-
Notifications
You must be signed in to change notification settings - Fork 0
/
infer_new.py
146 lines (128 loc) · 5.24 KB
/
infer_new.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import librosa
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import os
import argparse
from parse import *
from model import LeadModel
from joint_infer import pitch_ckpt, onset_ckpt, plot
import wandb
import io
def get_mel(y: np.ndarray, sr: int):
for i, part in enumerate(('left', 'right')):
"""mel_spec = librosa.feature.melspectrogram(y=y[i], sr=sr)
mel_spec = librosa.power_to_db(mel_spec, ref=np.max)"""
S = np.abs(librosa.stft(y[i], n_fft=4096))**2
fig, ax = plt.subplots(nrows=1, sharex=True)
img = librosa.display.specshow(librosa.amplitude_to_db(S, ref=np.max),
y_axis='log', x_axis='time', ax=ax)
plt.axis('off')
plt.savefig('tmp.jpg', dpi=600, bbox_inches='tight', pad_inches=0)
### plt.show()
plt.close()
tmp_img = Image.open('tmp.jpg')
img = tmp_img.resize((512, 512))
# img = ImageOps.flip(img)
img.save('/root/tmp'+f'_{part}.jpg')
if __name__ == '__main__':
wav_path = '/root/p.r.o.g.wav'
y, sr = librosa.load(wav_path, mono=False)
print(y.shape)
get_mel(y, sr)
parser = argparse.ArgumentParser()
# ViT-extractor
parser.add_argument('--image_size', type=int, default=512)
parser.add_argument('--patch_size', type=int, default=2)
parser.add_argument('--num_classes', type=int, default=1000)
parser.add_argument('--dim', type=int, default=256)
parser.add_argument('--depth', type=int, default=3)
parser.add_argument('--heads', type=int, default=16)
parser.add_argument('--mlp_dim', type=int, default=256)
parser.add_argument('--dropout', type=float, default=0.2)
parser.add_argument('--out_dim', type=int, default=512)
parser.add_argument('--extractor_name', type=str, default=None)
parser.add_argument('--hidden_size', type=int, default=None)
# training
parser.add_argument('--max_epochs', type=int, default=100)
parser.add_argument('--opt_name', type=str, default='AdamW')
parser.add_argument('--lr', type=float, default=5e-5)
parser.add_argument('--loss_alpha', type=float, default=0.5)
# transformer
parser.add_argument('--is_causal', type=bool, default=False)
parser.add_argument('--nhead', type=int, default=8)
parser.add_argument('--num_layers', type=int, default=2)
# rnn
parser.add_argument('--rnn_type', type=str, default=None)
parser.add_argument('--bidirectional', type=bool, default=False)
# misc
parser.add_argument('--comment', type=str, default=None)
parser.add_argument('--debug', type=bool, default=False)
parser.add_argument('--project_name', type=str, default='MTTLead')
parser.add_argument('--dataset_length', type=int, default=5000)
args = parser.parse_args()
args.dataset_length = TOT_TRACK
args.wav_path = wav_path
print(args)
config = vars(args)
if args.num_layers == 2:
pitch_ckpt = '/root/mtt/ckpt/MTTLeadAdamWPitchMMM/mb7w91gv/checkpoints/epoch=49-step=160000.ckpt'
onset_ckpt = '/root/mtt/ckpt/MTTLeadAdamWOnsetMMM/ozng3852/checkpoints/epoch=49-step=160000.ckpt'
elif args.num_layers == 4:
pitch_ckpt = '/root/mtt/ckpt/MTTLeadAdamWPitchMMM/6u6jwmh4/checkpoints/epoch=49-step=160000.ckpt'
onset_ckpt = '/root/mtt/ckpt/MTTLeadAdamWOnsetMMM/odeonqgr/checkpoints/epoch=49-step=160000.ckpt'
wandb.init(
entity='gariscat',
project='MTTLeadInferNewMMM',
)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
pitch_model = LeadModel.load_from_checkpoint(
pitch_ckpt,
config=config,
loss_alpha=1
).to(device)
onset_model = LeadModel.load_from_checkpoint(
onset_ckpt,
config=config,
loss_alpha=0,
).to(device)
pitch_model.eval()
onset_model.eval()
mel_path_left = '/root/tmp_left.jpg'
mel_path_right = '/root/tmp_right.jpg'
mel_left_tensor = read_image(mel_path_left).float() / 255
mel_right_tensor = read_image(mel_path_right).float() / 255
mel_tensor = torch.cat((
mel_left_tensor.unsqueeze(0),
mel_right_tensor.unsqueeze(0))
, dim=1).to(device)
pitch_logits, _ = pitch_model.forward(mel_tensor)
_, onset_logits = onset_model.forward(mel_tensor)
pitch_pred = pitch_logits.argmax(-1)
onset_pred = onset_logits.argmax(-1)
### pitch_gt = pitch_gt.flatten().numpy().tolist()
### onset_gt = onset_gt.flatten().numpy().tolist()
pitch_pred = pitch_pred.detach().cpu().flatten().numpy().tolist()
onset_pred = onset_pred.detach().cpu().flatten().numpy().tolist()
L = len(pitch_pred)
for i in range(L):
if onset_pred[i]:
if pitch_pred[i] == 0:
onset_pred[i] = 0
else:
if pitch_pred[i]:
if i == 0 or pitch_pred[i-1] != pitch_pred[i]:
pitch_pred[i] = 0
# plot
fig, axes = plt.subplots()
plot(pitch_pred, onset_pred, axes, 'prediction')
# log
buf = io.BytesIO()
fig.savefig(buf)
buf.seek(0)
img = Image.open(buf)
# print(type(img))
img = wandb.Image(img)
# print(type(img))
wandb.log({"joint_inference_samples": img})
plt.close()