comm_create_mpi(MPI_COMM_WORLD, rank, nranks, local_device, &cal_comm));
#else
cal_comm_create_params_t params;
params.allgather = allgather;
params.req_test = request_test;
params.req_free = request_free;
params.data = (void*)(MPI_COMM_WORLD);
params.rank = rank;
params.nranks = nranks;
params.local_device = local_device;
CAL_CHECK(cal_comm_create(params, &cal_comm));
#endif
nvshmemx_init_attr_t attr;
nvshmemx_uniqueid_t id;
if (rank == 0)
{
NVSHMEM_CHECK(nvshmemx_get_uniqueid(&id));
}
MPI_CHECK(MPI_Bcast(&id, sizeof(nvshmemx_uniqueid_t), MPI_BYTE, 0, MPI_COMM_WORLD));
nvshmemx_set_attr_uniqueid_args(rank, nranks, &id, &attr);
NVSHMEM_CHECK(nvshmemx_hostlib_init_attr(NVSHMEMX_INIT_WITH_UNIQUEID, &attr));
cudaStream_t stream = nullptr;
CUDA_CHECK(cudaStreamCreate(&stream));
cublasMpHandle_t handle = nullptr;
CUBLASMP_CHECK(cublasMpCreate(&handle, stream));
cublasMpMatrixDescriptor_t descA = nullptr;
cublasMpMatrixDescriptor_t descB = nullptr;
cublasMpMatrixDescriptor_t descC = nullptr;
cublasMpMatmulDescriptor_t matmulDesc = nullptr;
output_t* d_X1 = nullptr;
output_t* d_X2 = nullptr;
void* d_work = nullptr;
compute_t alpha = 1.0;
compute_t beta = 0.0;
size_t workspaceInBytesOnDevice = 0;
size_t workspaceInBytesOnHost = 0;
cublasMpGrid_t grid_col_major = nullptr;
cublasMpGrid_t grid_row_major = nullptr;
CUBLASMP_CHECK(cublasMpGridCreate(nranks, 1, CUBLASMP_GRID_LAYOUT_COL_MAJOR, cal_comm, &grid_col_major));
CUBLASMP_CHECK(cublasMpGridCreate(1, nranks, CUBLASMP_GRID_LAYOUT_ROW_MAJOR, cal_comm, &grid_row_major));
// AG + Matmul
{
const int64_t m = 16 * nranks;
const int64_t n = 16 * nranks;
const int64_t k = 16;
const int64_t loc_a_m = k;
const int64_t loc_a_n = m / nranks;
const int64_t loc_b_m = k;
const int64_t loc_b_n = n / nranks;
const int64_t loc_c_m = m / nranks;
const int64_t loc_c_n = n / nranks;
std::vector<input_t> h_X0(loc_a_m * loc_a_n, input_t(0));
std::vector<input_t> h_W0(loc_b_m * loc_b_n, input_t(0));
std::vector<output_t> h_X1(loc_c_m * loc_c_n * nranks, output_t(0));
generate_random_matrix(k, m, h_X0.data(), loc_a_m, loc_a_n, 1, 1, loc_a_m, 1, nranks, 1, rank);
generate_random_matrix(k, n, h_W0.data(), loc_b_m, loc_b_n, 1, 1, loc_b_m, 1, nranks, 1, rank);
generate_random_matrix(m, n, h_X1.data(), loc_c_m, loc_c_n, 1, 1, loc_c_m, nranks, 1, rank, 1);
input_t* d_X0 = nullptr;
input_t* d_W0 = nullptr;
CUDA_CHECK(cudaMalloc((void**)&d_X0, loc_a_m * loc_a_n * sizeof(input_t)));
CUDA_CHECK(cudaMalloc((void**)&d_W0, loc_b_m * loc_b_n * sizeof(input_t)));
CUDA_CHECK(cudaMalloc((void**)&d_X1, loc_c_m * loc_c_n * nranks * sizeof(output_t)));
CUDA_CHECK(
cudaMemcpyAsync(d_X0, h_X0.data(), loc_a_m * loc_a_n * sizeof(input_t), cudaMemcpyHostToDevice, stream));
CUDA_CHECK(
cudaMemcpyAsync(d_W0, h_W0.data(), loc_b_m * loc_b_n * sizeof(input_t), cudaMemcpyHostToDevice, stream));
CUDA_CHECK(cudaMemcpyAsync(
d_X1, h_X1.data(), loc_c_m * loc_c_n * nranks * sizeof(output_t), cudaMemcpyHostToDevice, stream));
