forked from CNCKitchen/ConicalSlicer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Backtransformation_GCode.py
589 lines (522 loc) · 26.4 KB
/
Backtransformation_GCode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
import re
import numpy as np
import os
import time
def insert_Z(row, z_value):
"""
Insert or replace the z-value in a row. The new z-value must be given.
:param row: string
String containing the row, in which a z-value has to be inserted or replaced
:param z_value: float
New z-value, which should be inserted
:return: string
New string, containing the row with replaced z-value
"""
pattern_X = r'X[-0-9]+[.]?[0-9]*'
pattern_Y = r'Y[-0-9]+[.]?[0-9]*'
pattern_Z = r'Z[-0-9]+[.]?[0-9]*'
match_x = re.search(pattern_X, row)
match_y = re.search(pattern_Y, row)
match_z = re.search(pattern_Z, row)
if match_z is not None:
row_new = re.sub(pattern_Z, ' Z' + str(round(z_value, 3)), row)
else:
if match_y is not None:
row_new = row[0:match_y.end(0)] + ' Z' + str(round(z_value, 3)) + row[match_y.end(0):]
elif match_x is not None:
row_new = row[0:match_x.end(0)] + ' Z' + str(round(z_value, 3)) + row[match_x.end(0):]
else:
row_new = 'Z' + str(round(z_value, 3)) + ' ' + row
return row_new
def replace_E(row, dist_old, dist_new, corr_value):
"""
Replace the amount of extruded filament in a row. The new amount is proportional to the old amount, where
the factor is obtained by the ratio of new distance to old distance. (Due to the transformation, the amount has to
be divided by sqrt(2). replace_E is accessed 2 times.)
:param row: string
String containing the row, of which the extruder value should be replaced
:param dist_old: float
Length of the distance before backtransformation
:param dist_new: float
Length of the distance after backtransformation
:param corr_value: float
additional correction value due to transformation # added to have additional possiblity to correct amount of
extruded material
:return: string
New string, containing the row with replaced extruder value
"""
pattern_E = r'E[-0-9]+[.]?[0-9]*'
match_e = re.search(pattern_E, row)
if match_e is None:
return row
e_val_old = float(match_e.group(0).replace('E', ''))
if dist_old == 0:
e_val_new = 0
else:
e_val_new = round(e_val_old * dist_new * corr_value / dist_old, 6)
e_str_new = 'E' + str(e_val_new)
row_new = row[0:match_e.start(0)] + e_str_new + row[match_e.end(0):]
return row_new
def compute_angle_radial(x_new, y_new, inward_cone):
"""
Compute the angle of the printing head, when moving from an old point [x_old, y_old] to a new point [x_new, y_new].
(Note: the z-value is not considered for the orientation of the printing head.) The direction is given by the
direction of the new point by the arctan2 value according to the coordinates.
:param x_new: float
x-coordinate of the new point
:param y_new: float
y-coordinate of the new point
:param inward_cone: bool
Boolean variable, which depends on the kind of transformation. If True, an additional angle of pi is added to
the angle.
:return: float
Angle, which describes orientation of printing head. Its value lies in [-pi, pi].
"""
angle = np.arctan2(y_new, x_new)
if inward_cone:
angle = angle + np.pi
return angle
def compute_angle_tangential(x_old, y_old, x_new, y_new, inward_cone):
"""
Compute the angle of the printing head, when moving from an old point [x_old, y_old] to a new point [x_new, y_new].
(Note: the z-value is not considered for the orientation of the printing head.) The direction is normal to the
movement of direction, such that the printing head will point to the origin.
x-coordinate of the old point
:param x_old: float
x-coordinate of the old point
:param y_old: float
y-coordinate of the old point
:param x_new: float
x-coordinate of the new point
:param y_new: float
y-coordinate of the new point
:param inward_cone: bool
Boolean variable, which depends on the kind of transformation. If True, an additional angle of pi is added to
the angle.
:return: float
Angle, which describes orientation of printing head. Its value lies in [-pi, pi].
