-
Notifications
You must be signed in to change notification settings - Fork 1
/
measure_Rin.py
434 lines (356 loc) · 16.6 KB
/
measure_Rin.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
import os
import sys
import json
import pickle
import argparse as arg
import numpy as np
from matplotlib import cm
import matplotlib.pyplot as plt
import matplotlib.colors as colors
# the name of this script
progname = os.path.basename(sys.argv[0])
TRIAL_RUN_NUM = 10
def measure_input_resistance(cell, segment, stim_pars, neuron, full_output=False):
recorders = {}
for lbl in 't', 'v':
recorders[lbl] = neuron.h.Vector()
recorders['t'].record(neuron.h._ref_t)
recorders['v'].record(segment._ref_v)
stim = neuron.h.IClamp(segment)
stim.delay = stim_pars['delay']
stim.dur = stim_pars['duration']
stim.amp = stim_pars['amplitude']
neuron.h.v_init = -60
neuron.h.tstop = stim.delay + stim.dur + 200
neuron.h.t = 0
neuron.h.run()
t = np.array(recorders['t'])
v = np.array(recorders['v'])
idx, = np.where((t > stim.delay) & (t < stim.delay + stim.dur))
v0 = v[idx[0] - 10]
v1 = v[idx[-1]]
dv = (v1 - v0) * 1e-3 # [mV]
di = stim.amp * 1e-9 # [A]
R = dv / di * 1e-6 # [MOhm]
if full_output:
return R, t, v
return R
def worker(segment_num, segment_group, stim_pars, swc_file, parameters,
mechanisms, replace_axon, add_axon_if_missing, passive_cell,
cell_id=0, full_output=False):
import neuron
from dlutils.cell import Cell
neuron.h.load_file('stdrun.hoc')
neuron.h.cvode_active(1)
cell_name = '{}_{:03d}_{}_{}'.format(segment_group, segment_num, cell_id, np.random.randint(0, 1000000000))
cell = Cell(cell_name, swc_file, parameters, mechanisms)
cell.instantiate(replace_axon, add_axon_if_missing, force_passive=passive_cell)
if segment_group == 'soma':
segments = cell.somatic_segments
elif segment_group == 'basal':
segments = cell.basal_segments
elif segment_group == 'apical':
segments = cell.apical_segments
try:
res = measure_input_resistance(cell, segments[segment_num]['seg'], stim_pars, neuron, full_output)
except:
if full_output:
res = -1, None, None
else:
res = -1
neuron.h('forall delete_section()')
return res
def plot_morpho(data, n_levels=64):
from dlutils.morpho import Tree
from dlutils.graphics import plot_tree
tree = Tree(data['swc_file'])
morpho = np.loadtxt(data['swc_file'])
xyz = morpho[:,2:5]
idx, = np.where(morpho[:,1] != 2)
x_min,x_max = np.min(xyz[idx,0]),np.max(xyz[idx,0])
y_min,y_max = np.min(xyz[idx,1]),np.max(xyz[idx,1])
dx = (x_max - x_min) * 1.1
dy = (y_max - y_min) * 1.1
x_lim = [x_min, x_max]
y_lim = [y_min, y_max]
x_lim[0] -= (x_lim[1] - x_lim[0]) * 0.05
x_lim[1] += (x_lim[1] - x_lim[0]) * 0.05
y_lim[0] -= (y_lim[1] - y_lim[0]) * 0.05
y_lim[1] += (y_lim[1] - y_lim[0]) * 0.05
height = 0.5
width = (x_lim[1] - x_lim[0]) / (y_lim[1] - y_lim[0]) * height
height += 0.3
x_offset = 0.07
y_offset = (1 - height) / 2
x_spacing = 0.07
X = np.concatenate(list(data['centers'].values()))
R = np.concatenate(list(data['R'].values()))
R_min = 10 # R.min()
R_max = 2000 # R.max()
fig = plt.figure(figsize=(8,4))
ticks = np.concatenate([[R_min], np.arange(500, R_max+1, 500)])
levels = np.linspace(R_min, R_max, n_levels)
# linear plot
Y = (R - R_min) / (R_max - R_min)
norm = colors.Normalize(vmin = R_min, vmax = R_max)
ax1 = plt.axes([x_offset, y_offset, width, height])
plt.contourf([[0,0], [0,0]], levels, norm=norm, cmap=cm.jet)
plot_tree(tree, type_ids=(1,3,4), cmap=cm.jet, points=X, values=Y, ax=ax1)
cbar = plt.colorbar(fraction=0.1, shrink=1, aspect=20, ticks=ticks, orientation='horizontal')
cbar.set_label(r'Input resistance (M$\Omega$)')
cbar.ax.set_xticklabels(ticks)
# log plot
R_log = np.log10(R)
