-
Notifications
You must be signed in to change notification settings - Fork 293
/
demo_pair_plot_movies_mirror.py
29 lines (25 loc) · 1.08 KB
/
demo_pair_plot_movies_mirror.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import scattertext as st
movie_df = st.SampleCorpora.RottenTomatoes.get_data()
movie_df.category = movie_df.category.apply(lambda x: {'rotten': 'Negative',
'fresh': 'Positive',
'plot': 'Plot'}[x])
movie_df.movie_name = movie_df.movie_name.apply(lambda x: x.replace('_', ' '))
corpus = st.CorpusFromPandas(
movie_df,
category_col='movie_name',
text_col='text',
nlp=st.whitespace_nlp_with_sentences
).build().get_stoplisted_unigram_corpus()
html = st.produce_pairplot(
corpus,
category_projection=st.get_optimal_category_projection(corpus, verbose=True),
metadata=movie_df['category'] + ': ' + movie_df['movie_name'],
d3_url_struct=st.D3URLs(
d3_scale_chromatic_url='scattertext/data/viz/scripts/d3-scale-chromatic.v1.min.js',
d3_url='scattertext/data/viz/scripts/d3.min.js'
),
default_to_term_comparison=False
)
file_name = 'movie_pair_plot_movies_mirror.html'
open(file_name, 'wb').write(html.encode('utf-8'))
print('./' + file_name)