CUBLASMP_CHECK(cublasMpMatrixDescriptorCreate(
k, m, loc_a_m, loc_a_n, 0, 0, loc_a_m, cuda_input_type, grid_row_major, &descA));
CUBLASMP_CHECK(cublasMpMatrixDescriptorCreate(
k, n, loc_b_m, loc_b_n, 0, 0, loc_b_m, cuda_input_type, grid_row_major, &descB));
CUBLASMP_CHECK(cublasMpMatrixDescriptorCreate(
m, n, loc_c_m, loc_c_n, 0, 0, loc_c_m, cuda_output_type, grid_col_major, &descC));
const cublasMpMatmulAlgoType_t algoType = CUBLASMP_MATMUL_ALGO_TYPE_SPLIT_P2P;
CUBLASMP_CHECK(cublasMpMatmulDescriptorCreate(&matmulDesc, cublas_compute_type));
CUBLASMP_CHECK(cublasMpMatmulDescriptorAttributeSet(
matmulDesc, CUBLASMP_MATMUL_DESCRIPTOR_ATTRIBUTE_TRANSA, &transA, sizeof(transA)));
CUBLASMP_CHECK(cublasMpMatmulDescriptorAttributeSet(
matmulDesc, CUBLASMP_MATMUL_DESCRIPTOR_ATTRIBUTE_TRANSB, &transB, sizeof(transB)));
CUBLASMP_CHECK(cublasMpMatmulDescriptorAttributeSet(
matmulDesc, CUBLASMP_MATMUL_DESCRIPTOR_ATTRIBUTE_ALGO_TYPE, &algoType, sizeof(algoType)));
CUBLASMP_CHECK(cublasMpMatmul_bufferSize(
handle,
matmulDesc,
m,
n,
k,
&alpha,
d_X0,
1,
1,
descA,
d_W0,
1,
1,
descB,
&beta,
nullptr,
1,
1,
descC,
d_X1,
1,
1,
descC,
&workspaceInBytesOnDevice,
&workspaceInBytesOnHost));
d_work = nvshmem_malloc(workspaceInBytesOnDevice);
std::vector<int8_t> h_work(workspaceInBytesOnHost);
CAL_CHECK(cal_stream_sync(cal_comm, stream));
CAL_CHECK(cal_comm_barrier(cal_comm, stream));
const double begin = MPI_Wtime();
CUBLASMP_CHECK(cublasMpMatmul(
handle,
matmulDesc,
m,
n,
k,
&alpha,
d_X0,
1,
1,
descA,
d_W0,
1,
1,
descB,
&beta,
nullptr,
1,
1,
descC,
d_X1,
1,
1,
descC,
d_work,
workspaceInBytesOnDevice,
h_work.data(),
workspaceInBytesOnHost));
CAL_CHECK(cal_stream_sync(cal_comm, stream));
CAL_CHECK(cal_comm_barrier(cal_comm, stream));
const double end = MPI_Wtime();
if (rank == 0)
{
printf("AG + Matmul: %lf (s) %lf (GFlops)\n", end - begin, (2 * m * n * k * 1e-9) / (end - begin));
}
CUBLASMP_CHECK(cublasMpMatmulDescriptorDestroy(matmulDesc));
CUBLASMP_CHECK(cublasMpMatrixDescriptorDestroy(descA));
CUBLASMP_CHECK(cublasMpMatrixDescriptorDestroy(descB));
CUBLASMP_CHECK(cublasMpMatrixDescriptorDestroy(descC));
CUDA_CHECK(cudaFree(d_X0));
CUDA_CHECK(cudaFree(d_W0));
nvshmem_free(d_work);
}
// Matmul + RS
{
const int64_t m = 16;
const int64_t n = 16 * nranks;
const int64_t k = 16 * nranks;
const int64_t loc_a_m = k / nranks;
const int64_t loc_a_n = m;
const int64_t loc_b_m = k / nranks;
const int64_t loc_b_n = n / nranks;
const int64_t loc_c_m = m;
const int64_t loc_c_n = n / nranks;
std::vector<input_t> h_W1(loc_a_m * loc_a_n, input_t(0));
std::vector<output_t> h_X2(loc_c_m * loc_c_n, output_t(0));
generate_random_matrix(k, m, h_W1.data(), loc_a_m, loc_a_n, 1, 1, loc_a_m, nranks, 1, rank, 1);
generate_random_matrix(m, n, h_X2.data(), loc_c_m, loc_c_n, 1, 1, loc_c_m, 1, nranks, 1, rank);
input_t* d_W1 = nullptr;
CUDA_CHECK(cudaMalloc((void**)&d_W1, loc_a_m * loc_a_n * sizeof(input_t)));