Y = (R_log - np.log10(R_min)) / (np.log10(R_max) - np.log10(R_min))
norm = colors.LogNorm(vmin = R_min, vmax = R_max)
ax2 = plt.axes([x_offset+width+x_spacing, y_offset, width, height])
plt.contourf([[0,0], [0,0]], levels, norm=norm, cmap=cm.jet)
plot_tree(tree, type_ids=(1,3,4), cmap=cm.jet, points=X, values=Y, ax=ax2)
cbar = plt.colorbar(fraction=0.1, shrink=1, aspect=20, ticks=ticks, orientation='horizontal')
cbar.set_label(r'Input resistance (M$\Omega$)')
cbar.ax.set_xticklabels(ticks)
# other panel
x0 = width * 2 + x_spacing * 2 + x_offset
w = 1 - x0 - 0.01
ax3 = plt.axes([x0, 0.2, w, 0.7])
X = np.concatenate(list(data['diameters'].values()))
ax3.plot(X[1:], R[1:], 'ko', markerfacecolor='w', linewidth=1, markersize=4)
ax3.set_xlabel(r'Diameter ($\mu$m)')
ax3.set_ylabel(r'Input resistance (M$\Omega$)')
for ax in ax1,ax2,ax3:
for side in 'right','top':
ax.spines[side].set_visible(False)
def plot(*args, **kwargs):
if len(args) == 0:
parser = arg.ArgumentParser(description='Plot results of an input resistance measurement experiment')
parser.add_argument('file', type=str, action='store', help='pickle file containing the results of the experiment')
parser.add_argument('--levels', type=int, default=64, help='number of colormap levels')
args = parser.parse_args(args=sys.argv[2:])
pkl_file = args.file
n_levels = args.levels
else:
pkl_file = args[0]
try:
n_levels = kwargs['n_levels']
except:
n_levels = 64
if not os.path.isfile(pkl_file):
print('{}: {}: no such file.'.format(progname, pkl_file))
return
data = pickle.load(open(pkl_file, 'rb'))
plot_morpho(data, n_levels)
pdf_file = os.path.splitext(pkl_file)[0] + '.pdf'
plt.savefig(pdf_file)
if __name__ == '__main__':
if sys.argv[1] == 'plot':
plot()
sys.exit(0)
parser = arg.ArgumentParser(description='Measure the input resistance of each compartment in a neuron model.')
parser.add_argument('I', type=float, action='store', default=-50, nargs='?', help='current value in pA')
parser.add_argument('-P','--pickle-file', type=str, default='', help='Pickle file containing the parameters of a population of individuals')
parser.add_argument('-e','--evaluator-file', type=str, default='evaluator.pkl', help='Pickle file containing the evaluator')
parser.add_argument('-f','--swc-file', type=str, help='SWC file defining the cell morphology', required=True)
parser.add_argument('-p','--params-files', type=str, default='', help='JSON file(s) containing the parameters of the cell(s)')
parser.add_argument('-m','--mech-file', type=str, default=None,
help='JSON file containing the mechanisms to be inserted into the cell')
parser.add_argument('-c','--config-file', type=str, default=None,
help='JSON file containing the configuration of the model')
parser.add_argument('-n','--cell-name', type=str, default=None,
help='name of the cell as it appears in the configuration file')
parser.add_argument('-R','--replace-axon', type=str, default=None,
help='whether to replace the axon (accepted values: "yes" or "no")')
parser.add_argument('-A', '--add-axon-if-missing', type=str, default=None,
help='whether to add an axon if the cell does not have one (accepted values: "yes" or "no")')
parser.add_argument('-o', '--output', type=str, default=None, help='output file name')
parser.add_argument('--delay', default=500., type=float, help='delay before stimulation onset (default: 500 ms)')
parser.add_argument('--dur', default=500., type=float, help='stimulation duration (default: 500 ms)')
parser.add_argument('--serial', action='store_true', help='do not use SCOOP')
parser.add_argument('--trial-run', action='store_true', help='measure Rin in a random sample of ' +
