-
Notifications
You must be signed in to change notification settings - Fork 1
/
train.py
621 lines (602 loc) · 25.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
# coding: utf-8
###
# @file train.py
# @author Sébastien Rouault <[email protected]>
#
# @section LICENSE
#
# Copyright © 2019-2021 École Polytechnique Fédérale de Lausanne (EPFL).
# See LICENSE file.
#
# @section DESCRIPTION
#
# Simulate a training session under attack.
###
import tools
tools.success("Module loading...")
import argparse
import collections
import json
import math
import os
import pathlib
import random
import signal
import sys
import torch
import torchvision
import traceback
import aggregators
import attacks
import experiments
# ---------------------------------------------------------------------------- #
# Miscellaneous initializations
tools.success("Miscellaneous initializations...")
# "Exit requested" global variable accessors
exit_is_requested, exit_set_requested = tools.onetime("exit")
# Signal handlers
signal.signal(signal.SIGINT, exit_set_requested)
signal.signal(signal.SIGTERM, exit_set_requested)
# ---------------------------------------------------------------------------- #
# Command-line processing
tools.success("Command-line processing...")
def process_commandline():
""" Parse the command-line and perform checks.
Returns:
Parsed configuration
"""
# Description
parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument("--seed",
type=int,
default=-1,
help="Fixed seed to use for reproducibility purpose, negative for random seed")
parser.add_argument("--device",
type=str,
default="auto",
help="Device on which to run the experiment, \"auto\" by default")
parser.add_argument("--device-gar",
type=str,
default="same",
help="Device on which to run the GAR, \"same\" for no change of device")
parser.add_argument("--nb-steps",
type=int,
default=300,
help="Number of training steps to do, non-positive for no limit")
parser.add_argument("--nb-workers",
type=int,
default=11,
help="Total number of worker machines")
parser.add_argument("--nb-decl-byz",
type=int,
default=4,
help="Number of Byzantine worker(s) to support")
parser.add_argument("--nb-real-byz",
type=int,
default=0,
help="Number of actual Byzantine worker(s)")
parser.add_argument("--gar",
type=str,
default="average",
help="(Byzantine-resilient) aggregation rule to use")
parser.add_argument("--gar-args",
nargs="*",
help="Additional GAR-dependent arguments to pass to the aggregation rule")
parser.add_argument("--privacy",
action="store_true",
default=False,
help="Gaussian privacy noise ε constant")
parser.add_argument("--privacy-epsilon",
type=float,
default=0.5,
help="Gaussian privacy noise ε constant; ignore if '--privacy' is not specified")
parser.add_argument("--privacy-delta",
type=float,
default=0.5,
help="Gaussian privacy noise δ constant; ignore if '--privacy' is not specified")
parser.add_argument("--gradient-clip",
type=float,
default=5,
help="Maximum L2-norm, above which clipping occurs, for the estimated gradients")
parser.add_argument("--attack",
type=str,
default="nan",
help="Attack to use")
parser.add_argument("--attack-args",
nargs="*",
help="Additional attack-dependent arguments to pass to the attack")
parser.add_argument("--model",
type=str,
default="simples-conv",
help="Model to train")
parser.add_argument("--model-args",
nargs="*",
help="Additional model-dependent arguments to pass to the model")
parser.add_argument("--loss",
type=str,
default="nll",
help="Loss to use")
parser.add_argument("--loss-args",
nargs="*",
help="Additional loss-dependent arguments to pass to the loss")
parser.add_argument("--criterion",
type=str,
default="top-k",
help="Criterion to use")
parser.add_argument("--criterion-args",
nargs="*",
help="Additional criterion-dependent arguments to pass to the criterion")
parser.add_argument("--dataset",
type=str,
