-
Notifications
You must be signed in to change notification settings - Fork 0
/
Tumor2Graph.py
435 lines (368 loc) · 20.1 KB
/
Tumor2Graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
import torch
import torch.nn.functional as F
import torch.nn as nn
import numpy as np
import random
import math
from matplotlib import pyplot as plt
from sklearn import metrics
from torch.utils.data import DataLoader
from dataset.torch_dataset import TorchDataset
from dataset.tumor_dataset import TumorDataset
from metrics.evaluate_cls import evaluate_multi_cls
from models.gcn_conv import GCNConv
import os.path as osp
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import Parameter
from tqdm import tqdm
import pandas as pd
from sklearn.metrics import confusion_matrix
# 2 layer mlp
# translayer -> adj
# 2 layer gcn
# linear pred
class CNN_Model(nn.Module):
def __init__(self, output_dim):
super(CNN_Model, self).__init__()
# 32x32x3 image
self.conv1 = nn.Conv2d(3, 64, 3, padding=1)
# 16x16x16
self.conv2 = nn.Conv2d(64, 128, 3, padding=1)
# 8x8x32
self.conv3 = nn.Conv2d(128, 256, 3, padding=1)
## max pool
self.pool = nn.MaxPool2d(2, 2)
self.bn1 = nn.BatchNorm2d(64)
self.bn2 = nn.BatchNorm2d(128)
self.bn3 = nn.BatchNorm2d(256)
# linear layer (64x4x4->500)
self.fc1 = nn.Linear(64 * 16 * 16, 500)
# self.bn = nn.BatchNorm1d(500)
# self.fc1 = nn.Linear(3*128*128,500)
# linear layer (500->10)
self.fc2 = nn.Linear(500, output_dim)
# dropout
self.dropout = nn.Dropout(0.5)
def forward(self, x):
# add sequence of convolutional and max pooling layers
x = x.permute(0, 3, 1, 2)
x = self.pool(F.relu(self.conv1(x)))
# x = self.conv1(x)
# x = self.pool(x)
## x = self.pool(x)
# x = self.bn1(x)
#
# x = F.leaky_relu(x)
# x = self.pool(F.relu(self.conv2(x)))
# x = self.conv2(x)
# x = self.pool(x)
# x = self.bn2(x)
# x = F.leaky_relu(x)
# x = self.pool(F.relu(self.conv3(x)))
# x = self.conv3(x)
# x = self.pool(x)
# x = self.bn3(x)
# x = F.leaky_relu(x)
x = x.reshape(-1, 64 * 16 * 16)
x = self.dropout(x)
# add 1st hidden layer, with relu activation function
x = F.leaky_relu(self.fc1(x))
# x = self.bn(x)
x = self.fc2(x)
return x
class Model(nn.Module):
def __init__(self, **param_dict):
super(Model, self).__init__()
self.param_dict = param_dict
self.input_dim = self.param_dict['ft_dim']
self.out_dim = self.param_dict['label_num']
self.h_dim = self.param_dict['h_dim']
self.dropout_num = self.param_dict['dropout_num']
self.add_res = self.param_dict['add_res']
self.img_input_dim = self.param_dict['img_input_dim']
self.img_output_dim = self.param_dict['img_output_dim']
self.linear1 = nn.Linear(self.input_dim, self.h_dim)
self.linear2 = nn.Linear(self.h_dim, self.h_dim)
self.adj_trans_linear = nn.Linear(self.h_dim, self.h_dim)
self.gcn_layer1 = GCNConv(self.h_dim, self.h_dim)
self.gcn_layer2 = GCNConv(self.h_dim, self.h_dim)
self.linear_pred = nn.Linear(self.h_dim + self.img_output_dim, self.out_dim)
self.activation = nn.ELU()
self.dropout_layer = nn.Dropout(p=self.dropout_num)
self.CNN = CNN_Model(self.img_output_dim)
def forward(self, node_ft, img):
res_mat = torch.zeros(node_ft.size()[0], self.h_dim).to(node_ft.device)
node_ft = self.activation(self.linear1(node_ft))
node_ft = self.dropout_layer(node_ft)
node_ft = self.activation(self.linear2(node_ft))
node_ft = self.dropout_layer(node_ft)
res_mat += node_ft
# adj
trans_adj_ft = self.adj_trans_linear(node_ft)
trans_adj_ft = torch.tanh(trans_adj_ft)
w = torch.norm(trans_adj_ft, p=2, dim=-1).view(-1, 1)
w_mat = w * w.t()
adj = torch.mm(trans_adj_ft, trans_adj_ft.t()) / w_mat
node_ft = self.activation(self.gcn_layer1(node_ft, adj))
node_ft = self.dropout_layer(node_ft)
res_mat += node_ft
node_ft = self.activation(self.gcn_layer2(node_ft, adj))
node_ft = self.dropout_layer(node_ft)
res_mat += node_ft
image = self.CNN(img)
if self.add_res:
res_mat = torch.cat((res_mat, image), 1)
