From 83b3a120b4ecc326e5097ba48b0d2906cc70e525 Mon Sep 17 00:00:00 2001 From: zeptodoctor <44736852+zeptodoctor@users.noreply.github.com> Date: Thu, 16 Nov 2023 14:45:40 +0000 Subject: [PATCH] build based on e3d47a2 --- dev/dev/index.html | 2 +- dev/generated/annulus.html | 4 ++-- dev/generated/annulus/index.html | 2 +- dev/generated/automaticdifferentiation/index.html | 2 +- dev/generated/chebyshev/index.html | 2 +- dev/generated/disk/index.html | 2 +- dev/generated/dunklxu.html | 4 ++-- dev/generated/nonlocaldiffusion/index.html | 2 +- dev/generated/padua/index.html | 2 +- dev/generated/proriol.html | 4 ++-- dev/generated/sphere/index.html | 2 +- dev/generated/sphere1.html | 4 ++-- dev/generated/sphere2.html | 4 ++-- dev/generated/sphere3.html | 4 ++-- dev/generated/spinweighted/index.html | 2 +- dev/generated/subspaceangles/index.html | 2 +- dev/generated/triangle/index.html | 2 +- dev/generated/zernike.html | 4 ++-- dev/index.html | 2 +- dev/search/index.html | 2 +- 20 files changed, 27 insertions(+), 27 deletions(-) diff --git a/dev/dev/index.html b/dev/dev/index.html index cfaf6648..b8b03fda 100644 --- a/dev/dev/index.html +++ b/dev/dev/index.html @@ -34,4 +34,4 @@

Then we wait for the friendly folks at JuliaPackaging to merge the pull request to Yggdrasil, triggering a new release of the FastTransforms_jll.jl meta package that stores all precompiled binaries. With this release, we update the FastTransforms.jl Project.toml to point to the latest release and register the new version.

Since development of Yggdrasil is quite rapid, a fork may easily become stale. Git permits the developer to forcibly make a master branch on a fork even with upstream master:

git fetch upstream
 git checkout master
 git reset --hard upstream/master
-git push origin master --force
+git push origin master --force diff --git a/dev/generated/annulus.html b/dev/generated/annulus.html index 4ea721f2..694ac5f2 100644 --- a/dev/generated/annulus.html +++ b/dev/generated/annulus.html @@ -1,7 +1,7 @@ -
+
+
+
+
+
+
+

FastTransforms.jl Documentation

Introduction

FastTransforms.jl allows the user to conveniently work with orthogonal polynomials with degrees well into the millions.

This package provides a Julia wrapper for the C library of the same name. Additionally, all three types of nonuniform fast Fourier transforms available, as well as the Padua transform.

Fast orthogonal polynomial transforms

For this documentation, please see the documentation for FastTransforms. Most transforms have separate forward and inverse plans. In some instances, however, the inverse is in the sense of least-squares, and therefore only the forward transform is planned.

Nonuniform fast Fourier transforms

FastTransforms.nufft1Function

Computes a nonuniform fast Fourier transform of type I:

\[f_j = \sum_{k=0}^{N-1} c_k e^{-2\pi{\rm i} \frac{j}{N} \omega_k},\quad{\rm for}\quad 0 \le j \le N-1.\]
source

Computes a 2D nonuniform fast Fourier transform of type I-I:

\[F_{i,j} = \sum_{k=0}^{M-1}\sum_{\ell=0}^{N-1} C_{k,\ell} e^{-2\pi{\rm i} (\frac{i}{M} \omega_k + \frac{j}{N} \pi_{\ell})},\quad{\rm for}\quad 0 \le i \le M-1,\quad 0 \le j \le N-1.\]
source
FastTransforms.nufft2Function

Computes a nonuniform fast Fourier transform of type II:

\[f_j = \sum_{k=0}^{N-1} c_k e^{-2\pi{\rm i} x_j k},\quad{\rm for}\quad 0 \le j \le N-1.\]
source

Computes a 2D nonuniform fast Fourier transform of type II-II:

\[F_{i,j} = \sum_{k=0}^{M-1}\sum_{\ell=0}^{N-1} C_{k,\ell} e^{-2\pi{\rm i} (x_i k + y_j \ell)},\quad{\rm for}\quad 0 \le i \le M-1,\quad 0 \le j \le N-1.\]
source
FastTransforms.nufft3Function

