-
Notifications
You must be signed in to change notification settings - Fork 16
/
apu.c
1013 lines (955 loc) · 22.8 KB
/
apu.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright (C) 2017 - 2020 FIX94
*
* This software may be modified and distributed under the terms
* of the MIT license. See the LICENSE file for details.
*/
#include <stdio.h>
#include <stdbool.h>
#include <inttypes.h>
#include <string.h>
#include <malloc.h>
#include "apu.h"
#include "audio_fds.h"
#include "audio_mmc5.h"
#include "audio_vrc6.h"
#include "audio_vrc7.h"
#include "audio_n163.h"
#include "audio_s5b.h"
#include "audio.h"
#include "mapper.h"
#include "mem.h"
#include "cpu.h"
#define P1_ENABLE (1<<0)
#define P2_ENABLE (1<<1)
#define TRI_ENABLE (1<<2)
#define NOISE_ENABLE (1<<3)
#define DMC_ENABLE (1<<4)
#define PULSE_CONST_V (1<<4)
#define PULSE_HALT_LOOP (1<<5)
#define TRI_HALT_LOOP (1<<7)
#define DMC_HALT_LOOP (1<<6)
#define DMC_IRQ_ENABLE (1<<7)
static struct {
uint8_t reg[0x18];
uint32_t BufSize;
uint32_t BufSizeBytes;
uint32_t curBufPos;
uint32_t Frequency;
uint16_t freq1;
uint16_t freq2;
uint16_t triFreq;
uint16_t noiseFreq;
uint16_t noiseShiftReg;
uint16_t dmcFreq;
uint16_t dmcAddr, dmcLen;
uint16_t dmcCurAddr, dmcCurLen;
uint8_t p1LengthCtr, p2LengthCtr, noiseLengthCtr;
uint8_t triLengthCtr, triLinearCtr, triCurLinearCtr;
uint8_t dmcVol, dmcCurVol;
uint8_t dmcSampleRemain;
uint8_t dmcSampleBuf, dmcCpuBuf;
uint8_t irq;
bool mode5;
uint8_t modePos;
uint16_t modeCurCtr;
uint16_t p1freqCtr, p2freqCtr, triFreqCtr, noiseFreqCtr, dmcFreqCtr;
uint8_t p1Cycle, p2Cycle, triCycle;
bool p1haltloop, p2haltloop, trihaltloop, noisehaltloop, dmchaltloop;
bool dmcenabled;
bool dmcready;
bool dmcirqenable;
bool trireload;
bool noiseMode1;
bool enable_irq;
envelope_t p1Env, p2Env, noiseEnv;
sweep_t p1Sweep, p2Sweep;
#if AUDIO_FLOAT
float pulseLookupTbl[32];
float tndLookupTbl[204];
float lpVal;
float hpVal;
float *OutBuf;
float lastHPOut;
float lastLPOut;
float *ampVol;
#else
int32_t pulseLookupTbl[32];
int32_t tndLookupTbl[204];
int32_t lpVal;
int32_t hpVal;
int16_t *OutBuf;
int32_t lastHPOut;
int32_t lastLPOut;
int32_t *ampVol;
#endif
#if FAKE_STEREO
uint32_t DelaySize;
uint32_t DelaySizeBytes;
uint32_t DelayCnt;
#if AUDIO_FLOAT
float *DelayBuf;
#else
int16_t *DelayBuf;
#endif
#endif
const uint16_t *dmcPeriod, *noisePeriod;
const uint16_t *mode4Ctr, *mode5Ctr;
bool mode_change;
bool new_mode5;
uint8_t vrc7Clock;
uint8_t apuClock;
uint8_t p1Out;
uint8_t p2Out;
uint8_t triOut;
uint8_t noiseOut;
const uint8_t *p1seq;
const uint8_t *p2seq;
const uint8_t *lengthLookupTbl;
const uint8_t *triSeq;
bool waitForRefill;
} apu;
#if AUDIO_FLOAT
static float APU_ampVol[7] = { 2.0f, 1.75f, 1.5f, 1.2f, 1.0f, 0.85f, 0.75f };
#else
static int32_t APU_ampVol[7] = { 128, 112, 96, 77, 64, 55, 48 };
#endif
//used externally
const uint8_t lengthLookupTbl[0x20] = {
10,254, 20, 2, 40, 4, 80, 6, 160, 8, 60, 10, 14, 12, 26, 14,
12, 16, 24, 18, 48, 20, 96, 22, 192, 24, 72, 26, 16, 28, 32, 30
};
//used externally
const uint8_t pulseSeqs[4][8] = {
