-
Notifications
You must be signed in to change notification settings - Fork 0
/
bert_distances.py
150 lines (116 loc) · 5.73 KB
/
bert_distances.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import numpy as np
import ot
import torch
import transformers as trns
from scipy import linalg
from sklearn.metrics.pairwise import euclidean_distances
class metric_names:
FBD = "FBD"
EMBD = "EMBD"
class BertFeature:
def __init__(self, bert_model_dir, model_name='bert-base-uncased'):
self.tokenizer = trns.BertTokenizer.from_pretrained(model_name, cache_dir=bert_model_dir)
self.model = trns.BertModel.from_pretrained(model_name, cache_dir=bert_model_dir)
def get_features(self, sentences):
if type(sentences) is not list:
sentences = [sentences]
res = []
for sentence in sentences:
input_ids = torch.tensor([self.tokenizer.encode(sentence,
add_special_tokens=True)]) # Add special tokens takes care of adding [CLS], [SEP], <s>... tokens in the right way for each model.
with torch.no_grad():
pooler_output = self.model(input_ids)[1]
res.append(pooler_output)
return torch.cat(res, 0).numpy()
# from https://github.com/bioinf-jku/TTUR/blob/master/fid.py
def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
"""Numpy implementation of the Frechet Distance.
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
and X_2 ~ N(mu_2, C_2) is
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
Stable version by Dougal J. Sutherland.
Params:
-- mu1 : Numpy array containing the activations of the pool_3 layer of the
inception net ( like returned by the function 'get_predictions')
for generated samples.
-- mu2 : The sample mean over activations of the pool_3 layer, precalcualted
on an representive data set.
-- sigma1: The covariance matrix over activations of the pool_3 layer for
generated samples.
-- sigma2: The covariance matrix over activations of the pool_3 layer,
precalcualted on an representive data set.
Returns:
-- : The Frechet Distance.
"""
mu1 = np.atleast_1d(mu1)
mu2 = np.atleast_1d(mu2)
sigma1 = np.atleast_2d(sigma1)
sigma2 = np.atleast_2d(sigma2)
assert mu1.shape == mu2.shape, "Training and test mean vectors have different lengths"
assert sigma1.shape == sigma2.shape, "Training and test covariances have different dimensions"
diff = mu1 - mu2
# product might be almost singular
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
if not np.isfinite(covmean).all():
msg = "fid calculation produces singular product; adding %s to diagonal of cov estimates" % eps
print(msg)
offset = np.eye(sigma1.shape[0]) * eps
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
# numerical error might give slight imaginary component
if np.iscomplexobj(covmean):
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
m = np.max(np.abs(covmean.imag))
raise ValueError("Imaginary component {}".format(m))
covmean = covmean.real
tr_covmean = np.trace(covmean)
return diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) - 2 * tr_covmean
class FBD:
def __init__(self, references, model_name, bert_model_dir):
# inputs must be list of str
self.model_name = model_name
self.bert_model_dir = bert_model_dir
self.bert_feature = BertFeature(bert_model_dir=bert_model_dir, model_name=model_name)
self.refrence_mu, self.refrence_sigma = self._calculate_statistics(references)
def _get_features(self, sentences):
features = self.bert_feature.get_features(sentences)
return features
def _calculate_statistics(self, sentences):
features = self._get_features(sentences)
mu = np.mean(features, axis=0)
sigma = np.cov(features, rowvar=False)
return mu, sigma
def get_score(self, sentences):
# inputs must be list of str
mu, sigma = self._calculate_statistics(sentences)
return calculate_frechet_distance(self.refrence_mu, self.refrence_sigma, mu, sigma)
class EMBD:
def __init__(self, references, model_name, bert_model_dir):
# inputs must be list of str
self.model_name = model_name
self.bert_model_dir = bert_model_dir
self.bert_feature = BertFeature(bert_model_dir=bert_model_dir, model_name=model_name)
self.reference_features = self._get_features(references) # sample * feature
assert self.reference_features.shape[0] == len(references)
def _get_features(self, sentences):
features = self.bert_feature.get_features(sentences)
return features
def get_score(self, sentences):
# inputs must be list of str
features = self._get_features(sentences)
M = ot.dist(self.reference_features, features, metric="sqeuclidean")
return ot.emd2(a=[], b=[], M=M)
if __name__ == "__main__":
# Test1:
bert_feature = BertFeature(model_name="bert-base-uncased", bert_model_dir="/tmp/Bert/")
res = bert_feature.get_features(["that is very good", "that is good", "that is bad", "that is very bad"])
print(euclidean_distances(res))
# Test2:
references = ["that is very good", "it is great"]
sentences1 = ["this is nice", "that is good"]
sentences2 = ["it is bad", "this is very bad"]
fbd = FBD(references=references, model_name="bert-base-uncased", bert_model_dir="/tmp/Bert/")
print(fbd.get_score(sentences=sentences1))
print(fbd.get_score(sentences=sentences2))
embd = EMBD(references=references, model_name="bert-base-uncased", bert_model_dir="/tmp/Bert/")
print(embd.get_score(sentences=sentences1))
print(embd.get_score(sentences=sentences2))