The C++ interface of mdpu-kit is also available for the model interface, which is considered faster than the Python interface. An example infer_water.cpp
is given below:
#include "mdpu/DeepPot.h"
int main(){
mdpu::DeepPot dp ("graph.pb");
std::vector<double > coord = {1., 0., 0., 0., 0., 1.5, 1. ,0. ,3.};
std::vector<double > cell = {10., 0., 0., 0., 10., 0., 0., 0., 10.};
std::vector<int > atype = {1, 0, 1};
double e;
std::vector<double > f, v;
dp.compute (e, f, v, coord, atype, cell);
}
where e
, f
and v
are predicted energy, force and virial of the system, respectively.
See {cpp:class}mdpu::DeepPot
for details.
You can compile infer_water.cpp
using gcc
:
gcc infer_water.cpp -L $mdpu_root/lib -L $tensorflow_root/lib -I $mdpu_root/include -Wl,--no-as-needed -lmdpu_cc -lstdc++ -ltensorflow_cc -Wl,-rpath=$mdpu_root/lib -Wl,-rpath=$tensorflow_root/lib -o infer_water
and then run the program:
./infer_water
Although C is harder to write, the C library will not be affected by different versions of C++ compilers.
An example infer_water.c
is given below:
#include <stdio.h>
#include <stdlib.h>
#include "mdpu/c_api.h"
int main(){
const char* model = "graph.pb";
double coord[] = {1., 0., 0., 0., 0., 1.5, 1. ,0. ,3.};
double cell[] = {10., 0., 0., 0., 10., 0., 0., 0., 10.};
int atype[] = {1, 0, 1};
// init C pointers with given memory
double* e = malloc(sizeof(*e));
double* f = malloc(sizeof(*f) * 9); // natoms * 3
double* v = malloc(sizeof(*v) * 9);
double* ae = malloc(sizeof(*ae) * 9); // natoms
double* av = malloc(sizeof(*av) * 27); // natoms * 9
// DP model
DP_DeepPot* dp = DP_NewDeepPot(model);
DP_DeepPotCompute (dp, 3, coord, atype, cell, e, f, v, ae, av);
// print results
printf("energy: %f\n", *e);
for (int ii = 0; ii < 9; ++ii)
printf("force[%d]: %f\n", ii, f[ii]);
for (int ii = 0; ii < 9; ++ii)
printf("force[%d]: %f\n", ii, v[ii]);
// free memory
free(e);
free(f);
free(v);
free(ae);
free(av);
free(dp);
}
where e
, f
and v
are predicted energy, force and virial of the system, respectively.
ae
and av
are atomic energy and atomic virials, respectively.
See {cpp:func}DP_DeepPotCompute
for details.
You can compile infer_water.c
using gcc
:
gcc infer_water.c -L $mdpu_root/lib -L $tensorflow_root/lib -I $mdpu_root/include -Wl,--no-as-needed -lmdpu_c -Wl,-rpath=$mdpu_root/lib -Wl,-rpath=$tensorflow_root/lib -o infer_water
and then run the program:
./infer_water
The header-only C++ library is built based on the C library.
Thus, it has the same ABI compatibility as the C library but provides a powerful C++ interface.
To use it, include mdpu/mdpu.hpp
.
#include "mdpu/mdpu.hpp"
int main(){
mdpu::hpp::DeepPot dp ("graph.pb");
std::vector<double > coord = {1., 0., 0., 0., 0., 1.5, 1. ,0. ,3.};
std::vector<double > cell = {10., 0., 0., 0., 10., 0., 0., 0., 10.};
std::vector<int > atype = {1, 0, 1};
double e;
std::vector<double > f, v;
dp.compute (e, f, v, coord, atype, cell);
}
Note that the feature of the header-only C++ library is still limited compared to the original C++ library.
See {cpp:class}mdpu::hpp::DeepPot
for details.
You can compile infer_water_hpp.cpp
using gcc
:
gcc infer_water_hpp.cpp -L $mdpu_root/lib -L $tensorflow_root/lib -I $mdpu_root/include -Wl,--no-as-needed -lmdpu_c -Wl,-rpath=$mdpu_root/lib -Wl,-rpath=$tensorflow_root/lib -o infer_water_hpp
and then run the program:
./infer_water_hpp
In some cases, one may want to pass the custom neighbor list instead of the native neighbor list. The above code can be revised as follows:
// neighbor list
std::vector<std::vector<int >> nlist_vec = {
{1, 2},
{0, 2},
{0, 1}
};
std::vector<int> ilist(3), numneigh(3);
std::vector<int*> firstneigh(3);
InputNlist nlist(3, &ilist[0], &numneigh[0], &firstneigh[0]);
convert_nlist(nlist, nlist_vec);
dp.compute (e, f, v, coord, atype, cell, 0, nlist, 0);
Here, nlist_vec
means the neighbors of atom 0 are atom 1 and atom 2, the neighbors of atom 1 are atom 0 and atom 2, and the neighbors of atom 2 are atom 0 and atom 1.