node_embedding = res_mat
pred = self.linear_pred(res_mat)
else:
node_embedding = node_ft
pred = self.linear_pred(node_ft)
pred = F.log_softmax(pred, dim=-1)
return pred, adj, node_embedding
model_save_dir = 'save_model_param_new'
current_path = osp.dirname(osp.realpath(__file__))
class Trainer(object):
def __init__(self, **param_dict):
self.param_dict = param_dict
self.setup_seed(self.param_dict['seed'])
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.dataset = TumorDataset(
train_split_param=self.param_dict['train_split_param'],
ft_stand=self.param_dict['ft_stand']
)
self.dataset.generate_dataset_info()
self.param_dict.update(self.dataset.dataset_info)
# self.dataset.to_tensor(self.device)
self.file_name = __file__.split('/')[-1].replace('.py', '')
self.trainer_info = '{}_seed={}_batch={}'.format(self.file_name, self.param_dict['seed'],
self.param_dict['batch_size'])
# self.save_model_path = osp.join(current_path, model_save_dir, self.trainer_info)
self.loss_op = torch.nn.NLLLoss()
self.build_model()
def build_model(self):
self.model = Model(**self.param_dict).to(self.device)
print(self.model)
self.optimizer = torch.optim.Adam(self.model.parameters(), lr=self.param_dict['lr'])
self.best_res = None
self.min_dif = -1e10
def setup_seed(self, seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
def iteration(self, epoch, dataloader, is_training=False):
if is_training:
self.model.train()
else:
self.model.eval()
all_pred = []
all_label = []
all_loss = []
node_embedding = None
for ft_mat, img, label_mat in dataloader:
ft_mat = ft_mat.cuda().float()
label_mat = label_mat.cuda().long()
img = img.cuda().float()
pred, adj, node_embedding0 = self.model(ft_mat, img)
if is_training:
# print(pred.size(), label_mat.size())
c_loss = self.loss_op(pred, label_mat)
param_l2_loss = 0
param_l1_loss = 0
for name, param in self.model.named_parameters():
if 'bias' not in name:
param_l2_loss += torch.norm(param, p=2)
param_l1_loss += torch.norm(param, p=1)
param_l2_loss = self.param_dict['param_l2_coef'] * param_l2_loss
adj_l1_loss = self.param_dict['adj_loss_coef'] * torch.norm(adj)
loss = c_loss + param_l2_loss + adj_l1_loss
# print('c_loss = ', c_loss.detach().to('cpu').item(),
# ' adj_l1_loss = ', adj_l1_loss.detach().to('cpu').item(),
# ' param_l2_loss = ', param_l2_loss.detach().to('cpu').item()
# )
loss.backward()
self.optimizer.step()
self.optimizer.zero_grad()
all_loss.append(loss.detach().to('cpu').item())
max_value, max_pos = torch.max(pred, dim=1)
pred = max_pos.detach().to('cpu').numpy()
label_mat = label_mat.detach().to('cpu').numpy()
all_pred = np.hstack([all_pred, pred])
all_label = np.hstack([all_label, label_mat])
node_embedding = node_embedding0
return all_pred, all_label, all_loss, node_embedding
def print_res(self, res_list, epoch):
train_acc, valid_acc, test_primary_acc, test_transfer_acc, \
train_macro_f1, valid_macro_f1, test_primary_macro_f1, test_transfer_macro_f1, \
train_micro_p, valid_micro_p, test_primary_micro_p, test_transfer_micro_p, \
train_micro_r, valid_micro_r, test_primary_micro_r, test_transfer_micro_r = res_list
"""
msg_log = 'Epoch: {:03d}, Acc Train: {:.4f}, Val: {:.4f}, Test primary: {:.4f}, Test transfer: {:.4f} ' \
'Macro F1 Train: {:.4f}, Val: {:.4f}, Test primary: {:.4f}, Test transfer: {:.4f} ' \
'Micro P Train: {:.4f}, Val: {:.4f}, Test primary: {:.4f}, Test transfer: {:.4f} ' \
'Micro R Train: {:.4f}, Val: {:.4f}, Test primary: {:.4f}, Test transfer: {:.4f} '.format(
epoch, train_acc, valid_acc, test_primary_acc, test_transfer_acc, \
train_macro_f1, valid_macro_f1, test_primary_macro_f1, test_transfer_macro_f1, \
train_micro_p, valid_micro_p, test_primary_micro_p, test_transfer_micro_p, \
train_micro_r, valid_micro_r, test_primary_micro_r, test_transfer_micro_r)
"""
msg_log = 'Epoch: {:03d}, Acc Train: {:.4f}, Val: {:.4f}, Test primary: {:.4f} ' \
