forked from aws/amazon-sagemaker-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mnist.py
52 lines (43 loc) · 1.66 KB
/
mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import gzip
import logging
import os
import struct
import mxnet as mx
import numpy as np
def find_file(root_path, file_name):
for root, dirs, files in os.walk(root_path):
if file_name in files:
return os.path.join(root, file_name)
def build_graph():
data = mx.sym.var("data")
data = mx.sym.flatten(data=data)
fc1 = mx.sym.FullyConnected(data=data, num_hidden=128)
act1 = mx.sym.Activation(data=fc1, act_type="relu")
fc2 = mx.sym.FullyConnected(data=act1, num_hidden=64)
act2 = mx.sym.Activation(data=fc2, act_type="relu")
fc3 = mx.sym.FullyConnected(data=act2, num_hidden=10)
return mx.sym.SoftmaxOutput(data=fc3, name="softmax")
def train(data, hyperparameters={"learning_rate": 0.11}, num_cpus=0, num_gpus=1, **kwargs):
train_labels = data["train_label"]
train_images = data["train_data"]
test_labels = data["test_label"]
test_images = data["test_data"]
batch_size = 100
train_iter = mx.io.NDArrayIter(train_images, train_labels, batch_size, shuffle=True)
val_iter = mx.io.NDArrayIter(test_images, test_labels, batch_size)
logging.getLogger().setLevel(logging.DEBUG)
mlp_model = mx.mod.Module(symbol=build_graph(), context=get_train_context(num_cpus, num_gpus))
mlp_model.fit(
train_iter,
eval_data=val_iter,
optimizer="sgd",
optimizer_params={"learning_rate": float(hyperparameters.get("learning_rate", 0.1))},
eval_metric="acc",
batch_end_callback=mx.callback.Speedometer(batch_size, 100),
num_epoch=10,
)
return mlp_model
def get_train_context(num_cpus, num_gpus):
if num_gpus > 0:
return mx.gpu()
return mx.cpu()