{ 0, 1, 0, 0, 0, 0, 0, 0 },
{ 0, 1, 1, 0, 0, 0, 0, 0 },
{ 0, 1, 1, 1, 1, 0, 0, 0 },
{ 1, 0, 0, 1, 1, 1, 1, 1 },
};
static const uint8_t triSeq[32] = {
15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
};
static const uint16_t noisePeriodNtsc[16] = {
4, 8, 16, 32, 64, 96, 128, 160, 202, 254, 380, 508, 762, 1016, 2034, 4068,
};
static const uint16_t noisePeriodPal[16] = {
4, 8, 14, 30, 60, 88, 118, 148, 188, 236, 354, 472, 708, 944, 1890, 3778,
};
static const uint16_t dmcPeriodNtsc[16] = {
428, 380, 340, 320, 286, 254, 226, 214, 190, 160, 142, 128, 106, 84, 72, 54,
};
static const uint16_t dmcPeriodPal[16] = {
398, 354, 316, 298, 276, 236, 210, 198, 176, 148, 132, 118, 98, 78, 66, 50,
};
//used externally
const uint16_t mode4CtrNtsc[6] = {
7456, 7458, 7457, 1, 1, 7457
};
const uint16_t mode4CtrPal[6] = {
8314, 8312, 8313, 1, 1, 8313
};
static const uint16_t mode5CtrNtsc[6] = {
1, 7457, 7456, 7458, 7458, 7452
};
static const uint16_t mode5CtrPal[6] = {
1, 8313, 8314, 8312, 8314, 8312
};
extern uint8_t interrupt;
#define M_2_PI 6.28318530717958647692
extern bool fdsMasterEnable;
extern uint32_t vrc7CycleTimer;
extern bool nesPAL;
uint8_t audioExpansion;
void apuInitBufs()
{
apu.noisePeriod = nesPAL ? noisePeriodPal : noisePeriodNtsc;
apu.dmcPeriod = nesPAL ? dmcPeriodPal : dmcPeriodNtsc;
apu.mode4Ctr = nesPAL ? mode4CtrPal : mode4CtrNtsc;
apu.mode5Ctr = nesPAL ? mode5CtrPal : mode5CtrNtsc;
apu.lengthLookupTbl = lengthLookupTbl;
apu.triSeq = triSeq;
apu.ampVol = APU_ampVol;
//effective frequencies for 50.000Hz and 60.000Hz Video out
//apu.Frequency = nesPAL ? 831187 : 893415;
//effective frequencies for Original PPU Video out
//apu.Frequency = nesPAL ? 831303 : 894886;
#if AUDIO_LOWERFREQ
apu.Frequency = nesPAL ? 51956 : 55930;
#else
apu.Frequency = nesPAL ? 207825 : 223721;
#endif
audioExpansion = 0;
double dt = 1.0/((double)apu.Frequency);
//LP at 22kHz
double rc = 1.0/(M_2_PI * 22000.0);
#if AUDIO_FLOAT
apu.lpVal = dt / (rc + dt);
#else
//convert to 32bit int for calcs later
apu.lpVal = (int32_t)((dt / (rc + dt))*32768.0);
#endif
//HP at 40Hz
rc = 1.0/(M_2_PI * 40.0);
#if AUDIO_FLOAT
apu.hpVal = rc / (rc + dt);
#else
//convert to 32bit int for calcs later
apu.hpVal = (int32_t)((rc / (rc + dt))*32768.0);
#endif
//just have something larger than 1 frame
//to hold changing data size
apu.BufSize = apu.Frequency/30*2;
#if AUDIO_FLOAT
apu.BufSizeBytes = apu.BufSize*sizeof(float);
apu.OutBuf = (float*)malloc(apu.BufSizeBytes);
printf("Audio: 32-bit Float Output at %iHz\n", apu.Frequency);
#else
apu.BufSizeBytes = apu.BufSize*sizeof(int16_t);
apu.OutBuf = (int16_t*)malloc(apu.BufSizeBytes);
printf("Audio: 16-bit Short Output at %iHz\n", apu.Frequency);
#endif
//extra delay
#if FAKE_STEREO
apu.DelaySize = apu.Frequency/125; //8ms
apu.DelayCnt = 0;
#if AUDIO_FLOAT
apu.DelaySizeBytes = apu.DelaySize*sizeof(float);
apu.DelayBuf = (float*)malloc(apu.DelaySizeBytes);
#else
apu.DelaySizeBytes = apu.DelaySize*sizeof(int16_t);
apu.DelayBuf = (int16_t*)malloc(apu.DelaySizeBytes);
#endif
memset(apu.DelayBuf, 0, apu.DelaySizeBytes);