'Macro F1 Train: {:.4f}, Val: {:.4f}, Test primary: {:.4f} ' \
'Micro P Train: {:.4f}, Val: {:.4f}, Test primary: {:.4f} ' \
'Micro R Train: {:.4f}, Val: {:.4f}, Test primary: {:.4f} '.format(
epoch, train_acc, valid_acc, test_primary_acc, \
train_macro_f1, valid_macro_f1, test_primary_macro_f1, \
train_micro_p, valid_micro_p, test_primary_micro_p, \
train_micro_r, valid_micro_r, test_primary_micro_r)
print(msg_log)
def start(self, display=True):
train_dataset = TorchDataset(dataset=self.dataset, split_type='train')
train_dataloader = DataLoader(train_dataset, batch_size=self.param_dict['batch_size'], shuffle=True,
num_workers=2)
valid_dataset = TorchDataset(self.dataset, split_type='valid')
valid_dataloader = DataLoader(valid_dataset, batch_size=self.param_dict['batch_size'], shuffle=True,
num_workers=2)
test_primary_dataset = TorchDataset(self.dataset, split_type='test_is_primary')
test_primary_dataloader = DataLoader(test_primary_dataset, batch_size=self.param_dict['batch_size'],
shuffle=False, num_workers=2)
test_transfer_dataset = TorchDataset(self.dataset, split_type='test_is_transfer')
test_transfer_dataloader = DataLoader(test_transfer_dataset, batch_size=self.param_dict['batch_size'],
shuffle=False, num_workers=2)
for epoch in range(1, self.param_dict['epoch_num'] + 1):
train_pred, train_label, train_loss, node_embedding = self.iteration(epoch=epoch,
dataloader=train_dataloader,
is_training=True)
train_acc, train_micro_f1, train_macro_f1, train_micro_p, train_micro_r = evaluate_multi_cls(train_pred,
train_label)
valid_pred, valid_label, valid_loss, node_embedding = self.iteration(epoch=epoch,
dataloader=valid_dataloader,
is_training=False)
valid_acc, valid_micro_f1, valid_macro_f1, valid_micro_p, valid_micro_r = evaluate_multi_cls(valid_pred,
valid_label)
test_primary_pred, test_primary_label, test_primary_loss, node_embedding = self.iteration(epoch=epoch,
dataloader=test_primary_dataloader,
is_training=False)
test_primary_acc, test_primary_micro_f1, test_primary_macro_f1, test_primary_micro_p, test_primary_micro_r \
= evaluate_multi_cls(test_primary_pred, test_primary_label)
test_transfer_pred, test_transfer_label, test_transfer_loss, node_embedding = \
self.iteration(epoch=epoch, dataloader=test_transfer_dataloader, is_training=False)
test_transfer_acc, test_transfer_micro_f1, test_transfer_macro_f1, test_transfer_micro_p, test_transfer_micro_r \
= evaluate_multi_cls(test_transfer_pred, test_transfer_label)
res_list = [
train_acc, valid_acc, test_primary_acc, test_transfer_acc,
train_macro_f1, valid_macro_f1, test_primary_macro_f1, test_transfer_macro_f1,
train_micro_p, valid_micro_p, test_primary_micro_p, test_transfer_micro_p,
train_micro_r, valid_micro_r, test_primary_micro_r, test_transfer_micro_r
]
if valid_acc > self.min_dif:
self.min_dif = valid_acc
self.best_res = res_list
self.best_epoch = epoch
# save model
save_complete_model_path = osp.join(current_path, model_save_dir, self.trainer_info + '_complete.pth')
torch.save(self.model, save_complete_model_path)
same_model_param_path = osp.join(current_path, model_save_dir, self.trainer_info + '_param.pkl')
torch.save(self.model.state_dict(), same_model_param_path)
if display:
self.print_res(res_list, epoch)
if epoch % 50 == 0 and epoch > 0:
print('Best res')
self.print_res(self.best_res, self.best_epoch)
def whole_graph_evaluate(self):
# load_params
model_param_path = osp.join(current_path, model_save_dir, self.trainer_info + '_param.pkl')
print('load params ', model_param_path)
self.model.load_state_dict(torch.load(model_param_path))
train_dataset = TorchDataset(dataset=self.dataset, split_type='train')
train_dataloader = DataLoader(train_dataset, num_workers=2, batch_size=self.param_dict['batch_size'],
shuffle=False)
valid_dataset = TorchDataset(self.dataset, split_type='valid')
