forked from MattKleinsmith/pbt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
config.py
45 lines (37 loc) · 1.42 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from utils import choose
class ConvNet(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, dim=1)
def get_optimizer(model):
"""This is where users choose their optimizer and define the
hyperparameter space they'd like to search."""
optimizer_class = optim.SGD
lr = choose(np.logspace(-5, 0, base=10))
momentum = choose(np.linspace(0.1, .9999))
return optimizer_class(model.parameters(), lr=lr, momentum=momentum)
DATA_DIR = "../../data/mnist/"
MODEL_CLASS = ConvNet
LOSS_FN = F.nll_loss
HYPERPARAM_NAMES = ["lr", "momentum"] # This is unfortunate.
EPOCHS = 10
BATCH_SIZE = 64
POPULATION_SIZE = 15 # Number of models in a population
EXPLOIT_INTERVAL = 0.5 # When to exploit, in number of epochs
USE_SQLITE = True # If False, you'll need to set up a local Postgres server