You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
# encoding: utf-8
'''
Created on Nov 26, 2015
@author: tal
Based in part on:
Learn math - https://github.com/fchollet/keras/blob/master/examples/addition_rnn.py
See https://medium.com/@majortal/deep-spelling-9ffef96a24f6#.2c9pu8nlm
'''
from __future__ import print_function, division, unicode_literals
import os
import errno
from collections import Counter
from hashlib import sha256
import re
import json
import itertools
import logging
import requests
import numpy as np
from numpy.random import choice as random_choice, randint as random_randint, shuffle as random_shuffle, seed as random_seed, rand
from numpy import zeros as np_zeros # pylint:disable=no-name-in-module
from keras.models import Sequential, load_model
from keras.layers import Activation, TimeDistributed, Dense, RepeatVector, Dropout, recurrent
from keras.callbacks import Callback
# Set a logger for the module
LOGGER = logging.getLogger(__name__) # Every log will use the module name
LOGGER.addHandler(logging.StreamHandler())
LOGGER.setLevel(logging.DEBUG)
random_seed(123) # Reproducibility
class Configuration(object):
"""Dump stuff here"""
CONFIG = Configuration()
#pylint:disable=attribute-defined-outside-init
# Parameters for the model:
CONFIG.input_layers = 2
CONFIG.output_layers = 2
CONFIG.amount_of_dropout = 0.2
CONFIG.hidden_size = 500
CONFIG.initialization = "he_normal" # : Gaussian initialization scaled by fan-in (He et al., 2014)
CONFIG.number_of_chars = 100
CONFIG.max_input_len = 60
CONFIG.inverted = True
# parameters for the training:
CONFIG.batch_size = 100 # As the model changes in size, play with the batch size to best fit the process in memory
CONFIG.epochs = 500 # due to mini-epochs.
CONFIG.steps_per_epoch = 1000 # This is a mini-epoch. Using News 2013 an epoch would need to be ~60K.
CONFIG.validation_steps = 10
CONFIG.number_of_iterations = 10
#pylint:enable=attribute-defined-outside-init
DIGEST = sha256(json.dumps(CONFIG.__dict__,sort_keys=True).encode('utf8')).hexdigest()
# Parameters for the dataset
MIN_INPUT_LEN = 5
AMOUNT_OF_NOISE = 0.2 / CONFIG.max_input_len
CHARS = list("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ .")
PADDING = "☕"
DATA_FILES_PATH = "/content/sample_data"
DATA_FILES_FULL_PATH = os.path.expanduser(DATA_FILES_PATH)
DATA_FILES_URL = "http://www.statmt.org/wmt14/training-monolingual-news-crawl/news.2013.en.shuffled.gz"
NEWS_FILE_NAME_COMPRESSED = os.path.join(DATA_FILES_FULL_PATH, "news.2013.en.shuffled.gz") # 1.1 GB
NEWS_FILE_NAME_ENGLISH = "news.2013.en.shuffled"
NEWS_FILE_NAME = os.path.join(DATA_FILES_FULL_PATH, NEWS_FILE_NAME_ENGLISH)
NEWS_FILE_NAME_CLEAN = os.path.join(DATA_FILES_FULL_PATH, "news.2013.en.clean")
NEWS_FILE_NAME_FILTERED = os.path.join(DATA_FILES_FULL_PATH, "news.2013.en.filtered")
NEWS_FILE_NAME_SPLIT = os.path.join(DATA_FILES_FULL_PATH, "news.2013.en.split")
NEWS_FILE_NAME_TRAIN = os.path.join(DATA_FILES_FULL_PATH, "news.2013.en.train")
NEWS_FILE_NAME_VALIDATE = os.path.join(DATA_FILES_FULL_PATH, "news.2013.en.validate")
CHAR_FREQUENCY_FILE_NAME = os.path.join(DATA_FILES_FULL_PATH, "char_frequency.json")
SAVED_MODEL_FILE_NAME = os.path.join(DATA_FILES_FULL_PATH, "keras_spell_e{}.h5") # an HDF5 file
# Some cleanup:
NORMALIZE_WHITESPACE_REGEX = re.compile(r'[^\S\n]+', re.UNICODE) # match all whitespace except newlines
RE_DASH_FILTER = re.compile(r'[\-\˗\֊\‐\‑\‒\–\—\⁻\₋\−\﹣\-]', re.UNICODE)
RE_APOSTROPHE_FILTER = re.compile(r''|[ʼ՚'‘’‛❛❜ߴߵ`‵´ˊˋ{}{}{}{}{}{}{}{}{}]'.format(chr(768), chr(769), chr(832),
chr(833), chr(2387), chr(5151),