valid_dataloader = DataLoader(valid_dataset, num_workers=2, batch_size=self.param_dict['batch_size'],
shuffle=False)
test_primary_dataset = TorchDataset(self.dataset, split_type='test_is_primary')
test_primary_dataloader = DataLoader(test_primary_dataset, num_workers=2,
batch_size=self.param_dict['batch_size'], shuffle=False)
test_transfer_dataset = TorchDataset(self.dataset, split_type='test_is_transfer')
test_transfer_dataloader = DataLoader(test_transfer_dataset, num_workers=2,
batch_size=self.param_dict['batch_size'], shuffle=False)
self.model.eval()
train_pred, train_label, train_loss, train_embedding = self.iteration(epoch=1, dataloader=train_dataloader,
is_training=True)
train_acc, train_micro_f1, train_macro_f1, train_micro_p, train_micro_r = evaluate_multi_cls(train_pred,
train_label)
valid_pred, valid_label, valid_loss, valid_embedding = self.iteration(epoch=1, dataloader=valid_dataloader,
is_training=False)
valid_acc, valid_micro_f1, valid_macro_f1, valid_micro_p, valid_micro_r = evaluate_multi_cls(valid_pred,
valid_label)
test_primary_pred, test_primary_label, test_primary_loss, test_primary_embedding = self.iteration(epoch=1,
dataloader=test_primary_dataloader,
is_training=False)
test_primary_acc, test_primary_micro_f1, test_primary_macro_f1, test_primary_micro_p, test_primary_micro_r \
= evaluate_multi_cls(test_primary_pred, test_primary_label)
test_transfer_pred, test_transfer_label, test_transfer_loss, test_transfer_embedding = \
self.iteration(epoch=1, dataloader=test_transfer_dataloader, is_training=False)
test_transfer_acc, test_transfer_micro_f1, test_transfer_macro_f1, test_transfer_micro_p, test_transfer_micro_r \
= evaluate_multi_cls(test_transfer_pred, test_transfer_label)
node_embedding = test_primary_embedding.detach().to('cpu').numpy()
np.save(
osp.join(current_path, 'save_embedding', self.trainer_info + '_embedding.npy'),
node_embedding
)
all_pred = train_pred
all_label = train_label
print('all_pred = ', all_pred)
print('all_label = ', all_label)
cm = confusion_matrix(all_label, all_pred)
print("confusion_matrix: ", cm)
np.savetxt('cm_new.csv', cm, delimiter = ',')
# all_pred_prob, adj, node_embedding = self.model(self.dataset.ft_mat)
# max_value, all_pred = torch.max(all_pred_prob, dim=1)
# node_embedding = node_embedding.detach().to('cpu').numpy()
#
# all_pred = all_pred.detach().to('cpu').numpy()
# all_label = self.dataset.label_mat.detach().to('cpu').numpy()
# print('all_pred = ', all_pred)
# print('all_label = ', all_label)
# train_acc, train_micro_f1, train_macro_f1, train_micro_p, train_micro_r = evaluate_multi_cls(train_pred,
# train_label)
#
# valid_acc, valid_micro_f1, valid_macro_f1, valid_micro_p, valid_micro_r = evaluate_multi_cls(valid_pred,
# valid_label)
#
# test_primary_acc, test_primary_micro_f1, test_primary_macro_f1, test_primary_micro_p, test_primary_micro_r \
# = evaluate_multi_cls(test_primary_pred, test_primary_label)
#
# test_transfer_acc, test_transfer_micro_f1, test_transfer_macro_f1, test_transfer_micro_p, test_transfer_micro_r \
# = evaluate_multi_cls(test_transfer_pred, test_transfer_label)
res_list = [
train_acc, valid_acc, test_primary_acc, test_transfer_acc,
train_macro_f1, valid_macro_f1, test_primary_macro_f1, test_transfer_macro_f1,
train_micro_p, valid_micro_p, test_primary_micro_p, test_transfer_micro_p,
train_micro_r, valid_micro_r, test_primary_micro_r, test_transfer_micro_r
]
print('whole_graph_evaluate')
self.print_res(res_list, 0)
if __name__ == '__main__':
for seed in [2, 3, 5]:
param_dict = {
'seed': seed,
'train_split_param': [0.95, 0.05],
'ft_stand': False,
'dropout_num': 0.3,
'layer_num': 4,
'epoch_num': 200,
'lr': 1e-4,
'param_l2_coef': 1e-2,
'batch_size': 1024,
'h_dim': 512,
'adj_loss_coef': 1e-2,
'add_res': True,
'img_input_dim': 1024,
'img_output_dim': 1,
}
trainer = Trainer(**param_dict)
trainer.start()
# trainer.whole_graph_evaluate()