"""
direction_normal = np.array([-(y_new - y_old), x_new - x_old])
len_normal = np.linalg.norm(direction_normal)
direction_point = np.array([x_new, y_new])
len_point = np.linalg.norm(direction_point)
if len_normal * len_point == 0:
angle = np.arctan2(y_new, x_new)
else:
inner_prod = np.dot(direction_normal / len_normal, direction_point / len_point)
if np.isclose(inner_prod, 0, atol=0.01):
angle = np.arctan2(direction_normal[1], direction_normal[0])
else:
printhead_direction = inner_prod * len_point / len_normal * direction_normal
angle = np.arctan2(printhead_direction[1], printhead_direction[0])
if inward_cone:
angle = angle + np.pi
return angle
def compute_U_values(angle_array):
"""
Compute the U-values, which will be inserted, according to given angle values. The U-values are computed such that
there are no changes larger than 180. The range of the U-values is [-3600-180, 3600+180].
:param angle_array: array
Array, which contains the angle values in radian
:return array
Array, which contains U-values in degrees
"""
angle_candidates = np.around(np.array([angle_array + k * 2 * np.pi for k in range(-10, 11)]).T, 4)
angle_insert = [angle_array[0]]
for i in range(1, len(angle_array)):
angle_prev = angle_insert[i - 1]
idx = np.argmin(np.absolute(angle_candidates[i] - angle_prev))
angle_insert.append(angle_candidates[i, idx])
angle_insert = np.round(np.array(angle_insert) * 360 / (2 * np.pi), 2)
return angle_insert
def insert_U(row, angle):
"""
Insert or replace the U-value in a row, where the U-values describes the orientation of the printing head.
:param row: string
String containing the row, in which a U-value has to be inserted or replaced
:param angle: float
Value of the angle, which is inserted or replaces the old U-value
:return: string
New string, containing the row with replaced U-value
"""
pattern_Z = r'Z[-0-9]+[.]?[0-9]*'
match_z = re.search(pattern_Z, row)
pattern_U = r'U[-0-9]+[.]?[0-9]*'
match_u = re.search(pattern_U, row)
if match_u is None:
row_new = row[0:match_z.end(0)] + ' U' + str(angle) + row[match_z.end(0):]
else:
row_new = re.sub(pattern_U, 'U' + str(angle), row)
return row_new
def backtransform_data_radial(data, cone_type, maximal_length):
"""
Backtransform G-Code, which is given in a list, each element describing a row. Rows which describe a movement
are detected, x-, y-, z-, E- and U-values are replaced accordingly to the transformation. If a original segment
is too long, it gets divided into sub-segments before the backtransformation. The U-values are computed
using the function compute_angle_radial. (Added, that while travel moves, nozzle only rises 1 mm above highest
printed point and not along cone.)
:param data: list
List of strings, describing each line of the GCode, which is to be backtransformed
:param cone_type: string
String, either 'outward' or 'inward', defines which transformation should be used
:param maximal_length: float
Maximal length of a segment in the original GCode; every longer segment is divided, such that the resulting
segments are shorter than maximal_length
:return: list
List of strings, which describe the new GCode.
