Skip to content

Latest commit

 

History

History
89 lines (68 loc) · 3.77 KB

README.md

File metadata and controls

89 lines (68 loc) · 3.77 KB

The DeepSpeed Communication Benchmarking Suite

The intent of these benchmarks is to measure communication latency/bw of deepspeed and/or pytorch distributed communication operations at the Python layer. These benchmarks are complementary to C-level comms benchmarks like OSU Micro-Benchmarks and NCCL Tests in that users can:

  • Easily debug which layer of the communication software stack hangs or performance degradations originate from.
  • Measure the expected communication performance of either DeepSpeed comms or pure PyTorch distributed

To run benchmarks, there are two options:

  1. Run a single communication operation:

For example, run with a single large message size (calculated to barely fit within GPU mem):

deepspeed all_reduce.py

Scan across message sizes:

deepspeed all_reduce.py --scan

Benchmark pure PyTorch distributed comms (without importing or using DeepSpeed) with MPI

mpirun -np 16 --hostfile ${HOSTFILE} -x LD_LIBRARY_PATH -x PATH -x LD_PRELOAD python all_reduce.py --scan --dist="torch"

or Slurm

srun -n 16 python all_reduce.py --scan --dist="torch"
  1. Run all available communication benchmarks:
deepspeed run_all.py

Like the individual benchmarks, run_all.py supports scanning arguments for the max message size, bw-unit, etc. Simply pass the desired arguments to run_all.py and they'll be propagated to each comm op.

usage: ds_bench [-h] [--local_rank LOCAL_RANK] [--trials TRIALS] [--warmups WARMUPS] [--maxsize MAXSIZE] [--async-op] [--bw-unit {Gbps,GBps}] [--backend {nccl}] [--dist {deepspeed,torch}] [--scan] [--raw] [--all-reduce] [--all-gather] [--all-to-all]
                [--pt2pt] [--broadcast] [--dtype DTYPE] [--mem-factor MEM_FACTOR] [--debug]

optional arguments:
  -h, --help            show this help message and exit
  --local_rank LOCAL_RANK
  --trials TRIALS       Number of timed iterations
  --warmups WARMUPS     Number of warmup (non-timed) iterations
  --maxsize MAXSIZE     Max message size as a power of 2
  --async-op            Enables non-blocking communication
  --bw-unit {Gbps,GBps}
  --backend {nccl}      Communication library to use
  --dist {deepspeed,torch}
                        Distributed DL framework to use
  --scan                Enables scanning all message sizes
  --raw                 Print the message size and latency without units
  --all-reduce          Run all_reduce
  --all-gather          Run all_gather
  --all-to-all          Run all_to_all
  --pt2pt               Run pt2pt
  --broadcast           Run broadcast
  --dtype DTYPE         PyTorch tensor dtype
  --mem-factor MEM_FACTOR
                        Proportion of max available GPU memory to use for single-size evals
  --debug               Enables all_to_all debug prints

Note that ds_bench is a pre-packaged wrapper around run_all.py. Users can pass the same arguments as well:

/bin/ds_bench --scan --trials=10

Finally, users can choose specific communication operations to run in run_all.py or ds_bench by passing them as arguments (all operations are run by default). For example:

deepspeed run_all.py --scan --all-reduce --all-to-all --broadcast

Adding Communication Benchmarks

To add new communication benchmarks, follow this general procedure:

  1. Copy a similar benchmark file (e.g. to add reduce_scatter, copy all_reduce.py as a template)
  2. Add a new bw formula in utils.get_bw, a new maximum tensor element formula in utils.max_numel, and a new arg in utils.benchmark_parser
  3. Replace comm op calls in new file with find-replace
  4. Find a good default mem_factor for use in run_<collective>_single() function
  5. Add new comm op to run_all.py