default="mnist",
help="Dataset to use")
parser.add_argument("--dataset-args",
nargs="*",
help="Additional dataset-dependent arguments to pass to the dataset")
parser.add_argument("--batch-size",
type=int,
default=25,
help="Batch-size to use for training, 0 for maximum")
parser.add_argument("--batch-size-test",
type=int,
default=100,
help="Batch-size to use for testing, 0 for maximum")
parser.add_argument("--test-repeat",
type=int,
default=100,
help="How many evaluation(s) with the test batch-size to average for one evaluation")
parser.add_argument("--no-transform",
action="store_true",
default=False,
help="Whether to disable any dataset tranformation (e.g. random flips)")
parser.add_argument("--learning-rate",
type=float,
default=0.01,
help="Learning rate to use for training")
parser.add_argument("--learning-rate-decay",
type=int,
default=5000,
help="Learning rate hyperbolic half-decay time, non-positive for no decay")
parser.add_argument("--learning-rate-decay-delta",
type=int,
default=5000,
help="How many steps between two learning rate updates, must be a positive integer")
parser.add_argument("--momentum",
type=float,
default=0.9,
help="Momentum to use for training")
parser.add_argument("--dampening",
type=float,
default=0.,
help="Dampening to use for training")
parser.add_argument("--weight-decay",
type=float,
default=0,
help="Weight decay to use for training")
parser.add_argument("--l1-regularize",
type=float,
default=None,
help="Add L1 regularization of the given factor to the loss")
parser.add_argument("--l2-regularize",
type=float,
default=None,
help="Add L2 regularization of the given factor to the loss")
parser.add_argument("--result-directory",
type=str,
default=None,
help="Path of the directory in which to save the experiment results (loss, cross-accuracy, ...) and checkpoints, empty for no saving")
parser.add_argument("--evaluation-delta",
type=int,
default=100,
help="How many training steps between model evaluations, 0 for no evaluation")
parser.add_argument("--user-input-delta",
type=int,
default=0,
help="How many training steps between two prompts for user command inputs, 0 for no user input")
# Parse command line
return parser.parse_args(sys.argv[1:])
with tools.Context("cmdline", "info"):
args = process_commandline()
# Parse additional arguments
for name in ("gar", "attack", "model", "dataset", "loss", "criterion"):
name = f"{name}_args"
keyval = getattr(args, name)
setattr(args, name, dict() if keyval is None else tools.parse_keyval(keyval))
# Count the number of real honest workers
args.nb_honests = args.nb_workers - args.nb_real_byz
if args.nb_honests < 0:
tools.fatal(f"Invalid arguments: there are more real Byzantine workers ({args.nb_real_byz}) than total workers ({args.nb_workers})")
# Check general training parameters
if args.momentum < 0.:
tools.fatal(f"Invalid arguments: negative momentum factor {args.momentum}")
if args.dampening < 0.:
tools.fatal(f"Invalid arguments: negative dampening factor {args.dampening}")
if args.weight_decay < 0.:
tools.fatal(f"Invalid arguments: negative weight decay factor {args.weight_decay}")
# Check the learning rate and associated options
if args.learning_rate <= 0:
tools.fatal(f"Invalid arguments: non-positive learning rate {args.learning_rate}")
if args.learning_rate_decay < 0:
tools.fatal(f"Invalid arguments: negative learning rate decay {args.learning_rate_decay}")
if args.learning_rate_decay_delta <= 0:
tools.fatal(f"Invalid arguments: non-positive learning rate decay delta {args.learning_rate_decay_delta}")
# Check the privacy-related metrics
if args.gradient_clip <= 0.:
tools.fatal(f"Invalid arguments: non-positive gradient clip constant {args.gradient_clip}")
if args.privacy:
if args.privacy_epsilon <= 0. or args.privacy_epsilon >= 1.:
tools.fatal(f"Invalid arguments: off-bounds (]0, 1[) ε constant {args.privacy_epsilon}")