chr(5152), chr(65344), chr(8242)),
re.UNICODE)
RE_LEFT_PARENTH_FILTER = re.compile(r'[\(\[\{\⁽\₍\❨\❪\﹙\(]', re.UNICODE)
RE_RIGHT_PARENTH_FILTER = re.compile(r'[\)\]\}\⁾\₎\❩\❫\﹚\)]', re.UNICODE)
ALLOWED_CURRENCIES = """¥£₪$€฿₨"""
ALLOWED_PUNCTUATION = """-!?/;"'%&<>.()[]{}@#:,|=*"""
RE_BASIC_CLEANER = re.compile(r'[^\w\s{}{}]'.format(re.escape(ALLOWED_CURRENCIES), re.escape(ALLOWED_PUNCTUATION)), re.UNICODE)
# pylint:disable=invalid-name
def download_the_news_data():
"""Download the news data"""
LOGGER.info("Downloading")
#if os.path.isfile(DATA_FILES_FULL_PATH +"/news.2013.en.shuffled.gz") == False:
try:
os.makedirs(os.path.dirname(NEWS_FILE_NAME_COMPRESSED))
except OSError as exception:
if exception.errno != errno.EEXIST:
raise
with open(NEWS_FILE_NAME_COMPRESSED, "wb") as output_file:
response = requests.get(DATA_FILES_URL, stream=True)
total_length = response.headers.get('content-length')
downloaded = percentage = 0
print("»"*100)
total_length = int(total_length)
for data in response.iter_content(chunk_size=4096):
downloaded += len(data)
output_file.write(data)
new_percentage = 100 * downloaded // total_length
if new_percentage > percentage:
print("☑", end="")
percentage = new_percentage
print()
def uncompress_data():
"""Uncompress the data files"""
import gzip
with gzip.open(NEWS_FILE_NAME_COMPRESSED, 'rb') as compressed_file:
with open(NEWS_FILE_NAME_COMPRESSED[:-3], 'wb') as outfile:
outfile.write(compressed_file.read())
def add_noise_to_string(a_string, amount_of_noise):
"""Add some artificial spelling mistakes to the string"""
if rand() < amount_of_noise * len(a_string):
# Replace a character with a random character
random_char_position = random_randint(len(a_string))
a_string = a_string[:random_char_position] + random_choice(CHARS[:-1]) + a_string[random_char_position + 1:]
if rand() < amount_of_noise * len(a_string):
# Delete a character
random_char_position = random_randint(len(a_string))
a_string = a_string[:random_char_position] + a_string[random_char_position + 1:]
if len(a_string) < CONFIG.max_input_len and rand() < amount_of_noise * len(a_string):
# Add a random character
random_char_position = random_randint(len(a_string))
a_string = a_string[:random_char_position] + random_choice(CHARS[:-1]) + a_string[random_char_position:]
if rand() < amount_of_noise * len(a_string):
# Transpose 2 characters
random_char_position = random_randint(len(a_string) - 1)
a_string = (a_string[:random_char_position] + a_string[random_char_position + 1] + a_string[random_char_position] +
a_string[random_char_position + 2:])
return a_string
def _vectorize(questions, answers, ctable):
"""Vectorize the data as numpy arrays"""
len_of_questions = len(questions)
X = np_zeros((len_of_questions, CONFIG.max_input_len, ctable.size), dtype=np.bool)
for i in xrange(len(questions)):
sentence = questions.pop()
for j, c in enumerate(sentence):
try:
X[i, j, ctable.char_indices[c]] = 1
except KeyError:
pass # Padding
y = np_zeros((len_of_questions, CONFIG.max_input_len, ctable.size), dtype=np.bool)
for i in xrange(len(answers)):
sentence = answers.pop()
for j, c in enumerate(sentence):
try:
y[i, j, ctable.char_indices[c]] = 1
except KeyError:
pass # Padding
return X, y
def slice_X(X, start=None, stop=None):
"""This takes an array-like, or a list of
array-likes, and outputs:
- X[start:stop] if X is an array-like
- [x[start:stop] for x in X] if X in a list
Can also work on list/array of indices: `slice_X(x, indices)`
# Arguments
start: can be an integer index (start index)
or a list/array of indices
stop: integer (stop index); should be None if
`start` was a list.