Computes a nonuniform fast Fourier transform of type III:

\[f_j = \sum_{k=0}^{N-1} c_k e^{-2\pi{\rm i} x_j \omega_k},\quad{\rm for}\quad 0 \le j \le N-1.\]
source

Other Exported Methods

FastTransforms.gauntFunction

Calculates the Gaunt coefficients, defined by:

\[a(m,n,\mu,\nu,q) = \frac{2(n+\nu-2q)+1}{2} \frac{(n+\nu-2q-m-\mu)!}{(n+\nu-2q+m+\mu)!} \int_{-1}^{+1} P_n^m(x) P_\nu^\mu(x) P_{n+\nu-2q}^{m+\mu}(x) {\rm\,d}x.\]

or defined by:

\[P_n^m(x) P_\nu^\mu(x) = \sum_{q=0}^{q_{\rm max}} a(m,n,\mu,\nu,q) P_{n+\nu-2q}^{m+\mu}(x)\]

This is a Julia implementation of the stable recurrence described in:

Y.-l. Xu, Fast evaluation of Gaunt coefficients: recursive approach, J. Comp. Appl. Math., 85:53–65, 1997.

source

Calculates the Gaunt coefficients in 64-bit floating-point arithmetic.

source
FastTransforms.sphevaluateFunction

Pointwise evaluation of real orthonormal spherical harmonic:

\[Y_\ell^m(\theta,\varphi) = (-1)^{|m|}\sqrt{(\ell+\frac{1}{2})\frac{(\ell-|m|)!}{(\ell+|m|)!}} P_\ell^{|m|}(\cos\theta) \sqrt{\frac{2-\delta_{m,0}}{2\pi}} \left\{\begin{array}{ccc} \cos m\varphi & {\rm for} & m \ge 0,\\ \sin(-m\varphi) & {\rm for} & m < 0.\end{array}\right.\]
source

Internal Methods

Miscellaneous Special Functions

FastTransforms.δFunction

The Kronecker $\delta$ function:

\[\delta_{k,j} = \left\{\begin{array}{ccc} 1 & {\rm for} & k = j,\\ 0 & {\rm for} & k \ne j.\end{array}\right.\]
source
FastTransforms.ΛFunction

The Lambda function $\Lambda(z) = \frac{\Gamma(z+\frac{1}{2})}{\Gamma(z+1)}$ for the ratio of gamma functions.

source

For 64-bit floating-point arithmetic, the Lambda function uses the asymptotic series for $\tau$ in Appendix B of

I. Bogaert and B. Michiels and J. Fostier, 𝒪(1) computation of Legendre polynomials and Gauss–Legendre nodes and weights for parallel computing, SIAM J. Sci. Comput., 34:C83–C101, 2012.

source

The Lambda function $\Lambda(z,λ₁,λ₂) = \frac{\Gamma(z+\lambda_1)}{Γ(z+\lambda_2)}$ for the ratio of gamma functions.

source
FastTransforms.lambertwFunction

The principal branch of the Lambert-W function, defined by $x = W_0(x) e^{W_0(x)}$, computed using Halley's method for $x \in [-e^{-1},\infty)$.

source

Modified Chebyshev Moment-Based Quadrature

FastTransforms.chebyshevlogmoments1Function

Modified Chebyshev moments of the first kind with respect to the logarithmic weight:

\[ \int_{-1}^{+1} T_n(x) \log\left(\frac{1-x}{2}\right){\rm\,d}x.\]
source
FastTransforms.chebyshevlogmoments2Function

Modified Chebyshev moments of the second kind with respect to the logarithmic weight:

\[ \int_{-1}^{+1} U_n(x) \log\left(\frac{1-x}{2}\right){\rm\,d}x.\]
source

Elliptic

FastTransforms.EllipticModule

FastTransforms submodule for the computation of some elliptic integrals and functions.