"""
new_data = []
pattern_X = r'X[-0-9]+[.]?[0-9]*'
pattern_Y = r'Y[-0-9]+[.]?[0-9]*'
pattern_Z = r'Z[-0-9]+[.]?[0-9]*'
pattern_E = r'E[-0-9]+[.]?[0-9]*'
pattern_G = r'\AG[01] '
x_old, y_old = 0, 0
x_new, y_new = 0, 0
z_layer = 0
angle_old = 0
z_max = 0
update_x, update_y = False, False
if cone_type == 'outward':
c = -1
inward_cone = False
elif cone_type == 'inward':
c = 1
inward_cone = True
else:
raise ValueError('{} is not a admissible type for the transformation'.format(cone_type))
for row in data:
g_match = re.search(pattern_G, row)
if g_match is None:
new_data.append(row)
else:
x_match = re.search(pattern_X, row)
y_match = re.search(pattern_Y, row)
z_match = re.search(pattern_Z, row)
if x_match is None and y_match is None and z_match is None:
new_data.append(row)
else:
if z_match is not None:
z_layer = float(z_match.group(0).replace('Z', ''))
if x_match is not None:
x_new = float(x_match.group(0).replace('X', ''))
update_x = True
if y_match is not None:
y_new = float(y_match.group(0).replace('Y', ''))
update_y = True
# Compute new distance and angle according to new row
e_match = re.search(pattern_E, row)
x_old_bt, x_new_bt = x_old / np.sqrt(2), x_new / np.sqrt(2)
y_old_bt, y_new_bt = y_old / np.sqrt(2), y_new / np.sqrt(2)
dist_transformed = np.linalg.norm([x_new - x_old, y_new - y_old])
# Compute new values for backtransformation of row
num_segm = int(dist_transformed // maximal_length + 1)
x_vals = np.linspace(x_old_bt, x_new_bt, num_segm + 1)
y_vals = np.linspace(y_old_bt, y_new_bt, num_segm + 1)
if inward_cone and e_match is None and (update_x or update_y):
z_start = z_layer + c * np.sqrt(x_old_bt ** 2 + y_old_bt ** 2)
z_end = z_layer + c * np.sqrt(x_new_bt ** 2 + y_new_bt ** 2)
z_vals = np.linspace(z_start, z_end, num_segm + 1)
else:
z_vals = np.array([z_layer + c * np.sqrt(x ** 2 + y ** 2) for x, y in zip(x_vals, y_vals)])
if e_match and (np.max(z_vals) > z_max or z_max == 0):
z_max = np.max(z_vals) # save hightes point with material extruded
if e_match is None and np.max(z_vals) > z_max:
np.minimum(z_vals, (z_max + 1),
z_vals) # cut away all travel moves, that are higher than max height extruded + 1 mm safety
# das hier könnte noch verschönert werden, in dem dann eine alle abgeschnittenen Werte mit einer einer geraden Linie ersetzt werden
angle_new = compute_angle_radial(x_old_bt, y_old_bt, inward_cone)
angle_vals = np.array(
[angle_old] + [compute_angle_radial(x_vals[k], y_vals[k], inward_cone)
for k in range(0, num_segm)])
u_vals = compute_U_values(angle_vals)
distances_transformed = dist_transformed / num_segm * np.ones(num_segm)
distances_bt = np.array(
[np.linalg.norm([x_vals[i] - x_vals[i - 1], y_vals[i] - y_vals[i - 1], z_vals[i] - z_vals[i - 1]])
for i in range(1, num_segm + 1)])
# Replace new row with num_seg new rows for movements and possible command rows for the U value
row = insert_Z(row, z_vals[0])
row = replace_E(row, num_segm, 1, 1 / np.sqrt(2))
replacement_rows = ''
for j in range(0, num_segm):
single_row = re.sub(pattern_X, 'X' + str(round(x_vals[j + 1], 3)), row)
single_row = re.sub(pattern_Y, 'Y' + str(round(y_vals[j + 1], 3)), single_row)
single_row = re.sub(pattern_Z, 'Z' + str(round(z_vals[j + 1], 3)), single_row)
single_row = replace_E(single_row, distances_transformed[j], distances_bt[j], 1)
if np.abs(u_vals[j + 1] - u_vals[j]) <= 30:
single_row = insert_U(single_row, u_vals[j + 1])
else:
single_row = 'G1 E-0.800 \n' + 'G1 U' + str(u_vals[j + 1]) + ' \n' + 'G1 E0.800 \n' + single_row
replacement_rows = replacement_rows + single_row
if np.amax(np.absolute(u_vals)) > 3600:
angle_reset = np.round(angle_vals[-1] * 360 / (2 * np.pi), 2)
replacement_rows = replacement_rows + 'G92 U' + str(angle_reset) + '\n'
angle_old = angle_new
else:
angle_old = u_vals[-1] * 2 * np.pi / 360
row = replacement_rows
if update_x:
x_old = x_new
update_x = False
if update_y:
y_old = y_new
update_y = False
new_data.append(row)
return new_data
def backtransform_data_tangential(data, cone_type, maximal_length):
"""
Backtransform GCode, which is given in a list, each element describing a row. Rows which describe a movement
are detected, x-, y-, z-, e- and U-values are replaced accordingly to the transformation. If a original segment
is too long, it gets divided into sub-segments before the backtransformation. The U-values are computed
using the function compute_angle_tangential.
:param data: list
List of strings, describing each line of the GCode, which is to be backtransformed
:param cone_type: string
String, either 'outward' or 'inward', defines which transformation should be used
:param maximal_length: float
Maximal length of a segment in the original GCode; every longer segment is divided, such that the resulting
segments are shorter than maximal_length
:return: list
List of strings, which describe the new GCode.
"""
new_data = []
pattern_X = r'X[-0-9]+[.]?[0-9]*'
pattern_Y = r'Y[-0-9]+[.]?[0-9]*'
pattern_Z = r'Z[-0-9]+[.]?[0-9]*'
pattern_E = r'E[-0-9]+[.]?[0-9]*'
pattern_G = r'\AG[01] '
x_old, y_old = 0, 0
x_new, y_new = 0, 0
z_layer = 0
angle_old = 0
z_max = 0
update_x, update_y = False, False
if cone_type == 'outward':
c = -1
inward_cone = False
elif cone_type == 'inward':
c = 1
inward_cone = True
else:
raise ValueError('{} is not a admissible type for the transformation'.format(cone_type))
for row in data:
g_match = re.search(pattern_G, row)
if g_match is None:
new_data.append(row)
else:
x_match = re.search(pattern_X, row)
y_match = re.search(pattern_Y, row)
z_match = re.search(pattern_Z, row)
if x_match is None and y_match is None and z_match is None:
new_data.append(row)
else:
if z_match is not None:
z_layer = float(z_match.group(0).replace('Z', ''))
if x_match is not None:
x_new = float(x_match.group(0).replace('X', ''))
update_x = True
if y_match is not None:
y_new = float(y_match.group(0).replace('Y', ''))
update_y = True
# Compute new values according to new row
e_match = re.search(pattern_E, row)
x_old_bt, y_old_bt = x_old / np.sqrt(2), y_old / np.sqrt(2)
x_new_bt, y_new_bt = x_new / np.sqrt(2), y_new / np.sqrt(2)
dist_transformed = np.linalg.norm([x_new - x_old, y_new - y_old])
if update_x or update_y:
angle_new = compute_angle_tangential(x_old_bt, y_old_bt, x_new_bt, y_new_bt, inward_cone)
else:
angle_new = angle_old
# Compute new values for backtransformation of row
num_segm = int(dist_transformed // maximal_length + 1)
x_vals = np.linspace(x_old_bt, x_new_bt, num_segm + 1)
y_vals = np.linspace(y_old_bt, y_new_bt, num_segm + 1)
if inward_cone and e_match is None and (update_x or update_y):
z_start = z_layer + c * np.sqrt(x_old_bt ** 2 + y_old_bt ** 2)
z_end = z_layer + c * np.sqrt(x_new_bt ** 2 + y_new_bt ** 2)
z_vals = np.linspace(z_start, z_end, num_segm + 1)
else:
z_vals = np.array([z_layer + c * np.sqrt(x ** 2 + y ** 2) for x, y in zip(x_vals, y_vals)])
if e_match and (np.max(z_vals) > z_max or z_max == 0):
z_max = np.max(z_vals) # save hightes point with material extruded
if e_match is None and np.max(z_vals) > z_max:
np.minimum(z_vals, (z_max + 1),
z_vals) # cut away all travel moves, that are higher than max height extruded + 1 mm safety
# das hier könnte noch verschönert werden, in dem dann alle abgeschnittenen Werte mit einer einer geraden Linie ersetzt werden
angle_vals = np.array([angle_old] + [angle_new for k in range(0, num_segm)])
u_vals = compute_U_values(angle_vals)
distances_transformed = dist_transformed / num_segm * np.ones(num_segm)
distances_bt = np.array(
[np.linalg.norm([x_vals[i] - x_vals[i - 1], y_vals[i] - y_vals[i - 1], z_vals[i] - z_vals[i - 1]])
for i in range(1, num_segm + 1)])
# Replace new row with num_seg new rows for movements and possible command rows for the U value
row = insert_Z(row, z_vals[0])
row = replace_E(row, num_segm, 1, 1 / np.sqrt(2))
replacement_rows = ''
for j in range(0, num_segm):
single_row = re.sub(pattern_X, 'X' + str(round(x_vals[j + 1], 3)), row)
single_row = re.sub(pattern_Y, 'Y' + str(round(y_vals[j + 1], 3)), single_row)
single_row = re.sub(pattern_Z, 'Z' + str(round(z_vals[j + 1], 3)), single_row)
single_row = replace_E(single_row, distances_transformed[j], distances_bt[j], 1)
if np.abs(u_vals[j + 1] - u_vals[j]) <= 30:
single_row = insert_U(single_row, u_vals[j + 1])
else:
single_row = single_row + 'G1 E-0.800 \n' + 'G1 U' + str(u_vals[j + 1]) + ' \n' + 'G1 E0.800 \n'
replacement_rows = replacement_rows + single_row
if np.amax(np.absolute(u_vals)) > 3600:
angle_reset = np.round(angle_vals[-1] * 360 / (2 * np.pi), 2)
replacement_rows = replacement_rows + 'G92 U' + str(angle_reset) + '\n'
angle_old = angle_new
else:
angle_old = u_vals[-1] * 2 * np.pi / 360
row = replacement_rows
if update_x:
x_old = x_new
update_x = False
if update_y:
y_old = y_new
update_y = False
new_data.append(row)
return new_data
def translate_data(data, translate_x, translate_y, z_desired, e_parallel, e_perpendicular):
"""
Translate the GCode in x- and y-direction. Only the lines, which describe a movement will be translated.
Additionally, if z_translation is True, the z-values will be translated such that the minimal z-value is z_desired.
This happens by traversing the list of strings twice. If cone_type is 'inward', it is assured, that all moves
with no extrusion have at least a height of z_desired.
:param data: list
List of strings, containing the GCode
:param translate_x: float
Float, which describes the translation in x-direction
:param translate_y: float
Float, which describes the translation in y-direction
:param z_desired: float
Desired minimal z-value
:param e_parallel: float
Correction of extrusion error parallel to nozzle
:param e_perpendicular: float
Correction of extrusion error perpendicular to nozzle
:return: list
List of strings, which contains the translated GCode
"""
new_data = []
pattern_X = r'X[-0-9]+[.]?[0-9]*'
pattern_Y = r'Y[-0-9]+[.]?[0-9]*'
pattern_Z = r'Z[-0-9]+[.]?[0-9]*'
pattern_E = r'E[-0-9]+[.]?[0-9]*'
pattern_U = r'U[-0-9]+[.]?[0-9]*'
pattern_G = r'\AG[01] '
z_initialized = False
u_val = 0.0
for row in data:
g_match = re.search(pattern_G, row)
z_match = re.search(pattern_Z, row)
e_match = re.search(pattern_E, row)
if g_match is not None and z_match is not None and e_match is not None:
z_val = float(z_match.group(0).replace('Z', ''))
if not z_initialized:
z_min = z_val
z_initialized = True
if z_val < z_min:
z_min = z_val
z_translate = z_desired - z_min
for row in data:
x_match = re.search(pattern_X, row)
y_match = re.search(pattern_Y, row)
z_match = re.search(pattern_Z, row)
g_match = re.search(pattern_G, row)
u_match = re.search(pattern_U, row)
if u_match is not None:
u_val = np.radians(float(u_match.group(0).replace('U', '')))
if g_match is None:
new_data.append(row)
else:
if x_match is not None:
x_val = round(float(x_match.group(0).replace('X', '')) + translate_x - (e_parallel * np.cos(u_val)) + (
e_perpendicular * np.sin(u_val)), 3) # added correction for misalignment of nozzle
row = re.sub(pattern_X, 'X' + str(x_val), row)
if y_match is not None:
y_val = round(float(y_match.group(0).replace('Y', '')) + translate_y - (e_parallel * np.sin(u_val)) - (
e_perpendicular * np.cos(u_val)), 3) # added correction for misalignment of nozzle
row = re.sub(pattern_Y, 'Y' + str(y_val), row)
if z_match is not None:
z_val = max(round(float(z_match.group(0).replace('Z', '')) + z_translate, 3), z_desired)
row = re.sub(pattern_Z, 'Z' + str(z_val), row)
new_data.append(row)
return new_data
def backtransform_file(path, output_dir, cone_type, maximal_length, angle_comp, x_shift, y_shift, z_desired, e_parallel,
e_perpendicular):
"""
Read GCode from file, backtransform, translate it and save backtransformed G-Code.
:param path: string
String with the path to the GCode-file
:param output_dir: string
path of directory, where transformed STL-file will be saved
:param cone_type: string
String, either 'outward' or 'inward', defines which transformation should be used
:param maximal_length: float
Maximal length of a segment in the original GCode
:param angle_comp: string
String, which describes the way, the angle is computed; one of 'radial' or 'tangential'
:param x_shift: float
Float, which describes the translation in x-direction
:param y_shift: float
Float, which describes the translation in y-direction
:param z_desired: float
Desired minimal z-value
:param e_perpendicular: float
Correction of extrusion error parallel to nozzle
:param e_parallel: float
Correction of extrusion error perpendicular to nozzle
:return: None
"""
start = time.time()
if angle_comp == 'radial':
backtransform_data = backtransform_data_radial
elif angle_comp == 'tangential':
backtransform_data = backtransform_data_tangential
else:
raise ValueError('{} is not a admissible type for the angle computation'.format(angle_comp))
with open(path, 'r') as f_gcode:
data = f_gcode.readlines()
data_bt = backtransform_data(data, cone_type, maximal_length)
data_bt_string = ''.join(data_bt)
data_bt = [row + ' \n' for row in data_bt_string.split('\n')]
data_bt = translate_data(data_bt, x_shift, y_shift, z_desired, e_parallel, e_perpendicular)
data_bt_string = ''.join(data_bt)
if not os.path.exists(output_dir):
os.mkdir(output_dir)
file_name = path[path.rfind('/'):]
file_name = file_name.replace('.gcode', '_bt_' + cone_type + '_' + angle_comp + '.gcode')
output_path = output_dir + file_name
with open(output_path, 'w+') as f_gcode_bt:
f_gcode_bt.write(data_bt_string)
end = time.time()
print('GCode generated in {:.1f}s, saved in {}'.format(end - start, output_path))
return None
# -------------------------------------------------------------------------------
# Apply the functions for a G-Code file
# -------------------------------------------------------------------------------
# G-Code backtransformation function parameters
file_path = '/path/to/gcode/file.gcode'
dir_backtransformed = '/path/to/save/backtransformation/'
transformation_type = 'inward' # inward or outward
angle_type = 'radial' # radial or tangential
max_length = 5 # maximal length of a segment in mm
delta_x = 0 # shift of code in x-direction
delta_y = 0 # shift of code in y-direction
z_height = 0.1 # desired height in z-direction
err_parallel = 0.25 # error in parallel direction
err_perpendicular = 0.65 # error in perpendicular direction
# G-Code backtransformation function call
backtransform_file(path=file_path,
output_dir=dir_backtransformed,
cone_type=transformation_type,
maximal_length=max_length,
angle_comp=angle_type,
x_shift=delta_x,
y_shift=delta_y,
z_desired=z_height,
e_parallel=err_parallel,
e_perpendicular=err_perpendicular
)