This tutorial is based on Linux systems like Ubuntu-18.04.
It is recommended to create a virtual environment for the project.
Install OpenVINO. It is recommended to use the installer or install using pip. Installation example using pip:
pip install openvino-dev[onnx]==2022.3.0
If you want to use OpenVINO in SDK, you need install OpenVINO with install_guides.
Take openvino==2022.3.0
as example:
wget https://storage.openvinotoolkit.org/repositories/openvino/packages/2022.3/linux/l_openvino_toolkit_ubuntu20_2022.3.0.9052.9752fafe8eb_x86_64.tgz
tar xzf ./l_openvino_toolkit*.tgz
cd l_openvino*
export InferenceEngine_DIR=$pwd/runtime/cmake
bash ./install_dependencies/install_openvino_dependencies.sh
Install MMDeploy following the instructions.
cd ${MMDEPLOY_DIR} # To MMDeploy root directory
mkdir -p build && cd build
cmake -DMMDEPLOY_TARGET_DEVICES='cpu' -DMMDEPLOY_TARGET_BACKENDS=openvino -DInferenceEngine_DIR=${InferenceEngine_DIR} ..
make -j$(nproc) && make install
To work with models from MMDetection, you may need to install it additionally.
You could follow the instructions of tutorial How to convert model
Example:
python tools/deploy.py \
configs/mmdet/detection/detection_openvino_static-300x300.py \
/mmdetection_dir/mmdetection/configs/ssd/ssd300_coco.py \
/tmp/snapshots/ssd300_coco_20210803_015428-d231a06e.pth \
tests/data/tiger.jpeg \
--work-dir ../deploy_result \
--device cpu \
--log-level INFO
The table below lists the models that are guaranteed to be exportable to OpenVINO from MMDetection.
Model name | Config | Dynamic Shape |
---|---|---|
ATSS | configs/atss/atss_r50_fpn_1x_coco.py |
Y |
Cascade Mask R-CNN | configs/cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py |
Y |
Cascade R-CNN | configs/cascade_rcnn/cascade_rcnn_r50_fpn_1x_coco.py |
Y |
Faster R-CNN | configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py |
Y |
FCOS | configs/fcos/fcos_x101_64x4d_fpn_gn-head_mstrain_640-800_4x2_2x_coco.py |
Y |
FoveaBox | configs/foveabox/fovea_r50_fpn_4x4_1x_coco.py |
Y |
FSAF | configs/fsaf/fsaf_r50_fpn_1x_coco.py |
Y |
Mask R-CNN | configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py |
Y |
RetinaNet | configs/retinanet/retinanet_r50_fpn_1x_coco.py |
Y |
SSD | configs/ssd/ssd300_coco.py |
Y |
YOLOv3 | configs/yolo/yolov3_d53_mstrain-608_273e_coco.py |
Y |
YOLOX | configs/yolox/yolox_tiny_8x8_300e_coco.py |
Y |
Faster R-CNN + DCN | configs/dcn/faster_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py |
Y |
VFNet | configs/vfnet/vfnet_r50_fpn_1x_coco.py |
Y |
Notes:
- Custom operations from OpenVINO use the domain
org.openvinotoolkit
. - For faster work in OpenVINO in the Faster-RCNN, Mask-RCNN, Cascade-RCNN, Cascade-Mask-RCNN models the RoiAlign operation is replaced with the ExperimentalDetectronROIFeatureExtractor operation in the ONNX graph.
- Models "VFNet" and "Faster R-CNN + DCN" use the custom "DeformableConv2D" operation.
With the deployment config, you can specify additional options for the Model Optimizer.
To do this, add the necessary parameters to the backend_config.mo_options
in the fields args
(for parameters with values) and flags
(for flags).
Example:
backend_config = dict(
mo_options=dict(
args=dict({
'--mean_values': [0, 0, 0],
'--scale_values': [255, 255, 255],
'--data_type': 'FP32',
}),
flags=['--disable_fusing'],
)
)
Information about the possible parameters for the Model Optimizer can be found in the documentation.
-
ImportError: libpython3.7m.so.1.0: cannot open shared object file: No such file or directory
To resolve missing external dependency on Ubuntu*, execute the following command:
sudo apt-get install libpython3.7