-
Notifications
You must be signed in to change notification settings - Fork 0
/
losses.py
77 lines (64 loc) · 2.72 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
from fastai.vision import *
from modules.model import Model
class MultiLosses(nn.Module):
def __init__(self, one_hot=True):
super().__init__()
self.ce = SoftCrossEntropyLoss() if one_hot else torch.nn.CrossEntropyLoss()
self.bce = torch.nn.BCELoss()
@property
def last_losses(self):
return self.losses
def _flatten(self, sources, lengths):
return torch.cat([t[:l] for t, l in zip(sources, lengths)])
def _merge_list(self, all_res):
if not isinstance(all_res, (list, tuple)):
return all_res
def merge(items):
if isinstance(items[0], torch.Tensor): return torch.cat(items, dim=0)
else: return items[0]
res = dict()
for key in all_res[0].keys():
items = [r[key] for r in all_res]
res[key] = merge(items)
return res
def _ce_loss(self, output, gt_labels, gt_lengths, idx=None, record=True):
loss_name = output.get('name')
pt_logits, weight = output['logits'], output['loss_weight']
assert pt_logits.shape[0] % gt_labels.shape[0] == 0
iter_size = pt_logits.shape[0] // gt_labels.shape[0]
if iter_size > 1:
gt_labels = gt_labels.repeat(3, 1, 1)
gt_lengths = gt_lengths.repeat(3)
flat_gt_labels = self._flatten(gt_labels, gt_lengths)
flat_pt_logits = self._flatten(pt_logits, gt_lengths)
#print("loss_pt_logits:",pt_logits)
#print("gt_labels:",gt_labels)
#print("gt_lengths:",gt_lengths)
#input()
nll = output.get('nll')
if nll is not None:
loss = self.ce(flat_pt_logits, flat_gt_labels, softmax=False) * weight
else:
loss = self.ce(flat_pt_logits, flat_gt_labels) * weight
if record and loss_name is not None: self.losses[f'{loss_name}_loss'] = loss
return loss
def forward(self, outputs, *args):
self.losses = {}
#print("loss_args:",*args)
#input()
if isinstance(outputs, (tuple, list)):
outputs = [self._merge_list(o) for o in outputs]
return sum([self._ce_loss(o, *args) for o in outputs if o['loss_weight'] > 0.])
else:
return self._ce_loss(outputs, *args, record=False)
class SoftCrossEntropyLoss(nn.Module):
def __init__(self, reduction="mean"):
super().__init__()
self.reduction = reduction
def forward(self, input, target, softmax=True):
if softmax: log_prob = F.log_softmax(input, dim=-1)
else: log_prob = torch.log(input)
loss = -(target * log_prob).sum(dim=-1)
if self.reduction == "mean": return loss.mean()
elif self.reduction == "sum": return loss.sum()
else: return loss