"""
if isinstance(X, list):
if hasattr(start, '__len__'):
# hdf5 datasets only support list objects as indices
if hasattr(start, 'shape'):
start = start.tolist()
return [x[start] for x in X]
else:
return [x[start:stop] for x in X]
else:
if hasattr(start, '__len__'):
if hasattr(start, 'shape'):
start = start.tolist()
return X[start]
else:
return X[start:stop]
def vectorize(questions, answers, chars=None):
"""Vectorize the questions and expected answers"""
print('Vectorization...')
chars = chars or CHARS
ctable = CharacterTable(chars)
X, y = _vectorize(questions, answers, ctable)
# Explicitly set apart 10% for validation data that we never train over
split_at = int(len(X) - len(X) / 10)
(X_train, X_val) = (slice_X(X, 0, split_at), slice_X(X, split_at))
(y_train, y_val) = (y[:split_at], y[split_at:])
print(X_train.shape)
print(y_train.shape)
return X_train, X_val, y_train, y_val, CONFIG.max_input_len, ctable
def generate_model(output_len, chars=None):
"""Generate the model"""
print('Build model...')
chars = chars or CHARS
model = Sequential()
# "Encode" the input sequence using an RNN, producing an output of hidden_size
# note: in a situation where your input sequences have a variable length,
# use input_shape=(None, nb_feature).
for layer_number in range(CONFIG.input_layers):
model.add(recurrent.LSTM(CONFIG.hidden_size, input_shape=(None, len(chars)), kernel_initializer=CONFIG.initialization,
return_sequences=layer_number + 1 < CONFIG.input_layers))
model.add(Dropout(CONFIG.amount_of_dropout))
# For the decoder's input, we repeat the encoded input for each time step
model.add(RepeatVector(output_len))
# The decoder RNN could be multiple layers stacked or a single layer
for _ in range(CONFIG.output_layers):
model.add(recurrent.LSTM(CONFIG.hidden_size, return_sequences=True, kernel_initializer=CONFIG.initialization))
model.add(Dropout(CONFIG.amount_of_dropout))
# For each of step of the output sequence, decide which character should be chosen
model.add(TimeDistributed(Dense(len(chars), kernel_initializer=CONFIG.initialization)))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
class Colors(object):
"""For nicer printouts"""
green = '\033[92m'
red = '\033[91m'
close = '\033[0m'
class CharacterTable(object):
"""
Given a set of characters:
+ Encode them to a one hot integer representation
+ Decode the one hot integer representation to their character output
+ Decode a vector of probabilities to their character output
"""
def __init__(self, chars):
self.chars = sorted(set(chars))
self.char_indices = dict((c, i) for i, c in enumerate(self.chars))
self.indices_char = dict((i, c) for i, c in enumerate(self.chars))
@property
def size(self):
"""The number of chars"""
return len(self.chars)
def encode(self, C, maxlen):
"""Encode as one-hot"""
X = np_zeros((maxlen, len(self.chars)), dtype=np.bool) # pylint:disable=no-member
for i, c in enumerate(C):
X[i, self.char_indices[c]] = 1
return X
def decode(self, X, calc_argmax=True):
"""Decode from one-hot"""
if calc_argmax:
X = X.argmax(axis=-1)
return ''.join(self.indices_char[x] for x in X if x)
def generator(file_name):
"""Returns a tuple (inputs, targets)
All arrays should contain the same number of samples.
The generator is expected to loop over its data indefinitely.
An epoch finishes when samples_per_epoch samples have been seen by the model.