printf("Audio: Enabled Fake Stereo Delay of 8ms\n");
#endif
/* https://wiki.nesdev.com/w/index.php/APU_Mixer#Lookup_Table */
uint8_t i;
#if AUDIO_FLOAT
for(i = 0; i < 32; i++)
apu.pulseLookupTbl[i] = (95.52 / ((8128.0 / i) + 100));
for(i = 0; i < 204; i++)
apu.tndLookupTbl[i] = (163.67 / ((24329.0 / i) + 100));
#else
for(i = 0; i < 32; i++)
apu.pulseLookupTbl[i] = (int32_t)((95.52 / ((8128.0 / i) + 100))*32768.0);
for(i = 0; i < 204; i++)
apu.tndLookupTbl[i] = (int32_t)((163.67 / ((24329.0 / i) + 100))*32768.0);
#endif
}
void apuDeinitBufs()
{
if(apu.OutBuf)
free(apu.OutBuf);
apu.OutBuf = NULL;
#if FAKE_STEREO
if(apu.DelayBuf)
free(apu.DelayBuf);
apu.DelayBuf = NULL;
#endif
}
void apuInit()
{
memset(apu.reg,0,0x18);
memset(apu.OutBuf, 0, apu.BufSizeBytes);
apu.curBufPos = 0;
apu.freq1 = 0; apu.freq2 = 0; apu.triFreq = 0; apu.noiseFreq = apu.noisePeriod[0]-1, apu.dmcFreq = apu.dmcPeriod[0]-1;
apu.noiseShiftReg = 1;
apu.p1LengthCtr = 0; apu.p2LengthCtr = 0;
apu.noiseLengthCtr = 0; apu.triLengthCtr = 0;
apu.triLinearCtr = 0; apu.triCurLinearCtr = 0;
//make sure to properly init dmc values
apu.dmcAddr = 0xC000, apu.dmcLen = 1, apu.dmcVol = 0;
apu.dmcSampleBuf = 0; apu.dmcCpuBuf = 0;
apu.dmcCurAddr = 0, apu.dmcCurLen = 0; apu.dmcCurVol = 0;
apu.dmcSampleRemain = 0;
apu.irq = 0;
apu.p1freqCtr = 0; apu.p2freqCtr = 0; apu.triFreqCtr = 0, apu.noiseFreqCtr = 0, apu.dmcFreqCtr = 0;
apu.p1Cycle = 0; apu.p2Cycle = 0; apu.triCycle = 0;
memset(&apu.p1Env,0,sizeof(envelope_t));
memset(&apu.p2Env,0,sizeof(envelope_t));
memset(&apu.noiseEnv,0,sizeof(envelope_t));
memset(&apu.p1Sweep,0,sizeof(sweep_t));
apu.p1Sweep.chan1 = true; //for negative sweep
memset(&apu.p2Sweep,0,sizeof(sweep_t));
apu.p2Sweep.chan1 = false;
apu.p1haltloop = false; apu.p2haltloop = false;
apu.trihaltloop = false; apu.noisehaltloop = false;
apu.dmcenabled = false;
apu.dmcready = false;
apu.dmcirqenable = false;
apu.trireload = false;
apu.noiseMode1 = false;
//4017 starts out as 0, so enable
apu.enable_irq = true;
apu.mode_change = false;
apu.new_mode5 = false;
apu.vrc7Clock = 1;
apu.apuClock = 0;
apu.mode5 = false;
apu.modePos = 5;
apu.modeCurCtr = nesPAL ? 8315 : 7459;
apu.p1seq = pulseSeqs[0];
apu.p2seq = pulseSeqs[1];
}
void apuWriteDMCBuf(uint8_t val)
{
apu.dmcready = true;
apu.dmcCpuBuf = val;
apu.dmcCurAddr++;
if(!apu.dmcCurLen)
{
if(apu.dmchaltloop)
{
apu.dmcCurAddr = apu.dmcAddr;
apu.dmcCurLen = apu.dmcLen;
}
else if(apu.dmcirqenable)
{
//printf("DMC IRQ\n");
interrupt |= DMC_IRQ;
}
}
}
extern bool cpu_odd_cycle;
FIXNES_NOINLINE static void apuChangeMode()
{
if(!cpu_odd_cycle)
return;
apu.mode_change = false;
apu.mode5 = apu.new_mode5;
apu.modePos = 5;
if(apu.mode5)
apu.modeCurCtr = 1;
else
apu.modeCurCtr = nesPAL ? 8315 : 7459;
}
void doEnvelopeLogic(envelope_t *env)
{
if(env->start)
{
env->start = false;
env->divider = env->vol;
env->decay = 15;
}
else
{
if(env->divider == 0)
{
env->divider = env->vol;
if(env->decay == 0)
{
if(env->loop)
env->decay = 15;
}
else
env->decay--;
}
else
env->divider--;
}
//too slow on its own?
