forked from neural-dialogue-metrics/BLEU
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bleu_score.py
96 lines (79 loc) · 3.23 KB
/
bleu_score.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# Copyright 2019 Cong Feng. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Driver script to compute BLEU score."""
import argparse
from pathlib import Path
from bleu import *
from bleu.utils import load_reference_corpus
from bleu.utils import load_translation_corpus
#from agenda.metric_helper import write_score
def _break_into_words(line):
"""
Turn a already-tokenized line into a list of words.
:param line: string, already tokenized. All tokens are separated by space.
:return: List[string], broken into words.
"""
return line.strip().split(' ')
def _read_references(ref_files, n_trans):
"""
Read the reference corpus from a list of files.
:param ref_files: List[string].
:param n_trans: int, number of translations.
:return: List[List[List[string]]].
"""
references = [[] for _ in range(n_trans)]
for file in ref_files:
with open(file, 'r') as f:
lines = f.read().strip().split('\n')
assert len(lines) == n_trans, 'each reference file must have the same lines as the translation file!'
for i, line in enumerate(lines):
references[i].append(_break_into_words(line))
return references
def eval_metric(translations, references, n, type, output_dir):
name = 'bleu_%d' % n
output_dir = Path(output_dir)
output = output_dir.joinpath(name).with_suffix('.json')
scores = [
getattr(bleu_sentence_level(trans, ref, max_order=n, smooth=True), type)
for trans, ref in zip(translations, references)
]
system = getattr(bleu_corpus_level(
translation_corpus=translations,
reference_corpus=references,
max_order=n,
smooth=True,
), type)
print("name: ", name)
print("scores of every sentence:",scores)
print("score of all corpus scaled on 100:",system*100)
print("output file",output)
if __name__ == '__main__':
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('-t', dest="translations")
parser.add_argument('-r', dest="references", nargs='+')
parser.add_argument("-n", "--n_grams", nargs='+', type=int)
parser.add_argument('--type', choices=('bleu', 'geo_mean', 'precisions'), default='bleu')
parser.add_argument('-p', dest='output_dir')
args = parser.parse_args()
translations = load_translation_corpus(args.translations)
references = load_reference_corpus(args.references)
for n in args.n_grams:
eval_metric(
translations=translations,
references=references,
n=n,
type=args.type,
output_dir=args.output_dir,
)