Complete elliptic integrals of the first and second kinds:

\[K(k) = \int_0^{\frac{\pi}{2}} \frac{{\rm d}\theta}{\sqrt{1-k^2\sin^2\theta}},\quad{\rm and},\]
\[E(k) = \int_0^{\frac{\pi}{2}} \sqrt{1-k^2\sin^2\theta} {\rm\,d}\theta.\]

Jacobian elliptic functions:

\[x = \int_0^{\operatorname{sn}(x,k)} \frac{{\rm d}t}{\sqrt{(1-t^2)(1-k^2t^2)}},\]
\[x = \int_{\operatorname{cn}(x,k)}^1 \frac{{\rm d}t}{\sqrt{(1-t^2)[1-k^2(1-t^2)]}},\]
\[x = \int_{\operatorname{dn}(x,k)}^1 \frac{{\rm d}t}{\sqrt{(1-t^2)(t^2-1+k^2)}},\]

and the remaining nine are defined by:

\[\operatorname{pq}(x,k) = \frac{\operatorname{pr}(x,k)}{\operatorname{qr}(x,k)} = \frac{1}{\operatorname{qp}(x,k)}.\]
source
+Home · FastTransforms.jl

FastTransforms.jl Documentation

Introduction

FastTransforms.jl allows the user to conveniently work with orthogonal polynomials with degrees well into the millions.

This package provides a Julia wrapper for the C library of the same name. Additionally, all three types of nonuniform fast Fourier transforms available, as well as the Padua transform.

Fast orthogonal polynomial transforms

For this documentation, please see the documentation for FastTransforms. Most transforms have separate forward and inverse plans. In some instances, however, the inverse is in the sense of least-squares, and therefore only the forward transform is planned.

Nonuniform fast Fourier transforms

FastTransforms.nufft1Function

Computes a nonuniform fast Fourier transform of type I:

\[f_j = \sum_{k=0}^{N-1} c_k e^{-2\pi{\rm i} \frac{j}{N} \omega_k},\quad{\rm for}\quad 0 \le j \le N-1.\]
source

Computes a 2D nonuniform fast Fourier transform of type I-I:

\[F_{i,j} = \sum_{k=0}^{M-1}\sum_{\ell=0}^{N-1} C_{k,\ell} e^{-2\pi{\rm i} (\frac{i}{M} \omega_k + \frac{j}{N} \pi_{\ell})},\quad{\rm for}\quad 0 \le i \le M-1,\quad 0 \le j \le N-1.\]
source
FastTransforms.nufft2Function

Computes a nonuniform fast Fourier transform of type II:

\[f_j = \sum_{k=0}^{N-1} c_k e^{-2\pi{\rm i} x_j k},\quad{\rm for}\quad 0 \le j \le N-1.\]
source

Computes a 2D nonuniform fast Fourier transform of type II-II:

\[F_{i,j} = \sum_{k=0}^{M-1}\sum_{\ell=0}^{N-1} C_{k,\ell} e^{-2\pi{\rm i} (x_i k + y_j \ell)},\quad{\rm for}\quad 0 \le i \le M-1,\quad 0 \le j \le N-1.\]
source
FastTransforms.nufft3Function

Computes a nonuniform fast Fourier transform of type III:

\[f_j = \sum_{k=0}^{N-1} c_k e^{-2\pi{\rm i} x_j \omega_k},\quad{\rm for}\quad 0 \le j \le N-1.\]
source

Other Exported Methods

FastTransforms.gauntFunction

Calculates the Gaunt coefficients, defined by:

\[a(m,n,\mu,\nu,q) = \frac{2(n+\nu-2q)+1}{2} \frac{(n+\nu-2q-m-\mu)!}{(n+\nu-2q+m+\mu)!} \int_{-1}^{+1} P_n^m(x) P_\nu^\mu(x) P_{n+\nu-2q}^{m+\mu}(x) {\rm\,d}x.\]

or defined by:

\[P_n^m(x) P_\nu^\mu(x) = \sum_{q=0}^{q_{\rm max}} a(m,n,\mu,\nu,q) P_{n+\nu-2q}^{m+\mu}(x)\]

This is a Julia implementation of the stable recurrence described in:

Y.-l. Xu, Fast evaluation of Gaunt coefficients: recursive approach, J. Comp. Appl. Math., 85:53–65, 1997.