//env->envelope = (env->constant ? env->vol : env->decay);
}
static void sweepUpdateFreq(sweep_t *sw, uint16_t *freq)
{
//any freq update causes target freq update
sw->targetFreq = *freq;
if(sw->targetFreq >= 8)
{
if(sw->negative)
{
sw->targetFreq -= (sw->targetFreq >> sw->shift);
if(sw->chan1 == true) sw->targetFreq--;
}
else
sw->targetFreq += (sw->targetFreq >> sw->shift);
if(sw->targetFreq <= 0x7FF)
sw->mute = false;
else //larger than freq register
sw->mute = true;
}
else //any input < 8 gets muted
sw->mute = true;
}
static void doSweepLogic(sweep_t *sw, uint16_t *freq)
{
if(sw->divider == 0)
{
if(sw->enabled && sw->shift && !sw->mute)
{
*freq = sw->targetFreq;
sweepUpdateFreq(sw, freq);
}
sw->divider = sw->period;
}
else
sw->divider--;
if(sw->start)
{
sw->divider = sw->period;
sw->start = false;
}
}
FIXNES_NOINLINE static void apuClockA()
{
if(apu.p1LengthCtr)
{
doSweepLogic(&apu.p1Sweep, &apu.freq1);
if(!apu.p1haltloop)
apu.p1LengthCtr--;
}
if(apu.p2LengthCtr)
{
doSweepLogic(&apu.p2Sweep, &apu.freq2);
if(!apu.p2haltloop)
apu.p2LengthCtr--;
}
if(apu.triLengthCtr && !apu.trihaltloop)
apu.triLengthCtr--;
if(apu.noiseLengthCtr && !apu.noisehaltloop)
apu.noiseLengthCtr--;
}
FIXNES_NOINLINE static void apuClockB()
{
if(apu.p1LengthCtr)
doEnvelopeLogic(&apu.p1Env);
if(apu.p2LengthCtr)
doEnvelopeLogic(&apu.p2Env);
if(apu.noiseLengthCtr)
doEnvelopeLogic(&apu.noiseEnv);
if(apu.trireload)
apu.triCurLinearCtr = apu.triLinearCtr;
else if(apu.triCurLinearCtr)
apu.triCurLinearCtr--;
if(!apu.trihaltloop)
apu.trireload = false;
}
FIXNES_ALWAYSINLINE void apuCycle()
{
uint8_t aExp = audioExpansion;
#if AUDIO_LOWERFREQ
if(!(apu.apuClock&31))
#else
if(!(apu.apuClock&7))
#endif
{
if(apu.p1LengthCtr && (apu.reg[0x15] & P1_ENABLE))
{
if(!apu.p1Sweep.mute)
apu.p1Out = apu.p1seq[apu.p1Cycle] ? (apu.p1Env.constant ? apu.p1Env.vol : apu.p1Env.decay) : 0;
}
if(apu.p2LengthCtr && (apu.reg[0x15] & P2_ENABLE))
{
if(!apu.p2Sweep.mute)
apu.p2Out = apu.p2seq[apu.p2Cycle] ? (apu.p2Env.constant ? apu.p2Env.vol : apu.p2Env.decay) : 0;
}
if(apu.triLengthCtr && apu.triCurLinearCtr && (apu.reg[0x15] & TRI_ENABLE))
{
if(apu.triFreq >= 2)
apu.triOut = apu.triSeq[apu.triCycle];
}
if(apu.noiseLengthCtr && (apu.reg[0x15] & NOISE_ENABLE))
{
if(apu.noiseFreq > 0)
apu.noiseOut = (apu.noiseShiftReg&1) == 0 ? (apu.noiseEnv.constant ? apu.noiseEnv.vol : apu.noiseEnv.decay) : 0;
}
#if AUDIO_FLOAT
float curIn = apu.pulseLookupTbl[apu.p1Out + apu.p2Out] + apu.tndLookupTbl[(3*apu.triOut) + (2*apu.noiseOut) + apu.dmcVol];
uint8_t ampVolPos = 0;
//very rough still