if args.privacy_delta <= 0. or args.privacy_delta >= 1.:
tools.fatal(f"Invalid arguments: off-bounds (]0, 1[) δ constant {args.privacy_delta}")
args.privacy_sensitivity = 2 * args.gradient_clip / args.batch_size
# Print configuration
def cmd_make_tree(subtree, level=0):
if isinstance(subtree, tuple) and len(subtree) > 0 and isinstance(subtree[0], tuple) and len(subtree[0]) == 2:
label_len = max(len(label) for label, _ in subtree)
iterator = subtree
elif isinstance(subtree, dict):
if len(subtree) == 0:
return " - <none>"
label_len = max(len(label) for label in subtree.keys())
iterator = subtree.items()
else:
return f" - {subtree}"
level_spc = " " * level
res = ""
for label, node in iterator:
res += f"{os.linesep}{level_spc}· {label}{' ' * (label_len - len(label))}{cmd_make_tree(node, level + 1)}"
return res
cmdline_config = "Configuration" + cmd_make_tree((
("Reproducibility", "not enforced" if args.seed < 0 else f"enforced (seed {args.seed})"),
("#workers", args.nb_workers),
("#declared Byz.", args.nb_decl_byz),
("#actually Byz.", args.nb_real_byz),
("Model", (
("Name", args.model),
("Arguments", args.model_args))),
("Dataset", (
("Name", args.dataset),
("Arguments", args.dataset_args),
("Batch size", (
("Training", args.batch_size or 'max'),
("Testing", f"{args.batch_size_test or 'max'} × {args.test_repeat}"))),
("Transforms", "none" if args.no_transform else "default"))),
("Loss", (
("Name", args.loss),
("Arguments", args.loss_args),
("Regularization", (
("l1", "none" if args.l1_regularize is None else args.l1_regularize),
("l2", "none" if args.l2_regularize is None else args.l2_regularize))))),
("Criterion", (
("Name", args.criterion),
("Arguments", args.criterion_args))),
("Optimizer", (
("Name", "sgd"),
("Learning rate", (
("Initial", args.learning_rate),
("Half-decay", args.learning_rate_decay if args.learning_rate_decay > 0 else "none"),
("Update delta", args.learning_rate_decay_delta if args.learning_rate_decay > 0 else "n/a"))),
("Momentum", args.momentum),
("Dampening", args.dampening),
("Weight decay", args.weight_decay))),
("Attack", (
("Name", args.attack),
("Arguments", args.attack_args))),
("Aggregation", (
("Name", args.gar),
("Arguments", args.gar_args))),
("Differential privacy", (
("Enabled?", "yes" if args.privacy else "no"),
("ε constant", args.privacy_epsilon if args.privacy else "n/a"),
("δ constant", args.privacy_delta if args.privacy else "n/a"),
("l2-sensitivity", args.privacy_sensitivity if args.privacy else "n/a")))))
print(cmdline_config)
# ---------------------------------------------------------------------------- #
# Setup
tools.success("Experiment setup...")
def result_make(name, *fields):
""" Make and bind a new result file with a name, initialize with a header line.
Args:
name Name of the result file
fields... Name of each field, in order
Raises:
'KeyError' if name is already bound
'RuntimeError' if no name can be bound
Any exception that 'io.FileIO' can raise while opening/writing/flushing
"""
# Check if results are to be output
global args
if args.result_directory is None:
raise RuntimeError("No result is to be output")
# Check if name is already bounds
global result_fds
if name in result_fds:
raise KeyError(f"Name {name!r} is already bound to a result file")
# Make the new file
fd = (args.result_directory / name).open("w")
fd.write("# " + ("\t").join(str(field) for field in fields))
fd.flush()
result_fds[name] = fd
def result_get(name):
""" Get a valid descriptor to the bound result file, or 'None' if the given name is not bound.
Args:
name Given name
Returns:
Valid file descriptor, or 'None'
"""
# Check if results are to be output
global args
if args.result_directory is None:
return None
# Return the bound descriptor, if any
global result_fds
return result_fds.get(name, None)
def result_store(fd, *entries):
""" Store a line in a valid result file.