'{} basal and {} apical synapses'.format(TRIAL_RUN_NUM, TRIAL_RUN_NUM))
parser.add_argument('--model-type', type=str, default='active',
help='whether to use a passive or active model (accepted values: "active" (default) or "passive")')
parser.add_argument('--full-output', action='store_true', help='save also voltage traces')
parser.add_argument('--plot', action='store_true', help='plot a summary figure')
args = parser.parse_args(args=sys.argv[1:])
from dlutils.utils import individuals_from_pickle, extract_mechanisms
if args.serial:
map_fun = map
else:
try:
from scoop import futures
map_fun = futures.map
except:
map_fun = map
print('SCOOP not found: will run sequentially')
if not os.path.isfile(args.swc_file):
print('{}: {}: no such file.'.format(progname,args.swc_file))
sys.exit(1)
if args.mech_file is not None:
if not os.path.isfile(args.mech_file):
print('{}: {}: no such file.'.format(progname,args.mech_file))
sys.exit(1)
mechanisms = json.load(open(args.mech_file,'r'))
cell_name = os.path.splitext(os.path.basename(swc_file))[0]
elif args.config_file is not None:
if not os.path.isfile(args.config_file):
print('{}: {}: no such file.'.format(progname,args.config_file))
sys.exit(1)
if args.cell_name is None:
print('--cell-name must be present with --config-file option.')
sys.exit(1)
mechanisms = extract_mechanisms(args.config_file, args.cell_name)
cell_name = args.cell_name
if '*' in args.params_files:
import glob
params_files = glob.glob(args.params_files)
else:
params_files = args.params_files.split(',')
if params_files[0] == '':
params_files = []
if args.pickle_file == '':
population = [json.load(open(params_file,'r')) for params_file in params_files]
working_dir = os.path.split(params_files[0])[0]
else:
if len(params_files) > 0:
print('You cannot simultaneously specify parameter and pickle files.')
sys.exit(1)
population,individual_ids = individuals_from_pickle(args.pickle_file, args.config_file, cell_name, args.evaluator_file)
working_dir = os.path.split(args.pickle_file)[0]
if working_dir == '':
working_dir = '.'
if cell_name[-1] == '_':
cell_name = cell_name[:-1]
try:
sim_pars = pickle.load(open(working_dir + '/simulation_parameters.pkl','rb'))
if working_dir == '.':
print('Found pickle file with simulation parameters in current directory.')
else:
print('Found pickle file with simulation parameters in {}.'.format(working_dir))
except:
sim_pars = None
if args.replace_axon is None and args.add_axon_if_missing is None:
print('No pickle file with simulation parameters in {}.'.format(working_dir))
if args.replace_axon is None:
if sim_pars is None:
replace_axon = False
else:
replace_axon = sim_pars['replace_axon']
print('Setting replace_axon = {} as per original optimization.'.format(replace_axon))
else:
if args.replace_axon.lower() in ('y','yes'):
replace_axon = True
elif args.replace_axon.lower() in ('n','no'):
replace_axon = False
else:
print('Unknown value for --replace-axon: "{}".'.format(args.replace_axon))
sys.exit(7)
if args.add_axon_if_missing is None:
if sim_pars is None:
add_axon_if_missing = True
else:
add_axon_if_missing = not sim_pars['no_add_axon']
print('Setting add_axon_if_missing = {} as per original optimization.'.format(add_axon_if_missing))
else:
if args.add_axon_if_missing.lower() in ('y','yes'):
add_axon_if_missing = True
elif args.add_axon_if_missing.lower() in ('n','no'):
add_axon_if_missing = False
else:
print('Unknown value for --add-axon-if-missing: "{}".'.format(args.add_axon_if_missing))
sys.exit(8)
if args.model_type == 'passive':
passive_cell = True
elif args.model_type == 'active':
passive_cell = False
else:
print('Unknown value for --model-type: "{}". Accepted values are `active` and `passive`.'.format(args.model_type))
sys.exit(9)
import neuron
from dlutils.cell import Cell
neuron.h.load_file('stdrun.hoc')
neuron.h.cvode_active(1)
swc_file = args.swc_file
stim_pars = {'delay': args.delay, 'duration': args.dur, 'amplitude': args.I * 1e-3}
for i,parameters in enumerate(population):
print('>>> individual {:02d}/{:02d} <<<'.format(i+1, len(population)))
cell = Cell('CA3_cell_{}'.format(i), swc_file, parameters, mechanisms)
cell.instantiate(replace_axon, add_axon_if_missing, force_passive=passive_cell)
res = measure_input_resistance(cell, cell.somatic_segments[0]['seg'], stim_pars, neuron, args.full_output)
if args.full_output:
R = {'soma': np.array(res[:1])}
time = {'soma': [res[1]]}
Vm = {'soma': [res[2]]}
else:
R = {'soma': np.array([res])}
print('Somatic input resistance: {:.2f} MOhm.'.format(R['soma'][0]))
centers = {'soma': np.array([cell.somatic_segments[0]['center']])}
centers['basal'] = np.array([seg['center'] for seg in cell.basal_segments])
centers['apical'] = np.array([seg['center'] for seg in cell.apical_segments])
diameters = {'soma': np.array([cell.somatic_segments[0]['sec'].diam])}
diameters['basal'] = np.array([seg['sec'].diam for seg in cell.basal_segments])
diameters['apical'] = np.array([seg['sec'].diam for seg in cell.apical_segments])
areas = {'soma': np.array([cell.somatic_segments[0]['area']])}
areas['basal'] = np.array([seg['area'] for seg in cell.basal_segments])
areas['apical'] = np.array([seg['area'] for seg in cell.apical_segments])
N = {'basal': len(cell.basal_segments), 'apical': len(cell.apical_segments)}
print('The cell has {} basal and {} apical segments.'.format(N['basal'], N['apical']))
idx = {k: np.arange(v) for k,v in N.items()}
if args.trial_run:
idx = {k: np.random.choice(v, size=TRIAL_RUN_NUM, replace=False) for k,v in idx.items()}
neuron.h('forall delete_section()')
for dend_type in idx:
centers[dend_type] = centers[dend_type][idx[dend_type],:]
diameters[dend_type] = diameters[dend_type][idx[dend_type]]
areas[dend_type] = areas[dend_type][idx[dend_type]]
fun = lambda num: worker(num, dend_type, stim_pars, swc_file, parameters,
mechanisms, replace_axon, add_axon_if_missing,
passive_cell, i, args.full_output)
res = list(map_fun(fun, idx[dend_type]))
if args.full_output:
R[dend_type] = np.array([_[0] for _ in res])
time[dend_type] = [_[1] for _ in res]
Vm[dend_type] = [_[2] for _ in res]
else:
R[dend_type] = np.array(res)
data = {
'N': N,
'centers': centers,
'diameters': diameters,
'areas': areas,
'morphology': np.loadtxt(swc_file),
'R': R,
'swc_file': swc_file,
'stim_delay': args.delay,
'stim_dur': args.dur,
'stim_amp': args.I * 1e-3,
'segment_indexes': idx,
'parameters': parameters,
'mechanisms': mechanisms,
'replace_axon': replace_axon,
'add_axon_if_missing': add_axon_if_missing,
'cell_name': cell_name,
'passive_cell': passive_cell
}
if args.config_file is not None:
data['config_file'] = args.config_file
else:
data['mech_file'] = args.mech_file
if len(params_files) > 0:
data['params_file'] = args.params_files[i]
suffix = os.path.splitext(os.path.basename(params_files[i]))[0]
else:
data['pickle_file'] = args.pickle_file
data['individual'] = individual_ids[i]
suffix = 'individual_{}'.format(individual_ids[i])
if args.full_output:
data['time'] = time
data['Vm'] = Vm
if args.output is None:
outfile = working_dir + '/' + cell_name + '_Rin_' + suffix + '_' + args.model_type + '.pkl'
else:
outfile = args.output
if os.path.splitext(outfile)[1] == '':
outfile += '.pkl'
pickle.dump(data, open(outfile, 'wb'))
if args.plot:
plot(outfile)