-
Notifications
You must be signed in to change notification settings - Fork 1
/
caM95.mod
155 lines (129 loc) · 3.84 KB
/
caM95.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
:Migliore file Modify by Maciej Lazarewicz (mailto:[email protected]) May/16/2001
TITLE Calcium ion accumulation and diffusion
: The internal coordinate system is set up in PROCEDURE coord_cadifus()
: and must be executed before computing the concentrations.
: The scale factors set up in this procedure do not have to be recomputed
: when diam1 or DFree are changed.
: The amount of calcium in an annulus is ca[i]*diam1^2*vol[i] with
: ca[0] being the second order correct concentration at the exact edge
: and ca[NANN-1] being the concentration at the exact center
NEURON {
SUFFIX caM95
USEION ca READ cao, cai, ica WRITE cai, ica
RANGE ipump,last_ipump,test
GLOBAL vol, Buffer0
}
DEFINE NANN 4
UNITS {
(mol) = (1)
(molar) = (1/liter)
(mM) = (millimolar)
(um) = (micron)
(mA) = (milliamp)
FARADAY = (faraday) (10000 coulomb)
PI = (pi) (1)
}
PARAMETER {
DFree = .6 (um2/ms)
diam = 1 (um)
cao (mM)
ica (mA/cm2)
k1buf = 500 (/mM-ms)
k2buf = 0.5 (/ms)
k1 = 1.e10 (um3/s)
k2 = 50.e7 (/s) : k1*50.e-3
k3 = 1.e10 (/s) : k1
k4 = 5.e6 (um3/s) : k1*5.e-4
totpump = 0.2 (mol/cm2)
totbuf = 1.2 (mM)
}
CONSTANT { volo=1 (liter)}
ASSIGNED {
area (um2)
test
cai (mM)
vol[NANN] (1) : gets extra cm2 when multiplied by diam^2
ipump (mA/cm2)
last_ipump (mA/cm2)
}
STATE {
ca[NANN] (mM) <1.e-5> : ca[0] is equivalent to cai
CaBuffer[NANN] (mM)
Buffer[NANN] (mM)
pump (mol/cm2) <1.e-3>
pumpca (mol/cm2) <1.e-15>
}
BREAKPOINT {
SOLVE state METHOD sparse
last_ipump=ipump
ica = ipump
test = 0
}
LOCAL coord_done
INITIAL {
if (coord_done == 0) {
coord_done = 1
coord()
}
: note Buffer gets set to Buffer0 automatically
: and CaBuffer gets set to 0 (Default value of CaBuffer0) as well
FROM i=0 TO NANN-1 {
ca[i] = cai
}
ipump = 0
pump = totpump
pumpca = (1e-18)*pump*cao*k4/k3
FROM i=0 TO NANN-1 {
ca[i] = cai
CaBuffer[i] =(totbuf*ca[i])/(k2buf/k1buf+ca[i])
Buffer[i] = totbuf - CaBuffer[i]
}
}
LOCAL frat[NANN] : gets extra cm when multiplied by diam
PROCEDURE coord() {
LOCAL r, dr2
: cylindrical coordinate system with constant annuli thickness to
: center of cell. Note however that the first annulus is half thickness
: so that the concentration is second order correct spatially at
: the membrane or exact edge of the cell.
: note ca[0] is at edge of cell
: ca[NANN-1] is at center of cell
r = 1/2 :starts at edge (half diam)
dr2 = r/(NANN-1)/2 :half thickness of annulus
vol[0] = 0
frat[0] = 2*r
FROM i=0 TO NANN-2 {
vol[i] = vol[i] + PI*(r-dr2/2)*2*dr2 :interior half
r = r - dr2
frat[i+1] = 2*PI*r/(2*dr2) :exterior edge of annulus
: divided by distance between centers
r = r - dr2
vol[i+1] = PI*(r+dr2/2)*2*dr2 :outer half of annulus
}
}
LOCAL dsq, dsqvol : can't define local variable in KINETIC block or use
: in COMPARTMENT
KINETIC state {
COMPARTMENT i, diam*diam*vol[i]*1(um) {ca CaBuffer Buffer}
COMPARTMENT (1.e10)*area {pump pumpca}
COMPARTMENT (1.e15)*volo {cao}
~ ca[0] << (-(ica-last_ipump)*PI*diam*frat[0]*1(um)/(2*FARADAY))
FROM i=0 TO NANN-2 {
~ ca[i] <-> ca[i+1] (DFree*frat[i+1]*1(um), DFree*frat[i+1]*1(um))
}
dsq = diam*diam*1(um)
FROM i=0 TO NANN-1 {
dsqvol = dsq*vol[i]
~ ca[i] + Buffer[i] <-> CaBuffer[i] (k1buf*dsqvol,k2buf*dsqvol)
}
~ca[0] + pump <-> pumpca ((1.e-11)*k1*area, (1.e7)*k2*area)
~pumpca <-> pump + cao ((1.e7)*k3*area, (1.e-11)*k4*area)
ipump = 2*FARADAY*(f_flux-b_flux)/area
cai = ca[0]
}
COMMENT
At this time, conductances (and channel states and currents are
calculated at the midpoint of a dt interval. Membrane potential and
concentrations are calculated at the edges of a dt interval. With
secondorder=2 everything turns out to be second order correct.
ENDCOMMENT