Args:
fd Descriptor of the valid result file
entries... Object(s) to convert to string and write in order in a new line
"""
fd.write(os.linesep + ("\t").join(str(entry) for entry in entries))
fd.flush()
with tools.Context("setup", "info"):
# Enforce reproducibility if asked (see https://pytorch.org/docs/stable/notes/randomness.html)
reproducible = args.seed >= 0
if reproducible:
torch.manual_seed(args.seed)
import numpy
numpy.random.seed(args.seed)
torch.backends.cudnn.deterministic = reproducible
torch.backends.cudnn.benchmark = not reproducible
# Configurations
config = experiments.Configuration(dtype=torch.float32, device=(None if args.device.lower() == "auto" else args.device), noblock=True)
if args.device_gar.lower() == "same":
config_gar = config
else:
config_gar = experiments.Configuration(dtype=config["dtype"], device=(None if args.device_gar.lower() == "auto" else args.device_gar), noblock=config["non_blocking"])
# Defense
defense = aggregators.gars.get(args.gar)
if defense is None:
tools.fatal_unavailable(aggregators.gars, args.gar, what="aggregation rule")
# Attack
attack = attacks.attacks.get(args.attack)
if attack is None:
tools.fatal_unavailable(attacks.attacks, args.attack, what="attack")
# Model
model = experiments.Model(args.model, config, **args.model_args)
# Datasets
if args.no_transform:
train_transforms = test_transforms = torchvision.transforms.ToTensor()
else:
train_transforms = test_transforms = None # Let default values
trainset, testset = experiments.make_datasets(args.dataset, args.batch_size, args.batch_size_test, train_transforms=train_transforms, test_transforms=test_transforms, **args.dataset_args)
model.default("trainset", trainset)
model.default("testset", testset)
# Loss and criterion
loss = experiments.Loss(args.loss, **args.loss_args)
if args.l1_regularize is not None:
loss += args.l1_regularize * experiments.Loss("l1")
if args.l2_regularize is not None:
loss += args.l2_regularize * experiments.Loss("l2")
criterion = experiments.Criterion(args.criterion, **args.criterion_args)
model.default("loss", loss)
model.default("criterion", criterion)
# Optimizer
optimizer = experiments.Optimizer("sgd", model, lr=args.learning_rate, momentum=args.momentum, dampening=args.dampening, weight_decay=args.weight_decay)
model.default("optimizer", optimizer)
# Privacy noise distribution
if args.privacy:
param = model.get()
privacy_factor = args.privacy_sensitivity * math.sqrt(2 * math.log(1.25 / args.privacy_delta)) / args.privacy_epsilon
grad_noise = torch.distributions.normal.Normal(torch.zeros_like(param), torch.ones_like(param).mul_(privacy_factor))
# Make the result directory (if requested)
if args.result_directory is not None:
try:
resdir = pathlib.Path(args.result_directory).resolve()
resdir.mkdir(mode=0o755, parents=True, exist_ok=True)
args.result_directory = resdir
except Exception as err:
tools.warning(f"Unable to create the result directory {str(resdir)!r} ({err}); no result will be stored")
else:
result_fds = dict()
try:
# Make evaluation file
if args.evaluation_delta > 0:
result_make("eval", "Step number", "Cross-accuracy")
# Make study file
result_make("study", "Step number", "Training point count",
"Average loss", "l2 from origin",
"Honest gradient deviation", "Attack gradient deviation",
"Honest gradient norm", "Attack gradient norm", "Defense gradient norm",
"Honest max coordinate", "Attack max coordinate", "Defense max coordinate",
"Honest-attack cosine", "Honest-defense cosine", "Attack-defense cosine")
# Store the configuration info and JSON representation
(args.result_directory / "config").write_text(cmdline_config + os.linesep)
with (args.result_directory / "config.json").open("w") as fd:
def convert_to_supported_json_type(x):
if type(x) in {str, int, float, bool, type(None), dict, list}:
return x
elif type(x) is set:
return list(x)
else:
return str(x)
datargs = dict((name, convert_to_supported_json_type(getattr(args, name))) for name in dir(args) if len(name) > 0 and name[0] != "_")
del convert_to_supported_json_type
json.dump(datargs, fd, ensure_ascii=False, indent="\t")
except Exception as err:
tools.warning(f"Unable to create some result files in directory {str(resdir)!r} ({err}); some result(s) may be missing")
# ---------------------------------------------------------------------------- #
# Training
tools.success("Training...")
def compute_avg_dev(values):
""" Compute the arithmetic mean and standard deviation of a list of values.