if(aExp & EXP_VRC6)
{
vrc6AudioCycle();
curIn += ((float)vrc6Out)*0.008f;
ampVolPos++;
}
if(aExp & EXP_FDS)
{
fdsAudioCycle();
curIn += ((float)fdsOut)*0.00617f;
ampVolPos++;
}
if(aExp & EXP_MMC5)
{
mmc5AudioCycle();
curIn += apu.pulseLookupTbl[mmc5Out]+(mmc5pcm*0.002f);
ampVolPos++;
}
if(aExp & EXP_VRC7)
{
curIn += (((float)(vrc7Out>>7))/32768.f);
ampVolPos++;
}
if(aExp & EXP_N163)
{
curIn += ((float)n163Out)*0.0008f;
ampVolPos++;
}
if(aExp & EXP_S5B)
{
s5BAudioCycle();
curIn += ((float)s5BOut)/32768.f;
ampVolPos++;
}
//amplify input
curIn *= apu.ampVol[ampVolPos];
float curLPout = apu.lastLPOut+(apu.lpVal*(curIn-apu.lastLPOut));
float curHPOut = apu.hpVal*(apu.lastHPOut+apu.lastLPOut-curLPout);
//set output
apu.OutBuf[apu.curBufPos] = curHPOut;
apu.lastLPOut = curLPout;
apu.lastHPOut = curHPOut;
#else
int32_t curIn = apu.pulseLookupTbl[apu.p1Out + apu.p2Out] + apu.tndLookupTbl[(3*apu.triOut) + (2*apu.noiseOut) + apu.dmcVol];
uint8_t ampVolPos = 0;
//very rough still
if(aExp & EXP_VRC6)
{
vrc6AudioCycle();
curIn += ((int32_t)vrc6Out)*262;
ampVolPos++;
}
if(aExp & EXP_FDS)
{
fdsAudioCycle();
curIn += ((int32_t)fdsOut)*202;
ampVolPos++;
}
if(aExp & EXP_MMC5)
{
mmc5AudioCycle();
curIn += apu.pulseLookupTbl[mmc5Out]+(mmc5pcm<<6);
ampVolPos++;
}
if(aExp & EXP_VRC7)
{
curIn += vrc7Out>>7;
ampVolPos++;
}
if(aExp & EXP_N163)
{
curIn += n163Out*26;
ampVolPos++;
}
if(aExp & EXP_S5B)
{
s5BAudioCycle();
curIn += s5BOut;
ampVolPos++;
}
//amplify input
curIn *= apu.ampVol[ampVolPos];
int32_t curOut;
//gen output
curOut = apu.lastLPOut+((apu.lpVal*((curIn>>6)-apu.lastLPOut))>>15); //Set Lowpass Output
curIn = (apu.lastHPOut+apu.lastLPOut-curOut); //Set Highpass Input
curIn += (curIn>>31)&1; //Add Sign Bit for proper Downshift later
apu.lastLPOut = curOut; //Save Lowpass Output
curOut = (apu.hpVal*curIn)>>15; //Set Highpass Output
apu.lastHPOut = curOut; //Save Highpass Output
//Save Clipped Highpass Output
apu.OutBuf[apu.curBufPos] = (curOut > 32767)?(32767):((curOut < -32768)?(-32768):curOut);
#endif
#if FAKE_STEREO //add slight delay for stereo effect
apu.OutBuf[apu.curBufPos+1] = apu.DelayBuf[apu.DelayCnt];
apu.DelayBuf[apu.DelayCnt] = apu.OutBuf[apu.curBufPos];
apu.DelayCnt++;
apu.DelayCnt%=apu.DelaySize;
#else //just copy same output
apu.OutBuf[apu.curBufPos+1] = apu.OutBuf[apu.curBufPos];
#endif
apu.curBufPos+=2;
}
apu.apuClock++;
if(apu.p1freqCtr == 0)
{
apu.p1freqCtr = (apu.freq1<<1)+1;
apu.p1Cycle = (apu.p1Cycle+1)&7;
}
else
apu.p1freqCtr--;
if(apu.p2freqCtr == 0)
{
apu.p2freqCtr = (apu.freq2<<1)+1;
apu.p2Cycle = (apu.p2Cycle+1)&7;
}
else
