-
Notifications
You must be signed in to change notification settings - Fork 15
/
run_training_3D.py
47 lines (38 loc) · 1.74 KB
/
run_training_3D.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
# Copyright 2017 Division of Medical Image Computing, German Cancer Research Center (DKFZ)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import matplotlib
matplotlib.use('agg')
import imp
import sys
import os
sys.path.append("configs")
def run(config_file, fold=0):
cf = imp.load_source('cf', config_file)
net = cf.get_network(mode='train')
out_folder = os.path.join(cf.results_dir, "fold%d" % fold)
if not os.path.isdir(out_folder):
os.mkdir(out_folder)
gen_tr, gen_val = cf.get_train_val_generators(fold)
net.plot_architecture(os.path.join(out_folder, "architecture.png"))
net.train(gen_tr, gen_val, cf.n_epochs, cf.n_batches_per_epoch, cf.base_lr, cf.lr_decay, seed=False, loss=cf.loss,
solver=cf.solver, l2_penalty=cf.l2_penalty, best_params_file=os.path.join(out_folder, "best_params.pkl"),
latest_params_file=os.path.join(out_folder, "latest_params.pkl"), patience=cf.patience,
plot_fname=os.path.join(out_folder, "progress.png"))
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("-f", help="fold", type=int)
parser.add_argument("-c", help="config file", type=str)
args = parser.parse_args()
run(args.c, args.f)