"""
ctable = CharacterTable(read_top_chars())
batch_of_answers = []
while True:
with open(file_name) as answers:
for answer in answers:
batch_of_answers.append(answer.strip().decode('utf-8'))
if len(batch_of_answers) == CONFIG.batch_size:
random_shuffle(batch_of_answers)
batch_of_questions = []
for answer_index, answer in enumerate(batch_of_answers):
question, answer = generate_question(answer)
batch_of_answers[answer_index] = answer
assert len(answer) == CONFIG.max_input_len
question = question[::-1] if CONFIG.inverted else question
batch_of_questions.append(question)
X, y = _vectorize(batch_of_questions, batch_of_answers, ctable)
yield X, y
batch_of_answers = []
def print_random_predictions(model, ctable, X_val, y_val):
"""Select 10 samples from the validation set at random so we can visualize errors"""
print()
for _ in range(10):
ind = random_randint(0, len(X_val))
rowX, rowy = X_val[np.array([ind])], y_val[np.array([ind])] # pylint:disable=no-member
preds = model.predict_classes(rowX, verbose=0)
q = ctable.decode(rowX[0])
correct = ctable.decode(rowy[0])
guess = ctable.decode(preds[0], calc_argmax=False)
if CONFIG.inverted:
print('Q', q[::-1]) # inverted back!
else:
print('Q', q)
print('A', correct)
print(Colors.green + '☑' + Colors.close if correct == guess else Colors.red + '☒' + Colors.close, guess)
print('---')
print()
class OnEpochEndCallback(Callback):
"""Execute this every end of epoch"""
def on_epoch_end(self, epoch, logs=None):
"""On Epoch end - do some stats"""
ctable = CharacterTable(read_top_chars())
X_val, y_val = next(generator(NEWS_FILE_NAME_VALIDATE))
print_random_predictions(self.model, ctable, X_val, y_val)
self.model.save(SAVED_MODEL_FILE_NAME.format(epoch))
ON_EPOCH_END_CALLBACK = OnEpochEndCallback()
def itarative_train(model):
"""
Iterative training of the model
- To allow for finite RAM...
- To allow infinite training data as the training noise is injected in runtime
"""
model.fit_generator(generator(NEWS_FILE_NAME_TRAIN), steps_per_epoch=CONFIG.steps_per_epoch,
epochs=CONFIG.epochs,
verbose=1, callbacks=[ON_EPOCH_END_CALLBACK, ], validation_data=generator(NEWS_FILE_NAME_VALIDATE),
validation_steps=CONFIG.validation_steps,
class_weight=None, max_q_size=10, workers=1,
pickle_safe=False, initial_epoch=0)
def iterate_training(model, X_train, y_train, X_val, y_val, ctable):
"""Iterative Training"""
# Train the model each generation and show predictions against the validation dataset
for iteration in range(1, CONFIG.number_of_iterations):
print()
print('-' * 50)
print('Iteration', iteration)
model.fit(X_train, y_train, batch_size=CONFIG.batch_size, epochs=CONFIG.epochs,
validation_data=(X_val, y_val))
print_random_predictions(model, ctable, X_val, y_val)
def clean_text(text):
"""Clean the text - remove unwanted chars, fold punctuation etc."""
result = NORMALIZE_WHITESPACE_REGEX.sub(' ', text.strip())
result = RE_DASH_FILTER.sub('-', result)
result = RE_APOSTROPHE_FILTER.sub("'", result)
result = RE_LEFT_PARENTH_FILTER.sub("(", result)
result = RE_RIGHT_PARENTH_FILTER.sub(")", result)
result = RE_BASIC_CLEANER.sub('', result)
return result
def preprocesses_data_clean():
"""Pre-process the data - step 1 - cleanup"""
with open(NEWS_FILE_NAME_CLEAN, "wb") as clean_data:
for line in open(NEWS_FILE_NAME):
decoded_line = line.decode("utf-8")
cleaned_line = clean_text(decoded_line)
encoded_line = cleaned_line.encode("utf-8")
clean_data.write(encoded_line + b"\n")
def preprocesses_data_analyze_chars():
"""Pre-process the data - step 2 - analyze the characters"""
counter = Counter()
LOGGER.info("Reading data:")
for line in open(NEWS_FILE_NAME_CLEAN):
decoded_line = line.decode('utf-8')
counter.update(decoded_line)
# data = open(NEWS_FILE_NAME_CLEAN).read().decode('utf-8')
# LOGGER.info("Read.\nCounting characters:")
# counter = Counter(data.replace("\n", ""))
LOGGER.info("Done.\nWriting to file:")
with open(CHAR_FREQUENCY_FILE_NAME, 'wb') as output_file:
output_file.write(json.dumps(counter).encode('utf-8'))
most_popular_chars = {key for key, _value in counter.most_common(CONFIG.number_of_chars)}
LOGGER.info("The top %s chars are:", CONFIG.number_of_chars)
LOGGER.info("".join(sorted(most_popular_chars)))
def read_top_chars():
"""Read the top chars we saved to file"""
chars = json.loads(open(CHAR_FREQUENCY_FILE_NAME).read())
counter = Counter(chars)
most_popular_chars = {key for key, _value in counter.most_common(CONFIG.number_of_chars)}
return most_popular_chars
def preprocesses_data_filter():
"""Pre-process the data - step 3 - filter only sentences with the right chars"""
most_popular_chars = read_top_chars()
LOGGER.info("Reading and filtering data:")
with open(NEWS_FILE_NAME_FILTERED, "wb") as output_file:
for line in open(NEWS_FILE_NAME_CLEAN):
decoded_line = line.decode('utf-8')
if decoded_line and not bool(set(decoded_line) - most_popular_chars):
output_file.write(line)
LOGGER.info("Done.")