apu.p2freqCtr--;
if(apu.triFreqCtr == 0)
{
apu.triFreqCtr = apu.triFreq;
apu.triCycle = (apu.triCycle+1)&31;
}
else
apu.triFreqCtr--;
if(apu.noiseFreqCtr == 0)
{
apu.noiseFreqCtr = apu.noiseFreq;
uint8_t cmpBit = apu.noiseMode1 ? (apu.noiseShiftReg>>6)&1 : (apu.noiseShiftReg>>1)&1;
uint8_t cmpRes = (apu.noiseShiftReg&1)^cmpBit;
apu.noiseShiftReg >>= 1;
apu.noiseShiftReg |= cmpRes<<14;
}
else
apu.noiseFreqCtr--;
if(apu.dmcFreqCtr == 0)
{
apu.dmcFreqCtr = apu.dmcFreq;
if(apu.dmcenabled)
{
if(apu.dmcSampleBuf&1)
{
if(apu.dmcVol <= 125)
apu.dmcVol += 2;
}
else if(apu.dmcVol >= 2)
apu.dmcVol -= 2;
apu.dmcSampleBuf>>=1;
}
if(apu.dmcSampleRemain == 0)
{
if(apu.dmcready)
{
apu.dmcSampleBuf = apu.dmcCpuBuf;
apu.dmcenabled = true;
apu.dmcready = false;
}
else
apu.dmcenabled = false;
apu.dmcSampleRemain = 7;
}
else
apu.dmcSampleRemain--;
}
else
apu.dmcFreqCtr--;
if(!apu.dmcready && !cpuInDMC_DMA() && apu.dmcCurLen)
{
cpuDoDMC_DMA(apu.dmcCurAddr);
apu.dmcCurLen--;
}
if(aExp&EXP_VRC7)
{
if(apu.vrc7Clock == vrc7CycleTimer)
{
vrc7AudioCycle();
apu.vrc7Clock = 1;
}
else
apu.vrc7Clock++;
}
if(aExp&EXP_FDS)
fdsAudioMasterUpdate();
if(aExp&EXP_MMC5)
mmc5AudioLenCycle();
if(apu.mode_change)
apuChangeMode();
if(apu.modeCurCtr == 0)
{
if(apu.modePos == 5)
apu.modePos = 0;
else
apu.modePos++;
if(apu.mode5 == false)
{
apu.modeCurCtr = apu.mode4Ctr[apu.modePos]-1;
if(apu.modePos == 3 || apu.modePos == 5)
{
if(apu.enable_irq)
apu.irq = 1;
}
else
{
if(apu.modePos == 1)
apuClockA();
else if(apu.modePos == 4)
{
apuClockA();
if(apu.enable_irq)
{
apu.irq = 1;
//actually set for cpu
interrupt |= APU_IRQ;
}
}
apuClockB();
}
}
else
{
apu.modeCurCtr = apu.mode5Ctr[apu.modePos]-1;
if(apu.modePos != 1 && apu.modePos != 5)
{
if(apu.modePos == 0 || apu.modePos == 3)
apuClockA();
apuClockB();
}
}
}
else
apu.modeCurCtr--;
}
void apuSetReg00(uint16_t addr, uint8_t val)
{
(void)addr;
apu.reg[0] = val;
apu.p1Env.vol = val&0xF;
apu.p1seq = pulseSeqs[val>>6];
apu.p1Env.constant = ((val&PULSE_CONST_V) != 0);
apu.p1Env.loop = apu.p1haltloop = ((val&PULSE_HALT_LOOP) != 0);
}
void apuSetReg01(uint16_t addr, uint8_t val)
{
(void)addr;
apu.reg[1] = val;
//printf("P1 sweep %02x\n", val);
apu.p1Sweep.enabled = ((val&0x80) != 0);
apu.p1Sweep.shift = val&7;
apu.p1Sweep.period = (val>>4)&7;
apu.p1Sweep.negative = ((val&0x8) != 0);
apu.p1Sweep.start = true;
//adjust for new sweep regs
sweepUpdateFreq(&apu.p1Sweep, &apu.freq1);
}
void apuSetReg02(uint16_t addr, uint8_t val)
{
(void)addr;
apu.reg[2] = val;
//printf("P1 time low %02x\n", val);
apu.freq1 = ((apu.freq1&~0xFF) | val);