CUDA_CHECK(cudaMalloc((void**)&d_X2, loc_c_m * loc_c_n * sizeof(output_t)));
CUDA_CHECK(
cudaMemcpyAsync(d_W1, h_W1.data(), loc_a_m * loc_a_n * sizeof(input_t), cudaMemcpyHostToDevice, stream));
CUDA_CHECK(
cudaMemcpyAsync(d_X2, h_X2.data(), loc_c_m * loc_c_n * sizeof(output_t), cudaMemcpyHostToDevice, stream));
CUBLASMP_CHECK(cublasMpMatrixDescriptorCreate(
k, m, loc_a_m, loc_a_n, 0, 0, loc_a_m, cuda_input_type, grid_col_major, &descA));
CUBLASMP_CHECK(cublasMpMatrixDescriptorCreate(
k, n, loc_b_m, loc_b_n, 0, 0, loc_b_m, cuda_input_type, grid_col_major, &descB));
CUBLASMP_CHECK(cublasMpMatrixDescriptorCreate(
m, n, loc_c_m, loc_c_n, 0, 0, loc_c_m, cuda_output_type, grid_row_major, &descC));
const cublasMpMatmulAlgoType_t algoType = CUBLASMP_MATMUL_ALGO_TYPE_SPLIT_P2P;
CUBLASMP_CHECK(cublasMpMatmulDescriptorCreate(&matmulDesc, cublas_compute_type));
CUBLASMP_CHECK(cublasMpMatmulDescriptorAttributeSet(
matmulDesc, CUBLASMP_MATMUL_DESCRIPTOR_ATTRIBUTE_TRANSA, &transA, sizeof(transA)));
CUBLASMP_CHECK(cublasMpMatmulDescriptorAttributeSet(
matmulDesc, CUBLASMP_MATMUL_DESCRIPTOR_ATTRIBUTE_TRANSB, &transB, sizeof(transB)));
CUBLASMP_CHECK(cublasMpMatmulDescriptorAttributeSet(
matmulDesc, CUBLASMP_MATMUL_DESCRIPTOR_ATTRIBUTE_ALGO_TYPE, &algoType, sizeof(algoType)));
CUBLASMP_CHECK(cublasMpMatmul_bufferSize(
handle,
matmulDesc,
m,
n,
k,
&alpha,
d_W1,
1,
1,
descB,
d_X1,
1,
1,
descA,
&beta,
nullptr,
1,
1,
descC,
d_X2,
1,
1,
descC,
&workspaceInBytesOnDevice,
&workspaceInBytesOnHost));
d_work = nvshmem_malloc(workspaceInBytesOnDevice);
std::vector<int8_t> h_work(workspaceInBytesOnHost);
CAL_CHECK(cal_stream_sync(cal_comm, stream));
CAL_CHECK(cal_comm_barrier(cal_comm, stream));
const double begin = MPI_Wtime();
CUBLASMP_CHECK(cublasMpMatmul(
handle,
matmulDesc,
m,
n,
k,
&alpha,
d_W1,
1,
1,
descB,
d_X1,
1,
1,
descA,
&beta,
nullptr,
1,
1,
descC,
d_X2,
1,
1,
descC,
d_work,
workspaceInBytesOnDevice,
h_work.data(),
workspaceInBytesOnHost));
CAL_CHECK(cal_stream_sync(cal_comm, stream));
CAL_CHECK(cal_comm_barrier(cal_comm, stream));
const double end = MPI_Wtime();
if (rank == 0)
{
printf("Matmul + RS: %lf (s) %lf (GFlops)\n", end - begin, (2 * m * n * k * 1e-9) / (end - begin));
}
CUBLASMP_CHECK(cublasMpMatmulDescriptorDestroy(matmulDesc));
CUBLASMP_CHECK(cublasMpMatrixDescriptorDestroy(descA));
CUBLASMP_CHECK(cublasMpMatrixDescriptorDestroy(descB));
CUBLASMP_CHECK(cublasMpMatrixDescriptorDestroy(descC));
CUDA_CHECK(cudaFree(d_X1));
CUDA_CHECK(cudaFree(d_W1));
CUDA_CHECK(cudaFree(d_X2));
nvshmem_free(d_work);
}
CUBLASMP_CHECK(cublasMpGridDestroy(grid_col_major));
CUBLASMP_CHECK(cublasMpGridDestroy(grid_row_major));
CUBLASMP_CHECK(cublasMpDestroy(handle));
nvshmemx_hostlib_finalize();
CAL_CHECK(cal_comm_barrier(cal_comm, stream));
CAL_CHECK(cal_comm_destroy(cal_comm));
CUDA_CHECK(cudaStreamDestroy(stream));
MPI_Barrier(MPI_COMM_WORLD);
MPI_Finalize();
if (rank == 0)
{
printf("[SUCCEEDED]\n");
}
return 0;
};