forked from IDEA-Research/Grounded-Segment-Anything
-
Notifications
You must be signed in to change notification settings - Fork 0
/
predict.py
291 lines (244 loc) · 8.96 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
# Prediction interface for Cog ⚙️
# https://github.com/replicate/cog/blob/main/docs/python.md
import os
import json
from typing import Any
import numpy as np
import random
import torch
import torchvision
import torchvision.transforms as transforms
from PIL import Image
import cv2
import matplotlib.pyplot as plt
from cog import BasePredictor, Input, Path, BaseModel
from subprocess import call
HOME = os.getcwd()
os.chdir("GroundingDINO")
call("pip install -q .", shell=True)
os.chdir(HOME)
os.chdir("segment_anything")
call("pip install -q .", shell=True)
os.chdir(HOME)
# Grounding DINO
import GroundingDINO.groundingdino.datasets.transforms as T
from GroundingDINO.groundingdino.models import build_model
from GroundingDINO.groundingdino.util.slconfig import SLConfig
from GroundingDINO.groundingdino.util.utils import (
clean_state_dict,
get_phrases_from_posmap,
)
# segment anything
from segment_anything import build_sam, build_sam_hq, SamPredictor
import sys
sys.path.append("Tag2Text")
from models.tag2text import ram
class ModelOutput(BaseModel):
tags: str
rounding_box_img: Path
masked_img: Path
json_data: Any
class Predictor(BasePredictor):
def setup(self):
"""Load the model into memory to make running multiple predictions efficient"""
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
normalize = transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
)
self.image_size = 384
self.transform = transforms.Compose(
[
transforms.Resize((self.image_size, self.image_size)),
transforms.ToTensor(),
normalize,
]
)
# load model
self.ram_model = ram(
pretrained="pretrained/ram_swin_large_14m.pth",
image_size=self.image_size,
vit="swin_l",
)
self.ram_model.eval()
self.ram_model = self.ram_model.to(self.device)
self.model = load_model(
"GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py",
"pretrained/groundingdino_swint_ogc.pth",
device=self.device,
)
self.sam = SamPredictor(
build_sam(checkpoint="pretrained/sam_vit_h_4b8939.pth").to(self.device)
)
self.sam_hq = SamPredictor(
build_sam_hq(checkpoint="pretrained/sam_hq_vit_h.pth").to(self.device)
)
def predict(
self,
input_image: Path = Input(description="Input image"),
use_sam_hq: bool = Input(
description="Use sam_hq instead of SAM for prediction", default=False
),
) -> ModelOutput:
"""Run a single prediction on the model"""
# default settings
box_threshold = 0.25
text_threshold = 0.2
iou_threshold = 0.5
image_pil, image = load_image(str(input_image))
raw_image = image_pil.resize((self.image_size, self.image_size))
raw_image = self.transform(raw_image).unsqueeze(0).to(self.device)
with torch.no_grad():
tags, tags_chinese = self.ram_model.generate_tag(raw_image)
tags = tags[0].replace(" |", ",")
# run grounding dino model
boxes_filt, scores, pred_phrases = get_grounding_output(
self.model, image, tags, box_threshold, text_threshold, device=self.device
)
predictor = self.sam_hq if use_sam_hq else self.sam
image = cv2.imread(str(input_image))
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
predictor.set_image(image)
size = image_pil.size
H, W = size[1], size[0]
for i in range(boxes_filt.size(0)):
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
boxes_filt[i][2:] += boxes_filt[i][:2]
boxes_filt = boxes_filt.cpu()
# use NMS to handle overlapped boxes
print(f"Before NMS: {boxes_filt.shape[0]} boxes")
nms_idx = (
torchvision.ops.nms(boxes_filt, scores, iou_threshold).numpy().tolist()
)
boxes_filt = boxes_filt[nms_idx]
pred_phrases = [pred_phrases[idx] for idx in nms_idx]
print(f"After NMS: {boxes_filt.shape[0]} boxes")
transformed_boxes = predictor.transform.apply_boxes_torch(
boxes_filt, image.shape[:2]
).to(self.device)
masks, _, _ = predictor.predict_torch(
point_coords=None,
point_labels=None,
boxes=transformed_boxes.to(self.device),
multimask_output=False,
)
# draw output image
plt.figure(figsize=(10, 10))
for mask in masks:
show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
for box, label in zip(boxes_filt, pred_phrases):
show_box(box.numpy(), plt.gca(), label)
rounding_box_path = "/tmp/automatic_label_output.png"
plt.axis("off")
plt.savefig(
Path(rounding_box_path), bbox_inches="tight", dpi=300, pad_inches=0.0
)
plt.close()
# save masks and json data
value = 0 # 0 for background
mask_img = torch.zeros(masks.shape[-2:])
for idx, mask in enumerate(masks):
mask_img[mask.cpu().numpy()[0] == True] = value + idx + 1
plt.figure(figsize=(10, 10))
plt.imshow(mask_img.numpy())
plt.axis("off")
masks_path = "/tmp/mask.png"
plt.savefig(masks_path, bbox_inches="tight", dpi=300, pad_inches=0.0)
plt.close()
json_data = {
"tags": tags,
"mask": [{"value": value, "label": "background"}],
}
for label, box in zip(pred_phrases, boxes_filt):
value += 1
name, logit = label.split("(")
logit = logit[:-1] # the last is ')'
json_data["mask"].append(
{
"value": value,
"label": name,
"logit": float(logit),
"box": box.numpy().tolist(),
}
)
json_path = "/tmp/label.json"
with open(json_path, "w") as f:
json.dump(json_data, f)
return ModelOutput(
tags=tags,
masked_img=Path(masks_path),
rounding_box_img=Path(rounding_box_path),
json_data=Path(json_path),
)
def get_grounding_output(
model, image, caption, box_threshold, text_threshold, device="cpu"
):
caption = caption.lower()
caption = caption.strip()
if not caption.endswith("."):
caption = caption + "."
model = model.to(device)
image = image.to(device)
with torch.no_grad():
outputs = model(image[None], captions=[caption])
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
logits.shape[0]
# filter output
logits_filt = logits.clone()
boxes_filt = boxes.clone()
filt_mask = logits_filt.max(dim=1)[0] > box_threshold
logits_filt = logits_filt[filt_mask] # num_filt, 256
boxes_filt = boxes_filt[filt_mask] # num_filt, 4
logits_filt.shape[0]
# get phrase
tokenlizer = model.tokenizer
tokenized = tokenlizer(caption)
# build pred
pred_phrases = []
scores = []
for logit, box in zip(logits_filt, boxes_filt):
pred_phrase = get_phrases_from_posmap(
logit > text_threshold, tokenized, tokenlizer
)
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
scores.append(logit.max().item())
return boxes_filt, torch.Tensor(scores), pred_phrases
def load_image(image_path):
# load image
image_pil = Image.open(image_path).convert("RGB") # load image
transform = T.Compose(
[
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
image, _ = transform(image_pil, None) # 3, h, w
return image_pil, image
def load_model(model_config_path, model_checkpoint_path, device):
args = SLConfig.fromfile(model_config_path)
args.device = device
model = build_model(args)
checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
load_res = model.load_state_dict(
clean_state_dict(checkpoint["model"]), strict=False
)
print(load_res)
_ = model.eval()
return model
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_box(box, ax, label):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(
plt.Rectangle((x0, y0), w, h, edgecolor="green", facecolor=(0, 0, 0, 0), lw=1.5)
)
ax.text(x0, y0, label)