sweepUpdateFreq(&apu.p1Sweep, &apu.freq1);
}
void apuSetReg03(uint16_t addr, uint8_t val)
{
(void)addr;
apu.reg[3] = val;
apu.p1Cycle = 0;
if(apu.reg[0x15] & P1_ENABLE)
apu.p1LengthCtr = apu.lengthLookupTbl[val>>3];
apu.freq1 = (apu.freq1&0xFF) | ((val&7)<<8);
sweepUpdateFreq(&apu.p1Sweep, &apu.freq1);
//printf("P1 new freq %04x\n", apu.freq1);
apu.p1Env.start = true;
}
void apuSetReg04(uint16_t addr, uint8_t val)
{
(void)addr;
apu.reg[4] = val;
apu.p2Env.vol = val&0xF;
apu.p2seq = pulseSeqs[val>>6];
apu.p2Env.constant = ((val&PULSE_CONST_V) != 0);
apu.p2Env.loop = apu.p2haltloop = ((val&PULSE_HALT_LOOP) != 0);
}
void apuSetReg05(uint16_t addr, uint8_t val)
{
(void)addr;
apu.reg[5] = val;
//printf("P2 sweep %02x\n", val);
apu.p2Sweep.enabled = ((val&0x80) != 0);
apu.p2Sweep.shift = val&7;
apu.p2Sweep.period = (val>>4)&7;
apu.p2Sweep.negative = ((val&0x8) != 0);
apu.p2Sweep.start = true;
//adjust for new sweep regs
sweepUpdateFreq(&apu.p2Sweep, &apu.freq2);
}
void apuSetReg06(uint16_t addr, uint8_t val)
{
(void)addr;
apu.reg[6] = val;
//printf("P2 time low %02x\n", val);
apu.freq2 = ((apu.freq2&~0xFF) | val);
sweepUpdateFreq(&apu.p2Sweep, &apu.freq2);
}
void apuSetReg07(uint16_t addr, uint8_t val)
{
(void)addr;
apu.reg[7] = val;
apu.p2Cycle = 0;
if(apu.reg[0x15] & P2_ENABLE)
apu.p2LengthCtr = apu.lengthLookupTbl[val>>3];
apu.freq2 = (apu.freq2&0xFF) | ((val&7)<<8);
sweepUpdateFreq(&apu.p2Sweep, &apu.freq2);
//printf("P2 new freq %04x\n", apu.freq2);
apu.p2Env.start = true;
}
void apuSetReg08(uint16_t addr, uint8_t val)
{
(void)addr;
apu.reg[8] = val;
apu.triLinearCtr = val&0x7F;
apu.trihaltloop = ((val&TRI_HALT_LOOP) != 0);
}
void apuSetReg0A(uint16_t addr, uint8_t val)
{
(void)addr;
apu.reg[0xA] = val;
apu.triFreq = ((apu.triFreq&~0xFF) | val);
}
void apuSetReg0B(uint16_t addr, uint8_t val)
{
(void)addr;
apu.reg[0xB] = val;
if(apu.reg[0x15] & TRI_ENABLE)
apu.triLengthCtr = apu.lengthLookupTbl[val>>3];
apu.triFreq = (apu.triFreq&0xFF) | ((val&7)<<8);
//printf("Tri new freq %04x\n", apu.triFreq);
apu.trireload = true;
}
void apuSetReg0C(uint16_t addr, uint8_t val)
{
(void)addr;
apu.reg[0xC] = val;
apu.noiseEnv.vol = val&0xF;
apu.noiseEnv.constant = ((val&PULSE_CONST_V) != 0);
apu.noiseEnv.loop = apu.noisehaltloop = ((val&PULSE_HALT_LOOP) != 0);
}
void apuSetReg0E(uint16_t addr, uint8_t val)
{
(void)addr;
apu.reg[0xE] = val;
apu.noiseMode1 = ((val&0x80) != 0);
apu.noiseFreq = apu.noisePeriod[val&0xF]-1;
}
void apuSetReg0F(uint16_t addr, uint8_t val)
{
(void)addr;
apu.reg[0xF] = val;
if(apu.reg[0x15] & NOISE_ENABLE)
