-
Notifications
You must be signed in to change notification settings - Fork 1
/
regex.idr
288 lines (257 loc) · 12 KB
/
regex.idr
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
module Main
import Data.List
%default total
data RegExp: Type -> Type where
Atom: a -> RegExp a
Disj: RegExp a -> RegExp a -> RegExp a
Seq: RegExp a -> RegExp a -> RegExp a
Star: RegExp a -> RegExp a
Empty: RegExp a
Nothing: RegExp a
data RegExpSpec: RegExp a -> List a -> Type where
AtomSpec: (x : a) -> RegExpSpec (Atom x) [x]
DisjSpec1: (r1 : RegExp a) ->
(r2: RegExp a) -> (xs : List a) ->
(RegExpSpec r1 xs) ->
RegExpSpec (Disj r1 r2) xs
DisjSpec2: (r1 : RegExp a) ->
(r2: RegExp a) -> (xs : List a) ->
(RegExpSpec r2 xs) ->
RegExpSpec (Disj r1 r2) xs
SeqSpec: (xs : List a) -> (ys : List a) -> (zs : List a) ->
(r1 : RegExp a) -> (r2 : RegExp a) ->
RegExpSpec r1 xs ->
RegExpSpec r2 ys ->
zs = xs ++ ys ->
RegExpSpec (Seq r1 r2) zs
StarSpec0: (r: RegExp a) ->
RegExpSpec (Star r) []
StarSpecS: (xs : List a) -> (ys : List a) ->
(zs : List a) ->
(r : RegExp a) ->
RegExpSpec r xs ->
RegExpSpec (Star r) ys ->
(zs = xs ++ ys) ->
RegExpSpec (Star r) zs
EmptySpec: RegExpSpec Empty []
isEmpty : RegExp a -> RegExp a
isEmpty (Atom x) = Nothing
isEmpty (Disj x y) = Disj (isEmpty x) (isEmpty y)
isEmpty (Seq x y) = Seq (isEmpty x) (isEmpty y)
isEmpty (Star x) = Empty
isEmpty Empty = Empty
isEmpty Nothing = Nothing
atom_case : (x : a) -> RegExpSpec (Atom x) [] -> Void
atom_case _ _ impossible
disj_case : (x: RegExp a) -> (y: RegExp a) ->
(contra1: RegExpSpec x [] -> Void) ->
(contra2: RegExpSpec y [] -> Void) ->
RegExpSpec (Disj x y) [] -> Void
disj_case x y contra1 contra2 (DisjSpec1 x y [] z) = contra1 z
disj_case x y contra1 contra2 (DisjSpec2 x y [] z) = contra2 z
seq_yes_case : (x : RegExp a) -> (y : RegExp a) ->
RegExpSpec x [] -> RegExpSpec y [] ->
RegExpSpec (Seq x y) []
seq_yes_case x y prf1 prf2 = SeqSpec [] [] [] x y prf1 prf2 Refl
about_list1 : (xs : List a) -> (ys : List a) ->
[] = xs ++ ys -> [] = xs
about_list1 [] ys prf = Refl
about_list1 (_ :: _) _ Refl impossible
about_list2 : (xs : List a) -> (ys : List a) ->
[] = xs ++ ys -> [] = ys
about_list2 [] [] Refl = Refl
about_list2 (_ :: _) _ Refl impossible
about_list3 : (x : a) -> (y : a) -> (xs : List a) ->
(ys : List a) -> (zs : List a) -> x :: xs = (y :: ys) ++ zs ->
(x = y, xs = ys ++ zs)
about_list3 y y (ys ++ zs) ys zs Refl = (Refl, Refl)
about_list4 : (x : a) -> (xs : List a) -> (ys : List a) ->
(zs : List a) -> x :: xs = ys ++ zs ->
Either (DPair (List a) (\ys' => (ys = x :: ys', xs = ys' ++ zs)))
(ys = [], zs = x :: xs)
about_list4 x xs [] zs prf = Right (Refl, sym prf)
about_list4 x xs (y :: ys) zs prf =
let (Refl, h2) = about_list3 x y xs ys zs prf in (Left (MkDPair ys (Refl, h2)))
seq_no_case1: (x : RegExp a) -> (y : RegExp a) ->
(RegExpSpec x [] -> Void) -> RegExpSpec (Seq x y) [] -> Void
seq_no_case1 x y f (SeqSpec xs ys [] x y z w prf) =
let h = about_list1 xs ys prf in
f (rewrite h in z)
seq_no_case2: (x : RegExp a) -> (y : RegExp a) ->
(RegExpSpec y [] -> Void) -> RegExpSpec (Seq x y) [] -> Void
seq_no_case2 x y f (SeqSpec xs ys [] x y z w prf) =
let h = about_list2 xs ys prf in
f (rewrite h in w)
match_nothing_is_false : (xs : List a) ->
RegExpSpec Nothing xs -> Void
match_nothing_is_false _ _ impossible
decEmpty : (r : RegExp a) -> Dec (RegExpSpec r [])
decEmpty (Atom x) = No (atom_case x)
decEmpty (Disj x y) =
case (decEmpty x, decEmpty y) of
(Yes prf, _) => Yes (DisjSpec1 x y [] prf)
(_, Yes prf) => Yes (DisjSpec2 x y [] prf)
(No contra1, No contra2) => No (disj_case x y contra1 contra2)
decEmpty (Seq x y) =
case (decEmpty x, decEmpty y) of
(Yes prf1, Yes prf2) => Yes (seq_yes_case x y prf1 prf2)
(No contra, _) => No (seq_no_case1 x y contra)
(_, No contra) => No (seq_no_case2 x y contra)
decEmpty (Star x) = Yes (StarSpec0 x)
decEmpty Empty = Yes EmptySpec
decEmpty Nothing = No (match_nothing_is_false [])
derive : DecEq a => (r : RegExp a) -> (x : a) -> RegExp a
derive (Atom y) x = case decEq y x of
Yes _ => Empty
No _ => Nothing
derive (Disj y z) x = Disj (derive y x) (derive z x)
derive (Seq y z) x = Disj (Seq (derive y x) z) (Seq (isEmpty y) (derive z x))
derive (Star y) x = Seq (derive y x) (Star y)
derive Empty x = Nothing
derive Nothing x = Nothing
empty_match_implies_empty_list : RegExpSpec Empty xs -> xs = []
empty_match_implies_empty_list EmptySpec = Refl
is_empty_match_implies_empty_list :
(r : RegExp a) ->
(xs : List a) -> RegExpSpec (isEmpty r) xs -> xs = []
is_empty_match_implies_empty_list (Atom y) xs x =
void (match_nothing_is_false xs x)
is_empty_match_implies_empty_list (Disj y z) xs (DisjSpec1 (isEmpty y) (isEmpty z) xs x) =
is_empty_match_implies_empty_list y xs x
is_empty_match_implies_empty_list (Disj y z) xs (DisjSpec2 (isEmpty y) (isEmpty z) xs x) =
is_empty_match_implies_empty_list z xs x
is_empty_match_implies_empty_list (Seq y z) xs (SeqSpec ys zs xs (isEmpty y) (isEmpty z) x w prf) =
rewrite prf in
(let h1 = is_empty_match_implies_empty_list y ys x
h2 = is_empty_match_implies_empty_list z zs w
in rewrite h1 in rewrite h2 in Refl)
is_empty_match_implies_empty_list (Star y) xs x = empty_match_implies_empty_list x
is_empty_match_implies_empty_list Empty xs x = empty_match_implies_empty_list x
is_empty_match_implies_empty_list Nothing xs x = void (match_nothing_is_false xs x)
is_empty_is_sound : (r : RegExp a) -> (xs : List a) ->
RegExpSpec (isEmpty r) xs -> RegExpSpec r []
is_empty_is_sound (Atom y) xs x = void (match_nothing_is_false xs x)
is_empty_is_sound (Disj y z) xs (DisjSpec1 (isEmpty y) (isEmpty z) xs x) =
let h = is_empty_is_sound y xs x in (DisjSpec1 y z [] h)
is_empty_is_sound (Disj y z) xs (DisjSpec2 (isEmpty y) (isEmpty z) xs x) =
let h = is_empty_is_sound z xs x in (DisjSpec2 y z [] h)
is_empty_is_sound (Seq y z) xs (SeqSpec ys zs xs (isEmpty y) (isEmpty z) x w prf) =
let h1 = is_empty_is_sound y ys x in
let h2 = is_empty_is_sound z zs w in SeqSpec [] [] [] y z h1 h2 Refl
is_empty_is_sound (Star y) xs x = StarSpec0 y
is_empty_is_sound Empty xs x = EmptySpec
is_empty_is_sound Nothing xs x = void (match_nothing_is_false xs x)
derivative_is_sound: DecEq a => (r : RegExp a) ->
(x : a) -> (xs : List a) ->
RegExpSpec (derive r x) xs -> RegExpSpec r (x :: xs)
derivative_is_sound (Atom z) x xs y with (decEq z x)
derivative_is_sound (Atom x) x xs y | (Yes Refl) =
rewrite (empty_match_implies_empty_list y) in AtomSpec x
derivative_is_sound (Atom z) x xs y | (No contra) =
void (match_nothing_is_false xs y)
derivative_is_sound (Disj z w) x xs y =
case y of
(DisjSpec1 (derive z x) _ xs y) =>
let z' = (derivative_is_sound z x xs y)
in DisjSpec1 z w (x :: xs) z'
(DisjSpec2 _ (derive w x) xs y) =>
let z' = (derivative_is_sound w x xs y)
in DisjSpec2 z w (x :: xs) z'
derivative_is_sound (Seq r1 r2) x xs (DisjSpec1 (Seq _ _) (Seq _ _) xs (SeqSpec ys zs xs _ r2 y z prf)) =
let h' = derivative_is_sound r1 x ys y
in rewrite prf in
SeqSpec (x :: ys) zs (x :: ys ++ zs) r1 r2 h' z Refl
derivative_is_sound (Seq r1 r2) x xs (DisjSpec2 (Seq _ r2) (Seq _ _) xs (SeqSpec ys zs xs (isEmpty r1) _ y s prf)) =
rewrite prf in
rewrite (is_empty_match_implies_empty_list r1 ys y) in
let h1 = derivative_is_sound r2 x zs s in
let h2 = is_empty_is_sound r1 ys y in
SeqSpec [] (x :: zs) (x :: zs) r1 r2 h2 h1 Refl
derivative_is_sound (Star z) x _ (SeqSpec xs ys zs _ (Star z) y w prf) =
rewrite prf in
let h = derivative_is_sound z x xs y in
StarSpecS (x :: xs) ys (x :: xs ++ ys) z h w Refl
derivative_is_sound Empty _ _ _ impossible
derivative_is_sound Nothing _ _ _ impossible
atom_match_implies: (x : a) -> (xs : List a) ->
RegExpSpec (Atom x) (x :: xs) -> xs = []
atom_match_implies x [] (AtomSpec x) = Refl
atom_match_implies2: (x : a) -> (y : a) -> (xs : List a) ->
RegExpSpec (Atom x) (y :: xs) -> x = y
atom_match_implies2 y y [] (AtomSpec y) = Refl
cons_is_not_nil : (x : a) -> (xs : List a) -> x :: xs = [] -> Void
cons_is_not_nil _ _ Refl impossible
is_empty_is_complete : (r : RegExp a) -> RegExpSpec r [] ->
RegExpSpec (isEmpty r) []
is_empty_is_complete (Atom _) _ impossible
is_empty_is_complete (Disj y z) (DisjSpec1 y z [] x) =
let h = is_empty_is_complete y x in
DisjSpec1 (isEmpty y) (isEmpty z) [] h
is_empty_is_complete (Disj y z) (DisjSpec2 y z [] x) =
let h = is_empty_is_complete z x in
DisjSpec2 (isEmpty y) (isEmpty z) [] h
is_empty_is_complete (Seq y z) (SeqSpec xs ys [] y z x w prf) =
let h1 = about_list1 xs ys prf in
let h2 = about_list2 xs ys prf in
let ih1 = is_empty_is_complete y (rewrite h1 in x) in
let ih2 = is_empty_is_complete z (rewrite h2 in w) in
SeqSpec [] [] [] (isEmpty y) (isEmpty z) ih1 ih2 Refl
is_empty_is_complete (Star y) x = EmptySpec
is_empty_is_complete Empty x = x
is_empty_is_complete Nothing x = x
append_nil_neutral : (xs : List a) -> xs ++ [] = xs
append_nil_neutral [] = Refl
append_nil_neutral (x :: xs) =
let h = append_nil_neutral xs in
rewrite h in Refl
about_list5 : (x : a) -> (y : a) -> (xs : List a) -> (ys : List a) -> (zs : List a) ->
x :: xs = (y :: ys) ++ zs -> (x = y, xs = ys ++ zs)
about_list5 x _ (ys ++ zs) ys zs Refl = (Refl, Refl)
mutual {
star_case : DecEq a => (r : RegExp a) -> (x : a) ->
(xs : List a) -> RegExpSpec (Star r) xs ->
(xs' : List a) ->
xs = x :: xs' ->
RegExpSpec (Seq (derive r x) (Star r)) xs'
star_case r x [] (StarSpec0 r) = \xs', contra => void (cons_is_not_nil x xs' (sym contra))
star_case r x _ (StarSpecS [] zs _ r y z Refl) = \xs', Refl =>
star_case r x (x :: xs') z xs' Refl
star_case r x xs (StarSpecS (w :: ys) zs xs r y z prf) = \xs', Refl =>
let (Refl, Refl) = about_list5 x w xs' ys zs prf in
let h = derivative_is_complete r x ys y in
SeqSpec ys zs (ys ++ zs) (derive r x) (Star r) h z Refl
derivative_is_complete : (DecEq a) => (r : RegExp a) -> (x : a) -> (xs : List a) -> RegExpSpec r (x :: xs) -> RegExpSpec (derive r x) xs
derivative_is_complete (Atom z) x xs y with (decEq z x)
derivative_is_complete (Atom x) x xs y | (Yes Refl) =
rewrite (atom_match_implies x xs y) in EmptySpec
derivative_is_complete (Atom z) x xs y | (No contra) =
void (contra (atom_match_implies2 z x xs y))
derivative_is_complete (Disj z w) x xs (DisjSpec1 z w (x :: xs) y) =
let h = derivative_is_complete z x xs y in
DisjSpec1 (derive z x) (derive w x) xs h
derivative_is_complete (Disj z w) x xs (DisjSpec2 z w (x :: xs) y) =
let h = derivative_is_complete w x xs y in
DisjSpec2 (derive z x) (derive w x) xs h
derivative_is_complete (Seq z w) x xs (SeqSpec ys zs (x :: xs) z w y s prf) =
case about_list4 x xs ys zs prf of
Left (ys' ** (h1, h2)) =>
rewrite h2 in
let h = derivative_is_complete z x ys' (rewrite sym h1 in y) in
DisjSpec1 (Seq (derive z x) w) (Seq (isEmpty z) (derive w x)) (ys' ++ zs)
(SeqSpec ys' zs (ys' ++ zs) (derive z x) w h s Refl)
Right (h1, h2) =>
let h = derivative_is_complete w x xs (rewrite sym h2 in s) in
DisjSpec2 (Seq (derive z x) w) (Seq (isEmpty z) (derive w x)) xs
(SeqSpec [] xs xs (isEmpty z) (derive w x) (is_empty_is_complete z (rewrite sym h1 in y)) h Refl)
derivative_is_complete (Star r) x xs prf =
star_case r x (x :: xs) prf xs Refl
derivative_is_complete Empty x xs y =
let h = empty_match_implies_empty_list y in void (cons_is_not_nil x xs h)
derivative_is_complete Nothing x xs y = void (match_nothing_is_false (x :: xs) y)
}
match : DecEq a => (xs : List a) -> (r : RegExp a) -> Dec (RegExpSpec r xs)
match [] r = decEmpty r
match (x :: xs) r =
case match xs (derive r x) of
Yes prf => Yes (derivative_is_sound r x xs prf)
No contra => No (contra . (derivative_is_complete r x xs))