Skip to content

Latest commit

 

History

History
67 lines (51 loc) · 1.72 KB

File metadata and controls

67 lines (51 loc) · 1.72 KB

COLMAP Pipeline

Note: We just give an example pipeline for COLMAP usage. You should change some hacked path as your own file path in your workspace.

  • Folder Structure
├─created
│  └─sparse
│   +── cameras.txt
│   +── images.txt
│   +── points3D.txt
├─dense
├─images
│   +── images001.jpg
│   +── images002.jpg
│   +── ...
└─triangulated
    └─sparse
  • Feature Extraction
colmap feature_extractor --database_path database.db --image_path images
  • Update Intrinsic
python3 database.py --database_path /home/albert/UAV_Planning/Recon/planner_0831_2_spatial/database.db
  • Feature Matching
colmap exhaustive_matcher (or other matcher in gui) --database_path database.db
  • Mapper
colmap mapper --database_path database.db --image_path images --output_path triangulated/sparse
  • Triangulation (Not necessary)
colmap point_triangulator --database_path database.db --image_path images --input_path created/sparse --output_path triangulated/sparse
  • Dense Reconstruction

If the sparse from point triangulation

colmap image_undistorter --image_path images --input_path triangulated/sparse --output_path dense
colmap patch_match_stereo --workspace_path dense
colmap stereo_fusion --workspace_path dense --output_path dense/fused.ply

If the sparse from camera poses directly

colmap image_undistorter --image_path images --input_path created/sparse --output_path dense
python3 dense_cfg.py
colmap patch_match_stereo --workspace_path dense --PatchMatchStereo.depth_min 0.0 --PatchMatchStereo.depth_max 10.0
colmap stereo_fusion --workspace_path dense --output_path dense/fused.ply