source

Calculates the Gaunt coefficients in 64-bit floating-point arithmetic.

source
FastTransforms.sphevaluateFunction

Pointwise evaluation of real orthonormal spherical harmonic:

\[Y_\ell^m(\theta,\varphi) = (-1)^{|m|}\sqrt{(\ell+\frac{1}{2})\frac{(\ell-|m|)!}{(\ell+|m|)!}} P_\ell^{|m|}(\cos\theta) \sqrt{\frac{2-\delta_{m,0}}{2\pi}} \left\{\begin{array}{ccc} \cos m\varphi & {\rm for} & m \ge 0,\\ \sin(-m\varphi) & {\rm for} & m < 0.\end{array}\right.\]
source

Internal Methods

Miscellaneous Special Functions

FastTransforms.δFunction

The Kronecker $\delta$ function:

\[\delta_{k,j} = \left\{\begin{array}{ccc} 1 & {\rm for} & k = j,\\ 0 & {\rm for} & k \ne j.\end{array}\right.\]
source
FastTransforms.ΛFunction

The Lambda function $\Lambda(z) = \frac{\Gamma(z+\frac{1}{2})}{\Gamma(z+1)}$ for the ratio of gamma functions.

source

For 64-bit floating-point arithmetic, the Lambda function uses the asymptotic series for $\tau$ in Appendix B of

I. Bogaert and B. Michiels and J. Fostier, 𝒪(1) computation of Legendre polynomials and Gauss–Legendre nodes and weights for parallel computing, SIAM J. Sci. Comput., 34:C83–C101, 2012.

source

The Lambda function $\Lambda(z,λ₁,λ₂) = \frac{\Gamma(z+\lambda_1)}{Γ(z+\lambda_2)}$ for the ratio of gamma functions.

source
FastTransforms.lambertwFunction

The principal branch of the Lambert-W function, defined by $x = W_0(x) e^{W_0(x)}$, computed using Halley's method for $x \in [-e^{-1},\infty)$.

source

Modified Chebyshev Moment-Based Quadrature

FastTransforms.chebyshevlogmoments1Function

Modified Chebyshev moments of the first kind with respect to the logarithmic weight:

\[ \int_{-1}^{+1} T_n(x) \log\left(\frac{1-x}{2}\right){\rm\,d}x.\]
source
FastTransforms.chebyshevlogmoments2Function

Modified Chebyshev moments of the second kind with respect to the logarithmic weight:

\[ \int_{-1}^{+1} U_n(x) \log\left(\frac{1-x}{2}\right){\rm\,d}x.\]
source

Elliptic

FastTransforms.EllipticModule

FastTransforms submodule for the computation of some elliptic integrals and functions.

Complete elliptic integrals of the first and second kinds:

\[K(k) = \int_0^{\frac{\pi}{2}} \frac{{\rm d}\theta}{\sqrt{1-k^2\sin^2\theta}},\quad{\rm and},\]
\[E(k) = \int_0^{\frac{\pi}{2}} \sqrt{1-k^2\sin^2\theta} {\rm\,d}\theta.\]

Jacobian elliptic functions:

\[x = \int_0^{\operatorname{sn}(x,k)} \frac{{\rm d}t}{\sqrt{(1-t^2)(1-k^2t^2)}},\]
\[x = \int_{\operatorname{cn}(x,k)}^1 \frac{{\rm d}t}{\sqrt{(1-t^2)[1-k^2(1-t^2)]}},\]
\[x = \int_{\operatorname{dn}(x,k)}^1 \frac{{\rm d}t}{\sqrt{(1-t^2)(t^2-1+k^2)}},\]

and the remaining nine are defined by:

\[\operatorname{pq}(x,k) = \frac{\operatorname{pr}(x,k)}{\operatorname{qr}(x,k)} = \frac{1}{\operatorname{qp}(x,k)}.\]
source
diff --git a/dev/search/index.html b/dev/search/index.html index bbda836c..939e3c46 100644 --- a/dev/search/index.html +++ b/dev/search/index.html @@ -1,2 +1,2 @@ -Search · FastTransforms.jl

Loading search...

    +Search · FastTransforms.jl

    Loading search...