def read_filtered_data():
"""Read the filtered data corpus"""
LOGGER.info("Reading filtered data:")
lines = open(NEWS_FILE_NAME_FILTERED).read().decode('utf-8').split("\n")
LOGGER.info("Read filtered data - %s lines", len(lines))
return lines
def preprocesses_split_lines():
"""Preprocess the text by splitting the lines between min-length and max_length
I don't like this step:
I think the start-of-sentence is important.
I think the end-of-sentence is important.
Sometimes the stripped down sub-sentence is missing crucial context.
Important NGRAMs are cut (though given enough data, that might be moot).
I do this to enable batch-learning by padding to a fixed length.
"""
LOGGER.info("Reading filtered data:")
answers = set()
with open(NEWS_FILE_NAME_SPLIT, "wb") as output_file:
for _line in open(NEWS_FILE_NAME_FILTERED):
line = _line.decode('utf-8')
while len(line) > MIN_INPUT_LEN:
if len(line) <= CONFIG.max_input_len:
answer = line
line = ""
else:
space_location = line.rfind(" ", MIN_INPUT_LEN, CONFIG.max_input_len - 1)
if space_location > -1:
answer = line[:space_location]
line = line[len(answer) + 1:]
else:
space_location = line.rfind(" ") # no limits this time
if space_location == -1:
break # we are done with this line
else:
line = line[space_location + 1:]
continue
answers.add(answer)
output_file.write(answer.encode('utf-8') + b"\n")
def preprocesses_split_lines2():
"""Preprocess the text by splitting the lines between min-length and max_length
Alternative split.
"""
LOGGER.info("Reading filtered data:")
answers = set()
for encoded_line in open(NEWS_FILE_NAME_FILTERED):
line = encoded_line.decode('utf-8')
if CONFIG.max_input_len >= len(line) > MIN_INPUT_LEN:
answers.add(line)
LOGGER.info("There are %s 'answers' (sub-sentences)", len(answers))
LOGGER.info("Here are some examples:")
for answer in itertools.islice(answers, 10):
LOGGER.info(answer)
with open(NEWS_FILE_NAME_SPLIT, "wb") as output_file:
output_file.write("".join(answers).encode('utf-8'))
def preprocesses_split_lines3():
"""Preprocess the text by selecting only max n-grams
Alternative split.
"""
LOGGER.info("Reading filtered data:")
answers = set()
for encoded_line in open(NEWS_FILE_NAME_FILTERED):
line = encoded_line.decode('utf-8')
if line.count(" ") < 5:
answers.add(line)
LOGGER.info("There are %s 'answers' (sub-sentences)", len(answers))
LOGGER.info("Here are some examples:")
for answer in itertools.islice(answers, 10):
LOGGER.info(answer)
with open(NEWS_FILE_NAME_SPLIT, "wb") as output_file:
output_file.write("".join(answers).encode('utf-8'))
def preprocesses_split_lines4():
"""Preprocess the text by selecting only sentences with most-common words AND not too long
Alternative split.