apu.noiseLengthCtr = apu.lengthLookupTbl[val>>3];
apu.noiseEnv.start = true;
}
void apuSetReg10(uint16_t addr, uint8_t val)
{
(void)addr;
apu.reg[0x10] = val;
//printf("Set 0x10 %02x\n", val);
apu.dmcFreq = apu.dmcPeriod[val&0xF]-1;
apu.dmchaltloop = ((val&DMC_HALT_LOOP) != 0);
apu.dmcirqenable = ((val&DMC_IRQ_ENABLE) != 0);
//printf("%d\n", apu.dmcirqenable);
if(!apu.dmcirqenable)
interrupt &= ~DMC_IRQ;
}
void apuSetReg11(uint16_t addr, uint8_t val)
{
(void)addr;
apu.reg[0x11] = val;
apu.dmcVol = val&0x7F;
}
void apuSetReg12(uint16_t addr, uint8_t val)
{
(void)addr;
apu.reg[0x12] = val;
apu.dmcAddr = 0xC000+(val*64);
}
void apuSetReg13(uint16_t addr, uint8_t val)
{
(void)addr;
apu.reg[0x13] = val;
//printf("Set 0x13 %02x\n", val);
apu.dmcLen = (val*16)+1;
}
void apuSetReg15(uint16_t addr, uint8_t val)
{
(void)addr;
apu.reg[0x15] = val;
//printf("Set 0x15 %02x\n",val);
if(!(val & P1_ENABLE))
apu.p1LengthCtr = 0;
if(!(val & P2_ENABLE))
apu.p2LengthCtr = 0;
if(!(val & TRI_ENABLE))
apu.triLengthCtr = 0;
if(!(val & NOISE_ENABLE))
apu.noiseLengthCtr = 0;
if(!(val & DMC_ENABLE))
apu.dmcCurLen = 0;
else if(apu.dmcCurLen == 0)
{
apu.dmcCurAddr = apu.dmcAddr;
apu.dmcCurLen = apu.dmcLen;
}
interrupt &= ~DMC_IRQ;
}
void apuSetReg17(uint16_t addr, uint8_t val)
{
(void)addr;
apu.reg[0x17] = val;
apu.enable_irq = ((val&(1<<6)) == 0);
if(!apu.enable_irq)
{
apu.irq = 0;
interrupt &= ~APU_IRQ;
}
apu.new_mode5 = ((val&(1<<7)) != 0);
//printf("Set 0x17 %d %d\n", apu.enable_irq, apu.new_mode5);
apu.mode_change = true;
}
uint8_t apuGetReg15(uint16_t addr)
{
(void)addr;
uint8_t intrflags = ((apu.irq<<6) | ((!!(interrupt&DMC_IRQ))<<7));
uint8_t apuretval = ((apu.p1LengthCtr > 0) | ((apu.p2LengthCtr > 0)<<1) | ((apu.triLengthCtr > 0)<<2) | ((apu.noiseLengthCtr > 0)<<3) | ((apu.dmcCurLen > 0)<<4) | intrflags);
//printf("Get 0x15 %02x\n",apuretval);
interrupt &= ~APU_IRQ;
apu.irq = 0;
return apuretval;
}
void apuBoot()
{
apuSetReg15(0x15,0);
apuSetReg17(0x17,0);
}
void apuReset()
{
apuSetReg15(0x15,0);
interrupt &= ~APU_IRQ;
apu.irq = 0;
apu.mode_change = true;
}
uint8_t *apuGetBuf()
{
return (uint8_t*)apu.OutBuf;
}
uint32_t apuGetBufSize()
{
#if AUDIO_FLOAT
return apu.curBufPos*sizeof(float);
#else
return apu.curBufPos*sizeof(int16_t);
#endif
}
uint32_t apuGetFrequency()
{
return apu.Frequency;
}
extern bool emuSkipFrame;
bool apuUpdate()
{
#ifdef __LIBRETRO__
audioUpdate();
#else
int updateRes = audioUpdate();
//printf("%i\n",updateRes);
if(updateRes == 0)
{
emuSkipFrame = false;
apu.waitForRefill = false;
return false;
}
if(apu.waitForRefill && updateRes < 2)