Args:
values Iterable of values
Returns:
Arithmetic mean, standard deviation
"""
avg = sum(values) / len(values)
var = 0
for value in values:
var += (value - avg) ** 2
var /= len(values) - 1
return avg, math.sqrt(var)
class StopTrainingLoop(Exception):
""" Local exception to signal and stop the training loop.
"""
pass
# Training until limit or stopped
with tools.Context("training", "info"):
was_training = False
current_lr = args.learning_rate
steps = 0
datapoints = 0
fd_eval = result_get("eval")
fd_study = result_get("study")
atc_gradient = tools.AccumulatedTimedContext(sync=True)
atc_noise = tools.AccumulatedTimedContext(sync=True)
atc_aggregate = tools.AccumulatedTimedContext(sync=True)
atc_evaluate = tools.AccumulatedTimedContext(sync=True)
params_origin = model.get().clone().detach_()
try:
while not exit_is_requested():
# ------------------------------------------------------------------------ #
# Evaluate if any milestone is reached
milestone_evaluation = args.evaluation_delta > 0 and steps % args.evaluation_delta == 0
milestone_user_input = args.user_input_delta > 0 and steps % args.user_input_delta == 0
milestone_any = milestone_evaluation or milestone_user_input
# Training notification (end)
if milestone_any and was_training:
print(" done.")
was_training = False
# Evaluation milestone reached
if milestone_evaluation:
print("Accuracy (step %d)..." % steps, end="", flush=True)
with atc_evaluate:
res = model.eval()
for _ in range(args.test_repeat - 1):
res += model.eval()
acc = res[0].item() / res[1].item()
print(" %.2f%%." % (acc * 100.))
# Store the evaluation result
if fd_eval is not None:
result_store(fd_eval, steps, acc)
# User input milestone
if milestone_user_input:
tools.interactive()
# Check if reach step limit
if args.nb_steps > 0 and steps >= args.nb_steps:
# Training notification (end)
if was_training:
print(" done.")
was_training = False
# Leave training loop
raise StopTrainingLoop()
# Training notification (begin)
if milestone_any and not was_training:
print("Training...", end="", flush=True)
was_training = True
# ------------------------------------------------------------------------ #
# Compute (honest) losses (if it makes sense), gradients and voting data
grad_honests = list()
loss_honests = list()
# For each honest worker
with atc_gradient:
for i in range(args.nb_honests):
grad, loss = model.backprop(outloss=True)
grad = grad.clone().detach_()
# Loss append
loss_honests.append(loss.item())
# Gradient clip
if args.gradient_clip is not None:
grad_norm = grad.norm().item()
if grad_norm > args.gradient_clip:
grad.mul_(args.gradient_clip / grad_norm)
# Gradient append
grad_honests.append(grad)
# Pre-compute some quantities for study (here if necessary, since each gradient in 'grad_honests' may have privacy noise added)
if fd_study is not None:
# Compute average loss ('len(loss_honests) > 0' is guaranteed)
loss_avg = sum(loss_honests) / len(loss_honests)
# Compute the sampled and honest gradients norm average, norm deviation and max absolute coordinate
honest_grad_avg, honest_norm_avg, honest_norm_dev, honest_norm_max = tools.compute_avg_dev_max(grad_honests)
# Move the honest gradients to the GAR device
if config_gar is not config:
grad_honests_gar = list(grad.to(device=config_gar["device"], non_blocking=config_gar["non_blocking"]) for grad in grad_honests)
else:
grad_honests_gar = grad_honests
# ------------------------------------------------------------------------ #
# Add privacy noise to the 'grad_honests_gar' (might be 'grad_honests'), which are the ones sent and processed by the server
if args.privacy:
with atc_noise:
for grad in grad_honests_gar:
grad.add_(grad_noise.sample())
# ------------------------------------------------------------------------ #
# Compute the Byzantine gradients
grad_attacks = attack.checked(grad_honests=grad_honests_gar, f_decl=args.nb_decl_byz, f_real=args.nb_real_byz, model=model, defense=defense, **args.attack_args)
# ------------------------------------------------------------------------ #
# Aggregate and update the model
with atc_aggregate:
grad_defense = defense.checked(gradients=(grad_honests_gar + grad_attacks), f=args.nb_decl_byz, model=model, **args.gar_args)
# Move the defense gradient back to the main device
if config_gar is not config:
for grad in grad_attacks:
grad.data = grad.to(device=config["device"], non_blocking=config["non_blocking"])
grad_defense = grad_defense.to(device=config["device"], non_blocking=config["non_blocking"])
# Compute l2-distance from origin (if needed for study)
if fd_study is not None:
l2_origin = model.get().sub(params_origin).norm().item()
# Model update (possibly updating the learning rate)
if args.learning_rate_decay > 0 and steps % args.learning_rate_decay_delta == 0:
current_lr = args.learning_rate / (steps / args.learning_rate_decay + 1)
optimizer.set_lr(current_lr)
model.update(grad_defense)
# ------------------------------------------------------------------------ #
# Store study (if requested)
if fd_study is not None:
# Compute the sampled and honest gradients norm average, norm deviation and max absolute coordinate
attack_grad_avg, attack_norm_avg, attack_norm_dev, attack_norm_max = tools.compute_avg_dev_max(grad_attacks)
# Compute the defense norm average and max absolute coordinate
defense_grad = grad_defense # (Mere renaming for consistency)
defense_norm_avg = defense_grad.norm().item()
defense_norm_max = defense_grad.abs().max().item()
# Compute cosine of solid angles
cosin_honatt = math.nan if attack_grad_avg is None else torch.dot(honest_grad_avg, attack_grad_avg).div_(honest_norm_avg).div_(attack_norm_avg).item()
cosin_hondef = torch.dot(honest_grad_avg, defense_grad).div_(honest_norm_avg).div_(defense_norm_avg).item()
cosin_attdef = math.nan if attack_grad_avg is None else torch.dot(attack_grad_avg, defense_grad).div_(attack_norm_avg).div_(defense_norm_avg).item()
# Store the result (float-to-string format chosen so not to lose precision)
float_format = {torch.float16: "%.4e", torch.float32: "%.8e", torch.float64: "%.16e"}.get(config["dtype"], "%s")
result_store(fd_study, steps, datapoints,
float_format % loss_avg, float_format % l2_origin,
float_format % honest_norm_dev, float_format % attack_norm_dev,
float_format % honest_norm_avg, float_format % attack_norm_avg, float_format % defense_norm_avg,
float_format % honest_norm_max, float_format % attack_norm_max, float_format % defense_norm_max,
float_format % cosin_honatt, float_format % cosin_hondef, float_format % cosin_attdef)
# ------------------------------------------------------------------------ #
# Increase the step counter
steps += 1
datapoints += args.batch_size * args.nb_honests
except StopTrainingLoop:
pass
# Training notification (end)
if was_training:
print(" interrupted.")
# Print and store timing counters
with tools.Context("perf", "info"):
perfs = dict()
perf_params = (
(atc_gradient, "grad", "Gradient computation (per worker)", args.nb_honests),
(atc_noise, "noise", "Noise addition (per worker)", args.nb_honests),
(atc_aggregate, "aggr", "Gradient aggregation", 1),
(atc_evaluate, "eval", "Model evaluation", 1))
# Compute max name length
nlen = max(len(name) for _, _, name, _ in perf_params)
# Print
for atc, key, name, div in perf_params:
acc = tools.AccumulatedTimedContext(atc.current_runtime() / div)
print(f"{name:{nlen}s} - {acc}")
perfs[key] = (acc.current_runtime(), name)
# Store
if args.result_directory:
with (args.result_directory / "perfs.json").open("w") as fd:
json.dump(perfs, fd, ensure_ascii=False, indent="\t")