"""
LOGGER.info("Reading filtered data:")
from gensim.models.word2vec import Word2Vec
FILTERED_W2V = "fw2v.bin"
model = Word2Vec.load_word2vec_format(FILTERED_W2V, binary=True) # C text format
print(len(model.wv.index2word))
# answers = set()
# for encoded_line in open(NEWS_FILE_NAME_FILTERED):
# line = encoded_line.decode('utf-8')
# if line.count(" ") < 5:
# answers.add(line)
# LOGGER.info("There are %s 'answers' (sub-sentences)", len(answers))
# LOGGER.info("Here are some examples:")
# for answer in itertools.islice(answers, 10):
# LOGGER.info(answer)
# with open(NEWS_FILE_NAME_SPLIT, "wb") as output_file:
# output_file.write("".join(answers).encode('utf-8'))
def preprocess_partition_data():
"""Set asside data for validation"""
answers = open(NEWS_FILE_NAME_SPLIT).read().decode('utf-8').split("\n")
print('shuffle', end=" ")
random_shuffle(answers)
print("Done")
# Explicitly set apart 10% for validation data that we never train over
split_at = len(answers) - len(answers) // 10
with open(NEWS_FILE_NAME_TRAIN, "wb") as output_file:
output_file.write("\n".join(answers[:split_at]).encode('utf-8'))
with open(NEWS_FILE_NAME_VALIDATE, "wb") as output_file:
output_file.write("\n".join(answers[split_at:]).encode('utf-8'))
def generate_question(answer):
"""Generate a question by adding noise"""
question = add_noise_to_string(answer, AMOUNT_OF_NOISE)
# Add padding:
question += PADDING * (CONFIG.max_input_len - len(question))
answer += PADDING * (CONFIG.max_input_len - len(answer))
return question, answer
def generate_news_data():
"""Generate some news data"""
print ("Generating Data")
answers = open(NEWS_FILE_NAME_SPLIT).read().decode('utf-8').split("\n")
questions = []
print('shuffle', end=" ")
random_shuffle(answers)
print("Done")
for answer_index, answer in enumerate(answers):
question, answer = generate_question(answer)
answers[answer_index] = answer
assert len(answer) == CONFIG.max_input_len
if random_randint(100000) == 8: # Show some progress
print (len(answers))
print ("answer: '{}'".format(answer))
print ("question: '{}'".format(question))
print ()
question = question[::-1] if CONFIG.inverted else question
questions.append(question)
return questions, answers
def train_speller_w_all_data():
"""Train the speller if all data fits into RAM"""
questions, answers = generate_news_data()
chars_answer = set.union(*(set(answer) for answer in answers))
chars_question = set.union(*(set(question) for question in questions))
chars = list(set.union(chars_answer, chars_question))
X_train, X_val, y_train, y_val, y_maxlen, ctable = vectorize(questions, answers, chars)
print ("y_maxlen, chars", y_maxlen, "".join(chars))
model = generate_model(y_maxlen, chars)
iterate_training(model, X_train, y_train, X_val, y_val, ctable)
def train_speller(from_file=None):
"""Train the speller"""
if from_file:
model = load_model(from_file)
else:
model = generate_model(CONFIG.max_input_len, chars=read_top_chars())
itarative_train(model)
#--- Choose this step or:
#if __name__ == '__main__':
#download_the_news_data()
#uncompress_data()
#preprocesses_data_clean()
#preprocesses_data_analyze_chars()
#preprocesses_data_filter()
#preprocesses_split_lines()
#preprocesses_split_lines2()
#preprocesses_split_lines4()
#preprocess_partition_data()
train_speller()
It's error and error function:
Build model...
/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:352: UserWarning: Update your `fit_generator` call to the Keras 2 API: `fit_generator(<generator..., steps_per_epoch=1000, epochs=500, verbose=1, callbacks=[<__main__..., validation_data=<generator..., validation_steps=10, class_weight=None, workers=1, initial_epoch=0, use_multiprocessing=False, max_queue_size=10)`
Epoch 1/500
/usr/local/lib/python3.6/dist-packages/keras/utils/data_utils.py:709: UserWarning: An input could not be retrieved. It could be because a worker has died.We do not have any information on the lost sample.
UserWarning)
It's my code
It's error and error function:
https://github.com/keras-team/keras/blob/7a39b6c62d43c25472b2c2476bd2a8983ae4f682/keras/utils/data_utils.py#L708
The text was updated successfully, but these errors were encountered: