-
Notifications
You must be signed in to change notification settings - Fork 182
/
e3ffb000-a388-4bdc-b88f-2f85794c13c8.txt
2165 lines (2092 loc) · 134 KB
/
e3ffb000-a388-4bdc-b88f-2f85794c13c8.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os
import sys
with open(sys.argv[0]) as f:
code = f.read() # read the code of this file ASAP, for logging
import uuid
import glob
import time
import contextlib
from dataclasses import dataclass
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
import torch.distributed as dist
import torch._inductor.config as config
from torch.nn.parallel import DistributedDataParallel as DDP
# Use of FlexAttention contributed by @KoszarskyB
from torch.nn.attention.flex_attention import flex_attention, create_block_mask
flex_attention = torch.compile(flex_attention, dynamic=False)
create_block_mask = torch.compile(create_block_mask, dynamic=False)
# -----------------------------------------------------------------------------
# Muon optimizer
def zeropower_via_svd(G, steps=None):
U, S, V = G.svd()
return U @ V.T
@torch.compile
def zeropower_via_newtonschulz5(G, steps=10, eps=1e-7):
"""
Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a
quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose
of minimizing steps, it turns out to be empirically effective to keep increasing the slope at
zero even beyond the point where the iteration no longer converges all the way to one everywhere
on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T
where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model
performance at all relative to UV^T, where USV^T = G is the SVD.
"""
assert len(G.shape) == 2
a, b, c = (3.4445, -4.7750, 2.0315)
X = G.bfloat16()
X /= (X.norm() + eps) # ensure top singular value <= 1
if G.size(0) > G.size(1):
X = X.T
for _ in range(steps):
A = X @ X.T
B = b * A + c * A @ A # adapted from suggestion by @jxbz, @leloykun, and @YouJiacheng
X = a * X + B @ X
if G.size(0) > G.size(1):
X = X.T
return X
zeropower_backends = dict(svd=zeropower_via_svd, newtonschulz5=zeropower_via_newtonschulz5)
class Muon(torch.optim.Optimizer):
"""
Muon - MomentUm Orthogonalized by Newton-schulz
Muon internally runs standard SGD-momentum, and then performs an orthogonalization post-
processing step, in which each 2D parameter's update is replaced with the nearest orthogonal
matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has
the advantage that it can be stably run in bfloat16 on the GPU.
Some warnings:
- This optimizer assumes that all parameters passed in are 2D.
- It should not be used for the embedding layer, the final fully connected layer, or any {0,1}-D
parameters; those should all be optimized by a standard method (e.g., AdamW).
- To use it with 4D convolutional filters, it works well to just flatten their last 3 dimensions.
- We believe it is unlikely to work well for training with small batch size.
- We believe it may not work well for finetuning pretrained models, but we haven't tested this.
- We have not yet tried this optimizer for training scenarios larger than NanoGPT (124M).
Arguments:
lr: The learning rate used by the internal SGD.
momentum: The momentum used by the internal SGD.
nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended)
backend: The chosen backend for the orthogonalization step. (recommended: 'newtonschulz5')
backend_steps: The number of iteration steps to use in the backend, if it is iterative.
"""
def __init__(self, params, lr=0.02, momentum=0.95, nesterov=True,
backend='newtonschulz5', backend_steps=5):
defaults = dict(lr=lr, momentum=momentum, nesterov=nesterov, backend=backend, backend_steps=backend_steps)
super().__init__(params, defaults)
def step(self):
for group in self.param_groups:
lr = group['lr']
momentum = group['momentum']
zeropower_backend = zeropower_backends[group['backend']]
# generate weight updates in distributed fashion
total_params = sum(p.numel() for p in group['params'])
updates_flat = torch.zeros(total_params, device='cuda', dtype=torch.bfloat16)
curr_idx = 0
for i, p in enumerate(group['params']):
# luckily this will perfectly distribute a transformer with multiple of 4 layers to 8 GPUs
if i % int(os.environ['WORLD_SIZE']) == int(os.environ['RANK']):
g = p.grad
assert g is not None
state = self.state[p]
if 'momentum_buffer' not in state:
state['momentum_buffer'] = torch.zeros_like(g)
buf = state['momentum_buffer']
buf.mul_(momentum).add_(g)
g = g.add(buf, alpha=momentum) if group['nesterov'] else buf
g = zeropower_backend(g, steps=group['backend_steps'])
g *= max(1, g.size(0)/g.size(1))**0.5
updates_flat[curr_idx:curr_idx+p.numel()] = g.flatten()
curr_idx += p.numel()
# sync updates across devices. we are not memory-constrained so can do this simple deserialization
dist.all_reduce(updates_flat, op=dist.ReduceOp.SUM)
# deserialize and apply updates
curr_idx = 0
for p in group['params']:
g = updates_flat[curr_idx:curr_idx+p.numel()].view_as(p.data).type_as(p.data)
p.data.add_(g, alpha=-lr)
curr_idx += p.numel()
# -----------------------------------------------------------------------------
# PyTorch nn.Module definitions for the GPT-2 model
def norm(x):
return F.rms_norm(x, (x.size(-1),))
class CastedLinear(nn.Linear):
def __init__(self, in_features, out_features):
super().__init__(in_features, out_features, bias=False)
def forward(self, x):
return F.linear(x, self.weight.to(x.dtype))
class Rotary(torch.nn.Module):
def __init__(self, dim, base=10000):
super().__init__()
self.register_buffer('inv_freq', (1 / base) ** (torch.arange(0, dim, 2) / dim))
self.seq_len_cached = None
self.cos_cached = None
self.sin_cached = None
def forward(self, x):
seq_len = x.shape[1]
if seq_len != self.seq_len_cached:
t = torch.arange(seq_len, device=x.device)
freqs = torch.outer(t, self.inv_freq)
self.seq_len_cached = seq_len
self.cos_cached = freqs.cos()
self.sin_cached = freqs.sin()
cos, sin = self.cos_cached[None, :, None, :], self.sin_cached[None, :, None, :]
# apply_rotary_emb(x, cos, sin)
x1, x2 = x.chunk(2, dim=3)
y1 = x1 * cos + x2 * sin
y2 = x1 * (-sin) + x2 * cos
return torch.cat((y1, y2), 3).type_as(x)
class CausalSelfAttention(nn.Module):
def __init__(self, dim, n_head):
super().__init__()
assert dim % n_head == 0
self.n_head = n_head
self.c_q = CastedLinear(dim, dim)
self.c_k = CastedLinear(dim, dim)
self.c_v = CastedLinear(dim, dim)
# value residual lambda
self.lamb = nn.Parameter(torch.tensor(0.5)) # @Grad62304977
# rotary embeddings
self.rotary = Rotary(dim // n_head) # dim // n_head = head_dim
# output projection
self.c_proj = CastedLinear(dim, dim)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
def forward(self, x, vi, block_mask):
B, T = x.size(0), x.size(1) # batch size, sequence length
assert B == 1, "Must use batch size = 1 for FlexAttention"
q = self.c_q(x).view(B, T, self.n_head, -1)
k = self.c_k(x).view(B, T, self.n_head, -1)
v = self.c_v(x).view(B, T, self.n_head, -1)
v = (1 - self.lamb) * v + self.lamb * vi.view_as(v) # @Grad62304977
q, k = norm(q), norm(k) # QK norm suggested by @Grad62304977
q, k = self.rotary(q), self.rotary(k)
y = flex_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), block_mask=block_mask)
y = y.transpose(1, 2).contiguous().view_as(x) # re-assemble all head outputs side by side
y = self.c_proj(y)
return y
class MLP(nn.Module):
def __init__(self, dim):
super().__init__()
self.c_fc = CastedLinear(dim, 4 * dim)
self.c_proj = CastedLinear(4 * dim, dim)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
def forward(self, x):
x = self.c_fc(x)
x = F.relu(x).square() # https://arxiv.org/abs/2109.08668v2; ~1-2% better than GELU; suggested by @SKYLINEZ007 and @Grad62304977
x = self.c_proj(x)
return x
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.attn = CausalSelfAttention(config.n_embd, config.n_head)
self.mlp = MLP(config.n_embd)
self.lambdas = nn.Parameter(torch.tensor([1., 0.]))
def forward(self, x, vi, x0, block_mask):
x = self.lambdas[0] * x + self.lambdas[1] * x0
x = x + self.attn(norm(x), vi, block_mask)
x = x + self.mlp(norm(x))
return x
# -----------------------------------------------------------------------------
# The main GPT-2 model
@dataclass
class GPTConfig:
vocab_size : int = 50304
n_layer : int = 12
n_head : int = 6 # head dim 128 suggested by @Grad62304977
n_embd : int = 768
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
# U-net design by @brendanh0gan
self.num_encoder_layers = config.n_layer // 2 # Half of the layers for encoder
self.num_decoder_layers = config.n_layer - self.num_encoder_layers # Remaining for decoder
# Add learnable skip connection weights for decoder layers
self.skip_weights = nn.Parameter(torch.ones(self.num_decoder_layers))
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
# token value embeddings by @KoszarskyB - inspired by @Grad62304977's value residual learning
vte = nn.Embedding(config.vocab_size, config.n_embd*12),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
))
self.lm_head = CastedLinear(config.n_embd, config.vocab_size)
self.lm_head.weight.data.zero_() # @Grad62304977
def forward(self, idx, target, attn_blocksize):
docs = (idx == 50256).cumsum(0)
def document_causal_mask(b, h, q_idx, kv_idx):
causal_mask = q_idx >= kv_idx
document_mask = docs[q_idx] == docs[kv_idx]
window_mask = q_idx - kv_idx < attn_blocksize
return causal_mask & document_mask & window_mask
S = len(idx)
block_mask = create_block_mask(document_causal_mask, None, None, S, S, device="cuda", _compile=True)
# forward the GPT model itself
x = self.transformer.wte(idx[None]) # token embeddings of shape (b, t, n_embd)
x = norm(x) # @Grad62304977
x0 = x
vi = self.transformer.vte(idx[None]).chunk(12, dim=-1)
# Store outputs for U-Net skip connections
skip_connections = []
# Encoder pass - process only the first half of the blocks
for i in range(self.num_encoder_layers):
x = self.transformer.h[i](x, vi[i], x0, block_mask)
skip_connections.append(x)
# Decoder pass - process the remaining blocks with weighted skip connections
for i in range(self.num_decoder_layers):
x = x + self.skip_weights[i] * skip_connections.pop()
x = self.transformer.h[self.num_encoder_layers + i](x, vi[self.num_encoder_layers+i], x0, block_mask)
x = norm(x)
logits = self.lm_head(x)
logits = 30 * torch.tanh(logits / 30) # @Grad62304977
logits = logits.float()
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), target.view(-1))
return loss
# -----------------------------------------------------------------------------
# Our own simple Distributed Data Loader
def _peek_data_shard(filename):
# only reads the header, returns header data
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
if header[0] != 20240520:
print("ERROR: magic number mismatch in the data .bin file!")
print("---> HINT: Are you passing in a correct file with --input_bin?")
print("---> HINT: Dataset encoding changed recently, re-run data prepro or refer again to README")
print("---> HINT: For example re-run: `python dev/data/tinyshakespeare.py`, then re-try")
exit(1)
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
return ntok # for now just return the number of tokens
def _load_data_shard(filename):
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
assert header[0] == 20240520, "magic number mismatch in the data .bin file"
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
# the rest of it are tokens, stored as uint16
tokens = np.frombuffer(f.read(), dtype=np.uint16)
assert len(tokens) == ntok, "number of tokens read does not match header?"
return tokens
class DistributedDataLoader:
def __init__(self, filename_pattern, T, process_rank, num_processes):
self.process_rank = process_rank
self.num_processes = num_processes
self.T = T
# glob files that match the pattern
self.files = sorted(glob.glob(filename_pattern))
assert len(self.files) > 0, f"did not find any files that match the pattern {filename_pattern}"
# load and validate all data shards, count number of tokens in total
ntok_total = 0
for fname in self.files:
shard_ntok = _peek_data_shard(fname)
assert shard_ntok >= num_processes * T + 1
ntok_total += int(shard_ntok)
self.ntok_total = ntok_total
self.reset()
def reset(self):
self.current_shard = -1
self.advance()
def advance(self): # advance to next data shard
self.current_shard = (self.current_shard + 1) % len(self.files)
self.current_position = self.process_rank * self.T
self.tokens = _load_data_shard(self.files[self.current_shard])
def next_batch(self):
batch_size = self.T * self.num_processes
buf = self.tokens[self.current_position:self.current_position+self.T+1]
buf = torch.tensor(buf.astype(np.int32), dtype=torch.long)
x = buf[:-1] # inputs
y = buf[1:] # targets
# advance current position and load next shard if necessary
self.current_position += batch_size
if self.current_position + batch_size >= len(self.tokens):
self.advance()
return x.cuda(), y.cuda()
# -----------------------------------------------------------------------------
# int main
@dataclass
class Hyperparameters:
# data hyperparams
input_bin : str = 'data/fineweb10B/fineweb_train_*.bin' # input .bin to train on
input_val_bin : str = 'data/fineweb10B/fineweb_val_*.bin' # input .bin to eval validation loss on
# optimization hyperparams
batch_size : int = 8 # batch size, in sequences, across all devices
sequence_length : int = 64*1024 # sequence length, in tokens
num_iterations : int = 1530 # number of iterations to run
warmup_iters : int = 0
cooldown_iters : int = 600 # number of iterations of linear warmup/cooldown for triangular or trapezoidal schedule
weight_decay : float = 0
# evaluation and logging hyperparams
val_loss_every : int = 125 # every how many steps to evaluate val loss? 0 for only at the end
val_tokens : int = 10485760 # how many tokens of validation data? it's important to keep this fixed for consistent comparisons
save_every : int = 0 # every how many steps to save the checkpoint? 0 for only at the end
args = Hyperparameters()
# set up DDP (distributed data parallel). torchrun sets this env variable
assert torch.cuda.is_available()
dist.init_process_group(backend='nccl')
ddp_rank = int(os.environ['RANK'])
ddp_local_rank = int(os.environ['LOCAL_RANK'])
ddp_world_size = int(os.environ['WORLD_SIZE'])
device = f'cuda:{ddp_local_rank}'
torch.cuda.set_device(device)
print(f"using device: {device}")
master_process = (ddp_rank == 0) # this process will do logging, checkpointing etc.
# begin logging
logfile = None
if master_process:
run_id = str(uuid.uuid4())
logdir = 'logs/%s/' % run_id
os.makedirs(logdir, exist_ok=True)
logfile = 'logs/%s.txt' % run_id
# create the log file
with open(logfile, "w") as f:
# begin the log by printing this file (the Python code)
f.write(code)
f.write('='*100 + '\n')
def print0(s, logonly=False):
if master_process:
with open(logfile, "a") as f:
if not logonly:
print(s)
f.write(s+'\n')
# log information about the hardware/software environment this is running on
# and print the full `nvidia-smi` to file
print0(f"Running pytorch {torch.version.__version__} compiled for CUDA {torch.version.cuda}\nnvidia-smi:")
import subprocess
result = subprocess.run(['nvidia-smi'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
print0(f'{result.stdout}', logonly=True)
print0('='*100, logonly=True)
# convenience variables
T = args.sequence_length
# calculate the number of steps to take in the val loop.
assert args.val_tokens % (T * ddp_world_size) == 0
val_steps = args.val_tokens // (T * ddp_world_size)
# calculate the steps of gradient accumulation required to attain the desired global batch size.
assert args.batch_size % (ddp_world_size) == 0
train_accumulation_steps = args.batch_size // ddp_world_size
# load tokens
train_loader = DistributedDataLoader(args.input_bin, T, ddp_rank, ddp_world_size)
val_loader = DistributedDataLoader(args.input_val_bin, T, ddp_rank, ddp_world_size)
print0(f"Training DataLoader: total number of tokens: {train_loader.ntok_total} across {len(train_loader.files)} files")
print0(f"Validation DataLoader: total number of tokens: {val_loader.ntok_total} across {len(val_loader.files)} files")
print0('='*100, logonly=True)
x, y = train_loader.next_batch()
# there are only 50257 unique GPT-2 tokens; we extend to nearest multiple of 128 for efficiency. suggested to me by @Grad62304977.
# this originates from Karpathy's experiments.
num_vocab = 50304
model = GPT(GPTConfig(vocab_size=num_vocab, n_layer=12, n_head=6, n_embd=768))
model = model.cuda().bfloat16()
for m in model.modules():
if isinstance(m, CastedLinear):
m.float()
if hasattr(config, "coordinate_descent_tuning"):
config.coordinate_descent_tuning = True # suggested by @Chillee
model = torch.compile(model)
# here we wrap model into DDP container
model = DDP(model, device_ids=[ddp_local_rank])
raw_model = model.module # always contains the "raw" unwrapped model
# init the optimizer(s)
optimizer1 = torch.optim.Adam([raw_model.transformer.wte.weight, raw_model.transformer.vte.weight], lr=0.6, betas=(0.8, 0.95), fused=True)
optimizer2 = torch.optim.Adam([raw_model.lm_head.weight], lr=0.008, betas=(0.8, 0.95), fused=True)
params = list(raw_model.transformer.h.parameters())
matrix_params = [p for p in params if p.ndim == 2]
scalar_params = [p for p in params if p.ndim < 2] + [raw_model.skip_weights]
optimizer3 = Muon(matrix_params, lr=0.05, momentum=0.95)
optimizer4 = torch.optim.Adam(scalar_params, lr=0.04, betas=(0.8, 0.95), fused=True) # note that this learning rate is neither sensitive nor tuned
optimizers = [optimizer1, optimizer2, optimizer3, optimizer4]
# learning rate decay scheduler (linear warmup and cooldown)
def get_lr(it):
assert it <= args.num_iterations
# 1) linear warmup for warmup_iters steps
if it < args.warmup_iters:
return (it+1) / args.warmup_iters
# 2) constant lr for a while
elif it < args.num_iterations - args.cooldown_iters:
return 1.0
# 3) linear cooldown
else:
decay_ratio = (args.num_iterations - it) / args.cooldown_iters
return decay_ratio
schedulers = [torch.optim.lr_scheduler.LambdaLR(opt, get_lr) for opt in optimizers]
# Start training loop
training_time_ms = 0
# start the clock
torch.cuda.synchronize()
t0 = time.time()
# begin training
for step in range(args.num_iterations + 1):
last_step = (step == args.num_iterations)
# This effectively ignores timing first 10 steps, which are slower for weird reasons.
# Alternately, and slightly more correctly in terms of benchmarking, we could do 10
# steps with dummy data first, and then re-initialize the model and reset the loader.
if step == 10:
training_time_ms = 0
t0 = time.time()
timed_steps = float('nan') if step <= 11 else (step - 10) + 1 # <= 11 to avoid bug in val
# Set the attention blocksize for the current step, in chunks of 64. By @fernbear.bsky.social
attn_blocksize = torch.tensor(64*((step/args.num_iterations * (1792 - 64) + 64)//64), dtype=torch.int, device='cuda')
# once in a while evaluate the validation dataset
if (last_step or (args.val_loss_every > 0 and step % args.val_loss_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.time() - t0)
# run validation batches
model.eval()
val_loader.reset()
val_loss = 0.0
for _ in range(val_steps):
with torch.no_grad():
x_val, y_val = val_loader.next_batch()
val_loss += model(x_val, y_val, attn_blocksize=attn_blocksize)
dist.all_reduce(val_loss, op=dist.ReduceOp.AVG)
val_loss /= val_steps
# log val loss to console and to logfile
print0(f'step:{step}/{args.num_iterations} val_loss:{val_loss:.4f} train_time:{training_time_ms:.0f}ms step_avg:{training_time_ms/(timed_steps-1):.2f}ms')
# start the clock again
torch.cuda.synchronize()
t0 = time.time()
if master_process and (last_step or (args.save_every > 0 and step % args.save_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.time() - t0)
# save the state of the training process
log = dict(step=step, code=code, model=raw_model.state_dict(), optimizers=[opt.state_dict() for opt in optimizers])
torch.save(log, 'logs/%s/state_step%06d.pt' % (run_id, step))
# start the clock again
torch.cuda.synchronize()
t0 = time.time()
# bit confusing: we want to make sure to eval on 0th iteration
# but also after the very last iteration. so we loop for step <= num_iterations
# instead of just < num_iterations (one extra due to <=), only to do
# the validation/sampling one last time, and then we break right here as we're done.
if last_step:
break
# --------------- TRAINING SECTION BEGIN -----------------
model.train()
for i in range(1, train_accumulation_steps+1):
ctx = model.no_sync() if i < train_accumulation_steps else contextlib.nullcontext()
with ctx: # there's no need to sync gradients every accumulation step
# forward pass
loss = model(x, y, attn_blocksize=attn_blocksize)
# advance the dataset for the next batch
x, y = train_loader.next_batch()
# backward pass
loss.backward()
train_loss = loss.detach()
for p in model.parameters():
p.grad /= train_accumulation_steps
# momentum warmup for Muon
frac = min(step/300, 1)
optimizer3.param_groups[0]['momentum'] = (1 - frac) * 0.85 + frac * 0.95
# step the optimizers and schedulers
for opt, sched in zip(optimizers, schedulers):
opt.step()
sched.step()
# null the gradients
model.zero_grad(set_to_none=True)
# --------------- TRAINING SECTION END -------------------
# everything that follows now is just diagnostics, prints, logging, etc.
#dist.all_reduce(train_loss, op=dist.ReduceOp.AVG) # all-reducing the training loss would be more correct in terms of logging, but slower
approx_time = training_time_ms + 1000 * (time.time() - t0)
print0(f"step:{step+1}/{args.num_iterations} train_loss:{train_loss.item():.4f} train_time:{approx_time:.0f}ms step_avg:{approx_time/timed_steps:.2f}ms")
if master_process:
print(f"peak memory consumption: {torch.cuda.max_memory_allocated() // 1024 // 1024} MiB")
# -------------------------------------------------------------------------
# clean up nice
dist.destroy_process_group()
====================================================================================================
Running pytorch 2.6.0.dev20241203+cu124 compiled for CUDA 12.4
nvidia-smi:
Thu Dec 5 01:10:18 2024
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.183.06 Driver Version: 535.183.06 CUDA Version: 12.2 |
|-----------------------------------------+----------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+======================+======================|
| 0 NVIDIA H100 80GB HBM3 On | 00000000:19:00.0 Off | 0 |
| N/A 38C P0 75W / 700W | 3MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 1 NVIDIA H100 80GB HBM3 On | 00000000:3B:00.0 Off | 0 |
| N/A 30C P0 93W / 700W | 22MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 2 NVIDIA H100 80GB HBM3 On | 00000000:4C:00.0 Off | 0 |
| N/A 31C P0 118W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 3 NVIDIA H100 80GB HBM3 On | 00000000:5D:00.0 Off | 0 |
| N/A 38C P0 118W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 4 NVIDIA H100 80GB HBM3 On | 00000000:9B:00.0 Off | 0 |
| N/A 38C P0 102W / 700W | 22MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 5 NVIDIA H100 80GB HBM3 On | 00000000:BB:00.0 Off | 0 |
| N/A 29C P0 106W / 700W | 35MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 6 NVIDIA H100 80GB HBM3 On | 00000000:CB:00.0 Off | 0 |
| N/A 38C P0 127W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 7 NVIDIA H100 80GB HBM3 On | 00000000:DB:00.0 Off | 0 |
| N/A 30C P0 118W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
+---------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=======================================================================================|
+---------------------------------------------------------------------------------------+
====================================================================================================
Training DataLoader: total number of tokens: 1100000000 across 11 files
Validation DataLoader: total number of tokens: 100000000 across 1 files
====================================================================================================
step:0/1530 val_loss:10.8258 train_time:0ms step_avg:nanms
step:1/1530 train_loss:10.8258 train_time:31981ms step_avg:nanms
step:2/1530 train_loss:10.0771 train_time:32092ms step_avg:nanms
step:3/1530 train_loss:8.3927 train_time:32252ms step_avg:nanms
step:4/1530 train_loss:7.5369 train_time:32414ms step_avg:nanms
step:5/1530 train_loss:7.4896 train_time:32574ms step_avg:nanms
step:6/1530 train_loss:6.9861 train_time:32734ms step_avg:nanms
step:7/1530 train_loss:7.2268 train_time:32895ms step_avg:nanms
step:8/1530 train_loss:6.7293 train_time:33054ms step_avg:nanms
step:9/1530 train_loss:6.6153 train_time:33215ms step_avg:nanms
step:10/1530 train_loss:6.4809 train_time:33375ms step_avg:nanms
step:11/1530 train_loss:6.4004 train_time:114ms step_avg:nanms
step:12/1530 train_loss:6.3470 train_time:275ms step_avg:nanms
step:13/1530 train_loss:6.2470 train_time:435ms step_avg:145.09ms
step:14/1530 train_loss:6.2519 train_time:595ms step_avg:148.74ms
step:15/1530 train_loss:6.1752 train_time:755ms step_avg:151.05ms
step:16/1530 train_loss:6.1295 train_time:915ms step_avg:152.58ms
step:17/1530 train_loss:6.1590 train_time:1075ms step_avg:153.64ms
step:18/1530 train_loss:5.9676 train_time:1235ms step_avg:154.41ms
step:19/1530 train_loss:5.9639 train_time:1395ms step_avg:154.95ms
step:20/1530 train_loss:5.6878 train_time:1555ms step_avg:155.51ms
step:21/1530 train_loss:5.9665 train_time:1715ms step_avg:155.91ms
step:22/1530 train_loss:6.1679 train_time:1875ms step_avg:156.28ms
step:23/1530 train_loss:5.8430 train_time:2036ms step_avg:156.59ms
step:24/1530 train_loss:6.0268 train_time:2195ms step_avg:156.82ms
step:25/1530 train_loss:5.6730 train_time:2356ms step_avg:157.09ms
step:26/1530 train_loss:5.5929 train_time:2515ms step_avg:157.20ms
step:27/1530 train_loss:5.7641 train_time:2676ms step_avg:157.41ms
step:28/1530 train_loss:5.4154 train_time:2835ms step_avg:157.51ms
step:29/1530 train_loss:5.6704 train_time:2995ms step_avg:157.65ms
step:30/1530 train_loss:5.4718 train_time:3155ms step_avg:157.76ms
step:31/1530 train_loss:5.4350 train_time:3315ms step_avg:157.87ms
step:32/1530 train_loss:5.2877 train_time:3475ms step_avg:157.97ms
step:33/1530 train_loss:5.5826 train_time:3635ms step_avg:158.05ms
step:34/1530 train_loss:5.5012 train_time:3795ms step_avg:158.13ms
step:35/1530 train_loss:5.6052 train_time:3956ms step_avg:158.22ms
step:36/1530 train_loss:5.5461 train_time:4115ms step_avg:158.28ms
step:37/1530 train_loss:5.4676 train_time:4275ms step_avg:158.34ms
step:38/1530 train_loss:5.3340 train_time:4435ms step_avg:158.41ms
step:39/1530 train_loss:5.3285 train_time:4595ms step_avg:158.45ms
step:40/1530 train_loss:5.2440 train_time:4755ms step_avg:158.50ms
step:41/1530 train_loss:5.2207 train_time:4915ms step_avg:158.54ms
step:42/1530 train_loss:5.1657 train_time:5075ms step_avg:158.59ms
step:43/1530 train_loss:5.2599 train_time:5234ms step_avg:158.62ms
step:44/1530 train_loss:5.2330 train_time:5395ms step_avg:158.68ms
step:45/1530 train_loss:5.3750 train_time:5555ms step_avg:158.71ms
step:46/1530 train_loss:5.1621 train_time:5714ms step_avg:158.73ms
step:47/1530 train_loss:5.0555 train_time:5874ms step_avg:158.76ms
step:48/1530 train_loss:5.2207 train_time:6034ms step_avg:158.79ms
step:49/1530 train_loss:5.1396 train_time:6194ms step_avg:158.82ms
step:50/1530 train_loss:5.2508 train_time:6354ms step_avg:158.84ms
step:51/1530 train_loss:5.1477 train_time:6514ms step_avg:158.88ms
step:52/1530 train_loss:5.0263 train_time:6675ms step_avg:158.92ms
step:53/1530 train_loss:5.1506 train_time:6835ms step_avg:158.94ms
step:54/1530 train_loss:4.9954 train_time:6994ms step_avg:158.96ms
step:55/1530 train_loss:5.4079 train_time:7155ms step_avg:159.00ms
step:56/1530 train_loss:5.0331 train_time:7315ms step_avg:159.02ms
step:57/1530 train_loss:4.8812 train_time:7474ms step_avg:159.03ms
step:58/1530 train_loss:5.0330 train_time:7635ms step_avg:159.05ms
step:59/1530 train_loss:5.0160 train_time:7795ms step_avg:159.08ms
step:60/1530 train_loss:5.1310 train_time:7954ms step_avg:159.09ms
step:61/1530 train_loss:4.8581 train_time:8114ms step_avg:159.10ms
step:62/1530 train_loss:4.9959 train_time:8275ms step_avg:159.14ms
step:63/1530 train_loss:4.9767 train_time:8435ms step_avg:159.15ms
step:64/1530 train_loss:4.9138 train_time:8595ms step_avg:159.16ms
step:65/1530 train_loss:4.8184 train_time:8756ms step_avg:159.19ms
step:66/1530 train_loss:4.9251 train_time:8915ms step_avg:159.20ms
step:67/1530 train_loss:4.8355 train_time:9076ms step_avg:159.23ms
step:68/1530 train_loss:5.0816 train_time:9235ms step_avg:159.23ms
step:69/1530 train_loss:4.7244 train_time:9396ms step_avg:159.25ms
step:70/1530 train_loss:4.8450 train_time:9556ms step_avg:159.26ms
step:71/1530 train_loss:4.9632 train_time:9716ms step_avg:159.27ms
step:72/1530 train_loss:4.8883 train_time:9876ms step_avg:159.29ms
step:73/1530 train_loss:4.7736 train_time:10035ms step_avg:159.29ms
step:74/1530 train_loss:4.9084 train_time:10195ms step_avg:159.30ms
step:75/1530 train_loss:4.8638 train_time:10355ms step_avg:159.30ms
step:76/1530 train_loss:4.8103 train_time:10514ms step_avg:159.31ms
step:77/1530 train_loss:4.9044 train_time:10674ms step_avg:159.32ms
step:78/1530 train_loss:5.1141 train_time:10834ms step_avg:159.33ms
step:79/1530 train_loss:4.8234 train_time:10995ms step_avg:159.35ms
step:80/1530 train_loss:4.8678 train_time:11155ms step_avg:159.35ms
step:81/1530 train_loss:4.6525 train_time:11314ms step_avg:159.35ms
step:82/1530 train_loss:4.8188 train_time:11475ms step_avg:159.37ms
step:83/1530 train_loss:4.7837 train_time:11634ms step_avg:159.38ms
step:84/1530 train_loss:4.7661 train_time:11794ms step_avg:159.38ms
step:85/1530 train_loss:4.6197 train_time:11954ms step_avg:159.39ms
step:86/1530 train_loss:4.8295 train_time:12114ms step_avg:159.40ms
step:87/1530 train_loss:4.7413 train_time:12274ms step_avg:159.41ms
step:88/1530 train_loss:4.7428 train_time:12435ms step_avg:159.42ms
step:89/1530 train_loss:4.6960 train_time:12595ms step_avg:159.43ms
step:90/1530 train_loss:4.6357 train_time:12755ms step_avg:159.44ms
step:91/1530 train_loss:4.6301 train_time:12915ms step_avg:159.45ms
step:92/1530 train_loss:4.7844 train_time:13075ms step_avg:159.45ms
step:93/1530 train_loss:4.6136 train_time:13235ms step_avg:159.46ms
step:94/1530 train_loss:4.6393 train_time:13395ms step_avg:159.46ms
step:95/1530 train_loss:4.6795 train_time:13555ms step_avg:159.47ms
step:96/1530 train_loss:4.5871 train_time:13715ms step_avg:159.47ms
step:97/1530 train_loss:4.6613 train_time:13875ms step_avg:159.48ms
step:98/1530 train_loss:4.5870 train_time:14034ms step_avg:159.48ms
step:99/1530 train_loss:4.6634 train_time:14195ms step_avg:159.49ms
step:100/1530 train_loss:4.6855 train_time:14355ms step_avg:159.50ms
step:101/1530 train_loss:4.5272 train_time:14515ms step_avg:159.50ms
step:102/1530 train_loss:4.6914 train_time:14675ms step_avg:159.52ms
step:103/1530 train_loss:4.5701 train_time:14835ms step_avg:159.52ms
step:104/1530 train_loss:4.5405 train_time:14994ms step_avg:159.52ms
step:105/1530 train_loss:4.5592 train_time:15155ms step_avg:159.52ms
step:106/1530 train_loss:4.6133 train_time:15314ms step_avg:159.52ms
step:107/1530 train_loss:4.4952 train_time:15475ms step_avg:159.53ms
step:108/1530 train_loss:4.3617 train_time:15634ms step_avg:159.53ms
step:109/1530 train_loss:4.4887 train_time:15795ms step_avg:159.54ms
step:110/1530 train_loss:4.4909 train_time:15955ms step_avg:159.55ms
step:111/1530 train_loss:4.4353 train_time:16115ms step_avg:159.55ms
step:112/1530 train_loss:4.5828 train_time:16275ms step_avg:159.56ms
step:113/1530 train_loss:4.4801 train_time:16434ms step_avg:159.56ms
step:114/1530 train_loss:4.3640 train_time:16595ms step_avg:159.57ms
step:115/1530 train_loss:4.5045 train_time:16758ms step_avg:159.60ms
step:116/1530 train_loss:4.4688 train_time:16920ms step_avg:159.62ms
step:117/1530 train_loss:4.3517 train_time:17085ms step_avg:159.67ms
step:118/1530 train_loss:4.5853 train_time:17250ms step_avg:159.72ms
step:119/1530 train_loss:4.4544 train_time:17414ms step_avg:159.76ms
step:120/1530 train_loss:4.3338 train_time:17577ms step_avg:159.79ms
step:121/1530 train_loss:4.2971 train_time:17740ms step_avg:159.82ms
step:122/1530 train_loss:4.4437 train_time:17902ms step_avg:159.84ms
step:123/1530 train_loss:4.2749 train_time:18068ms step_avg:159.90ms
step:124/1530 train_loss:4.5823 train_time:18232ms step_avg:159.93ms
step:125/1530 train_loss:4.4413 train_time:18396ms step_avg:159.97ms
step:125/1530 val_loss:4.3898 train_time:18443ms step_avg:160.37ms
step:126/1530 train_loss:4.4030 train_time:18561ms step_avg:160.01ms
step:127/1530 train_loss:4.4256 train_time:18726ms step_avg:160.05ms
step:128/1530 train_loss:4.3737 train_time:18889ms step_avg:160.08ms
step:129/1530 train_loss:4.6909 train_time:19053ms step_avg:160.11ms
step:130/1530 train_loss:4.3811 train_time:19219ms step_avg:160.16ms
step:131/1530 train_loss:4.4027 train_time:19382ms step_avg:160.19ms
step:132/1530 train_loss:4.3468 train_time:19546ms step_avg:160.21ms
step:133/1530 train_loss:4.4471 train_time:19709ms step_avg:160.24ms
step:134/1530 train_loss:4.2768 train_time:19873ms step_avg:160.27ms
step:135/1530 train_loss:4.4460 train_time:20038ms step_avg:160.31ms
step:136/1530 train_loss:4.2152 train_time:20202ms step_avg:160.33ms
step:137/1530 train_loss:4.3706 train_time:20365ms step_avg:160.35ms
step:138/1530 train_loss:4.2799 train_time:20527ms step_avg:160.37ms
step:139/1530 train_loss:4.3767 train_time:20692ms step_avg:160.41ms
step:140/1530 train_loss:4.4787 train_time:20857ms step_avg:160.44ms
step:141/1530 train_loss:4.3116 train_time:21021ms step_avg:160.47ms
step:142/1530 train_loss:4.3055 train_time:21185ms step_avg:160.49ms
step:143/1530 train_loss:4.2524 train_time:21349ms step_avg:160.52ms
step:144/1530 train_loss:4.3510 train_time:21512ms step_avg:160.54ms
step:145/1530 train_loss:4.3013 train_time:21677ms step_avg:160.57ms
step:146/1530 train_loss:4.1694 train_time:21840ms step_avg:160.59ms
step:147/1530 train_loss:4.3236 train_time:22003ms step_avg:160.61ms
step:148/1530 train_loss:4.3595 train_time:22166ms step_avg:160.63ms
step:149/1530 train_loss:4.3045 train_time:22330ms step_avg:160.65ms
step:150/1530 train_loss:4.4486 train_time:22494ms step_avg:160.67ms
step:151/1530 train_loss:4.2674 train_time:22658ms step_avg:160.70ms
step:152/1530 train_loss:4.2700 train_time:22822ms step_avg:160.72ms
step:153/1530 train_loss:4.3550 train_time:22985ms step_avg:160.73ms
step:154/1530 train_loss:4.3664 train_time:23150ms step_avg:160.76ms
step:155/1530 train_loss:4.2766 train_time:23313ms step_avg:160.78ms
step:156/1530 train_loss:4.3524 train_time:23477ms step_avg:160.80ms
step:157/1530 train_loss:4.4067 train_time:23641ms step_avg:160.82ms
step:158/1530 train_loss:4.2387 train_time:23804ms step_avg:160.83ms
step:159/1530 train_loss:4.3014 train_time:23966ms step_avg:160.85ms
step:160/1530 train_loss:4.1300 train_time:24131ms step_avg:160.87ms
step:161/1530 train_loss:4.3449 train_time:24295ms step_avg:160.89ms
step:162/1530 train_loss:4.3544 train_time:24459ms step_avg:160.91ms
step:163/1530 train_loss:4.3413 train_time:24622ms step_avg:160.93ms
step:164/1530 train_loss:4.1948 train_time:24786ms step_avg:160.95ms
step:165/1530 train_loss:4.2940 train_time:24950ms step_avg:160.97ms
step:166/1530 train_loss:4.3715 train_time:25114ms step_avg:160.99ms
step:167/1530 train_loss:4.2291 train_time:25278ms step_avg:161.00ms
step:168/1530 train_loss:4.3001 train_time:25442ms step_avg:161.03ms
step:169/1530 train_loss:4.1631 train_time:25605ms step_avg:161.03ms
step:170/1530 train_loss:4.0222 train_time:25768ms step_avg:161.05ms
step:171/1530 train_loss:4.2107 train_time:25932ms step_avg:161.07ms
step:172/1530 train_loss:4.2141 train_time:26094ms step_avg:161.07ms
step:173/1530 train_loss:4.2686 train_time:26258ms step_avg:161.09ms
step:174/1530 train_loss:4.4268 train_time:26421ms step_avg:161.10ms
step:175/1530 train_loss:4.2492 train_time:26583ms step_avg:161.11ms
step:176/1530 train_loss:4.0938 train_time:26746ms step_avg:161.12ms
step:177/1530 train_loss:4.0607 train_time:26908ms step_avg:161.12ms
step:178/1530 train_loss:4.1830 train_time:27070ms step_avg:161.13ms
step:179/1530 train_loss:4.1277 train_time:27234ms step_avg:161.15ms
step:180/1530 train_loss:4.1101 train_time:27396ms step_avg:161.15ms
step:181/1530 train_loss:4.2975 train_time:27560ms step_avg:161.17ms
step:182/1530 train_loss:4.1578 train_time:27722ms step_avg:161.17ms
step:183/1530 train_loss:4.1398 train_time:27883ms step_avg:161.18ms
step:184/1530 train_loss:4.1309 train_time:28046ms step_avg:161.18ms
step:185/1530 train_loss:4.2176 train_time:28207ms step_avg:161.18ms
step:186/1530 train_loss:4.1796 train_time:28370ms step_avg:161.19ms
step:187/1530 train_loss:4.2313 train_time:28536ms step_avg:161.22ms
step:188/1530 train_loss:4.1666 train_time:28839ms step_avg:162.02ms
step:189/1530 train_loss:4.1092 train_time:29189ms step_avg:163.07ms
step:190/1530 train_loss:4.2087 train_time:29362ms step_avg:163.12ms
step:191/1530 train_loss:4.0865 train_time:29525ms step_avg:163.12ms
step:192/1530 train_loss:4.0342 train_time:29687ms step_avg:163.11ms
step:193/1530 train_loss:4.2573 train_time:29850ms step_avg:163.12ms
step:194/1530 train_loss:4.1811 train_time:30013ms step_avg:163.12ms
step:195/1530 train_loss:4.3551 train_time:30177ms step_avg:163.12ms
step:196/1530 train_loss:4.1860 train_time:30339ms step_avg:163.12ms
step:197/1530 train_loss:4.0530 train_time:30501ms step_avg:163.11ms
step:198/1530 train_loss:4.1832 train_time:30663ms step_avg:163.10ms
step:199/1530 train_loss:4.0387 train_time:30826ms step_avg:163.10ms
step:200/1530 train_loss:4.1168 train_time:30989ms step_avg:163.10ms
step:201/1530 train_loss:4.0088 train_time:31153ms step_avg:163.11ms
step:202/1530 train_loss:4.2559 train_time:31316ms step_avg:163.11ms
step:203/1530 train_loss:4.0672 train_time:31480ms step_avg:163.11ms
step:204/1530 train_loss:4.1955 train_time:31642ms step_avg:163.10ms
step:205/1530 train_loss:4.2527 train_time:31804ms step_avg:163.10ms
step:206/1530 train_loss:3.9500 train_time:31967ms step_avg:163.10ms
step:207/1530 train_loss:4.0832 train_time:32130ms step_avg:163.10ms
step:208/1530 train_loss:4.1040 train_time:32292ms step_avg:163.09ms
step:209/1530 train_loss:4.2440 train_time:32456ms step_avg:163.10ms
step:210/1530 train_loss:4.1810 train_time:32618ms step_avg:163.09ms
step:211/1530 train_loss:4.0635 train_time:32782ms step_avg:163.09ms
step:212/1530 train_loss:4.1226 train_time:32945ms step_avg:163.10ms
step:213/1530 train_loss:4.0634 train_time:33108ms step_avg:163.09ms
step:214/1530 train_loss:4.1194 train_time:33269ms step_avg:163.08ms
step:215/1530 train_loss:3.9741 train_time:33433ms step_avg:163.09ms
step:216/1530 train_loss:4.0125 train_time:33597ms step_avg:163.09ms
step:217/1530 train_loss:4.0161 train_time:33760ms step_avg:163.09ms
step:218/1530 train_loss:4.0866 train_time:33922ms step_avg:163.09ms
step:219/1530 train_loss:4.0764 train_time:34085ms step_avg:163.08ms
step:220/1530 train_loss:4.0923 train_time:34246ms step_avg:163.08ms
step:221/1530 train_loss:4.0980 train_time:34410ms step_avg:163.08ms
step:222/1530 train_loss:4.0001 train_time:34573ms step_avg:163.08ms
step:223/1530 train_loss:3.9842 train_time:34738ms step_avg:163.09ms
step:224/1530 train_loss:4.2972 train_time:34899ms step_avg:163.08ms
step:225/1530 train_loss:3.9167 train_time:35062ms step_avg:163.08ms
step:226/1530 train_loss:3.9960 train_time:35224ms step_avg:163.08ms
step:227/1530 train_loss:3.9731 train_time:35386ms step_avg:163.07ms
step:228/1530 train_loss:4.1408 train_time:35551ms step_avg:163.08ms
step:229/1530 train_loss:3.9304 train_time:35719ms step_avg:163.10ms
step:230/1530 train_loss:4.0460 train_time:35884ms step_avg:163.11ms
step:231/1530 train_loss:3.9262 train_time:36050ms step_avg:163.12ms
step:232/1530 train_loss:3.9839 train_time:36215ms step_avg:163.13ms
step:233/1530 train_loss:4.0882 train_time:36381ms step_avg:163.14ms
step:234/1530 train_loss:4.0348 train_time:36547ms step_avg:163.16ms
step:235/1530 train_loss:3.9122 train_time:36714ms step_avg:163.17ms
step:236/1530 train_loss:4.0864 train_time:36880ms step_avg:163.18ms
step:237/1530 train_loss:4.0905 train_time:37045ms step_avg:163.19ms
step:238/1530 train_loss:3.9481 train_time:37212ms step_avg:163.21ms
step:239/1530 train_loss:4.0864 train_time:37379ms step_avg:163.23ms
step:240/1530 train_loss:4.1153 train_time:37544ms step_avg:163.24ms
step:241/1530 train_loss:3.9739 train_time:37709ms step_avg:163.24ms
step:242/1530 train_loss:4.1614 train_time:37876ms step_avg:163.26ms
step:243/1530 train_loss:4.0250 train_time:38042ms step_avg:163.27ms
step:244/1530 train_loss:4.0817 train_time:38207ms step_avg:163.28ms
step:245/1530 train_loss:4.1416 train_time:38372ms step_avg:163.29ms
step:246/1530 train_loss:4.0591 train_time:38539ms step_avg:163.30ms
step:247/1530 train_loss:4.0024 train_time:38704ms step_avg:163.31ms
step:248/1530 train_loss:4.1099 train_time:38869ms step_avg:163.31ms
step:249/1530 train_loss:3.9263 train_time:39034ms step_avg:163.32ms
step:250/1530 train_loss:3.9812 train_time:39200ms step_avg:163.33ms
step:250/1530 val_loss:4.0113 train_time:39248ms step_avg:163.53ms
step:251/1530 train_loss:4.0851 train_time:39368ms step_avg:163.35ms
step:252/1530 train_loss:4.1709 train_time:39536ms step_avg:163.37ms
step:253/1530 train_loss:3.9384 train_time:39703ms step_avg:163.39ms
step:254/1530 train_loss:3.8865 train_time:39868ms step_avg:163.39ms
step:255/1530 train_loss:4.0848 train_time:40034ms step_avg:163.40ms
step:256/1530 train_loss:3.9904 train_time:40201ms step_avg:163.42ms
step:257/1530 train_loss:3.9932 train_time:40366ms step_avg:163.43ms
step:258/1530 train_loss:3.9951 train_time:40532ms step_avg:163.43ms
step:259/1530 train_loss:4.0437 train_time:40699ms step_avg:163.45ms
step:260/1530 train_loss:4.0702 train_time:40865ms step_avg:163.46ms
step:261/1530 train_loss:4.0324 train_time:41031ms step_avg:163.47ms
step:262/1530 train_loss:3.9943 train_time:41198ms step_avg:163.48ms
step:263/1530 train_loss:3.8971 train_time:41363ms step_avg:163.49ms
step:264/1530 train_loss:3.9915 train_time:41528ms step_avg:163.50ms
step:265/1530 train_loss:3.8829 train_time:41694ms step_avg:163.50ms
step:266/1530 train_loss:3.9286 train_time:41859ms step_avg:163.51ms
step:267/1530 train_loss:3.9306 train_time:42025ms step_avg:163.52ms
step:268/1530 train_loss:3.9683 train_time:42191ms step_avg:163.53ms
step:269/1530 train_loss:3.8590 train_time:42357ms step_avg:163.54ms
step:270/1530 train_loss:4.1072 train_time:42523ms step_avg:163.55ms
step:271/1530 train_loss:3.9709 train_time:42689ms step_avg:163.56ms
step:272/1530 train_loss:3.9330 train_time:42856ms step_avg:163.57ms
step:273/1530 train_loss:3.9470 train_time:43020ms step_avg:163.58ms
step:274/1530 train_loss:4.0473 train_time:43187ms step_avg:163.59ms
step:275/1530 train_loss:4.0675 train_time:43353ms step_avg:163.60ms
step:276/1530 train_loss:4.2301 train_time:43520ms step_avg:163.61ms
step:277/1530 train_loss:4.0400 train_time:43684ms step_avg:163.61ms
step:278/1530 train_loss:4.0990 train_time:43849ms step_avg:163.62ms
step:279/1530 train_loss:4.0060 train_time:44016ms step_avg:163.63ms
step:280/1530 train_loss:4.1898 train_time:44183ms step_avg:163.64ms
step:281/1530 train_loss:3.9776 train_time:44348ms step_avg:163.65ms
step:282/1530 train_loss:3.9506 train_time:44517ms step_avg:163.67ms
step:283/1530 train_loss:3.9170 train_time:44683ms step_avg:163.67ms
step:284/1530 train_loss:4.0500 train_time:44848ms step_avg:163.68ms
step:285/1530 train_loss:4.0650 train_time:45013ms step_avg:163.68ms
step:286/1530 train_loss:4.0918 train_time:45179ms step_avg:163.69ms
step:287/1530 train_loss:3.9127 train_time:45344ms step_avg:163.70ms
step:288/1530 train_loss:4.0088 train_time:45509ms step_avg:163.70ms
step:289/1530 train_loss:3.8773 train_time:45675ms step_avg:163.71ms
step:290/1530 train_loss:3.8711 train_time:45840ms step_avg:163.71ms
step:291/1530 train_loss:3.9104 train_time:46005ms step_avg:163.72ms
step:292/1530 train_loss:3.8697 train_time:46168ms step_avg:163.72ms
step:293/1530 train_loss:3.9146 train_time:46334ms step_avg:163.72ms
step:294/1530 train_loss:3.9387 train_time:46499ms step_avg:163.73ms
step:295/1530 train_loss:3.8394 train_time:46663ms step_avg:163.73ms
step:296/1530 train_loss:3.8680 train_time:46828ms step_avg:163.73ms
step:297/1530 train_loss:3.8685 train_time:46994ms step_avg:163.74ms
step:298/1530 train_loss:3.9705 train_time:47158ms step_avg:163.74ms
step:299/1530 train_loss:3.8261 train_time:47323ms step_avg:163.75ms
step:300/1530 train_loss:3.9652 train_time:47489ms step_avg:163.76ms
step:301/1530 train_loss:3.9646 train_time:47654ms step_avg:163.76ms
step:302/1530 train_loss:3.9399 train_time:47819ms step_avg:163.76ms
step:303/1530 train_loss:3.9778 train_time:47984ms step_avg:163.77ms
step:304/1530 train_loss:3.9708 train_time:48149ms step_avg:163.77ms
step:305/1530 train_loss:4.4602 train_time:48316ms step_avg:163.78ms
step:306/1530 train_loss:3.9480 train_time:48481ms step_avg:163.79ms
step:307/1530 train_loss:3.8462 train_time:48645ms step_avg:163.79ms
step:308/1530 train_loss:3.9833 train_time:48811ms step_avg:163.79ms
step:309/1530 train_loss:3.8766 train_time:48977ms step_avg:163.80ms
step:310/1530 train_loss:4.0922 train_time:49141ms step_avg:163.80ms
step:311/1530 train_loss:3.9341 train_time:49306ms step_avg:163.81ms
step:312/1530 train_loss:3.8692 train_time:49470ms step_avg:163.81ms
step:313/1530 train_loss:3.9488 train_time:49637ms step_avg:163.82ms
step:314/1530 train_loss:4.0735 train_time:49802ms step_avg:163.82ms
step:315/1530 train_loss:3.9474 train_time:49966ms step_avg:163.82ms
step:316/1530 train_loss:3.8016 train_time:50131ms step_avg:163.83ms
step:317/1530 train_loss:3.8841 train_time:50298ms step_avg:163.84ms
step:318/1530 train_loss:3.9286 train_time:50462ms step_avg:163.84ms
step:319/1530 train_loss:3.8970 train_time:50627ms step_avg:163.84ms
step:320/1530 train_loss:4.0174 train_time:50792ms step_avg:163.84ms
step:321/1530 train_loss:3.9572 train_time:50957ms step_avg:163.85ms
step:322/1530 train_loss:3.9377 train_time:51122ms step_avg:163.85ms
step:323/1530 train_loss:4.0153 train_time:51286ms step_avg:163.85ms
step:324/1530 train_loss:3.9595 train_time:51451ms step_avg:163.86ms
step:325/1530 train_loss:4.0218 train_time:51617ms step_avg:163.86ms
step:326/1530 train_loss:3.8971 train_time:51782ms step_avg:163.87ms
step:327/1530 train_loss:4.4087 train_time:51947ms step_avg:163.87ms
step:328/1530 train_loss:4.0763 train_time:52113ms step_avg:163.88ms
step:329/1530 train_loss:3.8012 train_time:52279ms step_avg:163.88ms
step:330/1530 train_loss:3.7564 train_time:52444ms step_avg:163.89ms
step:331/1530 train_loss:3.9843 train_time:52608ms step_avg:163.89ms
step:332/1530 train_loss:3.9217 train_time:52774ms step_avg:163.90ms
step:333/1530 train_loss:3.8954 train_time:52941ms step_avg:163.90ms
step:334/1530 train_loss:3.8440 train_time:53105ms step_avg:163.90ms
step:335/1530 train_loss:4.0157 train_time:53269ms step_avg:163.91ms
step:336/1530 train_loss:3.9681 train_time:53435ms step_avg:163.91ms
step:337/1530 train_loss:4.4354 train_time:53601ms step_avg:163.92ms
step:338/1530 train_loss:3.9442 train_time:53766ms step_avg:163.92ms
step:339/1530 train_loss:3.8727 train_time:53930ms step_avg:163.92ms
step:340/1530 train_loss:3.9423 train_time:54096ms step_avg:163.93ms
step:341/1530 train_loss:3.8604 train_time:54262ms step_avg:163.93ms
step:342/1530 train_loss:3.8206 train_time:54428ms step_avg:163.94ms
step:343/1530 train_loss:3.8439 train_time:54599ms step_avg:163.96ms
step:344/1530 train_loss:4.0049 train_time:54767ms step_avg:163.97ms
step:345/1530 train_loss:3.8247 train_time:54936ms step_avg:163.99ms
step:346/1530 train_loss:3.7734 train_time:55104ms step_avg:164.00ms
step:347/1530 train_loss:3.8086 train_time:55272ms step_avg:164.01ms
step:348/1530 train_loss:3.8623 train_time:55440ms step_avg:164.02ms
step:349/1530 train_loss:3.8365 train_time:55608ms step_avg:164.04ms
step:350/1530 train_loss:3.5736 train_time:55777ms step_avg:164.05ms
step:351/1530 train_loss:3.8239 train_time:55945ms step_avg:164.06ms
step:352/1530 train_loss:4.1948 train_time:56111ms step_avg:164.07ms
step:353/1530 train_loss:3.6642 train_time:56280ms step_avg:164.08ms
step:354/1530 train_loss:3.9276 train_time:56448ms step_avg:164.09ms
step:355/1530 train_loss:3.7925 train_time:56617ms step_avg:164.11ms
step:356/1530 train_loss:3.8862 train_time:56784ms step_avg:164.12ms
step:357/1530 train_loss:3.7750 train_time:56951ms step_avg:164.12ms
step:358/1530 train_loss:3.8726 train_time:57120ms step_avg:164.14ms
step:359/1530 train_loss:3.7830 train_time:57289ms step_avg:164.15ms
step:360/1530 train_loss:3.4465 train_time:57459ms step_avg:164.17ms
step:361/1530 train_loss:4.0204 train_time:57627ms step_avg:164.18ms
step:362/1530 train_loss:3.9263 train_time:57795ms step_avg:164.19ms
step:363/1530 train_loss:3.8426 train_time:57962ms step_avg:164.20ms
step:364/1530 train_loss:3.7481 train_time:58130ms step_avg:164.21ms
step:365/1530 train_loss:3.9228 train_time:58299ms step_avg:164.22ms
step:366/1530 train_loss:3.8703 train_time:58466ms step_avg:164.23ms
step:367/1530 train_loss:3.8645 train_time:58634ms step_avg:164.24ms
step:368/1530 train_loss:3.8594 train_time:58802ms step_avg:164.25ms
step:369/1530 train_loss:3.7524 train_time:58969ms step_avg:164.26ms
step:370/1530 train_loss:3.8827 train_time:59137ms step_avg:164.27ms
step:371/1530 train_loss:3.7369 train_time:59305ms step_avg:164.28ms
step:372/1530 train_loss:3.6993 train_time:59472ms step_avg:164.29ms
step:373/1530 train_loss:3.9138 train_time:59639ms step_avg:164.29ms
step:374/1530 train_loss:3.8379 train_time:59806ms step_avg:164.30ms
step:375/1530 train_loss:3.8007 train_time:59974ms step_avg:164.31ms
step:375/1530 val_loss:3.8318 train_time:60023ms step_avg:164.45ms